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추상 

센서부로 사용되어진 VO2 thin film을 기반으로 하는 두 단자 장치에서 

생산되는 FIO를 사용함으로써 온도에 민감하지 않은 압력 측정 장치가 

새롭게 제안되었다. 전압 oscillation을 발생시키기 위해 VO2 기반의 

장치는 저항이 직렬로 연결되었으며 DC 전압이 가해졌다. 압력이 

장치에 가해지면 oscillation 진폭과 주파수는 증가하였고 이 두 값은 

온도에도 의존하였다. 이 온도에 대한 cross-sensitivity는 oscillation의 

압력과 온도 반응 사이의 차이를 분명히 바로잡아서 극복할 수 있었다. 

측정된 압력 민감도는 0–9 MPa에서 ~93 kHz/MPa로 R-square 값은 

0.9965 였고, 온도 민감도는 0–50도 사이에서 ~18 kHz/°C로 R-square 

값은 0.9952 였다. 그러나 50 °C 이상의 온도에서는 oscillation을 관찰할 

수 없었다. 
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Abstract 

A temperature-insensitive pressure measurement by incorporating the field-

induced oscillation (FIO) created in a two-terminal device based on a 

vanadium dioxide (VO2) thin film, which was employed as a sensing head 

is newly proposed. A DC voltage was applied to the VO2based device 

serially connected with a resistor to generate voltage oscillation across the 

resistor. The oscillation amplitude and frequency increased with pressure 

applied to the device but also depended on temperature. This cross-

sensitivity to temperature could be overcome by harnessing clear difference 

between pressure and temperature responses of the oscillation parameters. 

The measured pressure sensitivity was ~93 kHz/MPa over 09 MPa and 

temperature sensitivity was ~18 kHz/C over 050 C with R-square value 

of 0.9965 and 0.9952 respectively. However, we observed no oscillation 

when the temperature increases above 50 C.
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1. Introduction 

Vanadium dioxide (VO2) is a representative strongly correlated material 

showing a reversible phase transition (PT) between an insulating state and 

a metallic state near 340 K.1) It is well known that this PT can be induced 

by temperature,1,2) pressure,3) light,4) electric field,5) etc. By harnessing the 

filed-induced PT of a VO2 thin film, a variety of switching applications have 

been explored which includes electrical switches,5,6) varistors,7) THz 

metamaterials,8) among others. In particular, in a two-terminal electrical 

device based on a VO2 thin film, field-induced oscillation (FIO) was 

realized by using negative differential resistance (NDR)9) leading to the 

steep increase of electrical current flowing through the device.10-12) 

The two terminal device based on VO2 device has been used in 

measuring various physical quantities like temperature13-17), pressure18), 

bending19-20), stress point21-22), etc. In many areas especially, pressure sensor 

can be used, a good example of this is an electrical measurements of a VO2 

thin film under a high pressure of 25 GPa which has been reported using a 

load-controllable point-contact structure as a method, thereby attracting 

much interest for device application. However the load-controllable point-

contact system is one simple and usable tool for studying the physical 

properties of VO2 thin film under high pressure. Furthermore, to measure 
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the same physical properties of VO2 thin film for low pressure at 10 kHz, 

another method needs to be implemented however until this present, no 

report on temperature-insensitive pressure measurement using FIO in VO2 

thin film has been found. Then considering the unique electro-mechanical 

properties of the FIO in VO2 thin film, an electric FIO-based pressure sensor 

is expected to be a good sensor with acceptable sensitivity. 

