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Chapter 1

Introduction

Most of problems in real life situation such as economics, engineering, environ-
ment, social sciences and medical sciences not always involve crisp data. So we
cannot successfully use the traditional methods because-of various types of un-
certainties presented in these problems. Since Zadeh [65] introduced fuzzy sets in
1965, a lot of new theories treating imprecision and uncertainty have been intro-
duced. Some of these theories areextensions of fuzzy set theory and the others
try to handle imprecision and uncertainty in different ways. Kerre [30] has given
a summary of the links that exist between fuzzy sets and other mathematical
models such as flou sets [51], two-fold fuzzy sets [15] and L-fuzzy sets [21].

The theories such as probability theory [56], fuzzy set theory [65, 66], in-
tuitionistic fuzzy set'theory [4, 6], vague set theory [20] and rough set theory
[47], which can be considered as mathematical tools for-dealing with uncertain-
ties, have their inherent difficulties-(see [42]). The reason for these difficulties is
possibly the inadequacy of parameterization tool of the theories. Molodtsov [42]
introduced soft sets as a mathematical tool for dealing with uncertainties which is
free from the above-mentioned difficulties. Since the soft set theory offers math-
ematical tool for dealing with uncertain, fuzzy and not clearly defined objects, it
has a rich potential for applications to problems in real life situation. The concept

and basic properties of soft set theory are presented in [38, 42]. He also showed



how soft set theory is free from the parameterization inadequacy syndrome of
fuzzy set theory, rough set theory, probability theory and game theory. However,
several assertions presented by Maji et al. [38] are not true in general [2]. Based
on the analysis of several operations on soft sets introduced in [38], Ali et al. [2]
present some new algebraic operations for soft sets and prove that certain De
Morgan’s laws in soft set theory with respect to these new definitions. Maji et al.
[37] used the soft sets into the decision making problems that are based on the
concept of knowledge reduction in rough set theory. Chen et al. [13] presented a
new definition of soft set parameterization reduction and compared this definition
with related concept of knowledge reduction in rough set theory. Pei and Miao
[48] showed that soft sets are a class of special information systems. Kong et al.
[32] introduced the notion of normal parameter reduction of soft sets and its use
to investigate the problem of sub-optimal choice and added a parameter set in
soft sets. Zou and Xiao [69] discussed the soft data analysis approach. Xiao et
al. [60] proposed the notion of exclusive disjunctive soft-sets and studied some
of its operations. The application of soft set theory in algebraic structures was
introduced by Aktas and Cagman [1]. They discussed the notiomn of soft groups
and derived some basic properties.and shows that soft groups extend the concept
of fuzzy groups. Jun [25] and Jun and Park [26], respectively, investigated soft
BCK/BCl-algebras and its application in ideal theory. Feng et al. [17] worked on
soft semirings, soft ideals and idealistic soft semirings. Ali et al. [2] and Shabir
and Ali [54] studied soft semigroups and soft; ideals over a semigroup which char-
acterize generalized fuzzy ideals and fuzzy ideals with thresholds of semigroup.
Babitha and Sunil [9] attempted to open the theoretical aspects of soft sets by
extending the notions of equivalence relations, composition of relations, parti-
tions and functions to soft sets. Yang and Guo-[64] introduced the notions of
kernels and closures of soft set relation and soft set relation mappings and ob-
tained some related properties. Shabir and Naz [55] applied the soft set theory
in topological structures and introduced soft topological spaces. Cagman et al.
[12] introduced a topology on a soft set, so-called “soft topology”, and its related
properties. They then presented the foundations of the theory of soft topological



spaces. This is the starting point for soft mathematical concepts and structures

that are based on soft set-theoretic operations.

In this thesis, we attempt to conduct a further study of equivalence soft set
relations and to broad the theoretical aspects of soft topological spaces, and
introduce the concept of soft proximity and investigate its properties. We briefly
summarize the contents of the each chapter as follows.

In Chapter 2, we firstly review basic notions about soft sets. We discuss and
study the equivalence soft set relations and give soft analogues of many results
concerning ordinary equivalence relations and partitions, and then present the
concept of transitive closure of soft set relation with related results. We prove that
the poset (ESSR((F, A)), A, V) of the equivalence soft set relations on a given
soft set (F, A) is complete lattice with the least element and greatest element.

In Chapter 3, we focus our attention on soft topological spaces and give soft
analogues of many results concerning neighborhoeds and closures in ordinary
topological space. Further, we present the concept of soft filters and gives that
every soft filter on non-null soft set is the intersection of the family of ultra soft
filters which include it. The adherence and convergence of soft filters in a soft
topology with related results aresalso discussed.

In Chapter 4, we define the soft proximity on a soft set, and present its related
properties. The concepts of §-neighborhood; soft proximally continuity and soft
cluster are discussed. They furnish approaches to the study of soft proximity
spaces. We show that ultra soft filters and soft clusters are closely related, and
used this relationshipto drive several important results in the theory of soft

proximity spaces.



Chapter 2

Some properties of equivalence

soft set relations

The soft set theory is a new mathematical tool for dealing with uncertainties that
is free from the difficulties that have troubled the usual theoretical approaches.
Babitha and Sunil [Computers and Mathematics with Applications 60 (7) (2010)
1840-1849] introduced the notion of seft set relations as a soft subset. of the Carte-
sian product of soft sets and discussed many related concepts such as\equivalence
soft set relations, partitions and functions. In this chapter, we further study the
equivalence soft set relations and obtain soft analogues of many results concern-
ing ordinary equivalence relations and partitions. Furthermore; we introduce and
discuss the transitive closure of soft.set relation and prove that the poset of the
equivalence soft set relations on a given soft set is complete lattice with the least

element and greatest element.

2.1 Preliminaries

In this section, we recall some basic notions in soft set theory. Let U be an
initial universe of objects and E the set of parameters in relation to objects in

U. Parameters are often attributes, characteristics or properties of objects. Let



P(U) denote the power set of U and A, B C E.

Definition 2.1.1. [42] A pair (F, A) is called a soft set over U, where F is a

function given by
F:A—PU). (2.1)

In other words, a soft set over U is a parameterized family of subsets of the
universe U. For any parameter x € A, F(x) may be considered the set of -
approximate elements of the soft set (F, A). Note that the set of all soft sets over
U will denoted by SS(U).

Definition 2.1.2. Let (F, A) and (G, B) be two soft set in SS(U). Then

(1) (F, A) is called a soft subset [38] of (G, B), denoted by (F, AYC(G, B), if
A C B and F(x) C G(z) for all z € A;

(2) (F, A) is called a soft superset [38] of (G, BY;denoted by (F, A)D(G, B),
if (G, B) is a soft subset of (F, A);

(3) (F, A) is called soft equal [38] to (G, B), denoted by (F;A) = (G, B), if
(F, A)C(G, B) and (F,A)D(G, B);

(4) (F, A) is called a relative null soft set [2] (with respect to the parameter
set A), denoted by @4, if F(z)i= () for all z € A;

(5) (F, A) is called a relative whole soft set [2] (with respect to the parameter
set A), denoted by Uy, if F\(z) = U for all x € A;

(6) the complement [2] of (F, A), denoted by (F, A)¢, is defined by (F, A)° =
(F¢, A), where F°: A*— P(U) is a function given by F¢(a) = U \ F(x) for all
x € A.

The relative whole soft set with respect to the set of parameters E is called
the absolute soft set over U and simply denoted by Ug. In a similar way, the
relative null soft set with respect to E is called the null soft set over U and is
denoted by ®p.

Clearly, Us¢ = @4, D¢ = Uy, and ®4C(F, AYCU,CUp for all soft set (F, A)
over U [3].



Definition 2.1.3. Let (F, A) and (G, B) be two soft set in SS(U). Then
(1) the union [38] of (F, A) and (G, B) is the soft set (H,C), where C' = AUB
and for all z € C,

F(x), if v e A\ B,
H(zx) =< G(x), ifx € B\ A, (2.2)
F(zx)UG(z), ifx€e ANB,
(H,C);

and is written as (F, A)U(G, B
(2) the intersection [2] of
C=AUB andforall z € C,

F,A) and (G, B) is the soft set (H,C), where

F(z), ifx € A\ B,
H(z) =< G(x), if x € B\ A, (2.3)
F(x)NG(z), ifz e AN B,
and is written as (F, A)N(G, B) ={(H,C).

The following shows that the basic properties of operations-on soft sets such as

union, intersection and‘De Morgan’s laws for union, intersection and complement.

Proposition 2.1.4. For two soft sets (F, A) and (G, B) over U, the following are

true:

(1) (F, AYA(F, A) = (F, A) [38], (F, AAU(E,A) = (F, A) [2].
(2) (F,A)ND 4 = Oy [52], (K, AUD, = (F, A) [48].

(3) (F, AANU, = (F, A) [52], (B, A)UU, = Uy [43].

(4) (F, A)U(F, AY>= Uy [3].

(5) ((F, TG, B))* = (F4)°T(G, B)* [2).

(6) ({(F, A)U(G, B))* = (FA)'NG;, B)¢ [2)!

2.2 Equivalence soft set relations

Definition 2.2.1. [9] Let (F, A) and (G, B) be two soft sets over a universe U.
Then the Cartesian product of (F, A) and (G, B) is defined as (F, A) x (G, B) =
(H, A x B), where



H:AxB — PUxU)and H(a,b) = F(a) x G(b) for all (a,b) € A x B,
ie., H(a,b) = {(hi,hj) : h; € F(a) and h; € G(b)}.

