

Attribution-NonCommercial-NoDerivs 2.0 KOREA

You are free to :

 Share — copy and redistribute the material in any medium or format

Under the follwing terms :

Attribution — You must give appropriate credit, provide a link to the license, and

indicate if changes were made. You may do so in any reasonable manner, but

not in any way that suggests the licensor endorses you or your use.

NonCommercial — You may not use the material for commercial purposes.

NoDerivatives — If you remix, transform, or build upon the material, you may

not distribute the modified material.

You do not have to comply with the license for elements of the material in the public domain or where your use

is permitted by an applicable exception or limitation.

This is a human-readable summary of (and not a substitute for) the license.

Disclaimer

http://creativecommons.org/licenses/by-nc-nd/2.0/
http://creativecommons.org/licenses/by-nc-nd/2.0/
http://creativecommons.org/licenses/by-nc-nd/2.0/
http://creativecommons.org/licenses/by-nc-nd/2.0/
http://creativecommons.org/licenses/by-nc-nd/2.0/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0
http://creativecommons.org/licenses/by-nc-nd/2.0/kr

Thesis for the Degree of Master of Engineering

Enhanced R-Tree Bulk Loading Scheme

Using Map-Reduce Framework

by

Huynh Cong Viet Ngu

Department of IT Convergence and Application Engineering

The Graduate School

Pukyong National University

February 2017

Enhanced R-Tree Bulk Loading Scheme

Using Map-Reduce Framework

맵리듀스 프레임워크를 이용한 향상된 R-트리

벌크로딩 기법

Advisor: Prof. Ha-Joo Song

by

Huynh Cong Viet Ngu

A thesis submitted in partial fulfillment of the requirements

for the degree of

Master of Engineering

in Department of IT Convergence and Application Engineering,

The Graduate School,

Pukyong National University

February 2017

i

Contents

List of Figures ··· iv

I. Introduction ·· 1

II. Related Works ·· 4

2.1 Big Data ·· 4

 2.1.1 Hadoop-MapReduce ··· 4

2.2 Quality of R-tree ··· 6

2.3 Parallel R-tree Construction using MapReduce························· 8

2.4 R-tree Packing Algorithm ·· 9

 2.4.1 Z-order Curve·· 10

 2.4.2 Sort-Tile-Recursive ··· 11

III. Parallel R-tree Construction using Hadoop ······························ 13

3.1 Overview ·· 13

3.2 Data Partitioning ··· 15

 3.2.1 Description ··· 15

ii

 3.2.2 Proposed MapReduce Algorithm ··································· 16

3.3 R-Tree Construction ··· 20

 3.3.1 Description ··· 20

 3.3.2 Proposed MapReduce Algorithm ··································· 20

3.4 R-tree Consolidation ··· 21

IV. Experimental Result ··· 22

4.1 Experimental Environment ··· 22

 4.1.1 Hadoop Cluster ··· 22

 4.1.2 Data Set ·· 23

4.2 Experimental Result ··· 25

 4.2.1 Time Performance ·· 25

 4.2.1.1 Our Approach ·· 25

 4.2.1.2 Comparison with Z-curve Method ·································· 26

 4.2.1.2.1 Data Partitioning Phase ··· 27

 4.2.1.2.2 R-tree Construction Phase ······································ 29

 4.2.2 Quality of Generated R-tree ··· 32

 4.2.2.1 Area Comparison ·· 32

 4.2.2.1.1 Comparison with Single R-tree ································ 32

iii

 4.2.2.1.2 Comparison with Z-curve Method ···························· 33

 4.2.2.2 Overlap Comparison ··· 36

 4.2.2.2.1 Comparison with Z-curve Method ···························· 36

V. Conclusion ·· 38

References

Acknowledgement

iv

List of Figures

Figure 1. A Layout of MBRs ··· 1

Figure 2. The Corresponding R-tree with Four Nodes ·························· 2

Figure 3. Input and Output in MapReduce ·· 5

Figure 4. MapReduce Framework ·· 5

Figure 5. R-tree Splitting Operation ··· 7

Figure 6. R-tree Construction Scheme is Proposed by A.Cary ················ 8

Figure 7. Z-order Curve of Order 1,2 and 3 ····································· 10

Figure 8. Sort-Tile-Recursive Algorithm··· 12

Figure 9. Our Scheme for R-tree Construction in MapReduce Framework 15

Figure 10. Longest Coordinate Determination ·································· 17

Figure 11. Inputs/Outputs for Data Partitioning ································· 18

Figure 12. Data Grouping into Partition with Maximum Objects equal 4 ··· 19

Figure 13. Inputs/Outputs for R-tree Construction ····························· 20

Figure 14. R-tree Consolidation ··· 21

Figure 15. Hadoop Cluster ··· 22

Figure 16. Spatial Data Sets used in the Experiments ·························· 24

