
 

 

저작자표시-비영리-변경금지 2.0 대한민국 

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게 

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.  

다음과 같은 조건을 따라야 합니다: 

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.  

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.  

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.  

Disclaimer  

  

  

저작자표시. 귀하는 원저작자를 표시하여야 합니다. 

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다. 

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


Thesis for the Degree of Master of Science

On Conic Approximate Solutions of Nonlinear

Multiobjective Optimization Problems

by

Zhe Hong

Department of Applied Mathematics

The Graduate School

Pukyong National University

February 2017



On Conic Approximate Solutions of Nonlinear

Multiobjective Optimization Problems

(비선형 다목적 최적화 문제의 추 근사해에 관한

연구)

Advisor : Prof. Do Sang Kim

by

Zhe Hong

A thesis submitted in partial fulfillment of the requirements

for the degree of

Master of Science

in Department of Applied Mathematics, The Graduate School,

Pukyong National University

February 2017



On Conic Approximate Solutions of Nonlinear

Multiobjective Optimization Problems

A dissertation

by

Zhe Hong

Approved by:

───────────────
(Chairman) Jin Mun Jeong, Ph. D.

─────────────── ───────────────
(Member) Jun Yong Shin, Ph. D. (Member) Do Sang Kim, Ph. D.

February 24, 2017



i

CONTENTS

Abstract(Korean) ············································································ ⅱ

1. Introduction ··················································································· 1

2. Preliminaries ················································································· 2

3. -Optimality Conditions ····························································· 9

4. -Duality Relations ····································································· 24

5. References ····················································································· 28



ii

비선형 다목적 최적화 문제의 추 근사해에 관한 연구

홍 철

부경대학교 대학원 응용수학과

요 약



1 Introduction

It is well known that optimality conditions and objective functions proper-

ties play a key role in mathematical programming as well as its applications.

One of the main tools here is to employ the separation theorem of convex sets

(see e.g.,[19]) to establish necessary conditions for approximate weakly effi-

cient solutions of a multiobjective optimization problem, and to use various

kinds of (generalized) convexity of functions to formulate sufficient conditions

for such approximate weakly efficient solutions. In this thesis, we establish

necessary conditions for approximate weakly efficient solutions of a multi-

objective optimization problem with inequality constraints. As usually, we

use separation theorem, which is a useful tool as we mentioned, to estab-

lish our main results. Along with optimality conditions, we introduce Wolfe

type dual problems and investigate weak and strong duality theorems under

assumptions of C-convexity. It is worth to mentioning that in the middle

of the nineteen eighties, Loridan [17] introduced a notion of ε-efficient so-

lutions for multiobjective problems(MOPs), which was followed by White

[25] who proposed several concepts of approximate solutions for MOPs and

drafted methods for their generating. For the last two decades, approxi-

mate efficient solutions of MOPs have been examined in the literature by

many authors from different points of view. Existence conditions were de-

veloped by Deng [11] and Dutta and Vetrivel [10] for convex MOPs while

Karush-Kuhn-Tucker type conditions were derived by Dutta and Vetrivel

[10] and Liu [16]. Yokoyama [26, 27] analyzed connections between different

definitions of approximate solutions. Tammer [23], Tanaka [24], and others
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studied approximate solutions of vector optimization problems in general or-

dered vector spaces. In view of the literature, the current belief is that the

concept of ε-efficient solutions accounts for modeling limitations or computa-

tional inaccuracies, and thus is tolerable rather than desirable. Consequently,

methods purposely avoiding efficiency and guaranteeing ε-efficiency have not

been well developed.

The aim of this thesis is to study nondifferentiable constrained multiob-

jective problems where the partial order in the image space is induced by a

proper cone C (closed, convex and pointed solid cone). In Section 2, some

basic definitions and several auxiliary results are presented. In Section 3, we

show that a weakly C-ε-efficient solution is a C-ε-critical point. Moreover,

we investigate necessary and sufficient optimality conditions for weakly C-

ε-efficient solutions. In addition, we establish a Wolfe type dual model and

state weak and strong duality theorems in Section 4. Throughout the present

thesis, some examples are given to illustrate our results.

2 Preliminaries

Let us first recall some notations and preliminary results which will be

used throughout this thesis; see e.g., [9, 19]. We denote by Rn the Euclidean

space of dimension n. The nonnegative orthant of Rn is denoted by Rn
+ and

is defined by Rn
+ := {(x1, . . . , xn) ∈ Rn | xi >= 0, i = 1, . . . , n}. The inner

product in Rn is defined by 〈x, y〉 := xTy for all x, y ∈ Rn. We say that a set A

is convex whenever µa1+(1−µ)a2 ∈ A for all µ ∈ [0, 1], a1, a2 ∈ A. Let φ be a

function from Rn to R̄, where R̄ = [−∞,+∞]. Here, φ is said to be proper if
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for all x ∈ Rn, φ(x) > −∞ and there exists x0 ∈ Rn such that φ(x0) ∈ R. We

denote the domain of φ by domφ, that is, domφ := {x ∈ Rn | φ(x) < +∞}.

A function φ : Rn → R̄ is said to be proper convex if

φ((1− µ)x+ µy) <= (1− µ)φ(x) + µφ(y),

for all µ ∈ [0, 1], for all x, y ∈ Rn. Let D ⊆ Rp be a p-dimensional vector

space and D∗ be a dual space of D.

The cone C is said to be pointed if it contains no line(or equivalently,

x ∈ C, −x ∈ C ⇒ x = 0, in other words, C ∩ (−C) = {0}, see [14]). Let

us consider a proper cone C in D, that is, C is a closed convex and pointed

cone with nonempty interior [5]. The positive dual cone to C and the strict

positive dual cone to C, denoted as

C+ := {d∗ ∈ D∗ | 〈d∗, d 〉 >= 0, ∀d ∈ C},

and

CS+ := {d∗ ∈ D∗ | 〈d∗, d 〉 > 0, ∀d ∈ C\{0}},

respectively. Since D ⊆ Rp, each element in D∗ can be represented as a

p-dimensional vector.

