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Chapter 1

Introduction and Preliminaries

the purpose of this paper is to give a systematic presentation of the theory

of partial differential equations based mainly on the results from semigroups

of linear operators. A semigroup theoretic development of a theory for the

initial and mixed problems of parabolic hyperbolic equations is both power-

ful and beneficial since it enables one to investigate a broad class of various

evolution functional differential equations. There have been two main ob-

jects of work in this paper. One of these is based on the retarded semilinear

differential equations, which contain unbounded operators, nonlocal condi-

tions, or nonlinear part involving integrodifferetial terms. Moreover, some

results on the control problems for retarded functional differential equations

of parabolic type with unbounded principal operators are constructed. The

other is the regularity for nonlinear variational inequalities of second order

in Hilbert spaces

In this paper, with semigroup theory, we study the wellposedness and

control problems as linear or semilinear parabolic type and nonliner hyper-

bolic type equations on Hilbert spaces. Through this paper, we study for

problems of differential system on two Hilbert space H and V such that V

is a dense subspace of H.

Identifying the antidual of H with H we may consider V ⊂ H ⊂ V ∗. and

the injection of V into H is continous
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The subject of Chapter 2 is concerned with the existence, uniqueness and

norm estimations of solutions for a class of partial functional integrodiffer-

ential systems with delay terms:

∂

∂t
u(t, x) +A(x,Dx)u(t, x) +A1(x,Dx)u(t− h, x) (ILE)

+

∫ 0

−h
a(s)A2(x,Dx)u(t+ s, x)ds

= F (t, u(t− h, x),

∫ t

0

k(t, s, u(s− h, x))ds) + f(t, x), (t, x) ∈ [0, T ]× Ω.

Here, Ω ⊂ Rn is a bounded domain with smooth boundary ∂Ω, A(x,Dx)

and Aι(x,Dx)(ι = 1, 2) are second order linear differential operators with

real coefficients, and A(x,Dx) is an elliptic operator in Ω. The function

a(s) is a real scalar function on [−h, 0], where h > 0 is a delay time and

f is a forcing function. then, we can to establish a variation of constant

formula and regularity property of solutions for the equation (ILE) with the

aid of intermediate theory and the regularity for the corresponding linear

equation(in case F ≡ 0). We can also see that the solution mapping f 7→ xu

is compact where xf is a solution of (ILE) corresponding to the forcing term

f which is an important rule to apply control and optimal problems.

In Chapter 3, we study the nonlocal initial value problem governed by

retarded semilinear parabolic type equation in a Hilbert space as follows.
d
dt
x(t) = A0x(t) +

∫ 0

−h a(s)A1x(t+ s)ds

+f(t, x(t), x(b1(t)), ..., x(bm(t))) + k(t), t ≥ 0,

x(0) = g0 − φ(x), x(s) = g1(s)− esφ(x), −h ≤ s < 0,

(NRE)
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Let A0 be the operator associated with a bounded sesquilinear form defined

in V ×V satisfying G̊arding inequality. Then A0 generates an analytic semi-

group S(t) in both H and V ∗ and so the equation (NRE) may be considered

as an equation in both H and V ∗. and equation (NRE) with unbounded prin-

cipal operators and delay term. The operator A1 is bounded linear from V to

V ∗ The function a(·) is assumed to be a real valued and Hölder continuous in

the interval [−h, 0], and f , φ, bi(i = 1, · · · ,m) are given functions satisfying

some assumptions. then, we obtain the regularity and existence of solu-

tions of a retarded semilinear differential equation with nonlocal condition

by applying Schauder’s fixed point theorem. We construct the fundamental

solution and establish the Hölder continuity results concerning the funda-

mental solution of its corresponding retarded linear equation and we prove

the uniqueness of solutions of the given equation.

Chapter 4 is about the the initial value problem of the following nonlinear

variational inequalities of second order in Hilbert spaces;


(u′′(t) + Au(t), u(t)− z) + φ(u(t))− φ(z)

≤ (f(t, u(t)) + k(t), u(t)− z), a.e., ∀z ∈ V
u(0) = u0, u′(0) = u1.

(NVE)

Let A be a continuous linear operator from V into V ∗ which is assumed

to satisfy G̊arding’s inequality, and let φ : V → (−∞,+∞] be a lower semi-

continuous, proper convex function. The nonlinear term f(·, u), which is a

locally Lipschitz continuous operator with respect to u from V to H, and

a forcing term k ∈ L2(0, T ;V ∗). we deal with the regularity for nonlinear

variational inequalities of second order in Hilbert spaces with more general
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conditions on the nonlinear terms and without condition of the compactness

of the principal operators. We also obtain the norm estimate of a solution of

the given nonlinear equation on C([0, T ];V ) ∩ C1((0, T ];H) ∩ C2((0, T ];V ∗)

by using the results of its corresponding the hyperbolic semilinear part.

In Chapter 5 is to construct some results on the control problems for

the following retarded functional differential equation of parabolic type in a

Hilbert space H:
∂
∂t
u(x, t) = A0(x,Dx)u(x, t) +A1(x,Dx)u(x, t− h)

+
∫ 0

−h a(s)A2(x,Dx)u(x, t+ s)ds+ (B0w(t))(x), (x, t) ∈ Ω× (0, T ]

u(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T ],

u(x, 0) = g0(x), u(x, s) = g1(x, s), x ∈ Ω, s ∈ [−h, 0).

(CRE)

Here, Ω is a bounded domain in Rn with smooth boundary ∂Ω and h is some

positive number. Aι(x,Dx), ι = 0, 1, 2, are second order linear differential

operators with smooth coefficients in Ω, and A0(x,Dx) is elliptic. We note

that in order to guarantee the existence of fundamental solution of system

(CRE), we must need the assumption that a(·) is Hölder continuous as seen

in [7]. Let U be a Banach space of control variables and the controller

B0 be a bounded linear operator from U to L2(Ω). then, we to establish

relations between controllability of the given equation and observability of

the adjoint system, we investigate the equivalent relation for the completeness

of generalized eigenspaces of the infinitesimal generators. Finally, when the

control space is a finite dimensional space, a necessary and sufficient for the

approximate controllability of retarded equations is given as the so called

Rank Condition.
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Chapter 2

Regularity for semilinear retarded functional

integrodifferential equations

2.1 Introduction

This paper is concerned with the existence, uniqueness and norm estima-

tions of solutions for a class of partial functional integrodifferential systems

with delay terms:

∂

∂t
u(t, x) +A(x,Dx)u(t, x) +A1(x,Dx)u(t− h, x) (2.1.1)

+

∫ 0

−h
a(s)A2(x,Dx)u(t+ s, x)ds

= F (t, u(t− h, x),

∫ t

0

k(t, s, u(s− h, x))ds) + f(t, x), (t, x) ∈ [0, T ]× Ω.

Here, Ω ⊂ Rn is a bounded domain with smooth boundary ∂Ω, A(x,Dx) and

Aι(x,Dx)(ι = 1, 2) are second order linear differential operators with real

coefficients, and A(x,Dx) is an elliptic operator in Ω. The function a(s) is a

real scalar function on [−h, 0], where h > 0 is a delay time and f is a forcing

function. The boundary condition attached to (2.1.1) is given by Dirichlet

boundary condition

u|∂Ω = 0, 0 < t ≤ T, (2.1.2)
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and the initial condition is given by

u(0, x) = g0(x), u(s, x) = g1(s, x) − h ≤ s ≤ 0. (2.1.3)

Set

G(t, u) = F (t, u(t− h),

∫ t

0

k(t, s, u(s− h))ds).

The nonlinear term G(t, ·), which is a Lipschitz continuous operator from

L2(−h, T ;V ) to L2(−h, T ;H), is a semilinear version of the quasilinear one

considered in Yong and Pan [9]. Precise assumptions are given in the next

section.

The abstract formulations of many partial integrodifferential equations

arise in the mathematical description of the dynamical processes with heat

flow in material with memory, viscoelasticity, and many physical phenomena

(See [3, 4]). When F ≡ 0 in (2.1.1), this linear type of equations is studied

extensively by Di Blasio et el. [2], Tanabe [7] and Jeong, Nakagiri [5, 6].

Most parts of previous results studied the regularity for nonlinear equations

under conditions of the uniform boundedness of the nonlinear terms and the

compactness of the principal operators.

The purpose of this paper is to establish a variation of constant formula

and regularity property of solutions for the equation (2.1.1) with the aid

of intermediate theory and the regularity for the corresponding linear equa-

tion(in case F ≡ 0). We can also see that the solution mapping f 7→ xu is

compact where xf is a solution of (2.1.1) corresponding to the forcing term

f which is an important rule to apply control and optimal problems.
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In order to prove the solvability of the initial value problem (2.1.1) we

establish necessary estimates applying the result of [2] to (2.1.1) considered

as an equation in a Hilbert space. In this paper, we give preliminaries on

linear equations, and then prove the local existence and uniqueness for solu-

tion of (2.1.1)-(2.1.3) by using the contraction principle. Finally, we establish

the norm estimation of solutions by using the regularity for solutions associ-

ated with the linear part of the given equations and the global existence of

solutions by the step by step method.

2.2 Preliminaries and local solutions

LetH and V be two complex Hilbert spaces such that V is a dense subspace

of H. The norm of H(resp. V ) is denoted by | · | ( resp. || · ||) and the

corresponding scalar product by (·, ·)(resp.((·, ·))). Assume that the injection

of V into H is continuous. The antidual of V is denoted by V ∗, and the norm

of V ∗ by || · ||∗. Identifying H with its antidual we may consider that H is

embedded in V ∗. Hence we have V ⊂ H ⊂ V ∗ densely and continuously.

We realize the operator A(x,Dx), Aι(x,Dx), ι = 1, 2, in Hilbert spaces

by

A0v = −A(x,Dx)v, Aιv = −Aι(x,Dx)v, ι = 1, 2, v ∈ V

in the distribution sense. The mixed problem (2.1.1) can be formulated

7



abstractly as


d
dt
u(t) = A0u(t) + A1u(t− h) +

∫ 0

−h a(s)A2u(t+ s)ds

+F (t, u(t− h),
∫ t

0
k(t, s, u(s− h))ds) + f(t), 0 ≤ t ≤ T

u(0) = g0, u(s) = g1(s), −h ≤ s ≤ 0.

(SLE)

Let b(·, ·) be a bounded sesquilinear form defined in V × V and satisfying

G̊arding’s inequality

Re b(v, v) ≥ c0||v||2 − c1|v|2, c0 > 0, c1 ≥ 0. (2.2.1)

Let A0 be the operator associated with the sesquilinear form −b(·, ·):

(A0v1, v2) = −b(v1, v2), v1, v2 ∈ V.

A0 is a bounded linear operator from V to V ∗, and its realization in H which

is the restriction of A0 to

D(A0) = {v ∈ V ;A0v ∈ H}

is also denoted by A0. Then A0 generates an analytic semigroup in both of

H and V ∗(see [7]).

The operators A1 and A2 are bounded linear operators from V to V ∗ such

that their restrictions to D(A0) are bounded linear operators from D(A0)

equipped with the graph norm of A0 to H. The function a(·) is assumed to

be real valued and belongs to L2(−h, 0).

First, we consider some basic results on the following linear functional

differential initial value problem:
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{
d
dt
u(t) = A0u(t) + A1u(t− h) +

∫ 0

−h a(s)A2u(t+ s)ds+ f(t),

u(0) = g0, u(s) = g1(s) − h ≤ s ≤ 0.
(LE)

By assumption there exists a positive constant M0 such that

|v| ≤M0||v||. (2.2.2)

Then, for any f ∈ H we have

||f ||∗ ≤M0|f |. (2.2.3)

It follows from (2.2.1) that for u ∈ V

Re ((c1 − A0)v, v) ≥ c0||v||2.

Hence there exists a constant C0 such that

||v|| ≤ C0||v||1/2D(A0)|v|
1/2 (2.2.4)

for every v ∈ D(A0), where

||v||D(A0) = (|A0v|2 + |v|2)1/2

is the graph norm of D(A0).

Now, we introduce some basic notations. If X is a Banach space and 1 <

p <∞, Lp(0, T ;X) is the collection of all strongly measurable functions from

(0, T ) into X whose p-th powers of norms are integrable and Wm,p(0, T ;X)

is the set of all functions f whose derivatives Dαf up to degree m in the

distribution sense belong to Lp(0, T ;X).

By virtue of Theorem 3.3 of [2] we have the following result on the cor-

responding linear equation of (LE).
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Proposition 2.2.1. Suppose that the assumptions stated above are satisfied.

Then the following properties hold:

1) Let X = (D(A0), H)1/2,2 where (D(A0), H)1/2,2 is the real interpolation

space between D(A0) and H(see [[8]; Section 1.3.3]). For (g0, g1) ∈X ×

L2(−h, 0;D(A0)) and f ∈ L2(0, T ;H), T > 0, there exists a unique solution

u of (LE) belonging to

W0(T ) ≡ L2(−h, T ;D(A0)) ∩W 1,2(0, T ;H) ⊂ C([0, T ];X)

and satisfying

||u||W0(T ) ≤ C1(||g0||X + ||g1||L2(−h,0;D(A0)) + ||f ||L2(0,T ;H)), (2.2.5)

where C1 is a constant depending on T .

2) Let (g0, g1) ∈ H × L2(−h, 0;V ) and f ∈ L2(0, T ;V ∗), T > 0. Then there

exists a unique solution u of (LE) in case G(·, u) ≡ 0 belonging to

W1(T ) ≡ L2(−h, T ;V ) ∩W 1,2(0, T ;V ∗) ⊂ C([0, T ];H)

and satisfying

||u||W1(T ) ≤ C1(|g0|+ ||g1||L2(−h,0;V ) + ||f ||L2(0,T ;V ∗)), (2.2.6)

where C1 is a constant depending on T .

Given u ∈ L2(0, T ;V ) we extend it to the space L2(−h, T ;V ) by setting

u(s) = g1(s) for s ∈ (−h, 0).

We assume the following hypotheses on the nonlinear mappings F , k in

(SLE):
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(A1) F : [0, T ] × L2(0, T ;V ) × H → H is a nonlinear mapping such that

for φ ∈ L2(0, T ;V ) and x ∈ H, F (t, φ, x) is strongly measurable on [0, T ] and

there exist positive constants L0, L1, L2 and L3 such that

|F (t, φ1, x1)− F (t, φ2, x2)| ≤ L1||φ1 − φ2||+ L2|x1 − x2|, t ∈ [0, T ].

(A2) Let ∆T = {(s, t) : 0 ≤ s ≤ t ≤ T}. Then k : ∆T × L2(0, T ;V ) → H

is a nonlinear mapping such that for x ∈ H, k(t, s, x) is strongly measurable

on ∆T and there exists positive constant L3 such that

|k(t, s, x1)− k(t, s, x2)| ≤ L3||x1 − x2||, (s, t) ∈ ∆T .

(A3) |F (t, 0, 0)| ≤ L0, |k(t, s, 0)| ≤ L0.

Remark 2.2.1. The above operator F is the semilinear case of the nonlinear

part of quasilinear equations considered by Yong and Pan [9].

For u ∈ L2(−h, T ;V ), T > 0 we set

G(t, u) = F (t, u(t− h),

∫ t

0

k(t, s, u(s− h))ds).

Lemma 2.2.1. Let u ∈ L2(−h, T ;V ) T > 0. Then G(·, u) ∈ L2(0, T ;H)

and

||G(·, u)||L2(0,T ;H) ≤ L0

√
T + (L1 + L2L3T/

√
2)||u||L2(−h,T−h;V ). (2.2.7)

Moreover if u1, u2 ∈ L2(−h, T ;V ), then

||G(·, u1)−G(·, u2)||L2(0,T ;H) ≤ (L1 + L2L3T/
√

2)||u1 − u2||L2(−h,T−h;V ).