Example 2.2.2. [9] Consider the soft set (F, A) which describes the “peoples
having different jobs” and the soft set (G, B) which describes the “peoples quali-
fied in various courses” in a social gathering. Suppose that U = {hy, ho, hs, hy, hs,
he, hr, hs, hg, h1g} denotes the set of peoples in a social gathering, A = { chartered
account, doctor, engineer, teacher} and B = { B.Sc., B.Tech., MBBS, M.Sc.}. Let
F(chartered account) = {hy, ho}, F(doctor) = {hy, h5}, F(engineer) = {hz, ho},
F(teacher) = {hg, ha, h7}, G(B.Sc.) = {hq, hg, hs, h1o}, G(B.Tech.) = {hs, hg, h7,
ho}, G(MBBS) = {hs, hy, hs, hs} and G(M.Sc.) = {hgs, hs}.

Now (F, A) x (G, B) = (H, A x B) where a typical element will look like

H(dOCtOI’, MBBS) = {h4, h5} X {hg, ]’L4, h5, hg}
= {(h47 h’3)7 <h47 h4)7 (h47 h’5>7 (h47 h8>7 (h57 h3)7
(h’57 h4)7 (h’5> h5)a (h57 h’S)}

Definition 2.2.3. [9] Let (F, A) and (G, B) be two soft sets over a universe U.
Then a soft set relation from (F, Ayto (G, B) is asoft subset of (F,A) x (G, B).

In other words, a soft set relation from (F, A) to (G, B) is the form (H,,S),
where S C A X B and H;(a,b) = H(a,b) forall (a,b) € S, where (H, A x B) =
(F,A) x (G, B) as defined in Definition 2.2.1. Any soft subset of (F, A) x (F, A)
is called a soft set relation on (F,A).

In an equivalent way, we can define the soft set relation R on (F, A) in the
parameterized form as follows: If (£, A) = {F(a), F(b), ...}, then

F(a)RF(b) = F(a) x F(b) € R. (2.4)

Definition 2.2.4. Let R and S be soft set relations on (F, A). Then

(1) the inverse of the relation R is the soft set relation on (F, A), denoted by
R, is defined by R™' = {F(b) x F(a) : F(a) x F(b) € R} [9];

(2) the union of two soft set relations R and S on (F, A), denoted by RU S,
is defied by RUS = {F(a) x F(b) : F(a) X F(b) € R or F(a) x F(b) € S} [64];
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(3) the intersection of two soft set relations R and S on (F, A), denoted by
RNS, is defied by RNS = {F(a) x F(b) : F(a)x F(b) € R and F(a)x F(b) € S}
[64];

(4) R C S if for any a,b € A, F(a) x F(b) € R = F(a) x F(b) € S [64].
Example 2.2.5. Consider a soft set (F, A) over U where U = {hy, ha, h3, hy},
A = {my,ma}, F(my) = {hy,ho} and F(msg) = {ho, hs, hy}. Two soft set rela-
tions R and S on (F, A) are given by

R ={F(my) x F(my), F(msg) x F(my)},
S ={F(my) x F(my), F(ms) x F(ms)}.

Then the union and intersection of R and S are

RUS = {F(m1) x F(mi), F(mg) X F(my), F(mz) x F(mz)},
RNS ={F(my) xF(mq)}.

Consider another soft set relation Q on (F, A) is given by
Q = {F(ml) X F(ml), F(ml) X F(’I’)’Lg), F(m2> X F(ml)}
Then R C Qbut § € O.

Definition 2.2.6.[9] Let R be a soft set relation from (F, A) to (G, B) and S
be a soft set relation. from (G, B) to.{(H,C). Then the composition of R and S,
denoted by S o R, is soft set relation from (F, A) to (H,C) defined as follows: If
F(a) € (F,A) and H(c) € (H,C), then

F(a) x H(c) e SoR
< F(a) x G(b) € R and G(b) x H(c) € S for some G(b) € (G, B).
Definition 2.2.7. [9] Let (F, A) be a soft set over U. The identity soft set

relation Ip4 on (F, A) is defined as follows: F(a) x F(b) € Ipa < a = b. That
is, [pa = {F(a) X F(a): F(a) € (F,A)}.



Clearly, If:il = [FA and IFA @) [FA = IFA-

Proposition 2.2.8. Let R,R{,R2,R3,S,51 and Sy be soft set relations on
(F, A). Then

(1) Rio(R20R3) = (Ri0Rs)oRs.
2) If Ry CS; and Ry € Ss, then Ry o Ry C 81 08o.
3) R10(R2UR3) = (R10R2)U(R10R3), R10(R2NR3) = (R10R2)N(R10R3).
4) If Ry C Ry, then Ry C Ry [64].
5) (R =R [64], (RioR,)™!
6) (RIURy) ' =RTURSE (Ry
HNRCRUS, SCRUS [64].
Y RNSCR,RNS CS [64].

=R, o R, [9].
NRy) =Ry NR,! [64].

Proof Obviously, (1) and (2) hold. We only show (3).
(3) By Definitions 2.2.4(2) and 2.2.6;

F(a) x F(b) € R10(RaUR3)
F(a) x F(c)€ Ry and F(c) x F(b) € Ro U Rj3 for some F(c) € (F, A)
F(a) x F(b) € Ri o Ryr F(a) x F(b) € R10Rs3
F(a) x F|(b) € (R10oR3) U(R10Rs3).

Hence R0 (RaUR3) = (R10Rs) U(Ry 0 R3). The proof of Ry 0 (Ry NR3) =
(R10Rs2) N (Ry10Rg) is similar. O

Example 2.2.9. Consider a soft set (F, A) over U where U = {hy, ha, h3, hs},
A= {ml, mao, mg}, F(ml) = {hl, hg}, F(mg) = {hg, h4} and F(m3) = {hl, h3, h4}
Three soft set relations Ry, Ry and Rs on (F, A) are given by

R = {F(ml) X F(m1>7F(m2) X F(m1>}7
Ro = {F(m1) X F(my), Fl(m2) x F(m2)},
Rs = {F(my) x F(mg), F(m3) x F(my)}.

Ne}



Then Ry UR3, R10Ry and Ry o R3 are given by

R2 URB = {F<m1) X F(m2>7F<m1) X F(m3>7F<m2) X F(m2)7F(m3) X F(ml)}7
Rio0Ry={F(my) x F(my), F(mgy) x F(mq)}, R10oRs={F(ms) x F(my)},

and thus

Ri0(RaUR3) = {F(my) x F(my), F(msy) x F(my), F(ms) x F(my)}
= (Rl o) RQ) U (Rl 9 Rg)

Now, we redefine the notions of reflexiveness, symmetry and transitivity of

soft set relation and effectively use to prove their properties.

Definition 2.2.10. Let R be a soft set relation on (F, A). Then R is said to be
(1) reflexive if Ipa CR;
(2) symmetric if R™! = R;
(3) transitive if R o R € R;
(4)

4) equivalence soft set relation if it is reflexive, symmetric and transitive.

Theorem 2.2.11. Let R and S be two soft set relations on (F, A).

(1) R is equivalence if and only if R™! is equivalence.

(2) If R and S are equivalence, then so are Ro R and RN S.

(3) If R is equivalence, R o R = R.

(4) If R and S'are equivalence, then R U § is equivalence if and only if
RoSCRUSand SoRCRUS.

Proof (1) Since Iry C R & Ips:.€ R R is reflexive & R is reflexive.

By Proposition 2.2.8(5), R is symmetric <& R+ =R = (R)! & R is
symmetric.

By Proposition 2.2.8(4), R is transitive & RoR CR & R 1oR I C R
& R~ is transitive.

(2) First, we show that R o R is equivalence soft set relation. Since R is
reflexive, Ip4 C R and hence by Proposition 2.2.8(2), Ipa = [paoIps CROR,

10



i.e., RoR is reflexive. Since R is symmetric, R~' = R and hence by Proposition
2.2.8(6),  RoR) ' =R 1ToR'=RoR,ie, RoR is symmetric. Since R is
transitive, RoR C R and hence by Proposition 2.2.8(2), (RoR)o(RoR) C RoR,
i.e., R o'R is transitive.

Next, we show that R NS is equivalence soft set relation. Since R and S is
reflexive, [y C R and Ir4 C S, and hence Iry CRNS, ie., RNS is reflexive.
Since R and S are symmetric, R~! = R and S~! = § and hence by Proposition
2.2.8(6), (RNS) =R 'NS!'=RNS, ie, RNS is symmetric. Since R and
S are transitive, Ro R C R and S oS C S and hence by Proposition 2.2.8(2),
(RNS)o(RNS)=(RNSoR)N(RNSoS) C(RoR)N(SoS) CRNS, ie,
R NS is transitive.

(3) Since R is transitive, R o R C R. So we show that R C RoR. Let
F(a) x F(b) € R. Since R is reflexive, F(b) x F(b) € R and thus F(a) x F(b) €
RoR,ie., RCRoR. Hence R = RoR.

(4) Suppose that R U S is equivalence. Then

F(a) x F(b)€e RoS

< F(a) X F(c) e Sand F(c) X E(b) € R for some'c € A
= F(a) X F(c)€ SUR and F(¢) x F'(b) c SUR

= F(a) x F(b) € SUR, by equivalence of S UTR.

Hence RoS C RUS. Similarly, we have SoR C RUS.

Conversely, suppose that Ro S € RUS and So R C RUS. Since R
and S are reflexive, by-the hypothesis, Irpy = Ipa0lpgs € RoS C RUS,
i.e., RUS is reflexive. Sinece R and S are symmetric, by Proposition 2.2.8(6),
(RUS) =R 1TUS™ =RUS, te, RUS is symmetric. Since R and S are
transitive, by Proposition 2.2.8(3), (7) and the hypothesis, (RUS)o (RUS) =
[(RoR)U(SoR)U[(RoS)U(SoS)|CRURUS)US]|=RUS,ie, RUS
is transitive. Hence R U S is equivalence. O

Proposition 2.2.12. Let R and S be soft set relations on (F, A).

