

Thesis for the Degree of Master of Science

Isolation and taxonomic study of novel bacteria from a recirculating aquaculture system

By

Yeon Hee Jang

Department of Microbiology

The Graduate School

Pukyong National University

February 2017

Isolation and taxonomic study of novel bacteria from a recirculating aquaculture system

(순환여과양식 시스템에서 신균의 분리 및 분류학적 연구)

Advisor: Prof. Kyoung-Ho Kim

By

Yeon Hee Jang

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

in Department of Microbiology, The Graduate School, Pukyong National University

February 2017

Isolation and taxonomic study of novel bacteria from a

recirculating aquaculture system

A dissertation

by

Yeon-Hee Jang

Approved by:

(Chairman) Gun-Do Kim

(Member) Young-Jae Jeon

Ng

(Member) Kyoung-Ho Kim

February 2017

CONTENTS

CONTENTS	i
ABSTRACT	3
INTRODUCTION	5
MATERIALS AND METHODS	8
Sample preparation	8
Isolation of strains	
Colony PCR of 16S rRNA gene	9
Phylogenetic analysis of novel strains	10
Growth condition tests	10
Motility test	
Physiological tests	11
Whole cell fatty acid analysis	11
CHAPTER 1. Taxonomic study of the strain RR4-38	21
INTRODUCTION	21
RESULTS AND DISCUSSION	22
CHAPTER 2. Taxonomic study of the strain RR4-40	
INTRODUCTION	
RESULTS AND DISCUSSION	

CHAPTER 3. Taxonomic study of the strain RR4-41	39
INTRODUCTION	
RESULTS AND DISCUSSION	40
CHAPTER 4. Taxonomic study of the strain RR4-56	48
INTRODUCTION	48
RESULTS AND DISCUSSION	50
CHAPTER 5. Taxonomic study of the strain RR4-68	58
INTRODUCTION	58
RESULTS AND DISCUSSION	59
국문초록	67
REFERENCES	68

Isolation and taxonomic study of novel bacteria from a recirculating aquaculture system

Yeon Hee Jang

in Department of Microbiology, The Graduate School, Pukyong National University

ABSTRACT

A recirculating aquaculture system (RAS) is a means which can make it possible to maintain water quality of an inland fish farm in suitable condition. A RAS has physical, chemical and biological treatment processes to remove fodder debris, fish excreta and toxic nitrogen compounds such as ammonia, nitrate and nitrite. In the biological process, bacteria take an important role. Bacteria have nitrification and denitrification metabolism system that can convert harmful nitrogen compounds to harmless. In this study, denitrifying bacteria were screened and some of them were candidates for novel genera and species. All strains have low sequence similarity with their closely related species as follows; RR4-38, *Ulvibacter antarcticus* IMCC3103(T) (95.05%); RR4-40, *Ulvibacter marinus* IMCC1208(T) (94.17%); RR4-41, Kangiella geojedonensis YCS-5(T) (98.08%); RR4-56, *Halovulum dunhuangense* YYQ-30(T) (92.84%); RR4-68, Formosa *spongicola* A2(T) (97.35%) respectively. Phylogenetic trees for each strain showed their phylogenetic positions in each taxonomic level. All strains have rod-shaped cell body with motility and showed optimal growth at 30° , pH 7.0-7.5 and 2.5-3.0% of NaCl concentration. Oxidase, catalase and biochemical tests were conducted for each strain. Physiological tests such as carbon assimilation and enzyme production were also conducted. On the basis of physiological and phylogenetic analyses, three strains are candidates for new genus and two strains for novel species. The type strains are RR4-40, RR4-56, RR4-38, RR4-41 and RR4-68 respectively. Thus several novel strains could be obtained from the RAS. The results showed that a RAS is an unexplored environment and good resources for finding new taxon. This study will contribute to understand RASs and to improve their efficiency.

INTRODUCTION

The recirculating aquaculture system (RAS) is a method building the aquafarm on the ground which supply the breeding water and filtrate the breeding water. The used breeding water is filtered gradually and supplied to the aquafarm again by pump (Nazar, *et al.*, 2013).

The most important thing in the system of farming fish is water quality management. Preventing the penetration of pathogens and getting rid of them by filtering the waste caused by fish in a farm and solid matter, which is not taken but left to sink to the bottom, are the basis of water quality management in the fish farm. (Au, *et al.*, 2012) RAS is one of fish-farming methods that process wastes coming from raising fish through recirculating rearing water. RAS aims to maintain water quality, keep fish from catching a disease, and improve fish quality. (Chin, *et al.*, 2013)

Organic carbon and organic nitrogen are generated from the scraps of fodder and filth in fish tanks. Since ammonia nitrogen and nitrate nitrogen from organic nitrogen severely affects organism, controlling remaining ammonia nitrogen and nitrate nitrogen in circulated water is most important for stable running and management. (Chin, *et al.*, 2013) Stable nitrogen cleaning process is essential in RASs. For RAS, cleaning process of organic nitrogen is done by microorganism in biofilter. (Harwanto and Jo, 2010) Especially nitrifying microorganisms (nitrifiers) convert ammonia to nitrate nitrogen via nitrous acid and denitrifying microorganisms (denitrifiers) convert nitrate nitrogen to nitrogen gas. (Schreier, *et al.*, 2010) Therefore, biological processing of RAS is so critical in terms of economic feasibility and efficiency (Interdonato, 2012).

The RAS model used in this study was operated in the National Institute of Fisheries Science designed to rear convict groupers (*Epinephelus septemfasciatus*) using seawater. The system was composed of fish-rearing tank, packed bed biofilter, fluidized bed biofilter, mesh biofilter, and maturation biofilter, in which the tanks were connected sequentially and water was circulated by pump. The water from maturation biofilter was recirculated to the fish-rearing tank. In the previous study, the uncultured microbial diversity of the system was investigated using the 16S rRNA amplicon sequencing method (Lee, *et al.*, 2016).

Nitrifying bacteria or ammonia oxidizing bacteria are important members in RAS being in charge of nitrification, the bottleneck process in nitrogen removal. They are autotrophic microorganisms and generally regarded to be difficult to cultivate (Urakawa, *et al.*, 2008). Several kinds of novel nitrifiers existing in the RAS system used in this system thorough the culture-independent study (Lee, *et al.*, 2016).

Denitrifying bacteria are also important members in RAS. They degrade organic carbons through nitrate respiration and discard nitrate from the system by transforming into nitrogen gas (Schreier *et al.*, 2010). Various kinds of novel heterotrophic bacteria were identified in the system and some of them might be denitrifiers (Lee, *et al.*, 2016).

In this study, cultivation of heterotrophic bacteria were conducted to isolate heterotrophic and/or denitrifying bacteria, Oligotrophic cultivation was used for growing denitrification bacteria to increase cultivability. Oligotrophic culture was adopted for culturing the strains that adapted to slow growth rate and low concentration of organic matter.

The isolates were identified using partial 16S rRNA genes sequencing. Several novel strains were selected and their 16S rRNA gene full sequences were used for phylogenetic analysis. Five candidates were selected for novel species or genera and their taxonomic analyses have been done. Thus several novel strains could be obtained from the RAS. The results showed that a RAS is an unexplored environment and good resources for finding new taxon. This study will contribute to understand RASs and to improve their efficiency.

7

MATERIALS AND METHODS

Sample preparation

The RAS was operated at 25% of salt concentration and 25°C of temperature. The RAS was designed to rear convict groupers (*E. septemfasciatus*), marine fish. Samples for isolating bacteria were collected from two biofilters, packed bed biofilter and mesh biofilter because they were known to have important roles in the RAS system (Lee, *et al.*, 2016). Detailed scales of the five biofilters were described in the previous study (Lee, *et al.*, 2016). Sludge from packed bed biofilter and cells collected from mesh were used as inoculum.

Isolation of strains

The sludge from two biofilters was serially diluted and inoculated on BTB agar (Wu, *et al.*, 2013) and diluted marine agar. To create an oligotrophic condition, marine broth was diluted 5 times and salt concentration was adjusted to 25‰. The salt concentration was also adjusted to 25‰ for BTB agar. Each 100ul of the 10, 100, 1,000, and 10,000-times diluted samples in PBS were spread on the agar plate and cultured at the temperature of 25°C for 7 days. The generation of colony was checked daily and a new colony was moved to a new medium for pure culture. Single colony was transferred to fresh agar 3-4 times to verify pure culture.

Colony PCR of 16S rRNA gene

One colony was taken and added to PCR tube containing PCR premix. Each 1 µl of primer 8F (5'-AGA GTT TGA TCC TGG CTC AG-3') and 1492R (5'-CGG TTA CCT TGT TAC GAC TT-3') were added to PCR premix (HiPi PCR premix, Elpis, Korea) and adjusted up to a total of 20 µl PCR reaction solution using distilled water. PCR process was performed as follows: The templates were predenaturated at the temperature of 95°C for 10 minutes. They were denaturated at 95°C for 30 seconds, annealed at 60°C for 30 seconds, and extended at 72°C for one and a half minutes. This process was repeated 32 times. Final extension step was performed at 72°C for 10 minutes.

PCR product was checked on electrophoresis in 1% agarose gel. The amplified PCR product went through DNA sequencing using the primer 8F. The sequences with high quality was selected to yield about 400~600 bp of nucleotides and compared with the database at EzTaxon server (http://www.ezbiocloud.net/) to find out the most similar bacterial strains verified taxonomically.

Five strains distantly related to known bacteria were selected to further phylogenetic analysis. The full sequencing of the selected strain was made by using additional primers such as 1492R (5'-CGG TTA CCT TGT TAC GAC TT-3'), 518R (5'-GTA TTA CCG CGG CTG CTG G-3'), and 1100F (5'-YAA CGA GCG CAA CCC-3'). The merged sequence was analyzed again at EzTaxon server and used to phylogenetic analysis.

Phylogenetic analysis of novel strains

16S rRNA genes of close strains were collected from ExTaxon server to be used for phylogenetic analysis. The Clustal W program was used to align sequences (Chun, *et al.*, 2007). The aligned sequences were used to construct phylogenetic tree with MEGA 6 (Tamura *et al.* 2013). The Kimura 2 parameter method was used to calculate a distance matrix (Kimura, 1980) and neighbor joining tree was constructed with 1,000 bootstrap resampling. Maximum likelihood tree was also constructed to confirm the phylogenetic position with 100 bootstrap resampling.

Growth condition tests

Growth conditions of five novel strains were conducted. Growth on different media such as mueller hinton broth (MHB; Difco), luriabertani broth (LB; Difco), tryptic soy broth and nutrient broth (KFTA) was checked. All media were adjusted up to 25‰ NaCl concentration. 100 µl culture medium were inoculated to 5 ml of media in 15 ml conical tubes and incubated at 25°C for 7 days. Culture solution was transferred to 96 well plates and absorbance was measured using amicroplate reader (VERSAmax, Molecular Devices). Growth on different pH (from 3 to 11) was tested in marine broth (MB; Difco) adjusted to each pH. Different range of temperature (4, 25, 30, 35, and 40 °C) and NaCl concentrations (0, 0.5, 1, 2, 2.5, and 3%) were tested in marine broth at 25°C for 7 days.

Motility test

Motility was examined by stabbing each colony into the center of a semi-solid agar medium (0.3% agar) and observing the diffusing colonies for 4 days. (Luna, *et al.*, 2005)

Physiological tests

Physiological tests were performed using API 20NE (bioMérieux) and API 50CH (bioMérieux) kits and enzyme activities were tested using an API ZYM kit (bioMérieux) according to manufacturer's instructions.

Whole cell fatty acid analysis

Total cellular fatty acids were analyzed using the Microbial Identification (MIDI; Newar, Delaware) system by the standardized procedure described by Miller and Berger (1985). Approximately 40 to 50 mg of concentrated whole cell was incubated for 30 min at 100°C after addition of 1ml of 15% (wt/vol) NaOH in 50% aqueous methanol.

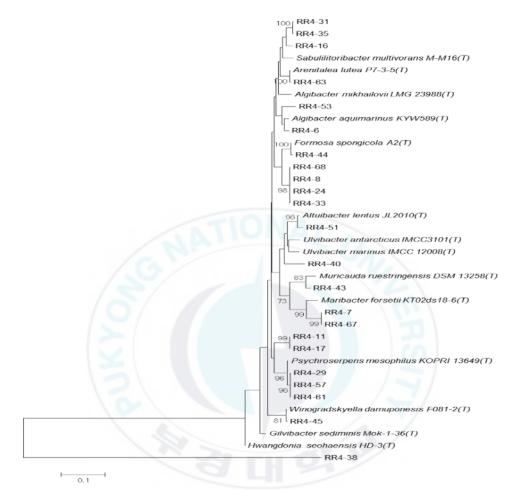
The samples were then acidified to pH 2 by adding 6N HCl in CH_3OH , and the methylated fatty acids were further extracted with 1.25 ml of 1:1 (vol/vol) solution of methyl-*tert*-buthyl ether-hexane. The organic extract was washed with 3 ml of 1.2% (wt/vol) NaOH and transfered to new sample bottle.

Fatty acid methyl esters (FAMEs) were analyzed by gas-liquid chromatography on an HP 6890A gas chromatograph (Hewlett-Packard Co. USA) equipped with a flame ionization detector. A fused-silica capillary column (0.2mm×25m; cross-linked 5% methyl phenyl silicone [HewlettPackard Co. USA] with ultrahigh-purity hydrogen as the carrier gas was used. The details of the gas-liquid chromatography conditions are as follows: injector temperature, 250°C; detector temperature, 300°C; initial column temperature, 170°C, increasing by 5°C/min to 270°C in 20 min; carrier gas flow rate, 50°C/min; sample volume, 1ul. FAMEs were calibrated against a standard mixture of known fatty acids provide by MIDI. The peak retention time and peak area values were recorded, analyzed and named with a Sherlock Computer System. The result was expressed as percentages relative to the total peak area.