Figure 17. Distribution of LINEARWATER Data set ························· 24

v

Figure 18. Distribution of ROAD NETWORK Data Set ······················ 25

Figure 19. Time Performance of Our Approach ································ 26

Figure 20. Time Performance of Phase One with 10% ratio of Input Data 28

Figure 21. Time Performance of Phase One with 100% ratio of Input Data 28

Figure 22. Time Performance of Phase Two with 10% ratio of Input

Data ·· 30

Figure 23. Time Performance of Phase Two with 100% ratio of Input

Data ·· 30

Figure 24. Total Implementation Time with 10% ratio of Input Data ······· 31

Figure 25. Total Implementation Time with 100% ratio of Input Data ······ 31

Figure 26. Equations for Area and Overlap Computation of Generated R-tree

 ·· 32

Figure 27. Comparison of Total Area between Our Method with the Single R-

tree ·· 33

Figure 28. Comparison of Total Area of R-tree with 1% Ratio ··············· 34

Figure 29. Comparison of Total Area of R-tree with 10% Ratio ············· 35

Figure 30. Comparison of Total Area of R-tree with 100% Ratio ············ 35

Figure 31. Comparison of Overlapping Area between Our Method and Z-

curve Method ··· 37

vi

Enhanced R-tree Bulk Loading Scheme

Using Map-Reduce Framework

Huynh Cong Viet Ngu

Department of IT Convergence and Application Engineering,

The Graduate School, Pukyong National University

Abstract

An R-tree is an index structure that enables fast accesses to multi-dimensional

data. Constructing an R-tree for a given data set yields an efficient R-tree structure

than incrementally building one as data are inserted. However it usually takes a

lot of time constructing an R-tree for a huge volume of data. In this paper, we

propose a parallel R-Tree construction scheme based on a Hadoop framework.

The proposed scheme divides the data into partitions, builds local R-trees in

parallel, and merges them to construct an R-tree that covers whole data set. While

generating the partitions, it considers the data distribution so that each partitions

have nearly equal amount of data. Therefore the proposed scheme gives an

efficient index structure while reducing the construction time

1

I. Introduction

 Nowadays, aside from the fact large amounts of traditional data are still

increasing significantly, there is an explosion in the amount of spatial data that is

being produced from many devices such as satellites or smart phones. In order to

handle this amount of spatial data efficiently, the R-tree is considered as an

optimal index mechanism that will help retrieve data quickly according to its

spatial locations. An R-tree [2] is a data structure in which each node contains a

certain number of index entries, each of which consists of a Minimum Bounding

Rectangle (MBR) and the pointer to an object or its child node if it is not a leaf

node. Both objects and non-leaf nodes are always represented by MBR. A layout

of MBRs of objects is shown in Figure 1 and Figure 2 show the R-tree structure

with four nodes.

Figure 1. A layout of MBRs

2

Figure 2. The Corresponding R-tree with Four Nodes

 An R-tree, is built by inserting new items iteratively as they arrive [2]. But with

this method, when an object is inserted into an R-tree node, in some cases of the

node splitting operation, it requires the locking of the R-tree, therefore the

concurrent insertions are prevented.

 In fact, in some applications where all the items is available as with the

Geometry Information System (GIS) problems, if an R-tree is built using the

packing technique in a parallel way, it’s much faster than the traditional method

as mentioned previously.

 Since its release in April 2005, Hadoop [3] was adopted as an optimal solution

for scalable processing of huge datasets in many applications, e.g., machine

learning, image processing, web crawling or text processing, and so on. Hadoop

employs MapReduce [4], a simplified programming paradigm for distributed

processing, to build an efficient large-scale data processing framework.

 An R-tree is an index structure that enables fast accesses to multi-dimensional

data. Constructing an R-tree for a given data set yields an efficient R-tree structure

that builds itself incrementally as data are inserted. However, it usually takes a lot

3

of time to construct an R-tree for a huge volume of data. In this paper, I propose

a parallel R-Tree construction scheme based on a Hadoop framework. The

proposed scheme divides the data into partitions, builds local R-trees in parallel,

and merges them to construct an R-tree that covers a whole data set. While

generating the partitions, it considers the data distribution so that each partition

has nearly equal amounts of data. Therefore the proposed scheme gives an

efficient index structure while reducing the construction time.

 The remainder of the thesis is organized as follows. Chapter II give a brief

description about Hadoop, MapReduce framework and related algorithms for

parallel R-tree construction. Chapter III describes my method to build parallel R-

tree on Hadoop environment with MapReduce model in detail. Chapter IV gives

the experimental results. And the last chapter, chapter V is the conclusion of the

thesis.

4

II. Related Works

2.1 Big Data

2.1.1 Hadoop - MapReduce

 A few years ago, to store or process data, most enterprises had a super computer

to perform this task. Here data can be stored in an RDBMS such as Oracle

Database, MS SQL Server or DB2. After that, the software can be written to

interact with the database, then send to user for analysis purpose.

