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Abstract 

An R-tree is an index structure that enables fast accesses to multi-dimensional 

data. Constructing an R-tree for a given data set yields an efficient R-tree structure 

than incrementally building one as data are inserted. However it usually takes a 

lot of time constructing an R-tree for a huge volume of data. In this paper, we 

propose a parallel R-Tree construction scheme based on a Hadoop framework. 

The proposed scheme divides the data into partitions, builds local R-trees in 

parallel, and merges them to construct an R-tree that covers whole data set. While 

generating the partitions, it considers the data distribution so that each partitions 

have nearly equal amount of data. Therefore the proposed scheme gives an 

efficient index structure while reducing the construction time  
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I. Introduction 

 

   Nowadays, aside from the fact large amounts of traditional data are still 

increasing significantly, there is an explosion in the amount of spatial data that is 

being produced from many devices such as satellites or smart phones. In order to 

handle this amount of spatial data efficiently, the R-tree is considered as an 

optimal index mechanism that will help retrieve data quickly according to its 

spatial locations. An R-tree [2] is a data structure in which each node contains a 

certain number of index entries, each of which consists of a Minimum Bounding 

Rectangle (MBR) and the pointer to an object or its child node if it is not a leaf 

node. Both objects and non-leaf nodes are always represented by MBR. A layout 

of MBRs of objects is shown in Figure 1 and Figure 2 show the R-tree structure 

with four nodes. 

 

 

 

Figure 1. A layout of MBRs     
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Figure 2. The Corresponding R-tree with Four Nodes 

 

   An R-tree, is built by inserting new items iteratively as they arrive [2]. But with 

this method, when an object is inserted into an R-tree node, in some cases of the 

node splitting operation, it requires the locking of the R-tree, therefore the 

concurrent insertions are prevented.  

   In fact, in some applications where all the items is available as with the 

Geometry Information System (GIS) problems, if an R-tree is built using the 

packing technique in a parallel way, it’s much faster than the traditional method 

as mentioned previously.  

   Since its release in April 2005, Hadoop [3] was adopted as an optimal solution 

for scalable processing of huge datasets in many applications, e.g., machine 

learning, image processing, web crawling or text processing, and so on. Hadoop 

employs MapReduce [4], a simplified programming paradigm for distributed 

processing, to build an efficient large-scale data processing framework.  

   An R-tree is an index structure that enables fast accesses to multi-dimensional 

data. Constructing an R-tree for a given data set yields an efficient R-tree structure 

that builds itself incrementally as data are inserted. However, it usually takes a lot 
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of time to construct an R-tree for a huge volume of data. In this paper, I propose 

a parallel R-Tree construction scheme based on a Hadoop framework. The 

proposed scheme divides the data into partitions, builds local R-trees in parallel, 

and merges them to construct an R-tree that covers a whole data set. While 

generating the partitions, it considers the data distribution so that each partition 

has nearly equal amounts of data. Therefore the proposed scheme gives an 

efficient index structure while reducing the construction time.  

   The remainder of the thesis is organized as follows. Chapter II give a brief 

description about Hadoop, MapReduce framework and related algorithms for 

parallel R-tree construction. Chapter III describes my method to build parallel R-

tree on Hadoop environment with MapReduce model in detail. Chapter IV gives 

the experimental results. And the last chapter, chapter V is the conclusion of the 

thesis.  
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II. Related Works 

 

2.1 Big Data 

 

2.1.1 Hadoop - MapReduce 

   

   A few years ago, to store or process data, most enterprises had a super computer 

to perform this task. Here data can be stored in an RDBMS such as Oracle 

Database, MS SQL Server or DB2. After that, the software can be written to 

interact with the database, then send to user for analysis purpose. 

   But with this approach, when it has to handle huge amounts of data, it faces 

many difficulties in processing such data through a traditional database server. 

Facing those difficulties, in 2005, an Open Source Project called Hadoop was 

released. 

   In order to handle a huge amounts of data, Hadoop runs all applications using 

the MapReduce algorithm, where the data is processed in the parallel way on 

different nodes. MapReduce is a programming model suited for parallel 

computation, it handles parallelism, fault tolerance and other level issues. 

