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Controllability and regularity for parabolic and hyperbolic equations
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Chapter 1

Introduction and Preliminaries

the purpose of this paper is to give a systematic presentation of the theory
of partial differential equations based mainly on the results from semigroups
of linear operators. A semigroup theoretic development of a theory for the
initial and mixed problems of parabolic hyperbolic equations is both power-
ful and beneficial since it enables one to investigate a broad class of various
evolution functional differential equations. There have been two main ob-
jects of work in this paper. One of these is based on the retarded semilinear
differential equations, which contain unbounded operators, nonlocal condi-
tions, or nonlinear part involving integrodifferetial terms. Moreover, some
results on the control problems for retarded functional differential equations
of parabolic type with unbounded principal operators are constructed. The
other is the regularity for nonlinear variational inequalities of second order
in Hilbert spaces
In this paper, with semigroup theory, we study the wellposedness and
control problems as linear or semilinear parabolic type and nonliner hyper-
bolic type equations on Hilbert spaces. Through this paper, we study for
problems of differential system on two Hilbert space H and V' such that V
is a dense subspace of H.
Identifying the antidual of H with H we may consider V C H C V*. and

the injection of V' into H is continous



The subject of Chapter 2 is concerned with the existence, uniqueness and
norm estimations of solutions for a class of partial functional integrodiffer-

ential systems with delay terms:

%u(t, z) + Az, Dy)u(t, ) + Ay (z, Dy )u(t — h, ) (ILE)
+/ a(s)As(x, Dy)u(t + s, x)ds

—h

= F(t,u(t — h,x), /tk:(t,s,u(s — h,x))ds) + f(t,x), (t,z)€[0,T] x .

Here, @ C R" is a bounded domain with smooth boundary 02, A(z, D,)

and A,(z,D,)(t = 1, 2) are second order linear differential operators with

real coefficients, and A(x, D,) is an elliptic operator in Q. The function
a(s) is a real scalar function on [—h,0], where i > 0 is a delay time and
f is a forcing function. then, we can to establish a variation of constant
formula and regularity property of solutions for the equation (ILE) with the
aid of intermediate theory and the regularity for the corresponding linear
equation(in case F' = 0). We can also see that the solution mapping f — z,
is compact where z is a solution of (ILE) corresponding to the forcing term
f which is an important rule to apply control and optimal problems.

In Chapter 3, we study the nonlocal initial value problem governed by
retarded semilinear parabolic type equation in a Hilbert space as follows.

La(t) = Aoz (t) + f a(s)Az(t + s)ds

1 (t
+/(t, I( ) 2 (b1(t)), -, 2 (bm (1)) + ( ), t =0, (NRE)
2(0) = ¢° = ¢(x), x(s) =g'(s) —e’p(x), —h<s<0,



Let Ag be the operator associated with a bounded sesquilinear form defined
in V x V satisfying Garding inequality. Then A, generates an analytic semi-
group S(t) in both H and V* and so the equation (NRE) may be considered
as an equation in both H and V*. and equation (NRE) with unbounded prin-
cipal operators and delay term. The operator A; is bounded linear from V' to
V* The function a(+) is assumed to be a real valued and Holder continuous in
the interval [—h, 0], and f, ¢, b;(i = 1,--- ,m) are given functions satisfying
some assumptions. then, we obtain the regularity and existence of solu-
tions of a retarded semilinear differential equation with nonlocal condition
by applying Schauder’s fixed point theorem. We construct the fundamental
solution and establish the Holder continuity results concerning the funda-
mental solution of its corresponding retarded linear equation and we prove
the uniqueness of solutions of the given equation.

Chapter 4 is about the the initial value problem of the following nonlinear

variational inequalities of second order in Hilbert spaces;

(u"(t) + Au(t),u(t) — 2) + d(u(t)) = ¢(2)
< (f(t,u(t)) + k), u(t) = 2), ae,VzeV (NVE)
)=

)

uw(0) =u®, W/ (0) = ul.
Let A be a continuous linear operator from V' into V* which is assumed

to satisfy Garding’s inequality, and let ¢ : V' — (—o00, +00] be a lower semi-

continuous, proper convex function. The nonlinear term f(-,u), which is a

locally Lipschitz continuous operator with respect to u from V to H, and

a forcing term k € L%*(0,T;V*). we deal with the regularity for nonlinear

variational inequalities of second order in Hilbert spaces with more general



conditions on the nonlinear terms and without condition of the compactness
of the principal operators. We also obtain the norm estimate of a solution of
the given nonlinear equation on C([0,77;V) N CY((0,T]; H) N C%((0,T); V*)
by using the results of its corresponding the hyperbolic semilinear part.

In Chapter 5 is to construct some results on the control problems for
the following retarded functional differential equation of parabolic type in a
Hilbert space H:

Su(z,t) = Ao(z, Dy)u(z, t) + Ay (z, Dp)u(z,t — h)
+ [, a(s)As(x, Dp)u(e, t + s)ds + (Bow(t))(x),  (2,t) € Q x (0, T
u(z,t) =0, x € 0N, t e (0,T],

u(z,0) = ¢°(), u(z,s) =g'(x,s), z€Q, se[-h,0).
(CRE)

Here, ) is a bounded domain in R with smooth boundary 02 and A is some

positive number. A,(x, D,), ¢t = 0, 1, 2, are second order linear differential

operators with smooth coefficients in Q, and Aq(z, D,) is elliptic. We note
that in order to guarantee the existence of fundamental solution of system
(CRE), we must need the assumption that a(-) is Holder continuous as seen
in [7]. Let U be a Banach space of control variables and the controller
By be a bounded linear operator from U to L*(2). then, we to establish
relations between controllability of the given equation and observability of
the adjoint system, we investigate the equivalent relation for the completeness
of generalized eigenspaces of the infinitesimal generators. Finally, when the
control space is a finite dimensional space, a necessary and sufficient for the
approximate controllability of retarded equations is given as the so called

Rank Condition.



Chapter 2
Regularity for semilinear retarded functional

integrodifferential equations

2.1 Introduction

This paper is concerned with the existence, uniqueness and norm estima-
tions of solutions for a class of partial functional integrodifferential systems

with delay terms:

%u(t, z) + Az, Dy)u(t, z) + Ay (z, Dy)u(t — h, z) (2.1.1)

+/ a(s)Aqx(z, Dy)u(t + s, x)ds

—h

= F(t,u(t — h,z), /tk(t,s,u(s — h,x))ds) + f(t,x), (t,z) €[0,T] x L.

Here, Q2 C R™ is a bounded domain with smooth boundary 092, A(zx, D,) and

A, (z,D,;)(t = 1, 2) are second order linear differential operators with real

coefficients, and A(x, D,) is an elliptic operator in Q. The function a(s) is a
real scalar function on [—h, 0], where A > 0 is a delay time and f is a forcing
function. The boundary condition attached to (2.1.1) is given by Dirichlet
boundary condition

u|aQ =0, 0<t<T, (2.1.2)



and the initial condition is given by
u(0,7) = ¢°(x), wu(s,z)=g'(s,7) —h<s<O. (2.1.3)

Set

G(t,u) = F(t,u(t — h),/o k(t,s,u(s — h))ds).

The nonlinear term G(t, -), which is a Lipschitz continuous operator from
L*(—=h,T;V) to L*(—=h,T; H), is a semilinear version of the quasilinear one
considered in Yong and Pan [9]. Precise assumptions are given in the next

section.

The abstract formulations of many partial integrodifferential equations
arise in the mathematical description of the dynamical processes with heat
flow in material with memory, viscoelasticity, and many physical phenomena
(See [3, 4]). When F = 0 in (2.1.1), this linear type of equations is studied
extensively by Di Blasio et el. [2], Tanabe [7] and Jeong, Nakagiri [5, 6].
Most parts of previous results studied the regularity for nonlinear equations

under conditions of the uniform boundedness of the nonlinear terms and the

compactness of the principal operators.

The purpose of this paper is to establish a variation of constant formula
and regularity property of solutions for the equation (2.1.1) with the aid
of intermediate theory and the regularity for the corresponding linear equa-
tion(in case F' = 0). We can also see that the solution mapping f — z, is
compact where z ¢ is a solution of (2.1.1) corresponding to the forcing term

f which is an important rule to apply control and optimal problems.



In order to prove the solvability of the initial value problem (2.1.1) we
establish necessary estimates applying the result of [2] to (2.1.1) considered
as an equation in a Hilbert space. In this paper, we give preliminaries on
linear equations, and then prove the local existence and uniqueness for solu-
tion of (2.1.1)-(2.1.3) by using the contraction principle. Finally, we establish
the norm estimation of solutions by using the regularity for solutions associ-
ated with the linear part of the given equations and the global existence of

solutions by the step by step method.

2.2 Preliminaries and local solutions

Let H and V' be two complex Hilbert spaces such that V' is a dense subspace
of H. The norm of H(resp. V') is denoted by |- | ( resp. || ||) and the
corresponding scalar product by (-, -)(resp.((+,))). Assume that the injection
of V into H is continuous. The antidual of V' is denoted by V*, and the norm
of V* by || -||*. Identifying H with its antidual we may consider that H is
embedded in V*. Hence we have V. C H C V* densely and continuously.

We realize the operator A(z, D,), A,(z, D,), « = 1, 2, in Hilbert spaces
by
Apw = —A(z,D,)v, Av=-A(x,D)v, t=1,2, veV

in the distribution sense. The mixed problem (2.1.1) can be formulated



abstractly as

du(t) = 0u(t)+A1u h)+f s)Aqu(t + s)ds
+F(t,u ,fotktsus—h))dS)-l-f()a 0<t<T
u(0) = g°, ()—9()7 —h <s<0.

(SLE)
Let b(+,-) be a bounded sesquilinear form defined in V' x V' and satisfying
Garding’s inequality

Re b(v,v) > c||v||* = ailv]?, ¢ > 0,1 > 0. (2.2.1)
Let Ay be the operator associated with the sesquilinear form —b(-, -):
(AU,Ub,UQ) - —b(Ul,’Ug), U1, U2 € V.

Ap is a bounded linear operator from V' to V*, and its realization in H which

is the restriction of Ay to
D(Ag)={veV;Awe H}

is also denoted by Ay. Then Ay generates an analytic semigroup in both of
H and V*(see [7]).

The operators A; and A, are bounded linear operators from V' to V* such
that their restrictions to D(Ay) are bounded linear operators from D(Ay)
equipped with the graph norm of Ay to H. The function a(-) is assumed to
be real valued and belongs to L*(—h,0).

First, we consider some basic results on the following linear functional

differential initial value problem:



{ doft) = Agult) + Ayu(t — h) + [, a(s)Agu(t + s)ds + (), (LE)
uw(0)=¢° wu(s)=g'(s) —h<s<O.
By assumption there exists a positive constant M, such that

o] < Mol[ol]. (2.2.2)
Then, for any f € H we have

f 1 < Mol f]- (2.2.3)
It follows from (2.2.1) that for u € V

Re ((e1 — Ap)v, v) = colv||?.
Hence there exists a constant Cy such that
o1l < CollvllBgaglel (2:2.4)

for every v € D(Ay), where
1] pgaey = (1Al +Juf?)'2

is the graph norm of D(Ay).

Now, we introduce some basic notations. If X is a Banach space and 1 <
p < oo, LP(0,T; X) is the collection of all strongly measurable functions from
(0,7) into X whose p-th powers of norms are integrable and W™?(0,T; X)
is the set of all functions f whose derivatives D®f up to degree m in the
distribution sense belong to L?(0,7; X).

By virtue of Theorem 3.3 of [2] we have the following result on the cor-

responding linear equation of (LE).



Proposition 2.2.1. Suppose that the assumptions stated above are satisfied.
Then the following properties hold:

1) Let X = (D(Ao), H)1/22 where (D(Ag), H)1/2,2 is the real interpolation
space between D(Ag) and H (see [[8]; Section 1.3.3]). For (¢°,¢') €X x
L*(—=h,0; D(Ap)) and f € L*(0,T; H), T > 0, there exists a unique solution
u of (LE) belonging to

Wo(T) = L2(~h, T; D(Ag)) N W20, T; H) € C([0,T]; X)
and satisfying

ullwoery < Crll6°1x + N llz2nospiasy) + | f1lz20.2:m), (2.2.5)

where C is a constant depending on T
2) Let (¢°,¢') € H x L*(=h,0; V) and f € L*(0,T;V*), T > 0. Then there

ezists a unique solution u of (LE) in case G(-,u) = 0 belonging to
WL(T) = L*(~h, T; V)N W0, T; V*) c C([0,T); H)
and satisfying
lullwiry < Cr(19° + 119 12 novy + || fllz20m+) (2.2.6)
where C is a constant depending on T .

Given u € L*(0,T; V) we extend it to the space L*(—h,T;V) by setting
u(s) = g'(s) for s € (—h,0).

We assume the following hypotheses on the nonlinear mappings F', k in

(SLE):

10



(A1) F:[0,7] x L*(0,T;V) x H — H is a nonlinear mapping such that
for ¢ € L*(0,T;V) and x € H, F(t, ¢, z) is strongly measurable on [0, T] and

there exist positive constants Ly, L1, Lo and L3 such that

|F(t, ¢1,21) — F(t, g2, 22)| < Lil|r — @a|| + Lo|zy — 22|, t€[0,T].

