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1 Introduction

It is well known that optimality conditions and objective functions proper-
ties play a key role in mathematical programming as well as its applications.
One of the main tools here is to employ the separation theorem of convex sets
(see e.g.,[19]) to establish necessary conditions for approximate weakly effi-
cient solutions of a multiobjective optimization problem, and to use various
kinds of (generalized) convexity of functions to formulate sufficient conditions
for such approximate weakly efficient solutions. In this thesis, we establish
necessary conditions for approximate weakly efficient solutions of a multi-
objective optimization problem with inequality constraints. As usually, we
use separation theorem, which is a useful tool as we mentioned, to estab-
lish our main results. Along with optimality conditions, we introduce Wolfe
type dual problems and investigate weak and strong duality theorems under
assumptions of C-convexity. It is worth to mentioning that in the middle
of the nineteen eighties, Loridan [17] introduced a notion of e-efficient so-
lutions for multiobjective problems(MOPs), which was followed by White
[25] who proposed several concepts of approximate solutions for MOPs and
drafted methods for their generating. For the last two decades, approxi-
mate efficient solutions of MOPs have been examined in the literature by
many authors from different points of view. Existence conditions were de-
veloped by Deng [11] and Dutta and Vetrivel [10] for convex MOPs while
Karush-Kuhn-Tucker type conditions were derived by Dutta and Vetrivel
[10] and Liu [16]. Yokoyama [26, 27] analyzed connections between different

definitions of approximate solutions. Tammer [23], Tanaka [24], and others



studied approximate solutions of vector optimization problems in general or-
dered vector spaces. In view of the literature, the current belief is that the
concept of e-efficient solutions accounts for modeling limitations or computa-
tional inaccuracies, and thus is tolerable rather than desirable. Consequently,
methods purposely avoiding efficiency and guaranteeing e-efficiency have not
been well developed.

The aim of this thesis is to study nondifferentiable constrained multiob-
jective problems where the partial order in the image space is induced by a
proper cone C' (closed, convex and pointed solid cone). In Section 2, some
basic definitions and several auxiliary results are presented. In Section 3, we
show that a weakly C-e-efficient solution is a C-e-critical point. Moreover,
we investigate necessary and sufficient optimality conditions for weakly C-
e-efficient solutions. In addition, we establish a Wolfe type dual model and
state weak and strong duality theorems in Section 4. Throughout the present

thesis, some examples are given to illustrate our results.

2 Preliminaries

Let us first recall some notations and preliminary results which will be
used throughout this thesis; see e.g., [9, 19]. We denote by R™ the Euclidean
space of dimension n. The nonnegative orthant of R” is denoted by R’} and
is defined by R} := {(z1,...,2,) € R" | 2, 20, i = 1,...,n}. The inner
product in R” is defined by (z,y) := 2Ty for all x,y € R". We say that a set A
is convex whenever pa;+(1—p)ay € Aforall p € [0, 1], ay,a2 € A. Let ¢ be a

function from R” to R, where R = [—o0, +00]. Here, ¢ is said to be proper if



for all x € R", ¢(x) > —oo and there exists 2y € R" such that ¢(xy) € R. We
denote the domain of ¢ by dom¢, that is, dom¢ := {z € R™ | ¢(x) < +o0}.

A function ¢ : R® — R is said to be proper convex if

(1 — o+ py) < (1 — po(z) + po(y),

for all p € [0,1], for all x,y € R™. Let D C R? be a p-dimensional vector
space and D* be a dual space of D.

The cone C' is said to be pointed if it contains no line(or equivalently,
reC, —x € C = x=0,in other words, C N (—C) = {0}, see [14]). Let
us consider a proper cone C'in D, that is, C' is a closed convex and pointed
cone with nonempty interior [5]. The positive dual cone to C' and the strict

positive dual cone to (', denoted as
Ct:={d*eD*|{d,d)=0, vd e C},

and

C5t .= {d* e D* | (d*,d ) >0, Vd € C\{0}},
respectively. Since D C RP, each element in D* can be represented as a
p-dimensional vector.