11



(1) If R is reflexive and § is reflexive and transitive, then R C § if and only
ifRoS=38.
(2) If R and S are reflexive, then so is R o S.

Proof (1) Suppose that R C S. Since R is reflexive, Ip4 C R and then
S=1Ipp085 CRoS. On the other hand, since S is transitive, by Proposition
228(2), RoS CSoSCS. Hence RoS =S.

Conversely, suppose that R oS = §. Since § is reflexive, by Proposition
228(2),R=Rolpy CRoS=S. Hence R C S.

(2) Since R and S are reflexive, by Proposition 2.2.8(2), Ipa = Ipa 0 Ipa C
RoS. Hence R oS is reflexive. O

Theorem 2.2.13. Let R and S be equivalence soft set relations on (F, A). Then
R oS is equivalence if and only if RoS =S oR.

Proof Suppose that RoS isequivalence. Since R and S are symmetric, R~! =
R and S7! = 8. Since R o S is symmetric, by Proposition 2.2.8(5), Ro S =
(RoS)1=81ToR!1=80oR.

Conversely, suppose that R oS = S o R. Then, by Propesition 2.2.12(2),
R o S is reflexive. Since R and § is symmetric, by the hypothesis, (R o S)™! =
SlToR!1=80R =RoS8,ie, RoS is symmetric. On the other hand, since R
and S are transitive, by Proposition 2.2.8(2) and the hypothesis, (RoS)o(RoS) =
(RoR)o(SoS) CRoS,ie, RoS is transitive. Hence R o S is equivalence

soft set relation. O

Remark 2.2.14. Let {R, o € I'}be a family of equivalence soft set relations
on (F,A). Then, clearly, N erR, is equivalence soft set relation on (F, A). But,

in general, U,erR, need not be equivalence soft set relation on (F, A).

Example 2.2.15. Let (F, A) be a soft set over U where U = {hq, hg, h3, hy, hs, hg,
h’77h87 h9}7 A = {m17m27m3} and F(ml) - {hh h27h57 h6}7 F(mQ) - {h37 h47 h’77
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hs}, F(ms) = {ha, hy, ho}. Consider equivalence soft set relations R and S on
(F, A) given by

R ={F(my) x F(my), F(my) x F(my), F(msy) X F(my), F(ms) x F(my),
F(ms) x F(ms)};

S ={F(my) x F(my), F(my) x F(m3), F(msy) x F(mg), F(ms) X F(my),
F(ms3) x F(mg3)}.

Then R U S is soft set relation on (F, A) given by

RUS ={F(my) x F(my), F(my) X F(my), F(my) x F(mg3), F(mg) x F(my),
F(mg) x F(mg), F(m3) x F(my), F(mg) x F(ms3)}.

Since F(mg) X F'(my), F(my) x F(m3) € RUS, F(mg)x F(m3) € (RUS)o(RUS)
but F(mgy) x F(m3) € RUS, i.e,, (RUS)o (RUS)Z (RUS). This shows that

R US is not transitive. Hence R U S is not equivalence soft-set relation.

Definition 2.2.16. [9] Let R be an equivalence soft set relation on'(F, A) and a €
A. Then equivalence class of F(a); denoted by F(a)/R, is defined as F(a)/R =
{F(b) : F(a) x F(b) € R}. The set of {F(a)/R : a € A} is called the quotient
soft set of (F, A) and denoted by (F, A)/R.

Theorem 2.2.17. Let R be an equivalence soft set relation on (F, A) and a,b €
A. Then

(1) Every F(a)/R is a non null soft subset of (F, A).

(2) F(a)/R = F(b)/R ifand ouly if F(a)x F(b) &€ R if and only if
F(a)/ROF(b)/R # ®4.

Proof (1) Since R is reflexive, F'(a) x F(a) € R for any a € A and hence
by Definition 2.2.16, F'(a) € F(a)/R. Hence F(a)/R is non null soft subset of
(F, A).

(2) By Lemma 4.5 of [9], F'(a)/R = F(b)/R if and only if F'(a) x F(b) € R.
We only prove that F(a) x F(b) € R if and only if F(a)/RNF(b)/R # ®4. Since
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R is equivalence soft set relation on (F, A),

F(a)/ROF(b)/R # @4
& F(c) € F(a)/RNF(b)/R for some F(c) € F(a)/R
& F(a) x F(c) € R and F(c) x F(b) € R
& F(a) x F(b) € R.

Hence F(a) x F(b) € R if and only if F(a)/RNF(b)/R # ® 4. m

Definition 2.2.18. [9] A collection P = {(F;, A;) : i € I} of nonempty soft
subsets of soft set (F, A) is called a partition of (F, A) if

(1) Gicr(Fy, A7) = (F, A);

(2) A;NAj; =0 whenever i # j.

Definition 2.2.19. [9] Let P = {(F;, A;)} be a partition of (F, A). We define
a soft set relation (F, A)/P on (F;A) by F(a) x F(b)-€ (F,A)/P if and only if
there exists (F;, A;) € P such that F(a), F(b) € (Fi, A;).

Babitha and Sunil-[9] proved that an equivalence soft set relation on soft set
gives rise to a partition of soft sety and each partition of soft set gives rise to an

equivalence soft set relation as follows.

Theorem 2.2.20. [9] Let R be an equivalence soft set relation on (F, A) and P
be a partition of (F, A). Then

(1) (F, A)/R is a partition of (F,A).

(2) (F, A)/P is an equivalence soft set relation on (F; A).

The following gives the intimate connection between equivalence soft set re-

lations and partitions.

Theorem 2.2.21. Let R be an equivalence soft set relation on (F, A) and P =
{(F;, A;)} be a partition of (F, A). Then

(1) (F,A)/P = U(F;, Ai) x (F;, Ay).
(2) (F, A)/((F, A)/P) = P.
(3) (F,A)/({F,A)/R) = R.
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Proof (1) By Definition 2.2.19, we have

F(a) x F(b) e (F,A)/P
F(a) € (F;, A;) and F(b) € (F;, A;) for some (F;, A;) € P
F(a) x F(b) € (F;, A;) x (F};, A;) for some (F;, A;) € P
F(a) x F(b) € Uy(F;, A;) x (F;, A;).

Hence (F, A)/P = U(F;, A;) x (Fi, A,).

(2) Let F(a)/((F,A)/P) € (F,A)/((F,A)/P). Since F(a) € F(a)/({F,A)/P)
and P is partition, there exists unique (F;, A;) € P such that F'(a) € (F;, A;). By
Definition 2.2.19, we have (F}, A;) = F(a)/((F, A)/P). Hence F(a)/((F, A)/P) €
P. On the other hand, let (F;, A;) € P. Since (F;, A;) is non null soft set, there
exists a F(a) € (F,A) such that F(a) € (F;, A;). By our previous argument,
F(a)/((F,A)/P) = (F;, A;). Hence (F;, A;) € (F,A)/((F,A)/P). Therefore, we
have (F, A)/((F, A)/P) =

(3) By (1), Definition.2.2.19 and Theorem 2.2.20, we have

F(a) x F( ) €A A) [((F, A)R)

F(a) x\E(b) € (B3 A;) x (F;, A;) for some (F;, A;)) € (F,A)/R
F(a) x F(b) € F(¢)/R x F(c)/R for some F(c) € (F, A)
Fa) X E(b) € R

Hence (F, A)/((F, A}/R) = R. O

Babitha and Sunil [9] introduced the induced soft set relation from the relation

on set of parameters as follows.

Definition 2.2.22. [9] Let (F, A) be a soft set defined on the universal set U
and R be a relation defined on A, i.e., ® C A x A. Then the induced soft set
relation R4 on (F, A) is defined as follows:

F(a) x F(b) € Ra < (a,b) € R, (2.5)
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Theorem 2.2.23. Let (F, A) be a soft set defined on U and R be a relation
defined on A. Then R is equivalence relation if and only if the induced relation

R4 is equivalence soft set relation.

Proof By Definitions 2.2.10 and 2.2.22, we have

(a) R is reflexive & Ay C R < Ipg C Ry < Ry is reflexive. Here Ay =
{(a,a) : a € A} is diagonal relation on A.

(b) R is symmetric & R =R & RN, = N4 & R, is symmetric.

(c) R is transitive & RoR C R < Ryo RNy C Ny < Ry transitive.

From (a), (b) and (c), R is equivalence relation if and only if R4 is equivalence

soft set relation. O

Let (F, A) be a soft set on universal set U, R be a equivalence relation on A
and f : A — A be a function. Then we say that f is compatible with R if and
only if for all a,b € A,

(a;b) € R = (f(a), f(b)) € R. (2.6)

Theorem 2.2.24. Let (F, A) be asoft set on U, f: A — A be a function, and
R be a equivalence relation on A. If f is compatible with 3, then there exists a
unique function g ; (F, A) /R4 = (F, A)/R4 such that

g(F(a)/R4) = F(fla))/Ra for all F(a) € (F, A): (2.7)

Proof Suppose that f is compatible with R. Let g = {(F(a)/Ra,F(f(a))/Ra) :
F(a) € (F, A)}. We shall prove that g is a function.  Clearly, the domain of g is
(F,A)/Ra. Let (F(a)/Ra, F(f(a))/Ra) and (F(0)/FRa, E(f(b))/Ra) be elements

in g. Then we have

F(a)/Ra=F()/Ra= F(a) X F(b) € R4, by Theorem 2.2.17
= (a,b) € R, by Definition 2.2.22
= (f(a), f(b)) € R, by compatibility
= F(f(a))/Ra = F(f(b))/Ra, by Theorem 2.2.17,
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and hence ¢ is a function. Finally (2.7) holds because (F'(a)/Ra, F(f(a))/Ra) €
g. The uniqueness can be easily checked. O

Example 2.2.25. Let (F, A) be a soft set on universal set U, A and B be two
sets of parameters and f : A — B be a function. Define the relation 3 on A by,
for points in A,

(a,b) e R < f(a) = f(D).