12

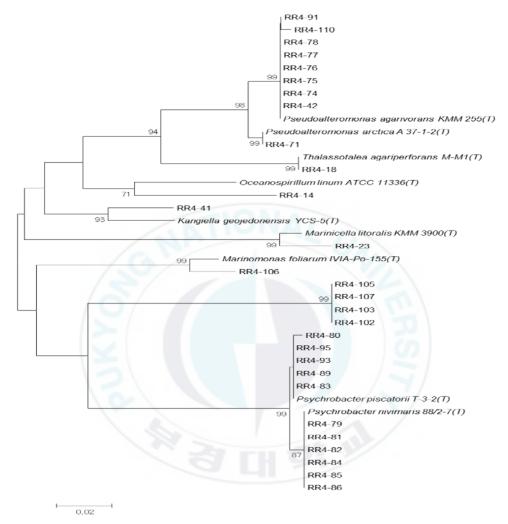
No	Strain	Closest match	Similarity (%)	Class	Family
1	RR4-1	Roseovarius sediminilitoris M- M10(T)	99.11	Alphaproteob acteria	Rhodobactera ceae
2	RR4-2	<i>Mycobacterium conceptionense</i> <i>CIP 108544(T)</i>	99.66	Actinobacteri a	<i>Mycobacteria</i> <i>ceae</i>
3	RR4-3	<i>Mycobacterium conceptionense CIP 108544(T)</i>	99.62	Actinobacteri a	<i>Mycobacteria</i> <i>ceae</i>
4	RR4-6	Algibacter aquimarinus KYW589(T)	97.21	Flavobacterii a	Flavobacteria ceae
5	RR4-7	Maribacter forsetii KT02ds18- 6(T)	94.71	Flavobacterii a	Flavobacteria ceae
6	RR4-8	Formosa spongicola A2(T)	96.51	Flavobacterii a	Flavobacteria ceae
7	RR4-10	Pelagicola litorisediminis D1- W8(T)	97.5	Alphaproteob acteria	Rhodobactera ceae
8	RR4-11	<i>Gilvibacter sediminis Mok-1-</i> <i>36(T)</i>	94.71	Flavobacterii a	Flavobacteria ceae
9	RR4-12	Sphingopyxis italica SC13E- S71(T)	97.05	Alphaproteob acteria	Sphingomona daceae
10	RR4-13	Ruegeria conchae TW15(T)	100	Alphaproteob acteria	Rhodobactera ceae
11	RR4-14	<i>Oceanospirillum linum ATCC</i> 11336(T)	92.96	<i>Gammaprote</i> <i>obacteria</i>	Oceanospirill aceae
12	RR4-15	Ruegeria atlantica IAM 14463(T)	99.79	Alphaproteob acteria	Rhodobactera ceae
13	RR4-16	Algibacter mikhailovii LMG 23988(T)	96.04	Flavobacterii a	Flavobacteria ceae
14	RR4-17	<i>Gilvibacter sediminis Mok-1-</i> <i>36(T)</i>	93.89	Flavobacterii a	Flavobacteria ceae
15	RR4-18	Thalassotalea agariperforans M- M1(T)	100	<i>Gammaprote</i> <i>obacteria</i>	Colwelliaceae
16	RR4-19	Sphingorhabdus marina FR1087(T)	98.93	Alphaproteob acteria	Sphingomona daceae
17	RR4-20	<i>Microbacterium awajiense YM13-</i> <i>414(T)</i>	99.05	Actinobacteri a	<i>Microbacteria</i> ceae
18	RR4-21	Altererythrobacter aestuarii	97.84	Alphaproteob	Erythrobacte

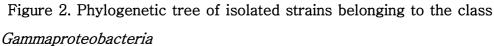
Table1. List of isolates and their closest match at the EzTaxon server

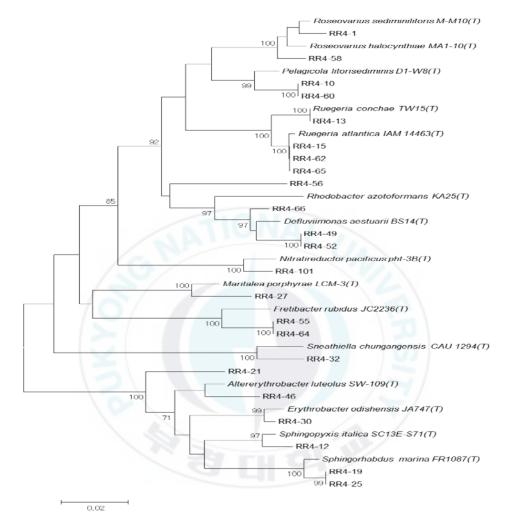

		<i>KYW147(T)</i>		acteria	raceae
19	RR4-23	Marinicella litoralis KMM 3900(T)	98.35	<i>Gammaprote</i> <i>obacteria</i>	Marinicella
20	RR4-24	Formosa spongicola A2(T)	96.55	Flavobacterii a	Flavobacteria ceae
21	RR4-25	Sphingorhabdus marina FR1087(T)	98.93	Alphaproteob acteria	Sphingomona daceae
22	RR4-27	Maritalea porphyrae LCM-3(T)	97.21	Alphaproteob acteria	Hyphomicrobi aceae
23	RR4-28	Microbacterium awajiense YM13- 414(T)	99.13	Actinobacteri a	Microbacteria ceae
24	RR4-29	Psychroserpens mesophilus KOPRI 13649(T)	98.01	Flavobacterii a	Flavobacteria ceae
25	RR4-30	<i>Erythrobacter odishensis</i> JA747(T)	99.2	Alphaproteob acteria	<i>Erythrobacte raceae</i>
26	RR4-31	Sabulilitoribacter multivorans M- M16(T)	96.51	Flavobacterii a	Flavobacteria ceae
27	RR4-32	Sneathiella chungangensis CAU 1294(T)	97.2	Alphaproteob acteria	Sneathiellace ae
28	RR4-33	Formosa spongicola A2(T)	96.63	Flavobacterii a	Flavobacteria ceae
29	RR4-35	Sabulilitoribacter multivorans M- M16(T)	96.46	Flavobacterii a	Flavobacteria ceae
30	RR4-38	Ulvibacter antarcticus IMCC3101(T)	94.34	Flavobacterii a	Flavobacteria ceae
31	RR4-40	<i>Ulvibacter marinus IMCC 12008(T)</i>	94.39	Flavobacterii a	Flavobacteria ceae
32	RR4-41	Kangiella geojedonensis YCS- 5(T)	96.85	<i>Gammaprote</i> <i>obacteria</i>	Alcanivoraca ceae
33	RR4-42	Pseudoalteromonas agarivorans KMM 255(T)	100	Gammaprote obacteria	Pseudoaltero monadaceae
34	RR4-43	<i>Muricauda ruestringensis DSM 13258(T)</i>	95.54	Flavobacterii a	Flavobacteria ceae
35	RR4-44	Formosa spongicola A2(T)	99.6	Flavobacterii a	Flavobacteria ceae
36	RR4-45	Winogradskyella damuponesis F081-2(T)	99.85	Flavobacterii a	Flavobacteria ceae
37	RR4-46	Altererythrobacter luteolus SW-	97.12	Alphaproteob	Erythrobacte

		109(T)		acteria	raceae
2 0	RR4-49	Defluxiimenes esstuarii PC14(T)	98.41	Alphaproteob	Rhodobactera
38	KK4-49	Defluviimonas aestuarii BS14(T)	98.41	acteria	ceae
20	RR4-51	Altuibactor lantua II 2010(T)	97.51	Flavobacterii	Flavobacteria
39	KK4-51	Altuibacter lentus JL2010(T)	97.51	а	ceae
10			00.10	Alphaproteob	Rhodobactera
40	RR4-52	Defluviimonas aestuarii BS14(T)	98.18	acteria	ceae
41		Unungdonia ancheorgia UD 2(T)	95.36	Flavobacterii	Flavobacteria
41	KK4-99	Hwangdonia seohaensis HD-3(T)	95.50	а	ceae
12	RR4-55	Fretibacter rubidus JC2236(T)	96.87	Alphaproteob	Hyphomonad
42	KK4-00	Freudacter rubidus JC2230(1)	90.87	acteria	aceae
12	RR4-56	Rhodobacter azotoformans	91.95	Alphaproteob	Rhodobactera
40	KK4 50	KA25(T)	91.95	acteria	ceae
11	RR4-57	-57 Psychroserpens mesophilus	98.28	Flavobacterii	Flavobacteria
44	MR4 07	KOPRI 13649(T)	30.20	а	ceae
15	RR4-58	Roseovarius halocynthiae MA1-	97.17	Alphaproteob	Rhodobactera
40	MR4 00	10(T)	51.11	acteria	ceae
16	RR4-60	Pelagicola litorisediminis D1-	98.04	Alphaproteob	Rhodobactera
40	KIX4 00	W8(T)	30.04	acteria	ceae
17	RR4-61	1 Psychroserpens mesophilus KOPRI 13649(T)	98.19	Flavobacterii	Flavobacteria
41	MR4 01			а	ceae
18	RR4-62	Ruegeria atlantica IAM 14463(T)	99.84	Alphaproteob	Rhodobactera
TU	1114 02		55.04	acteria	ceae
19	RR4-63	Arenitalea lutea P7-3-5(T)	99.88	Flavobacterii	Flavobacteria
10	100		00.00	а	ceae
50	RR4-64	Fretibacter rubidus JC2236(T)	96.11	Alphaproteob	Hyphomonad
00		11etibaeter 14bitus 502200(1)	50.11	acteria	aceae
51	RR4-65	Ruegeria atlantica IAM 14463(T)	99.74	Alphaproteob	Rhodobactera
01	1114 00		55.14	acteria	ceae
52	RR4-66	Defluviimonas aestuarii BS14(T)	98.05	Alphaproteob	Rhodobactera
02			50.00	acteria	ceae
53	RR4-67	Maribacter forsetii KT02ds18-	94.14	Flavobacterii	Flavobacteria
00		6(T)	01.11	а	ceae
54	RR4-68	Formosa spongicola A2(T)	95.77	Flavobacterii	Flavobacteria
01	1011 00	TOTMOSa Spongicola A2(1)	50.11	а	ceae
55	RR4-71	Pseudoalteromonas arctica A 37-	100		Pseudoaltero
		1-2(T)		obacteria	monadaceae
56	RR4-74	Pseudoalteromonas agarivorans	100	Gammaprote	Pseudoaltero

		<i>KMM 255(T)</i>		obacteria	monadaceae
		Pseudoalteromonas agarivorans	100	Gammaprote	Pseudoaltero
Э <i>1</i>	RR4-75	KMM 255(T)	100	obacteria	monadaceae
- 0	DD4 7C	Pseudoalteromonas agarivorans	100	Gammaprote	Pseudoaltero
58	58 RR4-76	⁴⁻⁷⁶ KMM 255(T)		obacteria	monadaceae
ΕO	RR4-77	Pseudoalteromonas agarivorans	100	Gammaprote	Pseudoaltero
99	KK4-77	KMM 255(T)	100	obacteria	monadaceae
60	RR4-78	Pseudoalteromonas agarivorans	100	Gammaprote	Pseudoaltero
00	KK4-78	KMM 255(T)	100	obacteria	monadaceae
61	RR4-79	Psychrobacter nivimaris 88/2-	100	Gammaprote	Moraxellacea
01	КК4-79	7(T)	100	obacteria	е
ດງ	RR4-80	Psychrobacter piscatorii T-3-	99.85	Gammaprote	Moraxellacea
02	KK4-0U	2(T)	99.00	obacteria	е
63	RR4-81	Psychrobacter nivimaris 88/2-	100	Gammaprote	Moraxellacea
05	KK4 01	7(T)		obacteria	е
64	RR4-82	Psychrobacter nivimaris 88/2-	100	Gammaprote	Moraxellacea
04	KK4 02	7(<i>T</i>)		obacteria	е
65	RR4-83	2(1)	100	Gammaprote	Moraxellacea
00	КК4-00			obacteria	е
66	RR4-84	Psychrobacter nivimaris 88/2-	100	Gammaprote	Moraxellacea
00	KK4 04	7(T) 10		obacteria	е
67	RR4-85	Psychrobacter nivimaris 88/2-	100	Gammaprote	Moraxellacea
07	KK4 0J	7(T)	100	obacteria	е
68	RR4-86	Psychrobacter nivimaris 88/2-	100	Gammaprote	Moraxellacea
00	KK4 00	7(T)	100	obacteria	е
60	RR4-89	Psychrobacter piscatorii T-3-	100	Gammaprote	Moraxellacea
03	KR4 03	2(T)	100	obacteria	е
60	RR4-91	Pseudoalteromonas agarivorans	100	Gammaprote	Pseudoaltero
00	KK4 J1	KMM 255(T)	100	obacteria	monadaceae
61	RR4-93	Psychrobacter piscatorii T-3-	100	Gammaprote	Moraxellacea
01	KK4 90	2(T)	100	obacteria	е
62	RR4-95	Psychrobacter piscatorii T-3-	100	Gammaprote	Moraxellacea
02		2(T)	100	obacteria	е
63	RR4-	Williamsia deligens IMMIB RIV-	99.15	Actinobacteri	Nocardiaceae
00	100	956(T)	33.10	а	
64	RR4-	Nitratireductor pacificus pht-	97.73	Alphaproteob	Phyllobacteri
04	101	3B(T)	91.10	acteria	aceae
65	RR4-	Halomonas alkaliphila 18bAG(T)	99.69	Gammaprote	Halomonadac


	102			obacteria	eae
66	RR4-	Halomonas alkaliphila 18bAG(T)	99.71	Gammaprote	Halomonadac
00	103	11a1011011aS aikanpinia 100AG(1)	99.71	obacteria	eae
67	RR4-	RR4- Halomonas alkaliphila 18bAG(T)		Gammaprote	Halomonadac
07	105	$\frac{11}{1000000000000000000000000000000000$	99.7	obacteria	eae
68	RR4- Marinomonas foliarum IVIA-Po-		98.68	Gammaprote	Oceanospirill
00	106	155(T)	90.00	obacteria	aceae
60	RR4-	Helemanag alkelinkile 19hAC(T)	99.73	Gammaprote	Halomonadac
69	107	Halomonas alkaliphila 18bAG(T)	99.75	obacteria	eae
70	RR4-	Pseudoalteromonas agarivorans	99.67	Gammaprote	Pseudoaltero
10	110	KMM 255(T)	99.07	obacteria	monadaceae




Figure 1. Phylogenetic tree of isolated strains belonging to the phylum *Bacteroidetes*

Tree was constructed based on the aligned 16S rRNA gene sequences using the neighbor-joining methods. The strain RR4-38, 40, 68 were selected for further analysis because they were candidates for novel taxa. All of them belong to family *Flavobacteriaceae* in class *Flavobacteriia*.