Consider a set £ C R™. The support function op : R* — R, to F at
T € R"™ is defined as

or(Z) = sup(z, x);
xeF

and the indicator function, dp : R® — R, to the set F is defined as
0, x € F,
op(z) = .
400, otherwise.

3



It is worth to noting that if I’ is convex, then indicator function dr is also

convex.

In order to establish optimality conditions, let us consider the proper cone

C C RP, which induces a partial order on D. We define C° as C'\ {0}. Thus,

r<,y if and only if y—x¢€C,
r<cy if and only if y—ax € C?,
r <cy if and only if y — x € intC.
Now we give the notion of e-subdifferential. It is worth to mention that
firstly its idea can be found in the work of Brondsted and Rockafellar [3],
but the theory of e-subdifferential calculus was given by Hiriart-Urruty [13].

One can also refer to Dhara and Dutta [9] to understand this notion easily

with the aid of some examples.

Definition 2.1 Let ¢ : R" — R be a convexr function. For e = 0, the e-

subdifferential of ¢ at * € domf is given by
0cp(z) ={§ €R" | ¢(z) — 9(Z) 2 (§,x — T) — ¢, Vo € R"}.

Definition 2.2 Consider a convexr set Q C R™. Then for ¢ = 0, the e-

subdifferential of the indicator function at x € Q) s

0c0g(7) = {E€R" | dg(x) —do(7) 2 ({2 —T) —¢ Vo € R"}

= {{eR" | ex({,z—1T), Vo € Q},

which is also called the e-normal set and denoted as Ng ().



Definition 2.3 [9] The relative interior of a convex set F C R™, riF, is the

interior of F' relative to the affine hull of F', that is,
ril = {x € R" | there exists € > 0 such that (z + eB)NaffF C F},

where B stands for the unit ball in R™, and af f F is the affine hull of F.

Definition 2.4 Consider a function ¢ : R* — R. The conjugate of &,
¢* : R* = R, is defined as

¢*(§) = sup {(£, ) — ¢(x)}.

r€ER™

It is worth to mentioning for any function ¢ : R® — R, the conjugate function
¢* is always lower semicontinuous convex. In addition, if ¢ is proper convex,

then ¢* is also proper convex.

Definition 2.5 [28] Let " be a convex subset of R™. Then the function f is

said to be C-convex on convex set T if for any z,y € T and t € [0, 1]
tfx) + (A -t)f(y) — fltz + (1 - t)y) € C.

Definition 2.6 [28] Let I" be a convex subset of R™. Then the function f is
said to be C-convezlike on I if for any x,y € T' and t € [0,1], there exists

z €I such that
tf(x) + (1 =t)f(y) — f(2) € C.



Let us consider the following nondifferentiable unconstrained multiobjective

optimization problem:

(MP),,  minimize f(x)
subject to x € R",
where f = (f1,..., fp) : R = R? is a C-convex function.
Since it is usual to request the incorporation of some constraints to our

multiobjective optimization problem. In such a way, we are going to focus

the optimization study on the following one:

(MP)  minimize f(x)
subject to ¢g;(x) £0, i=1,...,m,
where f = (f1,..., fp) : R® — RP is a C-convex function, and g¢; : R" — R,

i=1,...,m, are convex functions. The feasible set of (MP) is defined by
Fp:={z eR" | gi(x) L0, i=1,...,m}.

Definition 2.7 Lete € C be given. Then T € Fp is said to be a C'-e-efficient

solution of (MP) if there does not exist another feasible point x such that
f(x) <¢ f(z)—¢, which is equivalent to that f(z)— f(z)+e ¢ —C°, Vo € Fp.

Definition 2.8 Let ¢ € C be given. Then T € Fp is said to be a weakly
C-e-efficient solution of (MP) if there does not exist another feasible point x
such that f(x) <¢ f(Z) — €, which is equivalent to that f(x) — f(Z) + € ¢
—intC, Vx € Fp.