Here, we show the temperature–insensitive pressure measurement by 

incorporating the FIO created in a two-terminal device based on a VO2 thin 

film. We demonstrated how the FIO method can be utilized for the 

temperature-insensitive pressure measurements on the electrical properties 

of VO2 thin film. Firstly, a DC voltage was applied to the VO2 thin film 

device with a serially connected resistor to generate oscillation across the 

resistor. The oscillation frequency and amplitude increased with pressure 

being applied to the sensor head. Secondly, considering the sensor head 

under increased temperature, the oscillation frequency increases while the 

oscillation amplitude decreases. This cross-sensitivity to temperature could 

be overcome by harnessing clear difference between pressure and 

temperature responses of the oscillation frequency and amplitude. The 

measured pressure sensitivity was ~93 kHz/MPa over 09 MPa with R-

square value of 0.9965 and under the effect of temperature, the sensitivity 
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was ~18 kHz/°C, over 050 °C with R-square value of 0.9952. However, 

we observed no oscillation when the temperature increases above 50 C. To 

the best of our knowledge, there has been no report on a temperature-

insensitive pressure sensor based on the FIO in VO2. 
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2. Fabrication Process 

Over the time, various deposition techniques have been employed to 

grow high quality VO2 thin films, such as magnetron sputtering or reactive 

ion beam sputtering, and pulsed laser deposition technique23-25). For the 

growth of the VO2 thin film, the sensor heads were grown on Al2O3 

substrates by employing pulsed laser deposition (PLD) methods with gold 

(Au) interdigitated electrodes pre-patterned. The average film thickness of 

the grown films was measured as ~100 nm. The grown film was etched to 

form current channels by ion beam milling, and Au electrodes were deposited 

on the etched film by using photolithographic technique.   

Figure1. (a) Shows an optical microscope plane view of fabricated 

VO2 oscillation device and a schematic of an experimental setup to measure 

the current – Voltage (I-V) characteristic of the device. The electrode 

separation length (L) and the exposed film width (W) of the fabricated device 

were 3 and 5 μm respectively. 
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Fig. 1. (a) Plane-view optical microscope image of fabricated VO2 

oscillation 
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For the measurement, we made use of microprobe station 

(micromanipulator) with tungsten probes and parameter analyzer (HP 

4156C). The ohmic contact resistance of the device was <5Ω, which was < 

0.05% compared with the resistance across the device at room temperature. 

The I-V properties of the fabricated VO2-based on two-terminal device 

measured with constant applied voltage (V-mode) and current (I-mode) 

swept by the parameter analyzer, respectively. Figures 1 (b) and (c) shows 

the I-V hysteresis loops measured in voltage-controlled mode (V-mode) and 

current-controlled mode (I-mode) at room temperature and the electrical 

current flowing through the device was limited to 10 mA to prevent excess 

current. Thereafter, the threshold voltage and current of the device, i.e., 

limiting factors defining an oscillation window beyond which the FIO could 

not be generated, were measured as ~5.0 V and ~2.60 mA in figures 1 (a) 

and 1 (b), respectively. 
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Fig. 1. (b) I-V hysteresis loops measured in fabricated VO2 thin film with 

V-mode 

 

 

 

 

 

 

Fig. 1. (c) I-V hysteresis loops measured in fabricated VO2 thin film 

with I-mode. 
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Since it is difficult to directly measure the pressure by applying force 

directly onto the VO2-based device, it is better and easier to use a pressure 

chamber to quantify a required pressure in the range we want for our 

experiment. One should also be careful whether the output electrical 

oscillation that we observe on oscilloscope changes or not when we increase 

the applied pressure.   

Figure 2 shows the schematic diagram of the experimental setup for 

realizing the measuring applied pressure by oscillation waveform 

observation. In order to measure the temperature-insensitive pressure using 

FIO in VO2 thin film, the schematic diagram was built up as shown in figure 

2. The sensor head was placed inside the chamber, closed hermetically 

while the cables were connected to the two ends of the Au. Interdigital 

electrodes of the device were set outside the chamber. 
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Fig. 2. Schematic chart of experimental setup to measure applied pressure 

by observing oscillation waveforms. 
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Before the test, we connected to the right combination these cables with 

other equipment as standard resistor of resistance R = 10 KΩ, a dual DC 

power supply (model: HC 2330AD) and an Oscilloscope (Tektronix TDS 

2022C). Earlier applying pressure into the chamber, we ensured the air 

inside was set loose to the outside via the outlet valve. At standard 

atmospheric pressure, the oscillation curve was found by varying the voltage 

and resistance to the point of getting oscillation which is viewed via the 

oscilloscope. Then, the manufacturing process of sensing head and detection 

of pressure are explained following these three (3) steps: 1) The VO2 

oscillation device was introduced into the chamber and closed hermetically. 