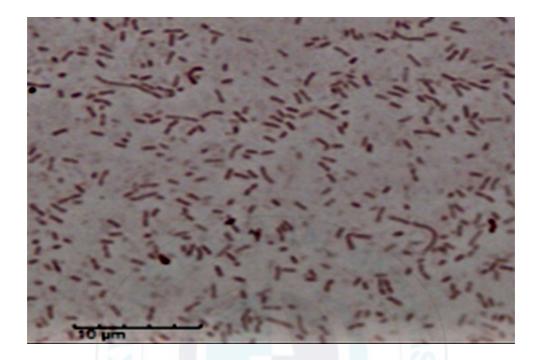
Tree was constructed based on the aligned 16S rRNA gene sequences using the neighbor-joining methods. The strain RR4-41 was selected for further analysis because it was a candidate for novel taxon.

Figure 3. Phylogenetic tree of isolated strains belonging to the class *Alphaproteobacteria*

Tree was constructed based on the aligned 16S rRNA gene sequences using the neighbor-joining methods. The strain RR4-56 was selected for further analysis because it was a candidate for novel taxon.

CHAPTER 1. Taxonomic study of the strain RR4-38

INTRODUCTION

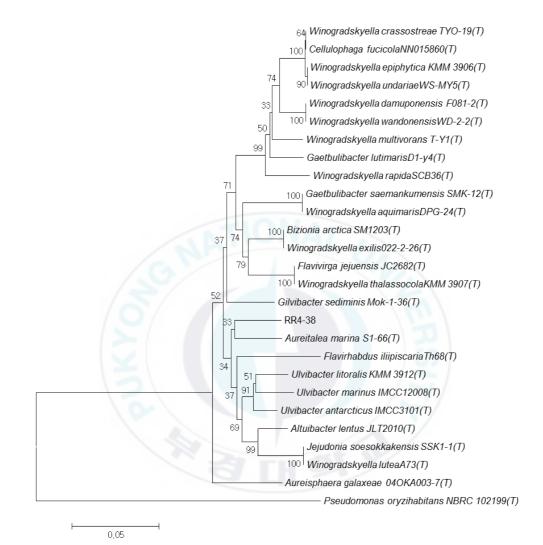

The genus Ulvibacter, first proposed by Nedashkovskaya et al. (2004), currently was affiliated to the branch of the family Flavobacteriaceae. The genus was mostly isolated from different marine environments and had menaquinone-6 (MK-6) as a major respiratory quinone (Nedashkovskaya et al., 2004). The genus Ulvibacter recently got new species, Ulvibacter antarcticus, isolated from Antarctic costal seawater. The family Flavobacteriaceae is included in Cytophaga-Flavobacterium-Bacteroides (Nedashkovskaya et al., 2004). The phylum Cytophaga-Flavobacterium-Bacteroides is one of the dominant group in the marine environment (Suzuki, et al., 2001) and has ability of degradation macromolecule (Makoto et al., 2001). The family Flavobacteriaceae have underwent expansion as new genera have been discovered (Bowman et al., 2006).

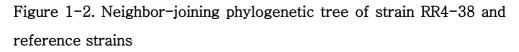
Strain RR4-38 was isolated from a biofilter from a seawater recirculating aquaculture system. On the basis of 16S rRNA analysis, strain RR4-38 was mostly related to Ulvibacter antarcticus (95.05%). In this study, strain RR4-38 was proposed as a novel genus belonging to the Phylum Bacteroidetes based on phenotypic and biochemical difference, and phylogenetic feature.

21

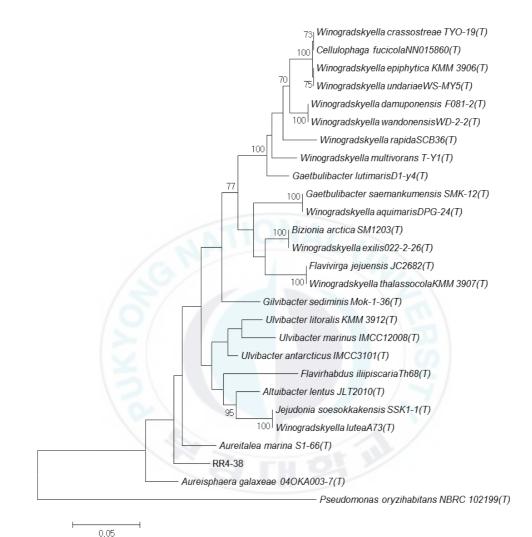
RESULTS AND DISCUSSION

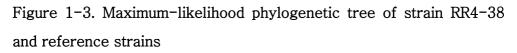
Cells are Gram-negative, non-spore forming, motile, facultative aerobic, rod-shaped. Cells are 1μ m in length. Colonies are circular, entire edge, glistening and yellow grown on MA for 7 days. Optimal growth occurs at 30°C (growth range, 4-30°C). Optimal pH for growth occurs at pH 7.0-7.5 (growth range, pH 4-8). Optimal growth occurs in the presence 2.5-3.0% NaCl (w/v). Catalase and oxidase are negative. In API 20NE strips (Table 1-4), esculin and gelatin hydrolysis and reduction of nitrate is positive. Glucose assimilation and fermentation are negative. In the API ZYM system (Table 1-2), Leucine arylamidase and naphtol-AS-BI-phosphohydrolase activities are positive, but alkaline phosphatase, esterase (C4), lipase(C14), agalactosidase, β -galactosidase, β -glucuronidase, a-glucosidase, β glucosidase, N-acetyl- β -glucosidase, a-mannosidase and afucosidase activities are negative.




Figure 1-1. Microscopy of strain RR4-38 after Gram staining

The 16S rRNA sequences of strain RR4-38 and other closest strains were used to generate a phylogenetic tree (Figure 1-2, 1-3). Identification of sequences was done at the EzTaxon server (http://www.ezbiocloud.net/).


Table 1-1. 16S rRNA sequence similarity of strain RR4-38 and other strains.


Rank	Name	Strain	Pairwise similarity (%)
1	Ulvibacter antarcticus	IMCC3101(T)	95.05
2	Altuibacter lentus	JLT2010(T)	94.91
3	Aureitalea marina	S1-66(T)	94.76
4	Ulvibacter litoralis	KMM 3912(T)	93.94
5	Gilvibacter sediminis	Mok-1-36(T)	93.41
6	Aureisphaera galaxeae	040KA003- 7(T)	93.27
7	Ulvibacter marinus	IMCC12008(T)	93.12
8	Winogradskyella multivorans	T-Y1(T)	93.01
9	Jejudonia soesokkakensis	SSK1-1(T)	93.01
10	Winogradskyella crassostreae	TYO-19(T)	92.89

It was conducted based on the aligned sequences using the neighbor-joining methods. *Pseudomonas oryzihabitans* NBRC 102199(T) is an outgroup.

It was conducted based on the aligned sequences using the maximum-likelihood methods. *Pseudomonas oryzihabitans* NBRC 102199(T) is an outgroup.

No.	Enzyme Assayed	Substrate	pН		sult	RR4-38
	For		-	positive	negative	
1	Control			of the if it l	s or color sample nas an coloration	-
2	Alkaline phosphatase	2-naphthyl phosphate	8.5	Violet		-
3	Esterase (C4)	2-naphthyl butyrate	6.5	Violet		-
4	Esterase Lipase (C8)	2-naphthyl caprylate	7.5	Violet		-
5	Lipase (C14)	2-naphthyl myristate	7.5	Violet		-
6	Leucine arylamidase	L-leucyl-2-naphthylamide	7.5	Orange		+
7	Valine arylamidase	L-Valyl-2-naphthylamide	7.5	Orange		-
8	Crystine arylamidase	L-cystyl-2-naphthylamide	7.5	Orange		-
9	Trypsin	N-benzoyl-DL-arginine- 2- naphthylamide	8.5	Orange	n	-
10	a-chymotrypsin	N-glutaryl-phenylanine-2- naphthylamide	7.5	Orange	Coloriago	-
11	Acid phospatase	2-naphtyl phosphate	5.4	Violet	Colorless	-
10	Naphtol-AS-BI-	Naphthol-AS-BI-		DI	or	
12	phosphohydrolase	phosphate	5.4	Blue	-/	+
13	a-galactogidaga	6-Br-2-naphthyl-aD-	F 4	Violet	very pale	
15	α-galactosidase	galactopyranoside	5.4	Violet	Yellow	-
14	β-galactosidase	2-naphthyl-βD-	5.4	Violet		
14	p galactosidase	galactopyranoside	5.4	Violet		
15	β-glucuronidase	Naphthol-AS-BI-βD-	5.4	Blue		_
10	p gluculollidase	glucuronide	0.4	Diuc		
16	a-glucosidase	2-naphthyl-aD-	5.4	Violet		_
10	u glucosiduse	glucopyranoside	0.1	VIOICE		
17	β-glucosidase	6-Br-20naphthyl-βD-	5.4	Violet		_
		glucopyranoside	0.1	violet		
18	N-acetyl-	1-naphthyl-N-acetyl-βD-	5.4	Brown		_
	β-glucosaminidase	glucosaminide				
19	a-mannosidase	6-Br-2-naphthyl-aD-	5.4	.4 Violet		_
		mannopyranoside				
20	a-fucosidase	2-naphthyl-a- fucopyranoside	5.4	Violet		-
		Tucopyranoside	I			

Table 1-2. API ZYM results of RR4-38.

50CH Tube	Test	Active ingredients	RR4- 38	50CH Tube	Test	Active ingredients	RR4- 38
0		Control	-	25	ESC	Esculin ferric citrate	+
1	GLY	Glycerol	-	26	SAL	Salicin	-
2	ERY	Erythritol	-	27	CEL	D-celiobiose	-
3	DARA	D-arabinose	-	28	MAL	D-maltose	-
4	LARA	L-arabinose	-	29	LAC	D-lactose(Bovine origin)	-
5	RIB	D-rinose	-	30	MEL	D-MELibiose	-
6	DXYL	D-xylose		31	SAC	D-SACcharose (sucrose)	-
7	LXYL	L-xylose	0	32	TRE	D-TREhalose	-
8	ADO	D-adonitol	-	33	INU	INUlin	-
9	MDX	Methyl-βD-xylopyranoside	-	34	MLZ	D-MeLeZitose	-
10	GAL	D-galactose	-	35	RAF	D-RAFfinose	+
11	GLU	D-glucose	-	36	AMD	AmiDon (starch)	-
12	FRU	D-fructose	-	37	GLYG	GLYcoGen	-
13	MNE	D-mannose	-	38	XLT	XyLiTol	-
14	SBE	L-sorbose	-	39	GEN	GENtiobiose	-
15	RHA	L-rhamnose	1	40	TUR	D-TURanose	-
16	DUL	Dulcitol	-	41	LYX	D-LYXose	-
17	INO	Inositol	-	42	TAG	D-TAGatose	-
18	MAN	D-manitol	-	43	DFUC	D-FUCose	-
19	SOR	D-sorbitol	-	44	LFUC	L-FUCose	-
20	MDN	Methyl-aD-Mannopyranoside	-	45	DARL	D-ARabitoL	-
21	MDG	Methyl-aD-Glucopyranoside	-	46	LARL	L-ARabitoL	-
22	NAG	N-Acetylglucosamine	-	47	GNT	potassium GlucoNaTe	-
23	AMY	Amygdalin	-	48	2KG	potassium 2- KetoGluconate	-
24	ARB	Arbutin	+	49	5KG	potassium 5- KetoGluconate	+

Table 1-3. API 50CH results of RR4-38

				관득	두 기준 및 결과	
Active ingredients	Reactions / Enzymes	NO.	Tests	Negative	Positive	RR4- 38
potassium nitrate	reduction of nitrate to nitrites	1	NO ₃	colorless	pink-red	
potassium mitrate	reduction of nitrate to nitrogen	Ţ	1003	pink	colorless	+
L-tryptophane	indole production(TRyptoPha ne)	2	TRP	colorless pale green/yello W	pink	_
D-glucose	fermentation(GLUcose)	3	GLU	blue to green	yellow	-
L-arginine	Arginine DiHydrolase	4	ADH	yellow	orange/pink/r ed	-
urea	UREase	5	URE	yellow	orange/pink/r ed	_
essulin ferric citrate	hydrolysis(β- glucosidase) (ESCulin)	6	ESC	yellow	grey/brown/b lack	+
gelatine (bovine origin)	hydrolysis(protease) (GELatin)	7	GEL	no pigment diffusion	diffusion of black pigment	+
4-nitrophenyl- βD- galactopyranosid e	β-galactosidase(Para- NitroPhenyl- βD- Galactopyranosidase)	8	PNPG	colorless	yellow	_
D-glucose	assimilation (glucose)	9	GLU	transparent	opaque	_
L-arabinose	assimilation (arabinose)	10	ARA	transparent	opaque	_
D-mannose	assimilation (mannose)	11	MNE	transparent	opaque	-
D-mannitol	assimilation (mannitol)	12	MAN	transparent	opaque	-
N-acetyl- glucosamine	assimilation (N- acetyl-glucosamine)	13	NAG	transparent	opaque	-
D-maltose	assimilation (maltose)	14	MAL	transparent	opaque	-
potassium gluconate	assimilation (potassium gluconate)	15	GNT	transparent	opaque	-
capric acid	assimilation (capric acid)	16	CAP	transparent	opaque	-
adipic acid	assimilation (adipic acid)	17	ADI	transparent	opaque	-
malic acid	assimilation (malate)	18	MLT	transparent	opaque	-
trisodium citrate	assimilation (trisodium citrate)	19	CIT	transparent	opaque	-
phenylacetic acid	assimilation (phenylacetic acid)	20	PAC	transparent	opaque	-
		0:	xidase		_	

Table 1-4. API 20NE (48h) results of RR4-38.