Remark 2.1 We introduce some special cases about a weakly C-e-efficient

solution as follows:



(i) Let € € C be given. If C = R, then T € Fp is said to be a weakly
e-efficient solution of (MP) if there does not exist another feasible point
x of (MP) such that f(z) < f(Z)—€, which is equivalent to that f(x)—
f(z) + e ¢ —intRY, Vo € Fp. Many research papers studied weakly e-
efficient solutions in (finite) multiobjective programs [6], multiobjective

semi-infinite programs [21, 22].

(il) A feasible point, T is said to be a C-weakly efficient solution of (MP) if
there does not exist another feasible point x of (MP) such that f(z) <c
f(z), which is equivalent to that f(x) — f(Z) ¢ —intC, Yx € Fp. Some

results were obtained, one can see [1, 2, 12].

(iii) Let C =RE. A feasible point, T is said to be a weakly efficient solution
of (MP) if there does not exist another feasible point x of (MP) such that
f(x) < f(z), which is equivalent to that f(x) — f(z) ¢ —intR%, Vo €

Fp. A lot of results were obtained, one can refer to [4, 7, 8, 18].

Now we give the following example to illustrate the mentioned solutions

above.

Example 2.1 Consider the following multiobjective optimization problem:

(MP)  minimize <f1 (x), fg(l’))
subject to x € Fp :=R,

where fi(z) =z and fo(2) = 322



(a) Let C = R%, then the weakly efficient solution set is

{reR| f(z) ¢ f(z) — intRL} = (—00,0].
(b) Let C =R?% and € = (61, €2) € C be given.
Case 1. If 2e5 > (€1)?, the weakly e-efficient solution set is
{reR | f(x) ¢ f(z) —e—intRL} = (—00,v262].

(€1)2+2e2 ]

Case 2. If 2e; < (€1)?, the weakly e-efficient solution set is (—oo, o

(c) Let C := {(t1,t2) € R? | t, = |t;| } be given, then the C-weakly efficient

solution set is
fe €R| f(@) ¢ £(2) —imtC} = [-1,1],

Lemma 2.1 (Sum Rule) Consider two proper convex functions ¢; : R — R,

i = 1,2 such that ri dom ¢, Nri dom ¢y # (0. Then for e > 0,

Oc(d1 + ¢2)(T) = U (0, 01(T) + Oc, 92(7))

€12>0,62>0,€14-€2=¢

for every T € dom ¢ N dom ¢,.



3 e-Optimality Conditions

In this section, first we establish necessary optimality condition for a
weakly C-e-efficient solution of (MP)y, and then under Slater type con-
straint qualification, necessary optimality condition for a weakly C-e-efficient
solution of (MP) is given. Moreover, we establish the sufficient optimality
condition for a weakly C-e-efficient solution of (MP).

First of all, let us consider the unconstrained multiobjective optimization

problem (MP)y and give the following necessary optimality condition.

Theorem 3.1 If T is a weakly C-e-efficient solution of (MP)y, then T is a
C-e-critical point for (MP)y, that is, there exists A € C* \ {0} such that

0 € O (AT f)(Z).

Proof. Since 7 is a weakly C-e-efficient solution, we have f(z) — f(Z) + € ¢
—intC, Vo € R™. By a separation theorem(see [9]), there exists A € C* with
A # 0 such that (f(z) — f(Z) +€ A) =20, Vo € R". So,

Met+ M f(z) =2 M f(z), Vo € R™.
Thus, 0 € Oyr (AT f)(7). O

Remark 3.1 If & is a C-e-efficient solution of (MP)y, then T is a C-e-
critical point for (MP)y, that is, there exists X\ € CT\ {0} such that

0 € O (AT f)(7).



Now we examine the e-necessary optimality condition of (MP). First,

consider the following constrained convex optimization problem:

(CP)  minimize h(x)
subject to x € Q,

where h : R” — R is a convex function and @ is a convex set in R".