 But with this approach, when it has to handle huge amounts of data, it faces

many difficulties in processing such data through a traditional database server.

Facing those difficulties, in 2005, an Open Source Project called Hadoop was

released.

 In order to handle a huge amounts of data, Hadoop runs all applications using

the MapReduce algorithm, where the data is processed in the parallel way on

different nodes. MapReduce is a programming model suited for parallel

computation, it handles parallelism, fault tolerance and other level issues.

Furthermore, MapReduce consists of both a map and reduce function which are

user-defined. The input data format is specified by the user and the output is a set

of <key,value> pairs. As shown in (Figure.3), the mapper applies user-defined

logic on every input key/value pair (k1,v1) and transforms it into a list of

intermediate key/value pairs(k2,v2). Then the reducer will apply user-defined

logic to all intermediate values (v2) associated with the same k2 and produces a

5

list of final output key/value pair (k3,v3). The data flow of the MapReduce

framework is illustrated in Figure 4.

Figure 3. Input and Output in MapReduce

Figure 4. MapReduce Framework

6

2.2 Quality of R-tree

 As I described in Chapter One, an R-tree is built by inserting new items

iteratively as they arrive. Each insert operation of a polygonal object represented

by its (MBR), first follows one path from root down to a leaf node, then the new

item is added to the leaf node. If the leaf node does not have enough space for the

new item, it will be split into two nodes.

 Similar to all the other data structures, the goal is how to build them so that

search performance is the best. In general, there are two primary goals for R-tree

construction, a main consideration is how to minimize the area of the MBRs of

the non-leaf nodes that are not covered by MBRs at the leaves these enclose,

which is also called the “Dead Area”, this goal can improve search performance

since decisions on which paths have to be traversed can be taken on higher levels.

A second consideration is how to minimize the overlap between MBRs, this goal

is also designed to decrease the number of paths to be traversed.

 Figure 5 illustrates how to split R-tree node into new two nodes, in which,

although in “Bad Split” case, there is no overlapping area, but the total area of the

covering rectangles in the “Good Split” case is much less than in the “Bad Split”

case.

7

Original Node

Figure 5. R-tree Splitting Operation

 But with this approach, in case of some applications in which all the items are

available such as the GIS problem, it will take a lot of time for R-tree construction.

With applying the Bulk-loading methods such as Z-order curve or Hilbert curve

for R-tree construction build fast an R-tree with maximum node occupancy (thus,

the R-tree’s height is minimal), besides that, the area of Minimum Bounding

8

Rectangles (MBRs) that cover the non-leaf node and the overlapping area

between them also is minimal.

2.3 Parallel R-tree Construction using MapReduce

 For parallel R-tree construction, in [5], author have proposed a method for

parallel R-tree construction using MapReduce model in Hadoop environment, it

is performed in a bottom-up fashion and has three phases, in which the first two

phases are executed in MapReduce framework, while the last phase is executed

outside cluster because it does not require the high computational, as shown in

figure 6.

Figure 6. R-tree Construction Scheme is Proposed by A.Cary (6).

9

Purpose of the first phase, which is also the most important phase of this scheme

is to assign the objects to a pre-defined number of R partitions. In order to assign

the objects so that the “Dead Area” in resulting of Minimum Bound Rectangles

(MBRs) and overlap between these MBRs can be decreased, Z-order curve is used

as Geo-packing technique to grouping spatially neighboring objects, it is used for

mapping multi-dimensional spaces into an ordered sequence of one-dimensional

values via space filling curves.

 The spatial objects are mapped onto Z-order curve by compute Morton number

for each of the objects, then those Morton numbers are sorted into a list and the

splitting points that split the list into R equal-sized partitions will be determined.

 In second phase, all objects are divided into R partitions, then R independent

“small” R-trees are built concurrently on their data. Output of this phase is a set

of “small” R-trees.

 In the last phase, R individual “small” R-trees will be combined under a single

root node to create the final R-tree.

 For short, in the rest of thesis, I call this method is Z-curve method.

2.4 R-tree Packing Algorithm

 There are many kinds of packing techniques for R-trees are proposed before, in

this section, two primary packing algorithms for R-tree construction will be

described, including Z-order curve and Sort-Tile-Recursive algorithms. Instead

of using an area of rectangle, all of these algorithms only use the center point of

10

rectangle for grouping. The only difference is how the rectangles are ordered at

each level.

2.4.1 Z-order Curve

 The Z-order curve algorithm [6] orders the rectangle using space filling curve.

The Z-value (Morton number) of a point is calculated by interleaving the binary

representations of its coordinate values.

