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Classifier Ensembles for Predictive Data Analytics
Bayu Adhi Tama

Interdisciplinary Program of Information Systems
The Graduate School
Pukyong National University

Abstract

Data analytics deals with the process of employing computational technique to dis-
cover meaningful patterns in data. It is an application of computer system to the
analysis of large data sets for the support of decision making. Intrusion detection
systems and anomaly detection, in particular, is one of application domain where the
solving of classification problems is extremely complex. Moreover, in the data set
point of view, the existence of imbalance data sets, missing values, and inappropriate
feature selection technique make the classification complicated. First of all, those
issues are addressed by conducting a comparative assessment of well-known classifier
ensembles for both anomaly detection and for an early detection method of diabetes
mellitus. Based on our experimental result, it can be revealed that classifier ensemble
is a promising method for intrusion detection task and diabetes prediction. By con-
sidering these previous results, then an improved detection performance of anomaly-
based intrusion detection system using gradient boosted machine is proposed. GBM
significantly outperforms the most recent IDS techniques, i.e. fuzzy classifier, two-tier
classifier, GAR-forest, and tree-based classifier ensemble. Subsequently, we propose
an effective anomaly detection approach by hybridizing three techniques, i.e. parti-
cle swarm optimization, ant colony optimization, and genetic algorithm for feature
selection and ensemble of four tree-based classifiers, i.e. random forest, naive bayes
tree, logistic model trees, and reduces error pruning tree. Following a great success
of the previous feature selection technique, then finally we propose a combination of
hybrid feature selection and a two-level classifier ensemble model based on two en-
semble learners, i.e. rotation forest and bagging. The proposed schemes remarkably
outperforms the existing methods in terms of accuracy and false alarm rate. To prove
our above-mentioned research contributions, we also conduct two steps of statistical

significance test, which is yet infrequently considered in IDS research so far.
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Chapter

Introduction

The main focus of this thesis is on the construction of a different types of classifier
ensembles for predictive data analytics in the particular domains, i.e. intrusion de-
tection systems and disease prediction. In this thesis, we evaluate the state-of-the-art
ensemble methods and establish several ensemble architectures, i.e. gradient boosted
machine, tree-based ensemble, and two-level ensemble. We also put our attention to
the importance of statistical significance test as a pivotal facet of classifier’s perfor-
mance benchmark between classifier ensembles and base classifiers. It is noted that a
classifier ensemble is not always able to outperform its base classifiers due to several
rationales, i.e. poor ensemble design, the selection of ideal base classifiers is unclear,
and etc. In this chapter, we begin with the motivation of this thesis and detail the

outline of our works.

1.1 Motivation

(Classifier ensembles or ensemble learners play a significant role in many diverse ap-
plications. They have been extremely efficacious in resulting accurate predictions

for many complicated classification tasks [137], [4], [64]. The achievement of these
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techniques is caused by their capability to not only incorporate better predictions
but also to fix errors all kinds of base classifiers [127]. The performance of a clas-
sifier ensemble significantly relies on diversity [21], [72]. Several diversity measures
have been employed to control the agreement among classifiers for constructing the
classifier pools [72], [143]. However, achieving a balanced trade-off between the di-
versity and accuracy is not straightforward as there is no clear definition of what is
apprehended as diversity of classifiers. It persists in being unexplored how different

classifier ensembles would be able to maximize the information taken from the pool

of base classifiers [123].

Intrusion detection systems and anomaly detection, in particular, is one of application
domain where the solving of classification problems is extremely complex [102], [15].
This is due to the absence of prior knowledge on how the variables can be used for
attack detection, as well as a lack of a common view concerning the best classifiers for
a specific attack detection problems [126], [18], [133]. Moreover, in the data set point
of view, the existence of imbalance data sets, missing values, and unappropriate fea-
ture selection technique boost the classification complexity. Classifier ensembles that
are composed by a large-scale and various base classifiers are hypothetically tailored
for this domain. Furthermore, since each classifier contributes to the final prediction,
constructing an accurate predictive model could be realized. Even though the con-
structed ensembles would produce a small improvement in the predictive accuracy,
it would provide a substantial contribution to the preventive action of information

security management.

On the one hand classifier ensembles would bring a significant improvement in terms of
final predictive accuracy, but on the other hand we could not neglect the importance
of feature selection. Feature selection is a key task in machine learning and data
mining. Besides reducing the dimensionality of data, it also increases the performance
and speeds up the training time of a classification algorithm [23], [47], [136]. However,

due to the problematic nature of feature selection, the current techniques still suffer
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from high computational cost [128]. Feature selection is a complex task as the number
of search space is large. The number of possible solution is 2", which n is total number
of features in a data set [5]. To tackle this problem, an efficient search method based
on evolutionary computation, i.e. particle swarm optimization, ant-colony algorithm,
or genetic algorithm is needed. As a variety of EC-based feature selection techniques
have been proposed, in this thesis, an hybrid feature selection technique is constructed

using the aforementioned evolutionary computation algorithms.

In addition, like in any field of study, a novel approach can be accepted only if we
can demonstrate its effectiveness over the existing ones. This motivates us to include
statistical significance tests which are still underexplored in the purview of intrusion
detection systems. Although an ample attempt has been made by IDSs researchers
in both constructing new classification algorithm and improving the existing works,
these researchers have not addressed the issue concerning with what precise measure
is most fitted for quantitative benchmarks of different classification algorithms on a
particular domain [59]. Statistical test is one approach that we can use to measure
whether there exist significant differences among the performance of two or more
classification algorithms [59], [26]. In this thesis, we focus on the evaluation of the
performance differences of classifiers produced by ensemble learners in the context of

binary classification.

1.2 Outline of the Thesis and Contributions

The structure of the following 8 chapters is organized as follows and Figure 1.1 depicts

how each chapter in this thesis relates to the others.

Chapter 2 presents an in-depth overview of two primary topics pertaining to the

research. The chapter starts with a brief introduction to predictive data analytics.
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Then, this chapter provides general information of the construction and the implemen-
tation of classifier ensembles followed by a characteristic of leading-edge researches

on classifier ensembles.

Chapter 3 discusses a comparative experiment of different classifier ensemble ap-
proaches, i.e. bagging, booting, voting, and stacking for anomaly detection. A PSO-
based feature selection is applied to reduce the number of features of intrusion data
set. Specifically, we emphasize the importance of decision combination scheme of
classifier ensembles which is the most pivotal facet among others. Consecutively,
the significance of classifier ensembles against base classifiers is evaluated using a

parametric two-matched samples ¢ test.

Chapter 4 explores a performance benchmark of different ensemble strategies for
early detection method of diabetes mellitus. In this chapter, several ensemble schemes,
i.e. bagging, boosting, random subspace, DECORATE, and rotation forest are in-
cluded in the experiment. Furthermore, eight classification algorithms are employed
as a base classifier in each scheme. Lastly, we conduct two statistical significance
tests using Friedman and Bonferonni-Dunn post-hoc test in order to evaluate the

performance differences among classifiers.

Chapter 5 describes the development of a novel approach of anomaly detection
using gradient boosted machine, which is a highly effective tree boosting approach
in machine learning research. The performance superiority of the proposed approach
is then compared with other well-known classification algorithms, i.e. random forest,
deep neural network, support vector machine, and classification and regression trees
in terms of accuracy and false alarm rate. Finally, Quade and Quade post-hoc test

are taken into consideration as an indicator of performance benchmark analysis.

Chapter 6 conveys a combination of hybrid feature selection and tree-based classifier

ensemble for anomaly detection. An hybrid feature selection is built by employing

three EC-based search methods, i.e. GA, PSO, and ACO, whilst a blended classifier
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is developed based on tree-based classification algorithms, i.e. RF, NBT, LMT, and
REPT using majority voting rule. In this chapter, we emphasize a thorough iterative

process of experiment to choose optimum parameter setting for feature selection.

Chapter 7 explains a novel approach of anomaly detection using hybrid feature
selection and two-level classifier ensemble. We consider the same hybrid feature se-
lection as discussed in Chapter 6. Subsequently, in order to solve binary classification
problem, a new two-level ensemble is proposed. The two-level ensemble is composed

by an ensemble in the first level whose base classifier is another ensemble.

Chapter 8 provides the conclusion of the research as well as identifying directions

for future work.



Chapter 2

Predictive Data Analytics and Classifier

Ensembles: An Overview

The objective of this chapter is to provide a theoretical background related to re-
search motivations presented in Chapter 1. This chapter begins with Section 2.1
that describes with a brief overview of predictive data analytics, whilst Section 2.2
offers a fundamental concept of classifier ensembles. Finally, Section 2.3 represents a

discussion about experimental comparison of classifiers.

2.1 Predictive Data Analytics

2.1.1 Data Analytics and Data Mining

We are living in the era of technology and huge amounts of data is being generated.
Since data is a unit of historic information, it thus brings a new term of data analytics
which examines historic data. The rise of data analytics has been increasing since
2005 due to the first appearance of Google Analytics [1]. Data analytics deals with

the process of employing computational technique to discover meaningful patterns in
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data [1]. Runkler [101] defines data analytics as the application of computer systems
to the analysis of large data sets for the support of decision making. It includes a wide
range of data analysis methods and lies in multidisciplinary fields, i.e. machine learn-
ing, data mining, pattern recognition, knowledge discovery, statistics, data analysis,

predictive analytics and even presently data science [1], [67], [49], [131].

Data mining, of which predictive analytics is a subset, has already reached a stationary
phase in its fame [67]. Predictive analytics has much in common with its predecessor,
data mining. However, the algorithms and techniques are prevalently the same [1].
Data mining is the nontrivial process of identifying valid and novel patterns [34].
The term "nontrivial process” differentiates data mining from other easy statistical
tasks, i.e. calculating mean and standard deviation, whilst "novel” denotes that data
mining is usually taken into account in finding previously unknown patterns in the

data [67].

2.1.2 Predictive Analytics Process

One of the most well-known predictive analytics process framework is CRISP-DM
[17], [74]. The CRISP-DM process framework is the most widely used for developing
data analytics project. Other frameworks include SEMMA which is developed by SAS
institute [103], DMAIC [69], and KDD Process [34]. As illustrated in Figure 2.1, a
data analytics project has a life cycle comprising six steps, i.e. business understanding,
data understanding, data preparation, modeling, evaluation, and deployment. These
steps are briefly explained in Table 2.1. It is noted that feedback loops exist, yet
they may be modified based upon findings during the analytics project, i.e. data
preparation may be insufficient to create the model, thus it must be re-defined in the

prior steps.
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TABLE 2.1: CRISP-DM steps (adapted from [74])

Step Description
Business Understanding Define the project.
Data Understanding Examine the data; identify problems in the data.
Data Preparation Fix problems in the data; create derived variables.
Modeling Build predictive or descriptive models.
Evaluation Assess models; report on the expected effects of models.
Deployment Plan for use of models.
v
Busiglys Data Understandin
Understanding -}
| | |
v
Data P ti
a reparation
« K B
—
Deployment Data v
4 Modeling

1

Evaluation J‘

FIGURE 2.1: Process model of CRISP-DM (adapted from [1])
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Input (x) W Output (v)
Relationship J >

Output ()
Model J >

W Predicted

FIGURE 2.2: Model for predictive analytics (adapted from [67])

2.1.3 Analytics Model

In the circumstance of predictive analytics, data mining is the process of building the
representative model (predictive modeling). The model is the abstract representation
of the data and its relationships in a particular data set thereby it should be valid
not just for the data set used to create the model, but also for the future unknown
data. Furthermore, the model provides two objectives: on the one hand it predicts
the output variable (i.e. normal or anomaly) based on the input variables (i.e. flag,
src_bytes, dst_bytes, logged_in, and etc), and on the other hand it is utilized to under-
stand the relationship between the output variable and all the input variables. Figure
2.2 represents the inputs and output of the model. Once the model is constructed, it

can be employed to predict the value of class model, based on all the input values.

To create the predictive model, modeling techniques (classification or regression al-
gorithms) are required. The algorithms need a training data set to learn the model
and a test data set to check the validity of the deployed model. In this thesis, we
mostly discuss anomaly detection using classification algorithms. Anomaly detection
is predictive since known data is available. Moreover, with increasing model complex-
ity, the more likely problem in predictive modeling is overfitting [51]. Overfit refers

to models that are very accurate on the data used to train the models, but perform

10
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FIGURE 2.3: A common resampling strategy

much worse on data not in the modeling set [1]. In order to solve this problem, resam-
pling strategies are necessary. The following section contains detailed descriptions of

different resampling methods used in this thesis.

2.1.4 Resampling Strategies

Resampling techniques are commonly used to assess the performance of learning algo-
rithm. Supposed a data set D is split into a training set D) and an accompanying test
set D\DW i =1,...,k. The learning algorithm is trained on each training set, predic-
tion is taken on the appropriate test set and the performance measure S (D(i), D\D(i))
is computed. Then the k individual performance values are aggregated, usually by
calculating the mean (Figure 2.3). There are different types of resampling strategies,
i.e. random subsampling, cross-validation, holdout, and bootstrapping, to name but a

few. In the next three subsection, three popular resampling methods are introduced.

2.1.4.1 Cross-validation

Cross-validation is the most classical resampling techniques. A data set is divided into
k equally size partitions and then use k — 1 partitions to fit the model and validate it

on the remaining partition. The k partitions usually refer to folds in the literature and
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common choice for k are 5, 10, and n. Generic resampling technique is summarized
in Algorithm 1, whilst the process used to generate k subsets (indicated in line 1
of Algorithm 1) is described in Algorithm 2. The case of k = n is a special case
called leave-one-out cross validation, and has reached eminence in error estimation,

in particular for small-size samples data set.

Algorithm 1 General resampling strategy
Input: A dataset D of n observation d; to d,, the number of subsets k, and a loss
function L.
Process:
. Generate k subsets of D named DM to D®*)
2. 5«0
3. for i < 1to k do
DU « D\D®
f « FitModel(D™)

~

4
)
6. si ¢ D (xyrenw Ly, f(x))
7
8
9

—_

. end
. Aggregate S, i.e. mean(S)
Output: Summary of the validation statistics.

Algorithm 2 Generate subsets for k-fold cross validation

Input: A dataset D of n observation d; to d,, and the number of subsets &
Process:

. D+ Shuf fle(D)

2. for i < 1 to k do
3. DWW« D

4. end

5. for j < 1tondo
6

7

8

—_

i< (j modk)+1
DO & DON(d,)
. end
Output: k subsets of D named DM to D®)

2.1.4.2 Multiple Runs of Resampling Methods

Single run of cross-validation might suffer from the limitation of low replicability as

they rely on a fact that exactly not possessing the same training and testing sets

12
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when attempting to replicate the results [59]. In order to obtain more stable esti-
mates, it is necessary to average the results over multiple runs rather than attempting
to replicate the result over a single run. Hitherto, there does not exist strong theoret-
ical basis of choosing how many runs of resampling methods to perform, yet several
recommendation have been proposed such as 5 x 2C'V [28] and 10 x 10CV [10]. It
is an attempt of running 5 repetitions of 2-fold cross-validation and 10 repetitions of

10-fold cross-validation, respectively.

2.1.4.3 Random Subsampling

In subsampling, observations are drawn from D without replacement. The data set
D is randomly partitioned into a training and a test set as specified by a given
percentage. If there is only one iteration, the strategy is usually called holdout. The
problem may occur in very small data set since every iteration of the multiple runs
would yield very similar classifiers. However, it brings the advantage of being able to
use larger amount of data for training purposes, yielding in less-biased classifiers [59].

Algorithm 3 encloses the process of random subsampling strategy.

Algorithm 3 Subset generation for subsampling
Input: A dataset D of n observation d; to d,, the number of subsets k, and the
subsampling rate r.

Process:

1. m < |r|D|]

2. for i< 1to k do

3. D+ D

4. DO+

5. for j+ 1tomdo

6. d < RandomElement(D’)
7. DY «+ DOy {d}

8. D'« D'\{d}

9. end

10.end
Output: % subsets of D named DM to D®)

13
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2.2 Classifier Ensembles

Classifier ensembles train multiple classifiers to solve the same problem [139]. It is also
called multiple classifier systems, ensemble methods, or committee-based learning. An
ensemble is made up of a number of classifiers called base classifier. Base classifiers
can be neural network, decision tree, naive bayes, and other types of classification
algorithms [139]. An ensemble in which the same type of classifiers are used is called
homogeneous ensembles. On the contrary, different types of classification algorithms

may lead to produce heterogeneous ensembles.

2.2.1 A Taxonomy of Classifier Ensembles

An extensive review of classifier ensemble literature is offered by Rokach [100]. In
addition, a taxonomy with five dimensions which provides a wide span of existing
classifier ensemble methods is also proposed. The taxonomy is visualized in Figure
2.4. Any classifier ensemble schemes can be represented in terms of the five dimensions

[71]. We provide the detailed descriptions of each five dimensions as follows.

(i) The combiner. A combiner is not stated in some ensemble methods, however,

for these methods, a combiner can be:

e Nontrainable. A majority voting is an example of this group.

e Trainable. The weighted majority voting and naive bayes combiner are
two example of this group. The classifier selection approach also can be
included as one classifier in the ensemble is allowed to make decision for a

particular class.

o Meta classifier. Stack generalization is an example of this group. In this
method, the outputs of individual classifiers are handled as input into a

new classifier, called meta classifier.

14
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(ii) Building the ensemble. A question that might be raised is: Can the base clas-
sifiers be trained independently? or Do they need to be trained in a sequence?.

Adaboost is an example of this group.

(iii) Diversity. The following directions are suggested on how is diversity taken into

account into the ensemble.

e Use different parameters in the training of the individual classifiers.
e Manipulate the training set for each ensemble member.
e Select different label targets.

e Partitioning the training set. Horizontal partitioning denotes that different
subset of samples are use as the training data for each base classifier, whilst
vertical partitioning implies different subsets of features are employed as

the training data for each base classifier.

e Different classifier models or hybrid ensembles.

(iv) Ensemble size. How do we specify the number of classifiers in the pool? Is the

pool constructed by simultaneous or iterative training?.

(v) Universality with regard to the base classifiers. Some ensemble methods can
be deployed with any classifier model whilst others are involved to a particular
classifier type. An example of a classifier-specific ensemble is random forest,

where random tree is used as base classifier.

2.2.2 Types of Classifier Outputs

Ensemble methods combine the output of the base classifiers in the pool. Let consider

a classifier ensemble incorporating of L classifiers in the set D = {D;, D», ..., D1} and

a set of classes Q = {wy,ws, ...,w.}. Three types of classifier outputs can be described
=

as follows [135].
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(i)

(iii)

(iv)

Class labels. Each classifier D; produces a class label s; € Q2 = 1,2,.., L.
Therefore, for any object x € R™ to be classified, the L classifier outputs define

a vector s = [sy, 89, ..., 5] € QF.

Ranked class labels. The output of each D; is a subset of the class label €2, ranked
in order of plausibility. This category is fit for problem with large number of

classes, i.e. character recognition, face detection, etc.