Consider a set F ⊂ Rn. The support function σF : Rn → R̄, to F at

x̄ ∈ Rn is defined as

σF (x̄) = sup
x∈F
〈x̄, x〉;

and the indicator function, δF : Rn → R̄, to the set F is defined as

δF (x) =

{
0, x ∈ F,
+∞, otherwise.
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It is worth to noting that if F is convex, then indicator function δF is also

convex.

In order to establish optimality conditions, let us consider the proper cone

C ⊂ Rp, which induces a partial order on D. We define C0 as C \{0}. Thus,

x <=C y if and only if y − x ∈ C,

x ≤C y if and only if y − x ∈ C0,

x <C y if and only if y − x ∈ intC.

Now we give the notion of ε-subdifferential. It is worth to mention that

firstly its idea can be found in the work of Brondsted and Rockafellar [3],

but the theory of ε-subdifferential calculus was given by Hiriart-Urruty [13].

One can also refer to Dhara and Dutta [9] to understand this notion easily

with the aid of some examples.

Definition 2.1 Let φ : Rn → R be a convex function. For ε >= 0, the ε-

subdifferential of φ at x̄ ∈ domf is given by

∂εφ(x̄) = {ξ ∈ Rn | φ(x)− φ(x̄) >= 〈ξ, x− x̄〉 − ε, ∀x ∈ Rn}.

Definition 2.2 Consider a convex set Q ⊂ Rn. Then for ε >= 0, the ε-

subdifferential of the indicator function at x̄ ∈ Q is

∂εδQ(x̄) = {ξ ∈ Rn | δQ(x)− δQ(x̄) >= 〈ξ, x− x̄〉 − ε, ∀x ∈ Rn}

= {ξ ∈ Rn | ε >= 〈ξ, x− x̄〉, ∀x ∈ Q},

which is also called the ε-normal set and denoted as NQ,ε(x̄).
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Definition 2.3 [9] The relative interior of a convex set F ⊂ Rn, riF , is the

interior of F relative to the affine hull of F , that is,

riF = {x ∈ Rn | there exists ε > 0 such that (x+ εB) ∩ aff F ⊂ F},

where B stands for the unit ball in Rn, and aff F is the affine hull of F .

Definition 2.4 Consider a function φ : Rn → R̄. The conjugate of φ,

φ∗ : Rn → R̄, is defined as

φ∗(ξ) = sup
x∈Rn

{〈ξ, x〉 − φ(x)}.

It is worth to mentioning for any function φ : Rn → R̄, the conjugate function

φ∗ is always lower semicontinuous convex. In addition, if φ is proper convex,

then φ∗ is also proper convex.

Definition 2.5 [28] Let Γ be a convex subset of Rn. Then the function f is

said to be C-convex on convex set Γ if for any x, y ∈ Γ and t ∈ [0, 1]

tf(x) + (1− t)f(y)− f(tx+ (1− t)y) ∈ C.

Definition 2.6 [28] Let Γ be a convex subset of Rn. Then the function f is

said to be C-convexlike on Γ if for any x, y ∈ Γ and t ∈ [0, 1], there exists

z ∈ Γ such that

tf(x) + (1− t)f(y)− f(z) ∈ C.

5



Let us consider the following nondifferentiable unconstrained multiobjective

optimization problem:

(MP)U minimize f(x)
subject to x ∈ Rn,

where f = (f1, ..., fp) : Rn → Rp is a C-convex function.

Since it is usual to request the incorporation of some constraints to our

multiobjective optimization problem. In such a way, we are going to focus

the optimization study on the following one:

(MP) minimize f(x)
subject to gi(x) <= 0, i = 1, . . . ,m,

where f = (f1, ..., fp) : Rn → Rp is a C-convex function, and gi : Rn → R,

i = 1, . . . ,m, are convex functions. The feasible set of (MP) is defined by

FP := {x ∈ Rn | gi(x) <= 0, i = 1, . . . ,m}.

Definition 2.7 Let ε ∈ C be given. Then x̄ ∈ FP is said to be a C-ε-efficient

solution of (MP) if there does not exist another feasible point x such that

f(x) ≤C f(x̄)−ε, which is equivalent to that f(x)−f(x̄)+ε /∈ −C0, ∀x ∈ FP .

Definition 2.8 Let ε ∈ C be given. Then x̄ ∈ FP is said to be a weakly

C-ε-efficient solution of (MP) if there does not exist another feasible point x

such that f(x) <C f(x̄) − ε, which is equivalent to that f(x) − f(x̄) + ε /∈

−intC, ∀x ∈ FP .

Remark 2.1 We introduce some special cases about a weakly C-ε-efficient

solution as follows:
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(i) Let ε ∈ C be given. If C = Rp
+, then x̄ ∈ FP is said to be a weakly

ε-efficient solution of (MP) if there does not exist another feasible point

x of (MP) such that f(x) < f(x̄)− ε, which is equivalent to that f(x)−

f(x̄) + ε /∈ −intRp
+, ∀x ∈ FP . Many research papers studied weakly ε-

efficient solutions in (finite) multiobjective programs [6], multiobjective

semi-infinite programs [21, 22].

(ii) A feasible point, x̄ is said to be a C-weakly efficient solution of (MP) if

there does not exist another feasible point x of (MP) such that f(x) <C

f(x̄), which is equivalent to that f(x)− f(x̄) /∈ −intC, ∀x ∈ FP . Some

results were obtained, one can see [1, 2, 12].

(iii) Let C = Rp
+. A feasible point, x̄ is said to be a weakly efficient solution

of (MP) if there does not exist another feasible point x of (MP) such that

f(x) < f(x̄), which is equivalent to that f(x) − f(x̄) /∈ −intRp
+, ∀x ∈

FP . A lot of results were obtained, one can refer to [4, 7, 8, 18].