 For each rectangle that cover an object, Z-value is calculated based on its center

point, then the data rectangles are sorted into a list on ascending Z-values, this

determines the order in which the rectangles are placed into the partitions. Figure

7 show the Z-order curves of order 1, 2 and 3 and how to partition objects.

Figure 7. Z-order Curve of Order 1, 2 and 3

11

 With Z-order curve packing technique, it still has some restrictions when in fact,

almost the location of the objects are represented by the fraction number, thus, the

accuracy in data partitioning is not high.

2.4.2 Sort-Tile-Recursive (STR)

 If the previous algorithm groups rectangles by mapping multi-dimensional

space to one-dimensional values and the accuracy in data partitioning is not high

in case of the location of the objects are represented by the fraction number, in

this section, I’m going to describe the Sort-Tile-Recursive algorithm [7], which is

considered as one of the techniques not only a simplicity of implementation but

also has a good query performance.

 The basic idea of this algorithm is split the data space using vertical slices so

that each slice contains nearly-equal rectangles. First, the rectangles are sorted by

x-coordinate and partition the objects into pre-defined vertical slices. Each slice

consists of the same rectangles from the sorted list, note that the last slice may

contains the number of rectangles less than others. After the rectangles are sorted

into the partitions, the rectangles in each slice are sorted by y-coordinate, then

pack into nodes (example the first M rectangles are packed into first node, the

next M into second node, and so on). Example of this algorithm are shown in

figure 8.

12

Figure 8. Sort-Tile-Recursive Algorithm

13

III. Parallel R-tree Construction using Hadoop

3.1 Overview

 Before I describe in detail about our scheme, there are some notations that I will

use in the rest of the paper are as follows: M is maximum node occupancy, r is

the number of total spatial objects, and we use the coordinate of center point of

objects for representing objects’ location. For simplicity, in this thesis, I only

concentrate on two-dimensional objects.

 When building an R-tree, the quality of resulting R-tree is our main

consideration. As discussed in the previous section, for a good R-tree, it should

be built by grouping spatially neighboring MBRs, so the “Dead Area” and overlap

between these MBRs can be decreased. Our parallel R-tree construction is

performed in a bottom-up fashion and has four phases, and three of them are

implemented in Hadoop environment with MapReduce model:

 Partitioning phase:

o In this phase, instead of using Z-order curve that has been

proposed by A.cary, I propose the new method that is inspired by

the Sort-Tile-Recursive (STR) algorithm. However, instead of

partition data by x-coordinate, firstly, we determine the “Longest

coordinate” that has the two most distant centers between the

objects, then partition data based on the “Longest coordinate”. I

named for my method is ISTR.(Improving of STR)

 R-tree Construction phase:

o In this phase, independent small R-trees are built simultaneously.

14

 R-tree consolidation phase:

o In this phase, merge small R-trees into the final R-tree.

 Firstly, let us start our description by defining the problem. The data set that I

am using is a CVS file where each line represents one object, it contains <o.id,

o.P> where o.id is the object’s unique identifier and o.P is the location of an object

is represented by a list of coordinates.

 The proposed scheme consists of three phases executed in sequence, as can be

seen in Figure 9. First, I find out the “longest” coordinate that has the two most

distant centers of the rectangles in the coordinate, then the number of partition

and the partitions boundary will be determined. In the second phase, data is

partitioned into the corresponding partition and create small R-Trees. Finally, the

small R-Trees are merged into the final R-Tree. The first two phases are executed

in MapReduce, while the last phase does not require high computational, so it is

executed sequentially outside of the cluster.

15

Figure 9. Our scheme for parallel R-tree construction

in MapReduce framework

3.2 Data Partitioning

3.2.1 Description

 As I discussed before, in this phase, instead of using Z-curve, I propose the

method that is inspired by the Sort-Tile-Recursive (STR) algorithm. However,

instead of partition data by x-coordinate, firstly, I determine the “Longest

coordinate” that has the two most distant centers between the objects, then

16

partition data based on the “Longest coordinate”. I named for our method is ISTR

(Improving of STR).

 First, we assume all objects lie in the plane, each object’ location is represented

by a center point with its coordinate. To find out the longest coordinate that has

the two most distant centers of the hyper- rectangle in the coordinate, our idea is

to read random objects from the input file via data sampling with a default ratio

of input data.

3.2.2 Proposed MapReduce Algorithm

 The MapReduce algorithm runs M Mappers that take sample objects from the

input file, then in each Mapper, it calculates the coordinates of center point of

each object.

 Then a single Reducer, firstly, it will calculate the distance between those

objects and determine the longest coordinate as shown in Figure 10. In order to

determine the “Longest coordinate”, I use two arrays, one to store x-coordinate of

a center point of all objects that are sorted in ascending and one to store y-

coordinates of a center point of all objects that are also sorted in ascending, the

coordinate of a center points are implemented in Mapper. In order to determine

the “Longest coordinate”, we calculate the distance between the start point and

the end point in each of those arrays, then I compare and choose the larger one as

the “Longest coordinate”, then data is partitioned based on the “Longest

coordinate” array. After that, a new list K of R-1 partition boundary that split the

longest coordinate of sample into R partitions so that each partition has nearly

equal amounts of data is determined.