(A2) Let Ar ={(s,t) : 0 < s <t <T}. Thenk:Arx L*0,T;V) - H
is a nonlinear mapping such that for x € H, k(t, s, x) is strongly measurable

on A7 and there exists positive constant L3 such that
|k(t,s,x1) — k(t,s,22)| < Ls||z1 — x|, (s,t) € Ar.
(A3) |F(t,0,0)] < Lo, |k(t,s,0)] < Lo.

Remark 2.2.1. The above operator F is the semilinear case of the nonlinear

part of quasilinear equations considered by Yong and Pan [9].

For w € L*(—h,T;V), T > 0 we set

Gt u) = F(t,uft — h),/o k(E, 5, u(s — h))ds).

Lemma 2.2.1. Let u € L*(=h,T;V) T > 0. Then G(-,u) € L*(0,T;H)

and
NG )l |2y < LoVT + (Ln + Lo LsT/V2)|[ul 2y (2:2.7)
Moreover if uy, uy € L*(—h,T;V), then

||G(',U1) - G(', U2)||L2(0,T;H) < (Ll + L2L3T/\/§)||U1 - U2||L2(—h,T—h;V)-
(2.2.8)

11



Proof. For u € L*(—h,T;V), since

/OT | /Ot k(t,s,u(s — h))ds|*dt < L3 /OT(/Ot [u(s — h)||ds)?dt

T t
ng/ t/ u(s — h)|[2dsdt
0 0

T2 T
<2 [ s = s
2 Jo
from (A1) and (A2), it is easily seen that

G u)l|z20,m) = {/o |F(t,u(t — h),/o k(t,s,u(s — h))d8)|2dt}1/2

t
0

- {/OT |F(t, u(t — h),/ k(t,s,u(s — h))ds) — F(t,0,0) + F(t,0,0)%dt}'/?

T t
< {/ P (t, ut — h),/ k(t, 5, u(s — h))ds) — F(t,0,0)[2d}/2 + Lov'T
0 0
T t
< LoVT + Lullull sy + L2{/ | / k(t, 5 1i(s — B))ds|2dt} /2.
0 0

The proof of (2.2.8) is similar. O

Now we are ready to give the following result on the local solvability of

(SLE).

Theorem 2.2.1. Suppose that the assumptions (A1), (A2) and (A3) are sat-
isfied. Then for any (¢°,g*) € Hx L*(—=h,0;V) and f € L*(0,T;V*), T > 0,
there exists a time Ty > 0 such that the functional differential equation (SLE)
admits a unique solution u in Wi (Ty) = L*(—h, To; V) N WH2(0, Ty; V*).

12



Proof. Let us fix Ty > 0 so that

M = O()Ol(Ll + L2L3TO/\/§>(TO/\/§)1/2 < 1, (229)

where Cy and C are constants in (2.2.4) and (2.2.5) respectively. Let w be

the solution of
d

Ew(t) =Aow(t) + Ajw(t — h) (2.2.10)
+ /0 a(s)Aqw(t + s)ds + G(t,v) + f(t),
w(0) =¢° w(s)=g'(s), s € [—h,0). (2.2.11)

We are going to show that v + w is strictly contractive from L?(0,Tp; V)
to itself if the condition (2.2.9) is satisfied. Let wy, wq be the solutions of
(2.2.10), (2.2.11) with v replaced by v;, vy € L?(0,Ty; V), respectively. From
(2.2.5) and (2.2.8) it follows that

w1 — wal|L2(0,m:D (A0 )W 20,1500 < CL|G (-, 01) — G+, v2) || 22 (0,10;10)
Ty
< Cy(Ly= L2L3E)HU1 — va||L2010:);

and hence in view of (2.2.4) we have
1 1
|lwy — wall20,mv) < Collwr — wal[F2 0 1. pagy 1w — w2ll 720 1y (2-212)

1 TO 1 1
< Collwr = wal| oo iy piany (5 * 1w = wallivaa o s

Ty 1
< 00(7%)2\\101 — wa|| £2(0,70:D(40)) W 2(0,T0; )

T T
< 0001(L1 + L2L370§)(7%)1/2||Ul - U2||L2(0,T0;V)'

13



Here we used the following inequality

To
1
||w1 - w2||L2(0,TO;H) = {/ |w1(t) - w2(t)|2dt}2
0

= ("1 [ int) - astryarPany
<{/To /\wl (72Tt}

< \/—||w1 — wallwr2(0,1p:m)-

So by virtue of (2.2.9) the contraction mapping principle gives that equation
(SLE) has a unique solution in [—h, Tp]. O

2.3 Global existence and behavior of solution

In this section we give norm estimate of the solution of (SLE) and which
is helpful to establish the global existence of solutions with the aid of norm

estimations.

Theorem 2.3.1. Suppose that the assumptions (A1), (A2) and (A3) are
satisfied. Then for any (¢°, g') € HxL*(—=h,0;V) and f € L*(0,T;V*), T >
0, the solution u of (SLE) exists and is unique in Wy (T) = L*(=h,T;V) N

W12(0,T;V*), and there exists a constant Cy depending on T such that

ul iy < Co(X+ 9% + 119 | r2-novy + | Fl 20m:0+))- (2.3.1)

14



Proof Let u(-) be the solution of (SLE) in the interval [—h, Ty] where Tj

is a constant in (2.2.9) and w(-) be the solution of the following equation

%w(t) =Aow(t) + Ajw(t — h) + /h a(s)Asw(t + s)ds + f(t),
w(0) =¢°, w(s) = g'(s), —h <s<0.

Then in view of (2.2.5), (2.2.7)

l[u = w||20,10:0 (a0 W 20,10:m) < Col|G (5 W) L2 (0,70:m0)
< Cl{Loﬁo + (L1 + L2L3T0/\/§>(Hu||L2(0,T0;V)
+ g z2novy) }-
< Cl{LO\/TO iy (== L2L3T0/\/§>(Hu — w|[r2(0.1;v)
+ [[wll20mivy + 92 =m0y}
Thus, arguing as in the proof of (2.2.12)

=15

1
|Ju — w||L2(0,T0;V) < Co( 5 2||u - w||L2(O,To;D(Ag))ﬂWlﬂ(O,To;H)

Lo

< C, ﬂm{Loﬁo + (L4 Lo LT /V2) ([Ju — w|| 2 0.10:v)

+ (w20 m0v) + 1192 no)) }-
For brevity, set
M = O()Cl(Ll + LngfTO/\/E)(Yb/\/ﬁ)l/2

in the sense of (2.2.9). Therefore, we have

CoC1 Lo/ To(To/V/2)V/? + M (|Jw]]r20,m0v) + 119" | £2(=n0:v))

lu=wl| L2017 < 1— M

15



and hence, with the aid of 2) of Proposition 2.2.1

_ CoCiLov/To(To/ V)

V2wl z2mv) + 19 220w
[l 20057 < n (0.T0;V) (~h0V)

1-M 1-M

(2.3.2)

< GO LoV (Ty/V2)"2
- 1-M

+ {C1(16°] + 119" 12 =m0y + 1 f 1 20mmive)) + 19 || L2(ho) }-

1-M
On the other hand using (2.2.6), (2.2.3), (2.2.7) we get
lullwi ()= < C(19°] + 119" l2-nov) + IG5 w) + fllzz.zw)) (2.3.3)
< C(19° + 19" lz2-nom) + MollG (- )| 20,70:0) + |1.f |1 22(070:+))
< Cllg° + Mg z2=noivy + I1f1l2 0.0+
+ MO{LO\/TO B (== L2L3TO/\/§)(I|U||L2(0,T0;V)

+ 119 22(-n0:v))}]

for some constant C'. Combining (2.3.2), and (2.3.3) we obtain

ullwy ) < CA+ 16°1 + 119" || r2noy + 1 F 1 20,70:v)) (2.3.4)

for some constant Cy. Since the condition (2.2.9) is independent of the initial
values, the solution of (SLE) can be extended to the interval [—h,nTy] for
every natural number n. An estimate analogous to (2.3.4) holds for the
solution in [—h,nTy], and hence for the initial value (u(nTp), u,r,) in the

interval [nTp, (n + 1)Tp). O
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Theorem 2.3.2. Suppose that the assumptions (A1), (A2) and (A3) are
satisfied. If (¢°, g') € X x L*(—h,0; D(Ap)) and f € L*(0,T; H), then u €
Wo(T) = L*(—h,T; D(Ag))NWH2(0,T; H), and the mapping (¢°,g*, ) —

u € Wo(T) is continuous.

Proof Tt is easy to show that if (¢° ¢') € X x L*(—h,0; D(Ap)) and
f € L*0,T; H), then from Proposition 2.2.1 it follows that u belongs to
Wo(T). Let (g9, 9}, f;)€X xL*(—h,0; D(Ag)) xL*(0,T;H), and u; be the
solution of (SLE) with (¢?, ¢}, f;) in place of (¢°, g%, f) for i = 1, 2. Then in

view of Proposition 2.2.1 and Lemma 2.2.1 we have
[lur — uallwy(ry) < Cr{llgh — gblIx (2.3.5)
+lo1 = 92|20 Daoy + |G (i ur) = G ua)l |20,z m)
+ ||f1 = f2||L2(0,T;H)}
< Ci{llgr = g2llx + o1 = Gallz2-no:p(any + i = follrzo,rm

+ (L1 + LQLST/\/§)(HU1 — ua|| 2001y + gr — Q%HL?(—h,o;V))}-

Since
wlt) =) = =+ [ (o) — iafs))ds,
we get
T
||ur — ual| 200,70y < VTlgs — g9l + EHW — ua|wr201;m)-

17



Hence, arguing as in (2.2.12) we get
lJur — U2||L2(0,T;v) < Collur — U2||L2 0,7:D(Ao)) |Juy — U2||L2(0TH) (2.3.6)
SOOHUJI U2||L2 (0,T;D(Ao))

1)1/2

V2

% {T1/4|g U|1/2 + ( |y — U2||11/[//%v2(0,T;H)}

T
< CoT*|g) — 981 us — U2HL2(0TD(A0)) + CO(\/E) 2|y — ua| by

- T
< 271Colg] — 631+ 200( ) 2l ln il b

Combining (2.3.5) and (2.3.6) we obtain

lur — uallwory < Cifllgy — BBllx + |91 — 9311 r2(=n0:D(40)) (2.3.7)
+1fi = Fellrzomm + (Lr + LeLsT/V2) 191 — 93l ncenony }

1)1/2

+ 27 TACHCT (Lt Lo DA [V o3+ 2C,C. ( 7%

X (L1 + LaLsT/V/2)|Jur = uallwo(r-

Suppose that (g2, gt, fn) — (¢°, g*, f) in XxL?(—=h,0; D(Ag))x L0, T; H),
and let u, and u be the solutions (SLE) with (g%, ¢}, f.) and (¢°, g', f) re-
spectively. Let 0 < T} < T be such that

2C,Cy (Ty /V2)* (L1 + LaLsTy /V?2) < 1

Then by virtue of (2.3.7) with T replaced by 77 we see that u,, — win Wy(T}).
This implies that (u,(T1), (un)7,) — (w(Ty),ur,) in X xL*(—h,0; D(Ap)).
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Hence the same argument shows that u,, — u in
L*(Ty, min{2T},T}; D(Ag)) N W (Ty, min{2T},T}; H).

Repeating this process we conclude that u, — u in Wy(T). O

Theorem 2.3.3. For f € L*(0,T;H) let uy be the solution of equation
(SLE). Let us assume that the embedding D(Ag) C V is compact. Then the
mapping [ — uy is compact from L*(0,T; H) to L*(0,T; V).

Proof If f € L*(0,T; H), then in view of Theorem 2.3.1

sy < Co(1+ 1% + |19 |22 —nosvy + Moll f1l r20m:mm)- (2.3.8)

Since uy € L*(0,T;V), G(-,uy) € L*(0,T; H). Consequently u; € L*(0,T; D(Ap)N
W12(0,7*; V) and with aid of Proposition 2.2.1, Lemma 2.2.1, and (2.3.8),

|2 sl 20,750 A0) W20, (2.3.9)
< C1(ll9°llx + Nl 2enopaoy + GG ur) + fll2omm)
< C{l19°1x + g |2 no:peagy) + LoVT
+ (Ly + LoLsT/N2)ull 2 -y + 11|20 }
< Cilllg°l1x + 119M | z2(=noi(any + LoVT
+ (L + LaLsT/V2) {10 | 2(noavy + Co(1 + Mol fll 2 0.:0)) }

11l 220,058 )-
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Hence if f is bounded in L*(0,T; H), then so is u; in L*(0,7; D(Ap)) N
Wh2(0,T; H). Since D(Ay) is compactly embedded in V' by assumption, the
embedding

L*(0,T; D(Ay) NW2(0,T; V) € L*(0,T;V)

is compact in view of Theorem 2 of J. P. Aubin [1]. 0
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Chapter 3
Semilinear nonlocal differential equations

with delay terms

3.1 Introduction

In this paper we deal with the nonlocal initial value problem governed by
retarded semilinear parabolic type equation in a Hilbert space as follows.
La(t) = Aoz (t) + f a(s)Ax(t + s)ds
+f(&,2(t), (b1 (8)), -, (bm(£))) + ( ), 20, (NRE)
2(0) = ¢° — 8(z), x(s) = g'(s) —€°¢(z), —h<s<0,

Let H and V be complex Hilbert spaces such that the embedding V' C H
is continuous. Let Ay be the operator associated with a bounded sesquilinear
form defined in V' x V satisfying Garding inequality. Then A, generates an
analytic semigroup S(t) in both H and V* and so the equation (NRE) may
be considered as an equation in both H and V*. The operator A; is bounded
linear from V' to V* such that its restriction to D(Ag) is bounded linear
operator from D(Ay) to H. The function a(-) is assumed to be a real valued
and Hélder continuous in the interval [—h, 0], and f, ¢, b;(i = 1,--- ,m) are

given functions satisfying some assumptions.
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In view of the maximal regularity result by Di Blasio, Kunisch and Sines-

trari [2] the retarded functional differential equation of parabolic type

{ Ge(t) = Agr(t) + [0, a(s)Ava(t + $)ds + k(2), (RE)

z(0) =¢°% z(s) =g'(s), —-h<s<0

has unique solution z in the class L*(0,T; D(Ay)) N W12(0,T; H) (or see
10, 6] in case the class L*(0,T;V)NW'2(0,T; V*)). There are many papers

which studied for the existence of solutions of nonlocal abstract initial value

problems without delay(see the bibliographies of [11, 12]. Results about
the existence of mild and classical solutions of nonlocal Cauchy problem
for a semilinear functional differential evolution equation was obtained by
Byszewski and Akca [12].