Now we give the following example to illustrate the mentioned solutions

above.

Example 2.1 Consider the following multiobjective optimization problem:

(MP) minimize
(
f1(x), f2(x)

)
subject to x ∈ FP := R,

where f1(x) = x and f2(x) = 1
2
x2.
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(a) Let C = R2
+, then the weakly efficient solution set is

{x ∈ R
∣∣ f(x) /∈ f(x̄)− intR2

+} = (−∞, 0 ].

(b) Let C = R2
+ and ε = (ε1, ε2) ∈ C be given.

Case 1. If 2ε2 > (ε1)2, the weakly ε-efficient solution set is

{x ∈ R
∣∣ f(x) /∈ f(x̄)− ε− intR2

+} = (−∞,
√

2ε2 ].

Case 2. If 2ε2 ≤ (ε1)2, the weakly ε-efficient solution set is (−∞, (ε1)2+2ε2
2ε1

].

(c) Let C := {(t1, t2) ∈ R2
∣∣ t2 >= |t1| } be given, then the C-weakly efficient

solution set is

{x ∈ R
∣∣ f(x) /∈ f(x̄)− intC} = [−1, 1 ].

Lemma 2.1 (Sum Rule) Consider two proper convex functions φi : Rn → R̄,

i = 1, 2 such that ri dom φ1 ∩ ri dom φ2 6= ∅. Then for ε > 0,

∂ε(φ1 + φ2)(x̄) =
⋃

ε1>=0,ε2>=0,ε1+ε2=ε

(∂ε1φ1(x̄) + ∂ε2φ2(x̄))

for every x̄ ∈ dom φ1 ∩ dom φ2.
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3 ε-Optimality Conditions

In this section, first we establish necessary optimality condition for a

weakly C-ε-efficient solution of (MP)U , and then under Slater type con-

straint qualification, necessary optimality condition for a weakly C-ε-efficient

solution of (MP) is given. Moreover, we establish the sufficient optimality

condition for a weakly C-ε-efficient solution of (MP).

First of all, let us consider the unconstrained multiobjective optimization

problem (MP)U and give the following necessary optimality condition.

Theorem 3.1 If x̄ is a weakly C-ε-efficient solution of (MP)U , then x̄ is a

C-ε-critical point for (MP)U , that is, there exists λ ∈ C+ \ {0} such that

0 ∈ ∂λT ε(λTf)(x̄).

Proof. Since x̄ is a weakly C-ε-efficient solution, we have f(x) − f(x̄) + ε /∈

−intC, ∀x ∈ Rn. By a separation theorem(see [9]), there exists λ ∈ C+ with

λ 6= 0 such that 〈f(x)− f(x̄) + ε, λ〉 >= 0, ∀x ∈ Rn. So,

λT ε+ λTf(x) >= λTf(x̄), ∀x ∈ Rn.

Thus, 0 ∈ ∂λT ε(λTf)(x̄). 2

Remark 3.1 If x̄ is a C-ε-efficient solution of (MP)U , then x̄ is a C-ε-

critical point for (MP)U , that is, there exists λ ∈ C+ \ {0} such that

0 ∈ ∂λT ε(λTf)(x̄).

9



Now we examine the ε-necessary optimality condition of (MP). First,

consider the following constrained convex optimization problem:

(CP) minimize h(x)
subject to x ∈ Q,

where h : Rn → R is a convex function and Q is a convex set in Rn.

The ε-optimality condition of (CP) is given in the following.

Lemma 3.1 [9, 20] Consider the convex optimization problem (CP). As-

sume that the Slater constraint qualification holds, that is, ri Q is nonempty.

Let ε >= 0 be given. Then x̄ ∈ Q is an ε-solution of (CP) if and only if there

exist εi >= 0, i = 1, 2 with ε1 + ε2 = ε such that

0 ∈ ∂ε1h(x̄) +NQ,ε2(x̄).

We can easily show Lemma 3.1 by using Lemma 2.1 (Sum Rule of ε-subdifferential),

along with Definition 2.2 (ε-normal set).

Note that for a nonempty convex set Q, riQ is nonempty and hence the

Slater constraint qualification holds. From the Lemma 3.1, it is obvious that

to obtain the approximate optimality conditions in terms of the constraint

functions gi, i = 1, ...,m, here gi should be convex functions, NQ,ε(x) must be

explicitly expressed in their terms. Below we present the result from Strodiot

et al. [20], which acts as the tool in establishing the approximate optimality

conditions. First, we define the right scalar multiplication from Rockafellar

[19].
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Definition 3.1 [9, 19] Let φ : Rn → R̄ be a proper convex function and

µ >= 0. The right scalar multiplication, φµ, is defined as

(φµ)(x) =

{
µφ(µ−1x), µ > 0,

δ{0}(x), µ = 0.

A positively homogeneous convex function ψ generated by φ, is defined as

ψ(x) = inf{(φµ)(x) | µ >= 0}.

We state the following theorem from Rockafellar [19].

Theorem 3.2 [9, 19] Let φ : Rn → R̄ be a proper lower semicontinuous

convex function. The support function of the set Q = {x ∈ Rn | φ(x) <= 0} is

then cl ψ, where ψ is the positively homogeneous convex function generated

by φ∗. Dually, the closure of the positively homogeneous convex function ψ

generated by φ is the support function of the set {ξ ∈ Rn | φ∗(ξ) <= 0}.

Now we give an example as below in order to understand Theorem 3.2

clearly.