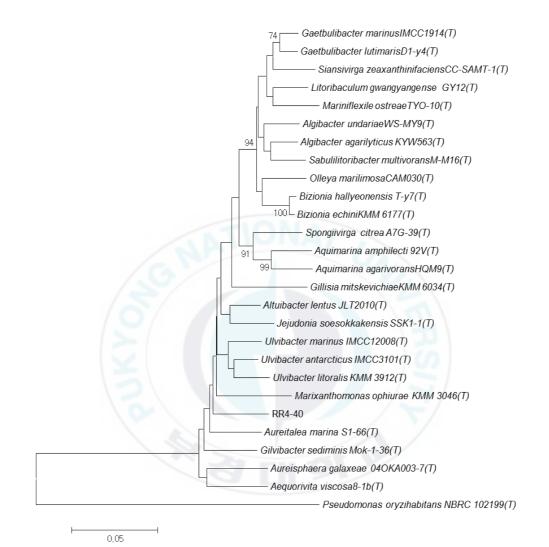
CHAPTER 2. Taxonomic study of the strain RR4-40

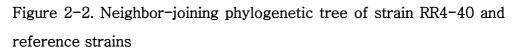
INTRODUCTION

The genus *Ulvibacter* is required Na⁺ ions, non-motile. Yelloworange pigments are produced and flexirubin is produced (Nedashkovskaya, 2004). The genus *Ulvibacter* has contained two species, Ulvibacter litoralis, isolated from the green alga Ulva fenestrata, and Ulvibacter antarcticus, isolated from Antarctic coastal seawater. Recently, new species Ulvibabacter marinus isolated from coastal seawater has been proposed to the genus Ulvibacter (Baek et al., 2014). This species is chemoheterotrophic, strictly aerobic and Gram negative, but nitrate reduction is positive. Flexirubin-type pigments, first isolated from a strain *Flexibacter elegans*, are produced (FAUTZ et al., 1980). This pigment was extracted from many species. One was *Flexibacter elegans* and another was Cytophaga johnsonae. Flexibacter pigments can resist photooxidation. An important regulatory factor is pH as specific pigment was made under acidic condition than neutral conditions. Carotenoid is not produced (Reichenbach, 1974). Whereas, *C. jonhsonae* produces carotenoid 20 µg (Achenbach et al., 1978). In the study, the strain RR4-40 is proposed to novel genus belonging to the Phylum *Bacteroidetes* based on biochemical, physiological and phylogenetic differences

RESULTS AND DISCUSSION

Cells are Gram-negative, motile, facultative aerobic, rod-shaped. Cells are observed from 1µm in length. Colonies are circular, entire edge, raised margin, glistening and yellow grown on MA for 7days. Optimal growth occurs at 30℃ (growth range 20-30℃). Optimal growth occurs at pH 7.0-7.5 (growth range, pH 6-8). Optimal growth occurs in the presence 2.5-3.0% NaCl (w/v). Catalase and oxidase are negative. In the API 20NE strips (Table 2-4), nitrate and gelatin hydrolysis is positive, but reduction of indole production, glucose fermentation, D-glucose, L-arabinose, D-mannose, D-mannitol, Lacetyl-glucosamine and D-maltose assimilation is negative. In API ZYM system (Table 2-2), esterase (C4), leucine arylamidase, valine arylamidase, crystine arylamidase and acid phosphatase acitivities are positive, but alkaline phosphatase, esterase lipase (C8), lipase (C14), trypsin, a-chymotrypsin, a-galactosidase, β -galactosidase, β β-glucosidase, -glucuronidase, a-glucosidase, N-acetyl-βglucosidase, a-mannosidase and a-fucosidase activities are negative.




Figure 2-1. Microscopy of strain RR4-40 after Gram staining

The full 16S rRNA sequences of strain RR4-40 and other closest strains were used to generate a phylogenetic tree (Figure 2-2, 2-3). Identification of sequences was done at the EzTaxon server (http://www.ezbiocloud.net/).

Table 2-1. 16S rRNA sequence similarity of strain RR4-40 and other strains.

Rank	Name	Strain	Pairwise similarity (%)
1	Ulvibacter marinus	IMCC12008(T)	94.17
2	Altuibacter lentus	JLT2010(T)	94.10
3	Ulvibacter antarcticus	IMCC3101(T)	93.94
4	Jejudonia soesokkakensis	SSK1-1(T)	93.83
5	Aureitalea marina	S1-66(T)	93.74
6	Ulvibacter litoralis	KMM_3912(T)	93.65
7	Gilvibacter sediminis	Mok-1-36(T)	93.25
8	Aureisphaera galaxeae	040KA003- 7(T)	93.00
9	Marixanthomonas ophiurae	KMM_3046(T)	92.44
10	Bizionia hallyeonensis	T-y7(T)	92.30

It was conducted based on the aligned sequences using the neighbor-joining methods. *Pseudomonas oryzihabitans* NBRC 102199(T) is an outgroup.

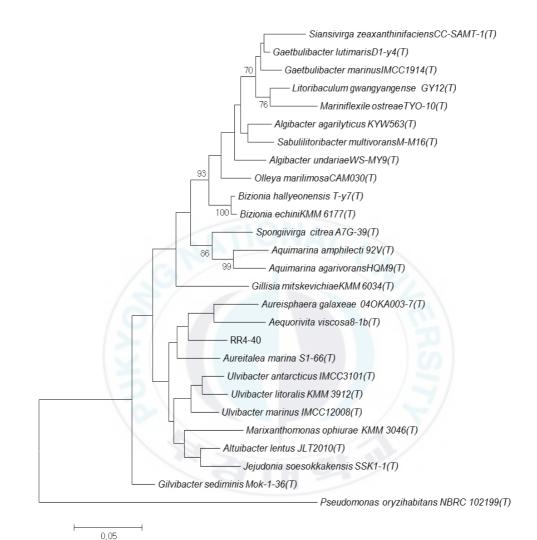


Figure 2-3. Maximum-likelihood phylogenetic tree of strain RR4-40 and reference strains

It was conducted based on the aligned sequences using the maximum-likelihood methods. *Pseudomonas oryzihabitans* NBRC 102199(T) is an outgroup.

No.	Engure Assessed For	Substrate	n I I	Re	sult	RR4-40
INO.	Enzyme Assayed For	Substrate	рН	positive	negative	KK4=40
1	Control			of the if it l	s or color sample has an coloration	-
2	Alkaline phosphatase	2-naphthyl phosphate	8.5	Violet		-
3	Esterase (C4)	2-naphthyl butyrate	6.5	Violet		+
4	Esterase Lipase (C8)	2-naphthyl caprylate	7.5	Violet		-
5	Lipase (C14)	2-naphthyl myristate	7.5	Violet		-
6	Leucine arylamidase	L-leucyl-2-naphthylamide	7.5	Orange		+
7	Valine arylamidase	L-Valyl-2-naphthylamide	7.5	Orange		+
8	Crystine arylamidase	L-cystyl-2-naphthylamide	7.5	Orange		+
9	Trypsin	N-benzoyl-DL-arginine-2- naphthylamide	8.5	Orange		_
10	a-chymotrypsin	N-glutaryl-phenylanine-2- naphthylamide	7.5	Orange	2	_
11	Acid phospatase	2-naphtyl phosphate	5.4	Violet		+
12	Naphtol-AS-BI- phosphohydrolase	Naphthol-AS-BI-phosphate	5.4	Blue	Colorless	_
13	a-galactosidase	6-Br-2-naphthyl-aD- galactopyranoside	5.4	Violet	or very pale	-
14	β-galactosidase	2-naphthyl-βD- galactopyranoside	5.4	Violet	Yellow	-
15	β-glucuronidase	Naphthol-AS-BI-βD- glucuronide	5.4	Blue		-
16	a-glucosidase	2-naphthyl-aD- glucopyranoside	5.4	Violet		-
17	β-glucosidase	6-Br-20naphthyl-βD- glucopyranoside	5.4	Violet		-
10	N-acetyl-	1-naphthyl-N-acetyl-βD-		D		
18	β-glucosaminidase	glucosaminide	5.4	Brown		-
19	a-mannosidase	6-Br-2-naphthyl-aD- mannopyranoside	5.4	Violet		-
20	a-fucosidase	2-naphthyl-a- fucopyranoside	5.4	Violet	-	-

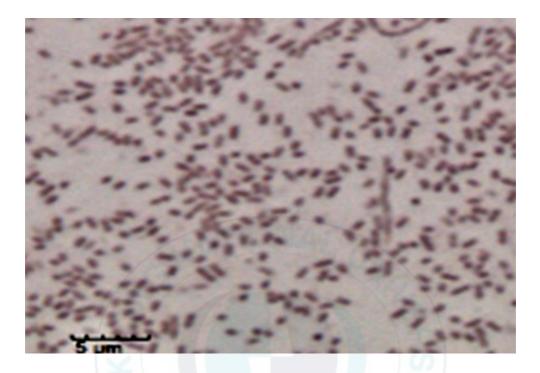
Table 2-2. API ZYM results of RR4-40.

50CH Tube	Test	Active ingredients	RR4- 40	50CH Tube	Test	Active ingredients	RR4- 40
0		Control	-	25	ESC	Esculin ferric citrate	+
1	GLY	Glycerol	-	26	SAL	Salicin	-
2	ERY	Erythritol	-	27	CEL	D-celiobiose	-
3	DARA	D-arabinose	-	28	MAL	D-maltose	-
4	LARA	L-arabinose	-	29	LAC	D-lactose(Bovine origin)	-
5	RIB	D-rinose	-	30	MEL	D-MELibiose	-
6	DXYL	D-xylose		31	SAC	D-SACcharose (sucrose)	-
7	LXYL	L-xylose	5	32	TRE	D-TREhalose	-
8	ADO	D-adonitol	-	33	INU	INUlin	-
9	MDX	Methyl-βD-xylopyranoside	-	34	MLZ	D-MeLeZitose	-
10	GAL	D-galactose	-	35	RAF	D-RAFfinose	-
11	GLU	D-glucose	-	36	AMD	AmiDon (starch)	-
12	FRU	D-fructose	-	37	GLYG	GLYcoGen	-
13	MNE	D-mannose	-	38	XLT	XyLiTol	-
14	SBE	L-sorbose	-	39	GEN	GENtiobiose	-
15	RHA	L-rhamnose	1	40	TUR	D-TURanose	-
16	DUL	Dulcitol	-	41	LYX	D-LYXose	-
17	INO	Inositol	-	42	TAG	D-TAGatose	-
18	MAN	D-manitol	-	43	DFUC	D-FUCose	-
19	SOR	D-sorbitol	-	44	LFUC	L-FUCose	-
20	MDN	Methyl-aD-Mannopyranoside	-	45	DARL	D-ARabitoL	-
21	MDG	Methyl-aD-Glucopyranoside	-	46	LARL	L-ARabitoL	-
22	NAG	N-Acetylglucosamine	-	47	GNT	potassium GlucoNaTe	-
23	AMY	Amygdalin	Ι	48	2KG	potassium 2- KetoGluconate	-
24	ARB	Arbutin	-	49	5KG	potassium 5- KetoGluconate	+

Table 2-3. API 50CH results of RR4-40.

Active				판	독 기준 및 결과	
ingredients	Reactions / Enzymes	NO.	Tests	Negative	Positive	RR4- 40
potassium nitrate	reduction of nitrate to nitrites	1	NO ₃	colorless	pink-red	
potassium intrate	reduction of nitrate to nitrogen	1	1003	pink	colorless	+
_	indole	_		colorless		
L-tryptophane	production(TRyptoPhane)	2	TRP	pale green/yellow	pink	-
D-glucose	fermentation(GLUcose)	3	GLU	blue to green	yellow	-
L-arginine	Arginine DiHydrolase	4	ADH	yellow	orange/pink/red	-
urea	UREase	5	URE	yellow	orange/pink/red	-
essulin	hydrolysis(β-	6	ESC	vellow	grey/brown/black	_
ferric citrate	glucosidase) (ESCulin)	0	LSC	yenow	gi c y/ bi o wii/ biack	
gelatine	hydrolysis(protease)	7	GEL	no pigment	diffusion of	+
(bovine origin)	(GELatin)	(GEL	diffusion	black pigment	
4-nitrophenyl- βD-	β-galactosidase(Para- NitroPhenyl-	8	PNPG	colorless	yellow	_
galactopyranoside	βD- Galactopyranosidase)	0	INIG	01011635	yenow	
D-glucose	assimilation (glucose)	9	GLU	transparent	opaque	-
L-arabinose	assimilation (arabinose)	10	ARA	transparent	opaque	-
D-mannose	assimilation (mannose)	11	MNE	transparent	opaque	-
D-mannitol	assimilation (mannitol)	12	MAN	transparent	opaque	-
N-acetyl- glucosamine	assimilation (N-acetyl- glucosamine)	13	NAG	transparent	opaque	-
D-maltose	assimilation (maltose)	14	MAL	transparent	opaque	-
potassium gluconate	assimilation (potassium gluconate)	15	GNT	transparent	opaque	-
capric acid	assimilation (capric acid)	16	CAP	transparent	opaque	-
adipic acid	assimilation (adipic acid)	17	ADI	transparent	opaque	-
malic acid	assimilation (malate)	18	MLT	transparent	opaque	-
trisodium citrate	assimilation (trisodium citrate)	19	CIT	transparent	opaque	-
phenylacetic acid	assimilation (phenylacetic acid)	20	PAC	transparent	opaque	-
		Ox	idase		-	

Table 2-4. API 20NE (48h) results of RR4-40.