Then, clearly, R is equivalence relation on A and thus there is a unique one-to-one
function f : A/ — B such that f = f o ¢ (where ¢ : A — A/R is the natural
map).

By Definition 2.2.22 and Theorem 2.2.23, the induced soft set relation 4 is
equivalence soft set relation on (F, A). Then there is a function F : A/R —
(F,A)/R4 such that F(a/R) = F(a)/Ra for all a/R € A/R. In fact, let

F = {(a/R,F(a)/Ra) : a/R € A/R}. Consider- pairs (a/R, F(a)/R4) and
(b/R, F(b)/R4) in F. Then the calculation
a/R =0b/R = (a,b) € R, by equivalence
= F(a)x F(b) € R4, by Definition 2.2.22
= F(a)/Ra = F(b)/Ra, by Theorem 2.2.17
shows that F' is a function. Hence there is unique a one-to-one function f* :
(F,A)/R4 — B such that f = f*o F. In fact, let f* = {(F(a)/R4, f(a)) :
F(a)/Ra € (F,A)/Ra}. Consider the pairs (F(a)/Ra, f(a))and (F(a)/Ra, f(a))
in f*. The calculation
F(a)/R4 = F(b)/Ra = Fla) X F(b) € R4, by Theorem 2.2.17
= a/R =1b/R, by definition of F
= f(a) = f(b), by definition of f

shows that f* is a function. The uniqueness and one-to-one of f* can be easily
checked. Finally, by the definitions of f and F, for any a/R € A/R,

(f o F)(a/R) = f*(F(a/R)) = f*(F(a)/Ra) = f(a) = f(a/R)
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and hence f = f*o F.

2.3 Transitive closure of soft set relation

For a soft set relation R on (F,A), there exists at least one transitive soft set
relation containing R, namely the trivial one (F, A) x (F, A). Furthermore, the
intersection of any family of transitive soft set relations is again transitive. Thus
we need the smallest transitive soft set relation containing the soft set relation

R. Now we define the transitive closure of soft set relation as follows.

Definition 2.3.1. Let R be a soft set relation on (F, A). Then the transitive
closure of R, denoted by R, is the soft set relation on (F, A) defined as follows:
R=RUR*UR*U---UR"U--- (2.8)

n

where R' =R and R" =R oRo--oR, n>2.

Remark 2.3.2. By Definition 2.3.1, R C R. Since every element of R is in one of
the R?, R must be transitive by the following reasoning: if F(a)x F(b) € R’ and
F(b)x F(c) € R*, then from composition’s associativity, F(a)x F'(¢) € R/** (and
thus in R) due to the definition of R’. Let S be any transitive soft set relation on
(F, A) containing R. Since S is transitive, whenever R’ C S, R'"! C § according
to the construction of R¢. Then, by induction, S contains every R’ and thus also
R. Therefore, the transitive closure R is the smallest transitive soft set relation

containing R.

Proposition 2.3.3. Let R be a soft-set relation on<(F, A). Then
(1) R is transitive.
(2) If there exists n € N such that R"*' = R", then R = RUR?*U---UR™.

Proof It follows from Definition 2.3.1 and Remark 2.3.2. O
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Example 2.3.4. Let (F, A) be a soft set over U where U = {hq, hg, h3, hy, hs, hg,
h’77h87 h9}7 A - {m17m27m3} a‘nd F(ml) — {h17 h27h57 h6}7 F(mQ) — {h37 h47 h’77
hs}, F(mg) = {ha, ha, ho}. Consider soft set relations R on (F, A) given by

R ={F(my) x F(my), F(my) X F(msy), F(m3) x F(my), F(mgy) x F(ms)}.
Then

R? = {F(my) x F(my), F(my) x F(ms), F(m1) x F(ms), F(my) x F(m,),
F(m3) x F(my), F(m3) x F(m3)},

R? = {F(my) x F(my), F(my) x F(ms), F(my1) x F(ms), F(my) x F(m,),
F(msy) x F(ma), F(ms3) x F(my), F(mg) x F(msg), F(m3) x F(ms)},

R = {F(my) x F(my), F(my) x F(ms), F(m1) x F(ms), F(my) x F(m,),
F(msy) x F(ma), F(mg) X F(ms), F(ms) x F(my), F(ms) x F(ms),
F(mg) x F(ms)},

R® = {F(my) x F(my), F(my) x F(ms), F(m1) x F(ms), F(my) x F(m,),
F(msy) x F(ma), F(mg) X (m3), E(ms) x F(my), F(ms) x F(ms),
F(m3) X F(ms3)}.

Thus the transitive closure of R is R = R UR2U R3 U R4

Proposition 2.3.5. Let R and' S be two soft set relations on (F, A). Then

(1) R is symmetric, then so is K.

(2) f R C S, then R.C S.

(3) If R and S are equivalence soft set relations and RoS = S o R, then
(RoS)=RoS.

Proof (1) and (2) are proved from Proposition 2.2.8 and Definitions 2.2.10 and
2.3.1.

(3) By Theorem 2.2.13 and hypothesis, since R o S is equivalence soft set
relation, (R o S8)" C Ro S for any n > 1. Hence (RoS) =R o S. O
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Let R be a soft set relation on (F, A) and {R, : v € I'} be family of equivalence
soft set relations on (F, A) such that R C R, for each v € I'. Then clearly N, erR,
is the smallest equivalence soft set relation such that R C N,crR4 and denoted
by R°.

Theorem 2.3.6. If R is a soft set relation on (F, A), then R¢ = (RUR ' UIr4).
Proof LetS = (RUR 'UIlr4). Then clearly R C S. By Proposition 2.3.3(1),
S is transitive. Since Ipy € (RU R U Ipy), S is reflexive. By Proposition
2.2.8(6),  RUR TUIpa) ' =RUR YU Iy, ie, RUR I UIp, is symmetric.
By Proposition 2.3.5(1), S is symmetric. Thus S is equivalence soft set relation
such that R € S. Now let K be equivalence soft set relation on (F, A) such
that R C K. Since K is equivalence, by Proposition 2.2.8(4) and Definition
2.2.10, Iry € K and R"' € R™! € K! = K. Then, by Proposition 2.2.8(2),
(RURTUIFa)" C K" = K for any n > 1. Thus & C K. This show that

REI(RUR_lLJ[FA)A. O

Theorem 2.3.7. Let R-and S be two equivalence soft set relations on (F, A).

Then (R US) is equivalence soft set relation.

Proof By Proposition 2.3.3(1); (R US) is transitive. Since R and S is sym-
metric, (RUS)™ = R7ITUS ! = RUS, ie., RUS is symmetric. Then
by Proposition 2.3.5(1), (R U &) is symmetric. Since R and S is reflexive,
Ipg = IpaUlpg ©RUS. Thus Ipa C(RUS), ie., (RUS) is reflexive.

Hence (R US) is equivalence soft set, relation. O

Theorem 2.3.8. Let R-and S-be two equivalence soft set relations on (F, A). If
R o S is an equivalence soft set relation on (F; A), then R oS is the least upper
bound for {R, S} with respect to C.

Proof Since S is reflexive, by Proposition 2.2.8(2), R =Rolry CRoS. By
the similar argument, S C RoS. So, RoS is upper bound for {R, S} with respect
to C. Now let K be any equivalence soft set relation on (F, A) such that R C K
and S C K. Since K is transitive, by Proposition 2.2.8(2), RoS C Ko K C K.
Hence R o S is least upper bound for {R,S} with respect to C. O
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Theorem 2.3.9. Let R and S be two equivalence soft set relations on (F, A)
such that RoS =S oR. Then (RUS)*=(RUS) =(RoS) =RoS.

Proof Clearly, RUS is a soft set relation. Since R and & are equivalence soft
set relation, by Theorem 2.3.6, Proposition 2.2.8(6) and Definition 2.2.10,

(RUS)*=((RUS)U(RUS) ' UIp,) =(RUS)

By Proposition 2.2.8(2),(3),(7) and the hypothesis, we have R oS C (R U
S)o(RUS) = RUS and thus, by Proposition 2.3.5(2), (RoS) C (RUS).
On the other hand, by Theorems 2.2.13 and 2.3.8, R o S is equivalence soft set

relation and R o § is the least upper bound for {R,S} with respect to C. Since
R CRoS and and S C R o S, by Proposition 2.3.5(2), (RUS) C (RoS).
Hence (Ro8S) = (RUS).

Therefore, by Proposition 2.3.5(3), (RUS)¢=(RUS) = (RoS) = RoS. O

Example 2.3.10. Let (F,A) be a soft set over U where U = {hy, hs, hs, hy, hs, hg,
hr,hs,hot, A = {my,ma,ms,my,ms} and F(my) = {hq, ho,hs,he}, F(ms) =
{hs, ha, hr, hs}, F(ms) ={hs, ha, ha}, F(ma) = {ha, he, hs}, F(ms) = {ha, ha, hs}.
If R and S soft set relations on (F, A) defined by

R = {F(m1) x F(my), F(mg) x F(m2), F(ma) X F(m,), F(m3) X F(ma),
F(mg) X F(mg), F(myg) x F(ms), F(mg) X F(m4)}

S = {F(may) x E(my), F(my) XF(m3), F(ms) x F(ms3), F(ms) x F(my),
F(my) x F(mg), F(my) X F(my4), F(ms) x F(ms)}.