In recent year, Obukhovski and Zecca [13] discussed the controllability for
system governed by semilinear differential inclusions in a Banach space with
noncompact semigroup and Xue [14, 15] studied Semilinear nonlocal prob-
lems without the assumptions of compactness in Banach spaces. Zhu et el.
[16] concerned with impulsive differential equations with nonlocal condition
in general Banach spaces.

In this paper, we extend these results to the equation (NRE) with un-
bounded principal operators and delay term. Let W(-) be the fundamental
solution of the linear equation associated with (RE) which is defined to be

the operator valued function satisfying

%W(t) = AW (t) + /_ha(s)Alt/V(t + 5)ds,



The fundamental solution enables us to solve the equation (NRE). For the
basis of our arguments, we construct the fundamental solution in the sense
of Nakagiri [17] to (RE) and establish the Holder continuity results con-
cerning the fundamental solution W (t) of the equation (RE) and obtain the
regularity and existence of solutions of (NRE) by applying Schauder’s fixed
point theorem. According to Tanabe [18, Theorem 1], we will also prove the

uniqueness of solutions of the equation (NRE).

3.2 Semilinear equation and its fundamental solution

The inner product and norm in H are denoted by (-, -) and |:|. V' is another
Hilbert space densely and continuously embedded in H. The notations || - ||
and || - ||« denote the norms of V' and V* as usual, respectively. For brevity
we may regard that

lallo< ful < flull, we V. (3.21)

Let B(-,-) be a bounded sesquilinear form defined in V' x V' and satisfying
Garding’s inequality

Re B(u,u) > col|ul|®* — er|ul?, ¢ >0, ¢ >0. (3.2.2)
Let Ay be the operator associated with the sesquilinear form —B(-,):
(Agu,v) = —=B(u,v), u, veV.
It follows from (3.2.2) that for every u € V
Re ((c1 — Ao)u,u) > col|ul*.
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Then Aq is a bounded linear operator from V' to V*, and its realization in H

which is the restriction of Ay to
D(Ao) = {U S V,AQU S H}

is also denoted by Ag. Then A, generates an analytic semigroup S(t) = e/

in both H and V* as in Theorem 3.6.1 of [19]. Hence we may assume that
0 € p(Ap) according to the Lax-Milgram theorem where p(Ag) denotes the

resolvent set of Ayg. Moreover, there exists a constant Cjy such that
1/2
[l < Collull5¢agylul™?, (32.3)
for every u € D(Ap), where
|l paoy = (| Agul® + |uf*)'/?

is the graph norm of D(Ay).
For the sake of simplicity we assume that S(¢) is uniformly bounded.

Then
IS(t)] < My, |AeS(t)| < My/t, |AZS(t)| < My/t?, t >0 (3.2.4)

for some constant My(e.g., [15]). We also assume that a(-) is Holder contin-

uous of order p:
la(-)| < Ho, la(s) —a(r)| < Hi(s — 7)° (3.2.5)

for some constants Hy, H;.
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Lemma 3.2.1. For0<s<tandd<a<1

150~ S(s)] < o (=2,

|A05(t) - AQS(S)l S M()(t - S)aS_a_l.

Proof. From (3.2.4) for 0 < s <t

1S(t) = S(s)] = \/ AoS(7)dr| < M, 1og§.

It is easily seen that for any ¢ >0 and 0 < a < 1

1+t 1 1+t 1
log(1+1t) = / —ds < / —s g
(R 1 W S

L é{u + 4= 1} < °/a.

Combining (3.2.9) with (3.2.8) we get (3.2.6). For 0 < s < ¢

| A0S () — ApS(s)] = | / AZS(r)dr| < Mo(t = 5)/ts.

(3.2.6)

(3.2.7)

(3.2.8)

(3.2.9)

(3.2.10)

Noting that (t — s)/t < ((t —s)/s)* for 0 < o < 1, we obtain (3.2.7) from

(3.2.10).

O

First, we introduce the following linear retarded functional differential

equation:

0

d
dt

—h
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Let W (-) be the fundamental solution of the above linear equation in the
sense of Nakagiri [17], which is the operator valued function satisfying

Ay (t) = AW () + [°, a W (t + s)ds,
Wm):L mq)_q se[hﬂ)

According to Duhamel’s principle, the problem mentioned above is trans-

formed to the following integral equation:

{W(t) = S() + Jy S(t =) [0, a(r) AW (s + 7)drds, t >0, (3.2.11)

WO)=1I, W(s)=0, —h<s<0.

where S(+) is the semigroup generated by A,. Then

2(t) = W(t)(s° — 6(@)) + [2, Ui(3)(g'(s) = e*o(x))ds
+£ t—s{ﬂsx(%< 1(8)), -, 2(bin (s))) + k(s) }ds,
= [7, W(t — s+ 0)a(o)Ado.
(3.2.12)

Recalling the formulation of mild solutions, we know that the mild solution

of (RE) is also represented by

St)(¢° — ¢(x)) + [1 St — ){[°, a(r) Ava(s + 7)dr
w(t) =  +f(s2(s),2(b @»wwx@m(») ()hk,ogt
g'(s) — e*¢(x), —h<s<0.

According to H. Tanabe [18] we set

_J AW(E) =5@), te(0,h]
o= { AW (t), te (nh,(n+1)h], n=1,2, ... (3.2.13)
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ForO<t<h
W(t) = S(t) + Ay 'V (t)

and from (3.2.11) we have

W(t) =S(t) + /0 / S(t — s)a(r — s)dsA, W (T)dr.
Hence,
V(t) = Vo(t)+ /t A /t S(t — 8)a(r — s)dsA Ay 'V (T)dr

where
Vo(t) = /0 Ao/ S(t — s)a(r — s)dsA,S(T)dr.

For nh <t < (n+ 1)h(n = 1,2, ... ) the fundamental solution W (t) is

represented by

t—h  p7+h
W(t) =S(t) + / / S(t — s)a(r — s)dsAy W (T)dr
0 T
nh pt
+ / / S(t — s)a(r — s)dsA,W (T)dr
t—h JT
t ot
+ / / S(t — s)a(t — s)dsA W (T)dr.
nh J T
The integral equation to be satisfied by (3.2.13) is
t t
V() = Vilt) + / Ay / S(t = $)a(r — 5)dsA A1V (7)dr
nh T
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where

Vo(t) = ApS(t) + /th Ay /T+h S(t—s)a(t — s)dsA W (T)dr

i /:: Ao /Ot S(t —s)a(r — s)ds AW (7)dr.

Thus, the integral equation (3.2.13) can be solved by successive approxima-

tion and V(¢) is uniformly bounded in [nh, (n + 1)h]:

sup.—1Ialt IRkl s =6.1,2, ...
nh<t<(n+1)h

It is not difficult to show that for n > 1

Vo(nh+0) # Vo(nh—0), W(nh+0) = W(nh—0) and V(nh+0) = V(nh—0).

Lemma 3.2.2. There exists a constant C}, > 0 such that
t
| / s s} A W e B (3.2.14)
nh

forn=0,1,2, ..., t € [nh,(n+1)h] and t < s <t+ h.
Proof. For t € (0, hl(i.e.,n = 0), from (3.2.13) it follows

/0 a(t — s) A W (r)dr = /0 a(t — s)AlAgl(AoS(T) + V(r))dr
_ /0 (a(r — 5) — a(s)) AL A5 AgS()dr + a(s) AL A (S(8) — I)
+ /t a(T — )AL ATV () dT.
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Noting that
! t
’/ (a(7 = 5) — a(s)) A1 Ay AoS(7)dr| < M0H1|A1A51|/ 77 dr,
° 0
we have
¢
| / a(7 — ) AW (7)dr| <| AL A [{p™ h? MoHy + Ho(Mo + 1)
0

+ hHo( sup [V(£)])}.

0<t<h

Thus the assertion (3.2.14) holds in [0, 2. For ¢ € [nh, (n+ 1)h], n > 1,

/nt a(t — s) AW (1)dr = /t a(r — s) A1 A7V (1)dr.

h nh

The term of the right of the above equality is estimated as

¢
|/ a(t — 8)A1A61V(T)d7" < hH0|A1A61]( sup [V (t)]).
nh

nh<t<(n+1)h

Hence, we get the assertion (3.2.14). O

Proposition 3.2.1. The fundamental solution W (t) of (RE) exists uniquely.

For 0 <t <t <mnh,n>1, there exists a constant C,, > 0 such that

W)= W) <Co(t —8)*, 0<a<l. (3.2.15)
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Proof. The existence and uniqueness of the fundamental solution W (t) of
(RE) is due to Tanabe [18]. With the aid of suitable changes of variables,
from (3.2.11) we obtain

W) = S(t)+ [ S(t—s) [o alT — s) AW (r)drds, 0 <t < h,
)= S(t)+ fy St —s) [, a(r — s) AW (r)drds, h < t.

For 0 <t < h, since

(W) =W <IS{#) - S@)l

+ /0 (S = 5) = S(t — 5)) /0 Calr — s) AW (r)drds|

t s
+ ]/ St — s)/ a(t — s) AW (7)drds|,
t 0
from Lemmas 3.2.1, 3.2.2 it follows that

/

(W (t") — W (t)] < const.( )< Co(t' =1)%, O<a<l

For h < t, we get (3.2.15) by the similar way. ]

Considering as an equation in V* we also obtain the same norm estimates
of (3.2.4)-(3.2.7), (3.2.15) in the space V*. By virtue of Theorem 3.3 of [10],
[11] we have the following regularity results on the retarded linear equation
(RE).
Proposition 3.2.2. 1) Let F' := (D(Ay), H)%,2 where (D(Ag), H)1/22 de-

note the real interpolation space between D(Ag) and H. For (¢°, g') €F x
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L*(—h,0; D(Ap)) and k € L*(0,T; H), T > 0, there exists a unique solution
x of (RE) belonging to

L3(~h, T; D(Ag)) A W'3(0,T; H) © C([0, TY; F)
and satisfying

] L2-nrpcaop w20, < Cr(18°F + 119 L2-nospany) + 1kl L20m),
(3.2.16)

where Cr is a constant depending on T.

2) Let (¢°,g*) € H x L*(—h,0;V) and k € L*(0,T;V*), T > 0. Then there

exists a unique solution x of (RE) belonging to
L*(—h, T; V)N W0, T; V*) € C([0, T); H)
and satisfying

||| 2—nrvymrzorves < Cr(l9°+ 119" | Lz—nowy Kl z20.7:v+))- (3.2.17)

3.3 Existence and uniqueness of solutions

In this section we investigate the regularity for solutions of the equation
(NRE) with the operator Ay associated with the sesquilinear form —B(-,-)

satisfying Garding’s inequality
Re B(u,u) > col|ul|?, ¢co > 0.

Hence, we have 0 € p(Ap) In what follows this paper, we assume that em-

bedding D(Ag) < V is compact. Then Ay : H — D(Ag) — V — H is
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compact. It is equivalent that the semigroup S(t) is completely continuous
20, Corollary 3.4], and hence W (t) defined as (3.2.11) is completely continu-
ous(for more information of the fundamental solution refers [21, Proposition

3.1] or [22, Lemma 2.4]). For brebity we assume that
W@ <M, t>0 (3.3.1)

for the sake of simplicity.
Let 7' > 0 be fixed and X = C([0,T]; H). Put

H.={zeH:|z|<r}and X, ={z € X : ||z||x <r}

for some r > 0.

Let K € L?(0,T;H) and let f : [0,T] x H™™ — H, ¢ : X — H,
b; : [0,T] — [0,T](i = 1, ...,m) satisfying the following assumptions:
Assumption (A). (i) f € C([0,T] x H™ S H), ¢ € C(X;H) and b; €
C([0,T);RT)(i = 1,...,m). Moreover, there are L; > 0(i = 1, 2) such that

| £ (8, 20, 21, ey 2} < Ly for s € [0,T], 2 € Hpo(i=1,...,m).