Two cables were connected on both Au electrode of the VO2 device. The 

cables were set outside of the chamber and make a right connection to the 

other equipment’s needed for our experiment. 2) The output signal of an 

oscilloscope was obtained at the point of getting oscillating wave forms 

without pressure. 3) The nitrogen (N2) gas cylinder was operated to apply 

pressure inside the chamber, and the oscillation curve began to change, the 

period (T) and amplitude (A) observed on the figure changes. We started to 

measure the signal at different pressure in the range of 0 to 9 MPa. 

It is know that the VO2, being a monoclinic (MoO2 type) structured 

semiconductor at room temperature, has a structural phase transition 



11 
 

temperature of 340 K, above which it becomes tetragonal (rutile type) 

structured with metallic conductivity. An electrical measurement of a VO2 

thin film under hog pressure of 25 GPa, has been reported using the load-

controllable point-contact system, attracting much interest for the device. In 

this research, the sensor head present inside the chamber is subjected to a 

various pressures, then the applied pressure is located not only in one point 

but it is the same pressure on every point on our device, contrary to the load-

controllable point-contact system where the pressure it is high in the 

localized area, the stress occurs only in this place and will be distributed 

toward all the direction in the material.  
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3.  Results and discussion 

Moving to the experimental results, involving oscillation curve, Figure 3 

Shows the oscillatory electrical waveform measured with the VO2 

oscillation device. In this figure, we noticed two parameters such as 

amplitude and period. As indicated on the figure, the amplitude is the height 

from the center line to the peak and the period goes from one peak to the 

next (or from any point to the next matching point). A 38 μs electrical pulse 

with a peak-to-amplitudes of the oscillation waveforms were measure at 

~5.2 Volts. Considering one period of the oscillation, we determined the 

frequency that is how often something happens per unit of time. So, T = 1/f 

or f = 1/T. If the limiting factors as voltage and current are varied by certain 

external stimuli like pressure, temperature, etc., the oscillation curve can be 

switching between the appearance and disappearance of the oscillation 

curve, and oscillation properties such as frequency and amplitudes can also 

be changed. Therefore, the oscillation properties can be modified by 

external control parameters. 
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Fig. 3. Oscillatory electrical waveform obtained by measure on VO2 

Oscillation 
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Another experiment was conducted with the same VO2 oscillation devices 

to show the clear difference between temperature and pressure response of 

the oscillation parameters. Figure 4 shows a test electrical circuit used to 

investigate the temperature response of the FIO. For this, the simple 

schematic diagram of an electrical circuit for generating the MIT oscillation 

and controlling the frequency was constructed. The single-loop circuit for 

the varied temperature is composed of an oscilloscope (Tektronix TDS 

2022C) that recoded the oscillatory electrical responses, with a standard 

resistor of resistance equal to 10kΩ which was connected in series with the 

two-terminal of VO2 thin film. In order to apply rectangular voltage pulse, a 

dual DC power supply (model: HC 2330AD) was utilized. 
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Fig. 4. The test electrical circuit used to examine the temperature sensor 

response on the VO2 oscillation. 

 
 
 
 
 
 
 
 
 
 

Temperature chamber with sensor head 

Temperature chamber  
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The temperature was experimentally investigated with respect to 

fabricated VO2 thin film devices. The process of sensing head and detection 

of temperature can be described as thus; the sensor head was put on a hot 

plate in accordance to the right connection between all the equipment and 

both terminal cables which was connected to the two electrodes of VO2 thin 

film. Firstly, without temperature, we obtained the oscillation by varying 

the voltage and resistance. When the oscillation appears, we applied the 

temperature which was increased in the range of 0 C to 55 C .The changes 

on the oscillation curve was observed as the temperature increases, the 

period become short and the amplitude decrease as shown in figures 5 (b) 