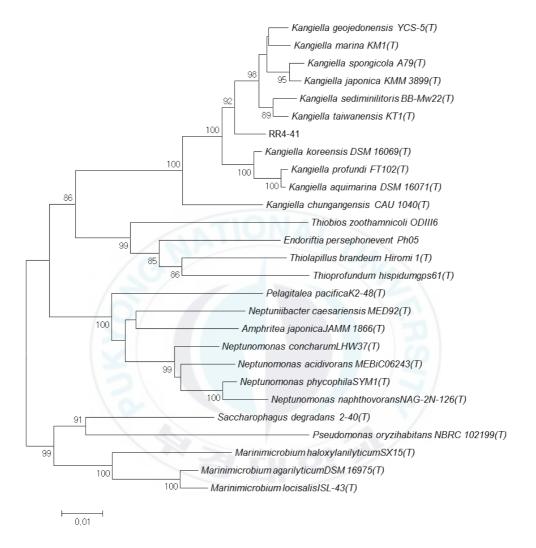

CHAPTER 3. Taxonomic study of the strain RR4-41

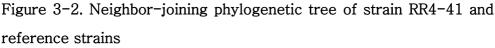
INTRODUCTION

The genus Kangiella was first described by Yoon et al (2004). The genus Kangiella belongs to the class Gammaproteobacteria. The genus has ability of nitrate reduction under anaerobic conditions (Yoon et al., 2004). The class Gammaproteobacteria has mostly been retrieved from marine environment and has five clades. The clades contains OM60, BD1-7, KI89A, OM182 and SAR92 clade (Cho et al, 2004), Two species proposed first, Kangiella koreensis and Kangiella aquimarina were isolated from a tidal flat of the Yellow sea in Korea (Yoon et al., 2004). Other species, Kangiella japanica (Romanenko et al., 2010) and Kangiella spongicola (Anh et al., 2011), were isolated from sediment and the sponge Chondrilla nucula, respectively. A novel species, Kangiella geojedonensis, is proposed by Yoon et al. (2012). This novel species has ability of nitrate reduction. In this study, strain RR4-41 was described by novel species belonging to Kangiella based on biochemical, physiological and phylogenetic differences.

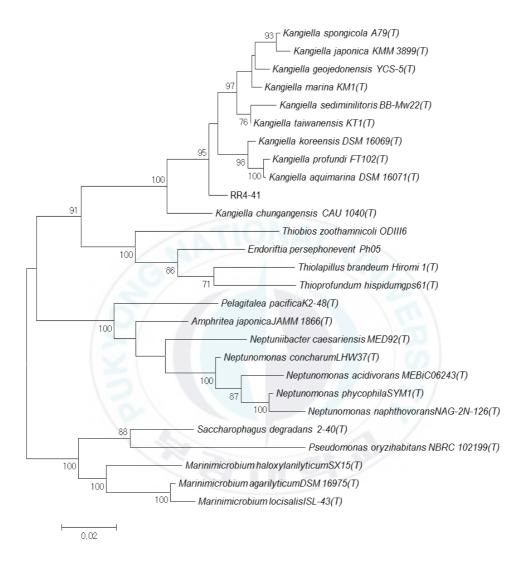
RESULTS AND DISCUSSION

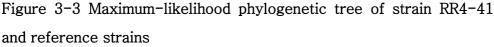
Cells are Gram-negative, motile, obligate aerobic and rod-shaped. Cells are 0.3μ m in length. Colonies are slightly irregular form, entire edge, raised, glistening and white grown on MA for 7days. Optimal growth occurs at 30° (growth range, $20-30^{\circ}$). Optimal growth occurs at pH 7.0-7.5. Optimal growth occurs in the presence 2.5-3.0% NaCl (w/v). Positive for catalase but negative for oxidase. In the API 20NE systems (Table 3-4), gelatin hydrolysis is positive but reduction of nitrate and glucose fermentation are negative. Also assimilation of D-glucose, L-arabinose, D-mannose, D-mannitol, Nacetyl-glucosamine is negative. In API ZYM system (Table 3-2), alkaline phosphatase, esterase (C4), esterase lipase (C8), leucine arylamidase, a-chymotrysin and naphtol-AS-BI-phosphohydrolase activities are positive, but lipase (C14), trypsin, a-galactosidase, β galactosidase, β -glucuronidase, a-glucosidase and β -glucosidase activities are negative.




Figure 3-1. Microscopy of strain RR4-41 after Gram staining

The 16S rRNA sequences of strain RR4-41 and other closest strains were used to generate a phylogenetic tree (Figure 3-2, 3-3). The phylogenetic tree indicated that the strain RR4-41 belongs to the genus *Kangiella*. It showed sequence similarity 98.08% with *Kangiella geojedonensis* (Table 3-1), the strain RR4-68 is classified as new species in the genus *Kangiella*.


Table 3-1. 16S rRNA sequence similarity of strain RR4-41 and other strains.


Rank	Name	Strain	Pairwise similarity (%)
1	Kangiella geojedonensis	YCS-5(T)	98.08
2	Kangiella spongicola	A79(T)	97.19
3	Kangiella japonica	KMM_3899(T)	97.03
4	Kangiella koreensis	DSM_16069(T)	96.95
5	Kangiella marina	KM1(T)	96.97
6	Kangiella taiwanensis	KT1(T)	96.85
7	Kangiella sediminilitoris_BB	Mw22(T)	96.88
8	Kangiella profundi	FT102(T)	96.83
9	Kangiella aquimarina_DSM	16071(T)	96.22
10	Kangiella chungangensis	CAU_1040(T)	95.62

It was conducted based on the aligned sequences using the neighbor-joining methods. *Pseudomonas oryzihabitans* NBRC 102199(T) is an outgroup.

It was conducted based on the aligned sequences using the maximum-likelihood methods. *Pseudomonas oryzihabitans* NBRC 102199(T) is an outgroup.

No.	Enzyme Assayed	Substrate	pН		sult	RR4-41
	For		P	positive	negative	
1	Control			of the if it l	s or color sample has an coloration	-
2	Alkaline phosphatase	2-naphthyl phosphate	8.5	Violet		+
3	Esterase (C4)	2-naphthyl butyrate	6.5	Violet		+
4	Esterase Lipase (C8)	2-naphthyl caprylate	7.5	Violet		+
5	Lipase (C14)	2-naphthyl myristate	7.5	Violet		-
6	Leucine arylamidase	L-leucyl-2- naphthylamide	7.5	Orange		+
7	Valine arylamidase	L-Valyl-2-naphthylamide	7.5	Orange		-
8	Crystine arylamidase	L-cystyl-2- naphthylamide	7.5	Orange		-
9	Trypsin	N-benzoyl-DL-arginine- 2- naphthylamide	8.5	Orange	m	-
10	a-chymotrypsin	N-glutaryl-phenylanine- 2- naphthylamide	7.5	Orange	Colorless	+
11	Acid phospatase	2-naphtyl phosphate	5.4	Violet	or	-
	Naphtol-AS-BI-	Naphthol-AS-BI-		/	01	
12	phosphohydrolase	phosphate	5.4	Blue	very pale	+
13	a-galactosidase	6-Br-2-naphthyl-aD- galactopyranoside	5.4	Violet	Yellow	-
14	β-galactosidase	2-naphthyl-βD- galactopyranoside	5.4	Violet		-
15	β-glucuronidase	Naphthol-AS-BI-βD- glucuronide	5.4	Blue		-
16	a-glucosidase	2-naphthyl-aD- glucopyranoside	5.4	Violet		-
17	β-glucosidase	6-Br-20naphthyl-βD- glucopyranoside	5.4	Violet		-
18	N-acetyl-	1-naphthyl-N-acetyl- βD-	5.4	Brown		_
	β-glucosaminidase	glucosaminide				
19	a-mannosidase	6-Br-2-naphthyl-aD- mannopyranoside	5.4	Violet		_
20	a-fucosidase	2-naphthyl-a- fucopyranoside	5.4	Violet		-

Table 3-2. API ZYM results of RR4-41.

50CH Tube	Test	Active ingredients	RR4- 41	50CH Tube	Test	Active ingredients	RR4- 41
0		Control	-	25	ESC	Esculin ferric citrate	+
1	GLY	Glycerol	-	26	SAL	Salicin	+
2	ERY	Erythritol	-	27	CEL	D-celiobiose	-
3	DARA	D-arabinose	-	28	MAL	D-maltose	-
4	LARA	L-arabinose	-	29	LAC	D-lactose(Bovine origin)	-
5	RIB	D-rinose	-	30	MEL	D-MELibiose	-
6	DXYL	D-xylose	-	31	SAC	D-SACcharose (sucrose)	-
7	LXYL	L-xylose	0	32	TRE	D-TREhalose	-
8	ADO	D-adonitol	-	33	INU	INUlin	-
9	MDX	Methyl-βD-xylopyranoside	-	34	MLZ	D-MeLeZitose	-
10	GAL	D-galactose	-	35	RAF	D-RAFfinose	-
11	GLU	D-glucose	-	36	AMD	AmiDon (starch)	-
12	FRU	D-fructose	-	37	GLYG	GLYcoGen	+
13	MNE	D-mannose	-	38	XLT	XyLiTol	-
14	SBE	L-sorbose	-	39	GEN	GENtiobiose	-
15	RHA	L-rhamnose	1	40	TUR	D-TURanose	-
16	DUL	Dulcitol	-	41	LYX	D-LYXose	-
17	INO	Inositol	-	42	TAG	D-TAGatose	-
18	MAN	D-manitol	-	43	DFUC	D-FUCose	-
19	SOR	D-sorbitol	-	44	LFUC	L-FUCose	-
20	MDN	Methyl-aD-Mannopyranoside	-	45	DARL	D-ARabitoL	-
21	MDG	Methyl-aD-Glucopyranoside	-	46	LARL	L-ARabitoL	-
22	NAG	N-Acetylglucosamine	-	47	GNT	potassium GlucoNaTe	-
23	AMY	Amygdalin	-	48	2KG	potassium 2- KetoGluconate	-
24	ARB	Arbutin	-	49	5KG	potassium 5- KetoGluconate	+

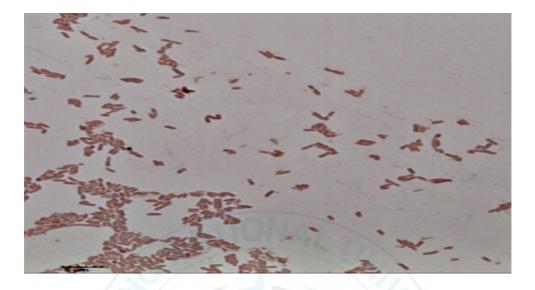
Table 3-3. API 50CH results of RR4-41

Active				판	독 기준 및 결과	
ingredients	Reactions / Enzymes	NO.	Tests	Negative	Positive	RR4- 41
potassium nitrate	reduction of nitrate to nitrites	- 1	NO ₃	colorless	pink-red	
	reduction of nitrate to nitrogen	1	1403	pink	colorless	+
	indole			colorless		
L-tryptophane	production(TRyptoPhane)	2	TRP	pale green/yellow	pink	-
D-glucose	fermentation(GLUcose)	3	GLU	blue to green	yellow	-
L-arginine	Arginine DiHydrolase	4	ADH	yellow	orange/pink/red	-
urea	UREase	5	URE	yellow	orange/pink/red	-
essulin ferric citrate	hydrolysis(β- glucosidase) (ESCulin)	6	ESC	yellow	grey/brown/black	-
gelatine	hydrolysis(protease)	_		no pigment	diffusion of	
(bovine origin)	(GELatin)	7	GEL	diffusion	black pigment	+
4-nitrophenyl- βD-	β-galactosidase(Para- NitroPhenyl-	8	PNPG	colorless	vellow	_
galactopyranoside	βD- Galactopyranosidase)	0	INIG	01011035	yenow	
D-glucose	assimilation (glucose)	9	GLU	transparent	opaque	-
L-arabinose	assimilation (arabinose)	10	ARA	transparent	opaque	-
D-mannose	assimilation (mannose)	11	MNE	transparent	opaque	-
D-mannitol	assimilation (mannitol)	12	MAN	transparent	opaque	-
N-acetyl- glucosamine	assimilation (N-acetyl- glucosamine)	13	NAG	transparent	opaque	-
D-maltose	assimilation (maltose)	14	MAL	transparent	opaque	-
potassium gluconate	assimilation (potassium gluconate)	15	GNT	transparent	opaque	-
capric acid	assimilation (capric acid)	16	CAP	transparent	opaque	-
adipic acid	assimilation (adipic acid)	17	ADI	transparent	opaque	-
malic acid	assimilation (malate)	18	MLT	transparent	opaque	-
trisodium citrate	assimilation (trisodium citrate)	19	CIT	transparent	opaque	-
phenylacetic acid	assimilation (phenylacetic acid)	20	PAC	transparent	opaque	-
		Ox	idase		-	

Table 3-4. API 20NE (48h) results of RR4-41.

CHAPTER 4. Taxonomic study of the strain RR4-56

INTRODUCTION


Strain RR4-56 was isolated from a biofilter from seawater recirculating aquaculture system. The 16S rRNA sequences of strain RR4-56 and other closest strains were used to generate a phylogenetic tree (Figure 4-2, 4-3). The strain RR4-56 is relative to two genera, *Halovulum* and *Rhodobacter* (respectively, similarity 92.84% and 91.60%). Two genera were rod-, oval-shaped, facultative anaerobic and photoheterotrophic. Rhodobacter strains can grow by anaerobic-dark respiration with nitrate, nitrous oxide, di-methylsulfoxide, or trimethylamine N-oxide as a terminal electron acceptor (Hiraishi and Veda, 1994). Two genera, Rhodobacter and Halovulum, which are complete denitrifiers have been separated from the biological wastewater processing system. Rhodobacter can play a significant role in the environmental nitrogen cycle. Also, all marine creatures except bacteriochlorophyll, spheroidene series, and carotenoids have recently been in the genus for freshwater and marine life (Hiraishi and Veda, 1994). On the basis of 16S rRNA sequence, the strain was most closely related to the genus Rhodobacter, but was affiliated to the genus Halovulum based on phylogenetic tree. After comparing taxonomic characteristics with

other various bacterial strains and analyzing gene sequence of 16S rRNA, strain RR4-56 seems to form novel genus different from *Halovulum (Sun, et al., 2015)* belonging to the *Rhodobacteraceae* family.