Furthermore, MapReduce consists of both a map and reduce function which are 

user-defined. The input data format is specified by the user and the output is a set 

of <key,value> pairs. As shown in (Figure.3), the mapper applies user-defined 

logic on every input key/value pair (k1,v1) and transforms it into a list of 

intermediate key/value pairs(k2,v2). Then the reducer will apply user-defined 

logic to all intermediate values (v2) associated with the same k2 and produces a 
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list of final output key/value pair (k3,v3). The data flow of the MapReduce 

framework is illustrated in Figure 4. 

           

 

 

Figure 3. Input and Output in MapReduce 

 

 

 

 

 

Figure 4. MapReduce Framework 
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2.2 Quality of R-tree 

 

   As I described in Chapter One, an R-tree is built by inserting new items 

iteratively as they arrive. Each insert operation of a polygonal object represented 

by its (MBR), first follows one path from root down to a leaf node, then the new 

item is added to the leaf node. If the leaf node does not have enough space for the 

new item, it will be split into two nodes.  

   Similar to all the other data structures, the goal is how to build them so that 

search performance is the best. In general, there are two primary goals for R-tree 

construction, a main consideration is how to minimize the area of the MBRs of 

the non-leaf nodes that are not covered by MBRs at the leaves these enclose, 

which is also called the “Dead Area”, this goal can improve search performance 

since decisions on which paths have to be traversed can be taken on higher levels. 

A second consideration is how to minimize the overlap between MBRs, this goal 

is also designed to decrease the number of paths to be traversed. 

   Figure 5 illustrates how to split R-tree node into new two nodes, in which, 

although in “Bad Split” case, there is no overlapping area, but the total area of the 

covering rectangles in the “Good Split” case is much less than in the “Bad Split” 

case. 
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Original Node 

   

 

Figure 5. R-tree Splitting Operation 

 

   But with this approach, in case of some applications in which all the items are 

available such as the GIS problem, it will take a lot of time for R-tree construction. 

With applying the Bulk-loading methods such as Z-order curve or Hilbert curve 

for R-tree construction build fast an R-tree with maximum node occupancy (thus, 

the R-tree’s height is minimal), besides that, the area of Minimum Bounding 
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Rectangles (MBRs) that cover the non-leaf node and the overlapping area 

between them also is minimal. 

 

2.3 Parallel R-tree Construction using MapReduce 

  

   For parallel R-tree construction, in [5], author have proposed a method for 

parallel R-tree construction using MapReduce model in Hadoop environment, it 

is performed in a bottom-up fashion and has three phases, in which the first two 

phases are executed in MapReduce framework, while the last phase is executed 

outside cluster because it does not require the high computational, as shown in 

figure 6. 

 

Figure 6. R-tree Construction Scheme is Proposed by A.Cary (6). 
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Purpose of the first phase, which is also the most important phase of this scheme 

is to assign the objects to a pre-defined number of R partitions. In order to assign 

the objects so that the “Dead Area” in resulting of Minimum Bound Rectangles 

(MBRs) and overlap between these MBRs can be decreased, Z-order curve is used 

as Geo-packing technique to grouping spatially neighboring objects, it is used for 

mapping multi-dimensional spaces into an ordered sequence of one-dimensional 

values via space filling curves.  

   The spatial objects are mapped onto Z-order curve by compute Morton number 

for each of the objects, then those Morton numbers are sorted into a list and the 

splitting points that split the list into R equal-sized partitions will be determined.  

   In second phase, all objects are divided into R partitions, then R independent 

“small” R-trees are built concurrently on their data. Output of this phase is a set 

of “small” R-trees. 

   In the last phase, R individual “small” R-trees will be combined under a single 

root node to create the final R-tree. 

   For short, in the rest of thesis, I call this method is Z-curve method.  

 

2.4 R-tree Packing Algorithm 

 

   There are many kinds of packing techniques for R-trees are proposed before, in 

this section, two primary packing algorithms for R-tree construction will be 

described, including Z-order curve and Sort-Tile-Recursive algorithms. Instead 

of using an area of rectangle, all of these algorithms only use the center point of 
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rectangle for grouping. The only difference is how the rectangles are ordered at 

each level.           

2.4.1 Z-order Curve 

 

   The Z-order curve algorithm [6] orders the rectangle using space filling curve. 

The Z-value (Morton number) of a point is calculated by interleaving the binary 

representations of its coordinate values.  

   For each rectangle that cover an object, Z-value is calculated based on its center 

point, then the data rectangles are sorted into a list on ascending Z-values, this 

determines the order in which the rectangles are placed into the partitions. Figure 

7 show the Z-order curves of order 1, 2 and 3 and how to partition objects. 