Numerical support for the classes. Each classifier D; yields a c-dimensional
vector [d;1,...,d;.]". The value d;; denotes the support for hypothesis that
vector x placed for classification comes from class w;. For the sake of simplicity,

rather than d; jx, d;; is used which denotes the function of the input x.

Oracle. The output of classifier D; for a particular x is only known to be either
correct or wrong. For a particular data set G, classifier D; produces an output

vector y; such that

1, if D; classifies object g; correctly
0, otherwise

2.3 Experimental Benchmark of Classifiers

Statistical tests are needed as comparing the performance of different machine learn-

ing algorithms on a particular domain is not so straightforward [131]. They offer a

"confidence” level in the difference in performance discovered over a given problem

for two or more classification methods. The subject matter is that no single scheme

consisting of evaluation methods can be applicable in all scenarios. One of the most

widely adopted statistical significance technique is t-test. Nevertheless, the test is,

in fact, not only the option as it is by no means suitable to all scenarios [59]. A

comprehensive and thorough analysis of algorithms and their performance behaviour
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is indispensable when the experiments are conducted in complex setting involving

multiple domains and data sets.

The aims of statistical significance test commonly are related with three following

tasks:

(i) Benchmarking the performance of a learning algorithm of interest against that

of existing algorithms on a specific domain.

(ii) Benchmarking the performance of a learning algorithm of interest against that

of existing algorithms on benchmark data sets.

(iii) Benchmarking the performance of multiple classifiers on benchmark data sets

or a given problem of interest.

Conducting the afore-mentioned tasks leads to other requirements such as deciding
which evaluation metrics to use or whether analysis methods and graphical visual-
ization should be taken into account. Moreover, there are usually two categories of
methods, i.e. parametric tests that make strong assumptions concerning the distribu-
tion of the population and non-parametric tests whose assumptions are not strong. A
wide-range variation of statistical tests are available considering that their utilizations

depend on the details of the circumstances.

Figure 2.5 summarizes the statistical tests adopted in this thesis. This does not
represent a comprehensive list of all statistical tests that could be employed for all
domain problems discussed in this thesis, yet it visualizes the tests commonly used

for assessing multiple classification algorithms.
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Chapter

An Extensive Empirical Evaluation of
Classifier Ensembles for Intrusion

Detection Task

3.1 Introduction

In today’s information explosion, massive amounts of data has been generated from
diverse applications including Internet applications. It is like two sides of coin, in one
side it possesses many advantages to legitimate users, but huge risk losses might be
faced since lots of information are available for misbehave users. Roughly speaking,
as the number of people connected to the Internet is rocketing overwhelmingly, it has

led to increase the vulnerability of network protection systems.

Conventionally, in order to protect computer networks from attacks, several tech-
niques have been proposed, i.e. encryption, authentication, and firewall. However,
in the modern cyber defense systems, conventional approach is not enough due to
constantly evolving threats. Therefore, a higher-level adaptive protection system is

compulsory.
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An IDS is one of reactive security solutions which uses analytical techniques to in-
telligently monitor activities in computing resource, e.g. analyze network flow and
generate reaction. An IDS deals with intrusion detection based on traffic events that
occur in computer network so that malicious users can be traced and similar attack

patterns can be identified.

Generally, an IDS is laid in several categories, i.e. misuse/signature detection, anomaly
detection, and hybrid detection [27]. Misuse detection is a triggering method that
generates alarm when a known misuse traffic pattern occurs. Even though it can de-
tect known attack immediately with a lower positive rate, this method cannot detect
newly created attack pattern. On the contrary, anomaly detection detects attacks if
the characteristics of the traffic are far from those of normal traffic. It can detect
novel attacks but it is hampered by high positive rate. Moreover, hybrid method is
proposed to overcome the drawbacks of two aforementioned approaches, however, the

performance of hybrid method depends on the combination of methods used [65].

To date, most prior studies focus on the task of anomaly detection using various data
mining and machine learning techniques [115]. Some of them revolve around com-
bining multiple techniques in order to ameliorate detection performance, i.e. average
accuracy, false alarm rates, ete [78]. Hence, under this perspective, we attempt to
improve detection performance of IDS using classifier ensembles which is still un-
derexplored in the literature. We hypothesize that incorporating of multiple weak

learners (single classifiers) might improve the prediction accuracy significantly [116].

The cutting-edge research of pattern classification is the combination of several clas-
sifier systems, which perform the fusion of classification techniques to overcome the
limitation of weak classifiers [133]. Referring to the "no free lunch” theorem by
Wolpert [132], he stated that there is no a single classifier which is excellent for all
pattern recognition tasks. Single classifier cannot be a panacea for all computing

problems. Hence, by combining single classifier models, it produces great alliance to
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produce the significant improvement of weak learners. Prior study of classifier ensem-
ble in different applications revealed that the combination of multiple weak classifiers
can improve the final result prediction [58], [110], [111]. At least there are three
advantages of classifier ensemble as stated by Dietterich [29]: (a) reducing the risk
of selecting inappropriate single classifier, (b) providing better approximation that
can overcome the local optima problem, and (c¢) possible to handle complex decision

boundary which separates data from different classes.

However, in order to get significant improvement, classifier ensemble requires a thor-
oughgoing design in the particular circumstances. Several pivotal facets of designing
classifier ensemble which must be taken into account are decision combination scheme,
base classifier selection, and the creation of ensembles [95]. In this chapter, we em-
phasize the importance of decision combination scheme which is the most crucial
among other aspects. We conduct comparative experiment using different ensemble
approaches, i.e. bagging [11], boosting [130], voting [71], and stacking [104]. To prove
classifier ensemble can perform on intrusion detection, we consider two real public
data sets, e.g. network-based intrusion detection, namely NSL-KDD data set [124]
and 802.11 network-based intrusion detection, namely GPRS data set [129].

3.2 Related Work

In this section we review the previous works related to intrusion detection method
using classifier ensembles. The review is presented in chronological order and for
further detailed review, reader is suggested to refer the work of [43], [126], and [89].
Table 3.1 summarizes the comparison of prior works based on the machine learn-
ing techniques, combination scheme, base classifiers, data sets used for experiments,

performance metrics, feature selection method, and category of intrusion detection.

Regarding prior studies in intrusion detection using classifier ensemble, ensemble of
NN and SVM using majority voting scheme were deployed in [87] and [94]. Though
22
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these two base classifiers has been shown great performance in many application
domains, they suffer from computational cost, particularly when train large data set.
For the sake of reducing such kind of computational cost, tree-based classifier, i.e. DT
and decision stump were chosen as an alternative [93], [57], [134], and [14]. Another
alternative which could be considered was implementing bagging and neural ensemble.
In bagging if a single classifier is unstable i.e. it has high variance, the aggregated
classifier (neural ensemble) has a smaller variance than a single base classifier [140],

[107], and [46].

In the context of feature selection (or dimensional reduction), various techniques have
been considered. The goal of feature selection is to filter out unrepresentative feature.
Since there is no standard of which features are representative for intrusion detection,
most of works employed diverse methods to tackle high dimensional data set. For
instance, GA is employed as feature selection technique. By applying genetic search
method, classifiers received significant improvement of prediction accuracy compared

to other feature selection techniques [107].

In order to distinguish between our approach and the existing work, we shall remark
our approach from several aspects: Firstly, we conduct an extensive assessment of
multiple classifier ensembles across multiple domains. To the best of our knowledge,
this is the first attempt to make such comparative experiment. Based on the recent
study by [78], [43], and [126], there are very few classifier ensembles which have
been employed in intrusion detection (see Table 3.1). Secondly, most experiments are
conducted using obsolete data set KDD Cup 1999 which yields biased result as many
redundant records exist, whilst in this experiment we use data sets obtained from
cross-domain applications. Thirdly, we studied the feature selection technique using
PSO [84], which has been underexplored in the previous works. Fourthly, it analyzes
the performance of classifier ensemble applied to wireless network, in particular we
emphasize both normal and attack traffic to highlight possible attack patterns on

802.11 network. Fifthly, as we conduct comparative assessment of multiple classifiers
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in multiple domains, we evaluate the classifier significance using the parametric two-

matched samples ¢ test, which is pivotal in evaluating learning algorithms.

3.3 Methodology

In this section we are going to describe research methodology based on feature re-
duction and classifier ensembles. It includes methods for combining weak classifier,
combination schemes, data sets used in the experiment, and lastly performance met-

rics used for evaluating the classifiers.

3.3.1 Feature Reduction

For attribute evaluator, we adopt CFS which is one of leading feature subset selection
method in machine learning and pattern recognition [48]. The worth of a subset
of attributes is evaluated using entropy and information gain theory. The lack of
computation using information gain is symmetrical uncertainty and biased of feature
with more values. Hence, CFS adopts a coefficient to compensate information gain’s

bias toward attribute with more values and to normalize its value to the range [0, 1].

For search method, PSO is used to search the set of all possible features so that the
best set of features can be obtained [114]. PSO is firstly introduced by Kennedy and
Eberhart [62], is one of computation technique which is inspired by behavior of flying
birds and their means of information exchange to solve the problems. Each particle

in the swarm represents possible solution.

A number of particle is located in the hyperspace, which has random position ¢;
and velocity v;. The basic update rule for the position and the speed is depicted in

Equation 3.1 and Equation 3.2, respectively.
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wilt+1) =i +v(t+1) (3.1)

vi(t+ 1) = wu(t) + erri(pi — x;) + cara(g — ;) (3.2)

Where w denotes inertia weight constant, ¢; and ¢y denotes cognitive and social
learning constant, respectively, r; and 7o represent random number, p; is personal
best position of particle ¢, and finally, ¢g is global best position among all particles in

the swarm.

3.3.2 Approach for Combining Weak Classifiers

In contrast with single classifier which is built using only one learner, classifier ensem-
ble, which as the name implies, is composed using a set of learners and incorporate
them to produce final result. Several schemes for combining weak classifiers can be

briefly described as follows [54].

(i) Parallel. All the weak classifiers are invoked independently, the final results

then are fused with a combination rule to acquire the final prediction.

(ii) Serial. All the weak classifiers are invoked in a sequential way. Inaccurate and
fast classifiers are invoked first and the other, which are computational intensive

and accurate ones are left for the latter phases.

(i) Dynamic classifier selection. This divides a training sets into several partitions.
The performance of final output is measured independently on each partition

so as the best classifier for each partition is determined.

(iv) Multiple stage organization. This is built by a set of classifiers which at each
stage operates in parallel, and their decisions then are fused. A dynamic selector

decides which classifiers are to be activated at each stage.
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In this chapter we focus on the first two approaches which are consistent with the

current trend of classifier ensemble research.

3.3.3 Combination Schemes

Combining weak classifiers might not necessarily outperform the performance of the
best classifiers in the ensemble. Nevertheless, it can minimize the inappropriateness of
choosing the classifiers to be used with new target data [22]. Several different subsets
of the training sets are trained, and each subset produces different error boundaries,
yet the combiner can generate the best decision boundary. In this study, we will

employ the following combination schemes built with heterogeneous classifiers:

1. Bagging. This technique was firstly introduced by [11]. Bagging stands for
Booststrap Aggregating. Bagging adopts parallel paradigm where the base clas-
sifiers are generated in parallel. As the name implies, it applies bootstrap
sampling to obtain the data subsets for training the base classifiers. Moreover,
bagging adopts majority voting strategies for classification. To predict a test
instance, Bagging feeds the instance to its base classifiers and collects all of their
outputs, and the votes the labels and takes the winner label as the prediction.

The Bagging algorithm is summarized as follow [139].

Algorithm 4 Bagging Algorithm

Input: Data set D = {(x1,11), (2, y2), ..., (Tm, Ym) }; Base classifier ;
Number of base classifiers T'.

Process:

1. fort=1,...T:

2. hy =¢(D, Dys) %Dy is bootstrap distribution

3. end .

Output: H(z) = argmax Y I(h(z) =y

2. Boosting. Unlike Bagging, it adopts sequential ensemble methods where the
base classifiers are generated sequentially. Briefly, Boosting works by training a
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set of classifiers sequentially and combining them for prediction, where the later
classifiers focus more on the mistakes of the earlier classifiers. General boosting
procedure can be described as follow [139]. Though there are many variants of

boosting [71], in this chapter, we used Multiboost [130].

Algorithm 5 General Boosting Procedure

Input: Sample distribution D;
Base classifier ¢;

Number of learning rounds 7.
Process:

1

2
3
4.
)
6

. Dy = D % initialize distribution
fort=1,..,T:

hy = ¢(Dy); %Train a weak classifier from D,
e = Pup,(he(x) # f(x)); %Evaluate the error hy
Dy = Adjust_Distribution(Dy, €;)

end

Output: H(z) = Combine_outputs({hy(z), ..., hi(z)})

3. Majority voting. As illustrated in Figure 3.1, every classifier votes for a particu-

lar class label, and the final output class label is the one that receives more than
half of the votes, otherwise a rejection option will be given. Let T individual
classifiers {hq, ..., hy} is given and we want to combine h;’s to predict the class
label from a set of [ class label {c;, ..., ¢}. It is assumed that for an instance z,
the final outputs of the classifier h; are given as an [-dimensional label vector
(hi(x), ..., ht(x))T, which RhJ(z) is the output of h; for the class label ¢;. Then,
h!(x) € {0,1} which takes value one if h; predicts ¢; as the class label and zero

otherwise. The output class label of majority voting is expressed as follow [139].

T T
¢j if ohi(x) > 5 30 3 hi(x)
i=1 =1

H(z)=a(z) = k=1i (3.3)

rejection
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F1GURE 3.1: Classifier ensemble using majority voting

4. Stacking. As shown in Figure 3.2, stacking adopts the concept of meta-classifier
(level-1 classifier) to combine the individual output of the base classifiers (level-
0 classifiers). Though we can choose any classifiers as a level-1 classifier, how-
ever, prior study unveiled that stacking with linear regression (LR) has shown
good performance in many application domains. In order to avoid over-fitting,
cross-validation procedure is often recommended to generate the level-1 classi-

fier model. A general Stacking procedure can be summarized as follow [139].

Algorithm 6 General Stacking Procedure
Input: Data set D = {(x1,y1), (T2, Y2), -, (Tm, Ym) }; Level-0 classifiers ¢, ..., ¢7;
Level-1 classifier ¢;
Process:
1. fort=1,....T:
2. hy=¢g(D)
. end
.D'=0
.fori=1,...m:
fort=1,....T:
Zig = ht(%’)?
end
9. D/:D/U<(ZZ‘1,...,Z7;T),:I/7;);
10.end
11.0 = ¢(D');
Output: H(z) = h'(hi(z), ..., hy(x))

0 N O U w
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FI1GURE 3.2: Classifier ensemble using stacking

3.3.4 Base Classifiers Used in the Experiment

As it has been mentioned previously, we choose RF [12], DT [96], LR [75], F'T [40],
and CART [77] as base classifiers. These learning algorithms are chosen since they are
widely used in many domains and show their good accuracy performance. In addition,
the heterogeneity of base classifiers are also taken into account to get the better final
prediction. We set the same parameters, either as a part classifier ensemble or as a

single classifier. We briefly discuss the aforesaid base classifiers as follows.

(i) Random Forest. This generates a number of trees. Random trees are grown
without pre- or post-pruning, which contributes to their diversity. At each
node, the feature to split upon is chosen from a randomized split of the original
feature. Classification accuracy is gained some increase since the diversity of
the trees. There are only two parameters in RF, i.e. number of trees and the
number of variables to try at each split. Because selecting large number of trees
leads to reduce the performance of ensemble, we consider the number of trees
is 10 and set the number of variables to the square root of the total number of

predictors.
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(i)

(i)

Decision Tree. The classifier generates tree from root to nodes in top-down
manner. The selection of the feature for a node is based on the impurity of
the distribution of the class label. The impurity can be measured in different
way, e.g. entropy-based and Gini index. In order to avoid over — fitting
in the training set, it is recommended to apply pruning strategy in order to
generalise the tree generated by generating sub tree during the growing stage.
The two main alternatives for constructing trees are the ID3 algorithm and the
(C4.5 algorithm, however, in this experiment, we use C'4.5 algorithm which is
the most renowned tree construction algorithm among the machine learning
techniques. There are several parameter in C4.5, i.e. the parameter to test the
effectiveness of post-pruning (C'), the number of fold (n) which determines the
amount of data used for reduced-error pruning, and the minimum number of
instances per leaf (I). We set these parameters as C' = 0.25, n = 3, [ = 2, and

pruning is applied.

Logistic Regression. This is based on logistic function, which estimates the
model that must lie in the range between zero and one. The model is designed
to describe a probability, which is always some value between zero and one. We
use multinomial logistic regression with a ridge estimator. Ridge parameter is
used to maximised the penalised log-likelihood and we set this value is 1.0E —8.
Also, BFGS update is determined instead of gradient descent in order to get

the faster training.

Functional Tree. This combines a univariate decision tree with a linear function
by means of constructive induction. Decision trees are able to use decision nodes
with multivariate tests, and make predictions using linear functions. Multivari-
ate tests are performed when growing the tree, while functional leaves are built
when pruning the tree. There is only one parameter for FT, i.e. number of
instances (V) in which a node is considered for splitting. The value of N is set

to 15.
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(v) Classification and Regression Tree. The classifier is a tree-constructing tech-
nique which identifies splitting variables based on an exhaustive search. It has
a number of advantages over other classification methods i.e. it can handle nu-
merical data that are highly skewed and it has sophisticated method for dealing
with missing variables. For CART, there are two parameters, i.e. the number
of folds in the internal cross-validation (f) and the minimal number of observa-
tions at the terminal nodes (t). We considered f and ¢ are 5 and 2, respectively.
Furthermore, heuristic process for binary split of nominal attributes and the

pruning strategy are used.

3.3.5 Data set

KDD Cup 99 data set has been widely used for intrusion detection [124]. It is con-
siderably accepted as a standard data set for benchmarking. However, the data set
has inherent problems due to the synthetic characteristic of the data. For this rea-
son, we considered to use NSL-KDD data set since it does not include redundant
instances which lead the classifiers to produce biased result. The data set possesses
41 attributes and one class label attribute. The full NSL-KDD training set contains
125927 instances, which is divided into two classes, e.g. attack class (58630 instances)

and normal class (67343 instances).

GPRS (Grupo de Pesquisa em Redes e Seguranga) data set is proposed since the
number of available data set specific to wireless networks is quite limited [129]. Tt
is deployed based upon the intrusion detection on the IEEE 802.11 environment. It
consists of two distinct network topologies, e.g. WPE/WPA and WPA2. Either
WPE/WPA or WPA2 data set possesses the same 15 attributes and 1 class label. In
this experiment, we consider full training WPE/WPA set which consists of 2 classes,
i.e. normal class (6000 instances) and attack class (3600 instances). The full training

WPA2 set contains 4500 instances of normal class and 3000 instances of attack class.
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3.3.6 Evaluation Metrics

All classifier ensembles are evaluated using performance metrics, i.e. average accuracy,
precision (also known as detection rate), recall (also known as sensitivity), and F'1
score. We considered to employ these performance metrics since they have been taken
into account in the previous related studies (see Table 3.1). These evaluation metrics

are briefly visualised as follows.

