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Abstract

Data analytics deals with the process of employing computational technique to dis-

cover meaningful patterns in data. It is an application of computer system to the

analysis of large data sets for the support of decision making. Intrusion detection

systems and anomaly detection, in particular, is one of application domain where the

solving of classification problems is extremely complex. Moreover, in the data set

point of view, the existence of imbalance data sets, missing values, and inappropriate

feature selection technique make the classification complicated. First of all, those

issues are addressed by conducting a comparative assessment of well-known classifier

ensembles for both anomaly detection and for an early detection method of diabetes

mellitus. Based on our experimental result, it can be revealed that classifier ensemble

is a promising method for intrusion detection task and diabetes prediction. By con-

sidering these previous results, then an improved detection performance of anomaly-

based intrusion detection system using gradient boosted machine is proposed. GBM

significantly outperforms the most recent IDS techniques, i.e. fuzzy classifier, two-tier

classifier, GAR-forest, and tree-based classifier ensemble. Subsequently, we propose

an effective anomaly detection approach by hybridizing three techniques, i.e. parti-

cle swarm optimization, ant colony optimization, and genetic algorithm for feature

selection and ensemble of four tree-based classifiers, i.e. random forest, naive bayes

tree, logistic model trees, and reduces error pruning tree. Following a great success

of the previous feature selection technique, then finally we propose a combination of

hybrid feature selection and a two-level classifier ensemble model based on two en-

semble learners, i.e. rotation forest and bagging. The proposed schemes remarkably

outperforms the existing methods in terms of accuracy and false alarm rate. To prove

our above-mentioned research contributions, we also conduct two steps of statistical

significance test, which is yet infrequently considered in IDS research so far.
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데이터 예측 분석기를 위한 분류기 앙상블

바유 아디 타마

부경대학교 대학원 정보시스템협동과정

요약

데이터분석은데이터에서의미있는패턴을발견하기위한처리로서,다양한응용분야

의 의사결정을 지원하기 위해 방대한 데이터 집합을 분석하는 컴퓨터 시스템 어플리케

이션이다. 특히 분류 문제를 해결하는 것이 아주 복잡한 침입 탐지나 비정상 행위 탐지

등이데이터분석의주요분야이다. 그러나불균형한데이터집합의구성이나잘못된값

그리고부적절한특징선택기법들은분류기를복잡하게만든다. 본논문은우선이러한

문제점들을해결하기위해비정상행위탐지나초기의당뇨병탐지분야에서잘알려진

분류기앙상블들에대한비교를수행한다. 본연구의실험결과는분류기앙상블이침입

탐지나 당뇨병 예측을 위한 유망한 기법이 될 수 있음을 보여준다. 이러한 결과를 토대

로기존침입탐지시스템보다성능이향상된 gradient boosted machine(GBM)기반의

비정상 행위 기반의 침입 탐지 시스템을 제안한다. 또한 particle swarm optimization,

ant colony optimization, genetic algorithm 기법들과 random forest, naive bayes tree,

logistic model tree, reduces error pruning tree 기법들을 혼합한 효율적인 비정상 행위

탐지 방법을 제안하고, 하이브리드 특징 선택 기법과 앙상블 학습기 기반의 두 단계

분류기 앙상블 모델의 결합 방안에 대해 제안한다. 제안된 기법들은 정확성과 거짓

경보 비율에 있어서 기존의 기법들 보다 성능이 우수하다. 제안된 기법들의 우수성을

보이기 위해, 본 논문에서는 현행 침입 탐지 시스템에서는 아직 자주 활용되지 않는 두

단계의 통계적 중요도 테스트를 수행한다.

ii



Contents

Abstract i

Chapter 1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Outline of the Thesis and Contributions . . . . . . . . . . . . . . . . 3

Chapter 2 Predictive Data Analytics and Classifier Ensembles: An

Overview 7

2.1 Predictive Data Analytics . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Data Analytics and Data Mining . . . . . . . . . . . . . . . . 7

2.1.2 Predictive Analytics Process . . . . . . . . . . . . . . . . . . . 8

2.1.3 Analytics Model . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.4 Resampling Strategies . . . . . . . . . . . . . . . . . . . . . . 11

2.1.4.1 Cross-validation . . . . . . . . . . . . . . . . . . . . 11

2.1.4.2 Multiple Runs of Resampling Methods . . . . . . . . 12

2.1.4.3 Random Subsampling . . . . . . . . . . . . . . . . . 13

2.2 Classifier Ensembles . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 A Taxonomy of Classifier Ensembles . . . . . . . . . . . . . . 14

2.2.2 Types of Classifier Outputs . . . . . . . . . . . . . . . . . . . 15

2.3 Experimental Benchmark of Classifiers . . . . . . . . . . . . . . . . . 17

Chapter 3 An Extensive Empirical Evaluation of Classifier Ensem-

bles for Intrusion Detection Task 20

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.1 Feature Reduction . . . . . . . . . . . . . . . . . . . . . . . . 24

iii



Contents

3.3.2 Approach for Combining Weak Classifiers . . . . . . . . . . . 26

3.3.3 Combination Schemes . . . . . . . . . . . . . . . . . . . . . . 27

3.3.4 Base Classifiers Used in the Experiment . . . . . . . . . . . . 30

3.3.5 Data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.6 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Result and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4.1 Result of Feature Selection . . . . . . . . . . . . . . . . . . . . 33

3.4.2 Result of Classifier Ensemble . . . . . . . . . . . . . . . . . . 34

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Chapter 4 Tree-based Classifier Ensembles for Early Detection Method

of Diabetes: An Exploratory Study 45

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2.1 Data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2.2 Classifier Ensembles . . . . . . . . . . . . . . . . . . . . . . . 49

4.2.2.1 Bagging . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2.2.2 Boosting . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.2.3 Random Subspace . . . . . . . . . . . . . . . . . . . 53

4.2.2.4 DECORATE . . . . . . . . . . . . . . . . . . . . . . 53

4.2.2.5 Rotation Forest . . . . . . . . . . . . . . . . . . . . . 54

4.2.3 Base Classifier Algorithms . . . . . . . . . . . . . . . . . . . . 55

4.2.4 Validation Method and Evaluation Measure . . . . . . . . . . 57

4.2.5 Statistical Significance Test . . . . . . . . . . . . . . . . . . . 58

4.3 Result and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Chapter 5 An In-depth Experimental Study of Anomaly Detection

using Gradient Boosted Machine 66

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 Classification Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2.1 Classifier Ensembles . . . . . . . . . . . . . . . . . . . . . . . 70

5.2.1.1 Gradient Boosted Machine . . . . . . . . . . . . . . . 70

5.2.1.2 Random Forest . . . . . . . . . . . . . . . . . . . . . 72

iv



Contents

5.2.2 Single Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2.2.1 Deep Neural Network . . . . . . . . . . . . . . . . . 73

5.2.2.2 Support Vector Machine . . . . . . . . . . . . . . . . 73

5.2.2.3 CART . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3.1 Data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3.2 Evaluation Metric and Validation Method . . . . . . . . . . . 76

5.3.3 Statistical Significance Test . . . . . . . . . . . . . . . . . . . 77

5.4 Result and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Chapter 6 HFSTE: Hybrid Feature Selections and Tree-based Clas-

sifiers Ensemble for Intrusion Detection System 86

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.3 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.3.1 Feature Selection Algorithms . . . . . . . . . . . . . . . . . . 91

6.3.2 Base Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.3.3 Classifiers Ensemble . . . . . . . . . . . . . . . . . . . . . . . 94

6.3.4 The Proposed Model . . . . . . . . . . . . . . . . . . . . . . . 95

6.4 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 95

6.4.2 Data set Description . . . . . . . . . . . . . . . . . . . . . . . 97

6.4.3 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . 97

6.4.4 Statistical Significant Test . . . . . . . . . . . . . . . . . . . . 98

6.5 Experimental Result and Discussion . . . . . . . . . . . . . . . . . . . 99

6.5.1 PSO Parameter Setting . . . . . . . . . . . . . . . . . . . . . . 99

6.5.2 ACO Parameter Setting . . . . . . . . . . . . . . . . . . . . . 100

6.5.3 GA Parameter Setting . . . . . . . . . . . . . . . . . . . . . . 101

6.5.4 Classifiers Performance Result . . . . . . . . . . . . . . . . . . 102

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Chapter 7 An Improved Intrusion Detection System via Hybrid Fea-

ture Selection and Two-level Classifier Ensembles 108

v



Contents

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.3 Proposed Model and Methodology . . . . . . . . . . . . . . . . . . . . 111

7.3.1 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.3.1.1 Particle swarm optimization . . . . . . . . . . . . . . 112

7.3.1.2 Ant Colony Optimization . . . . . . . . . . . . . . . 113

7.3.1.3 Genetic Algorithm . . . . . . . . . . . . . . . . . . . 113

7.3.2 Classifier Ensembles . . . . . . . . . . . . . . . . . . . . . . . 114

7.3.2.1 Bagging . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.3.2.2 Rotation Forest . . . . . . . . . . . . . . . . . . . . . 114

7.3.3 The Proposed Two-level Classifier Ensembles . . . . . . . . . . 115

7.3.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.4 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.4.1 Data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.4.2 Performance Measures . . . . . . . . . . . . . . . . . . . . . . 119

7.4.3 Statistical Test . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.5 Result and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.5.1 Parameter Setting for Feature Selection . . . . . . . . . . . . . 121

7.5.2 Performance Results and Benchmark . . . . . . . . . . . . . . 122

7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Chapter 8 Conclusions and Future Work 129

8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8.2 Suggestions for Future Work . . . . . . . . . . . . . . . . . . . . . . . 131

Bibliography 132

Acknowledgements 146

List of Publications 148

Glossary 152

vi



List of Figures

1.1 Diagram depicts the relationship between one chapter to the others . 5

2.1 Process model of CRISP-DM (adapted from [1]) . . . . . . . . . . . . 9

2.2 Model for predictive analytics (adapted from [67]) . . . . . . . . . . . 10

2.3 A common resampling strategy . . . . . . . . . . . . . . . . . . . . . 11

2.4 A taxonomy of classifier ensembles based on five dimensions (adapted

from [100] and [71]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Overview of the statistical tests used in this thesis . . . . . . . . . . . 19

3.1 Classifier ensemble using majority voting . . . . . . . . . . . . . . . . 29

3.2 Classifier ensemble using stacking . . . . . . . . . . . . . . . . . . . . 30

3.3 The average results of accuracy . . . . . . . . . . . . . . . . . . . . . 41

3.4 The average results of precision . . . . . . . . . . . . . . . . . . . . . 41

3.5 The average results of recall . . . . . . . . . . . . . . . . . . . . . . . 42

3.6 The average results of F1 . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1 Average AUC value across three data sets . . . . . . . . . . . . . . . 60

4.2 Bonferroni-Dunn graphic referring to the base classifiers and classifier

ensembles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.1 Illustration of gradient boosted machine [38] . . . . . . . . . . . . . . 71

5.2 The average value of accuracy, specificity, sensitivity, and AUC per

classifier across four data sets . . . . . . . . . . . . . . . . . . . . . . 80

5.3 The average value of FPR per classifier across four data sets . . . . . 81

6.1 Illustration of classifiers ensemble . . . . . . . . . . . . . . . . . . . . 94

6.2 Proposed model for anomaly detection . . . . . . . . . . . . . . . . . 96

6.3 Average accuracy for each feature selection technique in all classifiers 103

6.4 Average FAR for each feature selection technique in all classifiers . . 104

vii



List of Figures

6.5 Critical difference of all classifiers in term of accuracy metric . . . . . 105

7.1 The proposed method for constructing two-level ensembles . . . . . . 116

7.2 The proposed model for IDS . . . . . . . . . . . . . . . . . . . . . . . 118

7.3 Performance average of all classifiers in term of four performance indi-

cators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

viii



List of Tables

2.1 CRISP-DM steps (adapted from [74]) . . . . . . . . . . . . . . . . . . 9

3.1 Related work of intrusion detection using classifier ensemble . . . . . 25

3.2 Performance result of base classifier . . . . . . . . . . . . . . . . . . . 35

3.3 Performance result of Bagging . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Performance result of Boosting . . . . . . . . . . . . . . . . . . . . . 37

3.5 Performance result of Majority Voting and Stacking . . . . . . . . . . 39

3.6 The results of classifier significance test . . . . . . . . . . . . . . . . . 40

4.1 Related study of classifier ensembles for DM detection . . . . . . . . . 50

4.2 Description of data sets . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 AUC value and Friedman average ranking for the base classifiers . . . 61

4.4 AUC value and Friedman average ranking for the classifier ensembles 62

5.1 The result of Quade test . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2 The p−value of post-hoc Quade test for accuracy and specificity . . . 81

5.3 The p−value of post-hoc Quade test for sensitivity and FPR . . . . . 81

5.4 The p−value of post-hoc Quade test for AUC . . . . . . . . . . . . . 82

5.5 Comparison result of 10f cv on KDDTrain+ . . . . . . . . . . . . . . 83

5.6 Comparison result of hold-out method on KDDTest+ and KDDTest-21 83

5.7 Comparison result of UNSW NB15 Train and UNSW NB15 Test . . . 84

5.8 Comparison result of GPRS training and testing set . . . . . . . . . . 84

6.1 Parameter setting for PSO . . . . . . . . . . . . . . . . . . . . . . . . 100

6.2 Parameter setting for ACO . . . . . . . . . . . . . . . . . . . . . . . . 101

6.3 Parameter setting for GA . . . . . . . . . . . . . . . . . . . . . . . . 101

6.4 The results of classifier significance using Friedman test . . . . . . . . 104

6.5 Comparison of the proposed approach for 10f − cv . . . . . . . . . . 106

ix



List of Tables

7.1 Parameter setting for PSO, ACO, and GA for feature selection . . . . 123

7.2 Results of Quade test . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.3 Pairwise comparisons in terms of accuracy and FPR . . . . . . . . . . 125

7.4 Pairwise comparisons in terms of specificity and precision . . . . . . . 125

7.5 Performance comparison on KDDTest+ . . . . . . . . . . . . . . . . . 126

7.6 Training and testing time of all classifiers (seconds) . . . . . . . . . . 127

x



Chapter 1
Introduction

The main focus of this thesis is on the construction of a different types of classifier

ensembles for predictive data analytics in the particular domains, i.e. intrusion de-

tection systems and disease prediction. In this thesis, we evaluate the state-of-the-art

ensemble methods and establish several ensemble architectures, i.e. gradient boosted

machine, tree-based ensemble, and two-level ensemble. We also put our attention to

the importance of statistical significance test as a pivotal facet of classifier’s perfor-

mance benchmark between classifier ensembles and base classifiers. It is noted that a

classifier ensemble is not always able to outperform its base classifiers due to several

rationales, i.e. poor ensemble design, the selection of ideal base classifiers is unclear,

and etc. In this chapter, we begin with the motivation of this thesis and detail the

outline of our works.

1.1 Motivation

Classifier ensembles or ensemble learners play a significant role in many diverse ap-

plications. They have been extremely efficacious in resulting accurate predictions

for many complicated classification tasks [137], [4], [64]. The achievement of these

1
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techniques is caused by their capability to not only incorporate better predictions

but also to fix errors all kinds of base classifiers [127]. The performance of a clas-

sifier ensemble significantly relies on diversity [21], [72]. Several diversity measures

have been employed to control the agreement among classifiers for constructing the

classifier pools [72], [143]. However, achieving a balanced trade-off between the di-

versity and accuracy is not straightforward as there is no clear definition of what is

apprehended as diversity of classifiers. It persists in being unexplored how different

classifier ensembles would be able to maximize the information taken from the pool

of base classifiers [123].

Intrusion detection systems and anomaly detection, in particular, is one of application

domain where the solving of classification problems is extremely complex [102], [15].

This is due to the absence of prior knowledge on how the variables can be used for

attack detection, as well as a lack of a common view concerning the best classifiers for

a specific attack detection problems [126], [18], [133]. Moreover, in the data set point

of view, the existence of imbalance data sets, missing values, and unappropriate fea-

ture selection technique boost the classification complexity. Classifier ensembles that

are composed by a large-scale and various base classifiers are hypothetically tailored

for this domain. Furthermore, since each classifier contributes to the final prediction,

constructing an accurate predictive model could be realized. Even though the con-

structed ensembles would produce a small improvement in the predictive accuracy,

it would provide a substantial contribution to the preventive action of information

security management.

On the one hand classifier ensembles would bring a significant improvement in terms of

final predictive accuracy, but on the other hand we could not neglect the importance

of feature selection. Feature selection is a key task in machine learning and data

mining. Besides reducing the dimensionality of data, it also increases the performance

and speeds up the training time of a classification algorithm [23], [47], [136]. However,

due to the problematic nature of feature selection, the current techniques still suffer

2
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from high computational cost [128]. Feature selection is a complex task as the number

of search space is large. The number of possible solution is 2n, which n is total number

of features in a data set [5]. To tackle this problem, an efficient search method based

on evolutionary computation, i.e. particle swarm optimization, ant-colony algorithm,

or genetic algorithm is needed. As a variety of EC-based feature selection techniques

have been proposed, in this thesis, an hybrid feature selection technique is constructed

using the aforementioned evolutionary computation algorithms.

In addition, like in any field of study, a novel approach can be accepted only if we

can demonstrate its effectiveness over the existing ones. This motivates us to include

statistical significance tests which are still underexplored in the purview of intrusion

detection systems. Although an ample attempt has been made by IDSs researchers

in both constructing new classification algorithm and improving the existing works,

these researchers have not addressed the issue concerning with what precise measure

is most fitted for quantitative benchmarks of different classification algorithms on a

particular domain [59]. Statistical test is one approach that we can use to measure

whether there exist significant differences among the performance of two or more

classification algorithms [59], [26]. In this thesis, we focus on the evaluation of the

performance differences of classifiers produced by ensemble learners in the context of

binary classification.

1.2 Outline of the Thesis and Contributions

The structure of the following 8 chapters is organized as follows and Figure 1.1 depicts

how each chapter in this thesis relates to the others.

Chapter 2 presents an in-depth overview of two primary topics pertaining to the

research. The chapter starts with a brief introduction to predictive data analytics.

3
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Then, this chapter provides general information of the construction and the implemen-

tation of classifier ensembles followed by a characteristic of leading-edge researches

on classifier ensembles.

Chapter 3 discusses a comparative experiment of different classifier ensemble ap-

proaches, i.e. bagging, booting, voting, and stacking for anomaly detection. A PSO-

based feature selection is applied to reduce the number of features of intrusion data

set. Specifically, we emphasize the importance of decision combination scheme of

classifier ensembles which is the most pivotal facet among others. Consecutively,

the significance of classifier ensembles against base classifiers is evaluated using a

parametric two-matched samples t test.

Chapter 4 explores a performance benchmark of different ensemble strategies for

early detection method of diabetes mellitus. In this chapter, several ensemble schemes,

i.e. bagging, boosting, random subspace, DECORATE, and rotation forest are in-

cluded in the experiment. Furthermore, eight classification algorithms are employed

as a base classifier in each scheme. Lastly, we conduct two statistical significance

tests using Friedman and Bonferonni-Dunn post-hoc test in order to evaluate the

performance differences among classifiers.

Chapter 5 describes the development of a novel approach of anomaly detection

using gradient boosted machine, which is a highly effective tree boosting approach

in machine learning research. The performance superiority of the proposed approach

is then compared with other well-known classification algorithms, i.e. random forest,

deep neural network, support vector machine, and classification and regression trees

in terms of accuracy and false alarm rate. Finally, Quade and Quade post-hoc test

are taken into consideration as an indicator of performance benchmark analysis.

Chapter 6 conveys a combination of hybrid feature selection and tree-based classifier

ensemble for anomaly detection. An hybrid feature selection is built by employing

three EC-based search methods, i.e. GA, PSO, and ACO, whilst a blended classifier

4
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Figure 1.1: Diagram depicts the relationship between one chapter to the others
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is developed based on tree-based classification algorithms, i.e. RF, NBT, LMT, and

REPT using majority voting rule. In this chapter, we emphasize a thorough iterative

process of experiment to choose optimum parameter setting for feature selection.

Chapter 7 explains a novel approach of anomaly detection using hybrid feature

selection and two-level classifier ensemble. We consider the same hybrid feature se-

lection as discussed in Chapter 6. Subsequently, in order to solve binary classification

problem, a new two-level ensemble is proposed. The two-level ensemble is composed

by an ensemble in the first level whose base classifier is another ensemble.

Chapter 8 provides the conclusion of the research as well as identifying directions

for future work.
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Chapter 2
Predictive Data Analytics and Classifier

Ensembles: An Overview

The objective of this chapter is to provide a theoretical background related to re-

search motivations presented in Chapter 1. This chapter begins with Section 2.1

that describes with a brief overview of predictive data analytics, whilst Section 2.2

offers a fundamental concept of classifier ensembles. Finally, Section 2.3 represents a

discussion about experimental comparison of classifiers.

2.1 Predictive Data Analytics

2.1.1 Data Analytics and Data Mining

We are living in the era of technology and huge amounts of data is being generated.