 

Figure 7. Z-order Curve of Order 1, 2 and 3   
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   With Z-order curve packing technique, it still has some restrictions when in fact, 

almost the location of the objects are represented by the fraction number, thus, the 

accuracy in data partitioning is not high. 

 

2.4.2 Sort-Tile-Recursive (STR) 

 

   If the previous algorithm groups rectangles by mapping multi-dimensional 

space to one-dimensional values and the accuracy in data partitioning is not high 

in case of the location of the objects are represented by the fraction number, in 

this section, I’m going to describe the Sort-Tile-Recursive algorithm [7], which is 

considered as one of the techniques not only a simplicity of implementation but 

also has a good query performance.  

   The basic idea of this algorithm is split the data space using vertical slices so 

that each slice contains nearly-equal rectangles. First, the rectangles are sorted by 

x-coordinate and partition the objects into pre-defined vertical slices. Each slice 

consists of the same rectangles from the sorted list, note that the last slice may 

contains the number of rectangles less than others. After the rectangles are sorted 

into the partitions, the rectangles in each slice are sorted by y-coordinate, then 

pack into nodes (example the first M rectangles are packed into first node, the 

next M into second node, and so on). Example of this algorithm are shown in 

figure 8. 
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Figure 8. Sort-Tile-Recursive Algorithm  
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III. Parallel R-tree Construction using Hadoop 

 

3.1 Overview 

  

   Before I describe in detail about our scheme, there are some notations that I will 

use in the rest of the paper are as follows: M is maximum node occupancy, r is 

the number of total spatial objects, and we use the coordinate of center point of 

objects for representing objects’ location. For simplicity, in this thesis, I only 

concentrate on two-dimensional objects. 

   When building an R-tree, the quality of resulting R-tree is our main 

consideration. As discussed in the previous section, for a good R-tree, it should 

be built by grouping spatially neighboring MBRs, so the “Dead Area” and overlap 

between these MBRs can be decreased. Our parallel R-tree construction is 

performed in a bottom-up fashion and has four phases, and three of them are 

implemented in Hadoop environment with MapReduce model: 

 Partitioning phase: 

o In this phase, instead of using Z-order curve that has been 

proposed by A.cary, I propose the new method that is inspired by 

the Sort-Tile-Recursive (STR) algorithm. However, instead of 

partition data by x-coordinate, firstly, we  determine the “Longest 

coordinate” that has the two most distant centers between the 

objects, then partition data based on the “Longest coordinate”. I 

named for my method is ISTR.(Improving of STR) 

  R-tree Construction phase:  

o In this phase, independent small R-trees are built simultaneously.  
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 R-tree consolidation phase: 

o In this phase, merge small R-trees into the final R-tree. 

   Firstly, let us start our description by defining the problem. The data set that I 

am using is a CVS file where each line represents one object, it contains <o.id, 

o.P> where o.id is the object’s unique identifier and o.P is the location of an object 

is represented by a list of coordinates.  

   The proposed scheme consists of three phases executed in sequence, as can be 

seen in Figure 9. First, I find out the “longest” coordinate that has the two most 

distant centers of the rectangles in the coordinate, then the number of partition 

and the partitions boundary will be determined. In the second phase, data is 

partitioned into the corresponding partition and create small R-Trees. Finally, the 

small R-Trees are merged into the final R-Tree. The first two phases are executed 

in MapReduce, while the last phase does not require high computational, so it is 

executed sequentially outside of the cluster. 
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Figure 9. Our scheme for parallel R-tree construction                                      

in MapReduce framework 

 

3.2 Data Partitioning 

 

3.2.1 Description  

 

   As I discussed before, in this phase, instead of using Z-curve, I propose the 

method that is inspired by the Sort-Tile-Recursive (STR) algorithm. However, 

instead of partition data by x-coordinate, firstly, I determine the “Longest 

coordinate” that has the two most distant centers between the objects, then 
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partition data based on the “Longest coordinate”. I named for our method is ISTR 

(Improving of STR).  

   First, we assume all objects lie in the plane, each object’ location is represented 

by a center point with its coordinate. To find out the longest coordinate that has 

the two most distant centers of the hyper- rectangle in the coordinate, our idea is 

to read random objects from the input file via data sampling with a default ratio 

of input data.  

 

3.2.2 Proposed MapReduce Algorithm 

 

   The MapReduce algorithm runs M Mappers that take sample objects from the 

input file, then in each Mapper, it calculates the coordinates of center point of 

each object. 