(ii) ¢ is completely continuous such that

|p(z)| < Ly for z € X,.
Lemma 3.3.1. Let h € L*(0,T; H). Then for any t > 0, the operators P,
and Q; defined by from L*(0,T; H) into H defined by

Ph = /Ot S(t — s)h(s)ds, and Qih = /Ot W(t — s)h(s)ds
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are completely continuous.

Proof. We define the e-approximation Pf : L?(0,T; H) — H of P, for € €
(0,¢] by

Pih = 5(e) /OH S(t — € — s)h(s)ds.

Since S(t) is completely continuous, so is Pf. The complete continuity of P,

follows from

(P = P)h| < VeM||hl|207:m)-

The e-approximation Q¢ : L*(0,T; H) — H of Q; is defined by

Qih = /0 T Wt = $)h(s)ds

Noting that

v 0
W(t+t") = S(t/)W(t)+/ S(t’—a)/ a(t)Ajx(o+t+7)drdo, 0<t,t' <T,
0 —h

we have

Qh =S(e) /0 Wt — e — )h(s)ds

t—e € —h'
+ / / S(e—o) / a(t)A1z(0c +t — € — s+ 7)drdods.
o Jo 0

By using a similar procedure to the case of P, we obtain that (); is completely

continuous from the complete continuity of W (t) and Q5. O
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Theorem 3.3.1. 1) Let (¢°, g') € HxL*(—h,0; D(Ap)) and k € L*(0,T; H).
Assume that f, ¢ and bi(i = 1,...,m) satisfy Asuumption (A). Then there
exists a mild solution x of (NRE) belonging to C([0,T); H). Furthermore, if
° — ¢(z) € F = (D(Ap), H)%’2 then a solution x of (NRE) belongs to

L*(=h, T5 D(A0)) NWH(0, T3 H) € C([0,T]; F)
and satisfying
1l 2npagewizorm < Co(L+11gllipag.m,
+ 119122 (—n0:D(a0)) + 1Kl 20.7:m0));

where C7. is a constant depending on T .

Proof. Let
P =My(1g°) + L) + hMiHoll Ay Ag | (Eoh + VANl | i2nomiany)  (33:2)

+ ML\ T + Ml\/THkHLQ(&T;H)'

Define a mapping F on X, by the fomular

0

(Fa)(t) =W (t)(g" — é(2)) + / Ui(s)(g'(s) — e"6(x))ds

+/0 Wt = s){f(s,2(s), 2(bi(5)), -, #(bn(5))) + k(s) }ds.
In view of (3.3.1) and Assumption (A),

[(Fa)(t)] <Mi(|g°] + La) + hMi Hol| AvAg Y || (Lah + V|| g | 22— h0:D(40)))

+ My Ly T + MyVT k| 20,
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then F(X,) C X, C C([0,T]; H). Observe that 0 <t <t < T, from (3.3.1),

Assumption (A) and Proposition 3.2.1 we have

o(£) — 2(6)] < [V () - WON" - 6(2) (333
+ /i /h (W(t' =5 +0) = W(t—s+0))a(0)Ai(g'(s) — €°¢(x))|dods
+ /Ot (Wt —s)—=W(t—9)||f(s,2(s), 2(b1(8)), ..., x(bm(8))) + k(s)|ds
[ W = 175080, ) 23+ K5

< ol — 2(1g° = 80 + TLs + VT Hlzz0rm)

# 00 [ 0 Bl A A5 ) ~ €00 s
ML — 1) + /tt/ 15(s)|ds

< Cu(t' = 1)*(|g° — ¢(@)| + TLy + VT k|| r20:73019)

AT o =0 162 6) =0 ag s

+ MiLy(t =) + (' = )" 2Kl | 20 o)

1
< const.(t' — 1)"(1+ 19" + 119" ||z2(-n0;0(a0)) + |kl z20.m:m0)) (0 < K < 3

Hence, F(X,) is a uniformly equicontinuous family of functions. Further-
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more, from (3.2.17) in Proposition 3.2.2 and Assumption(A) it follows that
|((Fa) )| < (| Felleqorym
< Cr(lg” = (@) +|lg" — € ¢(@)l|L2(-nowv)
1FCra (), 2(01()); s (b () + Kll20v+))

< const.(1+ |¢°| + 19" || L2-h0;p(a0)) + Kl L2(0,750))-

Thus, F(X,) is equibounded.

From Lemma 3.3.1 it follows that the set V(t) = {(Fx)(t) : = € X,}
is relatively compact in H. By (ii) of Assumption (A), V(0) is obviously is
relatively compact. The proof or the continuity of F is routine, and may
be omitted. Therefore, applying Schauder’s fixed point theorem it holds F
has a fixed point in X, and hence, any fixed point of F is a mild solution of
(NRE).

Assume that g° — ¢(z) € F = (D(Ao), H)1 ,. Then in virtue of Proposi-

tion 3.2.2 there exists a solution = of (NRE) belonging to
L*(=h,T; D(Ao)) " W0, T H) € C([0,T); F)
and satisfying
[l 2-nr:paoyowrzory < Cilllg” = S(@)lipean.m
+1lg" = €6(@)l|r2-nopeac) + 1kl z207:m)

< Cy(1+119° ooy, , + g 12 noipaoy + Ikl L20mm)-

1
b
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Theorem 3.3.2. Suppose that the functions f, ¢ and b;(i = 1,...,m) satisfy
Assumption (A) and g' is a Holder continuous function in [—h, 0] with values
in D(Ap) and k is a Hélder continuous function in [0,T] with values in H.

Assume, additionally, that

(i) there exists a constant Lz > 0 such that

m
£ (5. 20, 21, ooy Zm) = f(5. 20, 21, o0y Z)| < Ls(|s — 8|+ ) [lz — Z))
=0

for s,5€l, 2,z € H.(1=0,1,....,m),
where 1 is the constant in (3.3.2),

(i) x is a solution of problem (NRE) and there is a constant H > 0 such
that
2(6:(5)) — (@) < Hlx(9) —2@)]  for s el

Then x represented as (3.2.12) is the unique solution of (NRE) satisfying the

matial condition

Proof. Put
G(s) = g'(s) — €d(s), s € [~h,0],

K(t) = f(t,z(t), x(bi(t)), ..., (b (t))) + k(t), t € [0,T].

Then in virtue of Theorem 2 of [18] it is sufficient to prove that G and K are

Lipschitz continuous in [—h, 0] and [0, T], respectively. Since g' is a Holder
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continuous function in [—h, 0] with values in D(A,) and

/ Yd
o) = 0(o)] = | | e ool

1
< | Jerrerta)(s — d
< / 57519 (5" — 5)g(z)|dor
< (s' = 5)e”'[|6(x)]| pan)

it holds that G is Holder continuous. Furthermore, since

[K(t) = K(©) < k() — k()]

+ f @ 2(t), 2(0a(1)), - (b () — f(E, 2(2), £(ba(2)), .., (b (1))
< k() — k(@) + Ls(t' —t] + Z |2 (bi(t') — x(bi(1))])

< k(1) = k()] + La(|t" — t| + mH|a(t) = =(8)]),

from (3.3.3) and the Holder continuity of k it follows that K is Hélder con-

tinuous in [0, 7. O

3.4 Example

Let
H = L2(0,7r), V = H&(O,W), V= H’I(O,W),

[T du(z) dv(z)
B(u,v)—/o WWCZ:E
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and
Ay =d*/dx*(i =0,1) with D(A;) = {y € H*0,7) : y(0) = y(7) = 0}.
We consider the following nonlinear term:

Y 221 Zi

f(s,20,21, 0, 2m) = l(8) + —=Zm—, 7€R
1+|Z¢:1 zi|

where
I(s) = 1(3)] < ols = 3], 1(0)=0,

which comes out in a feedback control system for a diffusion and reaction

process in a enzyme membrane. Then

|f(87 20,21, 7Z’m)| S sup |l(t)| + |7|’
0<t<T

| £ (8, 20,215 - Zm) — f(8, 20y 215 - 2m )| < |1(s) — 1(9)|

A 7 |(1 24 D72 W (D1 % = i)
(L4220 2D+ [ 2255 &)

m
<ols— 8+ 219>z —El.
=1

Let 14, ...,t, be given real numbers such that 0 <t; < ... <t, <T. Then we

can give ¢ by the formula

6(z) = 3 _diw(ts) @€ C(0,T]; L*(0,m))
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where d;(i = 1,...,p) are given constants. Let the solution x be represented
by the following retarded semilinear parabolic type equation:
a(t) = Aa(t) + J°, als) Aver(t + 5)ds

(2 (t), 2(by(2)), o (b () + E(2), >0,
2(0) = ¢° = Xy diw(ts),  w(s) = g'(s) —e'b(z), —h<s<0,

where the forcing term & belongs to L2(0,T;V*), bi(t) = t(i = 1,...,m).
Then the nonlinear term f, ¢ and b;(i = 1,...,m) satisfy the conditions of

Theorems 3.3.1, 3.3.2.
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Chapter 4
Regularity for nonlinear variational

inequalities of hyperbolic type

4.1 Introduction

The subject of this paper is to consider the initial value problem of the

following nonlinear variational inequalities of second order in Hilbert spaces;

(u"(t) + Au(t), u(t) — 2) + d(u(t)) — ¢(2)
< (f(t,u(t)) + k(t ),u()— z), a.e,VzeV (NVE)
) =

uw(0) =u®, /(0

,_.

Let H and V' be two complex Hilbert spaces. Assume that V' is dense
subspace in H and the injection of V' into H is continuous. Let A be a con-
tinuous linear operator from V into V* which is assumed to satisfy Garding’s
inequality, and let ¢ : V' — (—o00,+00| be a lower semicontinuous, proper
convex function. The nonlinear term f(-, ), which is a locally Lipschitz con-
tinuous operator with respect to u from V' to H, is a semilinear version of the
quasilinear one considered in [23, 24, 25], and a forcing term k € L(0,T;V*).
By the definition of the subdifferential operator d¢, the problem (NVE) is
represented by the following nonlinear functional differential problem:

{ W' () + Au(t) + 0d(u(t)) > f(t, ult)) + k(t), 0 < ¢,

w(0) =u’,  u(s) =u'.

(NDE)
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The background of these variational problems are physics, especially in solid
mechanics, where nonconvex and multi-valued constitutive laws lead to dif-
ferential inclusions. We refer to [26, 27, 28, 29, 30] to see the applications
of differential inclusions. There are extensive literatures on parabolic varia-
tional inequalities of first order and the Stefan problems(see Babue [31, 32]
and the book by Duvaut and Lions [33]. But the papers treating the varia-
tional inequalities of second order with nonlinear inhomogeneous terms are
not many.

In this paper we are primarily interested in the regular problem for the
variational inequalities of second order with nonlinear inhomogeneous terms
for that arise as direct consequences of the general theory developed previ-
ously, and we consider to put in perspective those models of initial value
problems which can be formulated as nonlinear differential equations of vari-
ational inequalities. The approach used here is similar to that developed
in Yosida [34] in which more general hyperbolic equations are also treated.
When the nonlinear mapping k is a locally Lipschitz continuous from R x V'
into H, we will obtain that the most part of the regularity for parabolic vari-
ational inequalities of first order can also applicable to (NDE) with nonlinear
perturbations(see [31-36]).

Section 2 gives some basic properties on the principal operator A to con-
sider a representation formula of solutions for the general hyperbolic semilin-
ear equations in case ¢ = 0 [31-35, 37]. In section 3, we will introduce single
valued smoothing systems corresponding to nonlinear variational inequalities
(NDE) by using approximate function ¢.(z) = inf{||z — y||?/2¢ + ¢(y) : y €
H}(see [31, 32]).
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Section 4 deals with the wellposedness for solutions of (NDE) by convert-
ing the problem into the contraction mapping principle with more general
conditions on the nonlinear terms and without conditions of the compactness
of the principal operators, and obtain the norm estimate of a solution of the
above nonlinear equation on C'([0,T]; V)N C*((0,T]; H) N C*((0,T]; V*) by
using the results of its corresponding the hyperbolic semilinear part in case

¢ =0 as seen in [35].

4.2 Parabolic variational inequalities

Let H be a complex Hilbert space with inner product ( , ) and norm
| - |. Let V be embedded in H as a dense subspace with inner product and
norm by (( , )) and || - ||, respectively. By considering H = H*. We may
write V. C H C V* where H* and V* denote the dual spaces of H and V,
respectively. For [ € V* we denoted (I,v) by the value I(v) of [ at v € V.

The norm of [ as element of V* is given by

[
. = sup L2,
T

Therefore, we assume that V' has a stronger topology than H and, for the

brevity, we may regard that
lulle < ful <|lull, VueV.

Definition 4.2.1. Let X and Y be complex Banach spaces. An operator S
from X toY is called antilinear if S(u+v) = S(u)+S(v) and S(Au) = \S(u)
foru,v € X and for A € C
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Let a(u,v) be a quadratic form defined on V' x V' which is linear in u and

antilinear in v.

We make the following assumptions: i) a(u,v) is bounded, i.e. Jc¢y > 0

such that
|a(u, v)| < collul - [|v]]; (4.2.1)

ii) a(u,v) is symmetric, i.e.

au,v) = a(v, u);
iii) a(u,v) satisfies the Garding’s inequality, i.e.