(2.2.8)
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Proof. For u ∈ L2(−h, T ;V ), since∫ T

0

|
∫ t

0

k(t, s, u(s− h))ds|2dt ≤ L2
3

∫ T

0

(

∫ t

0

||u(s− h)||ds)2dt

≤ L2
3

∫ T

0

t

∫ t

0

||u(s− h)||2dsdt

≤ L2
3

T 2

2

∫ T

0

||u(s− h)||2ds,

from (A1) and (A2), it is easily seen that

||G(·, u)||L2(0,T ;H) = {
∫ T

0

|F (t, u(t− h),

∫ t

0

k(t, s, u(s− h))ds)|2dt}1/2

= {
∫ T

0

|F (t, u(t− h),

∫ t

0

k(t, s, u(s− h))ds)− F (t, 0, 0) + F (t, 0, 0)|2dt}1/2

≤ {
∫ T

0

|F (t, u(t− h),

∫ t

0

k(t, s, u(s− h))ds)− F (t, 0, 0)|2dt}1/2 + L0

√
T

≤ L0

√
T + L1||u||L2(−h,T−h;V ) + L2{

∫ T

0

|
∫ t

0

k(t, s, u(s− h))ds|2dt}1/2.

The proof of (2.2.8) is similar. 2

Now we are ready to give the following result on the local solvability of

(SLE).

Theorem 2.2.1. Suppose that the assumptions (A1), (A2) and (A3) are sat-

isfied. Then for any (g0, g1) ∈ H×L2(−h, 0;V ) and f ∈ L2(0, T ;V ∗), T > 0,

there exists a time T0 > 0 such that the functional differential equation (SLE)

admits a unique solution u in W1(T0) ≡ L2(−h, T0;V ) ∩W 1,2(0, T0;V ∗).

12



Proof. Let us fix T0 > 0 so that

M := C0C1(L1 + L2L3T0/
√

2)(T0/
√

2)1/2 < 1, (2.2.9)

where C0 and C1 are constants in (2.2.4) and (2.2.5) respectively. Let w be

the solution of

d

dt
w(t) =A0w(t) + A1w(t− h) (2.2.10)

+

∫ 0

−h
a(s)A2w(t+ s)ds+G(t, v) + f(t),

w(0) =g0, w(s) = g1(s), s ∈ [−h, 0). (2.2.11)

We are going to show that v 7→ w is strictly contractive from L2(0, T0;V )

to itself if the condition (2.2.9) is satisfied. Let w1, w2 be the solutions of

(2.2.10), (2.2.11) with v replaced by v1, v2 ∈ L2(0, T0;V ), respectively. From

(2.2.5) and (2.2.8) it follows that

||w1 − w2||L2(0,T0;D(A0))∩W 1,2(0,T0;H) ≤ C1||G(·, v1)−G(·, v2)||L2(0,T0;H)

≤ C1(L1 + L2L3
T0√

2
)||v1 − v2||L2(0,T0;V ),

and hence in view of (2.2.4) we have

||w1 − w2||L2(0,T0;V ) ≤ C0||w1 − w2||
1
2

L2(0,T0;D(A0))||w1 − w2||
1
2

L2(0,T0;H) (2.2.12)

≤ C0||w1 − w2||
1
2

L2(0,T0;D(A0))(
T0√

2
)
1
2 ||w1 − w2||

1
2

W 1,2(0,T0;H)

≤ C0(
T0√

2
)
1
2 ||w1 − w2||L2(0,T0;D(A0))∩W 1,2(0,T0;H)

≤ C0C1(L1 + L2L3
T0√

2
)(
T0√

2
)1/2||v1 − v2||L2(0,T0;V ).

13



Here we used the following inequality

||w1 − w2||L2(0,T0;H) = {
∫ T0

0

|w1(t)− w2(t)|2dt}
1
2

= {
∫ T0

0

|
∫ t

0

(ẇ1(τ)− ẇ2(τ))dτ |2dt}
1
2

≤ {
∫ T0

0

t

∫ t

0

|ẇ1(τ)− ẇ2(τ)|2dτdt}
1
2

≤ T0√
2
||w1 − w2||W 1,2(0,T0;H).

So by virtue of (2.2.9) the contraction mapping principle gives that equation

(SLE) has a unique solution in [−h, T0]. 2

2.3 Global existence and behavior of solution

In this section we give norm estimate of the solution of (SLE) and which

is helpful to establish the global existence of solutions with the aid of norm

estimations.

Theorem 2.3.1. Suppose that the assumptions (A1), (A2) and (A3) are

satisfied. Then for any (g0, g1) ∈ H×L2(−h, 0;V ) and f ∈ L2(0, T ;V ∗), T >

0, the solution u of (SLE) exists and is unique in W1(T ) ≡ L2(−h, T ;V ) ∩

W 1,2(0, T ;V ∗), and there exists a constant C2 depending on T such that

||u||W1(T ) ≤ C2(1 + |g0|+ ||g1||L2(−h,0;V ) + ||f ||L2(0,T ;V ∗)). (2.3.1)
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Proof Let u(·) be the solution of (SLE) in the interval [−h, T0] where T0

is a constant in (2.2.9) and w(·) be the solution of the following equation

d

dt
w(t) =A0w(t) + A1w(t− h) +

∫ 0

−h
a(s)A2w(t+ s)ds+ f(t),

w(0) =g0, w(s) = g1(s), −h ≤ s < 0.

Then in view of (2.2.5), (2.2.7)

||u− w||L2(0,T0;D(A0))∩W 1,2(0,T0;H) ≤ C1||G(·, u)||L2(0,T0;H)

≤ C1{L0

√
T 0 + (L1 + L2L3T0/

√
2)(||u||L2(0,T0;V )

+ ||g1||L2(−h,0;V ))}.

≤ C1{L0

√
T 0 + (L1 + L2L3T0/

√
2)(||u− w||L2(0,T0;V )

+ ||w||L2(0,T0;V ) + ||g1||L2(−h,0;V ))}.

Thus, arguing as in the proof of (2.2.12)

||u− w||L2(0,T0;V ) ≤ C0(
T0√

2
)
1
2 ||u− w||L2(0,T0;D(A0))∩W 1,2(0,T0;H)

≤ C0(
T0√

2
)
1
2C1{L0

√
T 0 + (L1 + L2L3T0/

√
2)(||u− w||L2(0,T0;V )

+ ||w||L2(0,T0;V ) + ||g1||L2(−h,0;V ))}.

For brevity, set

M := C0C1(L1 + L2L3T0/
√

2)(T0/
√

2)1/2

in the sense of (2.2.9). Therefore, we have

||u−w||L2(0,T0;V ) ≤
C0C1L0

√
T0(T0/

√
2)1/2 +M(||w||L2(0,T0;V ) + ||g1||L2(−h,0;V ))

1−M
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and hence, with the aid of 2) of Proposition 2.2.1

||u||L2(0,T0;V ) ≤
C0C1L0

√
T0(T0/

√
2)1/2

1−M
+
||w||L2(0,T0;V ) + ||g1||L2(−h,0;V )

1−M
(2.3.2)

≤ C0C1L0

√
T0(T0/

√
2)1/2

1−M

+
1

1−M
{C1(|g0|+ ||g1||L2(−h,0;V ) + ||f ||L2(0,T0;V ∗)) + ||g1||L2(−h,0;V )}.

On the other hand using (2.2.6), (2.2.3), (2.2.7) we get

||u||W1(T0)≡ ≤ C(|g0|+ ||g1||L2(−h,0;V ) + ||G(·, u) + f ||L2(0,T0;V ∗)) (2.3.3)

≤ C(|g0|+ ||g1||L2(−h,0;V ) +M0||G(·, u)||L2(0,T0;H) + ||f ||L2(0,T0;V ∗))

≤ C[|g0|+ ||g1||L2(−h,0;V ) + ||f ||L2(0,T0;V ∗)

+M0{L0

√
T 0 + (L1 + L2L3T0/

√
2)(||u||L2(0,T0;V )

+ ||g1||L2(−h,0;V ))}]

for some constant C. Combining (2.3.2), and (2.3.3) we obtain

||u||W1(T0) ≤ C(1 + |g0|+ ||g1||L2(−h,0;V ) + ||f ||L2(0,T0;V ∗)) (2.3.4)

for some constant C2. Since the condition (2.2.9) is independent of the initial

values, the solution of (SLE) can be extended to the interval [−h, nT0] for

every natural number n. An estimate analogous to (2.3.4) holds for the

solution in [−h, nT0], and hence for the initial value (u(nT0), unT0) in the

interval [nT0, (n+ 1)T0]. 2
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Theorem 2.3.2. Suppose that the assumptions (A1), (A2) and (A3) are

satisfied. If (g0, g1) ∈ X × L2(−h, 0;D(A0)) and f ∈ L2(0, T ;H), then u ∈

W0(T ) ≡ L2(−h, T ;D(A0))∩W 1,2(0, T ;H), and the mapping (g0, g1, f) 7→

u ∈ W0(T ) is continuous.

Proof It is easy to show that if (g0, g1) ∈ X × L2(−h, 0;D(A0)) and

f ∈ L2(0, T ;H), then from Proposition 2.2.1 it follows that u belongs to

W0(T ). Let (g0
i , g

1
i , fi)∈X×L2(−h, 0;D(A0)) ×L2(0, T ;H), and ui be the

solution of (SLE) with (g0
i , g

1
i , fi) in place of (g0, g1, f) for i = 1, 2. Then in

view of Proposition 2.2.1 and Lemma 2.2.1 we have

||u1 − u2||W0(T )) ≤ C1{||g0
1 − g0

2||X (2.3.5)

+ ||g1
1 − g1

2||L2(−h,0:D(A0)) + ||G(·, u1)−G(·, u2)||L2(0,T ;H)

+ ||f1 − f2||L2(0,T ;H)}

≤ C1{||g0
1 − g0

2||X + ||g1
1 − g1

2||L2(−h,0:D(A0)) + ||f1 − f2||L2(0,T ;H)

+ (L1 + L2L3T/
√

2)(||u1 − u2||L2(0,T :V ) + ||g1
1 − g1

2||L2(−h,0;V ))}.

Since

u1(t)− u2(t) = g0
1 − g0

2 +

∫ t

0

(u̇1(s)− u̇2(s))ds,

we get

||u1 − u2||L2(0,T ;H) ≤
√
T |g1

0 − g0
2|+

T√
2
||u1 − u2||W 1,2(0,T ;H).
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Hence, arguing as in (2.2.12) we get

||u1 − u2||L2(0,T ;V ) ≤ C0||u1 − u2||1/2L2(0,T ;D(A0))||u1 − u2||1/2L2(0,T ;H) (2.3.6)

≤ C0||u1 − u2||1/2L2(0,T ;D(A0))

× {T 1/4|g0
1 − g0

2|1/2 + (
T√
2

)1/2||u1 − u2||1/2W 1,2(0,T ;H)}

≤ C0T
1/4|g0

1 − g0
2|1/2||u1 − u2||1/2L2(0,T ;D(A0)) + C0(

T√
2

)1/2||u1 − u2||W0(T )

≤ 2−7/4C0|g0
1 − g0

2|+ 2C0(
T√
2

)1/2||u1 − u2||W0(T ).

Combining (2.3.5) and (2.3.6) we obtain

||u1 − u2||W0(T ) ≤ C1{||g0
1 − g0

2||X + ||g1
1 − g1

2||L2(−h,0:D(A0)) (2.3.7)

+ ||f1 − f2||L2(0,T ;H) + (L1 + L2L3T/
√

2)||g1
1 − g1

2||L(−h,0;V ))}

+ 2−7/4C0C1(L1 + L2L3T/
√

2)|g0
1 − g0

2|+ 2C0C1(
T√
2

)1/2

× (L1 + L2L3T/
√

2)||u1 − u2||W0(T ).

Suppose that (g0
n, g

1
n, fn)→ (g0, g1, f) in X×L2(−h, 0;D(A0))×L2(0, T ;H),

and let un and u be the solutions (SLE) with (g0
n, g

1
n, fn) and (g0, g1, f) re-

spectively. Let 0 < T1 ≤ T be such that

2C0C1(T1/
√

2)1/2(L1 + L2L3T1/
√

2) < 1.

Then by virtue of (2.3.7) with T replaced by T1 we see that un → u inW0(T1).

This implies that (un(T1), (un)T1) 7→ (u(T1), uT1) in X×L2(−h, 0;D(A0)).
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Hence the same argument shows that un → u in

L2(T1,min{2T1, T};D(A0)) ∩W 1,2(T1,min{2T1, T};H).

Repeating this process we conclude that un → u in W0(T ). 2

Theorem 2.3.3. For f ∈ L2(0, T ;H) let uf be the solution of equation

(SLE). Let us assume that the embedding D(A0) ⊂ V is compact. Then the

mapping f 7→ uf is compact from L2(0, T ;H) to L2(0, T ;V ).

Proof If f ∈ L2(0, T ;H), then in view of Theorem 2.3.1

||uf ||W1(T ) ≤ C2(1 + |g0|+ ||g1||L2(−h,0;V ) +M0||f ||L2(0,T ;H)). (2.3.8)

Since uf ∈ L2(0, T ;V ), G(·, uf ) ∈ L2(0, T ;H). Consequently uf ∈ L2(0, T ;D(A0)∩

W 1,2(0, T ∗;V ) and with aid of Proposition 2.2.1, Lemma 2.2.1, and (2.3.8),

||uf ||L2(0,T ;D(A0)∩W 1,2(0,T ;V ) (2.3.9)

≤ C1(||g0||X + ||g1||L2(−h,0;D(A0)) + ||G(·, uf ) + f ||L2(0,T ;H))

≤ C1{||g0||X + ||g1||L2(−h,0;D(A0)) + L0

√
T

+ (L1 + L2L3T/
√

2)||u||L2(−h,T−h;V ) + ||f ||L2(0,T ;H)}

≤ C1[||g0||X + ||g1||L2(−h,0;D(A0)) + L0

√
T

+ (L1 + L2L3T/
√

2){||g1||L2(−h,0;V ) + C2(1 +M0||f ||L2(0,T ;H))}

+ ||f ||L2(0,T ;H)].
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Hence if f is bounded in L2(0, T ;H), then so is uf in L2(0, T ;D(A0)) ∩

W 1,2(0, T ;H). Since D(A0) is compactly embedded in V by assumption, the

embedding

L2(0, T ;D(A0) ∩W 1,2(0, T ;V ) ⊂ L2(0, T ;V )

is compact in view of Theorem 2 of J. P. Aubin [1]. 2
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Chapter 3

Semilinear nonlocal differential equations

with delay terms

3.1 Introduction

In this paper we deal with the nonlocal initial value problem governed by

retarded semilinear parabolic type equation in a Hilbert space as follows.
d
dt
x(t) = A0x(t) +

∫ 0

−h a(s)A1x(t+ s)ds

+f(t, x(t), x(b1(t)), ..., x(bm(t))) + k(t), t ≥ 0,

x(0) = g0 − φ(x), x(s) = g1(s)− esφ(x), −h ≤ s < 0,

(NRE)

Let H and V be complex Hilbert spaces such that the embedding V ⊂ H

is continuous. Let A0 be the operator associated with a bounded sesquilinear

form defined in V × V satisfying G̊arding inequality. Then A0 generates an

analytic semigroup S(t) in both H and V ∗ and so the equation (NRE) may

be considered as an equation in both H and V ∗. The operator A1 is bounded

linear from V to V ∗ such that its restriction to D(A0) is bounded linear

operator from D(A0) to H. The function a(·) is assumed to be a real valued

and Hölder continuous in the interval [−h, 0], and f , φ, bi(i = 1, · · · ,m) are

given functions satisfying some assumptions.
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In view of the maximal regularity result by Di Blasio, Kunisch and Sines-

trari [2] the retarded functional differential equation of parabolic type{
d
dt
x(t) = A0x(t) +

∫ 0

−h a(s)A1x(t+ s)ds+ k(t),

x(0) = g0, x(s) = g1(s), −h ≤ s < 0
(RE)

has unique solution x in the class L2(0, T ;D(A0)) ∩ W 1,2(0, T ;H) (or see

[10, 6] in case the class L2(0, T ;V )∩W 1,2(0, T ;V ∗)). There are many papers

which studied for the existence of solutions of nonlocal abstract initial value

problems without delay(see the bibliographies of [11, 12]. Results about

the existence of mild and classical solutions of nonlocal Cauchy problem

for a semilinear functional differential evolution equation was obtained by

Byszewski and Akca [12].