TP+TN
A A = 3.4
verage ACraty = o p y FP f FN + TN (3.4)
TP

EreciSio & s&——=—— .

FACYING AT (3.5)
T
Recall = m—m (36)
2TP

F1 = .

21 PR +— F P (37)

Where T'P is the number of instances correctly identified as belonging to the normal
class, F'P or Type I error is the number of instances incorrectly identified as belonging
to the normal class, TN is the number of instances correctly identified as belonging
to the attack class, and F'N or Type II error is the number of instances incorrectly

identified as belonging to the attack class.

3.4 Result and Discussion

3.4.1 Result of Feature Selection

In this section we presents the result of feature selection using CFS as feature eval-
uator, whilst PSO as search method (CFS+PSO). We only apply feature selection
for NSL-KDD data set since it has a large number of features (41 attributes). For
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PSO, we consider the number of particle is 50, inertia weight constant w is 0.33, and
1, ¢o share the same value, at 0.34. After conducting feature selection on NSL-KDD
data set using CFS+PSO, 11 significant attributes are obtained successfully. These
representative features are flag, src_bytes, dst_bytes, logged_in, srv_serror_rate,
same_srv_rate, dif f _srv_rate, dst_host_srv_count, dst_host_srv_dif f_host_rate, dst_

host_serror_rate and dst_host_srv_serror_rate.

3.4.2 Result of Classifier Ensemble

The following section presents an extensive empirical evaluation of classifier ensemble
for IDS. We show that classifier ensembles, which perform well against single classifier,
are the promising methods for prediction task in the realm of intrusion detection task.
In the experiments, we follow five times twofold cross-validation (5z2cv) as suggested
by Demsar [26]. This method divide the data set randomly into two equal parts. One
part is used for training and the other part to test the algorithm, and vice versa.
This procedure is then repeated five times. Table 3.2-3.5 provide the performance
indicators of base classifiers, bagging, boosting, majority voting, and stacking on the

two intrusion data sets.

Firstly, we consider the result of NSL-KDD data set. The implementation of bag-
ging ensemble has shown substantial improvement for DT and CART. Bagging DT
(99.6933%,0.9967%, 0.9975%, 0.9971%) and bagging CART (99.6853%, 0.9967%,
0.9975%, 0.9971%) outperform base classifiers DT (99.6531%, 0.9964%, 0.9971%,
0.9968%) and CART (99.6598%, 0.9964%, 0.9972%, 0.9968%) in terms of all four
performance indicators. Among five base classifiers, the implementation of boosting
has given the biggest improvement for DT (99.7239%, 0.9969%, 0.9979%, 0.9974%).
However, the implementation of stacking (99.2807%, 0.9915%, 0.9950%, 0.9933%)
and majority voting (99.2506%, 0.9911%, 0.9949%, 0.9930%) cannot outperform four
base classifiers, i.e. RF, DT, FT, and CART.
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For the GPRS-WEP/WPA data set, the implementation of bagging ensemble has
brought slightly improvement for RF, LR, and FT. Bagging RF (99.7247%, 0.9969%,
0.9980%, 0.9974%), bagging LR (91.3520%, 0.8987%, 0.9448%, 0.9211%), and bag-
ging FT (99.5764%, 0.9953%, 0.9968%, 0.9960%) outperform base classifiers RF
(80.4500%, 0.8366%), 0.8540%, 0.8452%), LR (83.3542%, 0.7956%, 0.9893%, 0.8819%),
and FT (86.5458%, 0.8261%, 0.9949%, 0.9026%) in terms of all four performance in-
dicators. In contrast, though the implementation of boosting cannot outperform
all base classifiers, the implementation of stacking (87.6167%, 0.8504%, 0.9745%,

0.9080%) has given the biggest improvement for all base classifiers.

For the GPRS-WPA2 data set, the implementation of bagging has yielded consider-
able improvement for DT, LR, and FT. Bagging DT (92.7440%, 0.9193%, 0.9644%,
0.9413%), bagging LR (85.7307%, 0.8850%, 0.9243%, 0.9035%), and bagging FT
(92.5467%, 0.9180%, 0.9643%, 0.9406%) outperform base classifiers DT (92.7040%,
0.9185%, 0.9647%, 0.9410%), LR (85.0293%, 0.8713%, 0.9344%, 0.9008%), and FT
(92.3413%, 0.9157%, 0.9640%, 0.9392%) in terms of three performance indicators,
e.g. accuracy, precision, and F1. The implementation of boosting yields significant
improvement for DT, LR, and FT. However, among them, FT (92.6240%, 0.9188%,
0.9631%, 0.9404%) receives the biggest improvement. The application of majority
voting (92.7627%, 0.9193%, 0.9647%, 0.9415%) and stacking (92.7493%, 0.9191%,
0.9648%, 0.9414%) also give substantial improvement in terms of all performance

indicators.

For the sake of advance evaluation, we further assess the leverage of classifier ensem-
bles by averaging the performance indicators across three data sets. Figure 3.3-3.6
depict the average value of four performance indicators, e.g. accuracy, precision,

recall, and F1, respectively.

For the average accuracy, stacking perform best (93.2156%), whilst boosting (LR)
performs worst (86.5467%). It is noted that, after the implementation of bagging

and boosting, the performance of base classifiers do not constantly improve, e.g.
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boosting RF (90.7894%), boosting FT (92.6478%), bagging CART (91.3256%), and
boosting CART (91.1139%). However, the implementation of bagging has a bigger

improvement than boosting in term of the average accuracy.

For the precision, stacking performs best (92.0346%). Boosting (LR) performs worst
(85.6538%). Surprisingly, after the implementation of bagging and boosting, the
performance of base classifiers have all improved significantly. It is also noted that
the implementation of bagging has a bigger improvement than boosting in term of

precision (detection rate).

For the recall, bagging (DT) performs best (98.6509%), whilst boosting (RF) performs
worst (93.6221%). After the implementation of bagging, base classifiers show slightly
improvement, whereas after the application of boosting, the performance of base

classifiers do not show significant improvement.

For the F1, the performance result is dominated by stacking (94.7555%), whilst boost-
ing (LR) receives the worst performance than other ensembles. The performance re-
sult of classifier ensembles in term of F1 score are quite similar to those found in the

precision.

Consecutively, we also evaluate the significance of classifier ensembles against base
classifiers using the parametric two-matched samples ¢ test. We considered the null
hypothesis Hy is the average accuracy /precision/recall/F1 of Classifier I and the av-
erage accuracy/precision/recall/F1 of classifier II is the same, i.e. the expected dif-
ference pq is zero (pug=0). The alternative hypothesis H, is their average are not the
same, i.e. the expected difference 114 is not zero (ug # 0). We defined the significance
level, a = 0.05, which corresponds to a confidence level of 95%. The improvement
column shows the relative improvement that Classifier 11 gives over Classifier 1. Table

3.6 depicts the summarization of the results.

From the Table 3.6, it can be seen that classifier ensembles offer slightly improvement

for the five base learners in terms of accuracy. Stacking yields the best improvement

43



Chapter 3. An extensive empirical evaluation...

(7.744%) over the base learner LR. For precision, stacking also offers best improvement
(7.578%) over the single classifier LR. In term of recall, majority voting yields the best
improvement over the base classifier RF. Moreover, for the F1, stacking also yields
the best improvement over the base classifier RF. It is also noted that the results
oppose the previous study [30] which stated that the lack of performance stability
of LR when it is placed in the ensemble. Moreover, the implementation of bagging
and boosting cannot outperform CART in terms of three performance indicators, e.g.

accuracy, recall, and F1.

3.5 Conclusion

Classifier ensemble has brought significant improvement over the base classifier. In
this study, we carry out a comparative assessment of classifier ensemble, e.g. bagging,
boosting, majority voting, and stacking based on five base classifiers, e.g. RF, DT,
LR, FT, and CART. We have applied the classifier ensembles to two cross-domain
intrusion detection data set, e.g. network intrusion data set (NSL-KDD) and wire-
less intrusion data set (GPRS). From the experimental result, it can bee seen that
classifier ensemble is the promising method for intrusion detection systems. In par-
ticular, our experiment reveal that bagging performs better than boosting in terms
of four performance indicators, i.e. accuracy, precision, recall, and F1. Moreover,
an interesting result also can be pointed out is after the implementation of bagging
or bagging, the performance of CART cannot outperform base classifier in terms of
three performance indicator, i.e. accuracy, recall, and F1. Among classifier ensem-
bles, stacking is powerful method for IDS since it yields the best performance in terms

of accuracy, precision, and F1.
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Chapter I

Tree-based Classifier Ensembles for Early
Detection Method of Diabetes: An

Exploratory Study

4.1 Introduction

Diabetes has become a critical health issue in the recent decades. It is one of the
most prevalent disease which could be found in almost all countries [105]. One factor
that contributes significantly to the present escalation of people with diabetes is
unhealthy lifestyle. It leads to increase obesity that might raise the risk of having
diabetes. Type-2 of diabetes mellitus is reported as a majority cases which constitutes
more than 95% of the total cases. Moreover, T2DM usually appears at the age of
40; notwithstanding, it might be found in the children with the obesity problem [45].
Detection of T2DM is not straightforward due to the false diagnosis and treatment.
Hence, many researchers attempt to propose an early detection method of diabetes

using machine learning techniques [112].

In this big data era, a large volume of data is generated and machine learning has be-

come an imperative tool to analyze the complexity of the generated data. A plethora
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of techniques have been applied for data analytic in medical diagnosis, including sin-
gle classifier and classifier ensemble [25], [35]. When having single classifier might not
produce good performance, the fusion of them is likely to have better prediction by
forming a pool of several classifiers. The such approach is so-called classifier ensemble
or ensemble learning which is still the focus intense research in the realm of machine
learning [133]. Most of the previous studies state that classifier ensembles are able
to improve the performance when compared with single classifier in the ensemble.
Moreover, it might counteract to choose worst classifier, particularly when having

small training data set [80].

Ensemble of classifiers have been already utilized for DM detection and diagnosis (see
Table 4.1). We do not consider to include single classifiers algorithms, i.e. support
vector machine [52] [112], neural network [52], decision tree (C4.5) [52] [113], and
so on. Instead, we only emphasize the implementation of classifier ensembles which
are yet to discover in the literature. Stacking of neural network and support vector
machine is proposed by [142]. The publicly available data set, so-called Pima Indian
diabetic data set [109] is employed for testing the proposed method. The author
declares that the combination of the two classifier leads to better results than using
a single classifier SVM or NN. It yields 88.04% which is the best result with regard
to the other classification algorithms. Work in [113] recommends AdaBoost.M1 al-
gorithm [37] to enhance the detection performance of SVM, C4.5, and naive bayes.
Diabetes data set taken from a hospital in Indonesia (RSMH) is utilized for classifica-
tion analysis. The experimental results show that SVM classifier is the top performer

followed by boosting (SVM) in terms of accuracy metric.

Ensemble of AdaBoost.M1 with random committee to predict the type of diabetes
from clinical and personal data is proposed in [3]. A data set comprises 18 attributes
and 100 records is acquired from local hospital. The proposed classifier offers 81% of
predictive accuracy which can be further improved by adding more records to the data

set. By using the two data sets, i.e. RSMH and PIDD, the authors in [141] suggest

46



Chapter 4. Tree-based classifier ensembles for early...

an improved detection method of diabetes using multiple classifier system based on
dynamic weighted voting scheme (MFWC). MCS is composed by five classification
algorithms, i.e. SVM, naive bayes, C4.5, logistic regression , and NN. Although other
methods perform differently on those two data sets, MFWC outperforms all other
methods on both data sets. Compared with other fusion methods, the proposed
method is about 5% better than majority voting, decision profile matrix, MCS using

L-GEM (ML-GEM).

Moreover, a three-layer ensemble framework based on majority voting ensemble tech-
nique, called HMV is proposed [8]. It is built in order to avoid the bias result due to
unbalanced classes that commonly exist in DM data sets. The framework is evaluated
on two data sets, i.e. PIDD and Biostat Diabetes Data set (BDD). The results indi-
cate that HMV achieves the highest prediction accuracy for both data sets. It yields
performance accuracy of 93% and 77.08% for BIDD and PIDD data set, respectively.
An almost similar framework of diabetes detection, called enhanced bagging and op-
timized weighting (HM-BagMoov) is proposed by [7]. By using two data sets, i.e.
PIDD and BIDD, the performance of the HM-BagMoov is then evaluated in terms of
accuracy metric. The authors claim that the proposed framework has achieved the
highest prediction accuracy for both data sets when compared with the state of the
art techniques. The HM-BagMoov reaches 77.21% accuracy for PIDD and 93.07%
for BDD data set, respectively.

A recent work of DM detection method using committees of neural network-based
classifiers is suggested by [32]. The two proposed ensembles are relied upon two base
classifiers, i.e. multilayer perceptron and cascade-forward back propagation network.
The first ensemble is generated using a pool of 16 different MLPs, which each classifier
member is varied according to the number of hidden neurons and number of training
epochs. Majority voting is used to combine the final class prediction of each classifier.
The proposed classifier yields 95.31% accuracy on PIDD data set which outperforms

the best individual classifier. The second ensemble is constructed using identical
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settings, yet CFBN is employed as base classifier. It gives 96.88% accuracy when
compared with the best individual classifier in the pool. Notwithstanding the results

are superior, validation method used in the experiment are not clearly mentioned.

The existing works, however, have several limitations as follows:

(i) Most studies use one particular ensemble scheme for DM detection where other
ensemble schemes are still unexplored. It is necessary to investigate the strate-

gies of using different ensemble schemes to see their performance behaviors.

(ii) Most studies only consider one particular validation method either tenfold cross-

validation (10cv) or hold-out.

(iii) Most studies do not examine the performance difference between classifier en-

semble and base classifier in the ensemble.

(iv) Most studies do not undertake statistical significant test to prove of significance
of the results. Even though t-test has been taken into account as in [141], one
should be kept in mind is ¢-test is very conservative and has a low power so as

several significant tests are much sought-after.

To the best of our knowledge this is the first attempt of employing several ensemble
schemes for DM prediction since most of the previous studies have focused either on
only one particular ensemble or single classifier as presented in [52]. To provide a
state of the art review of ensemble learning algorithms for DM detection, this chapter

has several following contributions that lie in different viewpoints:

(i) Eight tree-based machine learning algorithms, i.e. classification and regression
tree [13], decision tree (C4.5) [97], reduced error pruning tree [98], random tree
[12], naive Bayes tree [66], functional tree [40], best-first decision tree [106],
and logistic model tree [73] are involved as a base classifier in various ensemble
schemes, i.e. bagging [11], boosting [37], random subspace [53], DECORATE
[81], and rotation forest [99];
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(ii) All classifiers are evaluated on the three real-world data sets, i.e. PIDD [109],
RSMH [113], and Tabriz [52];

(iii) This chapter provides repeated cross-validation technique, i.e. ten times of
fivefold cross validation (10 x 5cv), which is better than one round of 10cv so

over-fitting or bias results could be evaded; and

(iv) We conduct a thorough benchmark by using statistical significance tests to

assess the performance differences among classifiers.

4.2 Materials and Methods

4.2.1 Data sets

In the following section, we explain the three real-world data sets, e.g. PIDD [109],
RSMH [113], and Tabriz data set [52]. Table 4.2 presents the details of data sets,
where also can be found in the previous works [113], [141], [52]. We normalize all data
sets into csv format without feature selection /reduction. All data sets are normalized

in order to make sure that classifiers can handle the data for later processing.

4.2.2 Classifier Ensembles

In this section, we briefly discuss five renowned classifier ensemble techniques such as

bagging, boosting, random subspace, decorate, and rotation forest, respectively.

4.2.2.1 Bagging

Bagging technique was firstly introduced by [11]. It stands for Booststrap Aggregat-
ing. It adopts parallel paradigm where the base classifiers are generated in parallel.
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TABLE 4.2: Description of data sets

Data set PIDD [109] RSMH [113] Tabriz [52]
Number of instances 768 435 2536
Number of attributes 8 11 13
Attributes Number of times Plasma insulin Sex
pregnant
Blood pressure  Fasting  blood Age
sugar
Plasma glucose Body mass Height
concentration
Triceps skin fold Blood pressure Weight
thickness
Two-hour in- Instant  blood BMI
sulin sugar
Body mass Age Family history
of diabetes
Diabetes pedi- Diabetes history History of preg-
gree nancy
Age Family history History of gesta-

Hyperlipidemia
Smoker

Gender

tional diabetes
History of
aborted baby
History of high
blood sugar
History of use

drugs for high
blood pressure
Systolic  blood
pressure
Diastolic  blood
pressure

As the name implies, it applies bootstrap sampling to obtain the data subsets for
training the base classifiers. Moreover, bagging adopts majority voting strategies for
classification. To predict a test instance, Bagging feeds the instance to its base clas-
sifiers and collects all of their outputs, and the votes the labels and takes the winner

label as the prediction. The bagging algorithm is summarized in Algorithm 7 [71]

which supplies an explanatory note for each step as compared to Algorithm 4.
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Algorithm 7 Bagging Ensemble

Training: Given is a labeled data set Z = {21, ..., 2n}

1. Choose the ensemble size L and the base classifier model.

2. Take L bootstrap samples from Z and train the classifiers Dy, ..., D, one classifier
on each sample.

Testing: For each new object

1. Classify the new object x by all classifiers Dy, ..., Dy,.

2. Taking the label assigned by classifier D; to be a vote for the respective class,
assign to x the class with the majority votes.

Return the ensemble label of the new object.

4.2.2.2 Boosting

Unlike bagging, boosting adopts sequential ensemble methods where the base classi-
fiers are generated sequentially. Briefly, boosting works by training a set of classifiers
sequentially and combining them for prediction, where the later classifiers focus more
on the mistakes of the earlier classifiers. General boosting procedure can be described
as the following Algorithm 8 [71]. For a comparison, please refer to Algorithm 5.
Though there are many variants of boosting [71], in this chapter, we used Adaboost

[36] which is the most influential boosting algorithm in research community.

Algorithm 8 Boosting Ensemble
Training: Given is a labeled data set Z = {z1,..., 25}
1. Choose the ensemble size L and the base classifier model.
2. Set the weight w' = [wy, ..., wy], w; € [0, 1],2?[:1 w; =1
3. Fork=1,...,L

a. Take a sample S from Z using distribution w
b. Build a classifier D; using training set Sk
c.
d
(i
(i

k

Calculate the weighted ensemble error () at step k

. If (ex) = 0, reinitialize the weights w” to 3 and continue.

) Else if ¢, > 0.5, ignore Dy,

i) else, calculate f = 7= - and update the weight w
4. Return D = Dy, ..., Dy and f4, ..., BL.
Testing: For each new object
1. Classify the new object x by all classifiers Dy, ..., Dy.
2. Calculate the support for class wy, by p(z) = >-p, (1), ln(é)
3. Choose the class with maximum support as the label for x

Return the ensemble label of the new object.

k1
J
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4.2.2.3 Random Subspace

Random subspace is firstly introduced by [53]. It uses different feature subsets to train
the ensemble members [71]. This method is the leading role in many applications such
as cancer diagnosis and fMRI data analysis, particularly application which has large
number of features (high dimensional data). The procedure of random subspace is

detailed in Algorithm 9.