17

 In Figure 10a, since distance between A and B is largest, x is determined to be

a longest coordinates, and Figure 10b for the opposite case.

Figure 10a. X-coordinates will be used for data partitioning

18

Figure 10b. Y-coordinates will be used for data partitioning

Figure 10. Longest Coordinate Determination

 The specific MapReduce key/value input pairs are presented in Figure 11.

Mappers read the default ratio of data from input file and calculates the

coordinates of center point of the objects. The intermediate key is a constant that

helps to send all the Mappers’ outputs to a single Reducer. Then Reducer receives

all center point with theirs coordinates from Mappers, firstly find out the longest

coordinate by calculate the two most distant centers of the hyper- rectangle in the

coordinate, then determine the list splitting point K base on the longest coordinate

as shown in Figure 12.

Figure 11. Inputs/Outputs for Data Partitioning

19

Figure 12a Data Grouping on X-coordinate

Figure 12b Data Grouping on Y-coordinate

Figure 12. Data Grouping into Partition with Maximum Objects equal 4

Partition boundary

Partition

boundary

20

3.3 R-tree Construction

3.3.1 Description

 In this phase, independent “small” R-trees are built simultaneously.

3.3.2 Proposed MapReduce Algorithm

 Mappers calculate the coordinates of center point of each object, then partition

the objects into R groups, then every partition is executed by a different Reducer.

 In each Reducer, a “small” R-tree is built independently using STR (Sort-Tile-

Recursive) packing technique.

 The output of every Reducer is a root node of their constructed R-Tree, as shown

in Figure 13.

Figure 13. Inputs/Outputs for R-tree Construction

21

3.4 R-tree Consolidation

 In this phase, I am going to combine the R individual R-tree, built in the second

phase, under a single root. Because it’s not computationally intensive and the

logic to run this phase is fairly simple, it is executed outside the cluster as shown

in Figure 14.

Figure 14. R-tree Consolidation

22

IV. Experimental Result

4.1 Experimental Environment

4.1.1 Hadoop Cluster

 To implement the experiments, our cluster consists of eight machines, in which,

each machine (Slave node) acted as a Tasktracker and Datanode, and one server

(Master node) acted as Jobtracker and Namenode as shown in Figure 15.

Figure 15 Hadoop Cluster

MASTER

NODE 1
NODE 2 NODE 3 NODE 4

NODE 5 NODE 6 NODE 7 NODE 8

23

 All machines were installed Centos 7.0 Operating system. All our experiments

were performed with the latest Hadoop version (2.7.2) running on all machines in

the cluster.

 Besides that, to achieve the better performance, instead of keeping all default

parameters, on each node we changed the number of tasks (Map or Reduce) can

be run simultaneously, and adjust the memory size so that it suits the volume of

data.

4.1.2 Data Set

 All experiments are executed on two real spatial data sets. The spatial objects

in the data sets are angular coordinates (CSV) in (latitude, longitude) format, and

each data set is in tabular format where each line represents an object.

 The first data set is “LINEARWATER” (Linear Hydrography), it is extracted

from “US Census Bureau TIGER files”, each line in this CSV file contains a “Line

String” represented in Well-Known Text (WKT) format. The size of this data set

roughly six Gigabyte and the number of objects in this data set roughly five

million seven hundred thousand objects, as shown in Figure 16. The distribution

of this data is shown in Figure 17.

 The second data is used in our experiments is “ROAD NETWORK”, this data

set is extracted from OpenStreetMap. OpenStreetMap is a map of the world, it is

created by many people and free to use under an open license. For simplicity, this

data set is converted to a text format (TXT), as shown in Figure 16.

24

 With the second data set, I use three different size are 3GB, 6GB, and 9GB with

corresponding the number of objects are roughly 14 million, 31 million, and 78

million. The distribution of this data is shown in Figure 18.

Figure 16. Spatial Data Sets used in the Experiments

Figure 17. Distribution of LINEARWATER Data Set

25

Figure 18. Distribution of ROAD NETWORK Data Set

4.2 Experimental Result

4.2.1 Time Performance

4.2.1.1 Our Approach

 This experiment show the time for R-tree construction with 10% ratio of input

file in the first phase and the different parameter R in the second phase. That is

the number of concurrent “small” R-trees, from 2 up to 8. The data set that we use

in this experiment is LINEARWATER data set.

 The most computationally intensive part is performed in the second phase by

Reducers where the “small” R-trees will be constructed. With the fewer the

number of Reducers, since each Reducer receives a large number of objects, the

26

R-tree construction time takes longer. When number of Reducers is increased, the

number of objects in each Reducer will be decreased, thus the time of this phase

will take shorter as shown in Figure 19.