The e-optimality condition of (CP) is given in the following.

Lemma 3.1 [9, 20] Consider the convex optimization problem (CP). As-
sume that the Slater constraint qualification holds, that is, ri () s nonempty.
Let € 2 0 be given. Then T € Q is an e-solution of (CP) if and only if there

erist €, =20, 1 =1,2 with €, + €3 = € such that
0 € 0, h(T) + Ng,e,(T).

We can easily show Lemma 3.1 by using Lemma 2.1 (Sum Rule of e-subdifferential),
along with Definition 2.2 (e-normal set).

Note that for a nonempty convex set @), ri() is nonempty and hence the
Slater constraint qualification holds. From the Lemma 3.1, it is obvious that
to obtain the approximate optimality conditions in terms of the constraint
functions g;, ¢ = 1, ..., m, here g; should be convex functions, Ng (z) must be
explicitly expressed in their terms. Below we present the result from Strodiot
et al. [20], which acts as the tool in establishing the approximate optimality
conditions. First, we define the right scalar multiplication from Rockafellar

[19).

10



Definition 3.1 [9, 19] Let ¢ : R® — R be a proper convex function and

= 0. The right scalar multiplication, ¢u, is defined as

pp(p=tz), p >0,

(6p)(x) ={ S n

A positively homogeneous convex function 1) generated by ¢, is defined as

() = inf{(¢p)(x) | p = 0},
We state the following theorem from Rockafellar [19].

Theorem 3.2 [9, 19] Let ¢ : R* — R be a proper lower semicontinuous
convez function. The support function of the set Q = {x € R" | ¢(x) < 0} is
then cl ¢, where 1 is the positively homogeneous convex function generated
by ¢*. Dually, the closure of the positively homogeneous convex function 1

generated by ¢ is the support function of the set {£ € R™ | ¢*(§) < 0}.

Now we give an example as below in order to understand Theorem 3.2

clearly.

Example 3.1 Consider Q = {x € R | ¢(z) < 0}, where ¢(z) = 22 — z is
a proper lower semicontinuous convex function for all x € R, obviously the

support function of the set @ = [0,1] is

- - [0 ¢<o
00(&) = 0pp(§) = zilﬁﬁ]@’@ Ve es0

11



On the other hand, calculating the conjugate function of ¢(z), we have

#(6) = sup{ (€, 2) — o(a)} = LTEL (3.1)

z€R 4

Now we deal with the positively homogeneous convex function 1) generated

by ¢*, and

\ et (uThE), p>0,
i) = { oy(€), =0,
_{ C4i4t >0,
0103 (£), p=0,
and get
0, £€<0,
cly(§) = inf{(¢"u)(&) | p =20} = % + g = { @l

Therefore, the support function of the set Q@ = {x € R | ¢(z) < 0} is cly.

Dually let Q* = {¢ € R™ | ¢*(€) < 0}, from (3.1) we know ¢*(¢) = 1L
when ¢*(§) <0, then £ = —1, and the set Q* = {—1}.

Support function of the set Q* is

og-(x) = oy () = 5Es?_pl}(:ﬁ,é) = —z.

We now deal with the closure of the positively homogeneous convex function

12



1) generated by ¢, and

(op) ()

{ pd(ptz), p>0,
(5{0}(1?), H = 07

:{ 93_:_1,7 M>07
5{0}(33'), /L:O,

and get
el (x) = inf{ (dp)(x) : p 2 0} = —z.

Therefore, the closure of the positively homogeneous convex function ) gen-

erated by ¢ is the support function of the set {{ € R" | ¢*(£) < 0}.

Lemma 3.2 [J] Consider ¢ 2 0 and g : R" — R is a convex function. Let
T€Q={xreR"|g(x) <0}. Assume that the Slater constraint qualification
holds, that is, there exists & € R™ such that g(z) < 0. Then £ € Ng(T) if

and only if there exist =0 and € = 0 such that

€< pg(T) +e and £ € Oc(ug) ().