RESULTS AND DISCUSSION

Cells are Gram-negative, motile, rod-shaped, facultative aerobic. Cells are 0.3µm in length. Colonies are small, circular form, entire edge, flat margin and white grown on MA for 7days. Optimal growth occurs at 30° (growth range, $20-30^{\circ}$). Optimal pH for growth occurs at pH 7.0-7.5 (growth range, pH 5-8; but weak growth at pH 7), Optimal growth occurs in the presence 2.5-3.0% NaCl (w/v). Catalase and oxidase are negative. In the API 20NE strips (Table 4-4), reduction of nitrite is positive, but reduction of nitrate, glucose fermentation, gelatin hydrolysis, assimilations of D-glucose, Larabinose, D-mannose, D-mannitol, D-maltose, N-acetylglucosamine, D-glucosamine and malate are negative. In the API ZYM system (Table 4-2), esterase (C4), esterase lipase (C8), leucine arylamidase, crystine arylamidase, acid phosphatase, naphtol-AS-BI-phosphohydrolase activities are positive, but alkaline phosphatase, lipase (C14), valine arylamidase, trypsin, α -galactosidase, β galactosidase, β -glucuronidase, α -glucosidase, β -glucosidase and α -mannosidase activities are negative.

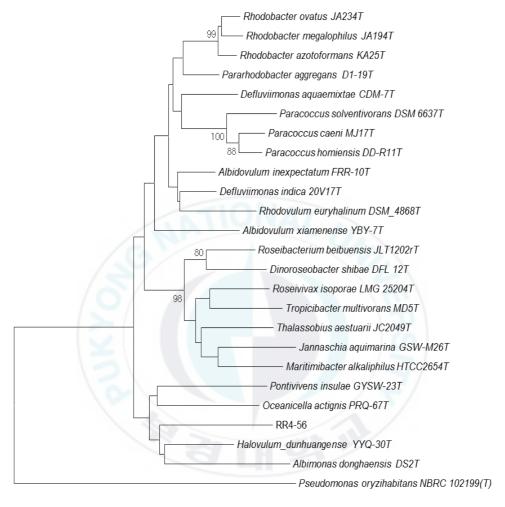
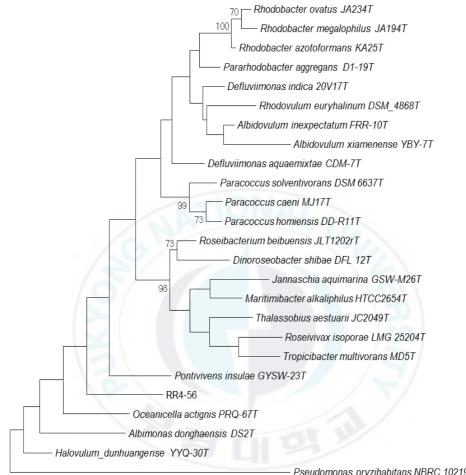


Figure 4-1. Microscopy of strain RR4-56 after Gram staining

The full 16S rRNA sequences of strain RR4-56 and other closest strains were used to generate a phylogenetic tree (Figure 4-2, 4-3). It showed sequence similarity 92.84% with *Halovulum dunhuangense* (Table 4-1). The phylogenetic tree indicated that the strain RR4-56 was classified as new genus.

Table 4-1. 16S rRNA sequence similarity of strain RR4-56 and other strains.


Rank	Name	Strain	Pairwise similarit (%)		
1	Halovulum dunhuangense	YYQ-30T	92.84		
2	Rhodobacter azotoformans	KA25T	91.60		
3	Defluviimonas aquaemixtae	CDM-7T	91.46		
4	Pararhodobacter aggregans	D1-19T	91.32		
5	Jannaschia aquimarina	GSW-M26T	91.25		
6	Albidovulum inexpectatum	FRR-10T	91.23		
7	Defluviimonas indica	20V17T	91.20		
8	Albidovulum xiamenense	YBY-7T	91.20		
9	Pontivivens insulae	GYSW-23T	91.18		
10	Roseivivax isoporae	LMG_25204T	91.17		

0,02

Figure 4-2. Neighbor-joining phylogenetic tree of strain RR4-56 and reference strains

It was conducted based on the aligned sequences using the neighbor-joining methods. *Pseudomonas oryzihabitans* NBRC 102199(T) is an outgroup.

Pseudomonas oryzihabitans NBRC 102199(T)

0.02

Figure 4-3. Maximum-likelihood phylogenetic tree of strain RR4-56 and reference strains

It was conducted based on the aligned sequences using the maximum-likelihood methods. Pseudomonas oryzihabitans NBRC 102199(T) is an outgroup.

No.	Enzyme Assayed	Substrate	На	Re	sult	RR4-56
	For	Substrate	pri	positive	negative	IIII 00
1	Control			of the if it h	s or color sample nas an coloration	-
2	Alkaline phosphatase	2-naphthyl phosphate	8.5	Violet		-
3	Esterase (C4)	2-naphthyl butyrate	6.5	Violet		+
4	Esterase Lipase (C8)	2-naphthyl caprylate	7.5	Violet		+
5	Lipase (C14)	2-naphthyl myristate	7.5	Violet		-
6	Leucine arylamidase	L-leucyl-2-naphthylamide	7.5	Orange		+
7	Valine arylamidase	L-Valyl-2-naphthylamide	7.5	Orange		-
8	Crystine arylamidase	L-cystyl-2-naphthylamide	7.5	Orange		+
9	Trypsin	N-benzoyl-DL-arginine-2- naphthylamide	8.5	Orange	a)	-
10	a-chymotrypsin	N-glutaryl-phenylanine-2- naphthylamide	7.5	Orange		_
11	Acid phospatase	2-naphtyl phosphate	5.4	Violet	Colorless	+
	Naphtol-AS-BI-		27		Coloriess	
12	phosphohydrolase	Naphthol-AS-BI-phosphate	5.4	Blue	or	+
13	a-galactosidase	6-Br-2-naphthyl-aD- galactopyranoside	5.4	Violet	very pale	-
14	β-galactosidase	2-naphthyl-βD- galactopyranoside	5.4	Violet	Yellow	_
15	β-glucuronidase	Naphthol-AS-BI-βD- glucuronide	5.4	Blue		-
16	a-glucosidase	2-naphthyl-aD- glucopyranoside	5.4	Violet		-
17	β-glucosidase	6-Br-20naphthyl-βD- glucopyranoside	5.4	Violet		_
	N-acetyl-	1-naphthyl-N-acetyl-βD-				
18	β-glucosaminidase	glucosaminide	5.4	Brown		-
19	a-mannosidase	6-Br-2-naphthyl-aD-	5.4	Violet		_
20	a-fucosidase	mannopyranoside 2-naphthyl-a- fucopyranoside	5.4	Violet		_

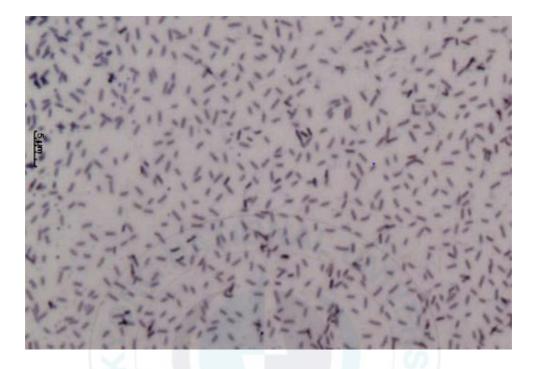
Table 4-2. API ZYM results of RR4-56.

50CH Tube	Test	Active ingredients	RR4- 56	50CH Tube	Test	Active ingredients	RR4- 56
0		Control	-	25	ESC	Esculin ferric citrate	+
1	GLY	Glycerol	-	26	SAL	Salicin	-
2	ERY	Erythritol	-	27	CEL	D-celiobiose	-
3	DARA	D-arabinose	-	28	MAL	D-maltose	-
4	LARA	L-arabinose	-	29	LAC	D-lactose(Bovine origin)	-
5	RIB	D-rinose	-	30	MEL	D-MELibiose	-
6	DXYL	D-xylose	-	31	SAC	D-SACcharose (sucrose)	-
7	LXYL	L-xylose		32	TRE	D-TREhalose	-
8	ADO	D-adonitol	-	33	INU	INUlin	-
9	MDX	Methyl-βD-xylopyranoside	-	34	MLZ	D-MeLeZitose	-
10	GAL	D-galactose	-	35	RAF	D-RAFfinose	-
11	GLU	D-glucose	-	36	AMD	AmiDon (starch)	-
12	FRU	D-fructose	-	37	GLYG	GLYcoGen	-
13	MNE	D-mannose	-	38	XLT	XyLiTol	-
14	SBE	L-sorbose	-	39	GEN	GENtiobiose	-
15	RHA	L-rhamnose	-	40	TUR	D-TURanose	-
16	DUL	Dulcitol	-	41	LYX	D-LYXose	-
17	INO	Inositol		42	TAG	D-TAGatose	-
18	MAN	D-manitol	-	43	DFUC	D-FUCose	-
19	SOR	D-sorbitol	-	44	LFUC	L-FUCose	-
20	MDN	Methyl-aD-Mannopyranoside	-	45	DARL	D-ARabitoL	-
21	MDG	Methyl-aD-Glucopyranoside	-	46	LARL	L-ARabitoL	-
22	NAG	N-Acetylglucosamine	-	47	GNT	potassium GlucoNaTe	-
23	AMY	Amygdalin	_	48	2KG	potassium 2- KetoGluconate	-
24	ARB	Arbutin	-	49	5KG	potassium 5- KetoGluconate	+

Table 4-3. API 50CH results of RR4-56

				관	독 기준 및 결과	
Active ingredients	Reactions / Enzymes	NO.	Tests	Negative	Positive	RR4- 56
potassium nitrate	reduction of nitrate to nitrites	- 1	N03	colorless	pink-red	+
potassium intrate	reduction of nitrate to nitrogen	Ţ	1403	pink	colorless	
	indole	_		colorless		
L-tryptophane	production(TRyptoPhane)	2	TRP	pale green/yellow	pink	-
D-glucose	fermentation(GLUcose)	3	GLU	blue to green	yellow	-
L-arginine	Arginine DiHydrolase	4	ADH	yellow	orange/pink/red	-
urea	UREase	5	URE	yellow	orange/pink/red	-
essulin	hydrolysis(β- glucosidase) (ESCulin)	6	ESC	yellow	grey/brown/black	-
ferric citrate				no pigmont	diffusion of	
gelatine (bovine origin)	hydrolysis(protease) (GELatin)	7	GEL	no pigment diffusion	black pigment	-
4-nitrophenyl- βD- galactopyranoside	β-galactosidase(Para- NitroPhenyl- βD-	8	PNPG	colorless	yellow	_
D-glucose	Galactopyranosidase) assimilation (glucose)	9	GLU	transparent	opaque	_
L-arabinose	assimilation (arabinose)	10	ARA	transparent	opaque	_
D-mannose	assimilation (mannose)	11	MNE	transparent	opaque	_
D-mannitol	assimilation (mannitol)	12	MAN	transparent	opaque	-
N-acetyl- glucosamine	assimilation (N-acetyl- glucosamine)	13	NAG	transparent	opaque	_
D-maltose	assimilation (maltose)	14	MAL	transparent	opaque	-
potassium gluconate	assimilation (potassium gluconate)	15	GNT	transparent	opaque	-
capric acid	assimilation (capric acid)	16	CAP	transparent	opaque	-
adipic acid	assimilation (adipic acid)	17	ADI	transparent	opaque	-
malic acid	assimilation (malate)	18	MLT	transparent	opaque	-
trisodium citrate	assimilation (trisodium citrate)	19	CIT	transparent	opaque	-
phenylacetic acid	assimilation (phenylacetic acid)	20	PAC	transparent	opaque	-
		Ox	idase		-	

Table 4-4. API 20NE (48h) results of RR4-56.


CHAPTER 5. Taxonomic study of the strain RR4-68

INTRODUCTION

The genus *Formosa* was first described by Ivanova *et al.* (2004) with the novel species *Formosa* algae. This genus has ability of anaerobic growth by D-glucose fermentation and belongs to the family *Flavobacteriaceae*. Currently, the genus contains one species, *Formosa spongicola* by Yoon *et al* (2011). The novel species produces acid from glucose and reduces nitrate to gas nitrogen. (Yoon *et al.*, 2011) Strain RR4-68 is isolated from a biofilter of a seawater recirculating aquaculture system and related to the species, *Formosa spongicola*. (97.35% similarity) based on the analysis of 16S rRNA sequence. In this study, the strain RR4-68 is proposed as the novel species based on biochemical, physiological and phylogenetic differences.

RESULTS AND DISCUSSION

Cells are Gram-positive, motile, facultative aerobic, rod-shaped. Cells are 1 μ m in length. Colonies grown on MA for 7days are circular form, convex margin, entire edge and yellow. Optimal growth occurs at 30°C (growth range, 20-30°C). Optimal growth occurs in the presence 2.5-3.0% NaCl (w/v). oxidase- and catalase-positive. In the API 20NE strips (Table 5-4), gelatin hydrolysis, nitrate, assimilations of glucose and maltose are positive, but reduction of glucose fermentation, assimilations of L-arabinose, D-mannose, Dmannitol, D-maltose, malate are negative. In the API ZYM system (Table 5-2), alkaline phosphatase, esterase (C4), esterase lipase (C8), leucine arylamidase, valine arylamidase, crystine arylamidase, activities are positive, but lipase (C14), trypsin, a-chymotrypsin, agalactosidase, β -galactosidase, β -glucuronidase, β -glucosidase activities are negative.