Rea(u,u) > d||ull?, & > 0. (4.2.2)

Let A be the operator such that (Au,v) = a(u,v) for any u,v € V.
Then, as seen in Theorem 2.2.3 of [19], the operator A is positive definite
and self-adjoint, D(A"Y?) =V, and

alu, v) =(AY2u, AYV20) T u, veV.

It is also known that the operator A is a bounded linear from V' to V*. The
realization of A in H which is the restriction of A to D(A) = {v € V :
Av € H} is denoted by Ay, which is structured as a Hilbert space with the
norm ||v||pay = |Agv|. Then the operators Ay and A generate analytic

semigroups in both of H and V*, respectively. Thus we have the following

sequence

D(A)cV CcHcCV*cC DA,
where each space is dense in the next one which continuous injection.
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If X is a Banach space and 1 < p < oo, LP(0,7;X) is the collection
of all strongly measurable functions from (0,7") into X the p-th powers
whose norms are integrable and W™?(0,T; X) is the set of all functions
f whose derivatives D*f up to degree m in the distribution sense belong
to L?(0,7; X). C™(]0,T]; X) is the set of all m-times continuously differen-
tiable functions from [0, 7] into X. Let X and Y be complex Banach spaces.
Denote by B(X,Y)(resp. B(X,Y)) the set of all bounded linear(resp. anti-
linear) operators from X and Y. Let B(X) = B(X, X).

We consider the initial value problem of the following variational inequal-
ity

(" (t) + Au(t), u(t) — 2) +o(u(t)) — 6(2)
< (f(tut) + k(t), u(t) — 2), ae.,VzeV (NVE)

w(0) =u®, wu(s) =ul.

Definition 4.2.2. A function u : [0,T] — H is called a solution of equation
(NVE) on [0,T) if

i) w € C([0,T]; V)0 CH((0,T]; H) N C*((0,T}; V*),

ii) u satisfies (NVE) on [0,T].

Let us introduce a new norm in V* as follows. For g, k € V*, putting
(9.k)-1 = a(A™g, A k) = (AA™g, A7'k) = (9, A7"k),

in virtue of the condition of a (g, k)_1, it satisfies the inner product properties

and its norm is given by

g1 = a(A™ g, A7 g)" 2.

45



Lemma 4.2.1. The norm ||g||-1 is equivalent to || - || , i.e, we have
) Co
—=llgll-x < llgll < —=llgll-1-
N Vo

The proof follows immediately from Definition 4.2.2.

If we set X = (V x H)T with inner product and norm given by

() (o) )= oyt ana | (30)

respectively. Noting that a(u,v) is inner product in V and a(u, u)

= {lfuol *+lua P},
X

172 is equiv-

alent to the norm ||ul||, we can also rewrite inner product and norm as

() ()= et sty ana ()

respectively.

= {a(ug, uo)+ 1w [*}'2,
X

Putting X = (H x V*)T'| for every (g(l)) . (ZT) € X, we define an inner

product and norm by

<<§(1)) ’ (Zi))g = (g0, ko)+(g1,k1)—1  and ‘(5?)

respectively. Let Ax be the operator defined by

D(Ax) = (D(Ag)x V)",  Ax (Z?) - (_ZH é) (Z?) = (_;{;ug) € X.

In virtue of Lax-Milgram theorem we can also define A as

DA =(VxH)T =X, A @?) = <_0 y é) (?f) = (_ill%) € X.
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Theorem 4.2.1. The linear operators Ax and A mentioned above are the

infinitesimal generators of Cy-groups of unitary operators in X and )Z, re-

spectively.

Since the proof is easy, it is omitted.

Lemma 4.2.2. Let the linear operator A is the infinitesimal generators of

Co-group of unitary operator in X as in Theorem 4.2.1. Then

mingd, 1}(|uo(6)|[*+ur (1)) < ’«4 <u°(t§) _ < max{eo, 1}(/[uo(t)|P+lua (1))

U1 (t

:
(4.2.3)
Proof. From (4.2.1), (4.2.2) it follows that
() () ) = @l + o
> min5, (0] + s}
and
A = ()] = Qo + s
< macfen, TH(fuo (O] + s (1)),
hence, we readily get (4.2.3) 0
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4.3 Smoothing system corresponding to variational in-

equalities
For every e > 0, define

¢e(x) = inf{||x — y||7/2¢ + o(y) : y € H}.

Then the function ¢, is Fréchet differentiable on H and its Frec¢het differential
O¢, is Lipschitz continuous on H with Lipschitz constant e~! where d¢, =
e M(I — (I + €dg)™') as is seen in Corollary 2.2 of Chapter IT of [31]. It is
also well known results that lim,_,0 ¢. = ¢ and lim,0 ¢ (z) = (04)°(z) for
every x € D(0¢) where (0¢)° is the minimal segment of 9¢. .

Now, we introduce the smoothing system corresponding to (NDE) as

follows.

uw(0) =4, u(s) =ul. (SDE)

{ W' () + Au(t) + 0de(u(t)) = f(t,u®) + k(t), 0<t<T,

Now, we assume the hypothesis that V' C D(9¢) and (9¢)° is uniformly
bounded, i.e.,
(A) (06)'z] < My, x € H.

We will need the following hypotheses on the nonlinear term;

Assumption (F). Let f : [0,7] x V. — H (T > 0) be a nonlinear
mapping such that ¢ — f(¢,-) is continuous on [0,7] and u — f(-,u) is
locally Lipschitz continuous on V: there exists constant L : RT — R such

that L(r) < L(ry) if m < ry and

[fCw) < Lr),  [fCou) = G 0)] < Lir)u— vl
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holds for ||u|| < r and |[v]|| < r.

Let x(t) = (gg@), 0D, (x(t)) = (6 ¢6<30<t>>)7 let F(x(t)) = ( f(_’fo(t))) and

hen problem (SDE) are equivalent to

Ja
~
S~—
I
VS
>
<o
~~——
=

x'(t) + 00 (x(t)) = Ax(t) + F(x(t)) + K(t)
{ x(0) = (Z(l)) (4.3.1)

Lemma 4.3.1. Let u. and uy be the solutions of (SDE) with constans € and

A, respectively. Then there exists a constant C independent of € and \ such
that
H’LL6 = ’LL)\|’0([0,71};‘/)001((071“];[{) S C(E + )\)7 0<T. (432)

Proof. For given €, A > 0, let x. = (,%) and x, = (,.») be the solu-
tions of (4.3.1) corresponding to € and A such that ||uc||c(oz;v) < r and

l|url|c(o,m;vy < 1, respectively. Then from the equation (4.3.1) we have

i

X (1) =3, (1) A (1) =% (1)) #0D (% (£)) —8da (3 (1)) = F(x(1)) = F (3 (1)),
and hence, from (4.2.2) and multiplying by x.(t) — x,(t), it follows that
5 llxe(t) = ()% + (Alxe(t) = xa (1)), x:(t) — xa(1)) (4.3.3)
+ (0De(xc(t)) — 90 (% (1)), xe(t) — Xa(t)) < (F(xe(t)) — F(xa(t), xe(t) — x(1))-

For every () € D(A) =V x H, since

() ()] = ) = vl = = 2T )] < 12 1

U U
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we have
[(A(xe(t) = xa(t)), xc(t) = xa(1))] < [xe(t) = xa (1)) ][5

Then by (F), we have
(F(xe(t)) = F(xa(t), xc(t) = xa(t)) < [F(xe(t)) = F(xa(1))] - [xe(t) = xx(2)]

< L(r)px(t) — xa(0)[*.

Integrating (4.3.3) over [0, 7] we have

%\Ixe(t) —x)]* < /0 (OPc(xc(t)) — OPA(xA(1)), AORA(XA (1)) — €0P(xc (1))l

(L)) / (£) = ()]t
Here, we used that
OB (x.()) = e (x.(t) — (I + cdD) "% (t)).

Since |0P (x)| < [(09)°x]| for every x € D(8®), it follows from (A) and

using Gronwall’s inequality that
HXE _X/\HC([O,T];X) < C(€+/\)7 0< TJ

hence, (4.3.2) follows. O

Theorem 4.3.1. Let the assumptions (F) and (A) be satisfied. Then u =
lim o u. in C([0,T); H)NCY((0,T]; V*) is a solution of the equation (NDE)
where u, is the solution of (SDE) .
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Proof. In virtue of Lemma 4.3.1, there exists x(-) = () € C([0,7]; X)

such that
X () = x(-) in C([0,T]; X).

From (F) it follows that
F(x.) — F(x), strongly in C([0,T];X) (4.3.4)

and

Ax, — Ax, strongly in C((0,77; X). (4.3.5)

Since 0¢.(x.) are uniformly bounded by assumption (A), from (4.3.4), (4.3.5)

we have that

d d v
Ex(zﬁ)6 — Ex(t), weakly in C((0,77]; X),

therefore

Ipe(x.) = F(x)+ K —x' + Ax, weakly in C([0,T]; X),

Note that 9®.(x.) = dP((I +edP)'x.). Since (I +€dP) 'x. — x strongly

and 0P is demiclosed, we have that

F(x)+ K —x'4+ Ax € 09(x) in C([0,T]; X).

Thus we have proved that u(t) satisfies on C([0,T]; H) N C'((0,T]; V*) the
equation (NDE). O
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4.4 Variational inequalities with nonlinear perturba-

tions

In virtue of Theorem 4.2.1, if {U(t)} is a Cy-group generated by A then,
for a solution of (SDE) in the wide sense, we are going to find a solution of

the integral equation
x(t) = U(t)x(0) + /0 Ut — s){0Dc(x(s)) + F(x(s)) + K(s)}ds. (4.4.1)

For the sake of simplicity, we assume

My = sup ||U(2)|]- (4.4.2)

0<t<T
The following lemma is from Theorems 6.1.1 and 6.1.5 in [19].
Lemma 4.4.1. Let us assume the assumption (F). Then for every u® €

Viu' € H, a given T >0 and h € C([0,T); V*). The equation

x(t) = U(t)x(0) + /0 Ut — s){F(x(s)) + K(s)}ds. (4.4.3)

has a unique local solution on interval [0,To] for 0 < Ty < T
Now, we consider the global existence of a solution of (4.4.1).

Theorem 4.4.1. Let us assume the assumption (F). Then for every u® €
Viu' € H and k € C([0,T); V*), the equation (NDE) has a unique solution
on [0,T] for a given T > 0.
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Proof. First we prove that the equation (4.4.1) has a unique local solution.

For a given x € C([0,7]; X), let y be the solution of

y(t) = Ut)x(0) + /0 Ut — $){0D(x(s)) + F(y(s) + K(s)}ds.  (4.4.4)

Since the Frechet differential d¢, is Lipschitz continuous on H with Lipschitz
constant €1, by Lemma 4.4.1, the equation (4.4.4) has a unique local solution

on interval [0,Tp] for 0 < Ty < T. Let B, be the ball of radius r centered

at zero of C([0, Ty): X), ice., B, = {v € C([0,Tp); X) : |Jv|| < r}. Let us fix
Ty > 0 satistying
T1 = min{TO, E_IMIT(]} <1l- MlL(T)To} (445)

where L(r) and M, are given by (F) and (4.4.2), respectively. We are going
to show that the mapping defined by x + y maps is strictly contractive from
the ball B, into itself if the condition (4.4.4) is satisfied. Let y,y be solution
(4.4.4) corresponding to x, x in [0, T}], respectively. Then from assumption

(F), (4.4.2) and

y(t) —y(t) = /0 Ut = 5){0Pc(x(s)) — 0Pc(x(s))

n / Ut — 5){F(y(s)) — F(3(s))}ds.
we have

y(t) = y(t)lg < e "Mtx(t) —%(t)| 5 + MiL(r)tly(t) — y(1)|5
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So by virtue of (4.4.5), the mapping defined by x — y maps is strictly
contractive from B, into itself. Therefore, the contraction mapping principle
gives that the equation (4.4.4) has a unique solution in [0,7}]. Since A is an
isomorphism from V onto V*, we note that the solution of (SDE) belongs to
C3([0,T1]; V™).

Now, we give a norm estimation of the solution of (SDE) and establish
the global existence of solutions with the aid of norm estimations. So, it is
enough to show that if u is solution in 0 < ¢ < T3, then wu(t) is bounded in

0 <t <1, i.e., there exists a constant C' > 0 such that

0= (ui)

Therefore, from (4.4.1) and (4.2.3) we obtain that

B % 0 < 25T

C([OzTO]v)z)

min{8, 1}([uo(#)|[2 + [ur (H)2)2 < ‘A (”0“))

u (t)
o ()

Uy

X

o ‘A/ot““ * W odfonton) * tovumon)

Here, we can calculate from (4.2.3) that

o ()

where ¢ = [AU(H) A %),

X

< camax{co, 1} (J[uo[+|ua])
X

X

= ‘AM(t)A‘lA (“O)

A1)

X

t
<oy [ fuo(s)lids,
X 0

‘A/ot““ ) (ot ©

o4



and

‘A/ot“(t ) (oo ) ©

/ot”(t ~ oA (f(f,m))ds

< e L(r)Mt + coL(r) M / uo(s)||ds < coL(r)M{t + / (luo(s)[[2 + u(s)2)/2ds}.