Then

RoS=8SoR
= {F(mg) X F(my), F(msg) x F(mg3), F(ms) X F(my), F(mg3) x F(ms),
F(mg3) x F(mg3), F(m3) x F(my), F(my) x F(my), F(myg) x F(ms3),
F(my) x F(ma)},
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RUS = {F(mq) x F(my), F(mg) X F(ma), F(msy) x F(mg3), F(mg) X F(my),
F(ms) x F(mg), F(ms) x F(ms), F(ms) x F(my), F(my) X F(ms),
F(my) x F(mg3), F(my) X F(my), F(ms) x F(ms)},

and so (RUS) = (RUS)*=RUS and (RoS) =RoSbut RUS#RoS
because R and S is not equivalence soft set relations on (F, A).

If R is equivalence soft set relation on (F, A) given in Example 2.2.15 and
S = Ip4 is identity soft set relation on (F, A), then RUS =R oS =S oR and
thus (RUS) = (RUS)=(Ro8)=RoS.

Let ESSR((F, A)) be a set of all equivalence soft set relations on (F, A). Then
(ESSR((F, A)),C) is a poset. Moreover, for any R,S € ESSR((F, A)), RNS is
the greatest lower bound for {R, S} with respect to C.

Now we define two binary operation A, and V. on ESSR((F, A)) as follows:
for any R,S € ESSR((F, A)),

RAS=RNS and RV.S=(RUS)".

Then we obtain the following result from Remark 2.2.14 and Theorems 2.3.6
and 2.3.9.

Theorem 2.3.11. (ESSR((F,A)), A, V) is-a complete lattice with the least
element Ir4 and the greatest element (F, A) X (F, A).

2.4 Conclusions

Soft set theory is an effective method for solving problems of uncertainty. Babitha
and Sunil [9] extended the concepts of relation and functions in soft set theory.
In this chapter, we further study the equivalence soft set relations and obtain
soft analogues of many results concerning ordinary equivalence relations and par-
titions. The transitive closure of soft set relation is discussed and some basic
properties are proved. There exists compact connections between soft sets and

information systems and so one can apply the results deducted from the studies
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on soft set relations to solve these connections. Thus, one can get more affirmative

solution in decision making problems in real life situations.
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Chapter 3

Filterness on soft topological

spaces

The soft topology on a soft set and-its related properties is presented by Cagman
et al. [Computers and Mathematics with Applications 62 (1)-(2011) 351]. In this
chapter, we attempt to broad the theoretical aspects of soft topological spaces and
so give soft analogues of many results concerning neighborhoods and closures in
ordinary topological spaces. The notions of soft filters, ultra soft filters and bases
of a soft filter are introduced and their basic properties are investigated. The
adherence and convergence of soft filters in soft topological spaces with related

results is also discussed.

3.1 Preliminaries

In the previous chapter, we present the basic definitions and results of soft set
theory which may be found earlier studies [9, 38, 42]. For illustration, Molodtsov
[42] considered several examples. The following example shows that every Zadeh’s

fuzzy A may be considered a special case of the soft set.

Example 3.1.1. [42] Let A be a fuzzy set and p4 be the membership function
of the fuzzy set A. That is pu4 is a function of U onto [0, 1]. Consider the family
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of a-level sets for the function pua:
Fla)={zeU:pa(z) > a}, acl01].

If we know the family F', we can find the functions p4(x) by means of the following
formula:
pa(z) = sup a.

a€l0,1]
zEF (o)

Thus, every Zadeh’s fuzzy set A may be considered the soft set (F, [0, 1]).

Now, in order to show the set theoretic relation in soft topological spaces, the
distributive law with respect to the union and intersection operations holds. But
the distributive law with respect to U and N does not hold. Thus, Maji et al. [38]
defined the operation M (restricted intersection) which establish the distributive

law about the union U.

Definition 3.1.2. Let (F;A) and (G, B) be two soft set in"SS(U). Then the
intersection [38] of (F, A) and (G, B) is the soft set (H, C'), where C' = AN B and
for all z € C, H(z) = F(x) N G(z)y and is written as (F, A) m (G, B) = (H,C).

Maji et al. [38] proposed several operations on soft sets, and some basic
properties of these operations are revealed. However, several assertions presented
by Maji et al. are not true in general [2]. In order to efficiently discuss, we
consider only soft sets (F, A) over a universe U in which all parameter set A are
same. We denote the family of these soft sets by SS(U) 4. In fact; for the family
SS(U)a, Ali et al. [2] investigated some properties_for algebraic structures on
SS(U)4 and Shabir and Naz {55] introduced the notion of soft topology on U.
Zorlutuna et al. [68] presented basic properties and operations induced by the
family SS(U) a.

Example 3.1.3. Let U = {hy, ho, hg}, A ={e1,ea} and Uy = {(e1, {h1, ha}), (e,
{hg,h3}>}. Then

<F17A> = {<617 {h1}>}7 <F2’A> = {<61’ {h2}>}7 <F37A> = {<617 {hlv h2}>}7
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(Fy, A) = {(e2, {ha}) }, (F5, A) = {{ea, {ha}) }, (Fs, A) = {{e2, {ha, h3}) },
(F7, A) = {{e1, {h}), (e2, {h2}>} (Fs, A) = {(e1, {h}), (e2, {ha}) },

(Fo, A) = {(e1, {h1}), (e2, {ha, ha}) }, (Fro, A) = {(e1, {ha}), (€2, {ha}) },
(Fi1, A) = {{e1, {ha}), (e2, {ha}) }, (F12, A) = {{e1, {h2}), (€2, {h2, ha}) },
(Fi3, A) = {<€1 {h1, ha}), (€2, {ha})}, (F1a, A) = {{e1, {1, ha}), {e2, {hs})},
(Fi5,A) = Uy, (Fig, A) = ®y

are all soft subsets of Uy and so SS(U)a = {(F;,A) :i=1,..., 16}.

Proposition 3.1.4. Let (F, A), (G, A), (H, A) and (K, A) be soft sets in SS(U) 4
and {(F;, A)};cr be a subfamily of SS(U) 4. Then:

(1) U§ = P4 and 5 = Uy, [38].

(2) (F,A) My =Py [3].

(3) (F,A)mUa = (F, A) [3]. ~

(4) (F, A) M (G, A) = @ iff (F,A)C(G, A"

(5) (F, A) m (G, A) =AF, A) iff (F, A)C(G, A) iff (F, A)U(G4) = (G, 4) [68].

(6) If (F, AYC(G, A) and (H, AYC(K, A), then (F, AYm(H, A)C(G, A)m (K, A)
[68].

(7) (F, A)C(G, A) iff (G, A)SC(F, A)° [68].

(8) [Uier(Fi, A)° = Mier(Fiy ), [Mier (Fapd)]® = Uier(F;, A)< [68)!

(9) (F, A) m (F)A) = (F, A)|[48]

(10) ((F, A) @ (G, B)) = (FpA)°0(G, B)e, ((F,A)J(G,B))® = (F,A)* M
(G, B [55].

(11) ((F, A) m (G, B))m (H,C) = (F, A) M ((G, B) M(3.€))

Proof (4) Necessity follows from [68]. To prove sufficiency, suppose (F, A)C
(G,A). Let x € A. Then F(z) C G°(z) = U \ G(x) and so F(z) N G(x) = 0.
Hence (F, A) m (G, A) = O
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Definition 3.1.5. The soft set (F, A) € SS(U)4 is called a soft point in Ua,
denoted by zp, if for the element x € A, F(z) # @ and F(y) = O for ally € A\{z}.

Definition 3.1.6. The soft point z is said to be in the soft set (G, A), denoted
by xx€(G, A), if for the element x € A and F(z) C G(z).

Remark 3.1.7. If 2p€(G,A) € SS(U)a, then xp €(G,A)¢. However, the
converse is not true in general. In fact, let A = {ej,eq,e3} be a parameter
set and U = {hq, ho, hs, hy} be a universe. Let ey, = (ea, {hi,ho, hg}) and
(G, Ay = {{e1,{h1, ha}), (€2, {h1,h3})}. Then ey, (G, A) and ey, &(G,A)¢ =
{(er, {h.hs}), (e2, {2, ha}), (e, U)}.

3.2 Soft topology on soft sets

In this section, we present some results concerning neighborhoods in soft topo-

logical spaces.

Definition 3.2.1. [55] Let 7 be a collection of soft sets over a universe U with a
fixed set A of parameters, then 7 @SS(U) 4 is called a soft topology on U with
a fixed set A if it satisfies the conditions:

(T1) P4 €T, UsE T;

(T2) if (G;, A) ‘€ 7, € I, then Ujer(G;, A) € 7;

(T3) if (G;, A) € 7,4 € I, where I is finite set, then M;c;(G;, A) € 7.

The triplet (U, 1, A) is.called a soft topological space over U. The elements of 7
are called the soft open sets in"lJ' and the complements of soft-open sets is called
soft closed sets in U.

{Pa,Us} and SS(U)4 are two examples for soft topology on X and shall
call indiscrete soft topology and discrete soft topology respectively as called in
point-set topology. Moreover, SS(U) is a soft topology on U.

For two soft topologies 7 and 7" on Uy, 7 is said to be finer than 7/ and 7’
coarser than 7 if 7/ C 7; thus 7 is finer than 7’ if and only if every 7/-soft open

subset of Uy is 7-open.
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Definition 3.2.2. [68] A soft set (G, A) in a soft topological space (U, 1, A) is
called a neighborhood of the soft point xp€U, if there exists a soft open set
(H, A) such that zp€(H, AYC(G, A).