and (d). This is because, the sensor head is rapidly heated up with the 

increasing temperature, and the insulating VO2 grains in the device whose 

temperature exceeds the critical temperature (~68 C) are changed into the 

metallic VO2 grains through the photo-thermally induced PT. Even at low 

voltage, the field-induced PT can readily occur, and the device current can 

increase rapidly due to the considerable reduction of the device resistance, 

induced by this PT. This is the same phenomena that we observed on photo-

assisted electrical gating26), where the increase of the temperature decreases 

the threshold voltage.  
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The presence of MIT independent of any SPT was experimentally 

demonstrated by many experiments such as infrared transmission and 

reflectivity for V1-xCrxO2 under high pressure, Raman scattering with 

temperature, careful study of coherent phonons, micro-X-ray diffraction, 

programmable critical-temperature sensor, Raman-scattering under high 

pressure, electron diffraction, and strain-induced MIT in single-domain 

nanobeams. A 0 °C, we observed an oscillation with 0.2 MHz of oscillation 

frequency corresponding to the period of oscillation equal to ~38 μs and is 

determined by the thermal inertia of VO2-based device, threshold 

temperatures and latent heat of the phase transition. When the temperature 

increase inside the chamber, the VO2 thin film change from insulator to 

metallic state, the resistivity decrease and the period of oscillation decreases, 

means that the frequency increased proportionally with increasing 

temperature. The temperature oscillations are accompanied by periodical 

switches between insulator and metallic states of VO2. 

Then from figure 3, with the relation between the frequency and period 

that we spoke about previously, we determined the close approach between 

the pressure and temperature based on their parameters. The measured 

parameters frequency shift (Δf) and amplitude variation (ΔA) can be known 

by the matrix equation (1)  
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f a b P

A c d T

      
           

                                                  (1) 

 

Where a and c are the pressure sensitivities of the oscillation frequency 

and amplitude respectively, b and d are their thermal sensitivities. With 

some calculations, e.g. to obtain the frequency value, equation (2) below 

can be used.  

 

f a P b T     , 

 

Then by identification, the exact value of a, b, c, and d can be obtained 

by these processes: 

 

0 0 0 0; ; ; ;T P T P

f f A A
a b c d

P T P T
       

   
   

   
 

The value for the different slope curve is as follows; a = 92.95 kHz/MPa; 

b = 0.46 kHz/°C; c = 18.18 V/MPa; d = -0.03 V/°C. 

Where F = frequency shift; P = pressure variation; A= amplitude 

variation; and T= temperature variation. 

(2) 

(3) 



19 
 

As shown, the changes between the time and amplitude for temperature 

and pressure response can be investigated by comparison. For pressure 

sensor response, the range was between 0 – 9 MPa while for temperature 

sensor response, the range was between 0 – 50 C. For our investigation, we 

only took two of oscillatory response curves for each pressure and 

temperature sensor response with respect to different range.  
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Fig. 5. The oscillatory electrical waveform measured with the sensor 

head by applying pressure in the range of (a) 0 MPa and (b) 9MPa, and 

temperature range (c) 5 C and (d) 50 C. 
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Figures 5 (a) and 5 (b) shows the oscillatory electrical waveform 

measured with the sensor head by applying pressure in the range of 2 MPa 

and 9 MPa, respectively. When the applied pressure increases, the amplitude 

also increases and the period becomes short. Using the relation which states 

that the frequency is the number of occurrences of a repeating event per unit 

of time, we deduced that when the period becomes short, the frequency 

increases with increasing pressure according to these figures 5 (a) and (b). 

The frequency had been observed to increase with voltage and the period 

under pressure was shorter than that at standard atmospheric pressure, and 

the corresponding sensitivity (S) of the pressure measurement in our 

experiment was ~93 kHz/MPa. This sensitivity indicates that there are 

current changes significantly with the pressure, and there is a potential to 

develop a new class of stable and sensitive vacuum pressure sensor based on 

VO2 thin film. Equation (4) below was derived with the position x as a 

function of time. 