In recent year, Obukhovski and Zecca [13] discussed the controllability for

system governed by semilinear differential inclusions in a Banach space with

noncompact semigroup and Xue [14, 15] studied Semilinear nonlocal prob-

lems without the assumptions of compactness in Banach spaces. Zhu et el.

[16] concerned with impulsive differential equations with nonlocal condition

in general Banach spaces.

In this paper, we extend these results to the equation (NRE) with un-

bounded principal operators and delay term. Let W (·) be the fundamental

solution of the linear equation associated with (RE) which is defined to be

the operator valued function satisfying

d

dt
W (t) = A0W (t) +

∫ 0

−h
a(s)A1W (t+ s)ds,

W (0) = I, W (s) = 0, s ∈ [−h, 0).
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The fundamental solution enables us to solve the equation (NRE). For the

basis of our arguments, we construct the fundamental solution in the sense

of Nakagiri [17] to (RE) and establish the Hölder continuity results con-

cerning the fundamental solution W (t) of the equation (RE) and obtain the

regularity and existence of solutions of (NRE) by applying Schauder’s fixed

point theorem. According to Tanabe [18, Theorem 1], we will also prove the

uniqueness of solutions of the equation (NRE).

3.2 Semilinear equation and its fundamental solution

The inner product and norm in H are denoted by (·, ·) and |·|. V is another

Hilbert space densely and continuously embedded in H. The notations || · ||

and || · ||∗ denote the norms of V and V ∗ as usual, respectively. For brevity

we may regard that

||u||∗ ≤ |u| ≤ ||u||, u ∈ V. (3.2.1)

Let B(·, ·) be a bounded sesquilinear form defined in V ×V and satisfying

G̊arding’s inequality

Re B(u, u) ≥ c0||u||2 − c1|u|2, c0 > 0, c1 ≥ 0. (3.2.2)

Let A0 be the operator associated with the sesquilinear form −B(·, ·):

(A0u, v) = −B(u, v), u, v ∈ V.

It follows from (3.2.2) that for every u ∈ V

Re ((c1 − A0)u, u) ≥ c0||u||2.
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Then A0 is a bounded linear operator from V to V ∗, and its realization in H

which is the restriction of A0 to

D(A0) = {u ∈ V ;A0u ∈ H}

is also denoted by A0. Then A0 generates an analytic semigroup S(t) = etA0

in both H and V ∗ as in Theorem 3.6.1 of [19]. Hence we may assume that

0 ∈ ρ(A0) according to the Lax-Milgram theorem where ρ(A0) denotes the

resolvent set of A0. Moreover, there exists a constant C0 such that

||u|| ≤ C0||u||1/2D(A0)|u|
1/2, (3.2.3)

for every u ∈ D(A0), where

||u||D(A0) = (|A0u|2 + |u|2)1/2

is the graph norm of D(A0).

For the sake of simplicity we assume that S(t) is uniformly bounded.

Then

|S(t)| ≤M0, |A0S(t)| ≤M0/t, |A2
0S(t)| ≤M0/t

2, t > 0 (3.2.4)

for some constant M0(e.g., [15]). We also assume that a(·) is Hölder contin-

uous of order ρ:

|a(·)| ≤ H0, |a(s)− a(τ)| ≤ H1(s− τ)ρ (3.2.5)

for some constants H0, H1.
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Lemma 3.2.1. For 0 < s < t and 0 < α < 1

|S(t)− S(s)| ≤ M0

α
(
t− s
s

)α, (3.2.6)

|A0S(t)− A0S(s)| ≤M0(t− s)αs−α−1. (3.2.7)

Proof. From (3.2.4) for 0 < s < t

|S(t)− S(s)| = |
∫ t

s

A0S(τ)dτ | ≤M0 log
t

s
. (3.2.8)

It is easily seen that for any t > 0 and 0 < α < 1

log(1 + t) =

∫ 1+t

1

1

s
ds ≤

∫ 1+t

1

1

s1−αds (3.2.9)

=
1

α
{(1 + t)α − 1} ≤ tα/α.

Combining (3.2.9) with (3.2.8) we get (3.2.6). For 0 < s < t

|A0S(t)− A0S(s)| = |
∫ t

s

A2
0S(τ)dτ | ≤M0(t− s)/ts. (3.2.10)

Noting that (t − s)/t ≤ ((t − s)/s)α for 0 < α < 1, we obtain (3.2.7) from

(3.2.10).

First, we introduce the following linear retarded functional differential

equation:

d

dt
x(t) = A0x(t) +

∫ 0

−h
a(s)A1x(t+ s)ds+ k(t).
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Let W (·) be the fundamental solution of the above linear equation in the

sense of Nakagiri [17], which is the operator valued function satisfying{
d
dt
W (t) = A0W (t) +

∫ 0

−h a(s)A1W (t+ s)ds,

W (0) = I, W (s) = 0, s ∈ [−h, 0).

According to Duhamel’s principle, the problem mentioned above is trans-

formed to the following integral equation:{
W (t) = S(t) +

∫ t
0
S(t− s)

∫ 0

−h a(τ)A1W (s+ τ)dτds, t > 0,

W (0) = I, W (s) = 0, −h ≤ s < 0.
(3.2.11)

where S(·) is the semigroup generated by A0. Then
x(t) = W (t)(g0 − φ(x)) +

∫ 0

−h Ut(s)(g
1(s)− esφ(x))ds

+
∫ t

0
W (t− s){f(s, x(s), x(b1(s)), ..., x(bm(s))) + k(s)}ds,

Ut(s) =
∫ s
−hW (t− s+ σ)a(σ)A1dσ.

(3.2.12)

Recalling the formulation of mild solutions, we know that the mild solution

of (RE) is also represented by

x(t) =


S(t)(g0 − φ(x)) +

∫ t
0
S(t− s){

∫ 0

−h a(τ)A1x(s+ τ)dτ

+f(s, x(s), x(b1(s)), ..., x(bm(s))) + k(s)}ds, 0 ≤ t

g1(s)− esφ(x), −h ≤ s < 0.

According to H. Tanabe [18] we set

V (t) =

{
A0(W (t)− S(t)), t ∈ (0, h]

A0W (t), t ∈ (nh, (n+ 1)h], n = 1, 2, ....
(3.2.13)
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For 0 < t ≤ h

W (t) = S(t) + A−1
0 V (t)

and from (3.2.11) we have

W (t) = S(t) +

∫ t

0

∫ t

τ

S(t− s)a(τ − s)dsA1W (τ)dτ.

Hence,

V (t) = V0(t) +

∫ t

0

A0

∫ t

τ

S(t− s)a(τ − s)dsA1A
−1
0 V (τ)dτ

where

V0(t) =

∫ t

0

A0

∫ t

τ

S(t− s)a(τ − s)dsA1S(τ)dτ.

For nh ≤ t ≤ (n + 1)h(n = 1, 2, ... ) the fundamental solution W (t) is

represented by

W (t) =S(t) +

∫ t−h

0

∫ τ+h

τ

S(t− s)a(τ − s)dsA1W (τ)dτ

+

∫ nh

t−h

∫ t

τ

S(t− s)a(τ − s)dsA1W (τ)dτ

+

∫ t

nh

∫ t

τ

S(t− s)a(τ − s)dsA1W (τ)dτ.

The integral equation to be satisfied by (3.2.13) is

V (t) = V0(t) +

∫ t

nh

A0

∫ t

τ

S(t− s)a(τ − s)dsA1A
−1
0 V (τ)dτ

27



where

V0(t) = A0S(t) +

∫ t−h

0

A0

∫ τ+h

τ

S(t− s)a(τ − s)dsA1W (τ)dτ

+

∫ nh

t−h
A0

∫ t

0

S(t− s)a(τ − s)dsA1W (τ)dτ.

Thus, the integral equation (3.2.13) can be solved by successive approxima-

tion and V (t) is uniformly bounded in [nh, (n+ 1)h]:

sup
nh≤t≤(n+1)h

|V (t)| <∞, n = 0, 1, 2, ....

It is not difficult to show that for n > 1

V0(nh+0) 6= V0(nh−0), W (nh+0) = W (nh−0) and V (nh+0) = V (nh−0).

Lemma 3.2.2. There exists a constant C ′n > 0 such that

|
∫ t

nh

a(τ − s)A1W (τ)dτ | ≤ C ′n (3.2.14)

for n = 0, 1, 2, ..., t ∈ [nh, (n+ 1)h] and t ≤ s ≤ t+ h.

Proof. For t ∈ (0, h](i.e.,n = 0), from (3.2.13) it follows∫ t

0

a(τ − s)A1W (τ)dτ =

∫ t

0

a(τ − s)A1A
−1
0 (A0S(τ) + V (τ))dτ

=

∫ t

0

(a(τ − s)− a(s))A1A
−1
0 A0S(τ)dτ + a(s)A1A

−1
0 (S(t)− I)

+

∫ t

0

a(τ − s)A1A
−1
0 V (τ)dτ.
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Noting that

|
∫ t

0

(a(τ − s)− a(s))A1A
−1
0 A0S(τ)dτ | ≤M0H1|A1A

−1
0 |
∫ t

0

τ ρ−1dτ,

we have

|
∫ t

0

a(τ − s)A1W (τ)dτ | ≤|A1A
−1
0 |{ρ−1hρM0H1 +H0(M0 + 1)

+ hH0( sup
0≤t≤h

|V (t)|)}.

Thus the assertion (3.2.14) holds in [0, h]. For t ∈ [nh, (n+ 1)h], n ≥ 1,

∫ t

nh

a(τ − s)A1W (τ)dτ =

∫ t

nh

a(τ − s)A1A
−1
0 V (τ)dτ.

The term of the right of the above equality is estimated as

|
∫ t

nh

a(τ − s)A1A
−1
0 V (τ)dτ | ≤ hH0|A1A

−1
0 |( sup

nh≤t≤(n+1)h

|V (t)|).

Hence, we get the assertion (3.2.14).

Proposition 3.2.1. The fundamental solution W (t) of (RE) exists uniquely.

For 0 < t < t′ ≤ nh, n > 1, there exists a constant Cn > 0 such that

|W (t′)−W (t)| ≤ Cn(t′ − t)α, 0 < α < 1. (3.2.15)
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Proof. The existence and uniqueness of the fundamental solution W (t) of

(RE) is due to Tanabe [18]. With the aid of suitable changes of variables,

from (3.2.11) we obtain

W (t) =

{
S(t) +

∫ t
0
S(t− s)

∫ s
0
a(τ − s)A1W (τ)dτds, 0 < t ≤ h,

S(t) +
∫ t

0
S(t− s)

∫ s
s−h a(τ − s)A1W (τ)dτds, h < t.

For 0 < t ≤ h, since

|W (t′)−W (t)| ≤|S(t′)− S(t)|

+ |
∫ t

0

(S(t′ − s)− S(t− s))
∫ s

0

a(τ − s)A1W (τ)dτds|

+ |
∫ t′

t

S(t′ − s)
∫ s

0

a(τ − s)A1W (τ)dτds|,

from Lemmas 3.2.1, 3.2.2 it follows that

|W (t′)−W (t)| ≤ const.(
t′ − t
t

)α ≤ Cn(t′ − t)α, 0 < α < 1.

For h < t, we get (3.2.15) by the similar way.

Considering as an equation in V ∗ we also obtain the same norm estimates

of (3.2.4)-(3.2.7), (3.2.15) in the space V ∗. By virtue of Theorem 3.3 of [10],

[11] we have the following regularity results on the retarded linear equation

(RE).

Proposition 3.2.2. 1) Let F := (D(A0), H) 1
2
,2 where (D(A0), H)1/2,2 de-

note the real interpolation space between D(A0) and H. For (g0, g1) ∈F ×
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L2(−h, 0;D(A0)) and k ∈ L2(0, T ;H), T > 0, there exists a unique solution

x of (RE) belonging to

L2(−h, T ;D(A0)) ∩W 1,2(0, T ;H) ⊂ C([0, T ];F )

and satisfying

||x||L2(−h,T ;D(A0))∩W 1,2(0,T ;H) ≤ CT (||g0||F + ||g1||L2(−h,0;D(A0)) + ||k||L2(0,T ;H)),

(3.2.16)

where CT is a constant depending on T .

2) Let (g0, g1) ∈ H × L2(−h, 0;V ) and k ∈ L2(0, T ;V ∗), T > 0. Then there

exists a unique solution x of (RE) belonging to

L2(−h, T ;V ) ∩W 1,2(0, T ;V ∗) ⊂ C([0, T ];H)

and satisfying

||x||L2(−h,T ;V )∩W 1,2(0,T ;V ∗) ≤ CT (|g0|+||g1||L2(−h,0;V ) +||k||L2(0,T ;V ∗)). (3.2.17)

3.3 Existence and uniqueness of solutions

In this section we investigate the regularity for solutions of the equation

(NRE) with the operator A0 associated with the sesquilinear form −B(·, ·)

satisfying G̊arding’s inequality

Re B(u, u) ≥ c0||u||2, c0 > 0.

Hence, we have 0 ∈ ρ(A0) In what follows this paper, we assume that em-

bedding D(A0) ↪→ V is compact. Then A−1
0 : H → D(A0) ↪→ V ↪→ H is
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compact. It is equivalent that the semigroup S(t) is completely continuous

[20, Corollary 3.4], and hence W (t) defined as (3.2.11) is completely continu-

ous(for more information of the fundamental solution refers [21, Proposition

3.1] or [22, Lemma 2.4]). For brebity we assume that

||W (t)|| ≤M1, t > 0 (3.3.1)

for the sake of simplicity.

Let T > 0 be fixed and X = C([0, T ];H). Put

Hr = {z ∈ H : |z| ≤ r} and Xr = {x ∈ X : ||x||X ≤ r}

for some r > 0.

Let k ∈ L2(0, T ;H) and let f : [0, T ] × Hm+1 → H, φ : X → H,

bi : [0, T ]→ [0, T ](i = 1, ...,m) satisfying the following assumptions:

Assumption (A). (i) f ∈ C([0, T ] × Hm+1;H), φ ∈ C(X;H) and bi ∈

C([0, T ];R+)(i = 1, ...,m). Moreover, there are Li > 0(i = 1, 2) such that

|f(s, z0, z1, ..., zm)| ≤ L1 for s ∈ [0, T ], zi ∈ Hr(i = 1, ...,m).

(ii) φ is completely continuous such that

|φ(x)| ≤ L2 for x ∈ Xr.

Lemma 3.3.1. Let h ∈ L2(0, T ;H). Then for any t > 0, the operators Pt

and Qt defined by from L2(0, T ;H) into H defined by

Pth =

∫ t

0

S(t− s)h(s)ds, and Qth =

∫ t

0

W (t− s)h(s)ds
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are completely continuous.

Proof. We define the ε-approximation P ε
t : L2(0, T ;H) → H of Pt for ε ∈

(0, t] by

P ε
t h = S(ε)

∫ t−ε

0

S(t− ε− s)h(s)ds.

Since S(t) is completely continuous, so is P ε
t . The complete continuity of Pt

follows from

|(P ε
t − Pt)h| ≤

√
εM ||h||L2(0,T ;H).