Since data is a unit of historic information, it thus brings a new term of data analytics

which examines historic data. The rise of data analytics has been increasing since

2005 due to the first appearance of Google Analytics [1]. Data analytics deals with

the process of employing computational technique to discover meaningful patterns in
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data [1]. Runkler [101] defines data analytics as the application of computer systems

to the analysis of large data sets for the support of decision making. It includes a wide

range of data analysis methods and lies in multidisciplinary fields, i.e. machine learn-

ing, data mining, pattern recognition, knowledge discovery, statistics, data analysis,

predictive analytics and even presently data science [1], [67], [49], [131].

Data mining, of which predictive analytics is a subset, has already reached a stationary

phase in its fame [67]. Predictive analytics has much in common with its predecessor,

data mining. However, the algorithms and techniques are prevalently the same [1].

Data mining is the nontrivial process of identifying valid and novel patterns [34].

The term ”nontrivial process” differentiates data mining from other easy statistical

tasks, i.e. calculating mean and standard deviation, whilst ”novel” denotes that data

mining is usually taken into account in finding previously unknown patterns in the

data [67].

2.1.2 Predictive Analytics Process

One of the most well-known predictive analytics process framework is CRISP-DM

[17], [74]. The CRISP-DM process framework is the most widely used for developing

data analytics project. Other frameworks include SEMMA which is developed by SAS

institute [103], DMAIC [69], and KDD Process [34]. As illustrated in Figure 2.1, a

data analytics project has a life cycle comprising six steps, i.e. business understanding,

data understanding, data preparation, modeling, evaluation, and deployment. These

steps are briefly explained in Table 2.1. It is noted that feedback loops exist, yet

they may be modified based upon findings during the analytics project, i.e. data

preparation may be insufficient to create the model, thus it must be re-defined in the

prior steps.
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Table 2.1: CRISP-DM steps (adapted from [74])

Step Description
Business Understanding Define the project.
Data Understanding Examine the data; identify problems in the data.
Data Preparation Fix problems in the data; create derived variables.
Modeling Build predictive or descriptive models.
Evaluation Assess models; report on the expected effects of models.
Deployment Plan for use of models.

Figure 2.1: Process model of CRISP-DM (adapted from [1])
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Figure 2.2: Model for predictive analytics (adapted from [67])

2.1.3 Analytics Model

In the circumstance of predictive analytics, data mining is the process of building the

representative model (predictive modeling). The model is the abstract representation

of the data and its relationships in a particular data set thereby it should be valid

not just for the data set used to create the model, but also for the future unknown

data. Furthermore, the model provides two objectives: on the one hand it predicts

the output variable (i.e. normal or anomaly) based on the input variables (i.e. flag,

src bytes, dst bytes, logged in, and etc), and on the other hand it is utilized to under-

stand the relationship between the output variable and all the input variables. Figure

2.2 represents the inputs and output of the model. Once the model is constructed, it

can be employed to predict the value of class model, based on all the input values.

To create the predictive model, modeling techniques (classification or regression al-

gorithms) are required. The algorithms need a training data set to learn the model

and a test data set to check the validity of the deployed model. In this thesis, we

mostly discuss anomaly detection using classification algorithms. Anomaly detection

is predictive since known data is available. Moreover, with increasing model complex-

ity, the more likely problem in predictive modeling is overfitting [51]. Overfit refers

to models that are very accurate on the data used to train the models, but perform
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D = {d1, d2, d3, ..., dn}

D(1) D(2) D(3) · · · D(k)

s(1) s(2) s(3) · · · s(k)

S = {s(1), s(2), s(3), ..., s(k)}

Figure 2.3: A common resampling strategy

much worse on data not in the modeling set [1]. In order to solve this problem, resam-

pling strategies are necessary. The following section contains detailed descriptions of

different resampling methods used in this thesis.

2.1.4 Resampling Strategies

Resampling techniques are commonly used to assess the performance of learning algo-

rithm. Supposed a data setD is split into a training setD(i) and an accompanying test

set D\D(i), i = 1, ..., k. The learning algorithm is trained on each training set, predic-

tion is taken on the appropriate test set and the performance measure S(D(i), D\D(i))

is computed. Then the k individual performance values are aggregated, usually by

calculating the mean (Figure 2.3). There are different types of resampling strategies,

i.e. random subsampling, cross-validation, holdout, and bootstrapping, to name but a

few. In the next three subsection, three popular resampling methods are introduced.

2.1.4.1 Cross-validation

Cross-validation is the most classical resampling techniques. A data set is divided into

k equally size partitions and then use k− 1 partitions to fit the model and validate it

on the remaining partition. The k partitions usually refer to folds in the literature and
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common choice for k are 5, 10, and n. Generic resampling technique is summarized

in Algorithm 1, whilst the process used to generate k subsets (indicated in line 1

of Algorithm 1) is described in Algorithm 2. The case of k = n is a special case

called leave-one-out cross validation, and has reached eminence in error estimation,

in particular for small-size samples data set.

Algorithm 1 General resampling strategy

Input: A dataset D of n observation d1 to dn, the number of subsets k, and a loss
function L.
Process:
1. Generate k subsets of D named D(1) to D(k)

2. S ← ∅
3. for i← 1 to k do
4. D̄(i) ← D\D(i)

5. f̂ ← FitModel(D(i))
6. si ←

∑
(xy)′∈D̄(i) L(y, f̂(x))

7. S ← S ∪ {si}
8. end
9. Aggregate S, i.e. mean(S)
Output: Summary of the validation statistics.

Algorithm 2 Generate subsets for k-fold cross validation

Input: A dataset D of n observation d1 to dn and the number of subsets k
Process:
1. D ← Shuffle(D)
2. for i← 1 to k do
3. D(i) ← D
4. end
5. for j ← 1 to n do
6. i← (j mod k) + 1
7. D(i) ← D(i)\{dj}
8. end
Output: k subsets of D named D(1) to D(k)

2.1.4.2 Multiple Runs of Resampling Methods

Single run of cross-validation might suffer from the limitation of low replicability as

they rely on a fact that exactly not possessing the same training and testing sets
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when attempting to replicate the results [59]. In order to obtain more stable esti-

mates, it is necessary to average the results over multiple runs rather than attempting

to replicate the result over a single run. Hitherto, there does not exist strong theoret-

ical basis of choosing how many runs of resampling methods to perform, yet several

recommendation have been proposed such as 5 × 2CV [28] and 10 × 10CV [10]. It

is an attempt of running 5 repetitions of 2-fold cross-validation and 10 repetitions of

10-fold cross-validation, respectively.

2.1.4.3 Random Subsampling

In subsampling, observations are drawn from D without replacement. The data set

D is randomly partitioned into a training and a test set as specified by a given

percentage. If there is only one iteration, the strategy is usually called holdout. The

problem may occur in very small data set since every iteration of the multiple runs

would yield very similar classifiers. However, it brings the advantage of being able to

use larger amount of data for training purposes, yielding in less-biased classifiers [59].

Algorithm 3 encloses the process of random subsampling strategy.

Algorithm 3 Subset generation for subsampling

Input: A dataset D of n observation d1 to dn, the number of subsets k, and the
subsampling rate r.
Process:
1. m← ⌊r|D|⌋
2. for i← 1 to k do
3. D′ ← D
4. D(i) ← ∅
5. for j ← 1 to m do
6. d← RandomElement(D′)
7. D(i) ← D(i) ∪ {d}
8. D′ ← D′\{d}
9. end
10.end
Output: k subsets of D named D(1) to D(k)
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2.2 Classifier Ensembles

Classifier ensembles train multiple classifiers to solve the same problem [139]. It is also

called multiple classifier systems, ensemble methods, or committee-based learning. An

ensemble is made up of a number of classifiers called base classifier. Base classifiers

can be neural network, decision tree, naive bayes, and other types of classification

algorithms [139]. An ensemble in which the same type of classifiers are used is called

homogeneous ensembles. On the contrary, different types of classification algorithms

may lead to produce heterogeneous ensembles.

2.2.1 A Taxonomy of Classifier Ensembles

An extensive review of classifier ensemble literature is offered by Rokach [100]. In

addition, a taxonomy with five dimensions which provides a wide span of existing

classifier ensemble methods is also proposed. The taxonomy is visualized in Figure

2.4. Any classifier ensemble schemes can be represented in terms of the five dimensions

[71]. We provide the detailed descriptions of each five dimensions as follows.

(i) The combiner. A combiner is not stated in some ensemble methods, however,

for these methods, a combiner can be:

• Nontrainable. A majority voting is an example of this group.

• Trainable. The weighted majority voting and naive bayes combiner are

two example of this group. The classifier selection approach also can be

included as one classifier in the ensemble is allowed to make decision for a

particular class.

• Meta classifier. Stack generalization is an example of this group. In this

method, the outputs of individual classifiers are handled as input into a

new classifier, called meta classifier.
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(ii) Building the ensemble. A question that might be raised is: Can the base clas-

sifiers be trained independently? or Do they need to be trained in a sequence?.

Adaboost is an example of this group.

(iii) Diversity. The following directions are suggested on how is diversity taken into

account into the ensemble.

• Use different parameters in the training of the individual classifiers.

• Manipulate the training set for each ensemble member.

• Select different label targets.

• Partitioning the training set. Horizontal partitioning denotes that different

subset of samples are use as the training data for each base classifier, whilst

vertical partitioning implies different subsets of features are employed as

the training data for each base classifier.

• Different classifier models or hybrid ensembles.

(iv) Ensemble size. How do we specify the number of classifiers in the pool? Is the

pool constructed by simultaneous or iterative training?.

(v) Universality with regard to the base classifiers. Some ensemble methods can

be deployed with any classifier model whilst others are involved to a particular

classifier type. An example of a classifier-specific ensemble is random forest,

where random tree is used as base classifier.

2.2.2 Types of Classifier Outputs

Ensemble methods combine the output of the base classifiers in the pool. Let consider

a classifier ensemble incorporating of L classifiers in the set D = {D1, D2, ..., DL} and

a set of classes Ω = {ω1, ω2, ..., ωc}. Three types of classifier outputs can be described

as follows [135].
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(i) Class labels. Each classifier Di produces a class label si ∈ Ω, i = 1, 2, .., L.

Therefore, for any object x ∈ Rn to be classified, the L classifier outputs define

a vector s = [s1, s2, ..., sL]
T ∈ ΩL.

(ii) Ranked class labels. The output of eachDi is a subset of the class label Ω, ranked

in order of plausibility. This category is fit for problem with large number of

classes, i.e. character recognition, face detection, etc.

(iii) Numerical support for the classes. Each classifier Di yields a c-dimensional

vector [di,1, ..., di,c]
T . The value di,j denotes the support for hypothesis that

vector x placed for classification comes from class ωj. For the sake of simplicity,

rather than di,jx, di,j is used which denotes the function of the input x.

(iv) Oracle. The output of classifier Di for a particular x is only known to be either

correct or wrong. For a particular data set G, classifier Di produces an output

vector yi such that

yi,j =

1, if Di classifies object gj correctly

0, otherwise
(2.1)

2.3 Experimental Benchmark of Classifiers

Statistical tests are needed as comparing the performance of different machine learn-

ing algorithms on a particular domain is not so straightforward [131]. They offer a

”confidence” level in the difference in performance discovered over a given problem

for two or more classification methods. The subject matter is that no single scheme

consisting of evaluation methods can be applicable in all scenarios. One of the most

widely adopted statistical significance technique is t-test. Nevertheless, the test is,

in fact, not only the option as it is by no means suitable to all scenarios [59]. A

comprehensive and thorough analysis of algorithms and their performance behaviour
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is indispensable when the experiments are conducted in complex setting involving

multiple domains and data sets.

The aims of statistical significance test commonly are related with three following

tasks:

(i) Benchmarking the performance of a learning algorithm of interest against that

of existing algorithms on a specific domain.

(ii) Benchmarking the performance of a learning algorithm of interest against that

of existing algorithms on benchmark data sets.

(iii) Benchmarking the performance of multiple classifiers on benchmark data sets

or a given problem of interest.

Conducting the afore-mentioned tasks leads to other requirements such as deciding

which evaluation metrics to use or whether analysis methods and graphical visual-

ization should be taken into account. Moreover, there are usually two categories of

methods, i.e. parametric tests that make strong assumptions concerning the distribu-

tion of the population and non-parametric tests whose assumptions are not strong. A

wide-range variation of statistical tests are available considering that their utilizations

depend on the details of the circumstances.

Figure 2.5 summarizes the statistical tests adopted in this thesis. This does not

represent a comprehensive list of all statistical tests that could be employed for all

domain problems discussed in this thesis, yet it visualizes the tests commonly used

for assessing multiple classification algorithms.
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Chapter 3
An Extensive Empirical Evaluation of

Classifier Ensembles for Intrusion

Detection Task

3.1 Introduction

In today’s information explosion, massive amounts of data has been generated from

diverse applications including Internet applications. It is like two sides of coin, in one

side it possesses many advantages to legitimate users, but huge risk losses might be

faced since lots of information are available for misbehave users. Roughly speaking,

as the number of people connected to the Internet is rocketing overwhelmingly, it has

led to increase the vulnerability of network protection systems.

Conventionally, in order to protect computer networks from attacks, several tech-

niques have been proposed, i.e. encryption, authentication, and firewall. However,

in the modern cyber defense systems, conventional approach is not enough due to

constantly evolving threats. Therefore, a higher-level adaptive protection system is

compulsory.

20



Chapter 3. An extensive empirical evaluation...

An IDS is one of reactive security solutions which uses analytical techniques to in-

telligently monitor activities in computing resource, e.g. analyze network flow and

generate reaction. An IDS deals with intrusion detection based on traffic events that

occur in computer network so that malicious users can be traced and similar attack

patterns can be identified.

Generally, an IDS is laid in several categories, i.e. misuse/signature detection, anomaly

detection, and hybrid detection [27]. Misuse detection is a triggering method that

generates alarm when a known misuse traffic pattern occurs. Even though it can de-

tect known attack immediately with a lower positive rate, this method cannot detect

newly created attack pattern. On the contrary, anomaly detection detects attacks if

the characteristics of the traffic are far from those of normal traffic. It can detect

novel attacks but it is hampered by high positive rate. Moreover, hybrid method is

proposed to overcome the drawbacks of two aforementioned approaches, however, the

performance of hybrid method depends on the combination of methods used [65].

To date, most prior studies focus on the task of anomaly detection using various data

mining and machine learning techniques [115]. Some of them revolve around com-

bining multiple techniques in order to ameliorate detection performance, i.e. average

accuracy, false alarm rates, etc [78]. Hence, under this perspective, we attempt to

improve detection performance of IDS using classifier ensembles which is still un-

derexplored in the literature. We hypothesize that incorporating of multiple weak

learners (single classifiers) might improve the prediction accuracy significantly [116].

The cutting-edge research of pattern classification is the combination of several clas-

sifier systems, which perform the fusion of classification techniques to overcome the

limitation of weak classifiers [133]. Referring to the ”no free lunch” theorem by

Wolpert [132], he stated that there is no a single classifier which is excellent for all

pattern recognition tasks. Single classifier cannot be a panacea for all computing

problems. Hence, by combining single classifier models, it produces great alliance to
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produce the significant improvement of weak learners. Prior study of classifier ensem-

ble in different applications revealed that the combination of multiple weak classifiers

can improve the final result prediction [58], [110], [111]. At least there are three

advantages of classifier ensemble as stated by Dietterich [29]: (a) reducing the risk

of selecting inappropriate single classifier, (b) providing better approximation that

can overcome the local optima problem, and (c) possible to handle complex decision

boundary which separates data from different classes.

However, in order to get significant improvement, classifier ensemble requires a thor-

oughgoing design in the particular circumstances. Several pivotal facets of designing

classifier ensemble which must be taken into account are decision combination scheme,

base classifier selection, and the creation of ensembles [95]. In this chapter, we em-

phasize the importance of decision combination scheme which is the most crucial

among other aspects. We conduct comparative experiment using different ensemble

approaches, i.e. bagging [11], boosting [130], voting [71], and stacking [104]. To prove

classifier ensemble can perform on intrusion detection, we consider two real public

data sets, e.g. network-based intrusion detection, namely NSL-KDD data set [124]

and 802.11 network-based intrusion detection, namely GPRS data set [129].

3.2 Related Work

In this section we review the previous works related to intrusion detection method

using classifier ensembles. The review is presented in chronological order and for

further detailed review, reader is suggested to refer the work of [43], [126], and [89].

Table 3.1 summarizes the comparison of prior works based on the machine learn-

ing techniques, combination scheme, base classifiers, data sets used for experiments,

performance metrics, feature selection method, and category of intrusion detection.

Regarding prior studies in intrusion detection using classifier ensemble, ensemble of

NN and SVM using majority voting scheme were deployed in [87] and [94]. Though
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these two base classifiers has been shown great performance in many application

domains, they suffer from computational cost, particularly when train large data set.

For the sake of reducing such kind of computational cost, tree-based classifier, i.e. DT

and decision stump were chosen as an alternative [93], [57], [134], and [14]. Another

alternative which could be considered was implementing bagging and neural ensemble.

In bagging if a single classifier is unstable i.e. it has high variance, the aggregated

classifier (neural ensemble) has a smaller variance than a single base classifier [140],

[107], and [46].

In the context of feature selection (or dimensional reduction), various techniques have

been considered. The goal of feature selection is to filter out unrepresentative feature.

Since there is no standard of which features are representative for intrusion detection,

most of works employed diverse methods to tackle high dimensional data set. For

instance, GA is employed as feature selection technique. By applying genetic search

method, classifiers received significant improvement of prediction accuracy compared

to other feature selection techniques [107].

In order to distinguish between our approach and the existing work, we shall remark

our approach from several aspects: Firstly, we conduct an extensive assessment of

multiple classifier ensembles across multiple domains. To the best of our knowledge,

this is the first attempt to make such comparative experiment. Based on the recent

study by [78], [43], and [126], there are very few classifier ensembles which have

been employed in intrusion detection (see Table 3.1). Secondly, most experiments are

conducted using obsolete data set KDD Cup 1999 which yields biased result as many

redundant records exist, whilst in this experiment we use data sets obtained from

cross-domain applications. Thirdly, we studied the feature selection technique using

PSO [84], which has been underexplored in the previous works. Fourthly, it analyzes

the performance of classifier ensemble applied to wireless network, in particular we

emphasize both normal and attack traffic to highlight possible attack patterns on

802.11 network. Fifthly, as we conduct comparative assessment of multiple classifiers
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in multiple domains, we evaluate the classifier significance using the parametric two-

matched samples t test, which is pivotal in evaluating learning algorithms.

3.3 Methodology

In this section we are going to describe research methodology based on feature re-

duction and classifier ensembles. It includes methods for combining weak classifier,

combination schemes, data sets used in the experiment, and lastly performance met-

rics used for evaluating the classifiers.

3.3.1 Feature Reduction

For attribute evaluator, we adopt CFS which is one of leading feature subset selection

method in machine learning and pattern recognition [48]. The worth of a subset

of attributes is evaluated using entropy and information gain theory. The lack of

computation using information gain is symmetrical uncertainty and biased of feature

with more values. Hence, CFS adopts a coefficient to compensate information gain’s

bias toward attribute with more values and to normalize its value to the range [0, 1].

For search method, PSO is used to search the set of all possible features so that the

best set of features can be obtained [114]. PSO is firstly introduced by Kennedy and

Eberhart [62], is one of computation technique which is inspired by behavior of flying

birds and their means of information exchange to solve the problems. Each particle

in the swarm represents possible solution.

A number of particle is located in the hyperspace, which has random position ϕi

and velocity υi. The basic update rule for the position and the speed is depicted in

Equation 3.1 and Equation 3.2, respectively.
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ϕi(t+ 1) = ϕi + υi(t+ 1) (3.1)

υi(t+ 1) = ωυi(t) + c1r1(pi − xi) + c2r2(g − xi) (3.2)

Where ω denotes inertia weight constant, c1 and c2 denotes cognitive and social

learning constant, respectively, r1 and r2 represent random number, pi is personal

best position of particle i, and finally, g is global best position among all particles in

the swarm.

3.3.2 Approach for Combining Weak Classifiers

In contrast with single classifier which is built using only one learner, classifier ensem-

ble, which as the name implies, is composed using a set of learners and incorporate

them to produce final result. Several schemes for combining weak classifiers can be

briefly described as follows [54].

(i) Parallel. All the weak classifiers are invoked independently, the final results

then are fused with a combination rule to acquire the final prediction.

(ii) Serial. All the weak classifiers are invoked in a sequential way. Inaccurate and

fast classifiers are invoked first and the other, which are computational intensive

and accurate ones are left for the latter phases.

(iii) Dynamic classifier selection. This divides a training sets into several partitions.

The performance of final output is measured independently on each partition

so as the best classifier for each partition is determined.

(iv) Multiple stage organization. This is built by a set of classifiers which at each

stage operates in parallel, and their decisions then are fused. A dynamic selector

decides which classifiers are to be activated at each stage.
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In this chapter we focus on the first two approaches which are consistent with the

current trend of classifier ensemble research.