The family of all neighborhoods of 2 is called the neighborhood system [55]
of 2 up to soft topology 7 and is denoted by N, (zr) (or simply by N'(xr)). By a
neighborhood base of xr we mean a collection BN, (xr) (or simply by BN (zr))
of neighborhood of = such that for every neighborhood (G, A) of x, there exists
a soft set (H, A) in BN, (zy) such that (H, A)C(G, A).

Example 3.2.3. Let us consider the soft subsets of U4 given in Example 3.1.3.
Let 7y = {®a,Ua, (Fo, A), (F11, A), (Fi3, A)} and 7o = {®4, Uy, (F3, A), (Fi3, A),
(F14, A) } be two soft topologies on U,. Consider a soft point ey, = (e1,{ha}) in
U,. Then

Nﬁ (elp)
N’T'Q (elF)

{<F2>A>7 <F37A>7 <F107A>7 <F117A>7 <F12,A>> <F137A>7 <F147A>7 UA}?
{<F37 A)) <F13’ A>7 <F147 A)? UA}

are the neighborhood system of e;, with respect to 7, and 7, respectively.

Theorem 3.2.4. Let (U, 7, A) be a soft topological space. A soft set (G, A) in
SS(U) 4 is soft open if and only if it is a neighborhood of each of its soft points.

Proof Let (G, A) be a soft open set and zp€(G, A). Since (G, A) is a soft open
set containing zr and included in (G, A), it follows that (G, A) is neighborhood
of . Conversely, suppose that (G,:A) is neighborhood of each of its soft points.

Then for each soft point xp of (G, A) there is a soft open set (G,A),, such that
xre(G, A)y, and (G, A),;C(GA)-Then (G, A) = Uy, zig.4) (G, A)z, and hence
is soft open. O

When two soft topologies are given, a criterion in terms of the neighborhoods

for determining whether one soft topology is finer than another is the following:

Theorem 3.2.5. Let 7 and 7’ be soft topologies on U,. Then 7 is finer than
7/ if and only if for every soft point zz in Uy, every 7'-neighborhood of x is a

T-neighborhood of xp.
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Proof Suppose 7 is finer than 7. Let zp be a soft point in Uy and (G, A)
be a T-neighborhood of zr. Then there is a 7’-soft open set (H, A) such that
rp€(H,AYC(G, A). Since 7" C 7, (H, A) is 7-soft open set. Hence (G, A) is a
T-neighborhood of xp.

Conversely, suppose that for every soft point z in Uy,, every 7'-neighbor-hood
is a 7-neighborhood. Let (H, A) be a 7’-soft open set. Then by Theorem 3.2.4,
(H, A) is a 7"-neighborhood of each of its soft points and hence a T-neighborhood
of its soft points. Thus (H, A) is 7-soft open set. So 7" C 7, i.e., T is finer than
T O

Lemma 3.2.6. [68] Let (U, 7, A) be a soft topological space, zr be a soft point
in Uy and N, (xr) be the set of neighborhoods of zx. Then :

(1) If (G, A) € N(xr), then zp€(G, A).
(2) If (G, A) € N.(zp) and (G, AYC(H, A), then (H, A) € N,(zp).
(3) If (G, A), (H, A) € N, (zp), then (G, A) M (H, A)-€ N, (xF).
(4) If (G, A) € N, (xp); then there is-a (H, A) € N.(zp)such that (G, A) €
N () for every a.€(H, A).

The following theorem shows that a soft topology may be defined on a soft set
U4 by prescribing for each soft point its neighborhoods with respect to the soft
topology. Referring to Theorem 3.2.4, we see that the open soft sets/in the soft
topology must be those which belong to the proposed neighborhood collections

for each of their soft points.

Theorem 3.2.7. Let Uy be asoft set and (N (2p)),. 2y, bea family of non-empty
sets of soft subsets in SS(U) x-such that

(1) for each soft point xp in Uy, every soft set in SS(U)4 which includes a
soft set in N (zp) belongs to N (zp);

(2) for each soft point zp in U,, the intersection of each finite family of soft
sets in N (zp) belongs to N (zr);

(3) for each soft point x in Uy, the soft point x is in every soft set in N (z);
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(4) for each soft point zp in Uy and each soft set (F, A) in N'(x ) there exists
a soft set (G, A) in N'(z) such that (F, A) belongs to N (yr) for every soft point
yre(G, A).

Then there exists a unique soft topology 7 on U4 such that for each soft point
xp in Uy, the set N'(xp) is the set of 7-neighborhoods of xp.

Proof LetT={(G,A) € SS(U)a: (G, A) € N(xp) for all soft points zp of Uys}.
Then

(T1) Us and @4 belong to 7.

(T2) Let {{Gy, A) : i € I} be a family of soft sets in 7 and let x€U;c; (G, A).
Then there is an index 4o in I such that xx€(G;,, A). Since (G;,, A) is in 7, we
have (Gy,, A) € N(zp). Since Uier(Gi, A)D(Gy,, A), it follows that Use; (Gy, A) €
N(xp). Hence Ui (G, A) € 7.

(T3) Let {{(G;, A) :i € J} be a finite family of soft sets in 7 and let xp€ M;ey
(G4, A). Then for each i € J, (Gy;A) € N(xzp). It follows that for each zp€ Micy
(Gy, A), we have M (G;, A) € N(zr). Hence Mic (G, A) € 7.

So 7 is a soft topology on Uy.

Let 2 be a soft point in Uy and (G, A) be any 7-soft neighborhood of zf.
Then there is (H, A) € 7 such that zpe(H, AYC(G, A). Since (H, A) € N (zp)
(because (H, A) € ), it follows that (G, A) € N(xp).

Conversely, let zg be a soft point in U, and (G, A) be any soft set in N (zp).
Let (H, A) = {yp€lU4 : (G, A) € N(yg)}. Clearly, zp€(H, A). Next, (H, A)C(G,
A); for if yp€(H, A). we have (G, A). € N (yr) and hence yr€(G;A). Finally,
(H,A) € 7. To see this, let 2p€(H, A). Since (G, A) € Ni(zr) there is a soft set
(K, A) in N (zp) such that (G, A) € MN(wg) for all seft pointswy of (K, A). Since
(G, A) € N(wp) for all soft points wg of (K, A), it follows that (K, AYC(H, A).
Since (K, A) € N(zp) it follows that (H, A) € N(zr). Thus (H, A) € 7 and so
(G, A) is a T-neighborhood of zp.

The uniqueness of 7 is clear. O

Definition 3.2.8. [55, 68] Let (U, 7, A) be a soft topological space and (F, A) be
a soft set in SS(U) 4. Then
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(1) The soft closure of (F, A) is the soft set

(F,A) = a{(G, A) € SS(U) 4 : (G, A) is soft closed and (F, A)C(G, A)};
(2)The soft interior (F, A)° is the soft set

(F, A)° = 0{(G, A) € SS(U) 4 : (G, A) is soft open and (G, AYC(F, A)}.

Clearly (F, A)° is the largest soft open subset included in (F, A) and (F, A) is
the smallest soft closed subset which includes (F, A).

Lemma 3.2.9. [68] Let (U, 7, A) be a soft topological space and (F, A) be a soft
set in SS(U)4. Then (F, A)c = ((F, A)°)".

The following shows that a soft topology may be defined on a soft set U, by

prescribing for each soft subset its closure in the soft topology.

Theorem 3.2.10. Let Uy be a soft set and f : SS(U)4 — SS(U) 4 be a mapping
such that

(1) for every soft subset (G, A) of Uy we have f((G;A))D(G, A);

(2) for every soft subset (G, A) of Uy we have f(f((G,A))) = f((G,A));

(3) for all soft subsets (G, A) and (H, A) of Uj we have f((G, A)U(H, A)) =
FUG, A)USf((H, A));

(4) f(Pa) = P4

Then 7y = {(G,A) € SS(U)a : f((G,A)°) = (G, A)°} is a soft topology on
Uy, such that (G, A) = f((G, A)) for every soft subset (G, A) of Uy.

Proof It follows from condition (3) that if (G, A) and (H, A) are soft subsets
of Uy such that (G, AVC(H, A) then f((G,A))Cf((H,A)).

(T1) Since f(P4) = f(Ua)= Us = 4 and f(U) =f(@4) = Oy = Ug, we
have ®4,Ux € 5.

(T2) Let {(GZ,A> : 1 € I} be a family of soft sets in 7. Then we have
F((Cier(Gi, AN) D(User(Gi, A))¢. On the other hand, we have, for all j € I,

F(Gier(Gi, A))°) = f(Mier(Gi, A)F)SF (G, A)) = (G, A)°

Hence f((Uier(Gi, A))°)Cier (G, A)° = (Uier(Gi, A))°. Thus f((Uier(Gi, A))°) =
(Oi€]<Gi, A>)C and so GieI<Gi; A> €Ty
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(T3) Let {(G;,A) : i € J} be a finite family of soft sets in 7;. Then, by
condition (3), we have f((M;cs(Gi, A))) = f(Uics(Gi, A)°) = Uses f((Gy, A)°) =
Uies(Gi, A)¢ = (Mic s (Gy, A))E. So we have ;e (G, A) € 4.

Thus 7 is a soft topology on Uj.

Let (K, A) be any soft set in SS(U) 4. Then (K, A) is 7y-closed <= (K, A)¢ €
Tp = [(((K, A))7) = (K, A))* <= f((K, A)) = (K, A). N

Now let (G,A) be any soft set in SS(U)a. Since f((G,A))2(G, A) and
f(fG,A))) = f({G, A)), we see that f((G,A)) is a soft closed subset which
includes (G, A). So f((G,A))D(G, A). On the other hand, since (G, A) is -
closed and (G, A)D(G, A), we deduce that (G, A) = f((G, A))Cf((G, A)). Thus
(G, A) = (G, A)). O

Definition 3.2.11. Let (U, T, A) be a soft topological space, zr be a soft point
and (G, A) be the soft sets in SS(U)4. Then zp is said to be an adherent soft
point of (G, A) if every neighborhood of xp meets (G;-A), i.e., has non-null soft
set intersection with (G, A):

Lemma 3.2.12. Let (U, 7, A) be a soft topological space, £z be a soft point
and (G, A) be the soft sets in SS(U)4. Then xp€(G, A) if and only if xx is an
adherent soft set of (G, A).