Algorithm 9 Random Subspace

Training: Given is a labeled data set Z = {z1, ..., 2y}, each object is described by
the features in the feature set X = {Xy,..., X,,}

1. Choose the ensemble size L, the number of features d (d < n), and the base
classifier model

2. Take L samples of size d in X, train classifier D1, ..., Dy,

Testing: For each new object

1. Classify the new object = by all classifiers Dy, ..., Dy, for classifier D;, use only the
respective features

2. Taking the label assigned by classifier D;, assign to x the class with the majority
vote

Return the ensemble label of the new object.

4.2.2.4 DECORATE

A meta-learner DECORATE (Diverse Ensemble Creation by Oppositional Relabeling
of Artificial Training Examples) is proposed by [81]. It uses an existing strong clas-
sifier (one that provide hight accuracy on the training data) to construct an effective
diverse committee in an iterative manner. It is the only ensemble that uses artificially
built examples to improve generalization accuracy. At each iteration, some artificial
samples are randomly generated and adding it to the original training data D in order
to build a new ensemble member C;. The main steps of DECORATE meta-learner
algorithm are listed in Algorithm 10.
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Algorithm 10 DECORATE

Input:

BaseLearn: a base learning algorithm;

Dy,: the original training set, Dy, = {(z1,y1, ..., (TN, yn) };

R: the proportion of artificial training set with respect to Dj,;

M: the desired ensemble size;

I: the maximum iteration time;

Training:

- Initialization

1. 7 =1,iters = 1;

2. C; = BaseLearn(Dy,);

3. initialize the ensemble, C* = {C;};

4. compute the training accuracy of C*: Acc = + S LI(CH () = 1),
- Iteration process

while ¢+ < M and iters < I

5. generate | N * R| artificial training examples Dyt eram_i according to distribution
characteristic of Dy, ;

6. label each example in D¢ cram_i, Which assigned class labels differ maximally from
those predicted by the C*;

7. add the labeled artificial training data D, ; to the original training set D,
Daug,i = Dyrei U Dtr;

8. train a classifier on the augmented training set, C; = BaseLearn(Dgyg.;);

9. put the generated classifier into the current ensemble, C* = C* U {C;};

10. based on the original training set Dy, compute the training accuracy Acc of the
C* as in step 4;

11. if Acd > Ace;

12. i=1+1, Acd = Acc;

13. Else

14. C*=C*\ {C;};

15. iters = iters + 1;

End while

4.2.2.5 Rotation Forest

Rotation forest depends upon unstable classifiers, i.e. decision tree regarding rotation
of the space. It emphasize on the idea that diversity can be implemented without
sacrificing either data objects or features. The potential accuracy loss of the base
classifiers is counterbalanced by increasing diversity. The training and testing of the

rotation forest is shown in Algorithm 11.
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Algorithm 11 Rotation Forest
Training: Given is a labeled data set Z = {z1, ..., 2y}, each object is described by
the features in the feature set X = {Xy,..., X,,}

1. Choose the ensemble size L, the number of features K, and the base classifier
model

2. Forv=1...L

(a) Prepare the rotation matrix R

i. Split feature set X into K subsets: S; ;

ii. For j =1...K

- Let Z; ; be the data set for the features in \5; ;

- Eliminate a random subset of classes from Z;

j» Tesulting Z;j

- Select a bootstrap sample from Z;j, of size 75% of number of objects in Z;ﬁj, denote
by Z, ; )

- Apply PCA on Z; ; and store in a matrix C; ;

iii. Arrange Cj;, for j = 1...K in a rotation matrix R;

iv. Construct R} by rearranging the rows of R; so as to match the order of features
in X.

(b) Build classifier D; using ZR{ as the training set, with the given class labels
Testing: For each new object «

1. For i = 1...L, calculate the transformed object y = xR{ and run it through
classifier D;

2. Calculate the confidence for each class, w;, by the average combination method
3. Assign x to the class with the largest confidence

Return the ensemble label of the new object.

4.2.3 Base Classifier Algorithms

We chose five different machine learning algorithms as base classifiers. Notwithstand-
ing, a particular ensemble method such as rotation forest recommends decision tree
as the base classifier model, we will observe the behaviour of ensemble schemes with
different base classifiers. We consider the same learning parameters for each classifier
either as a single classifier or as the member of ensemble. We briefly discuss the eight

base classifiers used in our experiment as follows.

(i) Classification & regression tree [13]. The classifier is a tree constructing tech-

nique which identifies splitting variables based on an exhaustive search. It has
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(i)

a number of advantages over other classification methods i.e. it can handle nu-
merical data that are highly skewed and it has sophisticated method for dealing
with missing variables. For CART, there are two parameters, i.e. the number
of folds in the internal cross-validation (f) and the minimal number of observa-
tions at the terminal nodes (¢). We considered f and ¢ are 5 and 2, respectively.
Furthermore, heuristic process for binary split of nominal attributes and the

pruning strategy are used.

Decision tree (C4.5) [97]. It constructs a tree in which internal nodes and leaf
nodes denote attributes and class labels, respectively. Gain ratio is used for
attribute selection whilst heuristic formula is used to estimate error rates. In
this chapter, C4.5 algorithm is used as base classifier because it is the currently

most popular tree construction algorithm in the machine learning area.

Reduced error pruning tree [98]. It is a fast decision tree learning algorithm
which tree is built using the information gain with entropy. It takes reduce error
pruning in order to minimize the error from the variance. We set the parameter
of the algorithm as follows. The minimum total weight of the instances in a
leaf is 2, the amount of data used for pruning (folds) is 3, and tree pruning is

applied.

Random tree [12]. It is different with the standard tree training in feature

splitting, which is chosen from a random subset of the original features.

Naive Bayes tree [66]. It is a hybrid approach that incorporate the advantages
of decision tree and Naive-Bayes. The final decision tree is built with univariate
splits at each node, but with Naive-Bayes classifiers at the leaves. The decision-
tree segments the data and each segment of the data, represented by a leaf, is
described through a Naive-Bayes classifier. No parameter setting is required for

this algorithm.
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(vi)

(vii)

(viii)

Functional tree [40]. This combines a univariate decision tree with a linear
function by means of constructive induction. Decision trees are able to use
decision nodes with multivariate tests, and make predictions using linear func-
tions. Multivariate tests are performed when growing the tree, while functional
leaves are built when pruning the tree. There is only one parameter for FT, i.e.
number of instances (/N) in which a node is considered for splitting. The value

of N is set to 15.

Best-first decision tree [106]. The standard C'4.5 expands nodes in depth-first
order, while in BF'T the best node is expanded first. The best node is the
node whose split leads to maximum reduction of impurity, i.e. Gini index and
information. We set the number of folds in internal cross-validation is 5, Gini

indexed is used, and post-pruning strategy is applied.

Logistic model tree [73]. It is similar to naive bayes tree, but logistic regression
function is used at the leaves of the tree. We consider the use of logitboost
algorithm as the regression function, the number on boosting iteration is cross-
validated, and the minimum number of instances at which a node is considered

for splitting is 15.

4.2.4 Validation Method and Evaluation Measure

Regarding validation method, we chose ten times of fivefold cross-validation (10 x 5cv)

[28].

It is conducted through ten repetitions of a 5cv, which 10 train and 10 test

partitions are obtained at 20%. This provides random variation in the selection of the

test data by using non-overlapped train-test subsets. Each subset of the test comprises

samples which does not appertain to other subsets so it avoids the experiment result

is conducted by chance.
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The evaluation measure of our experiments is acquired from the established standard
metrics in machine learning. This metric is the area under receiver operating char-
acteristic curve which is commonly used in medical decision making and currently
has been progressively employed in machine learning [33]. It has value between 0
and 1.0. No classifiers should have the value of 0.5 which means that the classifiers

performance are better than random guessing. AUC is computed as follows:

L rp FP
AUC = d 4.1
/0 TP+ FN FP+TN (4.1)

where TP is true positives, FN is false negatives, TN is true negatives, and FP is false

positives.

4.2.5 Statistical Significance Test

To provide a detailed comparative study among classifiers, one must use statistical test
to prove that the differences among classifiers are significant [42]. The Friedman test
[39] is utilized to assess whether the differences between the classifiers in terms of AUC
measure are significant [26]. It is a non-parametric test equivalent to the repeated-
measures ANOVA. We state the null hypothesis (Hp) is that all the algorithms are
equivalent and alternative hypothesis (H4) implies the existences of performance
difference among classifiers. Following the recommendation of [26], a post-hoc test is
used in order to find whether the control classifier depicts statistical differences with
respect to the remain of classifier into the comparison. The Friedman test ranks the
classifiers for each data set which the best performing classifier receiving the rank 1,

the second best rank 2, and so forth. The Friedman statistic is defined as:

>0
oy N
||

1[?]11 {ZRZ‘ K+ KK +1)° (4.2)
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where N denotes number of data sets (3 in our case), K denotes the number of
classifier algorithms to be compared (6 in our case), and the average rank of algorithms
is R; = % va r{ . The x% is distributed according to F-distribution with K — 1

degrees of freedom.

For further comparison, we conduct post-hoc test using Bonferonni-Dunn test [31]
to determine which classifiers are significantly different. It must be kept in mind
that Dunn test originally used Bonferroni adjustment od p—values so it is usually
referred as the Bonferonni-Dunn test. Two classifiers are significantly different if the

corresponding average ranks differ by at least the critical difference, which is defined

CD = qa/ Gk (4.3)

as:

6N

where the critical values g, are computed using the Studentized range statistic divided

by /2 (please refer to Table B.16 in [138]).

4.3 Result and Analysis

In Figure 4.1 we show the performance average value of all classifiers in term of AUC
measure across three diabetes data sets. We conduct a number of experiments by
varying a base classifier employed for each ensemble method. Thus, in total, we
contrast and benchmark the performance of 48 classifiers for early detection method
of diabetes in term of AUC measure. As shown in Figure 4.1a, among the base
algorithms, LMT is the best performer whilst RT is the worst one. The best imple-
mentation of bagging strategy is achieved by NBT whilst bagging of CART receives
the worst performance. NBT and RT respectively yield the best and the worst one
after the implementation of boosting ensemble. Moreover, except LMT, bagging has
brought a substantial improvement over the base classifiers. The application of boost-
ing has also demonstrated a significant enhancement for 5 base classifiers, i.e. CART,
C4.5, REPT, RT, and BFT.
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TABLE 4.3: AUC value and Friedman average ranking for the base classifiers

CART C4.5 REPT RT NBT FT BFT  LMT

PIDD 0.7405 0.7422 0.7628 0.6696 0.7909 0.7891 0.7047 0.8291
RSMH 0.8903 0.9027 0.8971 0.8926 0.9705 0.9549 0.8972 0.9723
Tabriz 0.9038 0.9078 0.9096 0.8378 0.9294 0.9226 0.9012 0.9353

Average Rank 6.67 4.67 4.67 7.67 2.00 3.00 6.33 1.00

Subsequently, we consider the value of Friedman’s ranks for each classifier model as
a basis of our exploratory study. These values reflects an essential reference about
the performance when several classifier models are contrasted and can be considered
as an order of their performances. The aim of this study is not only to provide a
benchmark of tree-based classifiers either as a single classifier or as a base classifier of
ensemble that are ordered with respect to that rank, but also the differences among
the classifiers are significant. In Table 4.3 we can see the compared values of the
averaged Friedman’s ranks in term of AUC metric for each base classifier. From a
general standpoint, it can be said that the general winner is LMT since it gains the
lowest value in the Friedman’s rank. In the second and third position, we have NBT

and FT, respectively. The worse methods in our experiment RT, CART, and BFT.

With respect to the results depicted in Table 4.4, we can inspect that NBT classifier is
the best performer after the implementation of bagging, boosting, and DECORATE
ensemble. In addition, FT yields better performance after the implementation of
random subspace ensemble. Also, rotation forest with LMT as base classifier has a
good prediction accuracy in term of AUC metric. This result may contradict with

[99] who suggest C4.5 as base classifier of rotation forest ensemble.

In accordance with the result of Friedman rank test, it is meaningful to conduct
statistical analysis using post-hoc test. Bonferonni-Dunn test [31] is chosen as it
is recommended by previous researchers [26]. In this analysis, we select the best
performer as the control method for being contrasted with the other classifiers. Figure
4.2a - 4.2f present the application of post-hoc test using Bonferonni-Dunn test. First

of all, the mean of rank for each classifier is calculated by using Friedman method.
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TABLE 4.4: AUC value and Friedman average ranking for the classifier ensembles

PIDD RSMH Tabriz Average Rank

Bagging CART 0.8069 0.9446 0.9379 6.33
C4.5 0.8094 0.9453 0.9373 6.00
REPT 0.8207 0.9605 0.9401 2.83
RT 0.8022 0.9558 0.9331 7.00
NBT 0.8204 0.9691 0.9413 2.00
FT 0.8193 0.9697 0.9372 4.00
BET 0.8055 0.9512 0.9401 5.50
LMT  0.8154 0.9706 0.9404 2.33
Boosting CART 0.7649 0.9615 0.9327 3.00
C4.5 0.7801 0.9563 0.9321 5.00
REPT 0.7857 0.9589 0.9319 4.67
RT 0.6572 0.9590 0.8286 7.33
NBT  0.7863 0.9636 0.9314 2.67
FT 0.7715 0.9594 0.9297 5.00
BFT 0.7639 0.9605 0.9325 4.00
LMT 0.7618 0.9592 0.9329 4.33
Random Subspace CART 0.8059 0.9661 0.9049 6.00
C4.5 0.7955 0.9650 0.9271 6.00
REPT 0.8125 0.9645 0.9257 5.33
RT 0.7617 0.9662 0.9200 6.00
NBT  0.8105 0.9684 0.9369 3.00
FT 0.8151 0.9715 0.9377 1.33
BFT 0.7995 0.9658 0.9092 6.33
LMT 0.8220 0.9692 0.9337 2.00
DECORATE CART 0.8079 0.9577 0.9084 5.67
C4.5 0.8035 0.9551 0.9301 4.83
REPT 0.8133 0.9568 0.9218 4.67
RT 0.7789 0.9445 0.9295 6.33
NBT  0.8109 0.9603 0.9313 2.33
FT 0.8148 0.9589 0.9270 3.00
BEFT 0.8011 0.9551 0.9130 6.83
LMT  0.8235 0.9632 0.9252 2.33
Rotation Forest CART 0.8253 0.9559 0.9158 6.50
C4.5 0.8216 0.9559 0.9397 4.50
REPT 0.8278 0.9584 0.9342 3.67
RT 0.7932 0.9579 0.9317 6.00
NBT  0.8353 0.9533 0.9318 4.67
FT 0.8285 0.9688 0.9378 2.33
BFT  0.8262 0.9572 0.9203 6.33

LMT  0.8304 0.9704 0.9349 2.00
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FIGURE 4.2: Bonferroni-Dunn graphic referring to the base classifiers and classifier
ensembles
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For each classifier, we add the ranking value of the best classifier (which is related

to the lowest rank classifier, the control classifier) and the critical difference (C'D) of

Bonferonni-Dunn test, then the threshold (denoted as horizontal line in the graph)

can be obtained at each significance level (v = 0.05 and o = 0.01). Hence, if a

classifier’s rank exceeds the threshold line, such classifiers has performed worse than

the control classifier.

From the Bonferonni-Dunn graphics plotted in Figure 4.2, we can remark the findings

as following:

(i)

(i)

(iv)

Bagging (Figure 4.2b): NBT is significantly better than BFT, C4.5, CART,
and RT in both significance levels, i.e. @ = 0.05 and o« = 0.01. The LMT and
REPT are also significantly better than the five remaining methods.

Boosting (Figure 4.2¢): the NBT, CART, BFT, and LMT are significantly
better than C4.5, FT, and RT in both significance levels, i.e. a = 0.05 and o =
0.01. Besides, the NBT, CART, BFT, and LMT are significantly better than
REPT with a = 0.05.

Random subspace (Figure 4.2d): the FT, LMT, and NBT are significantly
better than REPT, CART, C4.5, RT, and BFT in both significance levels, i.e.
a = 0.05 and o = 0.01.

DECORATE (Figure 4.2¢): the result of significant test using Bonferonni-Dunn

indicates an identical result to Random subspace.

Rotation forest (Figure 4.2f): the LMT, FT, adn REPT are significantly better
than the five remaining methods, i.e. C4.5, NBT, RT, BFT, and CART in both

significance levels, i.e. a = 0.05 and a = 0.01.

In a general point of view, it can be concluded that C4.5 and RT classifiers have the

worst performance, regardless of the ensemble method used. It is also crucial to be

64



Chapter 4. Tree-based classifier ensembles for early...

noted that LMT seems to be the best classifier, followed by NBT, and F'T. Comparing
these results with the Friedman average ranking for the base classifiers presented in
Table 4.3 and plotted in Figure 4.2a, the best single classifier also performs the best

when used in an ensemble.

4.4 Conclusion

This chapter thoroughly studies the performance analysis of tree-based machine learn-
ing algorithms, i.e. classification and regression tree, decision tree (C4.5), reduced
error pruning tree, random tree, naive Bayes tree, functional tree, best-first decision
tree and logistic model tree in five different ensemble methods, i.e. bagging, boosting,
random subspace, DECORATE, and rotation forest for early detection method of di-
abetes disease. We have emphasized on benchmarking of several tree-based classifier
models when used to construct ensemble models. The experimental results indicate

us that LMT is the best classifier, regardless of the ensemble method used or not.
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Chapter

An In-depth Experimental Study of
Anomaly Detection using Gradient

Boosted Machine

5.1 Introduction

Anomaly-based IDS aims at capturing any deviation which is different from the nor-
mal network profiles. It possesses an advantage to detect new types of attacks, how-
ever, it suffers from high false alarm rate. In order to detect the new type of attacks,
anomaly-based system depends on how well the model is trained. Once the model

has been trained, it is used to detect new attack pattern intelligently.

Nowadays, anomaly-based system has been received many attractions from researchers
and remains an enormously research topic worldwide. Fundamentally, anomaly-based
IDS attempts to solve a binary classification problem where a learner tries to classify

the network profiles either as normal or malicious with high detection accuracy [114].

Because a well-trained model is an extremely key in the anomaly-based IDS, choos-

ing a good classifier with higher predictive accuracy is much sought-after by security
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experts. There are several approaches to select the best classifiers, including classifier
ensemble; which is very prevalent in the realm of machine learning research. Though
classifier ensembles are quite old now, yet they still have been received many attrac-
tions from machine learning research in the last decade [89], [100]. It combines many
weak learners (base learners) and the outputs of each classifier are fused together

using combiner to create final output prediction [116].

(Classifier ensemble has been intensively employed in intrusion detection and preven-
tion system [117], [122]. Earlier IDS model using weighted ensemble is proposed by
[18]. The model is built and tested on the KDD Cup 99 data set. Classifier combina-
tion approach using majority voting is considered by [87]. Three classifiers, i.e. SVM,
NN, and multivariate regression are chosen as base classifier. The proposed scheme
is applied on the KDD Cup 99 data set and its performance is evaluated based on
accuracy metric. Work in [44] used several combination approach, i.e. min, max,
product rule voting to combine two base classifiers, i.e. k-means and v-SVM. The
performance of the proposed approach is tested on the KDD Cup 99 data set using

two performance metrics, i.e. false alarm rate and detection rate.