3.3.3 Combination Schemes

Combining weak classifiers might not necessarily outperform the performance of the

best classifiers in the ensemble. Nevertheless, it can minimize the inappropriateness of

choosing the classifiers to be used with new target data [22]. Several different subsets

of the training sets are trained, and each subset produces different error boundaries,

yet the combiner can generate the best decision boundary. In this study, we will

employ the following combination schemes built with heterogeneous classifiers:

1. Bagging. This technique was firstly introduced by [11]. Bagging stands for

Booststrap Aggregating. Bagging adopts parallel paradigm where the base clas-

sifiers are generated in parallel. As the name implies, it applies bootstrap

sampling to obtain the data subsets for training the base classifiers. Moreover,

bagging adopts majority voting strategies for classification. To predict a test

instance, Bagging feeds the instance to its base classifiers and collects all of their

outputs, and the votes the labels and takes the winner label as the prediction.

The Bagging algorithm is summarized as follow [139].

Algorithm 4 Bagging Algorithm

Input: Data set D = {(x1, y1), (x2, y2), ..., (xm, ym)}; Base classifier ς;
Number of base classifiers T .
Process:
1. for t = 1, ..., T :
2. ht = ς(D,Dbs) %Dbs is bootstrap distribution
3. end

Output: H(x) = argmax
y∈Y

T∑
t=1

I(ht(x) = y

2. Boosting. Unlike Bagging, it adopts sequential ensemble methods where the

base classifiers are generated sequentially. Briefly, Boosting works by training a
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set of classifiers sequentially and combining them for prediction, where the later

classifiers focus more on the mistakes of the earlier classifiers. General boosting

procedure can be described as follow [139]. Though there are many variants of

boosting [71], in this chapter, we used Multiboost [130].

Algorithm 5 General Boosting Procedure

Input: Sample distribution D;
Base classifier ς;
Number of learning rounds T .
Process:
1. D1 = D % initialize distribution
2. for t = 1, ..., T :
3. ht = ς(Dt); %Train a weak classifier from Dt

4. ϵt = Px∼Dt(ht(x) ̸= f(x)); %Evaluate the error ht

5. Dt+1 = Adjust Distribution(Dt, ϵt)
6. end
Output: H(x) = Combine outputs({h1(x), ..., ht(x)})

3. Majority voting. As illustrated in Figure 3.1, every classifier votes for a particu-

lar class label, and the final output class label is the one that receives more than

half of the votes, otherwise a rejection option will be given. Let T individual

classifiers {h1, ..., hT} is given and we want to combine hi’s to predict the class

label from a set of l class label {c1, ..., cl}. It is assumed that for an instance x,

the final outputs of the classifier hi are given as an l-dimensional label vector

(h1
i (x), ..., h

l
i(x))

T , which hj
i (x) is the output of hi for the class label cj. Then,

hj
i (x) ∈ {0, 1} which takes value one if hi predicts cj as the class label and zero

otherwise. The output class label of majority voting is expressed as follow [139].

H(x) = α(x) =

 cj if
T∑
i=1

hj
i (x) >

1
2

l∑
k=1

T∑
i=1

hk
i (x)

rejection

(3.3)
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Figure 3.1: Classifier ensemble using majority voting

4. Stacking. As shown in Figure 3.2, stacking adopts the concept of meta-classifier

(level-1 classifier) to combine the individual output of the base classifiers (level-

0 classifiers). Though we can choose any classifiers as a level-1 classifier, how-

ever, prior study unveiled that stacking with linear regression (LR) has shown

good performance in many application domains. In order to avoid over-fitting,

cross-validation procedure is often recommended to generate the level-1 classi-

fier model. A general Stacking procedure can be summarized as follow [139].

Algorithm 6 General Stacking Procedure

Input: Data set D = {(x1, y1), (x2, y2), ..., (xm, ym)}; Level-0 classifiers ς1, ..., ςT ;
Level-1 classifier ς;
Process:
1. for t = 1, ..., T :
2. ht = ςt(D)
3. end
4. D′ = Ø
5. for i = 1, ...,m :
6. for t = 1, ..., T :
7. zit = ht(xi);
8. end
9. D′ = D′ ∪ ((zi1, ..., ziT ), yi);
10.end
11.h′ = ς(D′);
Output: H(x) = h′(h1(x), ..., hT (x))
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Figure 3.2: Classifier ensemble using stacking

3.3.4 Base Classifiers Used in the Experiment

As it has been mentioned previously, we choose RF [12], DT [96], LR [75], FT [40],

and CART [77] as base classifiers. These learning algorithms are chosen since they are

widely used in many domains and show their good accuracy performance. In addition,

the heterogeneity of base classifiers are also taken into account to get the better final

prediction. We set the same parameters, either as a part classifier ensemble or as a

single classifier. We briefly discuss the aforesaid base classifiers as follows.

(i) Random Forest. This generates a number of trees. Random trees are grown

without pre- or post-pruning, which contributes to their diversity. At each

node, the feature to split upon is chosen from a randomized split of the original

feature. Classification accuracy is gained some increase since the diversity of

the trees. There are only two parameters in RF, i.e. number of trees and the

number of variables to try at each split. Because selecting large number of trees

leads to reduce the performance of ensemble, we consider the number of trees

is 10 and set the number of variables to the square root of the total number of

predictors.
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(ii) Decision Tree. The classifier generates tree from root to nodes in top-down

manner. The selection of the feature for a node is based on the impurity of

the distribution of the class label. The impurity can be measured in different

way, e.g. entropy-based and Gini index. In order to avoid over − fitting

in the training set, it is recommended to apply pruning strategy in order to

generalise the tree generated by generating sub tree during the growing stage.

The two main alternatives for constructing trees are the ID3 algorithm and the

C4.5 algorithm, however, in this experiment, we use C4.5 algorithm which is

the most renowned tree construction algorithm among the machine learning

techniques. There are several parameter in C4.5, i.e. the parameter to test the

effectiveness of post-pruning (C), the number of fold (n) which determines the

amount of data used for reduced-error pruning, and the minimum number of

instances per leaf (l). We set these parameters as C = 0.25, n = 3, l = 2, and

pruning is applied.

(iii) Logistic Regression. This is based on logistic function, which estimates the

model that must lie in the range between zero and one. The model is designed

to describe a probability, which is always some value between zero and one. We

use multinomial logistic regression with a ridge estimator. Ridge parameter is

used to maximised the penalised log-likelihood and we set this value is 1.0E−8.

Also, BFGS update is determined instead of gradient descent in order to get

the faster training.

(iv) Functional Tree. This combines a univariate decision tree with a linear function

by means of constructive induction. Decision trees are able to use decision nodes

with multivariate tests, and make predictions using linear functions. Multivari-

ate tests are performed when growing the tree, while functional leaves are built

when pruning the tree. There is only one parameter for FT, i.e. number of

instances (N) in which a node is considered for splitting. The value of N is set

to 15.
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(v) Classification and Regression Tree. The classifier is a tree-constructing tech-

nique which identifies splitting variables based on an exhaustive search. It has

a number of advantages over other classification methods i.e. it can handle nu-

merical data that are highly skewed and it has sophisticated method for dealing

with missing variables. For CART, there are two parameters, i.e. the number

of folds in the internal cross-validation (f) and the minimal number of observa-

tions at the terminal nodes (t). We considered f and t are 5 and 2, respectively.

Furthermore, heuristic process for binary split of nominal attributes and the

pruning strategy are used.

3.3.5 Data set

KDD Cup 99 data set has been widely used for intrusion detection [124]. It is con-

siderably accepted as a standard data set for benchmarking. However, the data set

has inherent problems due to the synthetic characteristic of the data. For this rea-

son, we considered to use NSL-KDD data set since it does not include redundant

instances which lead the classifiers to produce biased result. The data set possesses

41 attributes and one class label attribute. The full NSL-KDD training set contains

125927 instances, which is divided into two classes, e.g. attack class (58630 instances)

and normal class (67343 instances).

GPRS (Grupo de Pesquisa em Redes e Segurança) data set is proposed since the

number of available data set specific to wireless networks is quite limited [129]. It

is deployed based upon the intrusion detection on the IEEE 802.11 environment. It

consists of two distinct network topologies, e.g. WPE/WPA and WPA2. Either

WPE/WPA or WPA2 data set possesses the same 15 attributes and 1 class label. In

this experiment, we consider full training WPE/WPA set which consists of 2 classes,

i.e. normal class (6000 instances) and attack class (3600 instances). The full training

WPA2 set contains 4500 instances of normal class and 3000 instances of attack class.
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3.3.6 Evaluation Metrics

All classifier ensembles are evaluated using performance metrics, i.e. average accuracy,

precision (also known as detection rate), recall (also known as sensitivity), and F1

score. We considered to employ these performance metrics since they have been taken

into account in the previous related studies (see Table 3.1). These evaluation metrics

are briefly visualised as follows.

Average Accuracy =
TP + TN

TP + FP + FN + TN
(3.4)

Precision =
TP

TP + FP
(3.5)

Recall =
TP

TP + FN
(3.6)

F1 =
2TP

2TP + FN + FP
(3.7)

Where TP is the number of instances correctly identified as belonging to the normal

class, FP or Type I error is the number of instances incorrectly identified as belonging

to the normal class, TN is the number of instances correctly identified as belonging

to the attack class, and FN or Type II error is the number of instances incorrectly

identified as belonging to the attack class.

3.4 Result and Discussion

3.4.1 Result of Feature Selection

In this section we presents the result of feature selection using CFS as feature eval-

uator, whilst PSO as search method (CFS+PSO). We only apply feature selection

for NSL-KDD data set since it has a large number of features (41 attributes). For
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PSO, we consider the number of particle is 50, inertia weight constant ω is 0.33, and

c1, c2 share the same value, at 0.34. After conducting feature selection on NSL-KDD

data set using CFS+PSO, 11 significant attributes are obtained successfully. These

representative features are flag, src bytes, dst bytes, logged in, srv serror rate,

same srv rate, diff srv rate, dst host srv count, dst host srv diff host rate, dst

host serror rate and dst host srv serror rate.

3.4.2 Result of Classifier Ensemble

The following section presents an extensive empirical evaluation of classifier ensemble

for IDS. We show that classifier ensembles, which perform well against single classifier,

are the promising methods for prediction task in the realm of intrusion detection task.

In the experiments, we follow five times twofold cross-validation (5x2cv) as suggested

by Demsar [26]. This method divide the data set randomly into two equal parts. One

part is used for training and the other part to test the algorithm, and vice versa.

This procedure is then repeated five times. Table 3.2-3.5 provide the performance

indicators of base classifiers, bagging, boosting, majority voting, and stacking on the

two intrusion data sets.

Firstly, we consider the result of NSL-KDD data set. The implementation of bag-

ging ensemble has shown substantial improvement for DT and CART. Bagging DT

(99.6933%,0.9967%, 0.9975%, 0.9971%) and bagging CART (99.6853%, 0.9967%,

0.9975%, 0.9971%) outperform base classifiers DT (99.6531%, 0.9964%, 0.9971%,

0.9968%) and CART (99.6598%, 0.9964%, 0.9972%, 0.9968%) in terms of all four

performance indicators. Among five base classifiers, the implementation of boosting

has given the biggest improvement for DT (99.7239%, 0.9969%, 0.9979%, 0.9974%).

However, the implementation of stacking (99.2807%, 0.9915%, 0.9950%, 0.9933%)

and majority voting (99.2506%, 0.9911%, 0.9949%, 0.9930%) cannot outperform four

base classifiers, i.e. RF, DT, FT, and CART.
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For the GPRS-WEP/WPA data set, the implementation of bagging ensemble has

brought slightly improvement for RF, LR, and FT. Bagging RF (99.7247%, 0.9969%,

0.9980%, 0.9974%), bagging LR (91.3520%, 0.8987%, 0.9448%, 0.9211%), and bag-

ging FT (99.5764%, 0.9953%, 0.9968%, 0.9960%) outperform base classifiers RF

(80.4500%, 0.8366%, 0.8540%, 0.8452%), LR (83.3542%, 0.7956%, 0.9893%, 0.8819%),

and FT (86.5458%, 0.8261%, 0.9949%, 0.9026%) in terms of all four performance in-

dicators. In contrast, though the implementation of boosting cannot outperform

all base classifiers, the implementation of stacking (87.6167%, 0.8504%, 0.9745%,

0.9080%) has given the biggest improvement for all base classifiers.

For the GPRS-WPA2 data set, the implementation of bagging has yielded consider-

able improvement for DT, LR, and FT. Bagging DT (92.7440%, 0.9193%, 0.9644%,

0.9413%), bagging LR (85.7307%, 0.8850%, 0.9243%, 0.9035%), and bagging FT

(92.5467%, 0.9180%, 0.9643%, 0.9406%) outperform base classifiers DT (92.7040%,

0.9185%, 0.9647%, 0.9410%), LR (85.0293%, 0.8713%, 0.9344%, 0.9008%), and FT

(92.3413%, 0.9157%, 0.9640%, 0.9392%) in terms of three performance indicators,

e.g. accuracy, precision, and F1. The implementation of boosting yields significant

improvement for DT, LR, and FT. However, among them, FT (92.6240%, 0.9188%,

0.9631%, 0.9404%) receives the biggest improvement. The application of majority

voting (92.7627%, 0.9193%, 0.9647%, 0.9415%) and stacking (92.7493%, 0.9191%,

0.9648%, 0.9414%) also give substantial improvement in terms of all performance

indicators.

For the sake of advance evaluation, we further assess the leverage of classifier ensem-

bles by averaging the performance indicators across three data sets. Figure 3.3-3.6

depict the average value of four performance indicators, e.g. accuracy, precision,

recall, and F1, respectively.

For the average accuracy, stacking perform best (93.2156%), whilst boosting (LR)

performs worst (86.5467%). It is noted that, after the implementation of bagging

and boosting, the performance of base classifiers do not constantly improve, e.g.
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Figure 3.3: The average results of accuracy

Figure 3.4: The average results of precision
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Figure 3.5: The average results of recall

Figure 3.6: The average results of F1
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boosting RF (90.7894%), boosting FT (92.6478%), bagging CART (91.3256%), and

boosting CART (91.1139%). However, the implementation of bagging has a bigger

improvement than boosting in term of the average accuracy.

For the precision, stacking performs best (92.0346%). Boosting (LR) performs worst

(85.6538%). Surprisingly, after the implementation of bagging and boosting, the

performance of base classifiers have all improved significantly. It is also noted that

the implementation of bagging has a bigger improvement than boosting in term of

precision (detection rate).

For the recall, bagging (DT) performs best (98.6509%), whilst boosting (RF) performs

worst (93.6221%). After the implementation of bagging, base classifiers show slightly

improvement, whereas after the application of boosting, the performance of base

classifiers do not show significant improvement.

For the F1, the performance result is dominated by stacking (94.7555%), whilst boost-

ing (LR) receives the worst performance than other ensembles. The performance re-

sult of classifier ensembles in term of F1 score are quite similar to those found in the

precision.

Consecutively, we also evaluate the significance of classifier ensembles against base

classifiers using the parametric two-matched samples t test. We considered the null

hypothesis H0 is the average accuracy/precision/recall/F1 of Classifier I and the av-

erage accuracy/precision/recall/F1 of classifier II is the same, i.e. the expected dif-

ference µd is zero (µd=0). The alternative hypothesis Ha is their average are not the

same, i.e. the expected difference µd is not zero (µd ̸= 0). We defined the significance

level, α = 0.05, which corresponds to a confidence level of 95%. The improvement

column shows the relative improvement that Classifier II gives over Classifier I. Table

3.6 depicts the summarization of the results.

From the Table 3.6, it can be seen that classifier ensembles offer slightly improvement

for the five base learners in terms of accuracy. Stacking yields the best improvement
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(7.744%) over the base learner LR. For precision, stacking also offers best improvement

(7.578%) over the single classifier LR. In term of recall, majority voting yields the best

improvement over the base classifier RF. Moreover, for the F1, stacking also yields

the best improvement over the base classifier RF. It is also noted that the results

oppose the previous study [30] which stated that the lack of performance stability

of LR when it is placed in the ensemble. Moreover, the implementation of bagging

and boosting cannot outperform CART in terms of three performance indicators, e.g.

accuracy, recall, and F1.

3.5 Conclusion

Classifier ensemble has brought significant improvement over the base classifier. In

this study, we carry out a comparative assessment of classifier ensemble, e.g. bagging,

boosting, majority voting, and stacking based on five base classifiers, e.g. RF, DT,

LR, FT, and CART. We have applied the classifier ensembles to two cross-domain

intrusion detection data set, e.g. network intrusion data set (NSL-KDD) and wire-

less intrusion data set (GPRS). From the experimental result, it can bee seen that

classifier ensemble is the promising method for intrusion detection systems. In par-

ticular, our experiment reveal that bagging performs better than boosting in terms

of four performance indicators, i.e. accuracy, precision, recall, and F1. Moreover,

an interesting result also can be pointed out is after the implementation of bagging

or bagging, the performance of CART cannot outperform base classifier in terms of

three performance indicator, i.e. accuracy, recall, and F1. Among classifier ensem-

bles, stacking is powerful method for IDS since it yields the best performance in terms

of accuracy, precision, and F1.

44



Chapter 4
Tree-based Classifier Ensembles for Early

Detection Method of Diabetes: An

Exploratory Study

4.1 Introduction

Diabetes has become a critical health issue in the recent decades. It is one of the

most prevalent disease which could be found in almost all countries [105]. One factor

that contributes significantly to the present escalation of people with diabetes is

unhealthy lifestyle. It leads to increase obesity that might raise the risk of having

diabetes. Type-2 of diabetes mellitus is reported as a majority cases which constitutes

more than 95% of the total cases. Moreover, T2DM usually appears at the age of

40; notwithstanding, it might be found in the children with the obesity problem [45].

Detection of T2DM is not straightforward due to the false diagnosis and treatment.

Hence, many researchers attempt to propose an early detection method of diabetes

using machine learning techniques [112].

In this big data era, a large volume of data is generated and machine learning has be-

come an imperative tool to analyze the complexity of the generated data. A plethora
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of techniques have been applied for data analytic in medical diagnosis, including sin-

gle classifier and classifier ensemble [25], [35]. When having single classifier might not

produce good performance, the fusion of them is likely to have better prediction by

forming a pool of several classifiers. The such approach is so-called classifier ensemble

or ensemble learning which is still the focus intense research in the realm of machine

learning [133]. Most of the previous studies state that classifier ensembles are able

to improve the performance when compared with single classifier in the ensemble.

Moreover, it might counteract to choose worst classifier, particularly when having

small training data set [80].

Ensemble of classifiers have been already utilized for DM detection and diagnosis (see

Table 4.1). We do not consider to include single classifiers algorithms, i.e. support

vector machine [52] [112], neural network [52], decision tree (C4.5) [52] [113], and

so on. Instead, we only emphasize the implementation of classifier ensembles which

are yet to discover in the literature. Stacking of neural network and support vector

machine is proposed by [142]. The publicly available data set, so-called Pima Indian

diabetic data set [109] is employed for testing the proposed method. The author

declares that the combination of the two classifier leads to better results than using

a single classifier SVM or NN. It yields 88.04% which is the best result with regard

to the other classification algorithms. Work in [113] recommends AdaBoost.M1 al-

gorithm [37] to enhance the detection performance of SVM, C4.5, and naive bayes.

Diabetes data set taken from a hospital in Indonesia (RSMH) is utilized for classifica-

tion analysis. The experimental results show that SVM classifier is the top performer

followed by boosting (SVM) in terms of accuracy metric.

Ensemble of AdaBoost.M1 with random committee to predict the type of diabetes

from clinical and personal data is proposed in [3]. A data set comprises 18 attributes

and 100 records is acquired from local hospital. The proposed classifier offers 81% of

predictive accuracy which can be further improved by adding more records to the data

set. By using the two data sets, i.e. RSMH and PIDD, the authors in [141] suggest
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an improved detection method of diabetes using multiple classifier system based on

dynamic weighted voting scheme (MFWC). MCS is composed by five classification

algorithms, i.e. SVM, naive bayes, C4.5, logistic regression , and NN. Although other

methods perform differently on those two data sets, MFWC outperforms all other

methods on both data sets. Compared with other fusion methods, the proposed

method is about 5% better than majority voting, decision profile matrix, MCS using

L-GEM (ML-GEM).

Moreover, a three-layer ensemble framework based on majority voting ensemble tech-

nique, called HMV is proposed [8]. It is built in order to avoid the bias result due to

unbalanced classes that commonly exist in DM data sets. The framework is evaluated

on two data sets, i.e. PIDD and Biostat Diabetes Data set (BDD). The results indi-

cate that HMV achieves the highest prediction accuracy for both data sets. It yields

performance accuracy of 93% and 77.08% for BIDD and PIDD data set, respectively.

An almost similar framework of diabetes detection, called enhanced bagging and op-

timized weighting (HM-BagMoov) is proposed by [7]. By using two data sets, i.e.