 

 

 
2

( ) cos cos 2
f

x t A A f
T




 
  

 
,                                            (4) 
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The value of f increases when the value of A increases too according to 

the relation between the frequency and Amplitude shown in equation (4). 

Likewise when the pressure is high, the amplitude is thus high and the period 

reduces. The amplitude slowly increased with varying applied pressure of 

5.20, 5.25, 5.28, 5.37, 5.42, 5.5, 5.60, and 5.6 Volts for 0, 2, 3, 5, 6, 7, 8, and 

9 MPa, respectively at a specific threshold voltage of ~7.4 volts. The period 

under temperature was shorter than that at room temperature, and the 

corresponding sensitivity (S) of the temperature measurement in our 

experiment was ~18 kHz/C. On the other hand, the temperature range 

presented in fig. 5 (c) at 5 C and fig. 5 (d) at 50 C shows the oscillation 

electrical waveform measured with the same sensor head than pressure by 

applied temperature. This second experiment was carried out without 

pressure but only with applied temperature. Here, we observe that with a 

very low temperature (5 C), the amplitude start to decrease when the applied 

temperature increases, indicating that our sensor head reacts with the 

temperature. The amplitude reaches ~3.4 V with respect to a temperature 

variation of 50 C. Then according to the same equation (4), we can conclude 

that the higher the applied temperature, the amplitude becomes lower and the 

period becomes short which invariably means that the frequency increases. 
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In order to measure the transient response of the pressure and temperature 

through the sensor head, both test circuit discussed earlier was constructed 

and tested. The device current was calculated from voltage measured across 

the resistor with an oscilloscope using Ohm’s law. 
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Fig. 6. Transient response of pressure and temperature sensor, the 

frequency and amplitude oscillation response curve were made to show the 

different responses of sensor head in different (a) and (b) applied pressure 

(c) and (d) applied temperature. 
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Figure 6. (a), (b) and 6. (c), (d) show the transient responses of pressure 

and temperature of the oscillation parameters, respectively, the frequencies 

up to 1 MHz and 1.8 MHz and amplitude up to 5.6 V and 6.5 V, with 

maximum applied pressure and temperature of 9 MPa and 50 °C respectively. 

The oscillation parameters response curves were made such that they show 

the different responses of sensor head. On a high pressure, the sensitivity of 

the oscillation frequency was measured as ~93 kHz/MPa, showing a good 

linearity with R-squared values of 0.9965 and 0.9687 which correspond to 

figures 6 (a) and (b) respectively. In the same approach, the turning 

sensitivity of the oscillation frequency on high temperature was measured as 

~18 kHz/C with R-squared values of 0.9952 and 0.9753 which correspond 

to  figures 6.(c) and (d) respectively. 
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4. Conclusion 
 

In summary, a temperature-insensitive pressure measurement using FIO 

in VO2 thin film was experimentally investigated with respect to fabricating 

the VO2 thin film device by PLD method, through applying a DC voltage to 

the VO2 thin film of the device linked with the circuit for generating the FIO. 

With the increase of pressure to the device, the oscillation amplitude and 

frequency increases with temperature dependent. This was because, with 

increase temperature to the device, the frequency amplitude still increases 

however the oscillation amplitude decreases. The measured pressure 

sensitivity of our sensor head was ~93 kHz/MPa under a high pressure over 

09 MPa. On the other hand, the measured temperature sensitivity was ~18 

kHz/C under high temperature. Base on the transient responses of our 

device, we show a good linearity with R-squared value of 0.9965, 0.9687, 

0.9952, and 0.9753 for fig. 6 (a), (b), (c), and (d), respectively. We clearly 

show a close relation between the pressure and temperature sensor base on 

FIO in a VO2 thin film using the variation of frequencies and amplitudes 

oscillation curves. We notice that the temperature applied to the device 

cannot exceed 50 ºC (>50 ºC), i.e. above this value we cannot obtain any 

oscillation. The applications of VO2 oscillation are many and it is a good 
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material for sensing pressure and detecting temperature which seems to be 

promising. However, more work is still needed. 
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