Example 3.1 Consider Q = {x ∈ R | φ(x) <= 0}, where φ(x) = x2 − x is

a proper lower semicontinuous convex function for all x ∈ R, obviously the

support function of the set Q = [0, 1] is

σQ(ξ) = σ[0,1](ξ) = sup
x∈[0,1]

〈ξ, x〉 =

{
0, ξ <= 0,

ξ, ξ > 0.
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On the other hand, calculating the conjugate function of φ(x), we have

φ∗(ξ) = sup
x∈R
{〈ξ, x〉 − φ(x)} =

(1 + ξ)2

4
. (3.1)

Now we deal with the positively homogeneous convex function ψ generated

by φ∗, and

(φ∗µ)(ξ) =

{
µφ∗(µ−1ξ), µ > 0,

δ{0}(ξ), µ = 0,

=

{
ξ2

4µ
+ ξ

2
+ µ

4
, µ > 0,

δ{0}(ξ), µ = 0,

and get

clψ(ξ) = inf{(φ∗µ)(ξ) | µ >= 0} =
|ξ|
2

+
ξ

2
=

{
0, ξ <= 0,

ξ, ξ > 0.

Therefore, the support function of the set Q = {x ∈ R | φ(x) <= 0} is clψ.

Dually let Q∗ = {ξ ∈ Rn | φ∗(ξ) <= 0}, from (3.1) we know φ∗(ξ) = (1+ξ)2

4
,

when φ∗(ξ) <= 0, then ξ = −1, and the set Q∗ = {−1}.

Support function of the set Q∗ is

σQ∗(x) = σ{−1}(x) = sup
ξ∈{−1}

〈x, ξ〉 = −x.

We now deal with the closure of the positively homogeneous convex function
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ψ generated by φ, and

(φµ)(x) =

{
µφ(µ−1x), µ > 0,

δ{0}(x), µ = 0,

=

{
x2

µ
− x, µ > 0,

δ{0}(x), µ = 0,

and get

clψ(x) = inf{(φµ)(x) : µ >= 0} = −x.

Therefore, the closure of the positively homogeneous convex function ψ gen-

erated by φ is the support function of the set {ξ ∈ Rn | φ∗(ξ) <= 0}.

Lemma 3.2 [9] Consider ε >= 0 and g : Rn → R is a convex function. Let

x̄ ∈ Q̄ = {x ∈ Rn | g(x) <= 0}. Assume that the Slater constraint qualification

holds, that is, there exists x̂ ∈ Rn such that g(x̂) < 0. Then ξ ∈ NQ̄,ε(x̄) if

and only if there exist µ >= 0 and ε̄ >= 0 such that

ε̄ <= µg(x̄) + ε and ξ ∈ ∂ε̄(µg)(x̄).

Up to now, we are ready to establish the ε-necessary optimality condition

of (MP).

Theorem 3.3 Let ε ∈ C and gi, i = 1, . . . ,m, are convex functions. Assume

that the Slater constraint qualification is satisfied, that is, there exists x̂ ∈ Rn

such that gi(x̂) < 0 for every i = 1, . . . ,m. If x̄ is a weakly C-ε-efficient
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solution of (MP), then there exist λ̄ ∈ C+\{0}, ε̄0 ∈ C, ε̄i ∈ C, i = 1, . . . ,m,

and µ̄i >= 0, i = 1, . . . ,m, such that

0 ∈ ∂ᾱ0(λ̄
Tf)(x̄) +

m∑
i=1

∂ᾱi
(µ̄igi)(x̄),

m∑
i=0

ᾱi − α <=
m∑
i=1

µ̄igi(x̄) <= 0,

where λ̄T ε = α, λ̄T εi = αi, i = 0, . . . ,m, λ̄T ε̄i = ᾱi, i = 0, . . . ,m.

Proof. Let x̄ be a weakly C-ε-efficient solution of (MP), equivalently, x̄ is

a weakly C-ε-efficient solution of the following unconstrained programming

(MP)

(MP) minimize f(x) + δFP
(x)e

subject to x ∈ Rn.

Using Theorem 3.1, x̄ is a C-ε-critical point of (MP), that is, there exists

λ̄ ∈ C+ \ {0} with λ̄T e = 1 such that

λ̄Tf(x̄) + δFP
(x̄) <= λ̄Tf(x) + δFP

(x) + λ̄T ε, ∀x ∈ Rn,

which means x̄ is a λ̄T ε-solution of the following scalar problem (P)∗,

(P)∗ minimize (λ̄Tf + δFP
)(x)

subject to x ∈ Rn,

without loss of generality, set λ̄T ε = α, obviously α >= 0. Equivalently, x̄ is a

α-solution of the following unconstrained problem,

(P) minimize (λ̄Tf +
m∑
i=1

δQi
)(x)

subject to x ∈ Rn,
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where FP =
m⋂
i=1

Qi and Qi = {x ∈ Rn | gi(x) <= 0}, i = 1, . . . ,m. By the

Slater constraint qualification, there exists x̂ ∈ Rn such that gi(x̂) < 0 for

every i = 1, . . . ,m, which implies riQi, i = 1, . . . ,m, are nonempty. Since

x̄ ∈ FP is an α-solution of (P), we have 0 ∈ ∂α

(
λ̄Tf +

m∑
i=1

δQi

)
(x̄). From

Lemma 3.1, there exists αi >= 0, i = 0, . . . ,m, with α0 +
m∑
i=1

αi = α such that

0 ∈ ∂α0(λ̄
Tf)(x̄) +

m∑
i=1

NQi,αi
(x̄).

Applying Lemma 3.2 to Qi, i = 1, . . . ,m, there exist µ̄i >= 0 and ᾱi >= 0,

i = 1, . . . ,m, such that

0 ∈ ∂ᾱ0(λ̄
Tf)(x̄) +

m∑
i=1

∂ᾱi
(µ̄igi)(x̄),

and

ᾱi − αi <= µ̄igi(x̄) <= 0, i = 1, . . . ,m, (3.2)

where ᾱ0 = α0. Now summing (3.2) over i = 1, . . . ,m, and using the condi-

tion α0 +
m∑
i=1

αi = α leads to

m∑
i=0

ᾱi − α <=
m∑
i=1

µ̄igi(x̄) <= 0.

2

Now we give the following example to illustrate Theorem 3.3.
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Example 3.2 Consider the following multiobjective optimization problem:

(MP) minimize
(
f1(x), f2(x)

)
subject to g(x) <= 0.