The ε-approximation Qε
t : L2(0, T ;H)→ H of Qt is defined by

Qε
th =

∫ t−ε

0

W (t− s)h(s)ds

Noting that

W (t+t′) = S(t′)W (t)+

∫ t′

0

S(t′−σ)

∫ 0

−h
a(τ)A1x(σ+t+τ)dτdσ, 0 < t, t′ ≤ T,

we have

Qε
th =S(ε)

∫ t−ε

0

W (t− ε− s)h(s)ds

+

∫ t−ε

0

∫ ε

0

S(ε− σ)

∫ −h′
0

a(τ)A1x(σ + t− ε− s+ τ)dτdσds.

By using a similar procedure to the case of Pt, we obtain that Qt is completely

continuous from the complete continuity of W (t) and Qε
t.
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Theorem 3.3.1. 1) Let (g0, g1) ∈ H×L2(−h, 0;D(A0)) and k ∈ L2(0, T ;H).

Assume that f , φ and bi(i = 1, ...,m) satisfy Asuumption (A). Then there

exists a mild solution x of (NRE) belonging to C([0, T ];H). Furthermore, if

g0 − φ(x) ∈ F = (D(A0), H) 1
2
,2 then a solution x of (NRE) belongs to

L2(−h, T ;D(A0)) ∩W 1,2(0, T ;H) ⊂ C([0, T ];F )

and satisfying

||x||L2(−h,T ;D(A0))∩W 1,2(0,T ;H) ≤ C ′T (1 + ||g0||(D(A0),H) 1
2 ,2

+ ||g1||L2(−h,0;D(A0)) + ||k||L2(0,T ;H)),

where C ′T is a constant depending on T .

Proof. Let

r =M1(|g0|+ L2) + hM1H0‖A1A
−1
0 ‖(L2h+

√
h‖g1‖L2(−h,0:D(A0))) (3.3.2)

+M1L1T +M1

√
T ||k||L2(0,T ;H).

Define a mapping F on Xr by the fomular

(Fx)(t) =W (t)(g0 − φ(x)) +

∫ 0

−h
Ut(s)(g

1(s)− esφ(x))ds

+

∫ t

0

W (t− s){f(s, x(s), x(b1(s)), ..., x(bm(s))) + k(s)}ds.

In view of (3.3.1) and Assumption (A),

|(Fx)(t)| ≤M1(|g0|+ L2) + hM1H0‖A1A
−1
0 ‖(L2h+

√
h‖g1‖L2(−h,0:D(A0)))

+M1L1T +M1

√
T ||k||L2(0,T ;H),
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then F(Xr) ⊂ Xr ⊂ C([0, T ];H). Observe that 0 < t < t′ ≤ T , from (3.3.1),

Assumption (A) and Proposition 3.2.1 we have

|x(t′)− x(t)| ≤ |(W (t′)−W (t))(g0 − φ(x))| (3.3.3)

+

∫ 0

−h

∫ s

−h
|(W (t′ − s+ σ)−W (t− s+ σ))a(σ)A1(g1(s)− esφ(x))|dσds

+

∫ t

0

|W (t′ − s)−W (t− s)||f(s, x(s), x(b1(s)), ..., x(bm(s))) + k(s)|ds

+

∫ t′

t

|W (t′ − s)||f(s, x(s), x(b1(s)), ..., x(bm(s))) + k(s)|ds

≤ Cn(t
′ − t)α(|g0 − φ(x)|+ TL1 +

√
T ||k||L2(0,T ;H))

+ Cn

∫ 0

−h

∫ s

−h
(t′ − t)αH0‖A1A

−1
0 ‖B(H,H)‖g1(s)− esφ(x))‖D(A0)dσds

+M1L1(t′ − t) +

∫ t′

t

|k(s)|ds

≤ Cn(t
′ − t)α(|g0 − φ(x)|+ TL1 +

√
T ||k||L2(0,T ;H))

+ CnH0‖A1A
−1
0 ‖B(H,H)(t

′ − t)α
∫ 0

−h
‖g1(s)− esφ(x))‖D(A0)ds

+M1L1(t′ − t) + (t′ − t)1/2||k||L2(0,T ;H)

≤ const.(t′ − t)κ(1 + |g0|+ ||g1||L2(−h,0;D(A0)) + ||k||L2(0,T ;H))(0 < κ ≤ 1

2
).

Hence, F(Xr) is a uniformly equicontinuous family of functions. Further-
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more, from (3.2.17) in Proposition 3.2.2 and Assumption(A) it follows that

|(Fx)(t)| ≤ ||Fx||C([0,T ];H)

≤ CT (|g0 − φ(x)|+ ||g1 − e·φ(x)||L2(−h,0;V )

||f(·, x(·), x(b1(·)), ..., x(bm(·)) + k||L2(0,T ;V ∗))

≤ const.(1 + |g0|+ ||g1||L2(−h,0;D(A0)) + ||k||L2(0,T ;H)).

Thus, F(Xr) is equibounded.

From Lemma 3.3.1 it follows that the set V (t) = {(Fx)(t) : x ∈ Xr}

is relatively compact in H. By (ii) of Assumption (A), V (0) is obviously is

relatively compact. The proof or the continuity of F is routine, and may

be omitted. Therefore, applying Schauder’s fixed point theorem it holds F

has a fixed point in Xr and hence, any fixed point of F is a mild solution of

(NRE).

Assume that g0 − φ(x) ∈ F = (D(A0), H) 1
2
,2. Then in virtue of Proposi-

tion 3.2.2 there exists a solution x of (NRE) belonging to

L2(−h, T ;D(A0)) ∩W 1,2(0, T ;H) ⊂ C([0, T ];F )

and satisfying

||x||L2(−h,T ;D(A0))∩W 1,2(0,T ;H) ≤ C ′1(||g0 − φ(x)||(D(A0),H) 1
2 ,2

+ ||g1 − e·φ(x)||L2(−h,0;D(A0)) + ||k||L2(0,T ;H))

≤ C ′2(1 + ||g0||(D(A0),H) 1
2 ,2

+ ||g1||L2(−h,0;D(A0)) + ||k||L2(0,T ;H)).
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Theorem 3.3.2. Suppose that the functions f , φ and bi(i = 1, ...,m) satisfy

Assumption (A) and g1 is a Hölder continuous function in [−h, 0] with values

in D(A0) and k is a Hölder continuous function in [0, T ] with values in H.

Assume, additionally, that

(i) there exists a constant L3 > 0 such that

|f(s, z0, z1, ..., zm)− f(s̃, z̃0, z̃1, ..., z̃m)| ≤ L3

(
|s− s̃|+

m∑
i=0

‖zi − z̃i‖
)

for s, s̃ ∈ I, zi, z̃i ∈ Hr(i = 0, 1, ...,m),

where r is the constant in (3.3.2),

(ii) x is a solution of problem (NRE) and there is a constant H > 0 such

that

|x(bi(s))− x(bi(s̃))| ≤ H|x(s)− x(s̃)| for s, s̃ ∈ I.

Then x represented as (3.2.12) is the unique solution of (NRE) satisfying the

initial condition

x(s) = g1(s)− esφ(x), s ∈ [−h, 0].

Proof. Put

G(s) = g1(s)− esφ(s), s ∈ [−h, 0],

K(t) = f(t, x(t), x(b1(t)), ..., x(bm(t))) + k(t), t ∈ [0, T ].

Then in virtue of Theorem 2 of [18] it is sufficient to prove that G and K are

Lipschitz continuous in [−h, 0] and [0, T ], respectively. Since g1 is a Hölder
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continuous function in [−h, 0] with values in D(A0) and

|es′φ(x)− esφ(x)| = |
∫ 1

0

d

dσ
(es
′σes(1−σ))φ(x)dσ|

≤
∫ 1

0

|es′σes(1−σ)(s′ − s)φ(x)|dσ

≤ (s′ − s)es′||φ(x)||D(A0)

it holds that G is Hölder continuous. Furthermore, since

|K(t′)−K(t)| ≤ |k(t′)− k(t)|

+ |f(t′, x(t′), x(b1(t′)), ..., x(bm(t′)))− f(t, x(t), x(b1(t)), ..., x(bm(t)))|

≤ |k(t′)− k(t)|+ L3(|t′ − t|+
m∑
i=1

|x(bi(t
′))− x(bi(t))|)

≤ |k(t′)− k(t)|+ L3(|t′ − t|+mH|x(t′)− x(t)|),

from (3.3.3) and the Hölder continuity of k it follows that K is Hölder con-

tinuous in [0, T ].

3.4 Example

Let

H = L2(0, π), V = H1
0 (0, π), V ∗ = H−1(0, π),

B(u, v) =

∫ π

0

du(x)

dx

dv(x)

dx
dx
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and

Ai = d2/dx2(i = 0, 1) with D(Ai) = {y ∈ H2(0, π) : y(0) = y(π) = 0}.

We consider the following nonlinear term:

f(s, z0, z1, ..., zm) = l(s) +
γ
∑m

i=1 zi
1 + |

∑m
i=1 zi|

, γ ∈ R

where

|l(s)− l(s̃)| ≤ σ|s− s̃|, l(0) = 0,

which comes out in a feedback control system for a diffusion and reaction

process in a enzyme membrane. Then

|f(s, z0,z1, ..., zm)| ≤ sup
0≤t≤T

|l(t)|+ |γ|,

|f(s, z0,z1, ..., zm)− f(s̃, z̃0, z̃1, ..., z̃m)| ≤ |l(s)− l(s̃)|

+
|γ|(1 + 2|

∑m
i=1 z̃i|)(

∑m
i=1 zi −

∑m
i=1 z̃i)

(1 + |
∑m

i=1 zi|)(1 + |
∑m

i=1 z̃i|)

≤ σ|s− s̃|+ 2|γ|
m∑
i=1

|zi − z̃i|.

Let t1, ..., tp be given real numbers such that 0 < t1 < ... < tp < T . Then we

can give φ by the formula

φ(x) =

p∑
i=1

dix(ti) x ∈ C([0, T ];L2(0, π))
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where di(i = 1, ..., p) are given constants. Let the solution x be represented

by the following retarded semilinear parabolic type equation:
d
dt
x(t) = A0x(t) +

∫ 0

−h a(s)A1x(t+ s)ds

+f(t, x(t), x(b1(t)), ..., x(bm(t))) + k(t), t ≥ 0,

x(0) = g0 −
∑p

i=1 dix(ti), x(s) = g1(s)− esφ(x), −h ≤ s < 0,

where the forcing term k belongs to L2(0, T ;V ∗), bi(t) = t(i = 1, ...,m).

Then the nonlinear term f , φ and bi(i = 1, ...,m) satisfy the conditions of

Theorems 3.3.1, 3.3.2.
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Chapter 4

Regularity for nonlinear variational

inequalities of hyperbolic type

4.1 Introduction

The subject of this paper is to consider the initial value problem of the

following nonlinear variational inequalities of second order in Hilbert spaces;


(u′′(t) + Au(t), u(t)− z) + φ(u(t))− φ(z)

≤ (f(t, u(t)) + k(t), u(t)− z), a.e., ∀z ∈ V
u(0) = u0, u′(0) = u1.

(NVE)

Let H and V be two complex Hilbert spaces. Assume that V is dense

subspace in H and the injection of V into H is continuous. Let A be a con-

tinuous linear operator from V into V ∗ which is assumed to satisfy G̊arding’s

inequality, and let φ : V → (−∞,+∞] be a lower semicontinuous, proper

convex function. The nonlinear term f(·, u), which is a locally Lipschitz con-

tinuous operator with respect to u from V to H, is a semilinear version of the

quasilinear one considered in [23, 24, 25], and a forcing term k ∈ L2(0, T ;V ∗).

By the definition of the subdifferential operator ∂φ, the problem (NVE) is

represented by the following nonlinear functional differential problem:{
u′′(t) + Au(t) + ∂φ(u(t)) 3 f(t, u(t)) + k(t), 0 < t,

u(0) = u0, u(s) = u1.
(NDE)
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The background of these variational problems are physics, especially in solid

mechanics, where nonconvex and multi-valued constitutive laws lead to dif-

ferential inclusions. We refer to [26, 27, 28, 29, 30] to see the applications

of differential inclusions. There are extensive literatures on parabolic varia-

tional inequalities of first order and the Stefan problems(see Babue [31, 32]

and the book by Duvaut and Lions [33]. But the papers treating the varia-

tional inequalities of second order with nonlinear inhomogeneous terms are

not many.

In this paper we are primarily interested in the regular problem for the

variational inequalities of second order with nonlinear inhomogeneous terms

for that arise as direct consequences of the general theory developed previ-

ously, and we consider to put in perspective those models of initial value

problems which can be formulated as nonlinear differential equations of vari-

ational inequalities. The approach used here is similar to that developed

in Yosida [34] in which more general hyperbolic equations are also treated.

When the nonlinear mapping k is a locally Lipschitz continuous from R× V

into H, we will obtain that the most part of the regularity for parabolic vari-

ational inequalities of first order can also applicable to (NDE) with nonlinear

perturbations(see [31-36]).

Section 2 gives some basic properties on the principal operator A to con-

sider a representation formula of solutions for the general hyperbolic semilin-

ear equations in case φ ≡ 0 [31-35, 37]. In section 3, we will introduce single

valued smoothing systems corresponding to nonlinear variational inequalities

(NDE) by using approximate function φε(x) = inf{||x− y||2∗/2ε+ φ(y) : y ∈

H}(see [31, 32]).

42



Section 4 deals with the wellposedness for solutions of (NDE) by convert-

ing the problem into the contraction mapping principle with more general

conditions on the nonlinear terms and without conditions of the compactness

of the principal operators, and obtain the norm estimate of a solution of the

above nonlinear equation on C([0, T ];V ) ∩ C1((0, T ];H) ∩ C2((0, T ];V ∗) by

using the results of its corresponding the hyperbolic semilinear part in case

φ ≡ 0 as seen in [35].

4.2 Parabolic variational inequalities

Let H be a complex Hilbert space with inner product ( , ) and norm

| · |. Let V be embedded in H as a dense subspace with inner product and

norm by (( , )) and || · ||, respectively. By considering H = H∗. We may

write V ⊂ H ⊂ V ∗ where H∗ and V ∗ denote the dual spaces of H and V ,

respectively. For l ∈ V ∗ we denoted (l, v) by the value l(v) of l at v ∈ V .

The norm of l as element of V ∗ is given by

||l||∗ = sup
v∈V

|(l, v)|
||v||

.

Therefore, we assume that V has a stronger topology than H and, for the

brevity, we may regard that

||u||∗ ≤ |u| ≤ ||u||, ∀u ∈ V.

Definition 4.2.1. Let X and Y be complex Banach spaces. An operator S

from X to Y is called antilinear if S(u+v) = S(u)+S(v) and S(λu) = λ̄S(u)

for u, v ∈ X and for λ ∈ C
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Let a(u, v) be a quadratic form defined on V ×V which is linear in u and

antilinear in v.

We make the following assumptions: i) a(u, v) is bounded, i.e. ∃c0 > 0

such that

|a(u, v)| ≤ c0||u|| · ||v||; (4.2.1)

ii) a(u, v) is symmetric, i.e.

a(u, v) = a(v, u);

iii) a(u, v) satisfies the G̊arding’s inequality, i.e.

Re a(u, u) ≥ δ||u||2, δ > 0. (4.2.2)

Let A be the operator such that (Au, v) = a(u, v) for any u, v ∈ V .

Then, as seen in Theorem 2.2.3 of [19], the operator A is positive definite

and self-adjoint, D(A1/2) = V , and

a(u, v) = (A1/2u,A1/2v), u, v ∈ V.