Bagging ensemble of two classifiers, i.e. MLP and RBF are suggested by [46] for IDS
using private data set. The classifier performance is assessed using accuracy as a
performance metric. Voting-based ensemble is also recommended by [107] to improve
IDS performance. KDD Cup 99 data set is utilized for building the model and it
is evaluated using several performance metrics, i.e. true positive rate, false positive
rate, precision, recall, and F1 score. Authors in [124] propose a new improved version
of KDD Cup 99 data set, so-called NSL-KDD data set. Several single classifiers
and one classifier ensemble are used to construct a number of classifier models, the
performance of such models are then evaluated on two test sets, i.e. KDDTest+ and

KDDTest-21. They conclude that NB Tree is the best performer.

In [92], the authors propose a discriminative multinomial Naive Bayes classifier, which

uses an effective discriminative parameter learning method. It learns parameters by
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discriminatively computing frequencies from intrusion data set. The proposed classi-
fier is applied on the NSL-KDD data set, whilst 10fold cross-validation is performed
to test the efficacy of the model built during the training phase. It yields 96.5% and
3.0% in terms of accuracy and false positive rate, respectively. An Adaboost ensemble
with GA optimization is proposed by [50]. Unlike traditional Adaboost, it proposes a
GA post optimization procedure to remove the redundancy classifiers. This approach
successfully increase the detection accuracy by 99.57%. However, some metrics are

not reported in this chapter so we cannot assess the classifier’s performance in detail.

In order to reduce the number of features involved in the training process, a feature
selection procedure, i.e. reduced class-dependent feature transformation is proposed
[83]. Beside performing a feature selection, the authors suggest three classifiers, i.e.
DT, MLP, and distance-based classifier to construct classifier models. From their
evaluation experiment on the KDDTest+, DT outperforms MLP and distance-based
classifier. Moreover, the other types of feature selections, e.g. LDA, PCA, and mod-
ified class-dependent feature transformation are examined. Those classifier models
are validated either using full set and reduced set. The proposed method successfully
reduces false positive rate, but the classifiers yield unsatisfactory results in terms of

accuracy metric.

An intrusion detection based on fuzzy classifier is proposed by [68]. Fuzzy classi-
fication by evolutionary algorithms are trained and validated on KDDTrain+ and
KDDTest+ with and without feature selection. The proposed method enhances the
detection performance in terms of accuracy and detection rate. A two-tier classi-
fier and LDA-based feature selection are suggested by [91]. Two classifiers, i.e. naive
bayes and certainty factor voting version of k-NN are involved in the proposed model.
However, this proposed classifier still suffers from higher false positive rate compared

to previous work [68].

A novel tree ensemble classifier called GAR-forest is proposed [61]. It is combined

with symmetrical uncertainty feature selection which offers 85.06% accuracy using 32
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features set. Though it significantly improves detection accuracy, false positive rate
remains higher by 12.2%. The latest approach of building anomaly-based IDS using
classifier ensemble is considered by [63]. Sum rule construction scheme is employed
for combining tree-based classifiers, i.e. NB Tree and random tree. Accuracy metric
is used as performance measure and the proposed scheme is applied on NSL-KDD
data set. The authors claim that their proposed classifier represent the highest result

so far when using hold-out and 10-fold cross validation method.

A new intrusion data set called UNSW-NB15 has been introduced by [85] [86]. The
data set is generated to address several issues, i.e. lack of modern attack and normal
style and a different distribution of the training and testing set. The data set has
brought significant contribution in the purview of intrusion detection research since
the researchers do not merely rely on the existing benchmark data sets, i.e. KDDCup
99 and NSL-KDD. The authors conduct statistical analysis of the generated data
set as well as examining feature correlations. In addition, five classifiers, i.e. DT,
LR, NB, NN, and expectation maximization clustering are employed to evaluate the
complexity in terms of accuracy and FPR rate. The DT classifier performs best

followed by LR, NB, ANN, and EM in term of two performance metrics [86].

Furthermore, since the number of data set specific to wireless environment is quite
limited, the authors in [129] propose a data set which is deployed based on the intru-
sion detection on the IEEE 802.11 environment. It is called GPRS (Grupo de Pesquisa
em Redes e Segurana) which is obtained from two distinct network topologies, i.e.
WPE/WPA and WPA2. Three traditional algorithms, i.e. MLP, RBF, and Bayes
network are used for evaluation. Based on the experimental result, the BN classifier
outperforms other classifiers by obtaining 98.8% of detection rate in the recognition
of normal traffic on WEP/WPA topology. The results show slightly different for the
identification of normal traffic on WPA2 topology. The MLP is the best performer

which reaches 99.1% of detection rate.
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In this chapter, we develop anomaly-based IDS model using GBM [38], which is a
highly effective and widely used tree boosting approach in machine learning research.
The significant difference of GBM over other renowned classifiers, i.e. random forest
[12], DNN [76], SVM [20], and CART [13], [77], [79] is statistically assessed. Finally,
we show the superiority of GBM for anomaly-based IDS by comparing with the ex-
isting techniques in terms of performance accuracy and false alarm rate. Our main

contributions lies in several axes as follows.

(i) Providing a comparative study of GBM applied on three different data sets, i.e.
NSL-KDD, UNSW-NB15, and GPRS data set which are still underexplored.

(ii) Heuristic search using grid method to find the optimal learning parameters of

GBM so better predictive accuracy could be obtained.

(iii) Classifier significance test using Quade test [19], including Quade post-hoc test

for performance comparison among the machine learning algorithms.

5.2 Classification Algorithms

5.2.1 Classifier Ensembles
5.2.1.1 Gradient Boosted Machine

GBM is also known as gradient tree boosting or gradient boosted regression tree [38].
It is built to improve the performance of classification and regression trees [13], which
is one classifier whose classification and regression are at once. GBM is a member
of homogeneous ensembles, where the same type of several weak classifiers (weak
prediction models) are produced to form a prediction model. Figure 5.1 illustrates
GBM model. It grows trees sequentially which later trees rely on the results of
previous trees. The final prediction h(x) for a given sample S is the sum of predictions
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FIGURE 5.1: Illustration of gradient boosted machine [38]

from each tree. Formally, let = is a set of random input variables, x = {z1,...,x,}
and a random output variable y. Using training sample {y, z;}%V, the aim is to get an

approximation F', mapping x to y.

Given a data set with n samples and m features D = {(z;, y;) }(|D| = n,z; € R™ y; €

R), a tree ensemble uses K additive function to predict the final output.

K
& = 0(@) SN ). < 7 (5.1)

k=1
where ' = {f(z) = wy@) }(g : R™ — T, w € R") is the space of CART. The ¢ denotes
the structure of each tree that maps a sample to the corresponding leaf index. 7' is
the number of tree, and f; is an independent tree structure ¢ and leaf weight w. The
decision rules in the trees (q) is used to classify a given sample into the leaves and

calculate the final prediction by summing up the score in the corresponding leaves

(w).

One of the main problem in the tree learning is to find the best split. To solve
this, we employ exact greedy algorithm, as depicted in Algorithm 12. Moreover,
since GBM requires several tuned hyper-parameters, it is necessary not to use the
same parameters on different data sets. Thus, a grid search is used to find the best
parameters for each data set. We employ GBM implemented in H>O package [2] in
R environment.
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Algorithm 12 Exact greedy algorithm for split finding
Input: I, instance set of current node

Input: d, feature dimension

1. gain < 0

2. G+ Zie[ 9i, H < Zie[ hi

3. for k =1 tom do

4. G + O,HL ~—0

5. for j in sorted (I, by xj;) do

6. GL<—GL—I—gj,HL<—HL+hj

7. GR%G—GL,HR%H—HL

8. score <— max(score, Hcﬁ)\ + Hlaﬁ/\ — HGj/\)
9. end

10. end

Output: Split with max score

5.2.1.2 Random Forest

Random forest generates a number of trees and chooses the variables to put into each
model by random selection [12]. The tree is generated to maximum size but it is
not pruned. The strategy on incorporating of various trees resulting good predictive
accuracy and avoiding overfitting. There are commonly two tuning parameters in
RF: the number of of variables to be selected in each node, which is generally kept

constant on all nodes, and the number of trees, that make up the forest.

Compared to other classifiers, RF has several advantages such as lower computational
burden since every single tree is based on fewer variables and easier implementation
in parallel computing manner that can further accelerate the algorithm. For this
experiment, we use large number of trees (500) as recommended by [12]. The max-
imum depth for tree construction is set to 26, whilst other parameters are obtained
using grid search. We employed the proposed algorithm using H,O package [2] on R

environment.
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5.2.2 Single Classifiers

5.2.2.1 Deep Neural Network

Deep neural network or deep learning has been fascinated the researchers recently due
to its remarkable performance in many state-of-the-art applications such as speech
recognition, object recognition and detection, and many other applications. Convo-

lutional neural network is the truly successful deep learning approach [76].

We considered the optimal parameters for deep neural network by performing grid
search. Rectifier is chosen as activation function, 3 hidden layers with 100 nodes
for each layer, p = 0.99, ¢ = 1e-8, learning rate is 0.005, rate annealing is le-6,
regularization [; is Te-5, regularization [y is 8.2e-5, and maximum epoch is set to
1000. We employ successful deep learning implementation in R language, namely

H,0 package [6].

5.2.2.2 Support Vector Machine

Support vector machine is generally used for classification analysis. Given training
vectors x; € R",i = 1,..., in two classes, and a vector y € ! such that y; € 1, —1,

the following quadratic optimization problem is solved.

l
1
mmw,b,ggwtw +C Z & (5.2)
=1
subject to
yi(w'o(z; +0) >1—-§,&>0,i=1,..,1 (5.3)
Its dual is
1
mina§aTQa —ela (5.4)
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subject to

ya=00<0;<Ci=1,.,1 (5.5)

where e is the vector of all ones, C' > 0 is the upper bound, @) is an [ by [ matrix,
Qij = viyi K (24, x;) and K (x;,2;) = ¢(x;)T¢(z;) is the kernel. Training vector x; is
mapped into a higher dimensional space by the function ¢. The decision function is

defined by:

sgn( Z i K (@) + b). (5.6)

SVM allows us to choose several kernel, i.e. linear, polynomial, radial basis function
(RBF), and sigmoid kernel. In this study we choose RBF kernel since it is commonly
used in many applications. The RBF requires a parameter 7 of the Gaussian function.
The cost parameter C' denotes the trade-off between the size of margin and hyperplane
violations. A high C' aims at classifying all training examples correctly by giving more
examples as support vectors. Moreover, it is important to set degree in kernel function
(d). The optimal value of the aforementioned three parameters can be selected by
performing a grid search on C' = [275, 274 ... 215] 'y = [2715 2713 23] and d = [2, 3]
[56]. We set tolerance of termination criterion () is 0.001, coe fo = 1, and no shrinking
is applied. We use a well-known support vector machine library, which is so-called

LibSVM [16] implemented in the caret package of R [70].

5.2.2.3 CART

Classification and regression tree is a tree-constructing technique which identifies
splitting variables based on an exhaustive search. It has a number of advantages over
other classification methods i.e. it can handle numerical data that are highly skewed
and it has sophisticated method for dealing with missing variables. For CART, there
are two parameters, i.e. the number of folds in the internal cross-validation (f) and

the minimal number of observations at the terminal nodes (t). We considered f and
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t are 5 and 2, respectively. Furthermore, heuristic process for binary split of nominal
attributes and the pruning strategy are used. We use CART implementation in R as

rpart [125].

5.3 Experimental Design

5.3.1 Data set

For the experiment, we consider to employ three different data sets, i.e. an improved
version of KDD Cup 99, namely NSL-KDD [124]; UNSW-NB15 [85] [86]; and GPRS
[129).

The NSL-KDD is an improved version of the KDD Cup 99 data set, whilst UNSW-
NB15 is a new publicly available data set. The NSL-KDD possesses 41 attributes
and one class label attribute. The 20% of NSL-KDD training set (KDDTrain+)
contains 25,192 instances, which is composed of two classes, e.g. anomaly class (13,499
instances) and normal class (11,743 instances). It is necessary to make an adequate
comparison by using hold-out (train-test) validation method. For this purpose, we
consider to employ two test sets, i.e. KDDTest+ and KDDTest-21 which are beneficial
to conduct the experiments on the complete data set without performing randomly
chosen of the samples. In addition, our result would be consistent and comparable
with the previous works. The KDDTest+ and KDDTest-21 consist of 22,544 and

11,850 records, respectively.

Besides conducting experiment on the NSL-KDD data set, we also adopt UNSW-
NB15 for evaluation. It comprises 49 attributes and is configured a training set and
testing set, namely UNSW_NB15_Train and UNSW _NB15_Test, respectively. The
number instances in the training set is 175,341 instances and the testing set is 82,332

instances. The training test is composed of two classes, i.e. normal class (56,000
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instances) and anomaly class (119,341 instances). It is worth mentioned that hold-

out (train-test) validation test is also applied on the UNSW-NB15 data set.

Subsequently, GPRS data set is also considered for evaluation. Either WPE/WPA
or WPA2 data set possesses the same 15 attributes and one class label. In this
experiment, we include full training WPE/WPA set which consists of two classes, i.e.
normal class (6,000 instances) and attack class (3,600 instances). The full training

WPAZ2 set contains 4,500 instances of normal class and 3,000 instances of attack class.

5.3.2 Evaluation Metric and Validation Method

Since the performance of all classifiers depends on the parameter setting, we follow
grid search to find the best parameters resulting the best model. Except CART
classifier, the best parameters of GBM, RF, DNN, and SVM are carried out using
grid search. This exhaustively generates candidate from a grid of parameters value
specified by user input. The performance of all classifiers are evaluated in terms
of accuracy, specificity, sensitivity, FPR and AUC measure, which are calculated as

follow.

Accuracy = TP ;ﬁi;ﬁ;_{_ N (5.7)
Speci ficity = % (5.8)
Sensitivity = TPY;_—PFN (5.9)

FPR = FPZ—PTN (5.10)
1
AUC = /0 TPZPFNdFPFJrPTN (5.11)
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where T'P is the number of instances correctly identified as belonging to the normal
class, F'P or Type I error is the number of instances incorrectly identified as belonging
to the normal class, T'N is the number of instances correctly identified as belonging
to the anomaly class, and F'N or Type II error is the number of instances incorrectly

identified as belonging to the anomaly class.

Furthermore, to avoid over-fitting we conducted kfold cross-validation approach, with
k = 10. It splits the data set into 10 parts, which nine parts are used for training and
one part for testing. This process is then repeated 10 times with a different partition
for each fold. All the classifiers’ performances reported in this chapter are the mean

value of 10fold cross-validation.

5.3.3 Statistical Significance Test

To give a thoroughly comparative study, two statistical significance tests, i.e. Quade
test [19] and Quade post-hoc test are adopted. It is essential to use such significance
tests because the tests will prove that the differences among classifiers are significant
[42]. The number of elements (n) denotes the performance result of each classifier in
10fold cross-validation. The Hj is that there are no performance differences among
the classifiers, whereas H, means that there are performance differences among the

classifiers.

Quade test is chosen since it is more powerful than Friedman test in the case of £ < 5
[19], where k is the number of classifiers to be compared. First, the performance
results are ranked within each element to yield R;;. Then, the range in each row
(maximum and minimum value) needs to be calculated and ranked, @;. The scores
are:
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and

Sj - Z Si,j (513)
i=1
The test statistic is computed as,

(n—1)350, 5

F= n k SQ 1 k SQ
Zizl Zj:l i  n Zi:l J

(5.14)

The F is tested against the F-quantile for a given a = 0.05, with degree of freedom,
dfy =k —1,dfy = (n—1)(k — 1), and n is number of data sets (4 in our case).

It is meaningful to conduct Quade post-hoc test to identify the performance dif-
ferences among the classifiers. Quade post-hoc test is calculated using the student

t—distribution as follow.

2”(2?:1 Z]?:1 Sz2 - % Zf:l S?)
|Sz ] SJ| > tl—a/?*,(b—l)(k—l)\/ (n]_ 1)(]2, . 1) ’ (515)

5.4 Result and Analysis

In this section we compare and report the performance result of classifier ensemble
(GBM) applied on NSL-KDD, UNSW-NB15, and GPRS data set. We show that
by employing classifier ensemble, the final ensemble performance is supposed to rise
significantly. Finally, we benchmark the significance of classifier’s performances using
Quade test [19]. Meanwhile, since GPRS data set comprises two sets, i.e. WEP/WPA

and WPA2, it can be said that we have employed four data sets in our experiment.

Figure 5.2 shows the average of performance value for all classifiers in terms of accu-
racy, specificity, sensitivity, and AUC metric over four data sets. It is obvious that
GBM is best performer in terms of two performance indicators, i.e. specificity and
AUC value, whilst SVM is the worst performer in terms of three performance indi-

cators, i.e. accuracy, specificity, and AUC value. For instance, the GBM (97.88%)
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outperforms other classifiers, i.e. RF (97.18%), DNN (97.48%), SVM (91.34%), and
CART (97.38%) in terms of AUC metric. Moreover, Figure 5.3 confirms the superi-
ority of GBM in comparison with other classifiers. GBM yields the lowest value of
FPR by 2.06%, which outperforms RF (2.07%), DNN (8.53%), SVM (15.95%), and
CART (12.61%).

Moreover, in order to make sure that our experimental result is not happened by
chance, we evaluate the significant difference among classifiers using statistical signif-
icant test [42]. For a = 0.05, degree of freedom df; = 4, and dfs = 12, we can get the
value of F' and p—value for each performance measure. Table 5.1 indicates us that
the performance of the classifiers are significantly different (p < 0.05) in terms of ac-
curacy, FPR, and AUC. The performance of the classifier is less significant (p < 0.1)
in term of specificity and not significant (p > 0.1) in term of sensitivity metric. As
the result of Quade test is highly significant, the null hypothesis H, (the performance
of all classifiers are similar) can be rejected and we should accept the alternative

hypothesis H 4.

It is meaningful to conduct Quade post-hoc test so we can make a detail benchmark
among the classifiers. It is carried out by inspecting the p—value of the pairwise
comparisons. First of all, we discuss the performance difference in term of accuracy
measure. As shown in Table 5.2, the classifier’s accuracy differs highly significant
(p < 0.05) to GBM-DNN, GBM-SVM, RF-SVM, and SVM-CART. Other contrast,
i.e. RF-DNN and DNN-CART are less significant (p < 0.1), whilst the remaining
pairs, i.e. GBM-RF, GBM-CART, RF-CART, and DNN-SVM are not significant
(p > 0.1). In addition, the classifier’'s performance in term of specificity metric is
highly significant for GBM-SVM, RF-SVM, and DNN-SVM. Other pairs, i.e. GBM-
RF, RF-CART, and so on are not significant. Surprisingly, there are no significant
differences of the classifier’s performance in term of sensitivity metric. Furthermore,
performance differences in term of FPR metric is highly significant to GBM-SVM
and RF-SVM, whilst others are less significant, i.e. RF-DNN. Finally, the results of
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F1GURE 5.2: The average value of accuracy, specificity, sensitivity, and AUC per
classifier across four data sets

TABLE 5.1: The result of Quade test

Accuracy  Specificity ~ Sensitivity ~ FPR AUC

F 3.5455 2.6782 0.91304 3.3604  3.6914
p-value  0.0394 0.0833 0.4874 0.04591 0.035

Quade post-hoc test in term of AUC indicate us that the two pairs, i.e. GBM-DNN
and GBM-SVM are highly significant, whilst GBM-RF, RF-SVM, and SVM-CART

are less significant.