Let f1(x) = x, f2(x) = 1
2
x2, g(x) = x2 − x, C := R2

+ and given ε = (ε1, ε2) =

(1
2
, 0) ∈ C.

Observe that FP = [0, 1] is the feasible set and the weakly C-ε-efficient

solution set of (MP) is {0}.

Since

0 ∈ ∂ᾱ0(λ̄
Tf)(x̄) +

m∑
i=1

∂ᾱi
(µ̄igi)(x̄),

m∑
i=0

ᾱi − α <=
m∑
i=1

µ̄igi(x̄) <= 0,

where λ̄T ε = α, λ̄T εi = αi, i = 0, . . . ,m, λ̄T ε̄i = ᾱi, i = 0, . . . ,m, then we can

find λ̄ = (λ̄1, λ̄2) ∈ C+ \ {0} and ε̄0 = (ε̄10, ε̄
2
0) ∈ C, ε̄1 = (ε̄11, ε̄

2
1) ∈ C, µ̄ >= 0.

By Theorem 3.3, we have

λ̄1ε1 + λ̄ε2 = α =
1

2
λ̄1, λ̄ε̄10 + λ̄ε̄20 = ᾱ0 = α0,

and

λ̄ε̄11 + λ̄ε̄21 = ᾱ1 = α1, ᾱ0 + ᾱ1 − α <= µ̄g(x̄) <= 0,

as 0 ∈ ∂ᾱ0(λ̄
Tf)(x̄) +

m∑
i=1

∂ᾱi
(µ̄igi)(x̄), then there exist ξ0 ∈ ∂ᾱ0(λ

Tf)(x̄),

ξ1 ∈ ∂ᾱ1(µ̄g)(x̄) with ξ1 + ξ2 = 0 and

(λ̄1f1 + λ̄2f2)(x)− (λ̄1f1 + λ̄2f2)(x̄) >= 〈ξ0, x− x̄〉 − ᾱ0,
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(µ̄g)(x)− (µ̄g)(x̄) >= 〈ξ1, x− x̄〉 − ᾱ1.

After a calculation we have λ̄1 = 0, µ̄ = 0, λ̄2 > 0. Take λ̄2 = 1 and use

these conditions we get ε̄20 = 0, ε̄21 = 0, ε̄11 > 0, take ε̄11 = 1
4
, ε̄10 > 0, take

ε̄10 = 1
9
, and we show the validity of Theorem 3.3.

Here after all, we explore the ε-sufficient condition for (MP)U and (MP),

and before that, we give the following lemma that is a little bit different to

[15, 28], which will be used to get the sufficient condition for (MP)U as the

main tool.

Lemma 3.3 Let Γ be a convex subset of Rn, ε ∈ C and f : Γ → Rp be a

C-convexlike function. Then, exactly one of the following statements holds.

(i) There exists x0 ∈ Γ such that f(x0)− ε ∈ −intC.

(ii) There exists λ ∈ C+ \ {0} such that 〈λ, f(x)− ε〉 >= 0,∀x ∈ Γ.

Proof. [(̄i)⇒ (ii)]Assume that (i) is impossible. This implies that there does

not exist x ∈ Γ such that

f(x)− ε ∈ −intC.

Write

f(Γ) = {f(x) | x ∈ Γ}.

Because

C + intC ⊆ intC,
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we obtain for any α > 0,

− f(x) + ε /∈ intC ⇒ −αf(x) + αε /∈ intC

⇒− αf(x) + αε /∈ intC + C ⇒ −α(f(x)− ε)− C /∈ intC.

We have ⋃
α>0

−α(f(Γ)− ε)− C ∩ intC = ∅.

Let

S =
⋃
α>0

−α(f(Γ)− ε)− C.

Then,

S ∩ intC = ∅.

Letting

S̄ =
⋃
α>0

α(f(Γ)− ε) + C,

we will show that S̄ is convex. Take

si = αif(xi)− αiε+ ci ∈ S̄, i = 1, 2,

where ci ∈ C, αi > 0, i = 1, 2. For t ∈ [0, 1], set

c0 = tc1 + (1− t)c2.

Due to the convexity of C, we have that c0 ∈ C.

From the assumption of C-convexlike function, there exists x3 ∈ Γ such

that

tα1

tα1 + (1− t)α2

f(x1) +
(1− t)α2

tα1 + (1− t)α2

f(x2)− f(x3) := ć ∈ C.
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But

tα1f(x1) + (1− t)α2f(x2) + tc1 + (1− t)c2

= [tα1 + (1− t)α2][ tα1

tα1+(1−t)α2
f(x1) + (1−t)α2

tα1+(1−t)α2
f(x2)] + c0

= [tα1 + (1− t)α2][ć+ f(x3)] + c0

= [tα1 + (1− t)α2]f(x3) + [tα1 + (1− t)α2]ć+ c0

∈
⋃
α>0

αf(x3) + C + C ⊆
⋃
α>0

αf(x3) + C.

Therefore

ts1 + (1− t)s2 = [tα1 + (1− t)α2]ĉ− [tα1 + (1− t)α2]ε+ c0

∈
⋃
α>0

α(f(x3)− ε) + C

⊆
⋃
α>0

α(f(Γ)− ε) + C = S̄,

where

ĉ =
tα1

tα1 + (1− t)α2

f(x1) +
(1− t)α2

tα1 + (1− t)α2

f(x2).

So, S̄ is a convex set. Therefore, S is convex and S ∩ intC = ∅. Hence, by

the separation theorem(see [9]) of convex sets of Rp, there exists λ ∈ C+\{0}

such that

〈s, λ〉 <= 0 <= 〈d, λ〉, ∀s ∈ S, d ∈ C.

From this, we conclude that

〈−α(f(x)− ε)− v, λ〉 <= 0, ∀α > 0, ∀x ∈ Γ, ∀v ∈ C.
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Therefore,

〈f(x)− ε+ v, λ〉 >= 0, ∀x ∈ Γ, ∀v ∈ C.