PIDD and BIDD, the performance of the HM-BagMoov is then evaluated in terms of

accuracy metric. The authors claim that the proposed framework has achieved the

highest prediction accuracy for both data sets when compared with the state of the

art techniques. The HM-BagMoov reaches 77.21% accuracy for PIDD and 93.07%

for BDD data set, respectively.

A recent work of DM detection method using committees of neural network-based

classifiers is suggested by [32]. The two proposed ensembles are relied upon two base

classifiers, i.e. multilayer perceptron and cascade-forward back propagation network.

The first ensemble is generated using a pool of 16 different MLPs, which each classifier

member is varied according to the number of hidden neurons and number of training

epochs. Majority voting is used to combine the final class prediction of each classifier.

The proposed classifier yields 95.31% accuracy on PIDD data set which outperforms

the best individual classifier. The second ensemble is constructed using identical
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settings, yet CFBN is employed as base classifier. It gives 96.88% accuracy when

compared with the best individual classifier in the pool. Notwithstanding the results

are superior, validation method used in the experiment are not clearly mentioned.

The existing works, however, have several limitations as follows:

(i) Most studies use one particular ensemble scheme for DM detection where other

ensemble schemes are still unexplored. It is necessary to investigate the strate-

gies of using different ensemble schemes to see their performance behaviors.

(ii) Most studies only consider one particular validation method either tenfold cross-

validation (10cv) or hold-out.

(iii) Most studies do not examine the performance difference between classifier en-

semble and base classifier in the ensemble.

(iv) Most studies do not undertake statistical significant test to prove of significance

of the results. Even though t-test has been taken into account as in [141], one

should be kept in mind is t-test is very conservative and has a low power so as

several significant tests are much sought-after.

To the best of our knowledge this is the first attempt of employing several ensemble

schemes for DM prediction since most of the previous studies have focused either on

only one particular ensemble or single classifier as presented in [52]. To provide a

state of the art review of ensemble learning algorithms for DM detection, this chapter

has several following contributions that lie in different viewpoints:

(i) Eight tree-based machine learning algorithms, i.e. classification and regression

tree [13], decision tree (C4.5) [97], reduced error pruning tree [98], random tree

[12], naive Bayes tree [66], functional tree [40], best-first decision tree [106],

and logistic model tree [73] are involved as a base classifier in various ensemble

schemes, i.e. bagging [11], boosting [37], random subspace [53], DECORATE

[81], and rotation forest [99];
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(ii) All classifiers are evaluated on the three real-world data sets, i.e. PIDD [109],

RSMH [113], and Tabriz [52];

(iii) This chapter provides repeated cross-validation technique, i.e. ten times of

fivefold cross validation (10 × 5cv), which is better than one round of 10cv so

over-fitting or bias results could be evaded; and

(iv) We conduct a thorough benchmark by using statistical significance tests to

assess the performance differences among classifiers.

4.2 Materials and Methods

4.2.1 Data sets

In the following section, we explain the three real-world data sets, e.g. PIDD [109],

RSMH [113], and Tabriz data set [52]. Table 4.2 presents the details of data sets,

where also can be found in the previous works [113], [141], [52]. We normalize all data

sets into csv format without feature selection/reduction. All data sets are normalized

in order to make sure that classifiers can handle the data for later processing.

4.2.2 Classifier Ensembles

In this section, we briefly discuss five renowned classifier ensemble techniques such as

bagging, boosting, random subspace, decorate, and rotation forest, respectively.

4.2.2.1 Bagging

Bagging technique was firstly introduced by [11]. It stands for Booststrap Aggregat-

ing. It adopts parallel paradigm where the base classifiers are generated in parallel.
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Table 4.2: Description of data sets

Data set PIDD [109] RSMH [113] Tabriz [52]
Number of instances 768 435 2536
Number of attributes 8 11 13
Attributes Number of times

pregnant
Plasma insulin Sex

Blood pressure Fasting blood
sugar

Age

Plasma glucose
concentration

Body mass Height

Triceps skin fold
thickness

Blood pressure Weight

Two-hour in-
sulin

Instant blood
sugar

BMI

Body mass Age Family history
of diabetes

Diabetes pedi-
gree

Diabetes history History of preg-
nancy

Age Family history History of gesta-
tional diabetes

Hyperlipidemia History of
aborted baby

Smoker History of high
blood sugar

Gender History of use
drugs for high
blood pressure
Systolic blood
pressure
Diastolic blood
pressure

As the name implies, it applies bootstrap sampling to obtain the data subsets for

training the base classifiers. Moreover, bagging adopts majority voting strategies for

classification. To predict a test instance, Bagging feeds the instance to its base clas-

sifiers and collects all of their outputs, and the votes the labels and takes the winner

label as the prediction. The bagging algorithm is summarized in Algorithm 7 [71]

which supplies an explanatory note for each step as compared to Algorithm 4.
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Algorithm 7 Bagging Ensemble

Training: Given is a labeled data set Z = {z1, ..., zN}
1. Choose the ensemble size L and the base classifier model.
2. Take L bootstrap samples from Z and train the classifiers D1, ..., DL, one classifier
on each sample.
Testing: For each new object
1. Classify the new object x by all classifiers D1, ..., DL.
2. Taking the label assigned by classifier Di to be a vote for the respective class,
assign to x the class with the majority votes.
Return the ensemble label of the new object.

4.2.2.2 Boosting

Unlike bagging, boosting adopts sequential ensemble methods where the base classi-

fiers are generated sequentially. Briefly, boosting works by training a set of classifiers

sequentially and combining them for prediction, where the later classifiers focus more

on the mistakes of the earlier classifiers. General boosting procedure can be described

as the following Algorithm 8 [71]. For a comparison, please refer to Algorithm 5.

Though there are many variants of boosting [71], in this chapter, we used Adaboost

[36] which is the most influential boosting algorithm in research community.

Algorithm 8 Boosting Ensemble

Training: Given is a labeled data set Z = {z1, ..., zN}
1. Choose the ensemble size L and the base classifier model.
2. Set the weight w1 = [w1

1, ..., w
1
N ], w

1
j ∈ [0, 1],

∑N
j=1w

1
j = 1

3. For k = 1, ..., L
a. Take a sample Sk from Z using distribution wk

b. Build a classifier Dk using training set Sk

c. Calculate the weighted ensemble error (ϵk) at step k
d. If (ϵk) = 0, reinitialize the weights wk

j to 1
N

and continue.
(i) Else if ϵk ≥ 0.5, ignore Dk

(ii) else, calculate βk =
ϵk

1−ϵk
and update the weight wk+1

j

4. Return D = D1, ..., DL and β1, ..., βL.
Testing: For each new object
1. Classify the new object x by all classifiers D1, ..., DL.
2. Calculate the support for class ωt, by µt(x) =

∑
Dk(x)=ωt

ln( 1
βk
)

3. Choose the class with maximum support as the label for x
Return the ensemble label of the new object.
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4.2.2.3 Random Subspace

Random subspace is firstly introduced by [53]. It uses different feature subsets to train

the ensemble members [71]. This method is the leading role in many applications such

as cancer diagnosis and fMRI data analysis, particularly application which has large

number of features (high dimensional data). The procedure of random subspace is

detailed in Algorithm 9.

Algorithm 9 Random Subspace

Training: Given is a labeled data set Z = {z1, ..., zN}, each object is described by
the features in the feature set X = {X1, ..., Xn}
1. Choose the ensemble size L, the number of features d (d < n), and the base
classifier model
2. Take L samples of size d in X, train classifier D1, ..., DL

Testing: For each new object
1. Classify the new object x by all classifiers D1, ..., DL, for classifier Di, use only the
respective features
2. Taking the label assigned by classifier Di, assign to x the class with the majority
vote
Return the ensemble label of the new object.

4.2.2.4 DECORATE

A meta-learner DECORATE (Diverse Ensemble Creation by Oppositional Relabeling

of Artificial Training Examples) is proposed by [81]. It uses an existing strong clas-

sifier (one that provide hight accuracy on the training data) to construct an effective

diverse committee in an iterative manner. It is the only ensemble that uses artificially

built examples to improve generalization accuracy. At each iteration, some artificial

samples are randomly generated and adding it to the original training data D in order

to build a new ensemble member Ci. The main steps of DECORATE meta-learner

algorithm are listed in Algorithm 10.
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Algorithm 10 DECORATE
Input:
BaseLearn: a base learning algorithm;
Dtr: the original training set, Dtr = {(x1, y1, ..., (xN , yN)};
R: the proportion of artificial training set with respect to Dtr;
M : the desired ensemble size;
I: the maximum iteration time;
Training:
- Initialization
1. i = 1, iters = 1;
2. Ci = BaseLearn(Dtr);
3. initialize the ensemble, C∗ = {Ci};
4. compute the training accuracy of C∗: Acc = 1

N

∑N
t=1 I(C

∗(xt) = yt);
- Iteration process
while i < M and iters < I
5. generate ⌊N ∗ R⌋ artificial training examples Dart exam i according to distribution
characteristic of Dtr;
6. label each example in Dart exam i, which assigned class labels differ maximally from
those predicted by the C∗;
7. add the labeled artificial training data Dart i to the original training set Dtr:
Daug i = Dart i ∪Dtr;
8. train a classifier on the augmented training set, Ci = BaseLearn(Daug i);
9. put the generated classifier into the current ensemble, C∗ = C∗ ∪ {Ci};
10. based on the original training set Dtr, compute the training accuracy Acc′ of the
C∗ as in step 4;
11. if Acc′ ≥ Acc;
12. i = i+ 1, Acc′ = Acc;
13. Else
14. C∗ = C∗ \ {Ci};
15. iters = iters+ 1;
End while

4.2.2.5 Rotation Forest

Rotation forest depends upon unstable classifiers, i.e. decision tree regarding rotation

of the space. It emphasize on the idea that diversity can be implemented without

sacrificing either data objects or features. The potential accuracy loss of the base

classifiers is counterbalanced by increasing diversity. The training and testing of the

rotation forest is shown in Algorithm 11.
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Algorithm 11 Rotation Forest

Training: Given is a labeled data set Z = {z1, ..., zN}, each object is described by
the features in the feature set X = {X1, ..., Xn}
1. Choose the ensemble size L, the number of features K, and the base classifier
model
2. For i = 1...L
(a) Prepare the rotation matrix Ra

i

i. Split feature set X into K subsets: Si,j

ii. For j = 1...K
- Let Zi,j be the data set for the features in Si,j

- Eliminate a random subset of classes from Zi,j, resulting Z
′
i,j

- Select a bootstrap sample from Z
′
i,j, of size 75% of number of objects in Z

′
i,j, denote

by Z
′′
i,j

- Apply PCA on Z
′′
i,j and store in a matrix Ci,j

iii. Arrange Ci,j, for j = 1...K in a rotation matrix Ri

iv. Construct Ra
i by rearranging the rows of Ri so as to match the order of features

in X.
(b) Build classifier Di using ZRa

i as the training set, with the given class labels
Testing: For each new object x
1. For i = 1...L, calculate the transformed object y = xRa

i and run it through
classifier Di

2. Calculate the confidence for each class, ωj, by the average combination method
3. Assign x to the class with the largest confidence
Return the ensemble label of the new object.

4.2.3 Base Classifier Algorithms

We chose five different machine learning algorithms as base classifiers. Notwithstand-

ing, a particular ensemble method such as rotation forest recommends decision tree

as the base classifier model, we will observe the behaviour of ensemble schemes with

different base classifiers. We consider the same learning parameters for each classifier

either as a single classifier or as the member of ensemble. We briefly discuss the eight

base classifiers used in our experiment as follows.

(i) Classification & regression tree [13]. The classifier is a tree constructing tech-

nique which identifies splitting variables based on an exhaustive search. It has
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a number of advantages over other classification methods i.e. it can handle nu-

merical data that are highly skewed and it has sophisticated method for dealing

with missing variables. For CART, there are two parameters, i.e. the number

of folds in the internal cross-validation (f) and the minimal number of observa-

tions at the terminal nodes (t). We considered f and t are 5 and 2, respectively.

Furthermore, heuristic process for binary split of nominal attributes and the

pruning strategy are used.

(ii) Decision tree (C4.5) [97]. It constructs a tree in which internal nodes and leaf

nodes denote attributes and class labels, respectively. Gain ratio is used for

attribute selection whilst heuristic formula is used to estimate error rates. In

this chapter, C4.5 algorithm is used as base classifier because it is the currently

most popular tree construction algorithm in the machine learning area.

(iii) Reduced error pruning tree [98]. It is a fast decision tree learning algorithm

which tree is built using the information gain with entropy. It takes reduce error

pruning in order to minimize the error from the variance. We set the parameter

of the algorithm as follows. The minimum total weight of the instances in a

leaf is 2, the amount of data used for pruning (folds) is 3, and tree pruning is

applied.

(iv) Random tree [12]. It is different with the standard tree training in feature

splitting, which is chosen from a random subset of the original features.

(v) Naive Bayes tree [66]. It is a hybrid approach that incorporate the advantages

of decision tree and Naive-Bayes. The final decision tree is built with univariate

splits at each node, but with Naive-Bayes classifiers at the leaves. The decision-

tree segments the data and each segment of the data, represented by a leaf, is

described through a Naive-Bayes classifier. No parameter setting is required for

this algorithm.
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(vi) Functional tree [40]. This combines a univariate decision tree with a linear

function by means of constructive induction. Decision trees are able to use

decision nodes with multivariate tests, and make predictions using linear func-

tions. Multivariate tests are performed when growing the tree, while functional

leaves are built when pruning the tree. There is only one parameter for FT, i.e.

number of instances (N) in which a node is considered for splitting. The value

of N is set to 15.

(vii) Best-first decision tree [106]. The standard C4.5 expands nodes in depth-first

order, while in BFT the best node is expanded first. The best node is the

node whose split leads to maximum reduction of impurity, i.e. Gini index and

information. We set the number of folds in internal cross-validation is 5, Gini

indexed is used, and post-pruning strategy is applied.

(viii) Logistic model tree [73]. It is similar to naive bayes tree, but logistic regression

function is used at the leaves of the tree. We consider the use of logitboost

algorithm as the regression function, the number on boosting iteration is cross-

validated, and the minimum number of instances at which a node is considered

for splitting is 15.

4.2.4 Validation Method and Evaluation Measure

Regarding validation method, we chose ten times of fivefold cross-validation (10×5cv)

[28]. It is conducted through ten repetitions of a 5cv, which 10 train and 10 test

partitions are obtained at 20%. This provides random variation in the selection of the

test data by using non-overlapped train-test subsets. Each subset of the test comprises

samples which does not appertain to other subsets so it avoids the experiment result

is conducted by chance.
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The evaluation measure of our experiments is acquired from the established standard

metrics in machine learning. This metric is the area under receiver operating char-

acteristic curve which is commonly used in medical decision making and currently

has been progressively employed in machine learning [33]. It has value between 0

and 1.0. No classifiers should have the value of 0.5 which means that the classifiers

performance are better than random guessing. AUC is computed as follows:

AUC =

∫ 1

0

TP

TP + FN
d

FP

FP + TN
(4.1)

where TP is true positives, FN is false negatives, TN is true negatives, and FP is false

positives.

4.2.5 Statistical Significance Test

To provide a detailed comparative study among classifiers, one must use statistical test

to prove that the differences among classifiers are significant [42]. The Friedman test

[39] is utilized to assess whether the differences between the classifiers in terms of AUC

measure are significant [26]. It is a non-parametric test equivalent to the repeated-

measures ANOVA. We state the null hypothesis (H0) is that all the algorithms are

equivalent and alternative hypothesis (HA) implies the existences of performance

difference among classifiers. Following the recommendation of [26], a post-hoc test is

used in order to find whether the control classifier depicts statistical differences with

respect to the remain of classifier into the comparison. The Friedman test ranks the

classifiers for each data set which the best performing classifier receiving the rank 1,

the second best rank 2, and so forth. The Friedman statistic is defined as:

χ2
F =

12N

K(K + 1)

[∑
j

R2
j −

K(K + 1)2

4

]
(4.2)
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where N denotes number of data sets (3 in our case), K denotes the number of

classifier algorithms to be compared (6 in our case), and the average rank of algorithms

is Rj = 1
N

∑N
i rji . The χ2

F is distributed according to F -distribution with K − 1

degrees of freedom.

For further comparison, we conduct post-hoc test using Bonferonni-Dunn test [31]

to determine which classifiers are significantly different. It must be kept in mind

that Dunn test originally used Bonferroni adjustment od p−values so it is usually

referred as the Bonferonni-Dunn test. Two classifiers are significantly different if the

corresponding average ranks differ by at least the critical difference, which is defined

as:

CD = qα

/√
K(K + 1)

6N
(4.3)

where the critical values qα are computed using the Studentized range statistic divided

by
√
2 (please refer to Table B.16 in [138]).

4.3 Result and Analysis

In Figure 4.1 we show the performance average value of all classifiers in term of AUC

measure across three diabetes data sets. We conduct a number of experiments by

varying a base classifier employed for each ensemble method. Thus, in total, we

contrast and benchmark the performance of 48 classifiers for early detection method

of diabetes in term of AUC measure. As shown in Figure 4.1a, among the base

algorithms, LMT is the best performer whilst RT is the worst one. The best imple-

mentation of bagging strategy is achieved by NBT whilst bagging of CART receives

the worst performance. NBT and RT respectively yield the best and the worst one

after the implementation of boosting ensemble. Moreover, except LMT, bagging has

brought a substantial improvement over the base classifiers. The application of boost-

ing has also demonstrated a significant enhancement for 5 base classifiers, i.e. CART,

C4.5, REPT, RT, and BFT.
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(a) Base classifiers, bagging, and boosting

(b) Random subspace, DECORATE, and rotation forest

Figure 4.1: Average AUC value across three data sets60
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Table 4.3: AUC value and Friedman average ranking for the base classifiers

CART C4.5 REPT RT NBT FT BFT LMT
PIDD 0.7405 0.7422 0.7628 0.6696 0.7909 0.7891 0.7047 0.8291
RSMH 0.8903 0.9027 0.8971 0.8926 0.9705 0.9549 0.8972 0.9723
Tabriz 0.9038 0.9078 0.9096 0.8378 0.9294 0.9226 0.9012 0.9353
Average Rank 6.67 4.67 4.67 7.67 2.00 3.00 6.33 1.00

Subsequently, we consider the value of Friedman’s ranks for each classifier model as

a basis of our exploratory study. These values reflects an essential reference about

the performance when several classifier models are contrasted and can be considered

as an order of their performances. The aim of this study is not only to provide a

benchmark of tree-based classifiers either as a single classifier or as a base classifier of

ensemble that are ordered with respect to that rank, but also the differences among

the classifiers are significant. In Table 4.3 we can see the compared values of the

averaged Friedman’s ranks in term of AUC metric for each base classifier. From a

general standpoint, it can be said that the general winner is LMT since it gains the

lowest value in the Friedman’s rank. In the second and third position, we have NBT

and FT, respectively. The worse methods in our experiment RT, CART, and BFT.

With respect to the results depicted in Table 4.4, we can inspect that NBT classifier is

the best performer after the implementation of bagging, boosting, and DECORATE

ensemble. In addition, FT yields better performance after the implementation of

random subspace ensemble. Also, rotation forest with LMT as base classifier has a

good prediction accuracy in term of AUC metric. This result may contradict with

[99] who suggest C4.5 as base classifier of rotation forest ensemble.