In order to further evaluate the performance of the proposed approach applied on each
data set, we also compare GBM with the previous published studies using 10fold cross-
validation and hold-out method. The comparison table for these results are shown in

Table 5.5 through 5.8.

First of all, it is clearly seen in Table 5.5 that our proposed model is superior for
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FI1cURE 5.3: The average value of FPR per classifier across four data sets

TABLE 5.2: The p—value of post-hoc Quade test for accuracy and specificity

Accuracy Specificity
GBM RF DNN SVM GBM RF DNN SVM
RF 0.479 - - - 0.635 - - -
DNN 0.019 0.071 - - 0.451 0.775 - -
SVM 0.010 0.040 0.759 - 0.011 0.026 0.045 -
CART 0.420 0.919 0.085 0.049 0.306 0.570 0.775 0.075

TABLE 5.3: The p—value of post-hoc Quade test for sensitivity and FPR

Sensitivity FPR
GBM RF DNN SVM GBM RF DNN SVM
RF 0.35 - - - 0.6877 - - -
DNN 0.28 0.87 - - 0.1056  0.0515 - -
SVM 0.75 0.22 0.17 - 0.0167 0.0078 0.3235 -

CART 0.87 0.28 0.22 0.87 0.3235 0.1750 0.4849 0.1056
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TABLE 5.4: The p—value of post-hoc Quade test for AUC

AUC

GBM RF DNN SVM
RF 0.0978 -
DNN  0.0466 0.6802 - -
SVM  0.0025 0.0679 0.1392 -
CART 0.1169 0.9176 0.6071 0.0563

anomaly detection task applied on the NSL-KDD data set. It outperforms other
similar ensemble classifiers, i.e. Adaboost+GA [50] and Random Tree+NBTree [63]
when using 10fold cross-validation as a validation technique. It effectively improves
detection accuracy while still maintaining lower FPR. Subsequently, for the sake of
completeness, the proposed classifier is evaluated using hold-out (train-test) tech-
nique. Classifier model is validated on each two available validation sets, i.e. KD-
DTest+ and KDDTest-21. Table 5.6 confirms the generalizability of our proposed
approach. It achieves the best accuracy on the two validation sets but a bit suffers
from reducing FPR on the KDDTest+. In addition, our proposed approach improves
detection accuracies by 2.58% and 6.51% on KDDTest+ and KDDTest-21, respec-

tively; in comparison with the most recent work in [63].

Another advantage of the proposed approach over the existing methods is also assessed
on the UNSW-NBI15 data set. Compared with decision tree (DT) [85], it is obvious
that GBM enhances detection performance by reducing FPR significantly either with
cross-validation or hold-out as indicated Table 5.7. In addition to reducing FPR,
GBM also yields performance accuracy by 91.31% when validated with hold-out.
However, in terms of accuracy there is just a minor difference of 0.62% when validated
with 10fold cross-validation. It is also worth mentioned to include the performance
of GBM applied on the GPRS data set. We first discuss the results of WPA2 data
set. As show in Table 5.8, GBM obtains a desirable performance comparing with
multilayer perceptron classifier in terms of two performance metrics regardless of
the validation method used. In contrast to the previous result on WPA2 data set,

in WEP/WPA data set, GBM cannot offer an imposing lower FPR rate compared
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with MLP. However, GBM gains the promising detection accuracy in two validation
methods. Finally, it can be concluded that GBM is a highly promising method for

intrusion detection system, specifically for anomaly detection.

5.5 Conclusion

We proposed an effective anomaly-based intrusion detection system using gradient
boosted machine. The optimum performance of GBM could be obtained by using
a grid search of training parameters. The experiment was carried out using 20%
of NSL-KDD, UNSW-NB15, and GPRS data set with no feature selection. The
proposed approach significantly outperformed random forest, deep neural network,
support vector machine, and classification and regression tree in terms of accuracy,
specificity, sensitivity, and AUC metric. We also conducted statistical tests to measure
the significant difference among the classifiers using Quade test and post-hoc test.
According to the result of statistical tests, it can be concluded that GBM was highly
significant compared to SVM in terms of accuracy, FPR, and AUC metric. Also,
GBM outperformed significantly compared to DNN in terms of accuracy and AUC
metric. Finally, as shown Table 5.5 through 5.8, the proposed classifier depicted the
highest result so far applied on full set of NSL-KDD, UNSW-NB15, and GPRS data

set.
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Chapter

HESTE: Hybrid Feature Selections and
Tree-based Classifiers Ensemble for

Intrusion Detection System

6.1 Introduction

As number of Internet users has been mushrooming in the recent decades, a plethora
of attacks have been proliferated over time. A large number of attacks have been
discovered, but some of them are continuously rising. Intrusion detection systems are
expected to reduce the escalation of such attacks before they cause a certain damage

[116].

The objective of an IDS is to provide the promising protection system in computer
networks. It deals with a security countermeasure that monitoring, detecting, and
repelling any malicious activities over computer networks. It also can be used to evade
the network from being targeted by an attacker such as probe attack that breach the

availability, confidentiality, and integrity of invaluable information sources [115].
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Based on the use of information analysis, IDSs are commonly grouped into two
categories, called signatured-based and anomaly-based intrusion detection system.
Signature-based system generates alarms when a known attacks occurs. It is able
to detect known attacks instantly with a lower false alarm rate. Apart from these
advantages, signature-based system possesses difficulty to detect novel attacks. In a
different manner, anomaly-based system detects the objects that behave significantly
different from the normal profile, thus it is able to detect new types of attack. Nev-
ertheless, anomaly-based system is obstructed by high false alarm rate and even in
a hazardous case, some attackers can use anomaly profile as normal network pattern

to train an IDS, so that it will misidentify malicious profile as normal.

Since anomaly-based IDS can detect novel and unfamiliar attacks, it has remained a
profoundly research topic in the realm of IDS in the recent decades [41]. Anomaly-
based IDS relies on how well the model is trained to predict new future attack pat-
terns. In addition, anomaly-based IDS is also a binary classification problem in
which it attempts to classify network traffic either as normal or malicious with result-
ing higher predictive accuracy while maintaining lower false alarm rate. Specifically,
supervised learning algorithms use labeled instances to create a model and the future

unknown instances can be labeled using the model.

However, with a large number of features, getting a superior classification accuracy
calls for sophisticated computing resources. In the context of modern intrusion de-
tection and prevention, fast detection capability with high accuracy and low false
alarm rate are much indispensable. Hence, fast detection approach could be achieved
using appropriate feature selection technique and high detection accuracy could be
obtained using ensemble of lightweight classifier combination approach which requires

a restricted computational resource.

(Classifier ensemble or multiple classifier system has been widely employed for IDSs
since they have better performance in comparison with single classifier [114]. It is

deployed by incorporating several base classifiers to predict final class output. In this
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chapter we focus on the performance evaluation of tree-based classifiers ensemble,
i.e. random forest, naive bayes tree, logistic model trees, and reduces error pruning
tree using voting combination approach. Classifier significant test is carried out to
measure how much the classifier ensemble is significant by comparing with a single

classifier using the statistical significant test.

6.2 Related Work

Many previous researchers have utilized classifier ensemble for IDSs. The details con-
tribution of each research are presented in this section. We merely consider to include
the implementation of classifier ensemble for anomaly-based intrusion detection which

1s on our current interest.

Earlier work of classifier ensemble for anomaly detection is proposed by [87]. Three
base classifiers, i.e. neural network, support vector machine, and multivariate re-
gression splines are combined to predict a final class using majority voting. The
performance of the proposed approach was evaluated on the KDDCup 99 data set
with an accuracy as a performance metric. The authors also applied feature selection

to reduce the computational overhead while training data set with many features.

Ensemble of decision tree and support vector machine using weighted ensemble ap-
proach is suggested by [93]. Similar to the previous work, accuracy is used as perfor-
mance evaluation and the proposed approach is implemented on the full features set
of KDDCup 99 data set. A classifier ensemble, called Adaboost is used to improve
the performance of decision stump [57]. Two performance metrics, i.e. precision and
false alarm rate are used to evaluate the proposed method on the reduced-features of
KDDCup 99 data set. A product rule combination is proposed by [14]. It is utilized
as the combiner to predict final class prediction in which area under ROC curve is
employed as a performance evaluation metric. This proposed scheme then is applied
on the KDDCup 99 data set which no feature selection is performed.
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Three different classification combination approach, i.e. minimum probability, maxi-
mum probability, and product rule is suggested by [44] to improve the performance of
four base classifiers, i.e. k-means and v-support vector classification. Performances
of classifiers are evaluated using standard KDDCup 99 data set with reduced num-
ber of features, whilst precision and the false alarm rate are considered as evaluation
metric. Classifier fusion using Bagging strategy is suggested by [46]. It is exploited to
incorporate the output of two neural network algorithms, i.e. multi-layer perceptron
and radial basis function as base classifiers. In order to estimate the performance
implementation of the proposed approach, accuracy is considered as a performance

metric and it is applied on the private data set which feature selection is also done.

Voting combiner is adopted in [107] to fuse two base classifiers, i.e. neural network
and decision tree. The experiment is carried out on the full features set of KDDCup 99
data set with several performance metrics, including true positive rate, false positive
rate, precision, recall, and F| measure. The recent work of anomaly-based IDS using
classifier ensemble is proposed by [63]. Two tree-based classifiers, i.e. NBT and
random tree were merged to obtain a better final prediction using sum rule probability.
This work is claimed as the highest result achieved so far using the complete features

of NSL-KDD data set.

To distinguish between our approach and the existing studies, we defined some view-

points of them as follows.

(i) Most studies use old version of KDDCup 99 data set for anomaly detection
where NSL-KDD data set is still underexplored.

(ii) Most studies use one feature selection technique so it is indispensable to choose
the proper feature selection method by hybridizing several combination ap-

proaches.

(iii) Most studies do not examine the performance difference between classifier en-
semble and single classifier in the ensemble.
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(iv) Most studies do not undertake a statistical significant test to prove of signifi-

cance of the results.

Our proposed model is a combination of multiple feature selection techniques and
ensemble of four base classifiers for anomaly-based intrusion detection systems. For
each feature selection algorithm, the performance is measured in term of accuracy
metric of support vector machine [16] classifier. SVM is chosen since it is one of the
prevalent techniques used in the literature. For the experiment, an improved version
of KDDCup 99, called NSL-KDD [124] is used. A hybrid feature selection comprises
three algorithms, i.e. particle swarm optimization [62], ant colony optimization [9],
and genetic algorithm [82] are employed in order to get the most suitable subset of
features. In addition, four classification algorithms, i.e. random forest [12], Naive-
bayes tree [66], logistic model trees [73], and Reduces error pruning tree [98] are
combined using voting rule [71] fusion scheme. The significant results of each classifier

are then assessed using Friedman test [39] and Nemenyi post hoc test [88].

The major pillar of contribution of this chapter lies in several axes:

(i) Hybrid use of feature selection and classifier ensemble simultaneously.

(ii) Comparing the performance of classifier ensemble with base classifier with re-

spect to classification problem in anomaly-based IDSs.

(iii) We show that a voting rule combination approach is the best choice for anomaly-

based IDSs since it gives us a better result compared to the existing ones.

(iv) Considering a thoroughly iterative process in the experiment to choose the best

parameter setting for feature selection.

(v) Providing two statistical significant tests to prove that the differences among

classifiers are significant.
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6.3 Proposed Approach

In this section, we describe the background of feature selection algorithms, base clas-

sifiers, classifiers ensemble, and the proposed model.

6.3.1 Feature Selection Algorithms

The feature selection is the problem of selecting a subset of attributes from a feature
set in order to obtain a precise, compact, and fast classifier performance. For attribute
evaluator, we adopt correlation-based feature selection which is one of the leading
feature subset selection method in machine learning and pattern recognition [48].
The worth of a subset of attributes is evaluated using entropy and information gain
theory. The lack of computation using information gain is symmetrical uncertainty
and biased of feature with more values. Hence, CF'S takes a coefficient to compensate
information gain’s bias toward attribute with more values and to normalize its value

to the range [0,1].

Three different search methods for the attribute selection are describe as follows.

(i) Particle swarm optimization. It is used to search the set of all possible features
so that the best set of features can be obtained [114]. PSO is firstly introduced
by Kennedy and Eberhart [62], is one of the computation technique which is
inspired by behavior of flying birds and their means of information exchange to
solve the problems. Each particle in the swarm represents possible solution. A
number of particle is located in the hyperspace, which has random position ;
and velocity v;. The basic update rule for the position and the speed is depicted
in equation (6.1) and (6.2), respectively.

it +1) = i +vi(t +1) (6.1)
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(i)

vi(t+ 1) = wu(t) + erri(pi — x;) + cara(g — ;) (6.2)

Where w denotes inertia weight constant, c¢; and ¢y denotes cognitive and social
learning constant, respectively, r; and 7y represent random numbers, respec-
tively, p; is personal best position of particle i, and finally, g is a global best

position among all particles in the swarm.

Ant Colony Optimization. It is represented as a graph, which nodes represents
features, with the edges between them denoting the choice of the next feature.
The search of the final feature subset is an ant traversal through the graph where
a minimum number of nodes is visited that satisfying the traversal stopping
criterion [9], [60]. A probabilistic transition rule is used to give an indication
on which features are more informative on the currently selected features. It
denotes the probability of an ant at feature ¢ choosing to travel to feature j at
time ¢:
7 ()" - [1:]°

Dij (t) = Zle]{c [ (O] - [1]? (6.3)

Where £ is the number of ants, JI is the set of ant k’s unvisited features, 7;; is

the heuristic desirability of choosing feature j when currently at feature i and
7,5(t) is the amount of virtual pheromone on edge (7, j). The choice of o and

is determined experimentally.

Genetic Algorithm. 1t is depicted by one chromosome which is a set of the fea-
tures. Gene is a feature that has binary value 1 or 0, which means that there is
or is not a particular feature in the set, respectively. Goldberg strategy is com-
monly used to discover an ideal set of features. The subset evaluator function
with k-cross validation is applied to evaluate the input features. We consider
to set the value of the initial population, maximum number of generations, mu-
tation, crossover probability, k£, and random seed number are 30, 30, 0.01, 0.9,

10 and 1, respectively.
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6.3.2 Base Classifiers

As it has been mentioned previously, we consider four tree-based classifiers as base

classifiers in the ensemble. Random forest [12], Naive-bayes tree [66], logistic model

trees [73], and Reduces error pruning tree [98] are selected since they require less com-

putational resource and have shown better predictive accuracy in many applications

[111].

We set the same parameters, either as a member of ensemble or as a single

classifier. We briefly discuss the aforementioned base classifiers as follows.

(i)

(i)

(iii)

RF. This generates a number of trees. Random trees are grown without pre- or
post-pruning, which contributes to their diversity. At each node, the feature to
split upon is chosen from a randomized split of the original feature. Classifica-
tion accuracy is positively gained due to the diversity of the trees. There are
only two parameters in RF, i.e. number of trees and the number of variables to
try at each split. We consider large number of trees is 1000 and set the number

of variables to the square root of the total number of predictors.

NBT. 1t is a hybrid approach that incorporate the advantages of decision tree
and Naive-Bayes. The final decision tree is built with univariate splits at each
node, but with Naive-Bayes classifiers at the leaves. The decision-tree seg-
ments the data and each segment of the data, represented by a leaf, is described
through a Naive-Bayes classifier. No parameter setting is required for this al-

gorithm.

LMT. It is similar to NBT, but logistic regression function is used at the leaves of
the tree. We consider the use of logitboost algorithm as the regression function,
the number on boosting iteration is cross-validated, and the minimum number

of instances at which a node is considered for splitting is 15.

REPT. 1t is a fast decision tree learning algorithm which tree is built using

the information gain with entropy. It takes reduce error pruning in order to
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FIGURE 6.1: Illustration of classifiers ensemble

minimize the error from the variance. We set the parameter of the algorithm as
follows. The minimum total weight of the instances in a leaf is 2, the amount

of data used for pruning (folds) is 3, and tree pruning is applied.

6.3.3 Classifiers Ensemble

As illustrated in Figure 6.1, the ensemble combines different parameters of all base
classifiers using combination rules. Let T individual classifiers {hy, ..., hr} be given
and we want to combine h;’s to predict the class label from a set of [ possible class label
{c1,...,q}. Tt is assumed that for an instance z, the final outputs of the classifier h;
are given as an [-dimensional label vector (h!(z), ..., hl(z))” which hI(z) is the output
of h; for the class label ¢;. Hence, hi(z) € {0,1} which takes value one if h; predicts

c; as the class label and zero otherwise.

In majority voting, every classifier votes for one class label, and the final output class
label is the one that receives more than half of the votes, otherwise a rejection option
is given. Hence, the output class label of majority voting is expressed as:
e J 1 d k
¢ if Yo hi(x) >33 > hi(x)
i=1 k=11i=1

H(z) = (6.4)

rejection
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6.3.4 The Proposed Model

In this section, a hybrid feature selection and classifier ensemble for anomaly detec-
tion is briefly presented. As shown in Figure 6.2, the proposed model comprises two
stages such as feature selection and classification (modeling). In the first stage, three
feature selection techniques are gathered in order to obtain the most representative
features subset for enhancing the performance of the classification in the classification
(modeling) stage. The three feature selection techniques involved in this stage are
PSO, ACO, and GA. Parameters tuning of all feature selection techniques are per-
formed and the selected feature subset are then applied for SVM classification. The

optimal parameters in this stage are determined by the SVM classification accuracy.

In order to obtain the SVM classification accuracy, a hold-out evaluation method is
adopted in which data set are divided into two parts, e.g. 70% and 30% are used for
training and testing, respectively. In addition to the best selected features, the output
of the first stage is the most appropriate feature selection technique. In the second
stage, four base classifiers, i.e. RF, NBT, LMT, and REPT as well as ensemble of
these base classifiers are used for classification (modeling). The performance of base
classifiers as single classifier and classifiers ensemble are validated using five times of
2-cross validation (5 x 2cv) [28] in terms of two metrics, i.e. accuracy and false alarm

rate.