Since C is a closed convex cone, this implies that

〈f(x)− ε, λ〉 >= 〈−v, λ〉, ∀v ∈ C, ∀x ∈ Γ

⇒ 〈f(x)− ε, λ〉 >= sup
v∈C

(−〈v, λ〉) = 0, ∀x ∈ Γ,

which states that (ii) has a solution.

[(ii)⇒ (̄i)]Assume that (ii) holds, there exists λ ∈ C+ \ {0} such that

〈λ, f(x0)− ε〉 >= 0, for some x0 ∈ Γ,

i.e.,

〈λ,−f(x0) + ε〉 <= 0. (3.3)

Now we suppose (i) holds, in other words there exists x0 ∈ Γ such that

f(x0)− ε ∈ −intC,

i.e.,

−f(x0) + ε ∈ intC.

Since C+ is the positive dual cone to C, then

〈λ,−f(x0) + ε〉 > 0,

which contradicts to (3.3), and (i) does not hold. 2

Obviously, every C-convex function is C-convexlike. From Lemma 3.3,

the following Corollary also holds.
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Corollary 3.1 Let Γ be a convex subset of Rn, ε ∈ C and f : Γ → Rp be a

C-convex function. Then, exactly one of the following statements holds.

(i) There exists x0 ∈ Γ such that f(x0)− ε ∈ −intC.

(ii) There exists λ ∈ C+ \ {0} such that 〈λ, f(x)− ε〉 >= 0,∀x ∈ Γ.

Now, we give the sufficient condition for (MP)U with the help of Corollary

3.1.

Theorem 3.4 Assume that f is a C-convex function, then every C-ε-critical

point x̄ is a weakly C-ε-efficient solution of (MP)U .

Proof. Since x̄ is C-ε-critical point for (MP)U , there exists λ ∈ C+ \{0} such

that 0 ∈ ∂λT ε(λ
Tf)(x̄), which implies that there exists ξ ∈ ∂λT ε(λ

Tf)(x̄),

such that

ξ = 0. (3.4)

As well, since f is a C-convex function, and for all λ ∈ C+ \ {0}, λTf a

is convex function. Obviously, there exists λ ∈ C+ \ {0} such that

λTf(x)− λTf(x̄) >= 〈ξ, x− x̄〉 − λT ε, ξ ∈ ∂λT ε(λTf)(x̄).

By (3.4), we get

λTf(x) >= λTf(x̄)− λT ε. (3.5)

On the other hand, suppose to the contrary that x̄ is not a weakly C-

ε-efficient solution of (MP)U , then there exists x∗ ∈ Rn with x∗ 6= x̄, such

that

f(x∗)− (f(x̄)− ε) ∈ −intC.
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By Corollary 3.1, we have

〈λ, f(x)− (f(x̄)− ε)〉 < 0, ∀x ∈ Rn,

which contradicts to (3.5). 2

Theorem 3.5 Suppose that f is a C-convex function and gi, i = 1, . . . ,m,

are convex functions. If there exist λ̄ ∈ C+\{0}, ε̄0 ∈ C, ε̄i ∈ C, i = 1, . . . ,m,

and µ̄i >= 0, i = 1, . . . ,m, such that

0 ∈ ∂ᾱ0(λ̄
Tf)(x̄) +

m∑
i=1

∂ᾱi
(µ̄igi)(x̄),

m∑
i=0

ᾱi − α <=
m∑
i=1

µ̄igi(x̄) <= 0,

where λ̄T ε = α, λ̄T εi = αi, i = 0, . . . ,m, λ̄T ε̄i = ᾱi, i = 0, . . . ,m, then x̄ is a

weakly C-ε-efficient solution of (MP).

Proof. Suppose to the contrary, x̄ is not a weakly C-ε-efficient solution of

(MP), then there exists another feasible point x∗ such that

f(x∗)− (f(x̄)− ε) ∈ −intC.

By Corollary 3.1, we have for all feasible point x,

〈λ, f(x)− (f(x̄)− ε)〉 < 0. (3.6)

On the other hand, since there exist λ̄ ∈ C+ \ {0}, ε̄0 ∈ C, ε̄i ∈ C,

i = 1, . . . ,m, and µ̄i >= 0, i = 1, . . . ,m, such that

0 ∈ ∂ᾱ0(λ̄
Tf)(x̄) +

m∑
i=1

∂ᾱi
(µ̄igi)(x̄),
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m∑
i=0

ᾱi − α <=
m∑
i=1

µ̄igi(x̄) <= 0, (3.7)

where λ̄T ε = α, λ̄T εi = αi, i = 0, . . . ,m, λ̄T ε̄i = ᾱi, i = 0, . . . ,m, we have

that there exist ξ0 ∈ ∂ᾱ0(λ̄
Tf)(x̄), ξi ∈ ∂ᾱi

(µ̄igi)(x̄), i = 1, . . . ,m, such that

ξ0 +
m∑
i=1

ξi = 0. (3.8)

In addition, by C-convexity of f , following the argument on Theorem 3.4,

we have

λ̄Tf(x)− λ̄Tf(x̄) >= 〈ξ0, x− x̄〉 − ᾱ0,

as well

µ̄igi(x)− µ̄igi(x̄) >= 〈ξi, x− x̄〉 − ᾱi,

then with the help of (3.8),

λ̄Tf(x)− λ̄Tf(x̄) +
m∑
i=1

µ̄igi(x)−
m∑
i=1

µ̄igi(x̄)

>=〈ξ0 +
m∑
i=1

ξi, x− x̄〉 − (ᾱ0 +
m∑
i=1

ᾱi)

=− (ᾱ0 +
m∑
i=1

ᾱi),
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since gi(x) <= 0, i = 1, . . . ,m,

λ̄Tf(x)− λ̄Tf(x̄) >=

m∑
i=1

µ̄igi(x̄)− (ᾱ0 +
m∑
i=1

ᾱi)

=
m∑
i=1

µ̄igi(x̄)−
m∑
i=0

ᾱi

>=

m∑
i=0

ᾱi − α−
m∑
i=0

ᾱi = −α, (with the help of 3.7)

which contradicts to (3.6). 2

4 ε-Duality Relations

In this section, we establish a dual model in the sense of Wolfe and explore

approximate weak and strong duality theorems.