<

/ot“(t‘s)““ (Cormon) ~ (o))

_|_

X

Combining inequalities mentioned above and (4.2.3) it follows from Gron-

wall’s inequality that there exists a constant ¢; such that

(laoII® + lur@®)*)? < el + [Ju’l] + |u]). (4.4.6)

By the calculation similar to those in the proof of mentioned above, a solution

y = (ﬁ?) of

(i) == ()

exists in some interval [T}, T] with the initial value

+/ U(t—s)U([=s){0P(y(5))+F (y(s))+K(s)}ds

To

x(Th) = U(T1)x(0) + i 1 U(Ty — 5){0P(x(s)) + F(x(s)) + K(s)}ds.

By letting x(t) = x(¢) for 0 < t < Ty and x(t) = y(¢) for T} < t < T,

it is easy to see that x is a solution in 0 < t < T,. Let X be a bounded
. ~ . 0

solution of (4.4.1): |[x|[¢ o7y, %) < €’ Then, since || <f(t7uo(t))> |x < L(C")

for Ty <t < Ty by Assumption (F), it satisfies the variational inequality
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(4.4.6) on [11,T5]. Hence, x can be extended to the interval [0,75] as a
solution and wug is the desired solution. So the equation (SDE) has a unique
solution on [0, T for given 7" > 0. The results for (NDE) follows now directly
from Theorem 4.3.1. O
Example. Let
H=L*0,7), V=H}0,7), V*=H'0,7),

™ du(zx) dv(z)
a(u,v) = /0 o dx.

Define the operator A by
(Au,v) = a(u,v), Yo, ueV.
Then we know
A =00z with D(A) = {y € H*(0,7) : y(0) = y(x) = 0}.

For any u € D(A), we let

ft u(t, x) / Z ze (s, Vu(s,x))ds.

Let ¢ : V — (—00, +00| be a lower semicontinuous, proper convex function.
Then we treat (NDE) as the initial value problem for the abstract second
order equations.

We assume the following:

Assumption (F1). The partial derivatives o;(s,&), 9/0to;(s,£) and

0/0&; 0:(s,§) exist and continuous for ¢ = 1,2, j = 1,2,--- ,n, and oy(s,§)
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satisfies an uniform Lipschitz condition with respect to &, that is, there exists

a constant L > 0 such that

|0i(s,€) — 03(s,€)] < LI¢ - ¢

where | - | denotes the norm of L?(2).

Lemma 4.4.2. If Assumption (F1) is satisfied, then the mapping t — f(t,-)
is continuously differentiable on [0,T] and u — f(-,u) is Lipschitz continuous

onV.

Proof. Put

g(s,u) = Z (%ioi(s, Vu).

i=1
Then we have g(s,u) € H=1(Q). For each w € H} (), we satisfy the following
that

n

(9(s,u),w) = — Z(ai(s, Vu), 0

0x;
i=1 G

w).
The nonlinear term is given by

f(tu) = /Otg(S,u)ds.

For any w € H}(Q), if u and 4 belong to H(Q2), by Assumption (F1) we
obtain
[(f(tu) = f(t, @), w] < LT[|u —al| |Jw]].
O

Now in virtue of Lemma 4.4.1, we can apply the results of Theorem 4.3.2

as follows.
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Theorem 4.4.2. Let Assumption (F1) be satisfied. Assume thatk € C([0,T]); H1(Q))N
W20, T; HY(Q)(T > 0) and (ug,u1) € Hi () x L2(Q). Then the solution

u of (NDE) exists and is unique in
we WrnC([0,T); HE () N CY([0,T); L*(Q)), T >0
where
Wy = L*(0,T; HH(Q)) N WE2(0, T; L*() N W*2(0, T; H1(<2)).

Furthermore, the following energy inequality holds: there exists a constant

Cr depending on T such that

lulli, < Cr(L +[luol| + [ur| + [[Ellwr20.2:1-1(2))-
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Chapter 5
Approximate controllability of linear retarded

systems in Hilbert spaces

5.1 Introduction

The object of this paper is to construct some results on the control prob-
lems for the following retarded functional differential equation of parabolic
type in a Hilbert space H:

%u(x7 t) 5 Ao(l’, Dw)“(‘ra t) + Al(xa Dm)u(xat 1 h)

+ f?h a(s)As(x, Dy)u(z,t + s)ds + (Bow(t))(z), (x,t) € Qx (0,T]

u(z,t) =0, z€d, te(0,T],

u(x,0) = ¢°(2), u(z,s) = gl(x,s), z€Q, se[-h,0).

(5.1.1)

Here, €2 is a bounded domain in R™ with smooth boundary 0f2 and & is some
positive number. A, (x,D,), t =0, 1, 2, are second order linear differential
operators with smooth coefficients in Q, and Agy(x, D,) is elliptic. We note
that in order to guarantee the existence of fundamental solution of system
(5.1.1), we must need the assumption that a(-) is Holder continuous as seen
in [7]. Let U be a Banach space of control variables and the controller By be

a bounded linear operator from U to L*(Q). Let
H=LQ), V=W*Q), and V=W Q).
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We realize the operators A,(x, D,)(t =0, 1, 2) in the space V by
D(A)=V, and Au=A(z,D,)u YueV

in the distribution sense. Then it is well know result that 0 € p(Ao)(the
resolvent set of Ap) and A generates an analytic semigroup in both H and
V*(see [19, Theorem 3.6.1]) and so the equation (5.1.1) may be considered as

an equation in H as well as in V*. Thus, we formulated the problem (5.1.1)

(5.1.2)

Many authors have discussed the structural properties for retarded sys-
tems(see [2, 6, 21, 42, 43, 45, 49]). Further, in the case of infinite dimen-
sional spaces, we refer to [44, 52] and references therein. Recently, Approx-
imate controllability for semilinear control systems can be founded in [40,
41, 50], and for stochastic systems in [54, 55] with a range condition of
the control action operator. In Di Blasio et al. [2], they have developed
an excellent state space theory for retarded system in the product space
F x L*(=h,0; D(4p))(h > 0), where F' = D,,(1/2,2) is the Lions real in-
terpolation space between D(Ag) and H. Since it enables us to express the
solution with the aid of the solution semigroup (cf. [2, 21]), it is convenient
to consider the original equation in the space Z = H x L?*(—h,0;V).

Now, we introduce the solution semigroup S(t) for the system (5.1.2)

defined by
S(t)g = (u(t; 9,0),w(;9,0)),

60



where ¢ = (¢°,¢9') € Z = H x L*(—h,0;V), u(t;g,0) is the solution of
(5.1.2) with By = 0 and wu(+;g,0) is the function u(s;g,0) = u(t + s;¢,0)
defined in [—h,0]. With the aid of the solution semigroup, we can define
the approximate controllability and observability in Z without using the

fundamental solution. We define the set of attainability by
t
R = {/ S(t —7)Bw(t)dr : w e L*(0,;U), >0},
0

where Bw = (Byw, 0). Let v(t; ¢) be a solution the following adjoint system
of (5.1.2):

{ v'() = Aje(t) + Aot — ) + [pa(e)dsult +o)ds, o o

v(0) =¢", v(s)=¢'(s), s€[=h,0),

where A¥, + = 0, 1, 2, are adjoint operators of A,, repectively, and ¢ =
(¢°, ') € Z. We say that the system (5.1.2) is approximately controllable
if R is dense in Z and the adjoint system (5.1.3) is observability if ¢ € Z,
Bju(t; ¢) = 0 implies ¢ = 0.

When X is a reflexive Banach space, Nakagiri and Yamamoto [45] devel-
oped the controllability of (5.1.2) in the product space X x LP(—h,0; X)(p >
1) with bounded principal operators under the condition of the completeness
of the infinitesimal generators Aj.

In this paper, assuming that a(-) has only to belong to L*(—h,0) with
unbounded principal operators, we obtain a number of criteria for various
controllability and observability for (5.1.2) and (5.1.3) in Hilbert spaces, re-

spectively.

61



The structural operator F' : Z — Z* = H x L*(—h,0; V*) is defined by

0

Fg=(4° A1g"(=h — s) + /_ha(T)Aggl(T — $)dr).

In section 2, we will show that if F'is an isomorphism, then the approximate
controllability of (5.1.2) is equivalent to the observability of (5.1.3), Further,
since we can not define the attainability set using solution semigroup S(t)
in the space V*, we will prove that the system (5.1.3) is observable if ¢ €
Z, Bjv(t;¢) = 0 almost everywhere implies ¢ = 0 except using solution
semigroup.

In section 3, when A; = vA, v is a real constant, Ay = Ay, we deal with
the spectrum of the infinitesimal generator A of S(t). Moreover, we study
the problem of completeness of generalized eigenspaces of A. We also prove
that the condition of the completeness of between Ay and the infinitesimal
generator of the solution semigroup is the necessary and sufficient property.

Finally, when the control space U is a finite dimensional space, a necessary
and sufficient for the controllability of (5.1.2) is given as the so called Rank
Condition. The rank condition of linear equations without delay terms(in
case Aj = Ay = 0) is given in [21, 39, 46, 47]. In order to obtain the
approximate controllability of (5.1.2), we no longer require the condition of
the compactness of the infinitesimal generator of solution semigroup, but we

need the compactness of the embedding V' C H.
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5.2 Controllability and observability

If X is a Banach space, L?(0,T; X) is the collection of all strongly measur-
able square integrable functions from (0,7) into X and W2(0,T; X) is the
set of all absolutely continuous functions on [0, 7] such that their derivative
belongs to L*(0,T; X). C([0,T]; X) will denote the set of all continuously
functions from [0, 7] into X with the supremum norm. If X and Y are two
Banach space, £(X,Y) is the collection of all bounded linear operators from
X into Y, and £(X, X) is simply written as £(X).

Let V and H be complex Hilbert spaces forming a Gelfand triple V' C
H C V* with pivot space H. The notations |- |, || - || and || - || denote the
norms of H, V and V* as usual, respectively. For the sake of simplicity, we
may regard that

all. < Jul < |full, we V.

The duality pairing (-,-) between V* and V' is the extension by continuity of
inner product in H.
From now on, we consider the control system with initial values of the

following form:

{x/(t) = Aoz (t) + Ajx(t — h) + fi)h a(s)Agx(t + s)ds + Bou(t), (5.2.1)

z(0) =¢° x(s) =g'(s), s€[-h0).

Equations of the type (5.2.1) were investigated in the state space D 4,(1/2,2)x
L?(—h,0; D(Ag))(h > 0) by Di Blasio et el. [2]. See also the bibliography of
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this paper. If an operator Aj is bounded linear from V to V* and generates

an analytic semigroup, then it is easily seen that
T
H={zeV": / || Age x| |?dt < oo},
0

for the time T" > 0. Therefore, in terms of the intermediate theory we can
see that

ViV )ij22 = H,
where (V,V*)1/22 denotes the real interpolation space between V' and V*(see
(38, 8]). Using the maximal regularity for more general retarded parabolic
system, we can follow the argument of [2] term by term to deduce the fol-

lowing results as seen in [6].

Proposition 5.2.1. Let T > 0, g = (¢°,¢") € H x L*(—=h,0; V), and u €
L*(0,T;U). Then there exists a unique solution x of equation (5.2.1) such
that

r € L*0,T;V)nWh0,T;V*) c C([0,T]; H).

Moreover, there exists a constant C' such that

||| 220,20, < CUG° + 19t | z2nony + 1wl r2070))-

Let
7 =H x L*(—=h,0;V).
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be the state space of the equation (5.2.1). Z is a product Hilbert space with

the norm
2 0 1 2 1 1
!l = (19°] +/h\|g (5)[Pds)}, g=(¢q") € Z.

The adjoint space Z* of Z is identified with the product space H x L*(—h,0; V*)

via the duality pairing
0

(9, )z = (gO,fO)Jr/ ((9'(s), f1(s)))ds, g=(d"9") € Z [=(ff)eZ,

—h

where (-,-) denote the inner product on H and ((+,-)) the duality pairing
between V' and V*. Let g € Z and x(¢; g, u) be a solution of (5.2.1) associated
with control u at time ¢. The segment z; be given by x,(s; g, u) = x(t+s; g, u),
s € [=h,0). Thus, we can define the solution semigroup for the system (5.2.1)
as follows [2, Theorem 4.1]:

S(t) = (%(t;g,O),aj‘t(-;g,O)),

where g = (¢", g') € Z. Then, we have the following proposition which can

be shown just as in theorem 4.2 of [2].

Proposition 5.2.2. (i) The operator S(t) is a Co—semigroup on Z.

(ii) The infinitesimal generator A of S(t) is characterized by
D(A)={9=1(¢"9"): ¢" € D(A), g' € W"*(=0,0;V),

0
g9'(0) = ¢°, Aog" +/ a(s)A1g'(s)ds € H},

—h
0

Ag = (Agg” +/ a(s)A1g'(s)ds, g*).

—h

65



Let A be the infinitesimal generator of S(¢) as in Proposition 5.2.2. Then

the equation (5.2.1) can be transformed into an abstract equation in Z as

follows.
2 (t) = Az(t) + Bu(t), (52.9)
20)=yg

where z2(t) = (x(t; g, f,u),z(; 9, f,u)) € Z and g = (¢°,¢*) € Z. The

control operator B defined by Bu = (Byu,0). The mild solution of initial

value problem (5.2.2) is the following form:

2(t; g,u) = S(t)g + /Ot S(t — s)Bu(s)}ds.