Figure 19. Time Performance of Our Approach

4.2.1.2 Comparison with Z-curve Method

 To evaluate the effectiveness of my proposed method, this section shows the

comparison results between my proposed method with the Z-curve method that

has been proposed by A.Cary that we discussed in Chapter Two about time

performance. The data set that we use in this experiment is ROAD NETWORK

data set.

27

 4.2.1.2.1 Data Partitioning Phase

 This section shows the comparison of time performance in the First phase (Data

Partitioning) with different ratio of input data as shown in Figure 20 with ten

percent ratio of input data and Figure 21 with one hundred percent ratio of input

data. In both cases of input data ratio, the implementation time decreases as the

number of Reducers is increased in same data size and the implementation time

increases when the data size is increased in both methods (ISTR and Z-order

curve). The only different between them is when the ratio of input size is increased

from ten to one hundred percent, the implementation time is a little bit increasing.

 In both cases of input data ratio, they also indicate that the implementation time

of our proposed method is a little bit slower than previous proposed method but

it is insignificant.

 The reason is in previous proposed method, it only uses one array to store all

the Morton numbers that are calculated by Z-order curve packing technique in

Mapper, then in Reducer, a list of splitting points is determined from that array,

but in our method, in Reducer, we use two arrays, one to store x-coordinate of a

center point of all objects that are sorted in ascending and one to store y-

coordinates of a center point of all objects that are also sorted in ascending, the

coordinate of a center points are implemented in Mapper. In order to determine

the “Longest coordinate”, we calculate the distance between the start point and

the end point of both arrays, then we compare and choose the larger one as the

“Longest coordinate”, then data is partitioned based on the “Longest coordinate”

array.

28

Figure 20. Time Performance of Phase One with 10% ratio of Input Data

Figure 21. Time Performance of Phase One with 100% ratio of Input Data

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

3 6 9

P
h

as
e

1
 (

m
in

s)

Data Size (GB)

Sampling ratio :10%

ISTR-2R

ISTR-4R

ISTR-8R

ISTR-16R

Z-2R

Z-4R

Z-8R

Z-16R

0

0.5

1

1.5

2

2.5

3

3.5

4

3 6 9

P
h

as
e

1
 (

m
in

s)

Data Size (GB)

Sampling ratio :100%

ISTR-2R

ISTR-4R

ISTR-8R

ISTR-16R

Z-2R

Z-4R

Z-8R

Z-16R

29

4.2.1.2.2 R-tree Construction Phase

 This section shows the comparison of time performance in the Second phase

(R-tree construction) with different ratio of input data as shown in Figure 22 with

ten percent ratio of input data and Figure 23 with one hundred percent ratio of

input data.

 As we discussed before, Reducers in second phase is the most computationally

intensive part where all actual “small” R-trees construction occurs, so the

implementation time for this phase take much longer than the first phase.

 Similar to the first phase, the implementation time decreases as the number of

Reducers is increased in same data size and the implementation time increases

when the data size is increased in both methods (ISTR and Z-order curve).

 Figure 24 and Figure 25 show total implementation time of phase one and phase

two of both methods with ten and one hundred percent ratio of input data.

30

Figure 22. Time Performance of Phase Two with 10% ratio of Input Data

Figure 23. Time Performance of Phase Two with 100% ratio of Input Data

0

2

4

6

8

10

12

3 6 9

P
h

as
e

2
 (

m
in

s)

Data Size (GB)

Sampling ratio :10%

ISTR-2R

ISTR-4R

ISTR-8R

ISTR-16R

Z-2R

Z-4R

Z-8R

Z-16R

0

2

4

6

8

10

12

3 6 9

P
h

as
e

2
 (

m
in

s)

Data Size (GB)

Sampling ratio :100%

ISTR-2R

ISTR-4R

ISTR-8R

ISTR-16R

Z-2R

Z-4R

Z-8R

Z-16R

31

Figure 24. Total Implementation Time with 10% ratio of Input Data

Figure 25. Total Implementation Time with 100% ratio of Input Data

32

4.2.2 Quality of Generated R-tree

 This section show the comparison of the quality of generated R-tree between

our proposed method with Z-curve method. We use two following equations

to compute the area and overlap metrics respectively for given consolidated

R-tree with root T as shown in Figure 26.

Figure 26 Equations for Area and Overlap Computation of Generated

R-tree

4.2.2.1 Area Comparison

4.2.2.1.1 Comparison with Single R-tree

 This section shows the comparison of total area of the generated R-tree between

our approach with the single R-tree. This experiment show that the total area of

33

R-tree slightly decreases as the number of Reducers is increased with our

proposed method and this total area is much less than the single R-tree as shown

in Figure 27. The data set that we use in this experiment is LINEARWATER

data set.