6.4 Experimental Design

6.4.1 Experimental Setup

The overall performance of classifiers are evaluated in R environment using RW eka
library [55]. The experiment is conducted on a machine with Windows 7, 16GB RAM,
and Intel® CPU 3.5GHz.
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FIGURE 6.2: Proposed model for anomaly detection
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6.4.2 Data set Description

KDD Cup 99 data set has been widely used for intrusion detection [124]. It is con-
siderably accepted as a standard data set for benchmarking. However, the data set
has inherent problems due to the synthetic characteristic of the data. For this rea-
son, we considered to use NSL-KDD data set since it does not include redundant
instances which lead the classifiers to produce biased result. The data set possesses
41 attributes and one class label attribute. The 20% of NSL-KDD training set con-
tains 25192 instances, which is composed of two classes, e.g. anomaly class (13499

instances) and normal class (11743 instances).

6.4.3 Performance Metrics

All classifiers are evaluated using performance metrics, i.e. average accuracy and
false alarm rate (FAR). We considered to employ these performance metrics since
they have been taken into account in the previous related studies (see Section 6.2).

These evaluation metrics are briefly calculated as follows.

I'PTN
A A & .
verage Accuracy = T FPLEN TN (6.5)
FP
FAR= ———— .
h FP+TN (6.6)

where T'P is the number of instances correctly identified as belonging to the normal
class, F'P or Type I error is the number of instances incorrectly identified as belonging
to the normal class, T'N is the number of instances correctly identified as belonging
to the anomaly class, and F'N or Type II error is the number of instances incorrectly

identified as belonging to the anomaly class.
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6.4.4 Statistical Significant Test

To provide a detailed comparative study among classifier ensemble schemes, statistical
test is employed to prove that the differences among classifiers are significant [42].
The Friedman test [39] is used to test whether the differences among the classifiers
in term of evaluation metric are significant [26]. It is a non-parametric test which is
equivalent to the repeated-measures ANOVA [26]. In addition, it ranks the classifiers,
with the best algorithm receiving rank 1, and the worst classifier receiving rank equal

to the number of classifiers. Friedman test is defined as follows.

12N k(k+1)2
2 2

o R2— 6.7
X k(k+1)[zj: i 4 (67)
where N is the number of elements, k£ is the number of classifiers, and R; is the

average rank of the jth of % classifiers. The average rank is defined as R; = % va 7"{ ,

where 77 is the rank of the jth of k classifiers on the ith of N elements.

When the Friedman test is rejected, we carry out post-hoc test using Nemenyi test
[88] to determine which classifiers are significantly different. Two classifiers are sig-
nificantly different if the corresponding average ranks differ by at least the critical

difference, which is defined as:

k(k+1)

CD = q, N

(6.8)

where the critical values ¢, are computed using the Studentized range statistic divided
by /2, N is the number of elements and k is the number of classifiers to be compared

[26].
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6.5 Experimental Result and Discussion

This section shows the experimental result of the proposed model. As presented in
Section 6.3.4, the three different F'S techniques are applied and their parameters are
tuned with respect to the SVM classification accuracy. The parameters for each FS

technique and the accuracy of SVM are presented in the following section.

6.5.1 PSO Parameter Setting

In particle swarm optimization FS, parameter n (number of particle) is changed. We
set parameter ¢; and ¢y are equal to 2, whilst the maximum number of generations
is 30. In literature, these values have been proposed as a generally acceptable setting
for most of problems [90]. The output of FS is used for SVM classification model as
shown in Table 6.1.

The outcomes show that model 1 (particle size of 2) has higher classification accu-
racy than others. It can be seen that the classification accuracy of the model 1 is
97.47%. The thirty-seven features have been successfully obtained by PSO, such as
duration, protocol_type, service, flag, src_bytes, dst_bytes, land, wrong_fragment, ur-
gent, hot, num_failed_logins, logged_in, num_compromised, root_shell, su_attempted,
num_file_creations, num_shells, num_outbound_cmds, is_host_login, is_guest_login, count,
srv_count, serror_rate, srv_serror_rate, rerror_rate, srv_rerror_rate, same_srv_rate, srv_
diff_host_rate, dst_host_count, dst_host_same_srv_rate, dst_host_diff_srv_rate, dst_host_
same_src_port_rate, dst_host_srv_diff_host_rate, dst_host_serror_rate, dst_host_srv_serror

_rate, dst_host_rerror_rate, and dst_host_srv_rerror_rate.
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TABLE 6.1: Parameter setting for PSO

Model Particles (n) Selected features Accuracy (%)

1 2 37 97.47
2 ) 12 92.88
3 10 19 96.40
4 20 5 83.67
) 20 6 89.20
6 100 6 87.40
7 200 7 91.81
8 500 7 91.31
9 1000 8 91.52
10 2000 8 91.52

6.5.2 ACO Parameter Setting

Similar to feature selection using PSO, parameter of k& (number of ants) is changed
in ACO feature selection. [ is a parameter which determines the relative importance
of pheromone versus heuristic. With regard to this, we set = 1, which gives equal
importance to cost minimization while selecting the features. As suggested by [108],
local pheromone update strength parameter («) is set to 0.8. The outcomes of each
parameter setting for ACO feature selection and the SVM classification accuracy are

presented in Table 6.2.

It can be seen in Table 6.2 that model 9 and 10 receives higher accuracy (91.52%)
in the SVM classification. Therefore, the selected features of model 9 and 10 can be
used for building classification model. After conducting feature selection using ACO,
8 features are obtained such as flag, src_bytes, dst_bytes, logged_in, srv_serror_rate,

same_srv_rate, diff_srv_rate, and dst_host_srv_diff_host_rate.
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TABLE 6.2: Parameter setting for ACO

Model Number of ants (k) Selected features Accuracy (%)

1 2 7 90.29
2 ) 6 89.01
3 10 8 91.28
4 20 6 89.01
) 20 6 89.18
6 100 6 89.18
7 200 7 90.69
8 500 7 91.31
9 1000 8 91.52
10 2000 8 91.52

TABLE 6.3: Parameter setting for GA

Model Population size Selected features Accuracy (%)

1 2 25 94.39
2 5) 25 94.39
3 10 14 92.31
4 20 10 91.32
5 20 rl 89.88
6 100 4 87.76
7 200 7 91.31
8 500 9 91.89
9 1000 3 91.36
10 2000 6 89.20

6.5.3 GA Parameter Setting

As it is mentioned previously, feature selection using GA also requires parameters
setting. These parameters such as the value of the initial population, maximum
number of generations, mutation, crossover probability, k£, and random seed number
are set to 30, 30, 0.01, 0.9, 10 and 1, respectively. Population size parameter is
changed with the same interval number of the previous experiment using PSO and

ACO. The results of SVM accuracy and selected features are shown in Table 6.3.
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As depicted in Table 6.3, model 1 and 2 give the best classification accuracy in
SVM classification. They share the same number of selected features (25 features)
as well as performance accuracy (94.39%). Hence, selected features obtained by
model 1 and 2 can be used for building classification model in the second stage.
Twenty-five features have been generated by using GA feature selection, e.g. dura-
tion, flag, src_bytes, dst_bytes,land,wrong_fragment,urgent, hot, logged_in, root _shell,
su_attempted, num_shells, num_outbound_cmds, is_host_login, count, srv_count, ser-
ror_rate, srv_serror_rate, srv_rerror_rate, same_srv_rate, dst_host_diff_srv_rate, dst_host
_same_src_port_rate, dst_host_serror_rate, dst_host_rerror_rate, and dst_host_srv_rerror_

rate.

6.5.4 Classifiers Performance Result

After performing feature selection and tuning parameter setting, an appropriate sub-
set features have been obtained as indicated in Table 6.1-6.3. The next step is the
implementation of all classifiers, i.e. RF, NBT, LMT, and REPT and voting ensemble
of these base classifiers. Figure 6.3 denotes the performance result of all classifiers for
each FS technique in terms of accuracy and FAR value. The performance of all clas-
sifiers are evaluated using 5 x 2cv [28]. This method divides the data set randomly
into two equal parts. One part is used for training and the other part to test the
algorithm, and vice versa. This procedure is then repeated five times. With regard
to this, the results presented in this chapter are the average value of accuracy and

FAR.

As depicted in Figure 6.3, it is obvious that voting ensemble (ENS) resulted from
the PSO feature selection is the best performer in comparison with other FS tech-
niques. Figure 6.3 confirms that our proposed classifier ensemble also significantly

outperforms base classifiers as well as SVM classifier in term of accuracy metric. For
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FIGURE 6.3: Average accuracy for each feature selection technique in all classifiers

instance by using PSO feature selection, ENS gains 99.7109%, whilst RF, NBT, LMT,
REPT, and SVM gain 99.6920%, 99.5451%, 99.2124%, and 99.3482%, respectively.

Figure 6.4 presents the classifier performance of all classifiers in term of FAR metric
for each feature selection techniques. It is clear that ENS resulted from the PSO
feature selection is the best performer in comparison with other F'S techniques. It
significantly outperforms other classifiers, i.e. RF, NBT, LMT, and REPT with the
lowest false alarm rate. For instance by using PSO feature selection, ENS gains

0.0053, whilst RF, NBT, LMT, and REPT gain 0.0049, 0.0064, 0.0110, and 0.0081,

respectively.

Furthermore, in order to ensure that the validation test does not happen by chance,

we tested the significance of these result by using the Friedman test. We are only
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FIGURE 6.4: Average FAR for each feature selection technique in all classifiers

TABLE 6.4: The results of classifier significance using Friedman test

X% df p-value
32.72 4 1.363E-06

interested to assess the significant differences of all classifiers” accuracy resulted from
the PSO feature selection since this result is the best one. The null hypothesis is
considered as there is no significant differences of accuracy among three classifiers,
and alternative hypothesis is considered as there is significant differences of accuracy
among three classifiers. As indicated in Equation 6.7, N is the number of elements
(10 in our case) and k is the number of classifiers (5 in our case). We fix the level
significant level o = 0.05 which refers to a confidence level of 95%. The results of

classifier significance test are summarized in Table 6.4.
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The result above indicates that there are significant differences among classifiers.
However, this result is very conservative so we apply more powerful post hoc test, i.e.
Nemenyi test for comparing all classifiers to each other. The critical difference (C'D),
which represents the rank difference among classifiers, is computed using Equation
4.3. The ¢, corresponds to the critical values from the Tukey test by dividing it by
V2 (see Table A.8 in [59]). The two classifiers are significantly different in which
their average rank of each classifiers are larger or equal to the C'D. For a = 0.05 and
degree of freedom (df) = (n—1)(k—1) = 9 x 4 = 36, we get ¢, = 4.04 for the Tukey
test. It yields ¢, = 2.86 for the Nemenyi test. Recall from Equation 6.8, we compute

CD as follows.
55+1)

D =2.
f S 6 x 10

=2.02 (6.9)

To determine which classifiers are significantly different, it is required to calculate
the average rankings of the accuracy and then compare which differences are greater
than 2.02. Another method is we can plot the critical difference for each classifier as
shown in Figure 6.5. First of all, there is no performance difference between ENS and
RF. The performance of ENS differs highly significant to LMT and REPT (p < 0.01)

whilst other comparisons are not significant (p > 0.05).

cD

RF MBT
EM3 LMT
— REPT

FIGURE 6.5: Critical difference of all classifiers in term of accuracy metric
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Subsequently, in order to demonstrate that our proposed approach is comparable to
other methods, we compare our result with the existing approaches where 20% of NSL-
KDD data set is trained and tested using 10-folds cross validation (10f — cv). Table
6.5 depicts the comparison result for the experiment using 10-folds cross validation.
It is obvious that our proposed approach considerably outperforms other methods

found in the literature.

6.6 Conclusion

This chapter proposes the hybrid approach of feature selections and tree-based clas-
sifiers ensemble for intrusion detection systems. Three feature selection techniques,
i.,e. PSO, ACO, and GA are involved in order to obtain the best subset of features.
Moreover, four tree-based classifier algorithms, i.e. RF, NBT, LMT, and REPT are
combined for classification analysis. Based on our experimental result, it can be
revealed that the proposed scheme yields detection accuracy 99.77%, significantly
outperforms the existing methods applied on the NSL-KDD data set. We also con-
clude that classifiers ensemble performs better than single classifier in the pool. Our
work contributes to the existing literature by providing a comprehensive statistical
significant test, including post-hoec test in the evaluation of classifier algorithms for

intrusion detection systems.

107



Chapter 7

An Improved Intrusion Detection System

via Hybrid Feature Selection and Two-level

Classifier Ensembles

7.1 Introduction

Intrusion detection systems have been widely recognized by many security experts as
one technique used for discovering and denying malevolent activities in the network
[118]. Nowadays, as the number of attacks is continuously mushrooming, IDSs are
much obliged to cope with the pruning of such attacks before they make a malignant
damage. Commonly, an IDS lies in two axes, i.e. signature-based and anomaly-based
detection [121]. Signature-based detection deals with sniffing known attacks instantly
with a lower false positive rate. However, it has less capability in discovering novel

attacks [119].

In contrast to signature-based detection, anomaly-based detection is able to discover
new types of attack since it only inspects the objects that behave significantly different
from the normal network profiles. Despite that, it constantly faces higher false positive

rate, and even in a certain case, some attackers may employ anomaly profile as normal
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profile to train classifier. As a result, an IDS will misapprehend anomaly as normal.
In the recent decades, anomaly-based detection has gained many interest in IDSs

research as new attacks have been successfully identified [121] [41].

Anomaly-based detection is a binary classification problem [120]. A classifier is
trained to build a model using NSL-KDD data set [124], which is a public data
set for benchmarking classifiers in IDSs research. Existing solutions have employed
different kind of classifiers, either as a single classifier or ensemble of classifiers. When
a single classifier cannot yield a satisfactory result, multiple classifier systems or clas-
sifier ensemble might produce significant enhancement over single classifier. MCSs
train multiple classifiers to find a solution in the same problem [139]. In contrast to
classical approaches, which build classifier model using one learner from the training

set, MCSs construct a set of classifiers and combine them to predict the final output.

In past two decades, the combination of multiple classifiers has contributed an ad-
vanced research in machine learning and pattern classification. Classifier ensembles
have been applied in diverse real-world applications such as remote sensing, computer
security, fraud detection, medicine, and recommender systems [133]. In these appli-
cations, MCSs show improved performance, resilience, and robust to noisy data and
high dimensional data, however, the problem underlying classifier ensemble design

are classifier diversity and methods of classifier combination [133].

Many researchers in IDSs have focused on the use of classical approaches using either
one classifier, i.e. naive bayes, decision tree, support vector machine, and naive bayes
tree [124]; or classifier ensembles, i.e. bagging [107] [46], boosting [57], voting [87] [94]
[93], random forest [124], and other ensemble approaches [14] [44] [24]. In this paper,
we consider two-level classifier ensembles for anomaly detection by employing two
different ensembles, i.e. rotation forest [99] and bagging [11]. We demonstrate that
the use of two-level of classifier ensembles, combined with a hybrid feature selection,

can significantly improve the accuracy of anomaly detection.
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Our main contributions can be summarized as follows:

(i) We use two-level of classifier ensembles rather than one ensemble learner. The
two-level ensemble is composed by an ensemble in the first level whose base

classifier is another ensemble;

(ii) A feature selection using hybrid method is proposed to reduce computational

complexity;

(iii) Our proposed method results higher detection rate by comparison with the

recent works; and

(iv) We provide statistical significant test to prove that the performance differences

among classifiers are significant.

7.2 Related Work

Single classifier and multiple classifiers have been suggested to solve the problems
underlying IDSs for anomaly detection. We discuss the details of each solution in this
section. We only include the proposed method of anomaly detection using NSL-KDD
data set [124], which is the improved version of KDD Cup 99 data set. A number
of single classifiers, including one ensemble learner have been considered by [124] to
evaluate the performance of the learned models on two test sets, namely KDDTest+,
and KDDTest-21. The experimental result shows that naive bayes tree outperforms

other classifiers.

Decision tree, multilayer perceptron, and distance-based classifier are suggested by
[83] to evaluate the performance of feature selection method, namely reduced class-
dependent feature transformation. From their experiment using KDDTest+, it is
shown that DT is the best performer, followed by MLP and distance-based classifier.
In addition, three different feature selection methods, i.e. linear discriminant analysis,
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principal component analysis, and modified class-dependent feature transformation
are presented and discussed. The performance of such classifiers are compared while
using full set and reduced set. Even though the proposed method can reduce false
positive rate significantly, the performance of classifiers offer unsatisfactory result in

terms of accuracy and detection rate.

An anomaly detection using fuzzy classifier is proposed by [68]. Fuzzy classification by
evolutionary algorithms have been evolved over KDDTrain+ and test the classifier on
KDDTest+. The author considers full training and testing set without feature selec-
tion. The proposed method improves the detection performance in term of accuracy
and detection rate. Two-tier classifier with LDA feature selection are recommended
by [91]. The proposed model consists of two classifiers, i.e. naive bayes and cer-
tainty factor voting version of KNN. The performance of learned model is compared
with other single classifiers. The proposed model yields 83.4% and 4.83% in term of

detection rate and false positive rate, respectively.

In the recent work, a novel tree ensemble technique called GAR-Forest is proposed
[61]. GAR-Forest combined with symmetrical uncertainty feature selection give im-
provement in term of detection accuracy. The proposed classifier offers 85.06% ac-
curacy using 32 features set. However, the proposed model still suffers from higher

false positive rate which reaches 12.2%.

7.3 Proposed Model and Methodology

7.3.1 Feature Selection

The feature selection is the problem of selecting a subset of attributes from a feature
set in order to obtain a precise, compact, and fast classifier performance. For attribute

evaluator, we adopt correlation-based feature selection which is one of the leading
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feature subset selection method in machine learning and pattern recognition [48].
The worth of a subset of attributes is evaluated using entropy and information gain
theory. The lack of computation using information gain is symmetrical uncertainty
and biased of feature with more values. Hence, CFS takes a coefficient to compensate
information gain’s bias toward attribute with more values and to normalize its value
to the range [0,1]. Three different search methods for the attribute selection are

describe as follows.

7.3.1.1 Particle swarm optimization

It is used to search the set of all possible features so that the best set of features can
be obtained [118]. PSO is firstly introduced by Kennedy and Eberhart [62], is one
of the computation technique which is inspired by behavior of flying birds and their
means of information exchange to solve the problems. Each particle in the swarm
represents possible solution. A number of particle is located in the hyperspace, which
has random position ¢; and velocity v;. The basic update rule for the position and

the speed is depicted in equation (7.1) and (7.2), respectively.

el - I w0 TN L L (7.1)

vi(t + 1) = wu(t) + crri(p; — x;) + cora(g — ;) (7.2)

Where w denotes inertia weight constant, c¢; and ¢y denotes cognitive and social
learning constant, respectively, r; and ry represent random numbers, respectively, p;
is personal best position of particle 7, and finally, ¢ is a global best position among

all particles in the swarm.
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7.3.1.2 Ant Colony Optimization

It is represented as a graph, which nodes represents features, with the edges between
them denoting the choice of the next feature. The search of the final feature subset is
an ant traversal through the graph where a minimum number of nodes is visited that
satisfying the traversal stopping criterion [9], [60]. A probabilistic transition rule is
used to give an indication on which features are more informative on the currently
selected features. It denotes the probability of an ant at feature ¢ choosing to travel
to feature j at time ¢:
[ (1)] - [135]°

pi;(t) = e lra (D] - [nal? (7.3)

Where k is the number of ants, J¥ is the set of ant k’s unvisited features, i is the

heuristic desirability of choosing feature j when currently at feature i and 7;;(¢) is
the amount of virtual pheromone on edge (i, ). The choice of & and /3 is determined

experimentally.