Up to now, we are ready to establish the e-necessary optimality condition

of (MP).

Theorem 3.3 Lete € C and g;, i = 1,...,m, are convex functions. Assume
that the Slater constraint qualification is satisfied, that s, there exists ©+ € R"

such that g;(z) < 0 for every i = 1,...,m. If T is a weakly C-c-efficient

13



solution of (MP), then there exist A\ € C*\{0}, 6 € C, € C,i=1,...,m,

and j1; 20,1 =1,...,m, such that

0 € 0ay (N £)(®) + D _0a: (1ig:) (),
=1
Zdi —a< Zﬂigz‘(f) <0,
i=0 i—1
where NTe = o, NTe; =0y, i=0,...,m, Nl =a,;,i=0,...,m.

Proof. Let T be a weakly C-e-efficient solution of (MP), equivalently, Z is

a weakly C-e-efficient solution of the following unconstrained programming

(MP)

(MP)  minimize f(x)+ dp,(x)e
subject to x € R™.

Using Theorem 3.1, 7 is a C-e-critical point of (MP), that is, there exists
A € O\ {0} with ATe = 1 such that

M F(Z) + 0p, (B) S AT f(2) + 6pp(2) + M6, Vo € R™,
which means 7 is a ATe-solution of the following scalar problem (P)*,

(P)*  minimize (ATf + 0p,) ()
subject to x € R™,

without loss of generality, set ATe = o, obviously a = 0. Equivalently, 7 is a

a-solution of the following unconstrained problem,

(P)  minimize (A\Tf + >2d0,)(7)
i=1
subject to x € R,

14



where Fp = () Q; and Q; = {x € R" | gi(x) £ 0}, i = 1,...,m. By the
i=1

Slater constraint qualification, there exists & € R™ such that ¢;(Z) < 0 for

every ¢ = 1,...,m, which implies riQ);, ¢« = 1,...,m, are nonempty. Since

T € Fp is an a-solution of (P), we have 0 € 0, (XTf + ZéQi) (). From
i=1

Lemma 3.1, there exists a; =2 0,4 =0,...,m, with oy + > a; = a such that
i=1

0 € Dy AT f)(Z ZNQZ o

Applying Lemma 3.2 to Q;, © = 1,...,m, there exist g; = 0 and &; = 0,
i =1,...,m, such that

0 € 8ay (N f)(7) + Zaai (12i9:)(Z),
and

& —o; £ gi(Z)£0, i=1,...,m, (3.2)
where &y = ap. Now summing (3.2) over ¢ = 1,...,m, and using the condi-

m
tion ap + Y a; = « leads to
i=1

Z a < Zﬂigi(f) =0
1=0 =1

Now we give the following example to illustrate Theorem 3.3.

15



Example 3.2 Consider the following multiobjective optimization problem:

(MP)  minimize (fl(:v), fQ(x)>
subject to  g(x) < 0.
Let fi(z) =z, fo(x) = 322, g(x) = 2* — 2, C :=R% and given € = (€1, ) =
(3,0) € C.
Observe that Fp = [0, 1] is the feasible set and the weakly C-e-efficient
solution set of (MP) is {0}.

Since
0 € Doy (N 1)(@) + 3 O (108) (2),
i=1
Zdi —a< Zﬁigz‘(f) <0,
i=0 i=1
where NTe = a, \Te; =, i =0,...,m, N6 = a;, 1 =0, ..., m, then we can

find X = (A, A) € C\ {0} and & = (e}, 2) € C, & = (¢}, 2) € C, i = 0.
By Theorem 3.3, we have

— . 1- = 3
/\161 + )\62 == 5)\1, )\Gé + )\6% = Qg = Qy,

and

e —i-;\e

=
=N

= =a, a+a —a=ug(zT) <0,

as 0 € 05, AT f)(z) + if)@i(ﬂigi)(f), then there exist & € 0x (A f)(Z),
i=1
& € 0, (1g)(Z) with & + & = 0 and

(M fi+ Aafo)(@) = (M fi + Aafo)(Z) = (0,2 — T) — a,

16



(rg)(x) = (pg)(2) 2 (&1, v = T) — .