Figure 27. Comparison of Total Area between Our Method with The

Single R-tree

4.2.2.1.2 Comparison with Z-curve Method

 This section shows the comparison of total area of the generated R-tree between

our method with a previous proposed method. This experiment is performed with

different ratio of input data in phase 1 and on 8 Reducers in phase 2 with different

34

data size. It shows that on each different data size, the total area of R-tree is built

by our proposed method is much less than total area of R-tree is built by Z-curve

method as shown in Figure 28 , Figure 29 and Figure 30 with the corresponding

ratio of input data are 1%, 10% and 100% . The data set that we use in this

experiment is ROAD NETWORK data set.

Figure 28. Comparison of Total Area of R-tree with 1% Ratio

35

Figure 29. Comparison of Total Area of R-tree with 10% Ratio

Figure 30. Comparison of Total Area of R-tree with 100% Ratio

36

4.2.2.2 Overlap Comparison

4.2.2.2.1 Comparison with Z-curve Method

 This section shows the comparison of overlapping area between “small” R-trees

between our proposed method with Z-curve method. This experiment is

performed with 10% ratio of input data in phase 1 and different number of

Reducers in phase 2 on different data size.

 It shows that on each different data size, with our proposed method, the

overlapping area slightly increases when the number of Reducer is increased. In

case of Z-curve method, the overlapping area significant increases when the

number of Reducer is increased as shown in Figure 31. Besides that, this

experiment also indicates that the overlapping area between “small” R-trees are

built by our proposed method is much less than overlapping area between “small”

R-tree that are built by Z-curve method as shown in Figure 31.

37

F
ig

u
re

 3
1

.
C

o
m

p
a
r
is

o
n

 o
f

O
v

er
la

p
p

in
g

 A
r
e
a

 b
e
tw

e
e
n

 O
u

r
 M

e
th

o
d

 a
n

d
 Z

-c
u

r
v

e
 M

e
th

o
d

38

V. Conclusion

 In this thesis, we proposed a scheme that has three phases for parallel R-tree

construction, in which, the first two phases are executed in parallel with

MapReduce model, while the last phase is executed outside the cluster because it

does not require the high computational. In the first phase (Data Partitioning), to

minimize the “Dead Area” in resulting Minimum Bounding Rectangles (MBRs)

and overlap between these MBRs, instead of using Z-order curve as the geo-

packing technique to grouping spatially neighboring objects, we propose a new

method, called “Improving of STR” (ISTR). My proposed packing technique

method was inspired by the Sort-Tile-Recursive (STR) algorithm. However,

instead of partition data by x-coordinate, firstly, we determine the “Longest

coordinate”, then data will be partitioned based on the “Longest coordinate”.

 To evaluate the effectiveness of my proposed method, I make the comparison

between my proposed method with the previous method that has been proposed

by A.Cary that we discussed in Chapter Two. From the experiments, with my

proposed method, although the implementation time for the first phase is slightly

higher than the previous one but it is insignificantly. As we discussed before, the

most important consideration is the quality of the generated R-tree, from the

experiments, with my proposed method, the total area of the final R-tree is much

less than the previous approach, and the overlapping area between “small” R-trees

is also much less than the previous approach.

 With my proposed method, I hope to contribute to improve the quality of R-tree

construction and reduce the construction time for an available huge volume of

data set. With our proposed schema, it can be used in many kind of applications

in the field of databases in general and in particular, spatial data.

39

 Nowadays, with the amount of spatial data is increasing significantly, with the

availability of Big Data, commodity hardware, has opened many opportunities for

analyzing astonishing data sets quickly and cost-effectively for the first time in

history.

40

 REFERENCES

[1] I Polato, R Ré, A Goldman, F Kon, A comprehensive view of Hadoop research—

A systematic literature review, Journal of Network and Computer Applications,

Elsevier, Vol.46, pp. 1-25, 2014.

[2] Antonin Guttman, R-trees- A Dynamic Index Structure for Spatial Searching,

ACM SIGMOD, pp. 47-57, 1984.

[3] Apache Hadoop: http://hadoop.apache.org.

[4] J Dean, S Ghemawat, MapReduce: Simplified Data Processing on Large Clusters,

50th anniversary issue, Communications of the ACM, pp.107-113, 2008.

 [5] A.Cary, Z Sun, V Hristidis, N Rishe, Experiences on Processing Spatial Data

with MapReduce, 2009 SSDBM, LNCS, Springer, Berlin Heidelberg, Vol. 5566, pp.

302–319, 2009.

[6] Z-order Curve, https://en.wikipedia.org/wiki/Z-order_curve

 [7] S. T. Leutenegger, J. M. Edgington, M. A. Lopez, STR: A simple and efficient

algorithm for R-tree packing, 13th International Conference on Data Engineering, pp.

497-506, 1997.