It is also known that the operator A is a bounded linear from V to V ∗. The

realization of A in H which is the restriction of A to D(A) = {v ∈ V :

Av ∈ H} is denoted by AH , which is structured as a Hilbert space with the

norm ||v||D(A) = |AHv|. Then the operators AH and A generate analytic

semigroups in both of H and V ∗, respectively. Thus we have the following

sequence

D(A) ⊂ V ⊂ H ⊂ V ∗ ⊂ D(A)∗,

where each space is dense in the next one which continuous injection.

44



If X is a Banach space and 1 < p < ∞, Lp(0, T ;X) is the collection

of all strongly measurable functions from (0, T ) into X the p-th powers

whose norms are integrable and Wm,p(0, T ;X) is the set of all functions

f whose derivatives Dαf up to degree m in the distribution sense belong

to Lp(0, T ;X). Cm([0, T ];X) is the set of all m-times continuously differen-

tiable functions from [0, T ] into X. Let X and Y be complex Banach spaces.

Denote by B(X, Y )(resp. B(X, Y )) the set of all bounded linear(resp. anti-

linear) operators from X and Y . Let B(X) = B(X,X).

We consider the initial value problem of the following variational inequal-

ity 
(u′′(t) + Au(t), u(t)− z) + φ(u(t))− φ(z)

≤ (f(t, u(t)) + k(t), u(t)− z), a.e., ∀z ∈ V
u(0) = u0, u(s) = u1.

(NVE)

Definition 4.2.2. A function u : [0, T ]→ H is called a solution of equation

(NV E) on [0, T ] if

i) u ∈ C([0, T ];V ) ∩ C1((0, T ];H) ∩ C2((0, T ];V ∗),

ii) u satisfies (NV E) on [0, T ].

Let us introduce a new norm in V ∗ as follows. For g, k ∈ V ∗, putting

(g, k)−1 = a(A−1g, A−1k) = (AA−1g, A−1k) = (g, A−1k),

in virtue of the condition of a (g, k)−1, it satisfies the inner product properties

and its norm is given by

||g||−1 = a(A−1g, A−1g)1/2.
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Lemma 4.2.1. The norm ||g||−1 is equivalent to || · ||∗ , i.e, we have

δ√
c0

||g||−1 ≤ ||g||∗ ≤
c0√
δ
||g||−1.

The proof follows immediately from Definition 4.2.2.

If we set X = (V ×H)T with inner product and norm given by

〈(u0

u1

)
,

(
v0

v1

)〉
= ((u0, v0))+(u1, v1) and

∥∥∥∥(u0

u1

)∥∥∥∥
X

= {||u0||2+|u1|2}1/2,

respectively. Noting that a(u, v) is inner product in V and a(u, u)1/2 is equiv-

alent to the norm ||u||, we can also rewrite inner product and norm as

〈(u0

u1

)
,

(
v0

v1

)〉
= a(u0, v0)+(u1, v1) and

∥∥∥∥(u0

u1

)∥∥∥∥
X

= {a(u0, u0)+|u1|2}1/2,

respectively.

Putting X̃ = (H × V ∗)T , for every
(
g0
g1

)
,
(
k0
k1

)
∈ X̃, we define an inner

product and norm by

((g0

g1

)
,

(
k0

k1

))
X̃

= (g0, k0)+(g1, k1)−1 and

∣∣∣∣(g0

g1

)∣∣∣∣
X̃

=
(
|g0|2 + ||g1||2−1

)1/2
,

respectively. Let AX be the operator defined by

D(AX) = (D(AH)×V )T , AX
(
u0

u1

)
=

(
0 I
−AH 0

)(
u0

u1

)
=

(
u1

−AHu0

)
∈ X.

In virtue of Lax-Milgram theorem we can also define A as

D(A) = (V ×H)T = X, A
(
g0

g1

)
=

(
0 I
−A 0

)(
g0

g1

)
=

(
g1

−Ag0

)
∈ X̃.
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Theorem 4.2.1. The linear operators AX and A mentioned above are the

infinitesimal generators of C0-groups of unitary operators in X and X̃, re-

spectively.

Since the proof is easy, it is omitted.

Lemma 4.2.2. Let the linear operator A is the infinitesimal generators of

C0-group of unitary operator in X̃ as in Theorem 4.2.1. Then

min{δ, 1}(||u0(t)||2+|u1(t)|2)
1
2 ≤

∣∣∣∣A(u0(t)

u1(t)

)∣∣∣∣
X̃

≤ max{c0, 1}(||u0(t)||2+|u1(t)|2)
1
2 .

(4.2.3)

Proof. From (4.2.1), (4.2.2) it follows that∣∣∣∣A(u0(t)

u1(t)

)∣∣∣∣
X̃

=

∥∥∥∥( u1(t)

−Au0(t)

)∥∥∥∥
X̃

≥ (δ||u0(t)||2 + |u1(t)|2)
1
2

≥ min{δ, 1}(||u0(t)||2 + |u1(t)|2)
1
2

and ∣∣∣∣A(u0(t)

u1(t)

)∣∣∣∣
X̃

=

∥∥∥∥( u1(t)

−Au0(t)

)∥∥∥∥
X̃

= (|u1(t)|2 + ||Au0(t)||2∗)
1
2

≤ max{c0, 1}(||u0(t)||2 + |u1(t)|2)
1
2 ,

hence, we readily get (4.2.3) 2
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4.3 Smoothing system corresponding to variational in-

equalities

For every ε > 0, define

φε(x) = inf{||x− y||2∗/2ε+ φ(y) : y ∈ H}.

Then the function φε is Fréchet differentiable on H and its Frećhet differential

∂φε is Lipschitz continuous on H with Lipschitz constant ε−1 where ∂φε =

ε−1(I − (I + ε∂φ)−1) as is seen in Corollary 2.2 of Chapter II of [31]. It is

also well known results that limε→0 φε = φ and limε→0 ∂φε(x) = (∂φ)0(x) for

every x ∈ D(∂φ) where (∂φ)0 is the minimal segment of ∂φ. .

Now, we introduce the smoothing system corresponding to (NDE) as

follows.{
u′′(t) + Au(t) + ∂φε(u(t)) = f(t, u(t)) + k(t), 0 < t ≤ T,

u(0) = u0, u(s) = u1.
(SDE)

Now, we assume the hypothesis that V ⊂ D(∂φ) and (∂φ)0 is uniformly

bounded, i.e.,

(A) |(∂φ)0x| ≤M0, x ∈ H.

We will need the following hypotheses on the nonlinear term;

Assumption (F). Let f : [0, T ] × V → H (T > 0) be a nonlinear

mapping such that t 7→ f(t, ·) is continuous on [0, T ] and u 7→ f(·, u) is

locally Lipschitz continuous on V : there exists constant L : R+ → R such

that L(r1) ≤ L(r2) if r1 ≤ r2 and

|f(·, u)| ≤ L(r), |f(·, u)− f(·, v)| ≤ L(r)|u− v|
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holds for ||u|| < r and ||v|| < r.

Let x(t) =
(
u0(t)
u1(t)

)
, ∂Φε(x(t)) =

(
0

∂φε(u0(t))

)
, let F (x(t)) =

(
0

f(·,u0(t))

)
and

K(t) =
(

0
k(t)

)
Then problem (SDE) are equivalent to{

x′(t) + ∂Φε(x(t)) = Ax(t) + F (x(t)) +K(t)

x(0) =
(
u0

u1

)
.

(4.3.1)

Lemma 4.3.1. Let uε and uλ be the solutions of (SDE) with constans ε and

λ, respectively. Then there exists a constant C independent of ε and λ such

that

||uε − uλ||C([0,T ];V )∩C1((0,T ];H) ≤ C(ε+ λ), 0 < T. (4.3.2)

Proof. For given ε, λ > 0, let xε = (
uε
uε′ ) and xλ =

( uλ
uλ
′
)

be the solu-

tions of (4.3.1) corresponding to ε and λ such that ||uε||C([0,T ];V ) ≤ r and

||uλ||C([0,T ];V ) ≤ r, respectively. Then from the equation (4.3.1) we have

x
′

ε(t)−x
′

λ(t)+A(xε(t)−xλ(t))+∂Φε(xε(t))−∂φλ(xλ(t)) = F (xε(t))−F (xλ(t)),

and hence, from (4.2.2) and multiplying by xε(t)− xλ(t), it follows that

1

2

d

dt
||xε(t)− xλ(t)||2X + (A(xε(t)− xλ(t)),xε(t)− xλ(t)) (4.3.3)

+ (∂Φε(xε(t))− ∂φλ(xλ(t)),xε(t)− xλ(t)) ≤ (F (xε(t))− F (xλ(t),xε(t)− xλ(t)).

For every ( u0u1 ) ∈ D(A) = V ×H, since

∣∣∣∣(A(u0

u1

)
,

(
u0

u1

))∣∣∣∣ = |(u1, u0)− (u0, u1)| = | − 2 Im(u0, u1)| ≤ || ( u0u1 ) ||2X ,
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we have

|(A(xε(t)− xλ(t)),xε(t)− xλ(t))| ≤ ||xε(t)− xλ(t))||2X .

Then by (F), we have

(F (xε(t))− F (xλ(t)),xε(t)− xλ(t)) ≤ |F (xε(t))− F (xλ(t))| · |xε(t)− xλ(t)|

≤ L(r)|xε(t)− xλ(t)|2.

Integrating (4.3.3) over [0, T ] we have

1

2
||xε(t)− xλ(t)||2 ≤

∫ T

0

(∂Φε(xε(t))− ∂Φλ(xλ(t)), λ∂Φλ(xλ(t))− ε∂Φε(xε(t)))dt

+ (L(r) + 1)

∫ T

0

||xε(t)− xλ(t)||2Xdt.

Here, we used that

∂Φε(xε(t)) = ε−1(xε(t)− (I + ε∂Φ)−1xε(t)).

Since |∂Φε(x)| ≤ |(∂Φ)0x| for every x ∈ D(∂Φ), it follows from (A) and

using Gronwall’s inequality that

||xε − xλ||C([0,T ];X) ≤ C(ε+ λ), 0 < T,

hence, (4.3.2) follows. 2

Theorem 4.3.1. Let the assumptions (F) and (A) be satisfied. Then u =

limε→0 uε in C([0, T ];H)∩C1((0, T ];V ∗) is a solution of the equation (NDE)

where uε is the solution of (SDE) .
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Proof. In virtue of Lemma 4.3.1, there exists x(·) = ( u
u′ ) ∈ C([0, T ];X)

such that

xε(·)→ x(·) in C([0, T ];X).

From (F) it follows that

F (xε)→ F (x), strongly in C([0, T ];X) (4.3.4)

and

Axε → Ax, strongly in C((0, T ]; X̃). (4.3.5)

Since ∂φε(xε) are uniformly bounded by assumption (A), from (4.3.4), (4.3.5)

we have that

d

dt
x(t)ε →

d

dt
x(t), weakly in C((0, T ]; X̃),

therefore

∂φε(xε)→ F (x) +K − x′ +Ax, weakly in C([0, T ]; X̃),

Note that ∂Φε(xε) = ∂Φ((I+ ε∂Φ)−1xε). Since (I+ ε∂Φ)−1xε → x strongly

and ∂Φ is demiclosed, we have that

F (x) +K − x′ +Ax ∈ ∂Φ(x) in C([0, T ]; X̃).

Thus we have proved that u(t) satisfies on C([0, T ];H) ∩ C1((0, T ];V ∗) the

equation (NDE). 2
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4.4 Variational inequalities with nonlinear perturba-

tions

In virtue of Theorem 4.2.1, if {U(t)} is a C0-group generated by A then,

for a solution of (SDE) in the wide sense, we are going to find a solution of

the integral equation

x(t) = U(t)x(0) +

∫ t

0

U(t− s){∂Φε(x(s)) + F (x(s)) +K(s)}ds. (4.4.1)

For the sake of simplicity, we assume

M1 = sup
0≤t≤T

||U(t)||. (4.4.2)

The following lemma is from Theorems 6.1.1 and 6.1.5 in [19].

Lemma 4.4.1. Let us assume the assumption (F). Then for every u0 ∈

V, u1 ∈ H, a given T > 0 and h ∈ C([0, T ];V ∗). The equation

x(t) = U(t)x(0) +

∫ t

0

U(t− s){F (x(s)) +K(s)}ds. (4.4.3)

has a unique local solution on interval [0, T0] for 0 < T0 ≤ T

Now, we consider the global existence of a solution of (4.4.1).

Theorem 4.4.1. Let us assume the assumption (F). Then for every u0 ∈

V, u1 ∈ H and k ∈ C([0, T ];V ∗), the equation (NDE) has a unique solution

on [0, T ] for a given T > 0.
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Proof. First we prove that the equation (4.4.1) has a unique local solution.

For a given x ∈ C([0, T ]; X̃), let y be the solution of

y(t) = U(t)x(0) +

∫ t

0

U(t− s){∂Φε(x(s)) + F (y(s)) +K(s)}ds. (4.4.4)

Since the Frećhet differential ∂φε is Lipschitz continuous on H with Lipschitz

constant ε−1, by Lemma 4.4.1, the equation (4.4.4) has a unique local solution

on interval [0, T0] for 0 < T0 ≤ T . Let Br be the ball of radius r centered

at zero of C([0, T0]; X̃), i.e., Br = {v ∈ C([0, T0]; X̃) : ||v|| ≤ r}. Let us fix

T1 > 0 satisfying

T1 ≡ min{T0, ε
−1M1T0} < 1−M1L(r)T0} (4.4.5)

where L(r) and M1 are given by (F) and (4.4.2), respectively. We are going

to show that the mapping defined by x 7→ y maps is strictly contractive from

the ball Br into itself if the condition (4.4.4) is satisfied. Let y,ŷ be solution

(4.4.4) corresponding to x, x̂ in [0, T1], respectively. Then from assumption

(F), (4.4.2) and

y(t)− ŷ(t) =

∫ t

0

U(t− s){∂Φε(x(s))− ∂Φε(x̂(s))

+

∫ t

0

U(t− s){F (y(s))− F (ŷ(s))}ds,

we have

|y(t)− ŷ(t)|X̃ ≤ ε−1M1t|x(t)− x̂(t)|X̃ +M1L(r)t|y(t)− ŷ(t)|X̃
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So by virtue of (4.4.5), the mapping defined by x 7→ y maps is strictly

contractive from Br into itself. Therefore, the contraction mapping principle

gives that the equation (4.4.4) has a unique solution in [0, T1]. Since A is an

isomorphism from V onto Ṽ ∗, we note that the solution of (SDE) belongs to

C2([0, T1];V ∗).

Now, we give a norm estimation of the solution of (SDE) and establish

the global existence of solutions with the aid of norm estimations. So, it is

enough to show that if u is solution in 0 ≤ t ≤ T1, then u(t) is bounded in

0 ≤ t ≤ T1, i.e., there exists a constant C > 0 such that

∣∣∣∣x(t) =

(
u0(t)

u1(t)

)∣∣∣∣
C([0,T0];X̃)

≤ C, 0 ≤ t ≤ T1.

Therefore, from (4.4.1) and (4.2.3) we obtain that

min{δ, 1}(||u0(t)||2 + |u1(t)|2)
1
2 ≤

∣∣∣∣A(u0(t)

u1(t)

)∣∣∣∣
X̃

≤
∣∣∣∣AU(t)

(
u0

u1

)∣∣∣∣
X̃

+

∣∣∣∣A ∫ t

0

U(t− s)
{(

0

∂φε(u0(s))

)
+

(
0

f(s, u0(s))

)}
ds

∣∣∣∣
X̃

.