7.3.1.3 Genetic Algorithm

It is depicted by one chromosome which is a set of the features. Gene is a feature that
has binary value 1 or 0, which means that there is or is not a particular feature in
the set, respectively. Goldberg strategy is commonly used to discover an ideal set of
features. The subset evaluator function with k-cross validation is applied to evaluate
the input features. We consider to set the value of the initial population, maximum
number of generations, mutation, crossover probability, k£, and random seed number

are 30, 30, 0.01, 0.9, 10 and 1, respectively.
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7.3.2 Classifier Ensembles

7.3.2.1 Bagging

Bagging technique was firstly introduced by [11]. Bagging stands for Bootstrap Ag-
gregating. Bagging adopts parallel paradigm where the base classifiers are generated
in parallel. As the name implies, it generates M bootstrap samples Dy, Do, ..., Dy,
randomly picked from the original training set D of size n. From each bootstrap
sample D;, a base classifier C; is trained by using the same learning algorithm. Final
prediction on the new test instances are made by taking majority voting strategies. To
predict a test instance, bagging feeds the instances to its base classifiers C, Cs, ..., Cyy
and collects all of their outputs, the votes the labels and takes the winner label as

the prediction C*.

7.3.2.2 Rotation Forest

Rotation forest aims at constructing accurate and diverse classifiers. It applies feature
extraction using principle component analysis to subsets of features and reconstructs
a full feature set for each classifier forming the ensemble [99]. The feature set F' is
randomly partitioned into L subsets, PCA is run separately on each subset, and a
new set of the extracted attributes is constructed by pooling all principal components.
Then the data are transformed into the new feature space. Classifier C; is trained by
using this data set. Different partitions of the feature set contributes to the diversity
of extracted features. Similar to bagging and random Forest, all classifiers are trained

in parallel manner.
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7.3.3 The Proposed Two-level Classifier Ensembles

We propose a new approach for constructing two-level classifier ensembles. Contrast-
ing with classical classifier ensemble which is commonly composed by a simple weak
classifiers, i.e. neural network, support vector machine, and decision tree, our pro-
posed ensemble is made up of two ensembles. One ensemble learner acts as a base
classifier of another ensemble. As shown in Figure 7.1, bagging (Bag) is chosen as
a base classifier of rotation forest. In addition, a weak classifier, namely conjunctive
rule [117] is also considered as a base classifier of bagging. This classifier construction

allows us to have improved performance and robust classifier concurrently.

In fact, there are many combination of ensembles can be made, but we intend to
maximize the diversity of the constructed classifier. To do so, we intentionally chose
rotation forest and bagging which have different induction strategies. As indicated
above, rotation forest takes different feature subsets, while bagging generates boot-
strap samples to build an ensemble. The level-1 ensemble produces feature set of
D into L feature subsets and thereafter each feature subset is splitted into M sub-
samples in the level-2 classifier. Final class prediction is made using a combiner, i.e.
majority voting rule, from total T classifiers which T' = L x M. Let T classifiers
{h1,...,hr} are given and we want to combine h;’s to predict the class label from a
set of [ possible class label {¢i,...,¢}. It is assumed that for a sample z, the final
output of h; is given as an I-dimensional vector (h!(z), ..., h(z))", which hJ(z) is the
output of h; for the class label ¢;. Thus, h(z) € {0,1} which takes value one if h;
predicts ¢; as the class label or zero otherwise. In majority voting, each classifier
votes for one class label, and the final class prediction (H(x)) is the one that receives
more than a half of the votes, otherwise a rejection option will be assigned.

l

o if L) > %

T
hi ()
k=1i=1

rejection
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7.3.4 Methodology

We propose an intrusion detection model based on hybrid feature selection and two-
level classifier ensemble. As depicted in Figure 7.2, the proposed model is composed
by three stages, i.e. feature selection, modeling, and validation. The first stage is
composed by three feature selection techniques, i.e. PSO, ACO, and GA. It involves
a hybrid method to obtain the most representative feature subsets for improving
the classifier performance in the modeling stage. Parameter tuning of each feature
selection technique is performed and the selected features of NSL-KDD data set are
classified using reduced error pruning tree [98] classifier. The optimal parameter for
each feature selection method is determined by the REPT classifier. The REPT is
a fast decision tree learning algorithm which tree is built using the information gain
with entropy. It takes reduce error pruning in order to minimize the error from the

variance.

Classification accuracy of REPT is obtained using hold-out method, which the data
set is divided into two parts, i.e. 70% and 30% for training and testing, respectively.
The output of the first stage is the most appropriate feature selection technique.
In the second stage, the proposed classifier based on two-level classifier ensembles
is used for classification. However, in order to provide a thorough comparison, two
classifier ensembles as well as a single classifier are also considered, i.e. bagging of

CR (Bag-CR), rotation forest of CR (RoF-CR), and CR.

In the last stage, the performance of the proposed classifier and the above-mentioned
classifiers are evaluated using five times of two-fold cross validation 5 x 2cv [28]. It
divides the data set randomly into two equal parts. One part is used for training
and the other part to test the algorithm, and vice versa. This procedure is then
repeated five times. Regarding this, four performance measures, i.e. accuracy, FPR,

sensitivity, and precision are adopted as standard metrics in IDSs research.
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7.4 Experimental Design

7.4.1 Data set

KDD Cup 99 data set has been widely used for intrusion detection [124]. It is con-
siderably accepted as a public data set for benchmarking. However, the data set has
inherent problems due to the synthetic characteristic of the data. For this reason, we
considered to use NSL-KDD data set since it does not include redundant instances
which lead the classifiers to produce biased result. The data set possesses 41 attributes
and one class label attribute. The 20% of NSL-KDD training set (KDDTrain+) con-
tains 25192 instances, which is composed of two classes, e.g. anomaly class (13499
instances) and normal class (11743 instances). Furthermore, since we would perform
a validation method using train-test strategy, a test set of NSL-KDD (KDDTest+) is

also included in our study. KDDTest+ is composed by 22,543 instances.

7.4.2 Performance Measures

All classifiers are evaluated using performance metrics, i.e. accuracy, FPR, specificity,

and precision. These evaluation metrics are briefly calculated as follows.

TP+TN

A = )

Y = TP Y FP+ FN+TN (7.5)
FP

FPR= ———— .

& FP+TN (7.6)
e TN
Speci ficity = TPLTN (7.7)
. TP

Precision = TP FP (7.8)

where T'P is the number of instances correctly identified as belonging to the normal

class, F'P or Type I error is the number of instances incorrectly identified as belonging
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to the normal class, T'N is the number of instances correctly identified as belonging
to the anomaly class, and F'N or Type II error is the number of instances incorrectly

identified as belonging to the anomaly class.

7.4.3 Statistical Test

To provide a detailed comparative study among classifier ensemble schemes, a sta-
tistical test is employed to prove that the differences among classifiers are significant
[42]. To give a thoroughly comparative study, two statistical significance test, namely
Quade test and Quade post-hoc test [19] are employed. It is essential to employe such
significance tests because the test will prove that the differences among classifiers are
significant [42]. The number of elements (n) denotes the performance result of each
classifier in 5 x 2cv. The Hj is that there are no performance differences among
the classifiers, whereas H4 means that there are performance differences among the

classifiers.

Quade test is chosen since it is more powerful than Friedman test in the case of k < 5
[19], where k is the number of classifiers to be compared. First, the performance
results are ranked within each element to yield R;;. Then, the range in each row
(maximum and minimum value) needs to be calculated and ranked, @;. The scores

are:

and .
Sj == Z S@',j (710)
i=1

The test statistic is computed as,

(n— 1)% Zf:l SJZ

F= n k SQ 1 k SQ
Zi:l Zj:l ij  n Zi:l J

(7.11)
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The F is tested against the F-quantile for a given a = 0.05, with degree of freedom,
dfi =k —1and dfs = (n—1)(k—1).

In addition,a Quade post-hoc test is also conducted to identify the performance dif-
ferences among the classifiers. Quade post-hoc test is calculated using the student

t—distribution as follow.

2n (30 > 82— 1y 52
|Si — S;| > tl—a/z*,(b—l)(k—l)\/ 1 (nj_ll)(}i ) — (7.12)

7.5 Result and Discussion

7.5.1 Parameter Setting for Feature Selection

The parameters for each feature selection technique and the accuracy of REPT are
presented in this section. In the PSO FS, parameter n (number of particle) is changed.
we set parameter ¢; and ¢y are equal to 2, whilst the maximum number of generations
is 30. Furthermore, we considered mutation type and mutation probability, respec-
tively, is bit — flip and 0.01. In literature, these values have been proposed as a

generally acceptable setting for most of problems [90].

Similar to feature selection using PSO, parameter of n (number of ants) is changed
in ACO feature selection. (3 is a parameter which determines the relative importance
of pheromone versus heuristic. With regard to this, we set § = 1, which gives equal
importance to cost minimization while selecting the features. As suggested by [108],

local pheromone update strength parameter («) is set to 0.8.

The parameters of GA such as the value of the initial population, maximum number
of generations, mutation, crossover probability, k£, and random seed number are set
to 30, 30, 0.01, 0.9, 10 and 1, respectively. Population size (n) parameter is changed

with the same interval number of the previous experiment using PSO and ACO. The
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parameters for each F'S technique and the accuracy of REPT are presented in Table

7.1.

From Table 7.1, it is obvious that Model 1 of PSO offers the highest performance
with 99.67% accuracy in REPT classification. Thus, selected features obtained by
the model can be used for constructing classification model (classifier) in the second
stage. Thirty-seven features have been successfully selected from this model such as
duration, protocol_type, service, flag, src_bytes, dst_bytes, land, wrong_fragment, ur-
gent, hot, num _failed logins, logged_in, num_compromised, root_shell, su_attempted,
num_file_creations, num_shells, num_outbound_cmds, is_host_login, is_guest _login, count,
srv_count, serror_rate, srv_serror_rate, rerror_rate, srv_rerror_rate, same_srv_rate, srv_
diff_host_rate, dst_host_count, dst_host_same_srv_rate, dst_host_diff_srv_rate, dst_host_
same_src_port_rate, dst_host_srv_diff_host_rate, dst_host_serror_rate, dst_host_srv_serror

_rate, dst_host_rerror_rate, and dst_host_srv_rerror_rate.

The performance value of all classifiers in terms of accuracy, FPR, specificity, and
precision are depicted in Figure 7.3. On average, the proposed approach is the best
performer in all performance metrics. Thus, it is obvious that the proposed classifier

outperforms classical ensembles, i.e. Bag-CR, RoF-CR and a single classifier, CR.

7.5.2 Performance Results and Benchmark

Figure 7.3 shows the average performance of the proposed classifier in comparison
with CR, Bag-CR, and RoF-CR. As shown in the figure, the proposed classifier has
performed best as compared to other classifiers in terms of four performance in-
dicators. Our proposed two-level ensembles (96.856%, 4.028%, 95.972%, 96.550%)
outperforms CR (93.775%, 4.093%, 95.907%, 96.263%), Bag-CR (93.919%, 5.407%,
94.593%, 95.225%), and RoF-CR. (95.681%, 4.644%, 95.156%, 96.029%).

For further benchmark, the performance differences among classifiers are assessed
using statistical significance test. Level of confidence « is set to 0.05, df; = 4, and
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FIGURE 7.3: Performance average of all classifiers in term of four performance
indicators
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TABLE 7.2: Results of Quade test

Accuracy FPR  Sensitivity Precision

F 18.1 1.7602 1.7602 2.8106
p—value 1.22E-06 0.1785 0.1785 0.05837

TABLE 7.3: Pairwise comparisons in terms of accuracy and FPR

Accuracy FPR
CR Bag-CR RoF-CR CR Bag-CR RoF-CR
Bag-CR 0.39 - - 0.067 - -
RoF-CR  0.00072 0.00664 - 0.886  0.050 -

Proposed 4.2E-07 4.2E-06  0.0093 0.627  0.167 0.529

TABLE 7.4: Pairwise comparisons in terms of specificity and precision

Specificity Precision
CR Bag-CR RoF-CR CR  Bag-CR RoF-CR
Bag-CR  0.067 - - 0.031 - -
RoF-CR  0.886  0.050 - 0.857  0.021 -

Proposed 0.627  0.167 0.529  0.928  0.025 0.928

dfy = 27, we can obtain the value of F and p—value for each performance indicator
as listed in Table 7.2. According to these results, it can be concluded that the
performance differences among classifiers are highly (p < 0.01) significant in terms of
accuracy metric. Furthermore, the performance differences among classifiers are not

significant (p > 0.05) in terms of FPR, specificity, and precision metric.

Given that the Quade test denotes significance, the post-hoc test by Quade is em-
ployed. This test allows us to have a pairwise comparison among two classifiers. The
results of post-hoc Quade test with respective p—value are provided in Table 7.3 -
7.4. The Quade post-hoc test indicates that the performance differences between our
proposed classifier and other classifiers, i.e. CR, Bag-CR, and RoF-CR are highly
significant (p < 0.01) in terms of accuracy metric. In the matter of precision metric,
the proposed classifier differs significantly (p < 0.05) in comparison with Bag-CR.

However, other contrasts are not significant (p > 0.05).
Subsequently, in order to provide a reasonable comparison, we consider to include
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TABLE 7.6: Training and testing time of all classifiers (seconds)

Classifier Training Testing Accuracy(%)
CR 1.78 0.24 84.022
Bag-CR 12.12 0.16 84.000
RoF-CR 117.59 7.96 82.390

PROPOSED 1045.05 10.17 85.797

the results of previous studies that classified 20% training set KDDTrain+ and then
evaluated on test set (KDDTest+). Also, the results obtained from [124], which
the official NSL-KDD data set was firstly introduced, are included. We compare
our result with the results presented in these studies in Table 7.5. According to the
experiment, the highest detection accuracy belongs to our proposed classifier. Besides
having superior detection accuracy, it also outperforms significantly other classifiers
in terms of sensitivity and precision metric. Even though our proposed classifier does
not perform best in term of FPR, it still can outperform GAR-Forest as presented
in [61]. The comparison table as presented in Table 7.5 confirms that our proposed
method is an effective approach for intrusion detection task. The result represents
the superior result obtained so far using the NSL-KDD data set. In addition, we

provide statistical significant test, which is still underexplored in the previous works.

Lastly, we also report the execution time of each classifier in term of training and
testing as shown in Table 7.6. The overall performance of classifiers are evaluated
in R environment using RWeka library [55]. The experiment is conducted on a
machine with Windows 7, 16GB RAM, and Intel® CPU 3.5GHz. We calculate the
computational time required for classifier modeling (training) and validation (testing)
on KDDTrain+4 and KDDTest+, respectively. Table 7.6 indicates us that the training
and testing time of the proposed method is longer than other classifiers, i.e. single
classifier and classifier ensembles. However, for practical implementation, the result
is still acceptable considering that once classifier model has been built, it can be
used later for detecting anomalies in the network. Furthermore, we were unable to

assess the execution time of the existing methods since they are not mentioned in the
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published works.

7.6 Conclusion

In this chapter, we propose a novel technique of intrusion detection based on the
combination of hybrid feature selection and two-level classifier ensembles. The NSL-
KDD data set is used to evaluate the performance of our detection algorithm. Based
on the experimental result, it can be concluded that the proposed method outperforms
single classifier and other ensembles significantly. Our proposed method also yields
superior results in terms of accuracy, specificity, and precision metric when validating

on testing set KDDTest+.
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Chapter

Conclusions and Future Work

In this chapter we present the conclusions of the thesis and provides some suggestion

for future works.

8.1 Conclusions

In this thesis, solving complex classification problem in particular application do-
mains were addressed. An intrusion detection system and network anomaly detec-
tion, in particular, is a domain where a complicated classification problem may exist.
Anomaly detection deals with analyzing and reporting nonconforming traffic pattern
in computing systems. Meanwhile, predictive data analytics, where data mining and
machine learning techniques are subset, have been widely employed to improve the
detection performance of anomaly-based intrusion detection systems. However, since
predictive data analytics is non trivial task, it thus remains some challenging tasks
that have to be solved. The problems include choosing a suitable feature selection

technique and designing classification algorithm.

We have formulated some approaches for solving binary classification problem in pre-
dictive data analytics using classifier ensembles. We have evaluated existing ensemble
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methods for anomaly detection by performing a comparative study. We have applied
the classifier ensembles to two cross-domain intrusion detection data set, i.e. network
intrusion data set (NSL-KDD) and wireless intrusion data set (GPRS). Our experi-
ment has revealed that bagging outperformed boosting in terms of four performance
indicators, i.e. accuracy, precision, recall, and F1 metric. Furthermore, we have ex-
tensively studied the performance analysis of tree-based machine learning algorithms
in five different ensemble schemes. For this purpose, we have included three different
diabetes mellitus data sets for benchmarking. We have found that LMT classifier is

the best one regardless of the ensemble method used or not.

As an extension, we have adopted a gradient boosted machine classifier for anomaly-
based intrusion detection systems. Four data sets with no feature selection were
included in the experiment. Referring the result of statistical tests, the proposed
approach outperformed significantly other classifier ensembles and single classifiers,
i.e. random forest, deep neural network, support vector machine, and classification
and regression tree. We have further advocated a hybrid feature selection and tree-
based classifier ensembles for intrusion detection systems. To find the best feature
subset of NSL-KDD data set, we have combined three evolutionary algorithms, i.e.
particle swarm optimization, ant colony algorithm, and genetic algorithm as search

method, whilst tree-based classifier ensembles were constructed for classification.

Finally, we have proposed a novel approach of anomaly-based intrusion detection
systems using hybrid feature selection and two-level classifier ensembles. We have
been able to improve the detection performance in comparison with other existing
techniques. We have also proved that, surprisingly, the proposed scheme was superior
while validating using hold-out strategy. Based on the overall thesis work, we have
observed how focusing on the construction of classifier ensembles have produced an
enhanced performance of anomaly-based IDS outstandingly. Another important point
that can be concluded from this thesis is the use of statistical tests are necessary when

benchmarking our proposed scheme with others.
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8.2 Suggestions for Future Work

We provide some directions for possible future research.

(i)

(iii)

While a comparative study of classifier ensembles for anomaly detection is con-
ducted in Chapter 3, it would be interesting if a further analysis might be
explored to answer the reason why the implementation of bagging and boosting

for CART cannot enhance its performance significantly.

While, in Chapter 4, we have performed an extensive benchmark of classifier
ensembles for diabetes prediction, some interesting directions for further study
might consider: (a) to explore the reasons why the best single classifier also per-
forms the best when used in ensemble, and (b) to benchmark the performance of
these single classifiers and other ensemble methods that combine heterogeneous

classifiers, i.e. voting ensemble, stacking, or other combination rules.

While some novel approaches have been introduced in Chapter 5-7, we might
validate the proposed method to classify multi-class problem, which represents

incoming network traffics as normal or four attack groups.
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