Now we formulate the Wolfe type dual problem (MD) for (MP) as follows

(MD) maximize(y,λ,µ) f(y) + µTg(y)e

subject to 0 ∈ ∂α0(λ
Tf)(y) +

m∑
i=1

∂αi
(µigi)(y),

λ ∈ C+ \ {0} with λT e = 1,
m∑
i=0

αi − α <= 0,

(y, λ, µ) ∈ Rn × Rp × Rm
+ ,

where α = λT ε, αi = λT εi, εi ∈ C, i = 0, . . . ,m. We denote by FD is the

feasible set of (MD). Let L(y, λ, µ) = f(y) + µTg(y)e.
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Definition 4.1 A feasible point (ȳ, λ̄, µ̄) is said to be a weakly C-ε-efficient

solution of (MD) if there exists no another feasible point (y, λ, µ) such that

L(y, λ, µ) >C L(ȳ, λ̄, µ̄)+ε, which is equivalent to, L(y, λ, µ)−L(ȳ, λ̄, µ̄)−ε /∈

intC.

Theorem 4.1 (Approximate weak duality) Let x and (y, λ, µ) be feasi-

ble solution of (MP) and (MD), respectively. Then

f(x)− L(y, λ, µ) + ε /∈ −intC.

Proof. Suppose to the contrary that

f(x)− L(y, λ, µ) + ε ∈ −intC,

i.e.,

f(x)− f(y)− µTg(y)e+ ε ∈ −intC,

then there exists λ ∈ C+ \ {0} with λT e = 1 such that

λTf(x)− λTf(y)− µTg(y) + λT ε < 0. (4.1)

Since (y, λ, µ) is a feasible solution of (MD), then there exist ξ0 ∈ ∂α0(λ
Tf)(y)

and ξi ∈ ∂αi
(µigi)(y), i = 1, . . . ,m,

m∑
i=0

αi − α <= 0, such that

0 = ξ0 +
m∑
i=1

ξi.

Since ξ0 ∈ ∂α0(λ
Tf)(y) and ξi ∈ ∂αi

(µigi)(y), i = 1, . . . ,m,

λTf(x)− λTf(y) >= 〈ξ0, x− y〉 − α0
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and

µigi(x)− µigi(y) >= 〈ξi, x− y〉 − αi, i =, . . . ,m.

Thus

λTf(x)− λTf(y)− µTg(y) + λT ε

>= 〈ξ0, x− y〉 − α0 − µTg(y) + λT ε

= 〈ξ0, x− y〉 − α0 + µTg(x)− µTg(y)− µTg(x) + λT ε

>= 〈ξ0, x− y〉 − α0 + 〈
m∑
i=1

ξi, x− y〉 −
m∑
i=1

αi − µTg(x) + λT ε

= −
m∑
i=0

αi − µTg(x) + α(where λT ε = α)

>= 0,

which stands in contradiction to (4.1). 2

Theorem 4.2 (Approximate strong duality) Suppose that Slater con-

straint qualification is satisfied for (MP). If x̄ is a weakly C-ε-efficient solu-

tion of (MP), then there exist λ̄ ∈ C+\{0} with λ̄T e = 1, ε̄i ∈ C, i = 0, . . . ,m

and µ̄i >= 0, i = 1, . . . ,m, such that (x̄, λ̄, µ̄) is a weakly C-2ε-efficient solu-

tion of (MD).

Proof. Let x̄ be a weakly C-ε-efficient solution of (MP). From Theorem 3.3,

there exist λ̄ ∈ C+ \ {0} with λ̄T e = 1, ε̄i ∈ C, i = 0, . . . ,m, and µ̄i >= 0,
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i = 1, . . . ,m, such that

0 ∈ ∂ᾱ0(λ̄
Tf)(x̄) +

m∑
i=1

∂ᾱi
(µ̄igi)(x̄),

m∑
i=0

ᾱi − α <=
m∑
i=1

µ̄igi(x̄) <= 0,

where λ̄T ε = α, λ̄T εi = αi, i = 0, . . . ,m, λ̄T ε̄i = ᾱi, i = 0, . . . ,m. So, (x̄, λ̄, µ̄)

is a feasible point for (MD).

Now we will show that a feasible point (x̄, λ̄, µ̄) is a weakly C-2ε-efficient

solution of (MD), that is,

f(y) +
m∑
i=1

µigi(y)e− [f(x̄) +
m∑
i=1

µ̄igi(x̄)e]− 2ε /∈ intC, ∀(y, λ, µ) ∈ FD.

Otherwise, suppose that there exists (y, λ, µ) ∈ FD such that

f(y) +
m∑
i=1

µigi(y)e− [f(x̄) +
m∑
i=1

µ̄igi(x̄)e]− 2ε ∈ intC. (4.2)

Then, multiplying both sides of (4.2) by λ̄ ∈ C+\{0} with λ̄T e = 1,

λ̄Tf(y) +
m∑
i=1

µigi(y)− [λ̄Tf(x̄) +
m∑
i=1

µ̄igi(x̄)]− 2α > 0. (4.3)
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Since
m∑
i=0

ᾱi − α <=
m∑
i=1

µ̄igi(x̄), we have

λ̄Tf(y) +
m∑
i=1

µigi(y)− [λ̄Tf(x̄) +
m∑
i=1

µ̄igi(x̄)]− 2α

<= λ̄Tf(y) +
m∑
i=1

µigi(y)− λ̄Tf(x̄)−
m∑
i=0

ᾱi − α

<= λ̄Tf(y) +
m∑
i=1

µigi(y)− λ̄Tf(x̄)− α <= 0, (by using Theorem 4.1)

which contradicts (4.3). Thus, (x̄, λ̄, µ̄) is a weakly C-2ε-efficient solution of

(MD). 2

References

[1] M.Arana-Jimenez and R.Cambini , Conic efficiency and duality in

nondifferentiable multiobjective mathematical programming, Journal of

Nonlinear and Convex Analysis, Vol. 16, pp. 2507-2520, 2015.