We introduce the transposed problem of (5.2.1):

y'(t) = Agy(t) + Ajy(t — h) + [°, a(s)Asy(t + s)ds, t e (0,T), (523
y(0) = ¢°, " y(s) = ¢'(s), s € [-h,0). <

We can also define the solution semigroup Sr(t) of (5.2.3) by
ST(t)(b = (y(ta ¢)7 yt('7 ¢))

for ¢ = (¢°, ¢') € Z, where y(t; ¢) is the solution of (5.2.3). Let At be the
infinitesimal generator of St(t) associated with the system (5.2.3). Then the

equation (5.2.3) can also be transformed into the following equation:

{ 2(t) = Ari(t), (5.2.4)



where 2(t) = (y(t;9), (yi(;¢)) € Z and ¢ = (¢°,¢') € Z. Let Iy be the
projection of Z onto H, i.e., IIy(¢°, g') = ¢° for (¢°, ¢') € Z.
The structural operator F' is defined by
Fg = ([Fgl [Fg]"),
[Fg’ =g°,
0

Fal(s) = Aug'(—h — ) + / a(7) Asg (7 — 5)dr

—h

for g = (¢°,¢g') € Z. It is easy to see that for any ¢ = (¢°,¢!) € Z
[F*o)° = ¢,

0

F 8] (s) = Alg' (—h—s) + / dr) Az (7 — 5)d.

—h

As in [6, 21] we have that F' € £(Z, Z*) and

FS(t) = S;(t)F*, F*Sy(t)=S*(t)F*. (5.2.5)
We denote the set of attainability by
t
R = {/ S(t — s)Bw(s)ds : w € L*(0,T;U), t>0}.
0

Definition 5.2.1. (1) The system (5.2.1) is approzimately controllable if
R = 7, where R is the closure of R in Z.

(2) The system (5.2.3) is observable if ¢ = (¢°,¢") € Z, BiIly[Sr(t)¢] = 0
a.e. implies ¢ = 0.
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Here we note that Ho[fg S(t— s)Bw(s)ds| = z(t,0,w). This means that
the approximate controllability of system (5.2.2) implies the approximate

controllability of system (5.2.1).

Theorem 5.2.1. Let the structural operator F' be an isomorphism. Then the
system (5.2.1) is approzimately controllable if and only if The system (5.2.3)

1s observable .

Proof. Using the duality theorem, we obtain

{/tS(t—s)Bw(s)ds cw € LA0,T:U), t> 0}t
0
— {fez BS(M)f=0,t>0)

Thus, the system (5.2.2) is approximately controllable iff B*S*(t)f = 0(t >
0) for any f € Z*. Since F* is isomorphism, there exists ¢ € Z such that
F*¢ = f. From (5.2.5) it follows that

S*(t)f = F*Sp(t)p = F*Sr(t)o.
Noting that B*F*(¢°, ¢') = Bi#°, we have
BS(1)f = B'S*(1)F"6 = B F*Se(t)p = ByTu[Se(1)g).

Consequently, the approximately controllability od (5.2.1) is equivalent to
the fact that for any ¢ € ZT, Bylly[St(t)¢] = 0 a.e. implies ¢ = 0, or the

observability of (5.2.3). O
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Remark 5.2.1. Let Ay : V. — V* be an isomorphism. Then for f =
(f° f1) € Z*, the element g € Z satisfying

go — fO
{g%—h — )+ [°, a(m) AT Asg (r — s)dr = AT 1(s)

1s the unique solution of Fg = f. The above integral equation is of Volterra
type, and so it can be solved by successive approrimation. Therefore, F' :

Z — Z* 1s an isomorphism.

For A € C we define a densely defined closed linear operator by

0
A()\) =\— AO — G_AhAl — / GASAQdS,

—h

0
Ar(A) =) — A — eTMAT — / e Ajds.

y

Noting that if A € p(Ag)

A(/\) = {] — (€_>\hA1 + /0 GASAQdS) ()\ — A())_l}(/\ — Ao)

Lemma 5.2.1. (A — A)f = ¢ if and only if

0 0

A(N) =¢°+/ a(s) /SO e Ay (1)drds,

—h

e M) A oL (T)dT + /

—h

fi(s) = f0+ /0 e T (1)dr.
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Let A € 0(A) be an isolated point of o(A) and Py be the spectral projec-

tion associated with \:

1
Py=o— [ (u—A)""du,

21 Jp,

where I'y is a small circle centered at A\ such that it surrounds no point of
o(A) except A. And we know that A\ € o(Ar) and the spectral projection is
given by

1
7 BN ENAR
It is well known that A is an eigenvalue of A and the generalized eigenspace

corresponding to A is given by
Zy=PZ={Pw:u€ Z} (or Zy = PLZ).

Moreover, we set

Zx = Im(Py)*.

It is also well known that X is a pole of (A— A)~! whose order we denote by

kx and dim 7, < oo. Let us set

1
=— [ A=\ —A)tdx
Or =5 FA( ) )
Then we remark that
O = [ (— A= A) i
A om Jr ! '
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kx,
It is also well known that Q/\jj = 0 ( nilpotent) and (A — \) Py,
[48, 53]). The following set subset of o(A) are especially of use:

o,(A) = the point spectrum of A

04(A) = {X € 0(A) : A is isolated and dim(Z)) < oo}.
We know that \ € o4(A) if and only if X € o4(Ar).

Lemma 5.2.2. Let A € 0,(A). Then
1) Ker (M — A) = ZyNKer G,
2)

[y

Ker(A— A)F ={(#0, e Y (—s)'¢}/i!) :

i

Ead

I
o

k-1

> (AT~ j+ 1) =0, 5 =1,

i=j—1

3) A€ p(A) = p(A7),
FOA—A)"t'=0\-AN"'F
In particular, if X € 0,(A) then

FP, = (P}

Va

= Q,\j (Cf

k)

The proof of 1) is from Suzuki and Yamamoto [47, Appendix I], and 2)and

(3) from Nakagiri [21, Proposition 7.2] and [21, Theorem 6.1], resp

71

ectively.



Definition 5.2.2. The system of generalized eigenspaces of A is complete if
Cl(span{Z, : A € 0,(A)}) = Z,

where Cl denotes the closure in Z.

Lemma 5.2.3. Let A € 0,(A). Then

1) Let the system of generalized eigenspaces of Ar be complete and F be
one to one. Then P\g = 0 implies g=0.
2) Let the system of generalized eigenspaces of A be complete and F* be

one to one. Then PXTf =0 implies f=0.

Proof. For any A € 0,(A), if P\f = 0 then F'P,f = 0. Thus, from (5.2.3)

or 3) of Lemma 5.2.2 it follows that

(FP:f, 9) = (P Ff,9) = (Ff, PLg) =0. (5.2.6)

Since he system of generalized eigenspaces of Ar be complete, (5.2.6) implies

f =0. The proof of 2) is similar. O

Theorem 5.2.2. Assume that the system of generalized eigenspaces of Ar
be complete and F be one to one. Then the system (5.2.3) is observable if
and only if

Ker By N Ker Ap(X) = {0}, VA€ g,(Ar).
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Proof. Let BiIly[Sr(t)¢] = 0 a.e. for ¢ = (¢°,¢') € Z. Since Sr(t) is
Cy-semigroup, there exist M > 1 and 8 € R such that

157(t)]|2iz) < Me™.

For Re u > (3, we have

(0= Ar) o= [ st
0

and
BiTlo[( — Ar)~g] = / e~ BT [Sn(t) dldt.
0
This implies

BiTol(Q5)0] = = | (=X Billal(u— Ar) " dldu =0 (527)

- omi

forany j =0,....kx—1 and X\ € 0,(Ar), In what follows we follow the method
of [45] and [47]. Put
o1 =(Q3)",

then ¢; € KerQY, so that ¢; € Ker(A — Ar) by 1) of Lemma 5.2.2. As
is seen in [21, Proposition 7.2], there exists ¢ € KerAr(\) such that ¢; =
(69, e*¢?). Tt follows from (5.2.7) that Bj¢? = Bi[(Q1)*71¢]° = 0. From
the hypothesis we have ¢ = 0, hence ¢, = 0. Put ¢y = (Q1)*~2¢, then
¢o € Ker(A—Ar). Hence by the same way we obtain that ¢, = 0. Continuing

this procedure, we have P{'¢ = 0. Therefore, from Lemma 5.2.3 it follows

that ¢ = 0.
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: 0 *
. T .
(Necessity). Suppose that ¢° € Ker BynKer Ap()\) for some A € 0,(Ar)
Then
¢ = (¢°,eM¢") € Ker(A\— Ar) and B¢’ = 0.

It implies that
Sr(t)p = eM¢ and  Byll[Sr(t)d] = By(eV'¢”) = eV Bj” = 0.

By the hypothesis we obtain that ¢ = 0, and hence ¢° = 0. a

5.3 Spectral properties in case A; = Ay, Ay = Ay

In this section we investigate the spectral properties of the infinitesimal
generator A of S(t) in the special case where A; = vA, with some constant
v, Ay = Ay and the embedding V' C H is compact. Thus, in what follows

we consider the equation

{f@)_AMm)+7Aﬂt— + 7. a(s)Apz(t + s)ds + Bou(t),
z(0) = g%, x(s)=g'(s), s€[-h0).

(5.3.1)

According to Riesz-Schauder theorem Aj has discrete spectrum

o(Ao) ={pj:j=1,---}

which has no point of accumulation except possibly A = oc.
For A € C we have
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where

0
m(\) =14 ye +/ e*a(s)ds.

—h

It is clear that m(0) # 0 is an entire function and

m(A) — 1 as Re — oc. (5.3.2)

Lemma 5.3.1. Let f : C — C be analytic on a neighborhood of zy and z,
be a zero of f multiplicity k > 1. Then there exists a neighborhood V' at zero
and analytic function ¢ : V. — D(f) such that f(p(w)) = wk, where D(f)

denotes the domain of f.

Proof. There exists an analytic function g on neighborhood at z; such
that f(z) = (z — 20)*g(2), where g(z0) # 0. Since g(z) # 0 on neighborhood
at zp there exists a analytic function h such that g(z) = h(z)*. Thus (z —

20)h(2)|.=, = 0 and

d d

7, (7 = 20)h(2)) sz = (1(2) + (2 = 20) - h(2))|s=20 = 1(20) # 0.

Hence, from inverse mapping theorem it follows that there exist a neigh-
borhood U at zy and a neighborhood V' at zero such that the mapping
2z — (2 — z0)h(2) is a homeomorphism from U onto V. If we denote by
¢(w) the inverse of such mapping, then the function ¢ is analytic on V,
#(0) = 29 and (p(w) — 29)h(¢p(w)) = w for any w € V. Therefore, it holds
that



Theorem 5.3.1. (i) Let p(A) be the resolvent set of the infinitesimal gener-
ator A of S(t). Then

A
p(A) ={A:m(A) #0, o) € p(Ao)}
={A:A(\) is isomorphism from V onto V*}
(ii) Let o(A) be the spectrum of A. Then
o(A) = 0.(A) Uo,(A),

where 0.(A) = {X : m(\) = 0} and 0,(A) = {\ : m(\) # 0, A\/m(N) €
0(Ag)}. Each nonzero point of o.(A) is not an eigenvalue of A but a cluster
point of o(A). 0,(A) consists only of discrete eigenvalues.

(i11) Suppose m(0) = 0. Then 0 is an eigenvalue of A with infinity mul-
tiplicity. 0 is an isolated point of o(A) if it is a simple zero of m(\) and a

cluster point of o(A) if it is a multiple zero of m(\).

Proof. (i) If m(\) # 0 and \/m(X\) € p(Ap), then for all ¢ € X, there
exists f = (f°, f!) € D(A) such that Lemma 5.2.1 holds. Hence R(A — A) =
X where R(A) denotes the range of A. Let (A — A) = f = 0. Then from
Lemma 5.2.1 it follows that A(\)f*(0) = 0. Therefore f*(0) = 0 and hence
f1(s) = 0. We have proved that A € p(A).

Conversely, if m(\) = 0, then since A(A) = AL,, A()) is not onto H. If
m(A) # 0 and A\/m(X) € 0(Ap), then the mapping A(X) = m(A)(A/m(\) —
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Ap) is not onto. Let ¢ = (¢, 0) where ¢° € H\ImA()). Then there does not
exist f1(0) such that Lemma 5.2.1 holds.
(ii) Let Ag # 0 be a zero of m(A)/\ of multiplicity £ > 1. From Lemma

5.3.1, it follows that there exists an analytic function ¢ on a neighborhood

V' at zero such that for any p € V,

m(o())/é(p) = 1, 6(0) = Xo.

Let us denote by A; a k-th root of 1/p;, then \; converges to zero as j
tends to infinity. Infact, o(Ag) = {i; : j = 1,2, -} has no point of cluster
point except for infinity point. If j is sufficiently large then \; € V and
d(Nj)/m(od(N;)) = p; € o(Ag). Hence, it holds that ¢(A;) € o(A) and ¢()\;)
tends to ¢(0) = g as j tends to infinity. We have proved nonzero point of
oe(A) is a cluster point of o(A).