After a calculation we have A\; = 0, =20, Xy > 0. Take Ay = 1 and use

these conditions we get €2 = 0, € = 0, €l > 0, take e} = 1, e > 0, take

€6 = 3, and we show the validity of Theorem 3.3.

1
9

Here after all, we explore the e-sufficient condition for (MP)y and (MP),
and before that, we give the following lemma that is a little bit different to
[15, 28], which will be used to get the sufficient condition for (MP)y as the

main tool.

Lemma 3.3 Let I' be a convex subset of R, e € C' and f : ' = RP be a

C-convexzlike function. Then, exactly one of the following statements holds.
(i) There exists xo € T' such that f(xg) — e € —intC.

(ii) There exists A € CT\ {0} such that (X, f(x) —e) 20,Vx € T.

Proof. [(i) = (ii)]Assume that (i) is impossible. This implies that there does

not exist x € I' such that
f(z) — e € —intC.

Write
fT)={f(z) [z €T}

Because
C + intC C intC,

17



we obtain for any a > 0,

— f(x) + € ¢ intC = —af(x) + ae ¢ intC

= —af(r)+ ac ¢ intC +C = —a(f(x) —¢€) — C ¢ intC.

We have

U —e(f(1) —¢) - CnintC = 0.

a>0
Let

S=|J-a(f(t)—¢) —C.
a>0
Then,
S NintC = (.

Letting

we will show that S is convex. Take
si=o;f(z') —oue+ G €S, i=1,2,
where ¢; € C, a; >0, i =1,2. For t € [0, 1], set
cop =tep + (1 —t)ea.

Due to the convexity of C, we have that ¢y € C.

From the assumption of C-convexlike function, there exists 2® € I' such

that

(1 — t)OéQ
tOél + (1 - t)Oéz

tOél

ta; + (1 —t)ag f(@®) = f(2*):==¢eC.

flah) +

18



But

tar f(zh) + (1 — t)aof(z®) +tey + (1 — t)ey
= [ton + (1 = )] [ F(01) + s F ()] + oo
= [teq + (1 — t)ao][é + f(2®)] + o
= [ty + (1 —t)ag]f(2®) + [tay + (1 — t)aw)é + co

€ Uaf(x3)+0+0§ Uaf(x3)+0.

a>0 a>0
Therefore
tSl —+ (1 -3 t)SQ = [tOél + (1 - t)OéQ]é — [tOél + (1 e t)OéQ]G + Co

e Uata®)-9+c

a>0

where

tOél
ta; + (1 — t)as

(1 = t)OZQ
tag + (1 —t)ag

¢ = flah) + f@?).

So, S is a convex set. Therefore, S is convex and S N intC' = (). Hence, by

the separation theorem(see [9]) of convex sets of R?, there exists A € CT\{0}
such that
(s,\) <0< (d,\), Vse S,deC.

From this, we conclude that
(—a(f(r) —€) —v,\) £0, Va>0, Vz eI, YveC.

19



Therefore,

(f(x) —e+v,\) =20, Vz e, Yvel.

Since C' is a closed convex cone, this implies that

(f(x) —e,\) = (v, \), VYve C,Vz €T

= (f(z) —€,A\) Zsup(—(v,\)) =0, Vz €T,

velC

which states that (ii) has a solution.