41

Acknowledgement

 Time flies like an arrow. Finally, I have finished my master course at Pukyong

National University (PKNU). Also, this thesis would not have been completed

without guidance and supporting comments from people around me, who also

braces me to keep studying.

 First of all, I would like to express my most sincere gratitude to my advisor,

Prof. Ha-Joo Song, who gave me the scholarship opportunity and fully support

this research. He didn’t only give me a lots of knowledge in specialized

knowledge, but also an abundance of experiences in order to encourage me

improving my soft and hard skills.

 I would like to thank my Lab mate, also my brother, PhD student: Mr.

Sugarbayar Otgonchimeg, who are always ready to help me in any condition

and any problems, also I would like to thank all Korean students in my lab, who

taught me about the good and bad things about life in Korea. I also would like to

thank my Korean friend, also my brother, Assistant Professor in Catholic

University of Busan: Mr. Jun-Ho Huh, who are always ready to share

experience in scientific research.

 I would like to thank my Vietnamese friend in PKNU, also my best Vietnamese

younger brother, Mr. Nguyen Viet Hoan, who are ready to help me in any

situations, both inside and outside of campus. Thanks to all Vietnamese students

in PKNU who encourage and always give me a helping hand. Thanks for your

kind support.

 Most importantly, I would like to express my most heartfelt gratitude to my

Parents, who was always at my side, always as my spiritual toehold whenever I

42

get stuck in life. I love you so much. And I also would like to thank my aunts: Ms.

Nguyen Thi Hoai My, Ms. Nguyen Thi Thu Trang, my uncle: Mr.Nguyen

Khac Vu, who had help, give me some money from the early days when I go to

study abroad, and I would like to thank all my family members whose name I

could not mention here was always ready to support and help me. I love you guys

so much.

	I. Introduction
	II. Related Works
	2.1 Big Data
	2.1.1 Hadoop-MapReduce

	2.2 Quality of R-tree
	2.3 Parallel R-tree Construction using MapReduce
	2.4 R-tree Packing Algorithm
	2.4.1 Z-order Curve
	2.4.2 Sort-Tile-Recursive

	III. Parallel R-tree Construction using Hadoop
	3.1 Overview
	3.2 Data Partitioning
	3.2.1 Description
	3.2.2 Proposed MapReduce Algorithm

	3.3 R-Tree Construction
	3.3.1 Description
	3.3.2 Proposed MapReduce Algorithm

	3.4 R-tree Consolidation

	IV. Experimental Result
	4.1 Experimental Environment
	4.1.1 Hadoop Cluster
	4.1.2 Data Set

	4.2 Experimental Result
	4.2.1 Time Performance
	4.2.1.1 Our Approach
	4.2.1.2 Comparison with Z-curve Method
	4.2.1.2.1 Data Partitioning Phase
	4.2.1.2.2 R-tree Construction Phase

	4.2.2 Quality of Generated R-tree
	4.2.2.1 Area Comparison
	4.2.2.1.1 Comparison with Single R-tree
	4.2.2.1.2 Comparison with Z-curve Method

	4.2.2.2 Overlap Comparison
	4.2.2.2.1 Comparison with Z-curve Method

	V. Conclusion
	References
	Acknowledgement

<startpage>11
I. Introduction 1
II. Related Works 4
 2.1 Big Data 4
 2.1.1 Hadoop-MapReduce 4
 2.2 Quality of R-tree 6
 2.3 Parallel R-tree Construction using MapReduce 8
 2.4 R-tree Packing Algorithm 9
 2.4.1 Z-order Curve 10
 2.4.2 Sort-Tile-Recursive 11
III. Parallel R-tree Construction using Hadoop 13
 3.1 Overview 13
 3.2 Data Partitioning 15
 3.2.1 Description 15
 3.2.2 Proposed MapReduce Algorithm 16
 3.3 R-Tree Construction 20
 3.3.1 Description 20
 3.3.2 Proposed MapReduce Algorithm 20
 3.4 R-tree Consolidation 21
IV. Experimental Result 22
 4.1 Experimental Environment 22
 4.1.1 Hadoop Cluster 22
 4.1.2 Data Set 23
 4.2 Experimental Result 25
 4.2.1 Time Performance 25
 4.2.1.1 Our Approach 25
 4.2.1.2 Comparison with Z-curve Method 26
 4.2.1.2.1 Data Partitioning Phase 27
 4.2.1.2.2 R-tree Construction Phase 29
 4.2.2 Quality of Generated R-tree 32
 4.2.2.1 Area Comparison 32
 4.2.2.1.1 Comparison with Single R-tree 32
 4.2.2.1.2 Comparison with Z-curve Method 33
 4.2.2.2 Overlap Comparison 36
 4.2.2.2.1 Comparison with Z-curve Method 36
V. Conclusion 38
References 40
Acknowledgement 41
</body>