Next, suppose m(Ag) # 0, Ag/m(Ng) € a(Ap). If there exists a sequence
{\;} such that X\;/m(\;) € o(Ap). Since o(Ay) consists only of isolated
points, we have \;/m(\;) = Xo/m(\o) for sufficiently large j. In view of the
theorem of identity we have m(\) = AgA/m(Xg) which is contradictory to
(5.3.2).

(iii) If m(0) = 0, then for all v € V, f = (f°, f!) defined by f° = v and
fY(s) = v s € [~h,0] belongs to the eigenspace corresponding to zero of A
with infinity multiplicity. The others of this assertion is obtained by similar

way of (ii). O
Here, we note again that Ay has discrete spectrum

o(Ao) ={pj:j=1,---}
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Defining the spectral operator p,, associated with Ay by

1
— (11— Ao)~d,

" omi | pn|=en
where the circle surrounds no point of o(Ay) except pu,. Putting
H, =p,H ={pyu:uec H},
we have that p?> = p,, H, C V and dimH, < co. Hence, it follows that

Lemma 5.3.2. Let g = (¢°, g*) belongs to H, x L*(—h,0; H,). Then for the
solution x of (5.3.1) we have p,x(t) = x(t)

Proof. 1If we compose p,, on both sides of (5.3.1). then p,z(t) is also a

solution of (5.3.1). From uniqueness of the solution the result follows. O

Put Ay, = Ag|H,. For any g € H,, x L?*(—h,0; H,) the solution u(t) of
(5.3.1) is the solution satisfied the following

{x;(t) = Aonz(t) + VAonI t—h)+ f s)Aonpu(t + s)ds, (533)

2(0) = ¢° x(s) = g'(s), s€[- h>0)-

If we denotes the solution semigroup of equation (5.3.3) with Ay, in place of
Ag by S,(t) = exp(tA,), then we have that
Sn(t) = S|, xL2(-h,0s1,)

An = A‘D(An)a
D(A,) ={(¢%¢"); 9" € W"*(=h,0; H,),¢° = ¢"(0)}.
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Let Api/m(Ani) = pin, n=1,2, ..., then

1
Poi=— (A —A)dA.
27TZ |>‘_>\ni|:€ni

Lemma 5.3.3. ¢ € Z,; if and only if there exists an integer k such that
(Ani — Ao = 0.
Proof. If (A\n; — A)*¢ = 0 where ¢ = (¢°, ¢'), then from A(\,;)¥¢" = 0
and A(M\y)*é'(s) = 0 it follows that
(1o — A0)"¢° = 0, (jim = Ao)¥6'(5) = 0.

Hence, since ¢° = p,¢" € H, and ¢'(s) = p,¢'(s) € H, we have (\,; —
A,)*¢ = 0. In view of the Lemma 5.3.2 (\,;— A,)*¢ = 0 implies (\,;—A)¥¢p =

0. Thus Lemma is proved.

Lemma 5.3.4. The adjoint operator of p,, is represented by

1 1
P =5 (1 —Ag) " du
2m |p—En|=¢n

Proof. If u € p(Ap), then p, is a bounded linear operator from V* into V/

because (pu — Ap)~! is an isomorphism from V* onto V. For any ¢° ¢ € V*,
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from (¢°, (71 — A5)~'4°%) = ((n — Ao)~'¢", ¥"), we have

* 1 *\ —

) = g [ (= A )

T |\u—im|=e
o [ @A)

2mi |p—Fim | =€
— o [ Ay

2mi |pp—pin|=e€
a (gboapnwo)'
Thus, the lemma is proved. g

Theorem 5.3.2. Suppose that m(0) # 0, v # 0. Then the system of gen-
eralizes eigenspaces of A, is complete in H, x L?>(—h,0; H,), and so is the

system of generalized eigenspaces of A in Z.

Proof. From the corresponding result of Manitius([41, Theorems 5.1 and
5.4(ii)]) in the case a finite dimensional space, the system of generalized
eigenspaces of A, is complete in H,, x L?>(—h, 0; H,). In view of Lemma 5.3.3
the system of generalized eigenspaces of A, is US®,Z,;(we remark that in
the case of a finite dimensional case the complex number A satisfied with
m(0) = 0 belongs to the resolvent set). Suppose that (f, Z,;) = 0 for any n
and any i, where f = (f° f1) € H x L?*(—h,0;V*). Then in view of Lemma

80



5.3.4 we have that for all ¢ = (¢°, ¢') € Z,;

(0 7, )z = (2, 6°) + / (). 0" ()
— (f, pud) + / JEONEONE

(10,6 + / ((F(s), &' (5)))ds

—h

= ((f°% (8% ¢"))z = 0.

Thus ((pf p5fY), Zpw) = 0 for any ¢ = 1,2, ... . Hence the element
(pz fO, pr f1) is orthogonal to H, x L*(=h,0; H,), and hence p* f® = 0 and
pt f1(s) = 0. Since n is arbitrary number we have that f° = 0 and f; = 0.
We have proved that the system of generalized eigenspaces of A which is the

set Uy, ;Zn; is complete in Z = H x L*(—h,0; V). O

Lemma 5.3.5. The structural operator F' defined by

Fg=([Fg)°,[Fg]"),

Fal' =, (Pal'(s) = vdog'(=h =)+ [ alr)dog!(r = 5)ir

for g = (g%, g') € Z is isomorphism.
Proof. We have only to prove that for any f € L?(—h,0; V*) there exists
uniquely g' € L*(—h,0; V) such that
0

f(s) = vAog*(—h — 5) + /_h a(T)Aog! (7 — s)dr. (5.3.4)

81



For 0 < s < h we set b(s) = a(s + h)y~*. Then the second term of the right

hand side of equation (5.3.4) is represented as

/OSM a(r — h)g'(r — h — s)dr = ~ /OM b(r)g'(r — h — 5)dr.

Let 7(s) be the solution for the following equation:
r+b+rxb=0, (5.3.5)
where
(rxb)(s) = / r(s—7)b(T)dr = / r(7)b(s — 7)dr.
0 0
Let
0
9'(5) = (1A) Hr(=h=s)+ [ ale 9)f(-r ~yar}.
Then g' € L*(—h,0;V) and from (5.3.5) it follows that

s+h

f(s) :f(s)+/ T(U+h+8)f(0—h)d0—|—/ b(t)f(s —T)dr

—h—s 0
s+h
+/ / r(c —tau+h+s)f(—o — h)doT.
0 T—h—s

The third term of right hand side of the equation above is rewritten by

0 o+h+s
/ / b(t)r(c +h+s—T1)drf(—o — h)do,
—h—sJ0

and by (5.3.4) the proof of Lemma is complete. O

Thus, from Theorem 5.2.2, Theorem 5.3.2 and Lemma 5.3.5, we obtain

the following.
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Corollary 5.3.1. The transposed system of (5.3.1) is observable if and only
if
Ker Bf NKer Ap(A) = {0}, VA€ o,(Ar).

5.4 Rank condition

Now, we note that if we know that Ay is self adjoint with a compact resolvent
in virtue of compactness of the embedding V' C H, the system of generalizes

eigenspaces of Ay is complete in H. In fact, since dim Ker(\ — Ag) = d, we

suppose that {¢%,;7 =1,...,d,} is a subset of Ker A(\) and by Lemma 5.2.2,
{dri = (8%,0%) 1 i =1, ....,dr} C Ker(A] — A), X€ g,(A).
Hence, {¢y;} Acop(A),1<x<dy 18 a complete orthogonal system in Z and it holds
Cl(Span{IlyZy : A € 6,(A)}) D Cl(Span{¢}; :i=1,...,d»} = X,

which means that the system of generalizes eigenspaces of Ay is complete in
H. Hence from Theorem we know that the system of generalizes eigenspaces
of A is also complete in Z from Theorem 5.3.2. Thus, Combining Lemma

5.3.4 and Theorem 5.2.1, we obtain the following result.

Corollary 5.4.1. The system (5.2.2) is approzimately controllable if and
only if the system (5.2.4) is observable .

Next we consider the case where the control space U is a finite dimensional

space CV. Then, the controller By : CV — L(Q) is expressed as
N
Bou = Zuibg, Vu = (up,- - ,uy) € CY,
i=1
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where b)(i = 1,..., N), are some fixed elements of H. The adjoint operator

Bi : H— CN of By is given by
Biw = ((w, b)), ..., (w,b%)), w € H.

We suppose that the basis {pa1, ..., am, } of PFZ is arranged so that
{PA1y s ©am,, } span Ker(A— A7) where d) = dimKer(A—Ar). Then {¢%;;i =
1,...,dy} is a basis of Ker Ap(A\) and ¢y = (3;,c¥¢%) for i = 1,...,d,.

Since ¢f; € L®(2), (bY, ¢},) are all meaningful. We assume

Rank Condition: For any A € g,(Ar)

(Y, 30) -+ (BY, 3a,)
rank : : ="

O, 1) o (O P3a,)
Theorem 5.4.1. If Rank Condition is satisfied, then the problem (5.2.3) is

observable.

Proof. Let ¢° € Ker Ar()) for some A € g,(Ar). Then p = (¢°, e*¢°) €
Ker(A — Ar) and ¢ = Zfﬁlcigo,\i for ¢; € CV. Hence, by Rank Condition we

obtain
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dy
By = By(D i)

i=1
d)\ d)\
= ((Z Cigo())\iv b(1)>’ B (Z Cz@?m b?\f))
i=1 i=1
(90317 b?) e (QO%, b?\l)
:(Cl 62) : :
(Sogd/\7 b(l)) . (SogdA7 b?\f)
— <O7 L ) O)
implies ¢; = ¢y = -+ = ¢4, = 0. Therefore, we have proved that KerBj; N

Ker Ar(X\) = {0} for A € g,(Ar). The result follows from Theorem 5.2.2. O

Remark 5.4.1. Let Ag be the operator associated with a sesquilinear form

b(-,-) which is defined in V" x V' satisfying Garding’s inequality:
Re b(u,v) > cljul|* = ci|u?,  co >0, ¢ >0, Yu,veV.

We assume that By € L(U,V*), where U is a Banach space and Ay, Ay €
L(V,V*). Suppose that the system of generalizes eigenspaces of Ay is com-
plete in H. Then The rank condition remains valid for this general case of

the equation (5.3.1) with Ay defined above in a Hilbert space.
Example

Ou(z,t) 0*u(z,t) 0

ot T o2

+ agu(x,t — h) + / a(s)u(z,t+ s)ds + Z ub? (t)

—h i=1

(5.4.1)
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for each (z,t) € @ x (0,7] and u; € C(i = 1,---,N) with boundary and

initial conditions
u(0,t) = u(l,t) =0,

u(z,0) = ¢°(2), u(x,s) =g'(x,s), x€l0,1], s € [—h,0).
Here, a; > 0,a # 0,0 € L?(0,1)(i =1,--- ,N), and a € L*(—h,0; H3(0, 1)).

Let
H=L*0,1), V=H0,1), V* = H%(0,1),

o, v) = /O“ du(z) dv(zx) x

dr dx
and
Ay =0?/02" with D(Ap) = {z € H*(0,7) : z(0) = z(1) = 0}.

Let the controller By : CN — LY(Q) be defined as
N
Byu = Zuibg, Vu = (ug, - ,uy) € CY,
i=1

If we define the operators A; = ayl and Ay = I, then the system (5.4.1) can
be written in the same form as of (5.1.2). The eigenvalue and the eigenfunc-
tion of Ay are A\, = —a;n’7 and ¢,(y) = V2sinnnz, respectively. It is well

known that the spectrum o(A) of A defined in Proposition 5.2.2 is given by
0(A)=04(A) ={AeC:A,(N\) =0 forsome n=1,2---}

where

0
A,(A) = A+ an?r? — age ™™ — / eMa(s)ds
~h
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(see [44, 56]). Let {\,;}32, be the set of root of A,(A) = 0 and let k,; be
the multiplicity of A,; (in many cases k,; = 1). The generalized eigenspace

of A corresponding to \,; € o(A) is given by

knj—le)\njs

span{e*i®sinnrx, - - - s sinnmax}.

Since {sinnmx} is complete in H, the system of generalized eigenspace of Ay
is complete. Hence, from Theorem 5.3.2 or [41, Theorem 5.4] it follows that
the system of generalized eigenspace of A is complete in the product space
in Z. Thus, according to Theorem 5.2.1 and 5.2.2, we can see that system

(5.4.1) is approximately controllable if the rank condition is satisfied

5.5 Conclusion

This paper has established applicable conditions for the approximate con-
trollability and observability of the adjoint system under assumptions that
the system of generalized eigenspaces of the principal operator is complete
and the structural operator of F' defined as in Section 2 is isomorphism.
With the aid of the structural operators of the adjoint system and spectral
decomposition theory, we have obtained some general results of the approxi-
mate controllability of retarded systems or the observability of adjoint system
without using the fundamental solution used methods commonly. We also
investigated the condition of the completeness of the system of generalized
eigenspaces of the principal operator. Moreover, it has been shown that when

the control space is a finite dimensional space, a necessary and sufficient for
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the controllability of retarded systems is given as the so called rank condi-
tion, which is a generalization of the result for evolution systems without

delay discussed in the previous results.
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