In accordance with the result of Friedman rank test, it is meaningful to conduct

statistical analysis using post-hoc test. Bonferonni-Dunn test [31] is chosen as it

is recommended by previous researchers [26]. In this analysis, we select the best

performer as the control method for being contrasted with the other classifiers. Figure

4.2a - 4.2f present the application of post-hoc test using Bonferonni-Dunn test. First

of all, the mean of rank for each classifier is calculated by using Friedman method.
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Table 4.4: AUC value and Friedman average ranking for the classifier ensembles

PIDD RSMH Tabriz Average Rank
Bagging CART 0.8069 0.9446 0.9379 6.33

C4.5 0.8094 0.9453 0.9373 6.00
REPT 0.8207 0.9605 0.9401 2.83
RT 0.8022 0.9558 0.9331 7.00
NBT 0.8204 0.9691 0.9413 2.00
FT 0.8193 0.9697 0.9372 4.00
BFT 0.8055 0.9512 0.9401 5.50
LMT 0.8154 0.9706 0.9404 2.33

Boosting CART 0.7649 0.9615 0.9327 3.00
C4.5 0.7801 0.9563 0.9321 5.00
REPT 0.7857 0.9589 0.9319 4.67
RT 0.6572 0.9590 0.8286 7.33
NBT 0.7863 0.9636 0.9314 2.67
FT 0.7715 0.9594 0.9297 5.00
BFT 0.7639 0.9605 0.9325 4.00
LMT 0.7618 0.9592 0.9329 4.33

Random Subspace CART 0.8059 0.9661 0.9049 6.00
C4.5 0.7955 0.9650 0.9271 6.00
REPT 0.8125 0.9645 0.9257 5.33
RT 0.7617 0.9662 0.9200 6.00
NBT 0.8105 0.9684 0.9369 3.00
FT 0.8151 0.9715 0.9377 1.33
BFT 0.7995 0.9658 0.9092 6.33
LMT 0.8220 0.9692 0.9337 2.00

DECORATE CART 0.8079 0.9577 0.9084 5.67
C4.5 0.8035 0.9551 0.9301 4.83
REPT 0.8133 0.9568 0.9218 4.67
RT 0.7789 0.9445 0.9295 6.33
NBT 0.8109 0.9603 0.9313 2.33
FT 0.8148 0.9589 0.9270 3.00
BFT 0.8011 0.9551 0.9130 6.83
LMT 0.8235 0.9632 0.9252 2.33

Rotation Forest CART 0.8253 0.9559 0.9158 6.50
C4.5 0.8216 0.9559 0.9397 4.50
REPT 0.8278 0.9584 0.9342 3.67
RT 0.7932 0.9579 0.9317 6.00
NBT 0.8353 0.9533 0.9318 4.67
FT 0.8285 0.9688 0.9378 2.33
BFT 0.8205 0.9572 0.9203 6.33
LMT 0.8304 0.9704 0.9349 2.00
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(a) Base classifiers (b) Bagging

(c) Boosting (d) Random subspace

(e) DECORATE (f) Rotation forest

Figure 4.2: Bonferroni-Dunn graphic referring to the base classifiers and classifier
ensembles
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For each classifier, we add the ranking value of the best classifier (which is related

to the lowest rank classifier, the control classifier) and the critical difference (CD) of

Bonferonni-Dunn test, then the threshold (denoted as horizontal line in the graph)

can be obtained at each significance level (α = 0.05 and α = 0.01). Hence, if a

classifier’s rank exceeds the threshold line, such classifiers has performed worse than

the control classifier.

From the Bonferonni-Dunn graphics plotted in Figure 4.2, we can remark the findings

as following:

(i) Bagging (Figure 4.2b): NBT is significantly better than BFT, C4.5, CART,

and RT in both significance levels, i.e. α = 0.05 and α = 0.01. The LMT and

REPT are also significantly better than the five remaining methods.

(ii) Boosting (Figure 4.2c): the NBT, CART, BFT, and LMT are significantly

better than C4.5, FT, and RT in both significance levels, i.e. α = 0.05 and α =

0.01. Besides, the NBT, CART, BFT, and LMT are significantly better than

REPT with α = 0.05.

(iii) Random subspace (Figure 4.2d): the FT, LMT, and NBT are significantly

better than REPT, CART, C4.5, RT, and BFT in both significance levels, i.e.

α = 0.05 and α = 0.01.

(iv) DECORATE (Figure 4.2e): the result of significant test using Bonferonni-Dunn

indicates an identical result to Random subspace.

(v) Rotation forest (Figure 4.2f): the LMT, FT, adn REPT are significantly better

than the five remaining methods, i.e. C4.5, NBT, RT, BFT, and CART in both

significance levels, i.e. α = 0.05 and α = 0.01.

In a general point of view, it can be concluded that C4.5 and RT classifiers have the

worst performance, regardless of the ensemble method used. It is also crucial to be
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noted that LMT seems to be the best classifier, followed by NBT, and FT. Comparing

these results with the Friedman average ranking for the base classifiers presented in

Table 4.3 and plotted in Figure 4.2a, the best single classifier also performs the best

when used in an ensemble.

4.4 Conclusion

This chapter thoroughly studies the performance analysis of tree-based machine learn-

ing algorithms, i.e. classification and regression tree, decision tree (C4.5), reduced

error pruning tree, random tree, naive Bayes tree, functional tree, best-first decision

tree and logistic model tree in five different ensemble methods, i.e. bagging, boosting,

random subspace, DECORATE, and rotation forest for early detection method of di-

abetes disease. We have emphasized on benchmarking of several tree-based classifier

models when used to construct ensemble models. The experimental results indicate

us that LMT is the best classifier, regardless of the ensemble method used or not.
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Chapter 5
An In-depth Experimental Study of

Anomaly Detection using Gradient

Boosted Machine

5.1 Introduction

Anomaly-based IDS aims at capturing any deviation which is different from the nor-

mal network profiles. It possesses an advantage to detect new types of attacks, how-

ever, it suffers from high false alarm rate. In order to detect the new type of attacks,

anomaly-based system depends on how well the model is trained. Once the model

has been trained, it is used to detect new attack pattern intelligently.

Nowadays, anomaly-based system has been received many attractions from researchers

and remains an enormously research topic worldwide. Fundamentally, anomaly-based

IDS attempts to solve a binary classification problem where a learner tries to classify

the network profiles either as normal or malicious with high detection accuracy [114].

Because a well-trained model is an extremely key in the anomaly-based IDS, choos-

ing a good classifier with higher predictive accuracy is much sought-after by security
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experts. There are several approaches to select the best classifiers, including classifier

ensemble, which is very prevalent in the realm of machine learning research. Though

classifier ensembles are quite old now, yet they still have been received many attrac-

tions from machine learning research in the last decade [89], [100]. It combines many

weak learners (base learners) and the outputs of each classifier are fused together

using combiner to create final output prediction [116].

Classifier ensemble has been intensively employed in intrusion detection and preven-

tion system [117], [122]. Earlier IDS model using weighted ensemble is proposed by

[18]. The model is built and tested on the KDD Cup 99 data set. Classifier combina-

tion approach using majority voting is considered by [87]. Three classifiers, i.e. SVM,

NN, and multivariate regression are chosen as base classifier. The proposed scheme

is applied on the KDD Cup 99 data set and its performance is evaluated based on

accuracy metric. Work in [44] used several combination approach, i.e. min, max,

product rule voting to combine two base classifiers, i.e. k-means and v-SVM. The

performance of the proposed approach is tested on the KDD Cup 99 data set using

two performance metrics, i.e. false alarm rate and detection rate.

Bagging ensemble of two classifiers, i.e. MLP and RBF are suggested by [46] for IDS

using private data set. The classifier performance is assessed using accuracy as a

performance metric. Voting-based ensemble is also recommended by [107] to improve

IDS performance. KDD Cup 99 data set is utilized for building the model and it

is evaluated using several performance metrics, i.e. true positive rate, false positive

rate, precision, recall, and F1 score. Authors in [124] propose a new improved version

of KDD Cup 99 data set, so-called NSL-KDD data set. Several single classifiers

and one classifier ensemble are used to construct a number of classifier models, the

performance of such models are then evaluated on two test sets, i.e. KDDTest+ and

KDDTest-21. They conclude that NB Tree is the best performer.

In [92], the authors propose a discriminative multinomial Naive Bayes classifier, which

uses an effective discriminative parameter learning method. It learns parameters by
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discriminatively computing frequencies from intrusion data set. The proposed classi-

fier is applied on the NSL-KDD data set, whilst 10fold cross-validation is performed

to test the efficacy of the model built during the training phase. It yields 96.5% and

3.0% in terms of accuracy and false positive rate, respectively. An Adaboost ensemble

with GA optimization is proposed by [50]. Unlike traditional Adaboost, it proposes a

GA post optimization procedure to remove the redundancy classifiers. This approach

successfully increase the detection accuracy by 99.57%. However, some metrics are

not reported in this chapter so we cannot assess the classifier’s performance in detail.

In order to reduce the number of features involved in the training process, a feature

selection procedure, i.e. reduced class-dependent feature transformation is proposed

[83]. Beside performing a feature selection, the authors suggest three classifiers, i.e.

DT, MLP, and distance-based classifier to construct classifier models. From their

evaluation experiment on the KDDTest+, DT outperforms MLP and distance-based

classifier. Moreover, the other types of feature selections, e.g. LDA, PCA, and mod-

ified class-dependent feature transformation are examined. Those classifier models

are validated either using full set and reduced set. The proposed method successfully

reduces false positive rate, but the classifiers yield unsatisfactory results in terms of

accuracy metric.

An intrusion detection based on fuzzy classifier is proposed by [68]. Fuzzy classi-

fication by evolutionary algorithms are trained and validated on KDDTrain+ and

KDDTest+ with and without feature selection. The proposed method enhances the

detection performance in terms of accuracy and detection rate. A two-tier classi-

fier and LDA-based feature selection are suggested by [91]. Two classifiers, i.e. naive

bayes and certainty factor voting version of k-NN are involved in the proposed model.

However, this proposed classifier still suffers from higher false positive rate compared

to previous work [68].

A novel tree ensemble classifier called GAR-forest is proposed [61]. It is combined

with symmetrical uncertainty feature selection which offers 85.06% accuracy using 32
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features set. Though it significantly improves detection accuracy, false positive rate

remains higher by 12.2%. The latest approach of building anomaly-based IDS using

classifier ensemble is considered by [63]. Sum rule construction scheme is employed

for combining tree-based classifiers, i.e. NB Tree and random tree. Accuracy metric

is used as performance measure and the proposed scheme is applied on NSL-KDD

data set. The authors claim that their proposed classifier represent the highest result

so far when using hold-out and 10-fold cross validation method.

A new intrusion data set called UNSW-NB15 has been introduced by [85] [86]. The

data set is generated to address several issues, i.e. lack of modern attack and normal

style and a different distribution of the training and testing set. The data set has

brought significant contribution in the purview of intrusion detection research since

the researchers do not merely rely on the existing benchmark data sets, i.e. KDDCup

99 and NSL-KDD. The authors conduct statistical analysis of the generated data

set as well as examining feature correlations. In addition, five classifiers, i.e. DT,

LR, NB, NN, and expectation maximization clustering are employed to evaluate the

complexity in terms of accuracy and FPR rate. The DT classifier performs best

followed by LR, NB, ANN, and EM in term of two performance metrics [86].

Furthermore, since the number of data set specific to wireless environment is quite

limited, the authors in [129] propose a data set which is deployed based on the intru-

sion detection on the IEEE 802.11 environment. It is called GPRS (Grupo de Pesquisa

em Redes e Segurana) which is obtained from two distinct network topologies, i.e.

WPE/WPA and WPA2. Three traditional algorithms, i.e. MLP, RBF, and Bayes

network are used for evaluation. Based on the experimental result, the BN classifier

outperforms other classifiers by obtaining 98.8% of detection rate in the recognition

of normal traffic on WEP/WPA topology. The results show slightly different for the

identification of normal traffic on WPA2 topology. The MLP is the best performer

which reaches 99.1% of detection rate.
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In this chapter, we develop anomaly-based IDS model using GBM [38], which is a

highly effective and widely used tree boosting approach in machine learning research.

The significant difference of GBM over other renowned classifiers, i.e. random forest

[12], DNN [76], SVM [20], and CART [13], [77], [79] is statistically assessed. Finally,

we show the superiority of GBM for anomaly-based IDS by comparing with the ex-

isting techniques in terms of performance accuracy and false alarm rate. Our main

contributions lies in several axes as follows.

(i) Providing a comparative study of GBM applied on three different data sets, i.e.

NSL-KDD, UNSW-NB15, and GPRS data set which are still underexplored.

(ii) Heuristic search using grid method to find the optimal learning parameters of

GBM so better predictive accuracy could be obtained.

(iii) Classifier significance test using Quade test [19], including Quade post-hoc test

for performance comparison among the machine learning algorithms.

5.2 Classification Algorithms

5.2.1 Classifier Ensembles

5.2.1.1 Gradient Boosted Machine

GBM is also known as gradient tree boosting or gradient boosted regression tree [38].

It is built to improve the performance of classification and regression trees [13], which

is one classifier whose classification and regression are at once. GBM is a member

of homogeneous ensembles, where the same type of several weak classifiers (weak

prediction models) are produced to form a prediction model. Figure 5.1 illustrates

GBM model. It grows trees sequentially which later trees rely on the results of

previous trees. The final prediction h(x) for a given sample S is the sum of predictions
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Figure 5.1: Illustration of gradient boosted machine [38]

from each tree. Formally, let x is a set of random input variables, x = {x1, ..., xn}

and a random output variable y. Using training sample {y, xi}N1 , the aim is to get an

approximation F , mapping x to y.

Given a data set with n samples and m features D = {(xi, yi)}(|D| = n, xi ∈ Rm, yi ∈

R), a tree ensemble uses K additive function to predict the final output.

ŷi = φ(xi) =
K∑
k=1

fk(xi), fk ∈ F (5.1)

where F = {f(x) = wq(x)}(q : Rm → T,w ∈ RT ) is the space of CART. The q denotes

the structure of each tree that maps a sample to the corresponding leaf index. T is

the number of tree, and fk is an independent tree structure q and leaf weight w. The

decision rules in the trees (q) is used to classify a given sample into the leaves and

calculate the final prediction by summing up the score in the corresponding leaves

(w).

One of the main problem in the tree learning is to find the best split. To solve

this, we employ exact greedy algorithm, as depicted in Algorithm 12. Moreover,

since GBM requires several tuned hyper-parameters, it is necessary not to use the

same parameters on different data sets. Thus, a grid search is used to find the best

parameters for each data set. We employ GBM implemented in H2O package [2] in

R environment.
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Algorithm 12 Exact greedy algorithm for split finding

Input: I, instance set of current node
Input: d, feature dimension
1. gain← 0
2. G←

∑
i∈I gi, H ←

∑
i∈I hi

3. for k = 1 to m do
4. GL ← 0, HL ← 0
5. for j in sorted (I, by xjk) do
6. GL ← GL + gj, HL ← HL + hj

7. GR ← G−GL, HR ← H −HL

8. score ← max(score,
G2

L

HL+λ
+

G2
R

HR+λ
− G2

H+λ
)

9. end
10. end
Output: Split with max score

5.2.1.2 Random Forest

Random forest generates a number of trees and chooses the variables to put into each

model by random selection [12]. The tree is generated to maximum size but it is

not pruned. The strategy on incorporating of various trees resulting good predictive

accuracy and avoiding overfitting. There are commonly two tuning parameters in

RF: the number of of variables to be selected in each node, which is generally kept

constant on all nodes, and the number of trees, that make up the forest.

Compared to other classifiers, RF has several advantages such as lower computational

burden since every single tree is based on fewer variables and easier implementation

in parallel computing manner that can further accelerate the algorithm. For this

experiment, we use large number of trees (500) as recommended by [12]. The max-

imum depth for tree construction is set to 26, whilst other parameters are obtained

using grid search. We employed the proposed algorithm using H2O package [2] on R

environment.
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5.2.2 Single Classifiers

5.2.2.1 Deep Neural Network

Deep neural network or deep learning has been fascinated the researchers recently due

to its remarkable performance in many state-of-the-art applications such as speech

recognition, object recognition and detection, and many other applications. Convo-

lutional neural network is the truly successful deep learning approach [76].

We considered the optimal parameters for deep neural network by performing grid

search. Rectifier is chosen as activation function, 3 hidden layers with 100 nodes

for each layer, ρ = 0.99, ε = 1e-8, learning rate is 0.005, rate annealing is 1e-6,

regularization l1 is 7e-5, regularization l2 is 8.2e-5, and maximum epoch is set to

1000. We employ successful deep learning implementation in R language, namely

H2O package [6].

5.2.2.2 Support Vector Machine

Support vector machine is generally used for classification analysis. Given training

vectors xi ∈ ℜn, i = 1, ..., l in two classes, and a vector y ∈ ℜl such that yi ∈ 1,−1,

the following quadratic optimization problem is solved.

minw,b,ξ
1

2
wtw + C

l∑
i=1

ξi (5.2)

subject to

yi(w
tφ(xi + b) ≥ 1− ξi, ξi ≥ 0, i = 1, ..., l (5.3)

Its dual is

minα
1

2
αTQα− eTα (5.4)
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subject to

yTα = 0, 0 ≤ αi ≤ C, i = 1, .., l (5.5)

where e is the vector of all ones, C > 0 is the upper bound, Q is an l by l matrix,

Qij ≡ yiyjK(xi, xj) and K(xi, xj) ≡ φ(xi)
Tφ(xj) is the kernel. Training vector xi is

mapped into a higher dimensional space by the function φ. The decision function is

defined by:

sgn
( l∑

i=1

yiαiK(xi, x) + b
)
. (5.6)

SVM allows us to choose several kernel, i.e. linear, polynomial, radial basis function

(RBF), and sigmoid kernel. In this study we choose RBF kernel since it is commonly

used in many applications. The RBF requires a parameter γ of the Gaussian function.

The cost parameter C denotes the trade-off between the size of margin and hyperplane

violations. A high C aims at classifying all training examples correctly by giving more

examples as support vectors. Moreover, it is important to set degree in kernel function

(d). The optimal value of the aforementioned three parameters can be selected by

performing a grid search on C = [2−5, 2−4, ..., 215], γ = [2−15, 2−13, ..., 23], and d = [2, 3]

[56]. We set tolerance of termination criterion (ϵ) is 0.001, coef0 = 1, and no shrinking

is applied. We use a well-known support vector machine library, which is so-called

LibSVM [16] implemented in the caret package of R [70].

5.2.2.3 CART

Classification and regression tree is a tree-constructing technique which identifies

splitting variables based on an exhaustive search. It has a number of advantages over

other classification methods i.e. it can handle numerical data that are highly skewed

and it has sophisticated method for dealing with missing variables. For CART, there

are two parameters, i.e. the number of folds in the internal cross-validation (f) and

the minimal number of observations at the terminal nodes (t). We considered f and
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t are 5 and 2, respectively. Furthermore, heuristic process for binary split of nominal

attributes and the pruning strategy are used. We use CART implementation in R as

rpart [125].

5.3 Experimental Design

5.3.1 Data set

For the experiment, we consider to employ three different data sets, i.e. an improved

version of KDD Cup 99, namely NSL-KDD [124]; UNSW-NB15 [85] [86]; and GPRS

[129].

The NSL-KDD is an improved version of the KDD Cup 99 data set, whilst UNSW-

NB15 is a new publicly available data set. The NSL-KDD possesses 41 attributes

and one class label attribute. The 20% of NSL-KDD training set (KDDTrain+)

contains 25,192 instances, which is composed of two classes, e.g. anomaly class (13,499

instances) and normal class (11,743 instances). It is necessary to make an adequate

comparison by using hold-out (train-test) validation method. For this purpose, we

consider to employ two test sets, i.e. KDDTest+ and KDDTest-21 which are beneficial

to conduct the experiments on the complete data set without performing randomly

chosen of the samples. In addition, our result would be consistent and comparable

with the previous works. The KDDTest+ and KDDTest-21 consist of 22,544 and

11,850 records, respectively.

Besides conducting experiment on the NSL-KDD data set, we also adopt UNSW-

NB15 for evaluation. It comprises 49 attributes and is configured a training set and

testing set, namely UNSW NB15 Train and UNSW NB15 Test, respectively. The

number instances in the training set is 175,341 instances and the testing set is 82,332

instances. The training test is composed of two classes, i.e. normal class (56,000
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instances) and anomaly class (119,341 instances). It is worth mentioned that hold-

out (train-test) validation test is also applied on the UNSW-NB15 data set.

Subsequently, GPRS data set is also considered for evaluation. Either WPE/WPA

or WPA2 data set possesses the same 15 attributes and one class label. In this

experiment, we include full training WPE/WPA set which consists of two classes, i.e.

normal class (6,000 instances) and attack class (3,600 instances). The full training

WPA2 set contains 4,500 instances of normal class and 3,000 instances of attack class.

5.3.2 Evaluation Metric and Validation Method

Since the performance of all classifiers depends on the parameter setting, we follow

grid search to find the best parameters resulting the best model. Except CART

classifier, the best parameters of GBM, RF, DNN, and SVM are carried out using

grid search. This exhaustively generates candidate from a grid of parameters value

specified by user input. The performance of all classifiers are evaluated in terms

of accuracy, specificity, sensitivity, FPR and AUC measure, which are calculated as

follow.

Accuracy =
TP + TN

TP + FP + TN + FN
(5.7)

Specificity =
TN

TN + FP
(5.8)

Sensitivity =
TP

TP + FN
(5.9)

FPR =
FP

FP + TN
(5.10)

AUC =

∫ 1

0

TP

TP + FN
d

FP

FP + TN
(5.11)
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where TP is the number of instances correctly identified as belonging to the normal

class, FP or Type I error is the number of instances incorrectly identified as belonging

to the normal class, TN is the number of instances correctly identified as belonging

to the anomaly class, and FN or Type II error is the number of instances incorrectly

identified as belonging to the anomaly class.

Furthermore, to avoid over-fitting we conducted kfold cross-validation approach, with

k = 10. It splits the data set into 10 parts, which nine parts are used for training and

one part for testing. This process is then repeated 10 times with a different partition

for each fold. All the classifiers’ performances reported in this chapter are the mean

value of 10fold cross-validation.

5.3.3 Statistical Significance Test

To give a thoroughly comparative study, two statistical significance tests, i.e. Quade

test [19] and Quade post-hoc test are adopted. It is essential to use such significance

tests because the tests will prove that the differences among classifiers are significant

[42]. The number of elements (n) denotes the performance result of each classifier in

10fold cross-validation. The H0 is that there are no performance differences among

the classifiers, whereas HA means that there are performance differences among the

classifiers.