   Then a single Reducer, firstly, it will calculate the distance between those 

objects and determine the longest coordinate as shown in Figure 10. In order to 

determine the “Longest coordinate”, I use two arrays, one to store x-coordinate of 

a center point of all objects that are sorted in ascending and one to store y-

coordinates of a center point of all objects that are also sorted in ascending, the 

coordinate of a center points are implemented in Mapper. In order to determine 

the “Longest coordinate”, we calculate the distance between the start point and 

the end point in each of those arrays, then I compare and choose the larger one as 

the “Longest coordinate”, then data is partitioned based on the “Longest 

coordinate” array.  After that, a new list K of R-1 partition boundary that split the 

longest coordinate of sample into R partitions so that each partition has nearly 

equal amounts of data is determined. 
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   In Figure 10a, since distance between A and B is largest, x is determined to be 

a longest coordinates, and Figure 10b for the opposite case. 

 

 

 

 

Figure 10a. X-coordinates will be used for data partitioning 
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Figure 10b. Y-coordinates will be used for data partitioning 

Figure 10. Longest Coordinate Determination 

   The specific MapReduce key/value input pairs are presented in Figure 11. 

Mappers read the default ratio of data from input file and calculates the 

coordinates of center point of the objects. The intermediate key is a constant that 

helps to send all the Mappers’ outputs to a single Reducer. Then Reducer receives 

all center point with theirs coordinates from Mappers, firstly find out the longest 

coordinate by calculate the two most distant centers of the hyper- rectangle in the 

coordinate, then determine the list splitting point K base on the longest coordinate 

as shown in Figure 12. 

 

 

Figure 11. Inputs/Outputs for Data Partitioning 
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Figure 12a Data Grouping on X-coordinate 

 

                                       

Figure 12b Data Grouping on Y-coordinate 

Figure 12. Data Grouping into Partition with Maximum Objects equal 4 

Partition boundary 

Partition 

boundary 
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3.3 R-tree Construction 

 

3.3.1 Description 

  

   In this phase, independent “small” R-trees are built simultaneously. 

 

3.3.2 Proposed MapReduce Algorithm 

 

   Mappers calculate the coordinates of center point of each object, then partition 

the objects into R groups, then every partition is executed by a different Reducer.  

   In each Reducer, a “small” R-tree is built independently using STR (Sort-Tile-

Recursive) packing technique.  

 The output of every Reducer is a root node of their constructed R-Tree, as shown 

in Figure 13. 

 

 

 

Figure 13. Inputs/Outputs for R-tree Construction 
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3.4 R-tree Consolidation  

 

   In this phase, I am going to combine the R individual R-tree, built in the second 

phase, under a single root. Because it’s not computationally intensive and the 

logic to run this phase is fairly simple, it is executed outside the cluster as shown 

in Figure 14. 

 

 

 

Figure 14. R-tree Consolidation 
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IV. Experimental Result 

 

4.1 Experimental Environment 

 

4.1.1 Hadoop Cluster 

 

   To implement the experiments, our cluster consists of eight machines, in which, 

each machine (Slave node) acted as a Tasktracker and Datanode, and one server 

(Master node) acted as Jobtracker and Namenode as shown in Figure 15.  

 

Figure 15  Hadoop Cluster 

MASTER 

NODE 1 
NODE 2 NODE 3 NODE 4 

NODE 5 NODE 6 NODE 7 NODE 8 
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   All machines were installed Centos 7.0 Operating system. All our experiments 

were performed with the latest Hadoop version (2.7.2) running on all machines in 

the cluster. 

   Besides that, to achieve the better performance, instead of keeping all default 

parameters, on each node we changed the number of tasks (Map or Reduce) can 

be run simultaneously, and adjust the memory size so that it suits the volume of 

data.   

 

4.1.2 Data Set 

 

   All experiments are executed on two real spatial data sets. The spatial objects 

in the data sets are angular coordinates (CSV) in (latitude, longitude) format, and 

each data set is in tabular format where each line represents an object.  

  The first data set is “LINEARWATER” (Linear Hydrography), it is extracted 

from “US Census Bureau TIGER files”, each line in this CSV file contains a “Line 

String” represented in Well-Known Text (WKT) format. The size of this data set 

roughly six Gigabyte and the number of objects in this data set roughly five 

million seven hundred thousand objects, as shown in Figure 16. The distribution 

of this data is shown in Figure 17. 