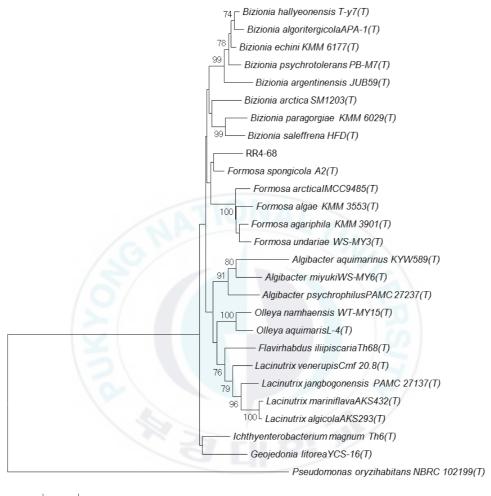
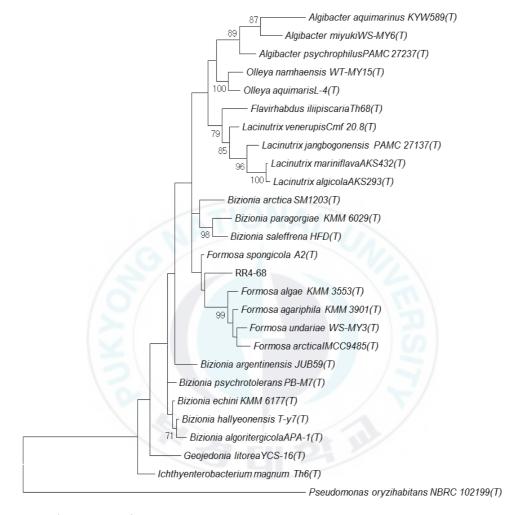


Figure 5-1. Microscopy of strain RR4-68 after Gram staining

The 16S rRNA sequences of strain RR4-68 and other closest strains were used to generate a phylogenetic tree (Figure 5-2, 5-3). The phylogenetic tree indicated that the strain RR4-68 belongs to the genus *Formosa*. It showed sequence similarity 97.35% with *Formosa spongicola* (Table 5-1), the strain RR4-68 is classified as new species in the genus *Formosa*.

Table 5-1. 16S rRNA sequence similarity of strain RR4-68 and other strains.


Rank	Name	Strain	Pairwise similarity (%)	
1	Formosa spongicola	A2(T)	97.35	
2	Ichthyenterobacterium magnum	Th6(T)	95.88	
3	Bizionia echini	KMM_6177(T)	95.86	
4	Bizionia psychrotolerans	PB-M7(T)	95.84	
5	Bizionia argentinensis	JUB59(T)	95.80	
6	Formosa agariphila	KMM_3901(T)	95.80	
7	Bizionia paragorgiae	KMM_6029(T)	95.78	
8	Bizionia hallyeonensis	T-y7(T)	95.77	
9	Olleya namhaensis	WT-MY15(T)	95.77	
10	Algibacter aquimarinus	KYW589(T)	95.71	

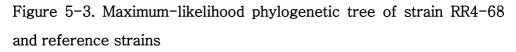

0,02

Figure 5-2. Neighbor-joining phylogenetic tree of strain RR4-68 and reference strains

It was conducted based on the aligned sequences using the neighbor-joining methods. *Pseudomonas oryzihabitans* NBRC 102199(T) is an outgroup.

It was conducted based on the aligned sequences using the maximum-likelihood methods. *Pseudomonas oryzihabitans* NBRC 102199(T) is an outgroup.

No.	Enzyme Assayed	Substrate	pН	Result		RR4-68
110.	For	Substrate	pm	positive	negative	Idit1 00
1	Control			Colorless or color of the sample if it has an intense coloration		-
2	Alkaline phosphatase	2-naphthyl phosphate	8.5	Violet		+
3	Esterase (C4)	2-naphthyl butyrate	6.5	Violet		+
4	Esterase Lipase (C8)	2-naphthyl caprylate	7.5	Violet		+
5	Lipase (C14)	2-naphthyl myristate	7.5	Violet		-
6	Leucine arylamidase	L-leucyl-2-naphthylamide	7.5	Orange		+
7	Valine arylamidase	L-Valyl-2-naphthylamide	7.5	Orange		+
8	Crystine arylamidase	L-cystyl-2-naphthylamide	7.5	Orange		+
9	Trypsin	N-benzoyl-DL-arginine- 2- naphthylamide	8.5	Orange	5	_
10	a-chymotrypsin	N-glutaryl-phenylanine- 2- naphthylamide	7.5	Orange	Colorless	-
11	Acid phospatase	2-naphtyl phosphate	5.4	Violet	or	+
	Naphtol-AS-BI-	Naphthol-AS-BI-		Blue	very pale	
12	phosphohydrolase	phosphate	5.4			+
13	α-galactosidase	6-Br-2-naphthyl-aD- galactopyranoside	5.4	Violet	Yellow	_
14	β-galactosidase	2-naphthyl-βD- galactopyranoside	5.4	Violet		-
15	β-glucuronidase	Naphthol-AS-BI-βD- glucuronide	5.4	Blue		-
16	a-glucosidase	2-naphthyl-aD- glucopyranoside	5.4	Violet		+
17	β-glucosidase	6-Br-20naphthyl-βD- glucopyranoside	5.4	Violet		_
	N-acetyl-	1-naphthyl-N-acetyl-βD-		Brown		
18	β-glucosaminidase	glucosaminide	5.4			-
19	α-mannosidase	6-Br-2-naphthyl-aD- 5.4 Violet			_	
20	a-fucosidase	mannopyranoside 2-naphthyl-a- fucopyranoside	5.4	Violet		-

Table 5-2. API ZYM results of RR4-68.

50CH Tube	Test	Active ingredients	RR4- 68	50CH Tube	Test	Active ingredients	RR4- 68
0		Control	-	25	ESC	Esculin ferric citrate	+
1	GLY	Glycerol	-	26	SAL	Salicin	-
2	ERY	Erythritol	-	27	CEL	D-celiobiose	-
3	DARA	D-arabinose	-	28	MAL	D-maltose	-
4	LARA	L-arabinose	-	29	LAC	D-lactose(Bovine origin)	-
5	RIB	D-rinose	-	30	MEL	D-MELibiose	-
6	DXYL	D-xylose	-	31	SAC	D-SACcharose (sucrose)	-
7	LXYL	L-xylose	-	32	TRE	D-TREhalose	-
8	ADO	D-adonitol	-	33	INU	INUlin	-
9	MDX	Methyl-βD-xylopyranoside	-	34	MLZ	D-MeLeZitose	-
10	GAL	D-galactose	-	35	RAF	D-RAFfinose	-
11	GLU	D-glucose	-	36	AMD	AmiDon (starch)	-
12	FRU	D-fructose	-	37	GLYG	GLYcoGen	-
13	MNE	D-mannose	-	38	XLT	XyLiTol	-
14	SBE	L-sorbose	-	39	GEN	GENtiobiose	-
15	RHA	L-rhamnose	-	40	TUR	D-TURanose	-
16	DUL	Dulcitol	-	41	LYX	D-LYXose	-
17	INO	Inositol	-	42	TAG	D-TAGatose	-
18	MAN	D-manitol	-	43	DFUC	D-FUCose	-
19	SOR	D-sorbitol	-	44	LFUC	L-FUCose	-
20	MDN	Methyl-aD-Mannopyranoside	-	45	DARL	D-ARabitoL	-
21	MDG	Methyl-aD-Glucopyranoside	-	46	LARL	L-ARabitoL	-
22	NAG	N-Acetylglucosamine	-	47	GNT	potassium GlucoNaTe	-
23	AMY	Amygdalin	-	48	2KG	potassium 2- KetoGluconate	-
24	ARB	Arbutin	-	49	5KG	potassium 5- KetoGluconate	+

Table 5-3. API 50CH results of RR4-68.

		NO.	Tests	판독 기준 및 결과			
Active ingredients	Reactions / Enzymes			Negative	Positive	RR4- 68	
to i	reduction of nitrate to nitrites	1	NO	colorless	pink-red		
potassium nitrate	reduction of nitrate to nitrogen		NO3	pink	colorless	+	
L-tryptophane	indole production(TRyptoPhane)	2	TRP	colorless pale	pink	_	
D-glucose	fermentation(GLUcose)	3	GLU	green/yellow blue to green	yellow	-	
L-arginine	Arginine DiHydrolase	4	ADH	yellow	orange/pink/red	-	
urea	UREase	5	URE	yellow	orange/pink/red	-	
essulin ferric citrate	hydrolysis(β- glucosidase) (ESCulin)	6	ESC	yellow	grey/brown/black	-	
gelatine (bovine origin)	hydrolysis(protease) (GELatin)	7	GEL	no pigment diffusion	diffusion of black pigment	+	
4-nitrophenyl- βD- galactopyranoside	β-galactosidase(Para- NitroPhenyl- βD-	8	PNPG	colorless	yellow	_	
D-glucose	Galactopyranosidase) assimilation (glucose)	9	GLU	transparent	opaque	+	
L-arabinose	assimilation (arabinose)	10	ARA	transparent	opaque	-	
D-mannose	assimilation (mannose)	11	MNE	transparent	opaque	-	
D-mannitol	assimilation (mannitol)	12	MAN	transparent	opaque	-	
N-acetyl- glucosamine	assimilation (N-acetyl- glucosamine)	13	NAG	transparent	opaque	_	
D-maltose	assimilation (maltose)	14	MAL	transparent	opaque	+	
potassium gluconate	assimilation (potassium gluconate)	15	GNT	transparent	opaque	-	
capric acid	assimilation (capric acid)	16	CAP	transparent	opaque	_	
adipic acid	assimilation (adipic acid)	17	ADI	transparent	opaque	-	
malic acid	assimilation (malate)	18	MLT	transparent	opaque	-	
trisodium citrate	assimilation (trisodium citrate)	19	CIT	transparent	opaque	-	
phenylacetic acid	assimilation (phenylacetic acid)	20	PAC	transparent	opaque	-	
		Ox	idase		-		

Table 5-4. API 20NE (48h) results of RR4-68.

국문초록

순확 여과 양식 시스템(RAS)은 적절한 상태인 내륙 어류 양식장의 수질을 유 지할 수 있도록 하는 수단이다. RAS는 사료의 잔해, 어류 배설물, 그리고 암모 니아, 질산염, 아질산염과 같은 독성이 있는 질소 화합물을 제거하기 위한 물리 적, 화학적, 생물학적 처리 과정을 거친다. 생물학적 처리 중, 박테리아는 중요 한 역할을 한다. 박테리아는 질화 및 탈 질소 대사 작용 시스템을 지니고 있어 서, 유해한 질소 화합물을 무해한 것으로 전환할 수 있다. 본 연구에서, 질소를 제거하는 박테리아를 선별했고 그 중 일부는 새로운 속(genera)들과 종들의 후 보군이었다. 모든 균주는 긴밀히 연관된 종들 즉, RR4-38, Ulvibacter antarcticus IMCC3103(T) (95.05%); RR4-40, Ulvibacter marinus IMCC1208(T) (94.17%); RR4-41, Kangiella geojedonensis YCS-5(T) (98.08%); RR4-56, Halovulum dunhuangense YYQ-30(T) (92.84%); RR4-68, *Formosa spongicola* A2(T) (97.35%)와 서열의 유사성이 낮다. 각각의 균주에 대한 계통수는 분류학적 차원에서 균주들의 계통발생학적 위치를 나타낸다. 모 든 균주들은 운동성을 지닌 막대 모양의 세포체를 지니며, 30℃, pH 7.0-7.5, NaCl 농도 2.5-3.0%에서 최적의 성장을 나타냈다. 각 균주에 대해 Oxidase, catalase 및 생화학적 검사와 탄소 동화 및 효소 생산과 같은 생리 학적 검사 도 수행되었다.

생리학적, 계통 발생적 분석을 토대로, 세 가지 균주는 새로운 속에 대한 후보 군이며, 두 가지 균주는 새로운 종에 대한 후보군인 것으로 나타났다. 그러한 유형의 균주는 각각 RR4-40, RR4-56, RR4-38, RR4-41 and RR4-68이다. 요 컨대 몇몇 새로운 균주들을 RAS로부터 얻을 수 있었다. 그 결과들은 RAS가 탐구한 적이 없는 환경이며, 두 가지 분류군을 발견하기 위한 좋은 자원이란 점 을 보여주었다. 본 연구는 RAS를 이해하고 그것들의 효율성을 개선하는 데 기 여할 것이다.

67

REFERENCES

- Adam, G., Missen, R., Conn, W., and Coast, S. Managing water quality to maximise profit. A recirculating aquaculture system perspective.
- Ardiansyah, A. and Fotedar, R. 2016. The abundance and diversity of heterotrophic bacteria as a function of harvesting frequency of duckweed (lemna minor l.) in recirculating aquaculture systems. Lett Appl Microbiol. 63, 53-59.
- Auffret, M., Pilote, A., Proulx, E., Proulx, D., Vandenberg, G., and Villemur, R. 2011. Establishment of a real-time pcr method for quantification of geosmin-producing streptomyces spp. In recirculating aquaculture systems. Water Res. 45, 6753-6762.
- Auffret, M., Yergeau, E., Pilote, A., Proulx, E., Proulx, D., Greer, C. W., Vandenberg, G., and Villemur, R. 2013. Impact of water quality on the bacterial populations and off-flavours in recirculating aquaculture systems. FEMS Microbiol Ecol. 84, 235-247.
- Baek, K., Jo, H., Choi, A., Kang, I., and Cho, J.-C. 2014. Ulvibacter marinus sp. Nov., isolated from coastal seawater. Int J Syst Evol Microbiol. 64, 2041-2046.
- Bazyar Lakeh, A. A., Kloas, W., Jung, R., Ariav, R., and Knopf, K. 2013. Low frequency ultrasound and uv-c for elimination

of pathogens in recirculating aquaculture systems. Ultrason Sonochem. 20, 1211-1216.