Proof Let zp€(G,A). If x5 is not an adherent soft set of (G, A), there is a
neighborhood (H, A) of xp such that (H, A) m (G, A) = ®,4. Then there is a soft
open set (K, A) such'that 2, € (K, AYC(H, A) and of course (K, AYA(G, A) = ® 4,
so that (K, A)°D(G, AY. Since (K, A)° is a soft closed set-which includes (G, A),
we have (F, A)*D(G, A) and 5o = (G, A), which-is'a contradiction.
Conversely, suppose x g ém Then there is a soft closed subset (L, A) such
that (L, A)D(G, A) and zp &(L, A). Then (L, A)¢ is a soft open set including z
and hence (L, A)¢ is a neighborhood of zr and (L, A)*m (G, A) = ®4. So xp is
not adherent soft set of (G, A). O

Theorem 3.2.13. Let (U, 7, A) be a soft topological space. If (G, A) and (H, A)
are soft sets in SS(U) 4 such that Uy = (G, A)U(H, A), then Uy = (G, A)U(H, A)°.
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Proof Suppose Uy = (G, A)U(H, A). Let xr be any soft point in SS(U)4
not included in (G, A). Then zp &(G,A) and hence zy€(H,A). By Lemma
3.2.12, there is a neighborhood (K, A) of zr such that (K, A) m (G, A) = &, and
hence (K, AYC(H, A). Thus (H, A) is a neighborhood of zp, i.e., zp€(H, A)°. So

Uy = (G, AYO(H, A)°. 0

3.3 Soft filter

In this section, we present the notion of soft filters and obtain some results of

soft filter on soft topological spaces.

Definition 3.3.1. A soft filter on Uy is a non-empty subfamily F of SS(U)4
having the following properties:

(F1) Every soft subset of SS(U)4 which includes a soft set in F belongs to
v

(F2) The intersection of each finite family of soft sets in F belongs to F;

(F3) All the soft sets in F are not null soft set.

Let F be a soft filter on Uy« A collection B of soft subsets of SS(U), is
called a base for the soft filter JF if (1) B € F and (2) for every soft set (F, A)
in F, there is a soft set (G, A) in B such that (G, AYC (F, A); we say also that B

generates JF.

Observe that the family N (x ) of all neighborhoods of a soft point zr in a
soft topological space (U, 7, A).is always a soft filter on Uj. Note also that if F
is a soft filter, then (F, C)'is a direct set.

Remark 3.3.2. Let (U, T, A) be a soft topological space and xr be any soft point
of Us. Then, by Lemma 3.2.6, the set of all neighborhood of xp is a soft filter
on Uy. We call this the neighborhood soft filter of xp and denoted by V,(zr)
(simply V(zp)). Furthermore, every neighborhood base of zp is a base for this
soft, filter.
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Example 3.3.3. Let us consider the soft subsets of U, given in Example 3.1.3.
Then F; = {(F1, A), (F3, A), (F7, A), (Fy, A), (Fy, A), (Fi13, A), (F14, A), Ua}, Fo =
{(F3, A), (Fi3, A), (F14, A),Ua} and Fy = {(Fg, A), (Fy, A), (F12, A), U} are soft
filterson Us. And By = {(F1, A), (F3, A), (F7, A), (Fs, A) }, Bo = {(F3, A), (F13, A),
(Fla, A)} and Bs = {(Fg, A), (Fy, A), (F12, A) } are bases for the soft filters F, F

and JFj3, respectively.

Theorem 3.3.4. Let F and G be soft filters on Us. Then a soft set (H, A) in
SS(U) 4 belongs to both F and G if and only if there are soft sets (F, A) € F
and (G, A) € G such that (H, A) = (F, A)U(G, A).

Proof Suppose (H,A) € FNG. Then (H,A) = (H, A)U(H, A), (H,A) € F
and (H, A) € G. Conversely, suppose (H, A) = (F, A)U(G, A) where (F, A) € F
and (G,A) € G. Then (H,A)D(F,A), so (H,A) € F and (H, A)D(G, A), so
(H,A) €g. O

Theorem 3.3.5. Let B be a collection of soft sets in S§(U) 4+ Then B is a base
for a soft filter on Uy if and only if (1) the finite intersection of members of B

includes a member of B and (2) B:is non-empty and ®4 does not belong to B.

Proof Suppose that B is a base for a soft filter F on Uy. Let {(G;, A) : i =
1,...,n} be a finite family of soft sets in B. Since B C F, it follows that
mr_,((G;, A)) € Fland so M ((Gi, A)) includes a soft set in B. /'Since F is
non-empty and every soft set in F includes a soft set in B, it follows that B is
non-empty. Since &4 ¢ F and B C F, we have &4 ¢ B.

Conversely, suppose the-conditions-are satisfied=Iiet F = {(F, A) € SS(U)a :
(F, A) includes a soft set in B}. Then F is-a soft filter on Uy with base B. O

Note that a non-empty family B of soft subsets of SS(U)4 is called a soft
filter base on Uy, provided B does not contain the null soft set and provided the
intersection of any two elements of B contains an element of B. A family S is
called a subbase of a soft filter iff it is nonvoid and the intersection of any finite

number of elements of S is not the null soft set.
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Theorem 3.3.6. If S is a subbase of a soft filter on U,, then the family B(S)
consisting of all finite intersections of elements of S is a soft filter base. If B is a
soft filter base, then the family F(B), consisting of all soft sets (F, A) € SS(U) 4
such that (F, A)D(G, A) for some (G, A) € B, is a soft filter. B(S) and F(B) are
uniquely determined by S and B, respectively.

Proof Clearly, the family B(S) satisfies the requirements of a soft filter base.
That F(B) is a soft filter if B is a soft filter base is also easily shown. We have ® 4 ¢
F,since &4 ¢ B. If (F,A) € F(Band (H, A)D(F, A), then (G, AYC(F, AYC(H, A)
for some (G, A) € B, and hence (H, A) € F(B). Finally, let (F;, A) and ([, A)
be in F(B). Then there exist (G, A) and (G4, A) in B such that (Fy, A)D(Gy, A)
and (Fy, A)D(Gy, A). Tt follows that (Fy, A) @ (Fy, A)D(Gy, AY M (Ga, A). Since B
is a soft filter base, there exists (G, A) € B such that (G, AYC(Gy, A) @ (Ga, A).
Hence (Fy, A) m (Fy, A) € F(B). That B(S) and F(B) are uniquely determined

by & and B, respectively, is an immediate consequence-of their definitions. O

Let A be a collection of soft subsets of Uy; let A" be the collection of inter-
sections of all finite families of soft sets in A. If A’ does not contain the null soft
set @, then it satisfies the conditions of Theorem 3.3.5 and hence is ‘a base for a
soft filter F on Uy. We call F the soft filter generated by A.

Theorem 3.3.7. Let F and G be soft filters on U,. Suppose that for every pair
of soft subsets (F, A),(G, A) of Ugin FUG, we have (F, A) (G, A) # ®,. Then
the soft filter generated by FUG consists of all soft sets of the form (H, A)m (K, A)
where (H, A) € F and (K, A) €G.

Proof Let H be the soft filter generated by FUG. Let S be the set of intersec-
tions of all finite families of soft sets from FUG. Let (F, A) € H. Then (F, A)
includes a soft set in S. Every soft set in S has the form (H, A) m (K, A) where
(H,A) € F and (K, A) € G. If (F,A\D(H, A) @ (K, A) where (H, A) € F and
(K, A) € G, then it follows that we have

<F7 A) = <F7 A>O(<H’ A> m <K7 A>) = (<F7 A>O<H7 A)) m (<F7 A>O<K7 A))
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Since (F, A)U(H, A)D(H, A) and (F, A)U(K, A)D(K, A), we have (F, AYU(H, A)
€ Fand (F, A)U(K,A) € G. So (F,A) € S. Thus H = S, as required. O

Theorem 3.3.8. The set of all soft filters on a non-null soft set U4 is inductively

ordered by inclusion.

Proof Let F = {F : Fis asoft filter on Uy} be totally ordered by inclusion C.
Let A be the union of F. Let {(F;, A) : i € I} be a finite family of soft sets in
A. For each i € I, there is a soft filter F; in F such that (F;, A) € F;. Since F
is C-totally ordered, there is an index j in I such that (£}, A) € F, for all i € I.
Hence M;er(F;, A) # ®4. By Theorem 3.3.5, A generates a soft filter F on Uy
which is clearly the C-supremum of F. O

It follows from Theorem 3.3.8 by the application of Zorn’s Lemma that the
collection of soft filters on a non-null soft set U4 has C-maximal elements: these
maximal soft filters are called ultra soft filters. It is alsoeasy to show that for

every soft filter F on a soft set Uy there is an ultra soft filter on U4 which includes

F.

Theorem 3.3.9. Let F be an ultra soft filter on a soft set U4. If (F, A) and (G, A)
are soft sets in SS(U) 4 such that (F, A)U(G, A) € F, then either (F, A) € F or
(G,A) e F.

Proof Suppose (F,A) ¢ F and (G, A) & F. Let F' = {(H,A) € SS(U)a :
(F, A)J(H, A) € F}. Then

(F1) Let (H,A) € Fland (K;A) € SS(U)a witho(H,A)C(K,A). Since
(F, A)U(H, A) € F and (F, A)O(H, AYC(F, A)U(K, A}, we have (F, AYU(K, A) €
F. So (K, A) € F'.