[(ii) = (i)]Assume that (ii) holds, there exists A € C* \ {0} such that
(A, f(xg) —€) 20, for some xy €T,

ie.,

(A, —f(x0) +€) 0. (3.3)
Now we suppose (i) holds, in other words there exists 2y € I' such that
f(zg) — € € —intC,

ie.,

—f(xo) + € € intC.
Since C'" is the positive dual cone to C, then
<)‘7 —f(l’o) + 6) > Oa

which contradicts to (3.3), and (i) does not hold. O
Obviously, every C-convex function is C-convexlike. From Lemma 3.3,

the following Corollary also holds.
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Corollary 3.1 Let I' be a convexr subset of R", e € C and f : ' — RP be a

C-convex function. Then, exactly one of the following statements holds.
(1) There exists vg € I' such that f(xog) — e € —intC.
(i1) There exists X\ € Ct\ {0} such that (\, f(z) —€) 20,Vz € T.

Now, we give the sufficient condition for (MP); with the help of Corollary
3.1.

Theorem 3.4 Assume that f is a C-convex function, then every C'-e-critical

point T is a weakly C-e-efficient solution of (MP)y.

Proof. Since T is C-e-critical point for (MP)y, there exists A € C*t\ {0} such

that 0 € O\r (AT f)(Z), which implies that there exists & € O (AT f)(Z),
such that

£=0. (3.4)

As well, since f is a C-convex function, and for all A € C*\ {0}, ATf a

is convex function. Obviously, there exists A € C* \ {0} such that

N f(2) = ATf(@) 2 (€, 2 — 7) = A€, € € O (N f)(2).

By (3.4), we get
MNf(x) 2 AT f(z) — Me (3.5)
On the other hand, suppose to the contrary that z is not a weakly C-

e-efficient solution of (MP)y, then there exists z* € R™ with z* # Z, such

that
f(z*) = (f(Z) —€) € —intC.
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By Corollary 3.1, we have
(A f(z) = (f(T) —€)) <0, Vz eR",
which contradicts to (3.5). O

Theorem 3.5 Suppose that f is a C'-convex function and g;, © =1,...,m,
are convex functions. If there exist \ € Ct\{0}, 6o € C, & € C,i=1,...,m,
and j1; 20,1 =1,...,m, such that

0 € 0ay(\"F)(@) + > 0a, (ig:) (7).

=1

m m
Y ai—a<) () <0,
=0 =1

where NTe=a, NTe; =a;, 1 =0,....,m, N =a;,i=0,...,m, then T is a

weakly C-e-efficient solution of (MP).

Proof. Suppose to the contrary,  is not a weakly C-e-efficient solution of

(MP), then there exists another feasible point z* such that

f(z*) = (f(Z) — €) € —intC.

By Corollary 3.1, we have for all feasible point =z,
A f(@) = (f(7) =€) <0 (3.6)
On the other hand, since there exist A € C+\ {0}, & € C, & € C,
t1=1,...,m,and ji; =0,72=1,...,m, such that
0 € 0ay (A1) (Z) + Zaai (19:)(Z),
i=1
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Fuesl

=0

where M'e = a, \Te; = 4,1 =0,...,m, \Te; = ay, 1 = 0,...,m, we have

that there exist & € 94, (AT f)(Z), & € Oa, (11:9:)(Z), i = 1,...,m, such that

o + Z & = 0. (3.8)
i=1

In addition, by C-convexity of f, following the argument on Theorem 3.4,

we have

X f(@) = M f(@) 2 (S0, 2 — T) — Go,

as well
Bigi(x) — 1:9s(Z) = (&, v — T) — &,
then with the help of (3.8),
N f(a) = AT f(z) + Zu@gz - igi(@)
i=1

2+ Y o —T) = (@ + ) @)

i=1 i=1
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since g;(x) £0,i=1,...,m,

which contradicts to (3.6). O

4 e-Duality Relations

In this section, we establish a dual model in the sense of Wolfe and explore
approximate weak and strong duality theorems.