- Bernardet, J.-F., Nakagawa, Y., and Holmes, B. 2002. Proposed minimal standards for describing new taxa of the family flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol. 52, 1049-1070.
- Braker, G., Zhou, J., Wu, L., Devol, A. H., and Tiedje, J. M. 2000. Nitrite reductase genes (nirk andnirs) as functional markers to investigate diversity of denitrifying bacteria in pacific northwest marine sediment communities. Applied and environmental microbiology. 66, 2096-2104.
- Chen, Y., Zhang, Z., Fu, Y., Wang, Y., Wang, Y., and Jiao, N. 2013. Altuibacter lentus gen. Nov., sp. Nov., a novel member of family flavobacteriaceae isolated from deep seawater of the south china sea. *Antonie van Leeuwenhoek.* 104, 1151-1157.
- Choi, T.-H., Lee, H. K., Lee, K., and Cho, J.-C. 2007. Ulvibacter antarcticus sp. Nov., isolated from antarctic coastal seawater. Int J Syst Evol Microbiol. 57, 2922–2925.
- Chun, J., Lee, J. H., Jung, Y., Kim, M., Kim, S., Kim, B. K., and Lim, Y. W. 2007. Eztaxon: A web-based tool for the identification of prokaryotes based on 16s ribosomal rna gene sequences. Int J Syst Evol Microbiol. 57, 2259-2261.

- 12. Dominguez Castanedo, O. and Martinez Espinosa, D. A. 2012. [performance of recirculating aquaculture systems in the intensive farming of pacu piaractus mesopotamicus (characiformes: Characidae)]. Rev Biol Trop. 60, 381-391.
- Fautz, E. and Reichenbach, H. 1980. A simple test for flexirubin- type pigments. *FEMS Microbiology Letters.* 8, 87-91.
- Fitch, W. M. 1971. Toward defining the course of evolution: Minimum change for a specific tree topology. *Systematic Biology*. 20, 406-416.
- 15. Georgala, D. 1999. Report on microbial antibiotic resistance in relation to food safety. Advisory Committee on the Microbiological Safety of Food (ACMSF). HMSO: London, UK.
- Hall, T. A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41, 95–98.
- Hambly, A. C., Arvin, E., Pedersen, L. F., Pedersen, P. B., Seredynska-Sobecka, B., and Stedmon, C. A. 2015. Characterising organic matter in recirculating aquaculture systems with fluorescence eem spectroscopy. Water Res. 83, 112-120.
- Harwanto, D. and Jo, J.-Y. 2010. The need of biofilter for ammonia removal in recirculating aquaculture system. J Biosci Biotechnol. 4, 1-5.

- Hiraishi, A., Muramatsu, K., and Ueda, Y. 1996. Molecular genetic analyses of rhodobacter azotoformans sp. Nov. And related species of phototrophic bacteria. Syst Appl Microbiol. 19, 168-177.
- 20. Hou, T., Zhong, Z., Liu, Y., and Liu, Z. 2016. [bacterial community characterization of rearing water of marine recirculating aquaculture systems for yellow grouper (epinephelus awoara)]. Wei Sheng Wu Xue Bao. 56, 253–263.
- Interdonato, F. 2012. Recirculating aquaculture system (ras) biofilters: Focusing on bacterial communities complexity and activity. Università degli studi di Messina.
- 22. Ivanova, E. P., Alexeeva, Y. V., Flavier, S., Wright, J. P., Zhukova, N. V., Gorshkova, N. M., Mikhailov, V. V., Nicolau, D. V., and Christen, R. 2004. Formosa algae gen. Nov., sp. Nov., a novel member of the family flavobacteriaceae. Int J Syst Evol Microbiol. 54, 705-711.
- 23. Ivanova, E. P., Flavier, S., and Christen, R. 2004. Phylogenetic relationships among marine alteromonas-like proteobacteria: Emended description of the family alteromonadaceae and proposal of pseudoalteromonadaceae fam. Nov., colwelliaceae fam. Nov., shewanellaceae fam. Nov., moritellaceae fam. Nov., ferrimonadaceae fam. Nov.,

idiomarinaceae fam. Nov. And psychromonadaceae fam. Nov. Int J Syst Evol Microbiol. 54, 1773-1788.

- 24. Kim, J. S., Ghim, S. J., and Lee, B. H. 1998. Biofilm processes for volume decrease in recirculating water treatment systems for aquaculture. Fish Aquatic Sci. 1, 242–249.
- 25. Kim, Y.-O., Kong, H. J., Park, S., Kang, S.-J., Kim, K.-K., Moon, D. Y., Oh, T.-K., and Yoon, J.-H. 2010. Paracoccus fistulariae sp. Nov., a lipolytic bacterium isolated from bluespotted cornetfish, fistularia commersonii. Int J Syst Evol Microbiol. 60, 2908-2912.
- 26. Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 16, 111-120.
- 27. Korn-Wendisch, F., Kempf, A., Grund, E., Kroppenstedt, R., and Kutzner, H. 1989. Transfer of faenia rectivirgula kurup and agre 1983 to the genus saccharopolyspora lacey and goodfellow 1975, elevation of saccharopolyspora hirsuta subsp. Taberi labeda 1987 to species level, and emended description of the genus saccharopolyspora. Int J Syst Evol Microbiol. 39, 430-441.
- Lee, D.-E., Lee, J., Kim, Y.-M., Myeong, J.-I., and Kim, K.-H.
 2016. Uncultured bacterial diversity in a seawater recirculating aquaculture system revealed by 16s rRNA gene amplicon sequencing. Journal of Microbiology. 54, 296-304.

- Leonard, N., Blancheton, J., and Guiraud, J. 2000. Populations of heterotrophic bacteria in an experimental recirculating aquaculture system. Aquacultural Engineering. 22, 109-120.
- 30. Luna, V. A., Peak, K. K., Veguilla, W. O., Reeves, F., Heberlein-Larson, L., Cannons, A. C., Amuso, P., and Cattani, J. 2005. Use of two selective media and a broth motility test can aid in identification or exclusion of bacillus anthracis. J Clin Microbiol. 43, 4336-4341.
- 31. Luo, G. Z., Ma, N., Li, P., Tan, H. X., and Liu, W. 2015. Enhancement of anaerobic digestion to treat saline sludge from recirculating aquaculture systems. ScientificWorldJournal. 2015, 479101.
- 32. Miller, L. and Berger, T. 1985. Hewlett-packard gas chromatography application note 228-41. *Hewlett-Packard Co., Palo Alto, Calif.*
- 33. Moore, L. V., Bourne, D. M., and Moore, W. 1994. Comparative distribution and taxonomic value of cellular fatty acids in thirty-three genera of anaerobic gram-negative bacilli. Int J Syst Evol Microbiol. 44, 338-347.
- 34. Nazar, A. A., Jayakumar, R., and Tamilmani, G. 2013. Recirculating aquaculture systems.
- 35. Nedashkovskaya, O. I., Kim, S. B., Han, S. K., Rhee, M. S., Lysenko, A. M., Falsen, E., Frolova, G. M., Mikhailov, V. V., and Bae, K. S. 2004. Ulvibacter litoralis gen. Nov., sp. Nov., a

novel member of the family flavobacteriaceae isolated from the green alga ulva fenestrata. Int J Syst Evol Microbiol. 54, 119-123.

- 36. Park, S., Yoshizawa, S., Inomata, K., Kogure, K., and Yokota, A. 2012. Aureitalea marina gen. Nov., sp. Nov., a member of the family flavobacteriaceae, isolated from seawater. Int J Syst Evol Microbiol. 62, 912-916.
- 37. Priemé, A., Braker, G., and Tiedje, J. M. 2002. Diversity of nitrite reductase (nirk and nirs) gene fragments in forested upland and wetland soils. Applied and environmental microbiology. 68, 1893-1900.
- 38. Rakocy, J. E., Masser, M. P., and Losordo, T. M. 2006. Recirculating aquaculture tank production systems: Aquaponics—integrating fish and plant culture. SRAC publication. 454, 1-16.
- Reichenbach, H., Kleinig, H., and Achenbach, H. 1974. The pigments of flexibacter elegans: Novel and chemosystematically useful compounds. Arch Microbiol 101, 131-144.
- Rekadwad, B. N. and Khobragade, C. N. 2016. Data on true trna diversity among uncultured and bacterial strains. Data Brief. 7, 1538-1540.

- Rosenberg, E., DeLong, E. F., Lory, S., Stackebrandt, E., and Thompson, F. 2014. The prokaryotes: Alphaproteobacteria and betaproteobacteria.
- 42. Ruan, Y.-J., Guo, X.-S., Ye, Z.-Y., Liu, Y., and Zhu, S.-M. 2015. Bacterial community analysis of different sections of a biofilter in a full-scale marine recirculating aquaculture system. *North American Journal of Aquaculture*. 77, 318-326.
- Rzhetsky, A. and Nei, M. 1992. A simple method for estimating and testing minimum-evolution trees. *Mol Biol Evol.* 9, 945-967.
- 44. Saitou, N. and Nei, M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. *Molecular biology and evolution.* 4, 406-425.
- 45. Sakami, T., Andoh, T., Morita, T., and Yamamoto, Y. 2012. Phylogenetic diversity of ammonia-oxidizing archaea and bacteria in biofilters of recirculating aquaculture systems. *Mar Genomics.* 7, 27-31.
- 46. Schrader, K. K., Harries, M. D., and Page, P. N. 2015. Temperature effects on biomass, geosmin, and 2methylisoborneol production and cellular activity by nocardia spp. And streptomyces spp. Isolated from rainbow trout recirculating aquaculture systems. J Ind Microbiol Biotechnol. 42, 759-767.

- 47. Schreier, H. J., Mirzoyan, N., and Saito, K. 2010. Microbial diversity of biological filters in recirculating aquaculture systems. *Current opinion in biotechnology*. 21, 318-325.
- 48. Steicke, C., Jegatheesan, V., and Zeng, C. 2007. Mechanical mode floating medium filters for recirculating systems in aquaculture for higher solids retention and lower freshwater usage. Bioresour Technol. 98, 3375-3383.
- Sun, F., Du, Y., Liu, X., Lai, Q., and Shao, Z. 2015. Halovulum dunhuangense gen. Nov., sp. Nov., isolated from a saline terrestrial spring. Int J Syst Evol Microbiol. 65, 2810-2816.
- 50. Suzuki, M., Nakagawa, Y., Harayama, S., and Yamamoto, S. 2001. Phylogenetic analysis and taxonomic study of marine cytophaga-like bacteria: Proposal for tenacibaculum gen. Nov. With tenacibaculum maritimum comb. Nov. And tenacibaculum ovolyticum comb. Nov., and description of tenacibaculum mesophilum sp. Nov. And tenacibaculum amylolyticum sp. Nov. Int J Syst Evol Microbiol. 51, 1639-1652.
- Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar,
 S. 2013. Mega6: Molecular evolutionary genetics analysis version 6.0. Molecular biology and evolution. 30, 2725-2729.
- 52. Urakawa, H., Tajima, Y., Numata, Y., and Tsuneda, S. 2008. Low temperature decreases the phylogenetic diversity of ammonia-oxidizing archaea and bacteria in aquarium

biofiltration systems. Applied and environmental microbiology. 74, 894-900.

- 53. Urios, L., Agogué, H., Intertaglia, L., Lesongeur, F., and Lebaron, P. 2008. Melitea salexigens gen. Nov., sp. Nov., a gammaproteobacterium from the mediterranean sea. Int J Syst Evol Microbiol. 58, 2479-2483.
- 54. Urios, L., Intertaglia, L., Lesongeur, F., and Lebaron, P. 2008. Haliea salexigens gen. Nov., sp. Nov., a member of the gammaproteobacteria from the mediterranean sea. Int J Syst Evol Microbiol. 58, 1233-1237.
- 55. Urios, L., Intertaglia, L., Lesongeur, F., and Lebaron, P. 2009. Haliea rubra sp. Nov., a member of the gammaproteobacteria from the mediterranean sea. Int J Syst Evol Microbiol. 59, 1188-1192.
- 56. van Kessel, M. A., Harhangi, H. R., Flik, G., Jetten, M. S., Klaren, P. H., and Op den Camp, H. J. 2011. Anammox bacteria in different compartments of recirculating aquaculture systems. Biochem Soc Trans. 39, 1817-1821.
- 57. Vandamme, P., Vancanneyt, M., Pot, B., Mels, L., Hoste, B., Dewettinck, D., Vlaes, L., Van Den Borre, C., Higgins, R., and Hommez, J. 1992. Polyphasic taxonomic study of the emended genus arcobacter with arcobacter butzleri comb. Nov. And arcobacter skirrowii sp. Nov., an aerotolerant

bacterium isolated from veterinary specimens. Int J Syst Evol Microbiol. 42, 344-356.

- Wu, Z., Huang, S., Yang, Y., Xu, F., Zhang, Y., and Jiang, R. 2013. Isolation of an aerobic denitrifying bacterial strain from a biofilter for removal of nitrogen oxide. Aerosol Air Qual Res. 13, 1126-1132.
- 59. Yamashita, N. 2004. Division of research and development, research institute of industrial products, gifu prefectural government. SEIKEI KAKOU. 16, 375-377.
- 60. Yan, T., Fields, M. W., Wu, L., Zu, Y., Tiedje, J. M., and Zhou,
 J. 2003. Molecular diversity and characterization of nitrite reductase gene fragments (nirk and nirs) from nitrate- and uranium- contaminated groundwater. Environmental Microbiology. 5, 13-24.
- Yanong, R. P., Pouder, D. B., and Falkinham, J. O., 3rd. 2010. Association of mycobacteria in recirculating aquaculture systems and mycobacterial disease in fish. J Aquat Anim Health. 22, 219-223.
- 62. Yoon, B.-J. and Oh, D.-C. 2011. Formosa spongicola sp. Nov., isolated from the marine sponge hymeniacidon flavia. Int J Syst Evol Microbiol. 61, 330-333.
- Chang, H. G., Ma, S. S., Li, Q. F., Fu, X. J., Zhang, Y., and Qu,
 K. M. 2011. [analysis of the changes of microbial community

structure on bio-carrier of recirculating aquaculture systems (ras)]. Huan Jing Ke Xue. 32, 231-239.

64. Zhu, P., Ye, Y., Pei, F., and Lu, K. 2012. Characterizing the structural diversity of a bacterial community associated with filter materials in recirculating aquaculture systems of scortum barcoo. Can J Microbiol. 58, 303-310.