  The second data is used in our experiments is “ROAD NETWORK”, this data 

set is extracted from OpenStreetMap. OpenStreetMap is a map of the world, it is 

created by many people and free to use under an open license. For simplicity, this 

data set is converted to a text format (TXT), as shown in Figure 16.  
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   With the second data set, I use three different size are 3GB, 6GB, and 9GB with 

corresponding the number of objects are roughly 14 million, 31 million, and 78 

million. The distribution of this data is shown in Figure 18. 

 

 

Figure 16. Spatial Data Sets used in the Experiments 

   

 

 

 

 

 

Figure 17. Distribution of LINEARWATER Data Set 
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Figure 18. Distribution of ROAD NETWORK Data Set 

 

4.2 Experimental Result 

 

4.2.1 Time Performance 

 

4.2.1.1 Our Approach 

 

   This experiment show the time for R-tree construction with 10% ratio of input 

file in the first phase and the different parameter R in the second phase. That is 

the number of concurrent “small” R-trees, from 2 up to 8. The data set that we use 

in this experiment is LINEARWATER data set.  

   The most computationally intensive part is performed in the second phase by 

Reducers where the “small” R-trees will be constructed. With the fewer the 

number of Reducers, since each Reducer receives a large number of objects, the     
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R-tree construction time takes longer. When number of Reducers is increased, the 

number of objects in each Reducer will be decreased, thus the time of this phase 

will take shorter as shown in Figure 19.  

 

Figure 19. Time Performance of Our Approach 

 

 

4.2.1.2 Comparison with Z-curve Method 

 

  To evaluate the effectiveness of my proposed method, this section shows the 

comparison results between my proposed method with the Z-curve method that 

has been proposed by A.Cary that we discussed in Chapter Two about time 

performance. The data set that we use in this experiment is ROAD NETWORK 

data set.  
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  4.2.1.2.1 Data Partitioning Phase 

 

   This section shows the comparison of time performance in the First phase (Data 

Partitioning) with different ratio of input data as shown in Figure 20 with ten 

percent ratio of input data and Figure 21 with one hundred percent ratio of input 

data. In both cases of input data ratio, the implementation time decreases as the 

number of Reducers is increased in same data size and the implementation time 

increases when the data size is increased in both methods (ISTR and Z-order 

curve). The only different between them is when the ratio of input size is increased 

from ten to one hundred percent, the implementation time is a little bit increasing.    

   In both cases of input data ratio, they also indicate that the implementation time 

of our proposed method is a little bit slower than previous proposed method but 

it is insignificant.  

   The reason is in previous proposed method, it only uses one array to store all 

the Morton numbers that are calculated by Z-order curve packing technique in 

Mapper, then in Reducer, a list of splitting points is determined from that array, 

but in our method, in Reducer, we use two arrays, one to store x-coordinate of a 

center point of all objects that are sorted in ascending and one to store y-

coordinates of a center point of all objects that are also sorted in ascending, the 

coordinate of a center points are implemented in Mapper. In order to determine 

the “Longest coordinate”, we calculate the distance between the start point and 

the end point of both arrays, then we compare and choose the larger one as the 

“Longest coordinate”, then data is partitioned based on the “Longest coordinate” 

array. 
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Figure 20. Time Performance of Phase One with 10% ratio of Input Data  

 

 

Figure 21. Time Performance of Phase One with 100% ratio of Input Data 
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4.2.1.2.2 R-tree Construction Phase 

 

   This section shows the comparison of time performance in the Second phase 

(R-tree construction) with different ratio of input data as shown in Figure 22 with 

ten percent ratio of input data and Figure 23 with one hundred percent ratio of 

input data. 

   As we discussed before, Reducers in second phase is the most computationally 

intensive part where all actual “small” R-trees construction occurs, so the 

implementation time for this phase take much longer than the first phase.  

   Similar to the first phase, the implementation time decreases as the number of 

Reducers is increased in same data size and the implementation time increases 

when the data size is increased in both methods (ISTR and Z-order curve). 