Now we formulate the Wolfe type dual problem (MD) for (MP) as follows

(MD) maximizeg, ) f(y) + ulg(y)e

subject to 0 € Oao AT f)(y) + X 0a, (11igi) (y),
=1
A€ CH\ {0} with ATe =1,
Yo —a <0,
1=0

(y, A\, p) € R* x RP x R,

where o = Mle,o; = Meje; € Ci = 0,...,m. We denote by Fp is the

feasible set of (MD). Let L(y, A\, p) = f(y) + T g(y)e.
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Definition 4.1 A feasible point (7, A, 1) is said to be a weakly C-e-efficient
solution of (MD) if there exists no another feasible point (y, A, ) such that
L(y, A\, i) >¢ L(, A, i) +¢, which is equivalent to, L(y, A\, ) — L(y, A, i) —e¢ ¢
intC.

Theorem 4.1 (Approximate weak duality) Let z and (y, A, ) be feasi-
ble solution of (MP) and (MD), respectively. Then

f(x) — L(y, A\, p) + € ¢ —intC.
Proof. Suppose to the contrary that

f(z) — Ly, A\, ) + € € —intC,
ie.,

f(@) = fy) — n" g(y)e + € € —intC,
then there exists A € CT \ {0} with ATe = 1 such that
N f (@) = M f(y) = n'gly) + Xe <0 (4.1)

Since (y, A, p1) is a feasible solution of (MD), then there exist & € 9qy (AT f)(y)

and & € O, (1tig:)(y), i =1,...,m, > a; — a <0, such that
i=0

0=4+ > &
=1

Since 50 S aaO(ATf)(y> and 61 € aoéi ([j’lgl)(y)7 1= 17 S, MM,

Nf(@) =M f(y) = (o, 2 — ) — o
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and

pigi(x) — pigi(y) 2 (G w —y) — sy i =,...,m.
Thus
N f (@) = M f(y) — n"gly) + NTe
= (&, x—y) —ao—p'gly) + e
= (&o,v—y) — a0+ pTg(x) = pu'gly) — u"gx) + A
2 (T —y) —ao+ <i§i7 T—yy = iaz- — ' g(x) + e
A7 i=1
= —iai — 1" g(x) + a(where \'e = a)
=0
2 O
which stands in contradiction to (4.1). O

Theorem 4.2 (Approximate strong duality) Suppose that Slater con-
straint qualification is satisfied for (MP). If T is a weakly C-e-efficient solu-
tion of (MP), then there ezist \ € CT\{0} with\Te =1,& € C,i=0,...,m
and ji; 20,1 =1,...,m, such that (T, )\, 1) is a weakly C'-2e-efficient solu-
tion of (MD).

Proof. Let & be a weakly C-e-efficient solution of (MP). From Theorem 3.3,
there exist A € CT\ {0} with NTe =1, € C,i=0,...,m, and ji; = 0,
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1=1,...,m, such that

0 € Dag\")(&) + > 0a, (19:)(2),
=1
Zaz —a <) [1,gi(7) £0,
=0 =1
where \Te = a, \Te; =, i =0,...,m, \Tgg =a;,i =0,...,m. So, (z,\, i)

is a feasible point for (MD).
Now we will show that a feasible point (Z, \, 1) is a weakly C-2e-efficient
solution of (MD), that is,

7+ Y may)e = £+ Y (a)e =2 i€, V(o ) € P
Otherwise, suppose that there exists (y, A, u) € Fp such that
fy) + Zm:uigi(y)e —[f(z) + zm:mgi(m)e] — 2e € intC. (4.2)
i1 i=1
Then, multiplying both sides of (4.2) by A € CT\{0} with \Te =1,

MNf(y) + Z/Mgi(y) - \'f(@) + Zﬂzgz(f)] —2a > 0. (4.3)
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Since > a; — a £ > [;9:(%), we have

=0 =1

+) g (@) + > pigi(z)] — 20
i=1
< Mfy) +Zﬂlgl —MTf( j)—Zo‘zl—a
=0
< Mfy) + Zuzgl — M f(z) —a £0, (by using Theorem 4.1)

which contradicts (4.3). Thus, (Z, A, i) is a weakly C-2e-efficient solution of

(MD). O
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