Quade test is chosen since it is more powerful than Friedman test in the case of k ≤ 5

[19], where k is the number of classifiers to be compared. First, the performance

results are ranked within each element to yield Ri,j. Then, the range in each row

(maximum and minimum value) needs to be calculated and ranked, Qi. The scores

are:

Si,j = Qi ∗ (Ri,j − (k + 1)/2) (5.12)
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and

Sj =
n∑

i=1

Si,j (5.13)

The test statistic is computed as,

F̂ =
(n− 1) 1

n

∑k
i=1 S

2
j∑n

i=1

∑k
j=1 S

2
i,j − 1

n

∑k
i=1 S

2
j

(5.14)

The F̂ is tested against the F-quantile for a given α = 0.05, with degree of freedom,

df1 = k − 1, df2 = (n− 1)(k − 1), and n is number of data sets (4 in our case).

It is meaningful to conduct Quade post-hoc test to identify the performance dif-

ferences among the classifiers. Quade post-hoc test is calculated using the student

t−distribution as follow.

|Si − Sj| > t1−α/2∗,(b−1)(k−1)

√
2n(

∑n
i=1

∑k
j=1 S

2
i,j − 1

n

∑k
i=1 S

2
j )

(n− 1)(k − 1)
(5.15)

5.4 Result and Analysis

In this section we compare and report the performance result of classifier ensemble

(GBM) applied on NSL-KDD, UNSW-NB15, and GPRS data set. We show that

by employing classifier ensemble, the final ensemble performance is supposed to rise

significantly. Finally, we benchmark the significance of classifier’s performances using

Quade test [19]. Meanwhile, since GPRS data set comprises two sets, i.e. WEP/WPA

and WPA2, it can be said that we have employed four data sets in our experiment.

Figure 5.2 shows the average of performance value for all classifiers in terms of accu-

racy, specificity, sensitivity, and AUC metric over four data sets. It is obvious that

GBM is best performer in terms of two performance indicators, i.e. specificity and

AUC value, whilst SVM is the worst performer in terms of three performance indi-

cators, i.e. accuracy, specificity, and AUC value. For instance, the GBM (97.88%)
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outperforms other classifiers, i.e. RF (97.18%), DNN (97.48%), SVM (91.34%), and

CART (97.38%) in terms of AUC metric. Moreover, Figure 5.3 confirms the superi-

ority of GBM in comparison with other classifiers. GBM yields the lowest value of

FPR by 2.06%, which outperforms RF (2.07%), DNN (8.53%), SVM (15.95%), and

CART (12.61%).

Moreover, in order to make sure that our experimental result is not happened by

chance, we evaluate the significant difference among classifiers using statistical signif-

icant test [42]. For α = 0.05, degree of freedom df1 = 4, and df2 = 12, we can get the

value of F̂ and p−value for each performance measure. Table 5.1 indicates us that

the performance of the classifiers are significantly different (p < 0.05) in terms of ac-

curacy, FPR, and AUC. The performance of the classifier is less significant (p < 0.1)

in term of specificity and not significant (p > 0.1) in term of sensitivity metric. As

the result of Quade test is highly significant, the null hypothesis H0 (the performance

of all classifiers are similar) can be rejected and we should accept the alternative

hypothesis HA.

It is meaningful to conduct Quade post-hoc test so we can make a detail benchmark

among the classifiers. It is carried out by inspecting the p−value of the pairwise

comparisons. First of all, we discuss the performance difference in term of accuracy

measure. As shown in Table 5.2, the classifier’s accuracy differs highly significant

(p < 0.05) to GBM-DNN, GBM-SVM, RF-SVM, and SVM-CART. Other contrast,

i.e. RF-DNN and DNN-CART are less significant (p < 0.1), whilst the remaining

pairs, i.e. GBM-RF, GBM-CART, RF-CART, and DNN-SVM are not significant

(p > 0.1). In addition, the classifier’s performance in term of specificity metric is

highly significant for GBM-SVM, RF-SVM, and DNN-SVM. Other pairs, i.e. GBM-

RF, RF-CART, and so on are not significant. Surprisingly, there are no significant

differences of the classifier’s performance in term of sensitivity metric. Furthermore,

performance differences in term of FPR metric is highly significant to GBM-SVM

and RF-SVM, whilst others are less significant, i.e. RF-DNN. Finally, the results of
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Figure 5.2: The average value of accuracy, specificity, sensitivity, and AUC per
classifier across four data sets

Table 5.1: The result of Quade test

Accuracy Specificity Sensitivity FPR AUC

F̂ 3.5455 2.6782 0.91304 3.3604 3.6914
p-value 0.0394 0.0833 0.4874 0.04591 0.035

Quade post-hoc test in term of AUC indicate us that the two pairs, i.e. GBM-DNN

and GBM-SVM are highly significant, whilst GBM-RF, RF-SVM, and SVM-CART

are less significant.

In order to further evaluate the performance of the proposed approach applied on each

data set, we also compare GBM with the previous published studies using 10fold cross-

validation and hold-out method. The comparison table for these results are shown in

Table 5.5 through 5.8.

First of all, it is clearly seen in Table 5.5 that our proposed model is superior for
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Figure 5.3: The average value of FPR per classifier across four data sets

Table 5.2: The p−value of post-hoc Quade test for accuracy and specificity

Accuracy Specificity
GBM RF DNN SVM GBM RF DNN SVM

RF 0.479 - - - 0.635 - - -
DNN 0.019 0.071 - - 0.451 0.775 - -
SVM 0.010 0.040 0.759 - 0.011 0.026 0.045 -
CART 0.420 0.919 0.085 0.049 0.306 0.570 0.775 0.075

Table 5.3: The p−value of post-hoc Quade test for sensitivity and FPR

Sensitivity FPR
GBM RF DNN SVM GBM RF DNN SVM

RF 0.35 - - - 0.6877 - - -
DNN 0.28 0.87 - - 0.1056 0.0515 - -
SVM 0.75 0.22 0.17 - 0.0167 0.0078 0.3235 -
CART 0.87 0.28 0.22 0.87 0.3235 0.1750 0.4849 0.1056
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Table 5.4: The p−value of post-hoc Quade test for AUC

AUC
GBM RF DNN SVM

RF 0.0978 - - -
DNN 0.0466 0.6802 - -
SVM 0.0025 0.0679 0.1392 -
CART 0.1169 0.9176 0.6071 0.0563

anomaly detection task applied on the NSL-KDD data set. It outperforms other

similar ensemble classifiers, i.e. Adaboost+GA [50] and Random Tree+NBTree [63]

when using 10fold cross-validation as a validation technique. It effectively improves

detection accuracy while still maintaining lower FPR. Subsequently, for the sake of

completeness, the proposed classifier is evaluated using hold-out (train-test) tech-

nique. Classifier model is validated on each two available validation sets, i.e. KD-

DTest+ and KDDTest-21. Table 5.6 confirms the generalizability of our proposed

approach. It achieves the best accuracy on the two validation sets but a bit suffers

from reducing FPR on the KDDTest+. In addition, our proposed approach improves

detection accuracies by 2.58% and 6.51% on KDDTest+ and KDDTest-21, respec-

tively; in comparison with the most recent work in [63].

Another advantage of the proposed approach over the existing methods is also assessed

on the UNSW-NB15 data set. Compared with decision tree (DT) [85], it is obvious

that GBM enhances detection performance by reducing FPR significantly either with

cross-validation or hold-out as indicated Table 5.7. In addition to reducing FPR,

GBM also yields performance accuracy by 91.31% when validated with hold-out.

However, in terms of accuracy there is just a minor difference of 0.62% when validated

with 10fold cross-validation. It is also worth mentioned to include the performance

of GBM applied on the GPRS data set. We first discuss the results of WPA2 data

set. As show in Table 5.8, GBM obtains a desirable performance comparing with

multilayer perceptron classifier in terms of two performance metrics regardless of

the validation method used. In contrast to the previous result on WPA2 data set,

in WEP/WPA data set, GBM cannot offer an imposing lower FPR rate compared
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with MLP. However, GBM gains the promising detection accuracy in two validation

methods. Finally, it can be concluded that GBM is a highly promising method for

intrusion detection system, specifically for anomaly detection.

5.5 Conclusion

We proposed an effective anomaly-based intrusion detection system using gradient

boosted machine. The optimum performance of GBM could be obtained by using

a grid search of training parameters. The experiment was carried out using 20%

of NSL-KDD, UNSW-NB15, and GPRS data set with no feature selection. The

proposed approach significantly outperformed random forest, deep neural network,

support vector machine, and classification and regression tree in terms of accuracy,

specificity, sensitivity, and AUCmetric. We also conducted statistical tests to measure

the significant difference among the classifiers using Quade test and post-hoc test.

According to the result of statistical tests, it can be concluded that GBM was highly

significant compared to SVM in terms of accuracy, FPR, and AUC metric. Also,

GBM outperformed significantly compared to DNN in terms of accuracy and AUC

metric. Finally, as shown Table 5.5 through 5.8, the proposed classifier depicted the

highest result so far applied on full set of NSL-KDD, UNSW-NB15, and GPRS data

set.
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Chapter 6
HFSTE: Hybrid Feature Selections and

Tree-based Classifiers Ensemble for

Intrusion Detection System

6.1 Introduction

As number of Internet users has been mushrooming in the recent decades, a plethora

of attacks have been proliferated over time. A large number of attacks have been

discovered, but some of them are continuously rising. Intrusion detection systems are

expected to reduce the escalation of such attacks before they cause a certain damage

[116].

The objective of an IDS is to provide the promising protection system in computer

networks. It deals with a security countermeasure that monitoring, detecting, and

repelling any malicious activities over computer networks. It also can be used to evade

the network from being targeted by an attacker such as probe attack that breach the

availability, confidentiality, and integrity of invaluable information sources [115].
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Based on the use of information analysis, IDSs are commonly grouped into two

categories, called signatured-based and anomaly-based intrusion detection system.

Signature-based system generates alarms when a known attacks occurs. It is able

to detect known attacks instantly with a lower false alarm rate. Apart from these

advantages, signature-based system possesses difficulty to detect novel attacks. In a

different manner, anomaly-based system detects the objects that behave significantly

different from the normal profile, thus it is able to detect new types of attack. Nev-

ertheless, anomaly-based system is obstructed by high false alarm rate and even in

a hazardous case, some attackers can use anomaly profile as normal network pattern

to train an IDS, so that it will misidentify malicious profile as normal.

Since anomaly-based IDS can detect novel and unfamiliar attacks, it has remained a

profoundly research topic in the realm of IDS in the recent decades [41]. Anomaly-

based IDS relies on how well the model is trained to predict new future attack pat-

terns. In addition, anomaly-based IDS is also a binary classification problem in

which it attempts to classify network traffic either as normal or malicious with result-

ing higher predictive accuracy while maintaining lower false alarm rate. Specifically,

supervised learning algorithms use labeled instances to create a model and the future

unknown instances can be labeled using the model.

However, with a large number of features, getting a superior classification accuracy

calls for sophisticated computing resources. In the context of modern intrusion de-

tection and prevention, fast detection capability with high accuracy and low false

alarm rate are much indispensable. Hence, fast detection approach could be achieved

using appropriate feature selection technique and high detection accuracy could be

obtained using ensemble of lightweight classifier combination approach which requires

a restricted computational resource.

Classifier ensemble or multiple classifier system has been widely employed for IDSs

since they have better performance in comparison with single classifier [114]. It is

deployed by incorporating several base classifiers to predict final class output. In this
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chapter we focus on the performance evaluation of tree-based classifiers ensemble,

i.e. random forest, naive bayes tree, logistic model trees, and reduces error pruning

tree using voting combination approach. Classifier significant test is carried out to

measure how much the classifier ensemble is significant by comparing with a single

classifier using the statistical significant test.

6.2 Related Work

Many previous researchers have utilized classifier ensemble for IDSs. The details con-

tribution of each research are presented in this section. We merely consider to include

the implementation of classifier ensemble for anomaly-based intrusion detection which

is on our current interest.

Earlier work of classifier ensemble for anomaly detection is proposed by [87]. Three

base classifiers, i.e. neural network, support vector machine, and multivariate re-

gression splines are combined to predict a final class using majority voting. The

performance of the proposed approach was evaluated on the KDDCup 99 data set

with an accuracy as a performance metric. The authors also applied feature selection

to reduce the computational overhead while training data set with many features.

Ensemble of decision tree and support vector machine using weighted ensemble ap-

proach is suggested by [93]. Similar to the previous work, accuracy is used as perfor-

mance evaluation and the proposed approach is implemented on the full features set

of KDDCup 99 data set. A classifier ensemble, called Adaboost is used to improve

the performance of decision stump [57]. Two performance metrics, i.e. precision and

false alarm rate are used to evaluate the proposed method on the reduced-features of

KDDCup 99 data set. A product rule combination is proposed by [14]. It is utilized

as the combiner to predict final class prediction in which area under ROC curve is

employed as a performance evaluation metric. This proposed scheme then is applied

on the KDDCup 99 data set which no feature selection is performed.
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Three different classification combination approach, i.e. minimum probability, maxi-

mum probability, and product rule is suggested by [44] to improve the performance of

four base classifiers, i.e. k-means and υ-support vector classification. Performances

of classifiers are evaluated using standard KDDCup 99 data set with reduced num-

ber of features, whilst precision and the false alarm rate are considered as evaluation

metric. Classifier fusion using Bagging strategy is suggested by [46]. It is exploited to

incorporate the output of two neural network algorithms, i.e. multi-layer perceptron

and radial basis function as base classifiers. In order to estimate the performance

implementation of the proposed approach, accuracy is considered as a performance

metric and it is applied on the private data set which feature selection is also done.

Voting combiner is adopted in [107] to fuse two base classifiers, i.e. neural network

and decision tree. The experiment is carried out on the full features set of KDDCup 99

data set with several performance metrics, including true positive rate, false positive

rate, precision, recall, and F1 measure. The recent work of anomaly-based IDS using

classifier ensemble is proposed by [63]. Two tree-based classifiers, i.e. NBT and

random tree were merged to obtain a better final prediction using sum rule probability.

This work is claimed as the highest result achieved so far using the complete features

of NSL-KDD data set.

To distinguish between our approach and the existing studies, we defined some view-

points of them as follows.

(i) Most studies use old version of KDDCup 99 data set for anomaly detection

where NSL-KDD data set is still underexplored.

(ii) Most studies use one feature selection technique so it is indispensable to choose

the proper feature selection method by hybridizing several combination ap-

proaches.

(iii) Most studies do not examine the performance difference between classifier en-

semble and single classifier in the ensemble.
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(iv) Most studies do not undertake a statistical significant test to prove of signifi-

cance of the results.

Our proposed model is a combination of multiple feature selection techniques and

ensemble of four base classifiers for anomaly-based intrusion detection systems. For

each feature selection algorithm, the performance is measured in term of accuracy

metric of support vector machine [16] classifier. SVM is chosen since it is one of the

prevalent techniques used in the literature. For the experiment, an improved version

of KDDCup 99, called NSL-KDD [124] is used. A hybrid feature selection comprises

three algorithms, i.e. particle swarm optimization [62], ant colony optimization [9],

and genetic algorithm [82] are employed in order to get the most suitable subset of

features. In addition, four classification algorithms, i.e. random forest [12], Naive-

bayes tree [66], logistic model trees [73], and Reduces error pruning tree [98] are

combined using voting rule [71] fusion scheme. The significant results of each classifier

are then assessed using Friedman test [39] and Nemenyi post hoc test [88].

The major pillar of contribution of this chapter lies in several axes:

(i) Hybrid use of feature selection and classifier ensemble simultaneously.

(ii) Comparing the performance of classifier ensemble with base classifier with re-

spect to classification problem in anomaly-based IDSs.

(iii) We show that a voting rule combination approach is the best choice for anomaly-

based IDSs since it gives us a better result compared to the existing ones.

(iv) Considering a thoroughly iterative process in the experiment to choose the best

parameter setting for feature selection.

(v) Providing two statistical significant tests to prove that the differences among

classifiers are significant.
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6.3 Proposed Approach

In this section, we describe the background of feature selection algorithms, base clas-

sifiers, classifiers ensemble, and the proposed model.

6.3.1 Feature Selection Algorithms

The feature selection is the problem of selecting a subset of attributes from a feature

set in order to obtain a precise, compact, and fast classifier performance. For attribute

evaluator, we adopt correlation-based feature selection which is one of the leading

feature subset selection method in machine learning and pattern recognition [48].

The worth of a subset of attributes is evaluated using entropy and information gain

theory. The lack of computation using information gain is symmetrical uncertainty

and biased of feature with more values. Hence, CFS takes a coefficient to compensate

information gain’s bias toward attribute with more values and to normalize its value

to the range [0, 1].

Three different search methods for the attribute selection are describe as follows.

(i) Particle swarm optimization. It is used to search the set of all possible features

so that the best set of features can be obtained [114]. PSO is firstly introduced

by Kennedy and Eberhart [62], is one of the computation technique which is

inspired by behavior of flying birds and their means of information exchange to

solve the problems. Each particle in the swarm represents possible solution. A

number of particle is located in the hyperspace, which has random position ϕi

and velocity υi. The basic update rule for the position and the speed is depicted

in equation (6.1) and (6.2), respectively.

ϕi(t+ 1) = ϕi + υi(t+ 1) (6.1)
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υi(t+ 1) = ωυi(t) + c1r1(pi − xi) + c2r2(g − xi) (6.2)

Where ω denotes inertia weight constant, c1 and c2 denotes cognitive and social

learning constant, respectively, r1 and r2 represent random numbers, respec-

tively, pi is personal best position of particle i, and finally, g is a global best

position among all particles in the swarm.

(ii) Ant Colony Optimization. It is represented as a graph, which nodes represents

features, with the edges between them denoting the choice of the next feature.

The search of the final feature subset is an ant traversal through the graph where

a minimum number of nodes is visited that satisfying the traversal stopping

criterion [9], [60]. A probabilistic transition rule is used to give an indication

on which features are more informative on the currently selected features. It

denotes the probability of an ant at feature i choosing to travel to feature j at

time t:

pkij(t) =
[τij(t)]

α · [ηij]β∑
l∈Jk

i
[τil(t)]α · [ηil]β

(6.3)

Where k is the number of ants, Jk
i is the set of ant k’s unvisited features, ηij is

the heuristic desirability of choosing feature j when currently at feature i and

τij(t) is the amount of virtual pheromone on edge (i, j). The choice of α and β

is determined experimentally.

(iii) Genetic Algorithm. It is depicted by one chromosome which is a set of the fea-

tures. Gene is a feature that has binary value 1 or 0, which means that there is

or is not a particular feature in the set, respectively. Goldberg strategy is com-

monly used to discover an ideal set of features. The subset evaluator function

with k-cross validation is applied to evaluate the input features. We consider

to set the value of the initial population, maximum number of generations, mu-

tation, crossover probability, k, and random seed number are 30, 30, 0.01, 0.9,

10 and 1, respectively.
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6.3.2 Base Classifiers

As it has been mentioned previously, we consider four tree-based classifiers as base

classifiers in the ensemble. Random forest [12], Naive-bayes tree [66], logistic model

trees [73], and Reduces error pruning tree [98] are selected since they require less com-

putational resource and have shown better predictive accuracy in many applications

[111]. We set the same parameters, either as a member of ensemble or as a single

classifier. We briefly discuss the aforementioned base classifiers as follows.

(i) RF. This generates a number of trees. Random trees are grown without pre- or

post-pruning, which contributes to their diversity. At each node, the feature to

split upon is chosen from a randomized split of the original feature. Classifica-

tion accuracy is positively gained due to the diversity of the trees. There are

only two parameters in RF, i.e. number of trees and the number of variables to

try at each split. We consider large number of trees is 1000 and set the number

of variables to the square root of the total number of predictors.

(ii) NBT. It is a hybrid approach that incorporate the advantages of decision tree

and Naive-Bayes. The final decision tree is built with univariate splits at each

node, but with Naive-Bayes classifiers at the leaves. The decision-tree seg-

ments the data and each segment of the data, represented by a leaf, is described

through a Naive-Bayes classifier. No parameter setting is required for this al-

gorithm.

(iii) LMT. It is similar to NBT, but logistic regression function is used at the leaves of

the tree. We consider the use of logitboost algorithm as the regression function,

the number on boosting iteration is cross-validated, and the minimum number

of instances at which a node is considered for splitting is 15.

(iv) REPT. It is a fast decision tree learning algorithm which tree is built using

the information gain with entropy. It takes reduce error pruning in order to
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Figure 6.1: Illustration of classifiers ensemble

minimize the error from the variance. We set the parameter of the algorithm as

follows. The minimum total weight of the instances in a leaf is 2, the amount

of data used for pruning (folds) is 3, and tree pruning is applied.