   Figure 24 and Figure 25 show total implementation time of phase one and phase 

two of both methods with ten and one hundred percent ratio of input data. 
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Figure 22. Time Performance of Phase Two with 10% ratio of Input Data 

 

 

Figure 23. Time Performance of Phase Two with 100% ratio of Input Data 
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Figure 24. Total Implementation Time with 10% ratio of Input Data 

 

Figure 25. Total Implementation Time with 100% ratio of Input Data 
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4.2.2 Quality of Generated R-tree 

 

   This section show the comparison of the quality of generated R-tree between 

our proposed method with Z-curve method. We use two following equations 

to compute the area and overlap metrics respectively for given consolidated 

R-tree with root T as shown in Figure 26. 

 

Figure 26 Equations for Area and Overlap Computation of Generated 

R-tree 

 

4.2.2.1 Area Comparison 

 

4.2.2.1.1 Comparison with Single R-tree 

 

   This section shows the comparison of total area of the generated R-tree between 

our approach with the single R-tree. This experiment show that the total area of 
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R-tree slightly decreases as the number of Reducers is increased with our 

proposed method and this total area is much less than the single R-tree as shown 

in Figure 27. The data set that we use in this experiment is LINEARWATER 

data set. 

 

Figure 27. Comparison of Total Area between Our Method with The 

Single R-tree 

 

 

4.2.2.1.2 Comparison with Z-curve Method 

 

   This section shows the comparison of total area of the generated R-tree between 

our method with a previous proposed method. This experiment is performed with 

different ratio of input data in phase 1 and on 8 Reducers in phase 2 with different 
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data size. It shows that on each different data size, the total area of R-tree is built 

by our proposed method is much less than total area of R-tree is built by Z-curve 

method as shown in Figure 28 , Figure 29 and Figure 30 with the corresponding 

ratio of input data are 1%, 10% and 100% . The data set that we use in this 

experiment is ROAD NETWORK data set. 

 

 

 

 

 

Figure 28. Comparison of Total Area of R-tree with 1% Ratio 
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Figure 29. Comparison of Total Area of R-tree with 10% Ratio 

 

 

 

 

Figure 30. Comparison of Total Area of R-tree with 100% Ratio 
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4.2.2.2 Overlap Comparison 

 

4.2.2.2.1 Comparison with Z-curve Method 

 

   This section shows the comparison of overlapping area between “small” R-trees 

between our proposed method with Z-curve method. This experiment is 

performed with 10% ratio of input data in phase 1 and different number of 

Reducers in phase 2 on different data size.  

   It shows that on each different data size, with our proposed method, the 

overlapping area slightly increases when the number of Reducer is increased. In 

case of Z-curve method, the overlapping area significant increases when the 

number of Reducer is increased as shown in Figure 31. Besides that, this 

experiment also indicates that the overlapping area between “small”  R-trees are 

built by our proposed method is much less than overlapping area between “small” 

R-tree that are built by Z-curve method as shown in Figure 31.  
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V. Conclusion 

 

   In this thesis, we proposed a scheme that has three phases for parallel R-tree 

construction, in which, the first two phases are executed in parallel with 

MapReduce model, while the last phase is executed outside the cluster because it 

does not require the high computational. In the first phase (Data Partitioning), to 

minimize the “Dead Area” in resulting Minimum Bounding Rectangles (MBRs) 

and overlap between these MBRs, instead of using Z-order curve as the geo-

packing technique to grouping spatially neighboring objects, we propose a new 

method, called “Improving of STR” (ISTR). My proposed packing technique 

method was inspired by the Sort-Tile-Recursive (STR) algorithm. However, 

instead of partition data by x-coordinate, firstly, we determine the “Longest 

coordinate”, then data will be partitioned based on the “Longest coordinate”.  

   To evaluate the effectiveness of my proposed method, I make the comparison 

between my proposed method with the previous method that has been proposed 

by A.Cary that we discussed in Chapter Two. From the experiments, with my 

proposed method, although the implementation time for the first phase is slightly 

higher than the previous one but it is insignificantly. As we discussed before, the 

most important consideration is the quality of the generated R-tree, from the 

experiments, with my proposed method, the total area of the final R-tree is much 

less than the previous approach, and the overlapping area between “small” R-trees 

is also much less than the previous approach. 

   With my proposed method, I hope to contribute to improve the quality of R-tree 

construction and reduce the construction time for an available huge volume of 

data set. With our proposed schema, it can be used in many kind of applications 

in the field of databases in general and in particular, spatial data. 
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  Nowadays, with the amount of spatial data is increasing significantly, with the 

availability of Big Data, commodity hardware, has opened many opportunities for 

analyzing astonishing data sets quickly and cost-effectively for the first time in 

history.    
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