Here, we can calculate from (4.2.3) that

∣∣∣∣AU(t)

(
u0

u1

)∣∣∣∣
X̃

=

∣∣∣∣AU(t)A−1A
(
u0

u1

)∣∣∣∣
X̃

≤ c1

∣∣∣∣A(u0

u1

)∣∣∣∣
X̃

≤ c1 max{c0, 1}(||u0||+|u1|)

where c1 = |AU(t)A−1|B(X̃),

∣∣∣∣A∫ t

0

U(t− s)
(

0

∂φε(u0(s))

)
ds

∣∣∣∣
X̃

≤ c0M0M1

∫ t

0

||u0(s)||ds,
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and∣∣∣∣A∫ t

0

U(t− s)
(

0

f(s, u0(s))

)
ds

∣∣∣∣
X̃

≤
∣∣∣∣∫ t

0

U(t− s)A
((

0

f(s, u0(s))

)
−
(

0

f(s, 0)

))
ds

∣∣∣∣
X̃

+

∣∣∣∣∫ t

0

U(t− s)A
(

0

f(s, 0)

)
)ds

∣∣∣∣
X̃

≤ c0L(r)Mt+ c0L(r)M

∫ t

0

||u0(s)||ds ≤ c0L(r)M{t+

∫ t

0

(||u0(s)||2 + |u(s)|2)1/2ds}.

Combining inequalities mentioned above and (4.2.3) it follows from Gron-

wall’s inequality that there exists a constant c1 such that

(||u0(t)||2 + |u1(t)|2)1/2 ≤ c1(1 + ||u0||+ |u1|). (4.4.6)

By the calculation similar to those in the proof of mentioned above, a solution

y =
(
v0
v1

)
of

(
v0(t)

v1(t)

)
= U(t−T1)

(
u0(T1)

u1(T1)

)
+

∫ t

T0

U(t−s)U(t−s){∂Φε(y(s))+F (y(s))+K(s)}ds

exists in some interval [T1, T2] with the initial value

x̂(T1) = U(T1)x̂(0) +

∫ T1

0

U(T1 − s){∂Φε(x̂(s)) + F (x̂(s)) +K(s)}ds.

By letting x̂(t) = x(t) for 0 ≤ t ≤ T1 and x̂(t) = y(t) for T1 ≤ t < T2,

it is easy to see that x̂ is a solution in 0 ≤ t ≤ T2. Let x̂ be a bounded

solution of (4.4.1): ||x̂||C([0,T0];X̃) < C ′. Then, since ||
(

0
f(t,u0(t))

)
||X ≤ L(C ′)

for T1 ≤ t < T2 by Assumption (F), it satisfies the variational inequality
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(4.4.6) on [T1, T2]. Hence, x̂ can be extended to the interval [0, T2] as a

solution and u0 is the desired solution. So the equation (SDE) has a unique

solution on [0, T ] for given T > 0. The results for (NDE) follows now directly

from Theorem 4.3.1. 2

Example. Let

H = L2(0, π), V = H1
0 (0, π), V ∗ = H−1(0, π),

a(u, v) =

∫ π

0

du(x)

dx

dv(x)

dx
dx.

Define the operator A by

(Au, v) = a(u, v), ∀v, u ∈ V.

Then we know

A = ∂2/∂x2 with D(A) = {y ∈ H2(0, π) : y(0) = y(π) = 0}.

For any u ∈ D(A), we let

f(t, u(t, x)) =

∫ t

0

n∑
i=1

∂

∂xi
σi(s,∇u(s, x))ds.

Let φ : V → (−∞,+∞] be a lower semicontinuous, proper convex function.

Then we treat (NDE) as the initial value problem for the abstract second

order equations.

We assume the following:

Assumption (F1). The partial derivatives σi(s, ξ), ∂/∂t σi(s, ξ) and

∂/∂ξj σi(s, ξ) exist and continuous for i = 1, 2, j = 1, 2, · · · , n, and σi(s, ξ)
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satisfies an uniform Lipschitz condition with respect to ξ, that is, there exists

a constant L > 0 such that

|σi(s, ξ)− σi(s, ξ̂)| ≤ L|ξ − ξ̂|

where | · | denotes the norm of L2(Ω).

Lemma 4.4.2. If Assumption (F1) is satisfied, then the mapping t 7→ f(t, ·)

is continuously differentiable on [0, T ] and u 7→ f(·, u) is Lipschitz continuous

on V .

Proof. Put

g(s, u) =
n∑
i=1

∂

∂xi
σi(s,∇u).

Then we have g(s, u) ∈ H−1(Ω). For each w ∈ H1
0 (Ω), we satisfy the following

that

(g(s, u), w) = −
n∑
i=1

(σi(s,∇u),
∂

∂xi
w).

The nonlinear term is given by

f(t, u) =

∫ t

0

g(s, u)ds.

For any w ∈ H1
0 (Ω), if u and û belong to H1

0 (Ω), by Assumption (F1) we

obtain

|(f(t, u)− f(t, û)), w| ≤ LT ||u− û|| ||w||.

2

Now in virtue of Lemma 4.4.1, we can apply the results of Theorem 4.3.2

as follows.
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Theorem 4.4.2. Let Assumption (F1) be satisfied. Assume that k ∈ C([0, T ];H−1(Ω))∩

W 1,2(0, T ;H−1(Ω))(T > 0) and (u0, u1) ∈ H1
0 (Ω)×L2(Ω). Then the solution

u of (NDE) exists and is unique in

u ∈ W̃T ∩ C([0, T ];H1
0 (Ω)) ∩ C1([0, T );L2(Ω)), T > 0

where

W̃T = L2(0, T ;H1
0 (Ω)) ∩W 1,2(0, T ;L2(Ω)) ∩W 2,2(0, T ;H−1(Ω)).

Furthermore, the following energy inequality holds: there exists a constant

CT depending on T such that

||u||W̃T
≤ CT (1 + ||u0||+ |u1|+ ||k||W 1,2(0,T ;H−1(Ω))).
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Chapter 5

Approximate controllability of linear retarded

systems in Hilbert spaces

5.1 Introduction

The object of this paper is to construct some results on the control prob-

lems for the following retarded functional differential equation of parabolic

type in a Hilbert space H:
∂
∂t
u(x, t) = A0(x,Dx)u(x, t) +A1(x,Dx)u(x, t− h)

+
∫ 0

−h a(s)A2(x,Dx)u(x, t+ s)ds+ (B0w(t))(x), (x, t) ∈ Ω× (0, T ]

u(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T ],

u(x, 0) = g0(x), u(x, s) = g1(x, s), x ∈ Ω, s ∈ [−h, 0).

(5.1.1)

Here, Ω is a bounded domain in Rn with smooth boundary ∂Ω and h is some

positive number. Aι(x,Dx), ι = 0, 1, 2, are second order linear differential

operators with smooth coefficients in Ω, and A0(x,Dx) is elliptic. We note

that in order to guarantee the existence of fundamental solution of system

(5.1.1), we must need the assumption that a(·) is Hölder continuous as seen

in [7]. Let U be a Banach space of control variables and the controller B0 be

a bounded linear operator from U to L2(Ω). Let

H = L2(Ω), V = W 1,2
0 (Ω), and V∗ = W−1,2(Ω).
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We realize the operators Aι(x,Dx)(ι = 0, 1, 2) in the space V by

D(Aι) = V, and Aιu = Aι(x,Dx)u ∀u ∈ V

in the distribution sense. Then it is well know result that 0 ∈ ρ(A0)(the

resolvent set of A0) and A generates an analytic semigroup in both H and

V ∗(see [19, Theorem 3.6.1]) and so the equation (5.1.1) may be considered as

an equation in H as well as in V ∗. Thus, we formulated the problem (5.1.1)

as{
u
′
(t) = A0u(t) + A1u(t− h) +

∫ 0

−h a(s)A2u(t+ s)ds+B0w(t), t > 0,

u(0) = g0, u(s) = g1(s) s ∈ [−h, 0).

(5.1.2)

Many authors have discussed the structural properties for retarded sys-

tems(see [2, 6, 21, 42, 43, 45, 49]). Further, in the case of infinite dimen-

sional spaces, we refer to [44, 52] and references therein. Recently, Approx-

imate controllability for semilinear control systems can be founded in [40,

41, 50], and for stochastic systems in [54, 55] with a range condition of

the control action operator. In Di Blasio et al. [2], they have developed

an excellent state space theory for retarded system in the product space

F × L2(−h, 0;D(A0))(h > 0), where F = DA0(1/2, 2) is the Lions real in-

terpolation space between D(A0) and H. Since it enables us to express the

solution with the aid of the solution semigroup (cf. [2, 21]), it is convenient

to consider the original equation in the space Z ≡ H × L2(−h, 0;V ).

Now, we introduce the solution semigroup S(t) for the system (5.1.2)

defined by

S(t)g = (u(t; g, 0), ut(·; g, 0)),
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where g = (g0, g1) ∈ Z ≡ H × L2(−h, 0;V ), u(t; g, 0) is the solution of

(5.1.2) with B0 = 0 and ut(·; g, 0) is the function ut(s; g, 0) = u(t + s; g, 0)

defined in [−h, 0]. With the aid of the solution semigroup, we can define

the approximate controllability and observability in Z without using the

fundamental solution. We define the set of attainability by

R =
{∫ t

0

S(t− τ)Bw(t)dτ : w ∈ L2(0, t;U), t > 0
}
,

where Bw = (B0w, 0). Let v(t;φ) be a solution the following adjoint system

of (5.1.2):{
v
′
(t) = A∗0v(t) + A∗1v(t− h) +

∫ 0

−h a(s)A∗2u(t+ s)ds,

v(0) = φ0, v(s) = φ1(s), s ∈ [−h, 0),
(5.1.3)

where A∗ι , ι = 0, 1, 2, are adjoint operators of Aι, repectively, and φ =

(φ0, φ1) ∈ Z. We say that the system (5.1.2) is approximately controllable

if R is dense in Z and the adjoint system (5.1.3) is observability if φ ∈ Z,

B∗0v(t;φ) ≡ 0 implies φ = 0.

When X is a reflexive Banach space, Nakagiri and Yamamoto [45] devel-

oped the controllability of (5.1.2) in the product space X×Lp(−h, 0;X)(p >

1) with bounded principal operators under the condition of the completeness

of the infinitesimal generators A0.

In this paper, assuming that a(·) has only to belong to L2(−h, 0) with

unbounded principal operators, we obtain a number of criteria for various

controllability and observability for (5.1.2) and (5.1.3) in Hilbert spaces, re-

spectively.
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The structural operator F : Z −→ Z∗ ≡ H × L2(−h, 0;V ∗) is defined by

Fg = (g0, A1g
1(−h− s) +

∫ 0

−h
a(τ)A2g

1(τ − s)dτ).

In section 2, we will show that if F is an isomorphism, then the approximate

controllability of (5.1.2) is equivalent to the observability of (5.1.3), Further,

since we can not define the attainability set using solution semigroup S(t)

in the space V ∗, we will prove that the system (5.1.3) is observable if φ ∈

Z, B∗0v(t;φ) ≡ 0 almost everywhere implies φ = 0 except using solution

semigroup.

In section 3, when A1 = γA0, γ is a real constant, A2 = A0, we deal with

the spectrum of the infinitesimal generator A of S(t). Moreover, we study

the problem of completeness of generalized eigenspaces of A. We also prove

that the condition of the completeness of between A0 and the infinitesimal

generator of the solution semigroup is the necessary and sufficient property.

Finally, when the control space U is a finite dimensional space, a necessary

and sufficient for the controllability of (5.1.2) is given as the so called Rank

Condition. The rank condition of linear equations without delay terms(in

case A1 = A2 ≡ 0) is given in [21, 39, 46, 47]. In order to obtain the

approximate controllability of (5.1.2), we no longer require the condition of

the compactness of the infinitesimal generator of solution semigroup, but we

need the compactness of the embedding V ⊂ H.
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5.2 Controllability and observability

If X is a Banach space, L2(0, T ;X) is the collection of all strongly measur-

able square integrable functions from (0, T ) into X and W 1,2(0, T ;X) is the

set of all absolutely continuous functions on [0, T ] such that their derivative

belongs to L2(0, T ;X). C([0, T ];X) will denote the set of all continuously

functions from [0, T ] into X with the supremum norm. If X and Y are two

Banach space, L(X, Y ) is the collection of all bounded linear operators from

X into Y , and L(X,X) is simply written as L(X).

Let V and H be complex Hilbert spaces forming a Gelfand triple V ⊂

H ⊂ V ∗ with pivot space H. The notations | · |, || · || and || · ||∗ denote the

norms of H, V and V ∗ as usual, respectively. For the sake of simplicity, we

may regard that

||u||∗ ≤ |u| ≤ ||u||, u ∈ V.

The duality pairing (·, ·) between V ∗ and V is the extension by continuity of

inner product in H.

From now on, we consider the control system with initial values of the

following form:

{
x
′
(t) = A0x(t) + A1x(t− h) +

∫ 0

−h a(s)A2x(t+ s)ds+B0u(t),

x(0) = g0, x(s) = g1(s), s ∈ [−h, 0).
(5.2.1)

Equations of the type (5.2.1) were investigated in the state spaceDA0(1/2, 2)×

L2(−h, 0;D(A0))(h > 0) by Di Blasio et el. [2]. See also the bibliography of
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this paper. If an operator A0 is bounded linear from V to V ∗ and generates

an analytic semigroup, then it is easily seen that

H = {x ∈ V ∗ :

∫ T

0

||A0e
tA0x||2∗dt <∞},

for the time T > 0. Therefore, in terms of the intermediate theory we can

see that

(V, V ∗)1/2,2 = H,

where (V, V ∗)1/2,2 denotes the real interpolation space between V and V ∗(see

[38, 8]). Using the maximal regularity for more general retarded parabolic

system, we can follow the argument of [2] term by term to deduce the fol-

lowing results as seen in [6].

Proposition 5.2.1. Let T > 0, g = (g0, g1) ∈ H × L2(−h, 0;V ), and u ∈

L2(0, T ;U). Then there exists a unique solution x of equation (5.2.1) such

that

x ∈ L2(0, T ;V ) ∩W 1,2(0, T ;V ∗) ⊂ C([0, T ];H).

Moreover, there exists a constant C such that

||x||L2(0,T ;V )∩W 1,2(0,T ;V ∗) ≤ C(|g0|+ ||g1||L2(−h,0;V ) + ||u||L2(0,T ;U)).

Let

Z ≡ H × L2(−h, 0;V ).
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be the state space of the equation (5.2.1). Z is a product Hilbert space with

the norm

||g|| = (|g0|2 +

∫ 0

−h
||g1(s)||2ds)

1
2 , g = (g0, g1) ∈ Z.

The adjoint space Z∗ of Z is identified with the product spaceH×L2(−h, 0;V ∗)

via the duality pairing

(g, f)Z = (g0, f 0)+

∫ 0

−h
((g1(s), f 1(s)))ds, g = (g0, g1) ∈ Z, f = (f 0, f 1) ∈ Z∗,

where (·, ·) denote the inner product on H and ((·, ·)) the duality pairing

between V and V ∗. Let g ∈ Z and x(t; g, u) be a solution of (5.2.1) associated

with control u at time t. The segment xt be given by xt(s; g, u) = x(t+s; g, u),

s ∈ [−h, 0). Thus, we can define the solution semigroup for the system (5.2.1)

as follows [2, Theorem 4.1]:

S(t) = (x(t; g, 0), xt(·; g, 0)),

where g = (g0, g1) ∈ Z. Then, we have the following proposition which can

be shown just as in theorem 4.2 of [2].

Proposition 5.2.2. (i) The operator S(t) is a C0−semigroup on Z.

(ii) The infinitesimal generator A of S(t) is characterized by

D(A) = {g = (g0, g1) : g0 ∈ D(A0), g1 ∈ W 1,2(−h, 0;V ),

g1(0) = g0, A0g
0 +

∫ 0

−h
a(s)A1g

1(s)ds ∈ H},

Ag = (A0g
0 +

∫ 0

−h
a(s)A1g

1(s)ds, g1).
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Let A be the infinitesimal generator of S(t) as in Proposition 5.2.2. Then

the equation (5.2.1) can be transformed into an abstract equation in Z as

follows. {
z
′
(t) = Az(t) +Bu(t),

z(0) = g
(5.2.2)

where z(t) = (x(t; g, f, u), xt(·; g, f, u)) ∈ Z and g = (g0, g1) ∈ Z. The

control operator B defined by Bu = (B0u, 0). The mild solution of initial

value problem (5.2.2) is the following form:

z(t; g, u) = S(t)g +

∫ t

0

S(t− s)Bu(s)}ds.