6.3.3 Classifiers Ensemble

As illustrated in Figure 6.1, the ensemble combines different parameters of all base

classifiers using combination rules. Let T individual classifiers {h1, ..., hT} be given

and we want to combine hi’s to predict the class label from a set of l possible class label

{c1, ..., cl}. It is assumed that for an instance x, the final outputs of the classifier hi

are given as an l-dimensional label vector (h1
i (x), ..., h

l
i(x))

T which hj
i (x) is the output

of hi for the class label cj. Hence, h
j
i (x) ∈ {0, 1} which takes value one if hi predicts

cj as the class label and zero otherwise.

In majority voting, every classifier votes for one class label, and the final output class

label is the one that receives more than half of the votes, otherwise a rejection option

is given. Hence, the output class label of majority voting is expressed as:

H(x) =

 cj if
T∑
i=1

hj
i (x) >

1
2

l∑
k=1

T∑
i=1

hk
i (x)

rejection

(6.4)
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6.3.4 The Proposed Model

In this section, a hybrid feature selection and classifier ensemble for anomaly detec-

tion is briefly presented. As shown in Figure 6.2, the proposed model comprises two

stages such as feature selection and classification (modeling). In the first stage, three

feature selection techniques are gathered in order to obtain the most representative

features subset for enhancing the performance of the classification in the classification

(modeling) stage. The three feature selection techniques involved in this stage are

PSO, ACO, and GA. Parameters tuning of all feature selection techniques are per-

formed and the selected feature subset are then applied for SVM classification. The

optimal parameters in this stage are determined by the SVM classification accuracy.

In order to obtain the SVM classification accuracy, a hold-out evaluation method is

adopted in which data set are divided into two parts, e.g. 70% and 30% are used for

training and testing, respectively. In addition to the best selected features, the output

of the first stage is the most appropriate feature selection technique. In the second

stage, four base classifiers, i.e. RF, NBT, LMT, and REPT as well as ensemble of

these base classifiers are used for classification (modeling). The performance of base

classifiers as single classifier and classifiers ensemble are validated using five times of

2-cross validation (5× 2cv) [28] in terms of two metrics, i.e. accuracy and false alarm

rate.

6.4 Experimental Design

6.4.1 Experimental Setup

The overall performance of classifiers are evaluated in R environment using RWeka

library [55]. The experiment is conducted on a machine with Windows 7, 16GB RAM,

and Intel R⃝ CPU 3.5GHz.
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Figure 6.2: Proposed model for anomaly detection
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6.4.2 Data set Description

KDD Cup 99 data set has been widely used for intrusion detection [124]. It is con-

siderably accepted as a standard data set for benchmarking. However, the data set

has inherent problems due to the synthetic characteristic of the data. For this rea-

son, we considered to use NSL-KDD data set since it does not include redundant

instances which lead the classifiers to produce biased result. The data set possesses

41 attributes and one class label attribute. The 20% of NSL-KDD training set con-

tains 25192 instances, which is composed of two classes, e.g. anomaly class (13499

instances) and normal class (11743 instances).

6.4.3 Performance Metrics

All classifiers are evaluated using performance metrics, i.e. average accuracy and

false alarm rate (FAR). We considered to employ these performance metrics since

they have been taken into account in the previous related studies (see Section 6.2).

These evaluation metrics are briefly calculated as follows.

Average Accuracy =
TP + TN

TP + FP + FN + TN
(6.5)

FAR =
FP

FP + TN
(6.6)

where TP is the number of instances correctly identified as belonging to the normal

class, FP or Type I error is the number of instances incorrectly identified as belonging

to the normal class, TN is the number of instances correctly identified as belonging

to the anomaly class, and FN or Type II error is the number of instances incorrectly

identified as belonging to the anomaly class.
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6.4.4 Statistical Significant Test

To provide a detailed comparative study among classifier ensemble schemes, statistical

test is employed to prove that the differences among classifiers are significant [42].

The Friedman test [39] is used to test whether the differences among the classifiers

in term of evaluation metric are significant [26]. It is a non-parametric test which is

equivalent to the repeated-measures ANOVA [26]. In addition, it ranks the classifiers,

with the best algorithm receiving rank 1, and the worst classifier receiving rank equal

to the number of classifiers. Friedman test is defined as follows.

χ2
F =

12N

k(k + 1)

[∑
j

R2
j −

k(k + 1)2

4

]
(6.7)

where N is the number of elements, k is the number of classifiers, and Rj is the

average rank of the jth of k classifiers. The average rank is defined as Rj =
1
N

∑N
i rji ,

where rji is the rank of the jth of k classifiers on the ith of N elements.

When the Friedman test is rejected, we carry out post-hoc test using Nemenyi test

[88] to determine which classifiers are significantly different. Two classifiers are sig-

nificantly different if the corresponding average ranks differ by at least the critical

difference, which is defined as:

CD = qα

√
k(k + 1)

6N
(6.8)

where the critical values qα are computed using the Studentized range statistic divided

by
√
2, N is the number of elements and k is the number of classifiers to be compared

[26].
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6.5 Experimental Result and Discussion

This section shows the experimental result of the proposed model. As presented in

Section 6.3.4, the three different FS techniques are applied and their parameters are

tuned with respect to the SVM classification accuracy. The parameters for each FS

technique and the accuracy of SVM are presented in the following section.

6.5.1 PSO Parameter Setting

In particle swarm optimization FS, parameter n (number of particle) is changed. We

set parameter c1 and c2 are equal to 2, whilst the maximum number of generations

is 30. In literature, these values have been proposed as a generally acceptable setting

for most of problems [90]. The output of FS is used for SVM classification model as

shown in Table 6.1.

The outcomes show that model 1 (particle size of 2) has higher classification accu-

racy than others. It can be seen that the classification accuracy of the model 1 is

97.47%. The thirty-seven features have been successfully obtained by PSO, such as

duration, protocol type, service, flag, src bytes, dst bytes, land, wrong fragment, ur-

gent, hot, num failed logins, logged in, num compromised, root shell, su attempted,

num file creations, num shells, num outbound cmds, is host login, is guest login, count,

srv count, serror rate, srv serror rate, rerror rate, srv rerror rate, same srv rate, srv

diff host rate, dst host count, dst host same srv rate, dst host diff srv rate, dst host

same src port rate, dst host srv diff host rate, dst host serror rate, dst host srv serror

rate, dst host rerror rate, and dst host srv rerror rate.
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Table 6.1: Parameter setting for PSO

Model Particles (n) Selected features Accuracy (%)
1 2 37 97.47
2 5 12 92.88
3 10 19 96.40
4 20 5 83.67
5 50 6 89.20
6 100 6 87.40
7 200 7 91.81
8 500 7 91.31
9 1000 8 91.52
10 2000 8 91.52

6.5.2 ACO Parameter Setting

Similar to feature selection using PSO, parameter of k (number of ants) is changed

in ACO feature selection. β is a parameter which determines the relative importance

of pheromone versus heuristic. With regard to this, we set β = 1, which gives equal

importance to cost minimization while selecting the features. As suggested by [108],

local pheromone update strength parameter (α) is set to 0.8. The outcomes of each

parameter setting for ACO feature selection and the SVM classification accuracy are

presented in Table 6.2.

It can be seen in Table 6.2 that model 9 and 10 receives higher accuracy (91.52%)

in the SVM classification. Therefore, the selected features of model 9 and 10 can be

used for building classification model. After conducting feature selection using ACO,

8 features are obtained such as flag, src bytes, dst bytes, logged in, srv serror rate,

same srv rate, diff srv rate, and dst host srv diff host rate.
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Table 6.2: Parameter setting for ACO

Model Number of ants (k) Selected features Accuracy (%)
1 2 7 90.29
2 5 6 89.01
3 10 8 91.28
4 20 6 89.01
5 50 6 89.18
6 100 6 89.18
7 200 7 90.69
8 500 7 91.31
9 1000 8 91.52
10 2000 8 91.52

Table 6.3: Parameter setting for GA

Model Population size Selected features Accuracy (%)
1 2 25 94.39
2 5 25 94.39
3 10 14 92.31
4 20 10 91.32
5 50 11 89.88
6 100 7 87.76
7 200 7 91.31
8 500 9 91.89
9 1000 8 91.36
10 2000 6 89.20

6.5.3 GA Parameter Setting

As it is mentioned previously, feature selection using GA also requires parameters

setting. These parameters such as the value of the initial population, maximum

number of generations, mutation, crossover probability, k, and random seed number

are set to 30, 30, 0.01, 0.9, 10 and 1, respectively. Population size parameter is

changed with the same interval number of the previous experiment using PSO and

ACO. The results of SVM accuracy and selected features are shown in Table 6.3.
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As depicted in Table 6.3, model 1 and 2 give the best classification accuracy in

SVM classification. They share the same number of selected features (25 features)

as well as performance accuracy (94.39%). Hence, selected features obtained by

model 1 and 2 can be used for building classification model in the second stage.

Twenty-five features have been generated by using GA feature selection, e.g. dura-

tion, flag, src bytes, dst bytes,land,wrong fragment,urgent, hot, logged in, root shell,

su attempted, num shells, num outbound cmds, is host login, count, srv count, ser-

ror rate, srv serror rate, srv rerror rate, same srv rate, dst host diff srv rate, dst host

same src port rate, dst host serror rate, dst host rerror rate, and dst host srv rerror

rate.

6.5.4 Classifiers Performance Result

After performing feature selection and tuning parameter setting, an appropriate sub-

set features have been obtained as indicated in Table 6.1-6.3. The next step is the

implementation of all classifiers, i.e. RF, NBT, LMT, and REPT and voting ensemble

of these base classifiers. Figure 6.3 denotes the performance result of all classifiers for

each FS technique in terms of accuracy and FAR value. The performance of all clas-

sifiers are evaluated using 5 × 2cv [28]. This method divides the data set randomly

into two equal parts. One part is used for training and the other part to test the

algorithm, and vice versa. This procedure is then repeated five times. With regard

to this, the results presented in this chapter are the average value of accuracy and

FAR.

As depicted in Figure 6.3, it is obvious that voting ensemble (ENS) resulted from

the PSO feature selection is the best performer in comparison with other FS tech-

niques. Figure 6.3 confirms that our proposed classifier ensemble also significantly

outperforms base classifiers as well as SVM classifier in term of accuracy metric. For
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Figure 6.3: Average accuracy for each feature selection technique in all classifiers

instance by using PSO feature selection, ENS gains 99.7109%, whilst RF, NBT, LMT,

REPT, and SVM gain 99.6920%, 99.5451%, 99.2124%, and 99.3482%, respectively.

Figure 6.4 presents the classifier performance of all classifiers in term of FAR metric

for each feature selection techniques. It is clear that ENS resulted from the PSO

feature selection is the best performer in comparison with other FS techniques. It

significantly outperforms other classifiers, i.e. RF, NBT, LMT, and REPT with the

lowest false alarm rate. For instance by using PSO feature selection, ENS gains

0.0053, whilst RF, NBT, LMT, and REPT gain 0.0049, 0.0064, 0.0110, and 0.0081,

respectively.

Furthermore, in order to ensure that the validation test does not happen by chance,

we tested the significance of these result by using the Friedman test. We are only
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Figure 6.4: Average FAR for each feature selection technique in all classifiers

Table 6.4: The results of classifier significance using Friedman test

χ2
F df p-value

32.72 4 1.363E-06

interested to assess the significant differences of all classifiers’ accuracy resulted from

the PSO feature selection since this result is the best one. The null hypothesis is

considered as there is no significant differences of accuracy among three classifiers,

and alternative hypothesis is considered as there is significant differences of accuracy

among three classifiers. As indicated in Equation 6.7, N is the number of elements

(10 in our case) and k is the number of classifiers (5 in our case). We fix the level

significant level α = 0.05 which refers to a confidence level of 95%. The results of

classifier significance test are summarized in Table 6.4.
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The result above indicates that there are significant differences among classifiers.

However, this result is very conservative so we apply more powerful post hoc test, i.e.

Nemenyi test for comparing all classifiers to each other. The critical difference (CD),

which represents the rank difference among classifiers, is computed using Equation

4.3. The qα corresponds to the critical values from the Tukey test by dividing it by
√
2 (see Table A.8 in [59]). The two classifiers are significantly different in which

their average rank of each classifiers are larger or equal to the CD. For α = 0.05 and

degree of freedom (df) = (n− 1)(k− 1) = 9× 4 = 36, we get qα = 4.04 for the Tukey

test. It yields qα = 2.86 for the Nemenyi test. Recall from Equation 6.8, we compute

CD as follows.

CD = 2.86

√
5(5 + 1)

6× 10
= 2.02 (6.9)

To determine which classifiers are significantly different, it is required to calculate

the average rankings of the accuracy and then compare which differences are greater

than 2.02. Another method is we can plot the critical difference for each classifier as

shown in Figure 6.5. First of all, there is no performance difference between ENS and

RF. The performance of ENS differs highly significant to LMT and REPT (p < 0.01)

whilst other comparisons are not significant (p > 0.05).

Figure 6.5: Critical difference of all classifiers in term of accuracy metric
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Subsequently, in order to demonstrate that our proposed approach is comparable to

other methods, we compare our result with the existing approaches where 20% of NSL-

KDD data set is trained and tested using 10-folds cross validation (10f − cv). Table

6.5 depicts the comparison result for the experiment using 10-folds cross validation.

It is obvious that our proposed approach considerably outperforms other methods

found in the literature.

6.6 Conclusion

This chapter proposes the hybrid approach of feature selections and tree-based clas-

sifiers ensemble for intrusion detection systems. Three feature selection techniques,

i.e. PSO, ACO, and GA are involved in order to obtain the best subset of features.

Moreover, four tree-based classifier algorithms, i.e. RF, NBT, LMT, and REPT are

combined for classification analysis. Based on our experimental result, it can be

revealed that the proposed scheme yields detection accuracy 99.77%, significantly

outperforms the existing methods applied on the NSL-KDD data set. We also con-

clude that classifiers ensemble performs better than single classifier in the pool. Our

work contributes to the existing literature by providing a comprehensive statistical

significant test, including post-hoc test in the evaluation of classifier algorithms for

intrusion detection systems.
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Chapter 7
An Improved Intrusion Detection System

via Hybrid Feature Selection and Two-level

Classifier Ensembles

7.1 Introduction

Intrusion detection systems have been widely recognized by many security experts as

one technique used for discovering and denying malevolent activities in the network

[118]. Nowadays, as the number of attacks is continuously mushrooming, IDSs are

much obliged to cope with the pruning of such attacks before they make a malignant

damage. Commonly, an IDS lies in two axes, i.e. signature-based and anomaly-based

detection [121]. Signature-based detection deals with sniffing known attacks instantly

with a lower false positive rate. However, it has less capability in discovering novel

attacks [119].

In contrast to signature-based detection, anomaly-based detection is able to discover

new types of attack since it only inspects the objects that behave significantly different

from the normal network profiles. Despite that, it constantly faces higher false positive

rate, and even in a certain case, some attackers may employ anomaly profile as normal
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profile to train classifier. As a result, an IDS will misapprehend anomaly as normal.

In the recent decades, anomaly-based detection has gained many interest in IDSs

research as new attacks have been successfully identified [121] [41].

Anomaly-based detection is a binary classification problem [120]. A classifier is

trained to build a model using NSL-KDD data set [124], which is a public data

set for benchmarking classifiers in IDSs research. Existing solutions have employed

different kind of classifiers, either as a single classifier or ensemble of classifiers. When

a single classifier cannot yield a satisfactory result, multiple classifier systems or clas-

sifier ensemble might produce significant enhancement over single classifier. MCSs

train multiple classifiers to find a solution in the same problem [139]. In contrast to

classical approaches, which build classifier model using one learner from the training

set, MCSs construct a set of classifiers and combine them to predict the final output.

In past two decades, the combination of multiple classifiers has contributed an ad-

vanced research in machine learning and pattern classification. Classifier ensembles

have been applied in diverse real-world applications such as remote sensing, computer

security, fraud detection, medicine, and recommender systems [133]. In these appli-

cations, MCSs show improved performance, resilience, and robust to noisy data and

high dimensional data, however, the problem underlying classifier ensemble design

are classifier diversity and methods of classifier combination [133].

Many researchers in IDSs have focused on the use of classical approaches using either

one classifier, i.e. naive bayes, decision tree, support vector machine, and naive bayes

tree [124]; or classifier ensembles, i.e. bagging [107] [46], boosting [57], voting [87] [94]

[93], random forest [124], and other ensemble approaches [14] [44] [24]. In this paper,

we consider two-level classifier ensembles for anomaly detection by employing two

different ensembles, i.e. rotation forest [99] and bagging [11]. We demonstrate that

the use of two-level of classifier ensembles, combined with a hybrid feature selection,

can significantly improve the accuracy of anomaly detection.
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Our main contributions can be summarized as follows:

(i) We use two-level of classifier ensembles rather than one ensemble learner. The

two-level ensemble is composed by an ensemble in the first level whose base

classifier is another ensemble;

(ii) A feature selection using hybrid method is proposed to reduce computational

complexity;

(iii) Our proposed method results higher detection rate by comparison with the

recent works; and

(iv) We provide statistical significant test to prove that the performance differences

among classifiers are significant.

7.2 Related Work

Single classifier and multiple classifiers have been suggested to solve the problems

underlying IDSs for anomaly detection. We discuss the details of each solution in this

section. We only include the proposed method of anomaly detection using NSL-KDD

data set [124], which is the improved version of KDD Cup 99 data set. A number

of single classifiers, including one ensemble learner have been considered by [124] to

evaluate the performance of the learned models on two test sets, namely KDDTest+,

and KDDTest-21. The experimental result shows that naive bayes tree outperforms

other classifiers.

Decision tree, multilayer perceptron, and distance-based classifier are suggested by

[83] to evaluate the performance of feature selection method, namely reduced class-

dependent feature transformation. From their experiment using KDDTest+, it is

shown that DT is the best performer, followed by MLP and distance-based classifier.

In addition, three different feature selection methods, i.e. linear discriminant analysis,
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principal component analysis, and modified class-dependent feature transformation

are presented and discussed. The performance of such classifiers are compared while

using full set and reduced set. Even though the proposed method can reduce false

positive rate significantly, the performance of classifiers offer unsatisfactory result in

terms of accuracy and detection rate.

An anomaly detection using fuzzy classifier is proposed by [68]. Fuzzy classification by

evolutionary algorithms have been evolved over KDDTrain+ and test the classifier on

KDDTest+. The author considers full training and testing set without feature selec-

tion. The proposed method improves the detection performance in term of accuracy

and detection rate. Two-tier classifier with LDA feature selection are recommended

by [91]. The proposed model consists of two classifiers, i.e. naive bayes and cer-

tainty factor voting version of kNN. The performance of learned model is compared

with other single classifiers. The proposed model yields 83.4% and 4.83% in term of

detection rate and false positive rate, respectively.

In the recent work, a novel tree ensemble technique called GAR-Forest is proposed

[61]. GAR-Forest combined with symmetrical uncertainty feature selection give im-

provement in term of detection accuracy. The proposed classifier offers 85.06% ac-

curacy using 32 features set. However, the proposed model still suffers from higher

false positive rate which reaches 12.2%.

7.3 Proposed Model and Methodology

7.3.1 Feature Selection

The feature selection is the problem of selecting a subset of attributes from a feature

set in order to obtain a precise, compact, and fast classifier performance. For attribute

evaluator, we adopt correlation-based feature selection which is one of the leading
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feature subset selection method in machine learning and pattern recognition [48].

The worth of a subset of attributes is evaluated using entropy and information gain

theory. The lack of computation using information gain is symmetrical uncertainty

and biased of feature with more values. Hence, CFS takes a coefficient to compensate

information gain’s bias toward attribute with more values and to normalize its value

to the range [0, 1]. Three different search methods for the attribute selection are

describe as follows.

7.3.1.1 Particle swarm optimization

It is used to search the set of all possible features so that the best set of features can

be obtained [118]. PSO is firstly introduced by Kennedy and Eberhart [62], is one

of the computation technique which is inspired by behavior of flying birds and their

means of information exchange to solve the problems. Each particle in the swarm

represents possible solution. A number of particle is located in the hyperspace, which

has random position ϕi and velocity υi. The basic update rule for the position and

the speed is depicted in equation (7.1) and (7.2), respectively.

ϕi(t+ 1) = ϕi + υi(t+ 1) (7.1)

υi(t+ 1) = ωυi(t) + c1r1(pi − xi) + c2r2(g − xi) (7.2)

Where ω denotes inertia weight constant, c1 and c2 denotes cognitive and social

learning constant, respectively, r1 and r2 represent random numbers, respectively, pi

is personal best position of particle i, and finally, g is a global best position among

all particles in the swarm.
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7.3.1.2 Ant Colony Optimization

It is represented as a graph, which nodes represents features, with the edges between

them denoting the choice of the next feature. The search of the final feature subset is

an ant traversal through the graph where a minimum number of nodes is visited that

satisfying the traversal stopping criterion [9], [60]. A probabilistic transition rule is

used to give an indication on which features are more informative on the currently

selected features. It denotes the probability of an ant at feature i choosing to travel

to feature j at time t:

pkij(t) =
[τij(t)]

α · [ηij]β∑
l∈Jk

i
[τil(t)]α · [ηil]β

(7.3)

Where k is the number of ants, Jk
i is the set of ant k’s unvisited features, ηij is the

heuristic desirability of choosing feature j when currently at feature i and τij(t) is

the amount of virtual pheromone on edge (i, j). The choice of α and β is determined

experimentally.