[2] M. Arana, R. Cambini and A. Rufian, C-efficiency in nondifferen-

tiable vector optimization, Mathematical and Computer Modelling, Vol.

57(5-6), pp. 1148-1153, 2013.

[3] A.Brondsted and R.T.Rockafellar, On the subdifferentiability of

convex functions, Proceedings of the American Mathematical Society,

Vol. 16, pp. 605-611, 1965.

28



[4] K.D.Bae, D.S.Kim and L.G.Jiao , Mixed duality for a class of non-

differentiable multiobjective programming problems, Journal of Nonlinear

and Convex Analysis, Vol. 16, pp. 255-263, 2015.

[5] S.Boyd and L.Vandenberghe, Convex Optimization, Cambridge

University Press, 2004.

[6] T.D.Chuong and D.S.Kim, Approximate solutions of multiobjective

optimization problems, Positivity, Vol. 20, pp. 187-207, 2016.

[7] T.D.Chuong and D.S.Kim, Nonsmooth semi-infinite multiobjective

optimization problems, Journal of Optimization Theory and Applica-

tions, Vol. 160, pp. 748-762, 2014.

[8] T.D.Chuong and D.S.Kim, Optimality conditions and duality in non-

smooth multiobjective optimization problems, Annals of Operations Re-

search , Vol. 217, pp. 117-136, 2014.

[9] A. Dhara and J. Dutta, Optimality Conditions in Convex Opti-

mization, A Finite-Dimensional View. CRC Press, 2012.

[10] J. Dutta and V.Vetrivel, On approximate minima in vector opti-

mization, Numerical Functional Analysis and Optimization, Vol. 22(7-

8), pp. 845-859, 2001.

[11] S.Deng, On approximate solutions in convex vector optimization, SIAM

Journal on Control and Optimization, Vol. 35(6), pp. 2128-2136, 1997.

29



[12] A.Engau and M.M.Wiecek, Generating ε-efficient solutions in mul-

tiobjective programming, European Journal of Operational Research,

Vol. 177(3), pp. 1566-1579, 2007.

[13] J.B.Hiriart-Urruty, ε-subdifferential calculus, Convex Analysis and

Optimization, Vol. 57, pp. 43-92, Pitman, London, 1982.

[14] J.Jahn, Introduction to the Theory of Nonlinear Optimization, Springer

Berlin Heidelberg New York, 2007.

[15] C.P.Liu and X.M.Yang , Optimality conditions and duality for ap-

proximate solutions of vector optimization problems, Pacific Journal of

Optimization, Vol. 11(3), pp. 495-510, 2015.

[16] J.C.Liu , ε-Pareto optimality for nondifferentiable multiobjective pro-

gramming via penalty function, Journal of Mathematical Analysis ans

Applications, Vol. 198(1), pp. 248-261, 1996.

[17] P.Loridan , ε-solutions in vector minimization problems, Journal of

Optimization Theory and Applications, Vol. 43(2), pp. 265-276, 1984.

[18] G.R.Piao, L.G.Jiao and D.S.Kim , Optimality conditions in noncon-

vex semi-infinite multiobjective optimization problems, Journal of Non-

linear and Convex Analysis, Vol. 17, pp. 167-175, 2016.

[19] R.T.Rockafellar, Convex Analysis, Princeton University Press,

Princeton, NJ, 1970.

30



[20] J.J.Strodiot, V.H.Nguyen and N.Heukemes, ε-optimal solutions

in nondifferentiable convex programming and some related questions,

Mathematical Programming, Vol. 25(3), pp. 307-328, 1983.

[21] T.Q.Son, J.J.Strodiot and V.H.Nguyen, ε-optimality and ε-

Lagrangian duality for a nonconvex programming problem with an in-

finite number of constraints, Journal of Optimization Theory and Ap-

plications, Vol. 141, pp. 389-409, 2009.

[22] T.Q.Son and D.S.Kim, ε-mixed type duality for nonconvex multiobjec-

tive programs with an infinite number of constraints, Journal of Global

Optimization, Vol. 57, pp. 447-465, 2013.

[23] C.Tammer, Stability results for approximately efficient solutions, OR

Spektrum, Vol. 16(1), pp. 47-52, 1994.

[24] T.Tanaka, Approximately efficient solutions in vector optimization,

Journal of Multicriteria Analysis, Vol. 5(4), pp. 271-278, 1996.

[25] D.J.White, Epsilon efficiency, Journal of Optimization Theory and

Applications, Vol. 49(2), pp. 319-337, 1986.

[26] K.Yokoyama, Epsilon approximate solutions for multiobjective pro-

gramming problems, Journal of Mathematical Analysis and Applica-

tions, Vol. 203(1), pp. 142-149, 1996.

[27] K.Yokoyama, Relationships between efficient set and ε-efficient set,

Nonlinear Analysis and Convex Analysis(Niigata,1998), pp. 376-380,

1999.

31



[28] R.Zeng and R.J.Caron, Generalized Motzkin theorems of the alterna-

tive and vector optimization problems, Journal of Optimization Theory

and Applications, Vol. 131(2), pp. 281-299, 2006.

32


	1. Introduction
	2. Preliminaries
	3. ε-Optimality Conditions
	4. ε-Duality Relations
	5. References


<startpage>7
1. Introduction 1
2. Preliminaries 2
3. ε-Optimality Conditions 9
4. ε-Duality Relations 24
5. References 28
</body>