We introduce the transposed problem of (5.2.1):

{
y
′
(t) = A∗0y(t) + A∗1y(t− h) +

∫ 0

−h a(s)A∗2y(t+ s)ds, t ∈ (0, T ],

y(0) = φ0, y(s) = φ1(s), s ∈ [−h, 0).
(5.2.3)

We can also define the solution semigroup ST (t) of (5.2.3) by

ST (t)φ = (y(t;φ), yt(·, φ))

for φ = (φ0, φ1) ∈ Z, where y(t;φ) is the solution of (5.2.3). Let AT be the

infinitesimal generator of ST(t) associated with the system (5.2.3). Then the

equation (5.2.3) can also be transformed into the following equation:

{
ẑ
′
(t) = ATẑ(t),

ẑ(0) = φ,
(5.2.4)
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where ẑ(t) = (y(t;φ), (yt(·;φ)) ∈ Z and φ = (φ0, φ1) ∈ Z. Let Π0 be the

projection of Z onto H, i.e., Π0(g0, g1) = g0 for (g0, g1) ∈ Z.

The structural operator F is defined by

Fg = ([Fg]0, [Fg]1),

[Fg]0 = g0,

[Fg]1(s) = A1g
1(−h− s) +

∫ 0

−h
a(τ)A2g

1(τ − s)dτ

for g = (g0, g1) ∈ Z. It is easy to see that for any φ = (φ0, φ1) ∈ Z

[F ∗φ]0 = φ0,

[F ∗φ]1(s) = A∗1φ
1(−h− s) +

∫ 0

−h
a(τ)A∗2φ

1(τ − s)dτ.

As in [6, 21] we have that F ∈ L(Z,Z∗) and

FS(t) = S∗T (t)F ∗, F ∗ST (t) = S∗(t)F ∗. (5.2.5)

We denote the set of attainability by

R = {
∫ t

0

S(t− s)Bw(s)ds : w ∈ L2(0, T ;U), t ≥ 0}.

Definition 5.2.1. (1) The system (5.2.1) is approximately controllable if

R = Z, where R is the closure of R in Z.

(2) The system (5.2.3) is observable if φ = (φ0, φ1) ∈ Z, B∗0Π0[ST (t)φ] = 0

a.e. implies φ = 0.
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Here we note that Π0

[ ∫ t
0
S(t− s)Bw(s)ds

]
= x(t, 0, w). This means that

the approximate controllability of system (5.2.2) implies the approximate

controllability of system (5.2.1).

Theorem 5.2.1. Let the structural operator F be an isomorphism. Then the

system (5.2.1) is approximately controllable if and only if The system (5.2.3)

is observable .

Proof. Using the duality theorem, we obtain

{
∫ t

0

S(t− s)Bw(s)ds : w ∈ L2(0, T ;U), t ≥ 0}⊥

= {f ∈ Z∗ : B∗S∗(t)f = 0, t > 0}.

Thus, the system (5.2.2) is approximately controllable iff B∗S∗(t)f = 0(t >

0) for any f ∈ Z∗. Since F ∗ is isomorphism, there exists φ ∈ Z such that

F ∗φ = f . From (5.2.5) it follows that

S∗(t)f = F ∗ST (t)φ = F ∗ST (t)φ.

Noting that B∗F ∗(φ0, φ1) = B∗0φ
0, we have

B∗S∗(t)f = B∗S∗(t)F ∗φ = B∗F ∗ST(t)φ = B∗0Π0[ST(t)φ].

Consequently, the approximately controllability od (5.2.1) is equivalent to

the fact that for any φ ∈ ZT
λ

, B∗0Π0[ST(t)φ] = 0 a.e. implies φ = 0, or the

observability of (5.2.3). 2
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Remark 5.2.1. Let A1 : V → V ∗ be an isomorphism. Then for f =

(f 0, f 1) ∈ Z∗, the element g ∈ Z satisfying

{
g0 = f 0

g1(−h− s) +
∫ 0

−h a(τ)A−1
1 A2g

1(τ − s)dτ = A−1
1 f 1(s)

is the unique solution of Fg = f . The above integral equation is of Volterra

type, and so it can be solved by successive approximation. Therefore, F :

Z → Z∗ is an isomorphism.

For λ ∈ C we define a densely defined closed linear operator by

∆(λ) = λ− A0 − e−λhA1 −
∫ 0

−h
eλsA2ds,

∆T (λ) = λ− A∗0 − e−λhA∗1 −
∫ 0

−h
eλsA∗2ds.

Noting that if λ ∈ ρ(A0)

∆(λ) =
{
I −

(
e−λhA1 +

∫ 0

−h
eλsA2ds

)
(λ− A0)−1

}
(λ− A0)

Lemma 5.2.1. (λ− A)f = φ if and only if

∆(λ) =φ0 +

∫ 0

−h
e−λ(h+τ)A1φ

1(τ)dτ +

∫ 0

−h
a(s)

∫ 0

s

es−τA2φ
1(τ)dτds,

f 1(s) =eλsf 0 +

∫ 0

s

es−τφ1(τ)dτ.

69



Let λ ∈ σ(A) be an isolated point of σ(A) and Pλ be the spectral projec-

tion associated with λ:

Pλ =
1

2πi

∫
Γλ

(µ− A)−1dµ,

where Γλ is a small circle centered at λ such that it surrounds no point of

σ(A) except λ. And we know that λ ∈ σ(AT ) and the spectral projection is

given by

P T
λ

=
1

2πi

∫
Γλ

(µ− AT )−1dµ.

It is well known that λ is an eigenvalue of A and the generalized eigenspace

corresponding to λ is given by

Zλ = PλZ = {Pλu : u ∈ Z} (or ZT
λ

= P T
λ
Z).

Moreover, we set

Z∗
λ

= Im(Pλ)
∗.

It is also well known that λ is a pole of (λ−A)−1 whose order we denote by

kλ and dimZλj <∞. Let us set

Qλ =
1

2πi

∫
Γλ

(λ− λ)(λ− A)−1dλ.

Then we remark that

Qi
λj

=
1

2πi

∫
Γλj

(λ− λj)i(λ− A)−1dλ.
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It is also well known that Q
kλj
λj

= 0 ( nilpotent) and (A − λ)Pλj = Qλj(cf.

[48, 53]). The following set subset of σ(A) are especially of use:

σp(A) = the point spectrum of A

σd(A) = {λ ∈ σ(A) : λ is isolated and dim(Zλ) <∞}.

We know that λ ∈ σd(A) if and only if λ ∈ σd(AT ).

Lemma 5.2.2. Let λ ∈ σp(A). Then

1) Ker (λI − A) = Zλ ∩KerGλ

2)

Ker (λ− A)k =
{(
φ0

0, e
λs

k−1∑
i=0

(−s)iφ0
i /i!
)

:

k−1∑
i=j−1

(−1)i−j∆(i−j+1)(λ)φ0
i /(i− j + 1)! = 0, j = 1, · · · , k

}
.

3) λ ∈ ρ(A) = ρ(A∗T ),

F (λ− A)−1 = (λ− A∗T )−1F.

In particular, if λ ∈ σp(A) then

FPλ = (P T
λ

)∗F.

The proof of 1) is from Suzuki and Yamamoto [47, Appendix I], and 2)and

(3) from Nakagiri [21, Proposition 7.2] and [21, Theorem 6.1], respectively.
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Definition 5.2.2. The system of generalized eigenspaces of A is complete if

Cl(span{Zλ : λ ∈ σp(A)}) = Z,

where Cl denotes the closure in Z.

Lemma 5.2.3. Let λ ∈ σp(A). Then

1) Let the system of generalized eigenspaces of AT be complete and F be

one to one. Then Pλg = 0 implies g=0.

2) Let the system of generalized eigenspaces of A be complete and F ∗ be

one to one. Then P T
λ
f = 0 implies f=0.

Proof. For any λ ∈ σp(A), if Pλf = 0 then FPλf = 0. Thus, from (5.2.3)

or 3) of Lemma 5.2.2 it follows that

(FPλf, g) = ((P T
λ

)∗Ff, g) = (Ff, P T
λ g) = 0. (5.2.6)

Since he system of generalized eigenspaces of AT be complete, (5.2.6) implies

f = 0. The proof of 2) is similar. 2

Theorem 5.2.2. Assume that the system of generalized eigenspaces of AT

be complete and F be one to one. Then the system (5.2.3) is observable if

and only if

KerB∗0 ∩Ker ∆T (λ) = {0}, ∀λ ∈ σp(AT ).
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Proof. Let B∗0Π0[ST (t)φ] = 0 a.e. for φ = (φ0, φ1) ∈ Z. Since ST (t) is

C0-semigroup, there exist M ≥ 1 and β ∈ R such that

||ST (t)||L(Z) ≤Meβt.

For Reµ > β, we have

(µ− AT )−1φ =

∫ ∞
0

e−µtST (t)φdt,

and

B∗0Π0[(µ− AT )−1φ] =

∫ ∞
0

e−µtB∗0Π0[ST (t)φ]dt.

This implies

B∗0Π0[(QT
λ )jφ] =

1

2πi

∫
Γλ

(µ− λ)jB∗0Π0[(µ− AT )−1φ]dµ = 0 (5.2.7)

for any j = 0, ....kλ−1 and λ ∈ σp(AT ), In what follows we follow the method

of [45] and [47]. Put

φ1 = (QT
λ )kλ−1φ,

then φ1 ∈ KerQT
λ , so that φ1 ∈ Ker(λ − AT ) by 1) of Lemma 5.2.2. As

is seen in [21, Proposition 7.2], there exists φ0
1 ∈ Ker∆T (λ) such that φ1 =

(φ0
1, e

λsφ0
1). It follows from (5.2.7) that B∗0φ

0
1 = B∗0 [(QT

λ )kλ−1φ]0 = 0. From

the hypothesis we have φ0
1 = 0, hence φ1 = 0. Put φ2 = (QT

λ )kλ−2φ, then

φ2 ∈ Ker(λ−AT ). Hence by the same way we obtain that φ2 = 0. Continuing

this procedure, we have P T
λ φ = 0. Therefore, from Lemma 5.2.3 it follows

that φ = 0.
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(Necessity). Suppose that φ0 ∈ Ker B∗0∩Ker∆T (λ) for some λ ∈ σp(AT ).

Then

φ = (φ0, eλsφ0) ∈ Ker(λ− AT ) and B∗0φ
0 = 0.

It implies that

ST (t)φ = eλtφ and B∗0Π0[ST (t)φ] = B∗0(eλtφ0) = eλtB∗0φ
0 = 0.

By the hypothesis we obtain that φ = 0, and hence φ0 = 0. 2

5.3 Spectral properties in case A1 = γA0, A2 = A0

In this section we investigate the spectral properties of the infinitesimal

generator A of S(t) in the special case where A1 = γA0 with some constant

γ, A2 = A0 and the embedding V ⊂ H is compact. Thus, in what follows

we consider the equation

{
x
′
(t) = A0x(t) + γA0x(t− h) +

∫ 0

−h a(s)A0x(t+ s)ds+B0u(t),

x(0) = g0, x(s) = g1(s), s ∈ [−h, 0).

(5.3.1)

According to Riesz-Schauder theorem A0 has discrete spectrum

σ(A0) = {µj : j = 1, · · · }

which has no point of accumulation except possibly λ =∞.

For λ ∈ C we have

∆(λ) = 1−m(λ)A0
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where

m(λ) = 1 + γe−λh +

∫ 0

−h
eλsa(s)ds.

It is clear that m(0) 6= 0 is an entire function and

m(λ)→ 1 as Re→∞. (5.3.2)

Lemma 5.3.1. Let f : C → C be analytic on a neighborhood of z0 and z0

be a zero of f multiplicity k ≥ 1. Then there exists a neighborhood V at zero

and analytic function φ : V → D(f) such that f(φ(w)) = wk, where D(f)

denotes the domain of f .

Proof. There exists an analytic function g on neighborhood at z0 such

that f(z) = (z − z0)kg(z), where g(z0) 6= 0. Since g(z) 6= 0 on neighborhood

at z0 there exists a analytic function h such that g(z) = h(z)k. Thus (z −

z0)h(z)|z=z0 = 0 and

d

dz
((z − z0)h(z))|z=z0 = (h(z) + (z − z0)

d

dz
h(z))|z=z0 = h(z0) 6= 0.

Hence, from inverse mapping theorem it follows that there exist a neigh-

borhood U at z0 and a neighborhood V at zero such that the mapping

z 7→ (z − z0)h(z) is a homeomorphism from U onto V . If we denote by

φ(w) the inverse of such mapping, then the function φ is analytic on V ,

φ(0) = z0 and (φ(w) − z0)h(φ(w)) = w for any w ∈ V . Therefore, it holds

that

f(φ(w)) = (φ(w)− z0)kg(φ(w)) = (φ(w)− z0)k(h(φ(w)))k = wk.
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2

Theorem 5.3.1. (i) Let ρ(A) be the resolvent set of the infinitesimal gener-

ator A of S(t). Then

ρ(A) = {λ : m(λ) 6= 0,
λ

m(λ)
∈ ρ(A0)}

= {λ : ∆(λ) is isomorphism from V onto V ∗}

(ii) Let σ(A) be the spectrum of A. Then

σ(A) = σe(A) ∪ σp(A),

where σe(A) = {λ : m(λ) = 0} and σp(A) = {λ : m(λ) 6= 0, λ/m(λ) ∈

σ(A0)}. Each nonzero point of σe(A) is not an eigenvalue of A but a cluster

point of σ(A). σp(A) consists only of discrete eigenvalues.

(iii) Suppose m(0) = 0. Then 0 is an eigenvalue of A with infinity mul-

tiplicity. 0 is an isolated point of σ(A) if it is a simple zero of m(λ) and a

cluster point of σ(A) if it is a multiple zero of m(λ).

Proof. (i) If m(λ) 6= 0 and λ/m(λ) ∈ ρ(A0), then for all φ ∈ X, there

exists f = (f 0, f 1) ∈ D(A) such that Lemma 5.2.1 holds. Hence R(λ−A) =

X where R(A) denotes the range of A. Let (λ − A) = f = 0. Then from

Lemma 5.2.1 it follows that ∆(λ)f 1(0) = 0. Therefore f 1(0) = 0 and hence

f 1(s) = 0. We have proved that λ ∈ ρ(A).

Conversely, if m(λ) = 0, then since ∆(λ) = λIv, ∆(λ) is not onto H. If

m(λ) 6= 0 and λ/m(λ) ∈ σ(A0), then the mapping ∆(λ) = m(λ)(λ/m(λ) −
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A0) is not onto. Let φ = (φ0, 0) where φ0 ∈ H\Im∆(λ). Then there does not

exist f 1(0) such that Lemma 5.2.1 holds.

(ii) Let λ0 6= 0 be a zero of m(λ)/λ of multiplicity k ≥ 1. From Lemma

5.3.1, it follows that there exists an analytic function φ on a neighborhood

V at zero such that for any µ ∈ V ,

m(φ(µ))/φ(µ) = µk, φ(0) = λ0.

Let us denote by λj a k-th root of 1/µj, then λj converges to zero as j

tends to infinity. Infact, σ(A0) = {µj : j = 1, 2, · · · } has no point of cluster

point except for infinity point. If j is sufficiently large then λj ∈ V and

φ(λj)/m(φ(λj)) = µj ∈ σ(A0). Hence, it holds that φ(λj) ∈ σ(A) and φ(λj)

tends to φ(0) = λ0 as j tends to infinity. We have proved nonzero point of

σe(A) is a cluster point of σ(A).