7.3.1.3 Genetic Algorithm

It is depicted by one chromosome which is a set of the features. Gene is a feature that

has binary value 1 or 0, which means that there is or is not a particular feature in

the set, respectively. Goldberg strategy is commonly used to discover an ideal set of

features. The subset evaluator function with k-cross validation is applied to evaluate

the input features. We consider to set the value of the initial population, maximum

number of generations, mutation, crossover probability, k, and random seed number

are 30, 30, 0.01, 0.9, 10 and 1, respectively.
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7.3.2 Classifier Ensembles

7.3.2.1 Bagging

Bagging technique was firstly introduced by [11]. Bagging stands for Bootstrap Ag-

gregating. Bagging adopts parallel paradigm where the base classifiers are generated

in parallel. As the name implies, it generates M bootstrap samples D1, D2, ..., DM

randomly picked from the original training set D of size n. From each bootstrap

sample Di, a base classifier Ci is trained by using the same learning algorithm. Final

prediction on the new test instances are made by taking majority voting strategies. To

predict a test instance, bagging feeds the instances to its base classifiers C1, C2, ..., CM

and collects all of their outputs, the votes the labels and takes the winner label as

the prediction C∗.

7.3.2.2 Rotation Forest

Rotation forest aims at constructing accurate and diverse classifiers. It applies feature

extraction using principle component analysis to subsets of features and reconstructs

a full feature set for each classifier forming the ensemble [99]. The feature set F is

randomly partitioned into L subsets, PCA is run separately on each subset, and a

new set of the extracted attributes is constructed by pooling all principal components.

Then the data are transformed into the new feature space. Classifier Ci is trained by

using this data set. Different partitions of the feature set contributes to the diversity

of extracted features. Similar to bagging and random Forest, all classifiers are trained

in parallel manner.
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7.3.3 The Proposed Two-level Classifier Ensembles

We propose a new approach for constructing two-level classifier ensembles. Contrast-

ing with classical classifier ensemble which is commonly composed by a simple weak

classifiers, i.e. neural network, support vector machine, and decision tree, our pro-

posed ensemble is made up of two ensembles. One ensemble learner acts as a base

classifier of another ensemble. As shown in Figure 7.1, bagging (Bag) is chosen as

a base classifier of rotation forest. In addition, a weak classifier, namely conjunctive

rule [117] is also considered as a base classifier of bagging. This classifier construction

allows us to have improved performance and robust classifier concurrently.

In fact, there are many combination of ensembles can be made, but we intend to

maximize the diversity of the constructed classifier. To do so, we intentionally chose

rotation forest and bagging which have different induction strategies. As indicated

above, rotation forest takes different feature subsets, while bagging generates boot-

strap samples to build an ensemble. The level-1 ensemble produces feature set of

D into L feature subsets and thereafter each feature subset is splitted into M sub-

samples in the level-2 classifier. Final class prediction is made using a combiner, i.e.

majority voting rule, from total T classifiers which T = L × M . Let T classifiers

{h1, ..., hT} are given and we want to combine hi’s to predict the class label from a

set of l possible class label {c1, ..., cl}. It is assumed that for a sample x, the final

output of hi is given as an l-dimensional vector (h1
i (x), ..., h

l
i(x))

T , which hj
i (x) is the

output of hi for the class label cj. Thus, hj
i (x) ∈ {0, 1} which takes value one if hi

predicts cj as the class label or zero otherwise. In majority voting, each classifier

votes for one class label, and the final class prediction (H(x)) is the one that receives

more than a half of the votes, otherwise a rejection option will be assigned.

H(x) =

 cj if
T∑
i=1

hj
i (x) >

1
2

l∑
k=1

T∑
i=1

hk
i (x)

rejection

(7.4)
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7.3.4 Methodology

We propose an intrusion detection model based on hybrid feature selection and two-

level classifier ensemble. As depicted in Figure 7.2, the proposed model is composed

by three stages, i.e. feature selection, modeling, and validation. The first stage is

composed by three feature selection techniques, i.e. PSO, ACO, and GA. It involves

a hybrid method to obtain the most representative feature subsets for improving

the classifier performance in the modeling stage. Parameter tuning of each feature

selection technique is performed and the selected features of NSL-KDD data set are

classified using reduced error pruning tree [98] classifier. The optimal parameter for

each feature selection method is determined by the REPT classifier. The REPT is

a fast decision tree learning algorithm which tree is built using the information gain

with entropy. It takes reduce error pruning in order to minimize the error from the

variance.

Classification accuracy of REPT is obtained using hold-out method, which the data

set is divided into two parts, i.e. 70% and 30% for training and testing, respectively.

The output of the first stage is the most appropriate feature selection technique.

In the second stage, the proposed classifier based on two-level classifier ensembles

is used for classification. However, in order to provide a thorough comparison, two

classifier ensembles as well as a single classifier are also considered, i.e. bagging of

CR (Bag-CR), rotation forest of CR (RoF-CR), and CR.

In the last stage, the performance of the proposed classifier and the above-mentioned

classifiers are evaluated using five times of two-fold cross validation 5 × 2cv [28]. It

divides the data set randomly into two equal parts. One part is used for training

and the other part to test the algorithm, and vice versa. This procedure is then

repeated five times. Regarding this, four performance measures, i.e. accuracy, FPR,

sensitivity, and precision are adopted as standard metrics in IDSs research.
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Figure 7.2: The proposed model for IDS118
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7.4 Experimental Design

7.4.1 Data set

KDD Cup 99 data set has been widely used for intrusion detection [124]. It is con-

siderably accepted as a public data set for benchmarking. However, the data set has

inherent problems due to the synthetic characteristic of the data. For this reason, we

considered to use NSL-KDD data set since it does not include redundant instances

which lead the classifiers to produce biased result. The data set possesses 41 attributes

and one class label attribute. The 20% of NSL-KDD training set (KDDTrain+) con-

tains 25192 instances, which is composed of two classes, e.g. anomaly class (13499

instances) and normal class (11743 instances). Furthermore, since we would perform

a validation method using train-test strategy, a test set of NSL-KDD (KDDTest+) is

also included in our study. KDDTest+ is composed by 22,543 instances.

7.4.2 Performance Measures

All classifiers are evaluated using performance metrics, i.e. accuracy, FPR, specificity,

and precision. These evaluation metrics are briefly calculated as follows.

Accuracy =
TP + TN

TP + FP + FN + TN
(7.5)

FPR =
FP

FP + TN
(7.6)

Specificity =
TN

FP + TN
(7.7)

Precision =
TP

TP + FP
(7.8)

where TP is the number of instances correctly identified as belonging to the normal

class, FP or Type I error is the number of instances incorrectly identified as belonging
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to the normal class, TN is the number of instances correctly identified as belonging

to the anomaly class, and FN or Type II error is the number of instances incorrectly

identified as belonging to the anomaly class.

7.4.3 Statistical Test

To provide a detailed comparative study among classifier ensemble schemes, a sta-

tistical test is employed to prove that the differences among classifiers are significant

[42]. To give a thoroughly comparative study, two statistical significance test, namely

Quade test and Quade post-hoc test [19] are employed. It is essential to employe such

significance tests because the test will prove that the differences among classifiers are

significant [42]. The number of elements (n) denotes the performance result of each

classifier in 5 × 2cv. The H0 is that there are no performance differences among

the classifiers, whereas HA means that there are performance differences among the

classifiers.

Quade test is chosen since it is more powerful than Friedman test in the case of k < 5

[19], where k is the number of classifiers to be compared. First, the performance

results are ranked within each element to yield Ri,j. Then, the range in each row

(maximum and minimum value) needs to be calculated and ranked, Qi. The scores

are:

Si,j = Qi ∗ (Ri,j − (k + 1)/2) (7.9)

and

Sj =
n∑

i=1

Si,j (7.10)

The test statistic is computed as,

F̂ =
(n− 1) 1

n

∑k
i=1 S

2
j∑n

i=1

∑k
j=1 S

2
i,j − 1

n

∑k
i=1 S

2
j

(7.11)
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The F̂ is tested against the F-quantile for a given α = 0.05, with degree of freedom,

df1 = k − 1 and df2 = (n− 1)(k − 1).

In addition,a Quade post-hoc test is also conducted to identify the performance dif-

ferences among the classifiers. Quade post-hoc test is calculated using the student

t−distribution as follow.

|Si − Sj| > t1−α/2∗,(b−1)(k−1)

√
2n(

∑n
i=1

∑k
j=1 S

2
i,j − 1

n

∑k
i=1 S

2
j )

(n− 1)(k − 1)
(7.12)

7.5 Result and Discussion

7.5.1 Parameter Setting for Feature Selection

The parameters for each feature selection technique and the accuracy of REPT are

presented in this section. In the PSO FS, parameter n (number of particle) is changed.

we set parameter c1 and c2 are equal to 2, whilst the maximum number of generations

is 30. Furthermore, we considered mutation type and mutation probability, respec-

tively, is bit − flip and 0.01. In literature, these values have been proposed as a

generally acceptable setting for most of problems [90].

Similar to feature selection using PSO, parameter of n (number of ants) is changed

in ACO feature selection. β is a parameter which determines the relative importance

of pheromone versus heuristic. With regard to this, we set β = 1, which gives equal

importance to cost minimization while selecting the features. As suggested by [108],

local pheromone update strength parameter (α) is set to 0.8.

The parameters of GA such as the value of the initial population, maximum number

of generations, mutation, crossover probability, k, and random seed number are set

to 30, 30, 0.01, 0.9, 10 and 1, respectively. Population size (n) parameter is changed

with the same interval number of the previous experiment using PSO and ACO. The
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parameters for each FS technique and the accuracy of REPT are presented in Table

7.1.

From Table 7.1, it is obvious that Model 1 of PSO offers the highest performance

with 99.67% accuracy in REPT classification. Thus, selected features obtained by

the model can be used for constructing classification model (classifier) in the second

stage. Thirty-seven features have been successfully selected from this model such as

duration, protocol type, service, flag, src bytes, dst bytes, land, wrong fragment, ur-

gent, hot, num failed logins, logged in, num compromised, root shell, su attempted,

num file creations, num shells, num outbound cmds, is host login, is guest login, count,

srv count, serror rate, srv serror rate, rerror rate, srv rerror rate, same srv rate, srv

diff host rate, dst host count, dst host same srv rate, dst host diff srv rate, dst host

same src port rate, dst host srv diff host rate, dst host serror rate, dst host srv serror

rate, dst host rerror rate, and dst host srv rerror rate.

The performance value of all classifiers in terms of accuracy, FPR, specificity, and

precision are depicted in Figure 7.3. On average, the proposed approach is the best

performer in all performance metrics. Thus, it is obvious that the proposed classifier

outperforms classical ensembles, i.e. Bag-CR, RoF-CR and a single classifier, CR.

7.5.2 Performance Results and Benchmark

Figure 7.3 shows the average performance of the proposed classifier in comparison

with CR, Bag-CR, and RoF-CR. As shown in the figure, the proposed classifier has

performed best as compared to other classifiers in terms of four performance in-

dicators. Our proposed two-level ensembles (96.856%, 4.028%, 95.972%, 96.550%)

outperforms CR (93.775%, 4.093%, 95.907%, 96.263%), Bag-CR (93.919%, 5.407%,

94.593%, 95.225%), and RoF-CR (95.681%, 4.644%, 95.156%, 96.029%).

For further benchmark, the performance differences among classifiers are assessed

using statistical significance test. Level of confidence α is set to 0.05, df1 = 4, and
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(a)

(b)

Figure 7.3: Performance average of all classifiers in term of four performance
indicators
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Table 7.2: Results of Quade test

Accuracy FPR Sensitivity Precision

F̂ 18.1 1.7602 1.7602 2.8106
p−value 1.22E-06 0.1785 0.1785 0.05837

Table 7.3: Pairwise comparisons in terms of accuracy and FPR

Accuracy FPR
CR Bag-CR RoF-CR CR Bag-CR RoF-CR

Bag-CR 0.39 - - 0.067 - -
RoF-CR 0.00072 0.00664 - 0.886 0.050 -
Proposed 4.2E-07 4.2E-06 0.0093 0.627 0.167 0.529

Table 7.4: Pairwise comparisons in terms of specificity and precision

Specificity Precision
CR Bag-CR RoF-CR CR Bag-CR RoF-CR

Bag-CR 0.067 - - 0.031 - -
RoF-CR 0.886 0.050 - 0.857 0.021 -
Proposed 0.627 0.167 0.529 0.928 0.025 0.928

df2 = 27, we can obtain the value of F̂ and p−value for each performance indicator

as listed in Table 7.2. According to these results, it can be concluded that the

performance differences among classifiers are highly (p < 0.01) significant in terms of

accuracy metric. Furthermore, the performance differences among classifiers are not

significant (p > 0.05) in terms of FPR, specificity, and precision metric.

Given that the Quade test denotes significance, the post-hoc test by Quade is em-

ployed. This test allows us to have a pairwise comparison among two classifiers. The

results of post-hoc Quade test with respective p−value are provided in Table 7.3 -

7.4. The Quade post-hoc test indicates that the performance differences between our

proposed classifier and other classifiers, i.e. CR, Bag-CR, and RoF-CR are highly

significant (p < 0.01) in terms of accuracy metric. In the matter of precision metric,

the proposed classifier differs significantly (p < 0.05) in comparison with Bag-CR.

However, other contrasts are not significant (p > 0.05).

Subsequently, in order to provide a reasonable comparison, we consider to include
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Table 7.6: Training and testing time of all classifiers (seconds)

Classifier Training Testing Accuracy(%)
CR 1.78 0.24 84.022
Bag-CR 12.12 0.16 84.000
RoF-CR 117.59 7.96 82.390
PROPOSED 1045.05 10.17 85.797

the results of previous studies that classified 20% training set KDDTrain+ and then

evaluated on test set (KDDTest+). Also, the results obtained from [124], which

the official NSL-KDD data set was firstly introduced, are included. We compare

our result with the results presented in these studies in Table 7.5. According to the

experiment, the highest detection accuracy belongs to our proposed classifier. Besides

having superior detection accuracy, it also outperforms significantly other classifiers

in terms of sensitivity and precision metric. Even though our proposed classifier does

not perform best in term of FPR, it still can outperform GAR-Forest as presented

in [61]. The comparison table as presented in Table 7.5 confirms that our proposed

method is an effective approach for intrusion detection task. The result represents

the superior result obtained so far using the NSL-KDD data set. In addition, we

provide statistical significant test, which is still underexplored in the previous works.

Lastly, we also report the execution time of each classifier in term of training and

testing as shown in Table 7.6. The overall performance of classifiers are evaluated

in R environment using RWeka library [55]. The experiment is conducted on a

machine with Windows 7, 16GB RAM, and Intel R⃝ CPU 3.5GHz. We calculate the

computational time required for classifier modeling (training) and validation (testing)

on KDDTrain+ and KDDTest+, respectively. Table 7.6 indicates us that the training

and testing time of the proposed method is longer than other classifiers, i.e. single

classifier and classifier ensembles. However, for practical implementation, the result

is still acceptable considering that once classifier model has been built, it can be

used later for detecting anomalies in the network. Furthermore, we were unable to

assess the execution time of the existing methods since they are not mentioned in the
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published works.

7.6 Conclusion

In this chapter, we propose a novel technique of intrusion detection based on the

combination of hybrid feature selection and two-level classifier ensembles. The NSL-

KDD data set is used to evaluate the performance of our detection algorithm. Based

on the experimental result, it can be concluded that the proposed method outperforms

single classifier and other ensembles significantly. Our proposed method also yields

superior results in terms of accuracy, specificity, and precision metric when validating

on testing set KDDTest+.
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Chapter 8
Conclusions and Future Work

In this chapter we present the conclusions of the thesis and provides some suggestion

for future works.

8.1 Conclusions

In this thesis, solving complex classification problem in particular application do-

mains were addressed. An intrusion detection system and network anomaly detec-

tion, in particular, is a domain where a complicated classification problem may exist.

Anomaly detection deals with analyzing and reporting nonconforming traffic pattern

in computing systems. Meanwhile, predictive data analytics, where data mining and

machine learning techniques are subset, have been widely employed to improve the

detection performance of anomaly-based intrusion detection systems. However, since

predictive data analytics is non trivial task, it thus remains some challenging tasks

that have to be solved. The problems include choosing a suitable feature selection

technique and designing classification algorithm.

We have formulated some approaches for solving binary classification problem in pre-

dictive data analytics using classifier ensembles. We have evaluated existing ensemble
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methods for anomaly detection by performing a comparative study. We have applied

the classifier ensembles to two cross-domain intrusion detection data set, i.e. network

intrusion data set (NSL-KDD) and wireless intrusion data set (GPRS). Our experi-

ment has revealed that bagging outperformed boosting in terms of four performance

indicators, i.e. accuracy, precision, recall, and F1 metric. Furthermore, we have ex-

tensively studied the performance analysis of tree-based machine learning algorithms

in five different ensemble schemes. For this purpose, we have included three different

diabetes mellitus data sets for benchmarking. We have found that LMT classifier is

the best one regardless of the ensemble method used or not.

As an extension, we have adopted a gradient boosted machine classifier for anomaly-

based intrusion detection systems. Four data sets with no feature selection were

included in the experiment. Referring the result of statistical tests, the proposed

approach outperformed significantly other classifier ensembles and single classifiers,

i.e. random forest, deep neural network, support vector machine, and classification

and regression tree. We have further advocated a hybrid feature selection and tree-

based classifier ensembles for intrusion detection systems. To find the best feature

subset of NSL-KDD data set, we have combined three evolutionary algorithms, i.e.

particle swarm optimization, ant colony algorithm, and genetic algorithm as search

method, whilst tree-based classifier ensembles were constructed for classification.

Finally, we have proposed a novel approach of anomaly-based intrusion detection

systems using hybrid feature selection and two-level classifier ensembles. We have

been able to improve the detection performance in comparison with other existing

techniques. We have also proved that, surprisingly, the proposed scheme was superior

while validating using hold-out strategy. Based on the overall thesis work, we have

observed how focusing on the construction of classifier ensembles have produced an

enhanced performance of anomaly-based IDS outstandingly. Another important point

that can be concluded from this thesis is the use of statistical tests are necessary when

benchmarking our proposed scheme with others.
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8.2 Suggestions for Future Work

We provide some directions for possible future research.

(i) While a comparative study of classifier ensembles for anomaly detection is con-

ducted in Chapter 3, it would be interesting if a further analysis might be

explored to answer the reason why the implementation of bagging and boosting

for CART cannot enhance its performance significantly.

(ii) While, in Chapter 4, we have performed an extensive benchmark of classifier

ensembles for diabetes prediction, some interesting directions for further study

might consider: (a) to explore the reasons why the best single classifier also per-

forms the best when used in ensemble, and (b) to benchmark the performance of

these single classifiers and other ensemble methods that combine heterogeneous

classifiers, i.e. voting ensemble, stacking, or other combination rules.

(iii) While some novel approaches have been introduced in Chapter 5-7, we might

validate the proposed method to classify multi-class problem, which represents

incoming network traffics as normal or four attack groups.
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ACO Ant Colony Optimization

ANOVA Analysis of Variance

AUC Area Under Receiver Operating Characteristic Curve

BFT Best-first Decision Tree

CART Classification and Regression Tree

CD Critical Difference

CFS Correlation-based Feature Selection

CR Conjunctive Rule

CRISP-DM Cross Industry Standard Process for Data Mining

DNN Deep Neural Network

DM Diabetes Mellitus

DMAIC Define, Measure, Analyze, Improve and Control

DT Decision Tree

EC Evolutionary Computation

FAR False Alarm Rate

FN False Negative

FP False Positive

FPR False Positive Rate

FS Feature Selection

FT Functional Tree

GA Genetic Algorithm

GBM Gradient Boosted Machine

IDS Intrusion Detection System

KDD Knowledge Discovery in Databases
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LDA Linear Discriminant Analysis

LMT Logistic Model Tree

LR Logistic Regression

MCS Multiple Classifier System

MLP Multilayer Perceptron

MV Majority Voting

NB Naive Bayes

NBT Naive Bayes Tree

NN Neural Network

PCA Principle Component Analysis

PIDD Pima Indian Diabetic Data set

PSO Particle Swarm Optimization

RBF Radial Basis Function

REPT Reduces Error Pruning Tree

RF Random Forest

RoF Rotation Forest

RT Random Tree

SD Standard Deviation

SEMMA Sample, Explore, Modify, Model, and Assess

SVM Support Vector Machine

TN True Negative

TP True Positive

T2DM Type-2 Diabetes Mellitus

WEP Wired Equivalent Privacy

WPA Wi-Fi Protected Access
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