Next, suppose m(λ0) 6= 0, λ0/m(λ0) ∈ σ(A0). If there exists a sequence

{λj} such that λj/m(λj) ∈ σ(A0). Since σ(A0) consists only of isolated

points, we have λj/m(λj) = λ0/m(λ0) for sufficiently large j. In view of the

theorem of identity we have m(λ) = λ0λ/m(λ0) which is contradictory to

(5.3.2).

(iii) If m(0) = 0, then for all v ∈ V , f = (f 0, f 1) defined by f 0 = v and

f 1(s) ≡ v s ∈ [−h, 0] belongs to the eigenspace corresponding to zero of A

with infinity multiplicity. The others of this assertion is obtained by similar

way of (ii). 2

Here, we note again that A0 has discrete spectrum

σ(A0) = {µj : j = 1, · · · }.
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Defining the spectral operator pn associated with A0 by

pTn =
1

2πi

∫
|µ−µn|=εn

(µ− A0)−1dµ,

where the circle surrounds no point of σ(A0) except µn. Putting

Hn = pnH = {pnu : u ∈ H},

we have that p2
n = pn, Hn ⊂ V and dimHn <∞. Hence, it follows that

pnV = {pnu : u ∈ V } = Hn.

Lemma 5.3.2. Let g = (g0, g1) belongs to Hn×L2(−h, 0;Hn). Then for the

solution x of (5.3.1) we have pnx(t) = x(t)

Proof. If we compose pn on both sides of (5.3.1). then pnx(t) is also a

solution of (5.3.1). From uniqueness of the solution the result follows. 2

Put A0n = A0|Hn. For any g ∈ Hn × L2(−h, 0;Hn) the solution u(t) of

(5.3.1) is the solution satisfied the following{
x
′
(t) = A0nx(t) + γA0nx(t− h) +

∫ 0

−h a(s)A0nu(t+ s)ds,

x(0) = g0, x(s) = g1(s), s ∈ [−h, 0).
(5.3.3)

If we denotes the solution semigroup of equation (5.3.3) with A0n in place of

A0 by Sn(t) = exp(tAn), then we have that

Sn(t) = S(t)|Hn×L2(−h,0;Hn),

An = A|D(An),

D(An) = {(g0, g1); g1 ∈ W 1,2(−h, 0;Hn), g0 = g1(0)}.
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Let λni/m(λni) = µn, n = 1, 2, ...,, then

Pni =
1

2πi

∫
|λ−λni|=εni

(λ− A)−1dλ.

Set Zni =ImPni.

Lemma 5.3.3. φ ∈ Zni if and only if there exists an integer k such that

(λni − An)kφ = 0.

Proof. If (λni − A)kφ = 0 where φ = (φ0, φ1), then from ∆(λni)
kφ0 = 0

and ∆(λni)
kφ1(s) ≡ 0 it follows that

(µn − A0)kφ0 = 0, (µn − A0)kφ1(s) ≡ 0.

Hence, since φ0 = pnφ
0 ∈ Hn and φ1(s) = pnφ

1(s) ∈ Hn we have (λni −

An)kφ = 0. In view of the Lemma 5.3.2 (λni−An)kφ = 0 implies (λni−A)kφ =

0. Thus Lemma is proved.

Lemma 5.3.4. The adjoint operator of pn is represented by

p∗n =
1

2πi

∫
|µ−µn|=εn

(µ− A∗0)−1dµ

Proof. If µ ∈ ρ(A0), then pn is a bounded linear operator from V ∗ into V

because (µ−A0)−1 is an isomorphism from V ∗ onto V . For any φ0, ψ ∈ V ∗,
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from (φ0, (µ− A∗0)−1ψ0) = ((µ− A0)−1φ0, ψ0), we have

(p∗nφ
0, ψ0) =

1

2πi

∫
|µ−µn|=ε

((µ− A∗0)−1φ0, ψ0)dµ

=
1

2πi

∫
|µ−µn|=ε

(φ0, (µ− A∗0)−1ψ0dµ)

= (φ0,
1

2πi

∫
|µ−µn|=ε

(µ− A∗0)−1ψ0dµ)

= (φ0, pnψ
0).

Thus, the lemma is proved. 2

Theorem 5.3.2. Suppose that m(0) 6= 0, γ 6= 0. Then the system of gen-

eralizes eigenspaces of An is complete in Hn × L2(−h, 0;Hn), and so is the

system of generalized eigenspaces of A in Z.

Proof. From the corresponding result of Manitius([41, Theorems 5.1 and

5.4(ii)]) in the case a finite dimensional space, the system of generalized

eigenspaces of An is complete in Hn×L2(−h, 0;Hn). In view of Lemma 5.3.3

the system of generalized eigenspaces of An is ∪∞n=1Zni(we remark that in

the case of a finite dimensional case the complex number λ satisfied with

m(0) = 0 belongs to the resolvent set). Suppose that (f, Zni) = 0 for any n

and any i, where f = (f 0, f 1) ∈ H × L2(−h, 0;V ∗). Then in view of Lemma
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5.3.4 we have that for all φ = (φ0, φ1) ∈ Zni

((p∗nf
0, p∗nf

1)(φ0, φ1))Z = (p∗nf
0, φ0) +

∫ 0

−h
((p∗nf

1(s), φ1(s)))ds

= (f 0, pnφ
0) +

∫ 0

−h
((f 1(s), pnφ

1(s)))ds

= (f 0, φ0) +

∫ 0

−h
((f 1(s), φ1(s)))ds

= ((f 0, f 1)(φ0, φ1))Z = 0.

Thus ((p∗nf
0, p∗nf

1), Zni) = 0 for any i = 1, 2, . . . . Hence the element

(p∗nf
0, p∗nf

1) is orthogonal to Hn × L2(−h, 0;Hn), and hence p∗nf
0 = 0 and

p∗nf
1(s) ≡ 0. Since n is arbitrary number we have that f 0 = 0 and f1 ≡ 0.

We have proved that the system of generalized eigenspaces of A which is the

set ∪n,iZni is complete in Z = H × L2(−h, 0;V ). 2

Lemma 5.3.5. The structural operator F defined by

Fg = ([Fg]0, [Fg]1),

[Fg]0 = g0, [Fg]1(s) = γA0g
1(−h− s) +

∫ 0

−h
a(τ)A0g

1(τ − s)dτ

for g = (g0, g1) ∈ Z is isomorphism.

Proof. We have only to prove that for any f ∈ L2(−h, 0;V ∗) there exists

uniquely g1 ∈ L2(−h, 0;V ) such that

f(s) = γA0g
1(−h− s) +

∫ 0

−h
a(τ)A0g

1(τ − s)dτ. (5.3.4)
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For 0 < s < h we set b(s) = a(s+ h)γ−1. Then the second term of the right

hand side of equation (5.3.4) is represented as

∫ s+h

0

a(τ − h)g1(τ − h− s)dτ = γ

∫ s+h

0

b(τ)g1(τ − h− s)dτ.

Let r(s) be the solution for the following equation:

r + b+ r ∗ b = 0, (5.3.5)

where

(r ∗ b)(s) =

∫ s

0

r(s− τ)b(τ)dτ =

∫ s

0

r(τ)b(s− τ)dτ.

Let

g1(s) = (γA0)−1
{
f(−h− s) +

∫ 0

s

r(τ − s)f(−τ − h)dτ
}
.

Then g1 ∈ L2(−h, 0;V ) and from (5.3.5) it follows that

f(s) =f(s) +

∫ 0

−h−s
r(σ + h+ s)f(σ − h)dσ +

∫ s+h

0

b(τ)f(s− τ)dτ

+

∫ s+h

0

∫
τ−h−s

r(σ − tau+ h+ s)f(−σ − h)dστ.

The third term of right hand side of the equation above is rewritten by

∫ 0

−h−s

∫ σ+h+s

0

b(τ)r(σ + h+ s− τ)dτf(−σ − h)dσ,

and by (5.3.4) the proof of Lemma is complete. 2

Thus, from Theorem 5.2.2, Theorem 5.3.2 and Lemma 5.3.5, we obtain

the following.
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Corollary 5.3.1. The transposed system of (5.3.1) is observable if and only

if

KerB∗0 ∩Ker ∆T (λ) = {0}, ∀λ ∈ σp(AT ).

5.4 Rank condition

Now, we note that if we know that A0 is self adjoint with a compact resolvent

in virtue of compactness of the embedding V ⊂ H, the system of generalizes

eigenspaces of A0 is complete in H. In fact, since dim Ker(λ−A0) = dλ, we

suppose that {φ0
λi; i = 1, ..., dλ} is a subset of Ker ∆(λ) and by Lemma 5.2.2,

{φλi = (φ0
λi, c

λsφ0
λi) : i = 1, ..., dλ} ⊂ Ker(λI − A), λ ∈ σp(A).

Hence, {φλi}λ∈σp(A),1≤λ≤dλ is a complete orthogonal system in Z and it holds

Cl(Span{Π0Zλ : λ ∈ σp(A)}) ⊃ Cl(Span{φ0
λi : i = 1, ..., dλ} = X,

which means that the system of generalizes eigenspaces of A0 is complete in

H. Hence from Theorem we know that the system of generalizes eigenspaces

of A is also complete in Z from Theorem 5.3.2. Thus, Combining Lemma

5.3.4 and Theorem 5.2.1, we obtain the following result.

Corollary 5.4.1. The system (5.2.2) is approximately controllable if and

only if the system (5.2.4) is observable .

Next we consider the case where the control space U is a finite dimensional

space CN . Then, the controller B0 : CN −→ L1(Ω) is expressed as

B0u =
N∑
i=1

uib
0
i , ∀u = (u1, · · · , uN) ∈ CN ,

83



where b0
i (i = 1, ..., N), are some fixed elements of H. The adjoint operator

B∗0 : H → CN of B0 is given by

B∗0w = ((w, b0
1), ..., (w, b0

N)), w ∈ H.

We suppose that the basis {ϕλ1, ..., ϕλmλ} of P T
i Z is arranged so that

{ϕλ1, ..., ϕλmλ} span Ker(λ−AT ) where dλ = dimKer(λ−AT ). Then {ϕ0
λi; i =

1, ..., dλ} is a basis of Ker ∆T (λ) and ϕλi = (ϕ0
λi, c

λsϕ0
λi) for i = 1, ..., dλ.

Since ϕ0
ij ∈ L∞(Ω), (b0

i , ϕ
0
λi) are all meaningful. We assume

Rank Condition: For any λ ∈ σp(AT )

rank

 (b0
1, ϕ

0
λ1) · · · (b0

1, ϕ
0
λdλ

)
...

. . .
...

(b0
N , ϕ

0
λ1) · · · (b0

N , ϕ
0
λdλ

)

 = dλ

Theorem 5.4.1. If Rank Condition is satisfied, then the problem (5.2.3) is

observable.

Proof. Let ϕ0 ∈ Ker ∆T (λ) for some λ ∈ σp(AT ). Then ϕ = (ϕ0, eλsϕ0) ∈

Ker(λ− AT ) and ϕ = Σdλ
i=1ciϕλi for ci ∈ CN . Hence, by Rank Condition we

obtain
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B∗0ϕ
0 = B∗0(

dλ∑
i=1

ciϕ
0
λi)

= ((

dλ∑
i=1

ciϕ
0
λi, b

0
1), · · · , (

dλ∑
i=1

ciϕ
0
λi, b

0
N))

=
(
c1 · · · c2

) (ϕ0
λ1, b

0
1) · · · (ϕ0

λ1, b
0
N)

...
. . .

...
(ϕ0

λdλ
, b0

1) · · · (ϕ0
λdλ
, b0
N)


= (0, · · · , 0)

implies c1 = c2 = · · · = cdλ = 0. Therefore, we have proved that KerB∗0 ∩

Ker ∆T (λ) = {0} for λ ∈ σp(AT ). The result follows from Theorem 5.2.2. 2

Remark 5.4.1. Let A0 be the operator associated with a sesquilinear form

b(·, ·) which is defined in V × V satisfying G̊arding’s inequality:

Re b(u, v) ≥ c||u||2 − c1|u|2, c0 > 0, c1 ≥ 0, ∀u, v ∈ V.

We assume that B0 ∈ L(U, V ∗), where U is a Banach space and A1, A2 ∈

L(V, V ∗). Suppose that the system of generalizes eigenspaces of A0 is com-

plete in H. Then The rank condition remains valid for this general case of

the equation (5.3.1) with A0 defined above in a Hilbert space.

Example

∂u(x, t)

∂t
= a1

∂2u(x, t)

∂x2
+ a2u(x, t− h) +

∫ 0

−h
a(s)u(x, t+ s)ds+

N∑
i=1

uib
0
i (t)

(5.4.1)
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for each (x, t) ∈ Ω × (0, T ] and ui ∈ C(i = 1, · · · , N) with boundary and

initial conditions

u(0, t) = u(1, t) = 0,

u(x, 0) = g0(x), u(x, s) = g1(x, s), x ∈ [0, 1], s ∈ [−h, 0).

Here, a1 > 0, a 6= 0, b0
i ∈ L2(0, 1)(i = 1, · · · , N), and a ∈ L2(−h, 0;H1

0 (0, 1)).

Let

H = L2(0, 1), V = H1
0 (0, 1), V ∗ = H−1(0, 1),

a(u, v) =

∫ π

0

du(x)

dx

dv(x)

dx
dx

and

A0 = ∂2/∂x2 with D(A0) = {x ∈ H2(0, π) : x(0) = x(1) = 0}.

Let the controller B0 : CN −→ L1(Ω) be defined as

B0u =
N∑
i=1

uib
0
i , ∀u = (u1, · · · , uN) ∈ CN .

If we define the operators A1 = a2I and A2 = I, then the system (5.4.1) can

be written in the same form as of (5.1.2). The eigenvalue and the eigenfunc-

tion of A0 are λn = −a1n
2π and φn(y) =

√
2 sinnπx, respectively. It is well

known that the spectrum σ(A) of A defined in Proposition 5.2.2 is given by

σ(A) = σd(A) = {λ ∈ C : ∆n(λ) = 0 for some n = 1, 2, · · · },

where

∆n(λ) = λ+ a1n
2π2 − a2e

−λh −
∫ 0

−h
eλsa(s)ds
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(see [44, 56]). Let {λnj}∞j=1 be the set of root of ∆n(λ) = 0 and let knj be

the multiplicity of λnj (in many cases knj = 1). The generalized eigenspace

of A corresponding to λnj ∈ σ(A) is given by

span{eλnjs sinnπx, · · · , sknj−1eλnjs sinnπx}.

Since {sinnπx} is complete in H, the system of generalized eigenspace of A0

is complete. Hence, from Theorem 5.3.2 or [41, Theorem 5.4] it follows that

the system of generalized eigenspace of A is complete in the product space

in Z. Thus, according to Theorem 5.2.1 and 5.2.2, we can see that system

(5.4.1) is approximately controllable if the rank condition is satisfied

5.5 Conclusion

This paper has established applicable conditions for the approximate con-

trollability and observability of the adjoint system under assumptions that

the system of generalized eigenspaces of the principal operator is complete

and the structural operator of F defined as in Section 2 is isomorphism.

With the aid of the structural operators of the adjoint system and spectral

decomposition theory, we have obtained some general results of the approxi-

mate controllability of retarded systems or the observability of adjoint system

without using the fundamental solution used methods commonly. We also

investigated the condition of the completeness of the system of generalized

eigenspaces of the principal operator. Moreover, it has been shown that when

the control space is a finite dimensional space, a necessary and sufficient for
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the controllability of retarded systems is given as the so called rank condi-

tion, which is a generalization of the result for evolution systems without

delay discussed in the previous results.
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