(F2) Let {(H;,A) : i € I} be a finite family of soft sets in F'. Since F
is a soft filter, we have (F, AYU(Mc;(H;, A)) = Me;((F, A)U(H;, A)) € F. So
Micr (H;, A) € F'.

(F3) Since (F, A) ¢ F, we have &4 ¢ F'.

36



Thus F' is a soft filter on Uy. Clearly, 7/ O F and (G, A) € F’ although
(G, Ay ¢ F. So F' D F, which contradicts the fact that F is an ultra soft filter.
O

Theorem 3.3.10. Let U4 be a non-null soft set and A be a collection of soft sets
in SS(U)4 which generates a soft filter F on Uy. If for every soft set (F, A) €
SS(U)a we have either (F, A) € A or (F, A)¢ € A, then A is an ultra soft filter

on Uy.

Proof Let F be the soft filter generated by A and F’ be any ultra soft filter
which includes F. Then clearly 7' O A. Let (F, A) be any soft set in F’. Then
(F,A) ¢ A, forif (F, A)° € A then (F, A)¢ € F' and (F, A)m(F, A)° = d, € F'.
This is a contradiction since F' is a soft filter. Hence (F, A) € A and so F' C A.
So A = F’, an ultra soft filter. O

Theorem 3.3.11. Let (F, A) be a soft set in S§(U)4 and. F be a soft filter on
Ua. Let Fipay = {(F, Aym{(G,A) (G, A) € F}. Then:

(1) Fip,ay is a soft filter on (F, A) if and ouly if all these soft sets are non-null
soft sets.

(2) If F is an ultra soft filter on Uy, then F g4y is an ultra soft filter on (F, A)
if and only if (F, A) € F.

Proof (1) Suppose Fip 4y is a soft filter on (F, A). Then all the soft sets in Fip,
are non-null soft sets.. Conversely, suppose all soft sets in Fr, 1) are non-null soft

sets.
(F1) Let (G, A) m (F, A)-€ Fpay and (H, A)'be a soft subset of (F, A) such
that (H, A)D(G, A) @ (F, A). Then we have

)

(H,A) = (H,A)U(G, A) m (F, A)) = ((H, A)U(G, A)) m ((H, A)U(F, A))
= ((Hv A>G< >A>) m <Fv A> € «/T(F,A)

since (H, A)U(G, A) € F (because (G, A) € F and (H, A)U(G, A)D(G, A)).
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(F2) Let {(G;, A) m (F,A) : i € I} be a finite family of soft sets in Fp ay.

Then we have
Mier({(Gi, A) M (F, A)) = (Mie1{Gi, A)) @ (F, A) € Fira

since M;cr(G;, A) € F.

(F'3) By hypothesis all the soft sets in F(z 4y are non-null soft sets.

Hence Fip ) is a soft filter on (F, A).

(2) Suppose F is an ultra soft filter. If (F, A) € F, then (G, A) m (F, A) # &4
for all (G, A) € F. By (1), Fp.ay is a soft filter on (F, A). If Fp 4y is not an ultra
soft filter on (F, A), there is a soft filter 7" on (F, A) properly including Fg ay.
Let (F', A) be a soft subset of (F, A) which belongs to 7’ but not to s 4. Then
FU{(F', A)} is a soft filter on U, which properly includes F. This is impossible.
So F(r,ay is an ultra soft filter.

Conversely, suppose F is an ultra soft filter and Fr 4y is an ultra soft filter on
(F,A). If (F,A) ¢ Fipay then FU{(F, A)} generates a soft-filter which properly
includes F. This is impossible since F is an ultra soft filter. So.(F, A) € F. O

Theorem 3.3.12. Every soft filter F on non-null soft set Uy is the intersection
of the family of ultra soft filters which include F.

Proof Let (F,A) € SS(U) be a soft set which does not belong to F. Then
for each soft set (G, A) in F we cannot have (G, AYC(F, A) and hence we must
have (G, Ay m (F, A)%# ®4. So FU{(F, A)°} gencrates a soft filter on U,, which
is included in some ultra soft filter F( 4). Since (F, Ay e J(r,.4) we must have
(F,A) ¢ Fipa. Thus (F, A) does not belong to the intersection of the set of all
ultra soft filters which include JF.-Hence this intersection is just the soft filter F
itself. O

Now, let (U, 7, A) be a soft topological space and F be a soft filter on Uy. A
soft point zr in SS(U) 4 is said to be a limit or a limit soft point of the soft filter
F and F is said to converge to xp or to be convergent to Uy, if the neighborhood
soft filter V(zp) of zp is included in the soft filter F. If B is a base for a soft filter
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on Uy then xp is a limit of B and B converges to zp if the soft filter generated

by B converges to zp.

Example 3.3.13. Let 71 and 75 be two soft topologies on Uy, given in Example
3.2.3. Consider a soft filter F = {<F1, A>, <F3, A>, <F7, A>, <F87 A), <F9, A>, <F13, A>7
(Fi4, A),Us} on Uy. Then ey, = (eq, {he}) is a limit of F for 75 but not a limit

of F for 7, i.e., F is convergent to e;, for 7, but not convergent to Uy for 7.

In classical (point-set) topology, when topologies are given, it is useful to have
a criterion in terms of the filters for determining whether one topology is finer

than another. One such criterion for soft topological spaces is the following:

Theorem 3.3.14. Let 7 and 7’ be soft topologies on a soft set Uy. Then 7 is
finer than 7’ if and only if every soft filter F on U4 which converges to z for the

soft topology 7 also converges to zp for the soft topology 7.

Proof Suppose 7 is finer than 7/. Let F be a soft filter which is T-convergent
to zp. Then F O V,(xy), the T-neighborhood soft filter of # . Since 7 is finer
than 7/, every 7/-neighborhood of zp-is a 7-neighborhood. So F 2 V./(xF), the
7'-neighborhood soft filter of xp,and hence F is 7/-convergent to xp.
Conversely, suppose that every soft filter on Uy which is 7-convergent to zp is
also 7/-convergent to xr. Let (G', A) be any 7/-soft open set and xp be any soft
point of (G, A). Then (G', A) € V/(xp). Since V(xpr) is T-convergent to zp,
it follows from our hypothesis that.it is 7/-convergent to xz. Thus V. (zp) 2
Vi (zpr) and in particular (G’ A) € V. (zpr). Thus (G, A) is a T-neighborhood of
each of its soft points and-hence by Theorem 3.2.4, (G', A).is 7-open. So 7/ C 7,

i.e., 7 is finer than 7’. O

Again let (U, 7, A) be a soft topological space and F be a soft filter on Uy. A
soft point xr in Uy, is said to be an adherent soft point of F if x is an adherent
soft point of every soft set in F. The adherence of F, Adh(F), is the set of all

adherent soft points of F; so Adh(F) = Mg ayer(F, A). If B is a base for a soft

filter on Uy, then xp is an adherent soft point of B if it is an adherent soft point
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of the soft filter generated by B. The adherence of B, Adh(B), is the set of its

adherent soft points.

Theorem 3.3.15. Let (U, 7, A) be a soft topological space and B be a base for

a soft filter on Us. Then Adh(B) = Mp.aes(F, A).

Proof Let F be the soft filter which B is a base. Then, according to the

definition of the adherence of a soft filter base,
Adh(B) = Adh(F) = Apayer(F, A) C Mpaes (F, A).

Let (G,A) be any soft set in F. Then there is a soft set (H,A) in B such
that (H, AYC(G, A) and so (G, A) D (H,A) D Mrayes (F, A). Thus we have
Mirayer(F, A) 2 Mraes (F, A). Hence Mpayer(F, A) = Mipayes(F, A). D

Theorem 3.3.16. Let (U, T, A) be a soft topological space and (G, A) be a soft
set in SS(U)4. Then a soft point @ in Uy, is adherent to (G, A) if and only if
there is a soft filter F on Ux such that (G, A) € F and F converges to zp.

Proof Suppose xp is adherent to (G, A). Then every neighborhood (H, A) of
xp meets (G, A), i.es (H,A)M(G, A) # ®4. ThusV, (xp)U (G, A), where V. (zF)
is the neighborhood soft filter of @, generates a soft filter which contains (G, A)
and is convergent to .

Conversely, suppose there is a soft filter F such that (G, A) € F and F is
convergent to zp. Let (H, A) be any neighborhood of rr. Then (H, A) € F,
and since (G, A) € F.it follows that (G, A) M (H, A) # ®4. So xp is adherent to
(G, A). O

Theorem 3.3.17. Let (U, 1, A).be asoft topological space and B be a base for
a soft filter on Uy. Let zr be a soft point in U4 and N be a neighborhood base
of xp. Then:

(1) xp is a limit soft point of B if and only if every soft set in A/ includes a
soft set in B.

(2) zp is an adherent soft point of B if and only if every soft set in N meets

every soft set in B.
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Proof (1) Suppose zf is a limit soft point of B. Thus the soft filter F generated
by B converges to zr. Let (G, A) be any soft set in A/. Then (G, A) € F. Hence
(G, A) includes a soft set in B.

Conversely, suppose every soft set in A includes a soft set in B. Let (G, A) be
any neighborhood of zr. Then (G, A) includes a soft set in A/ and hence a soft
set in B. So (G, A) belongs to the soft filter F generated by B. Hence F (and so
B) converges to zp.

(2) Suppose zp is an adherent soft point of B. Then zp is adherent to every
soft set in the soft filter generated by B. So every neighborhood of xr meets
every soft set in that soft filter. Since every soft set in A is a neighborhood of
xp and every soft set in B belongs to the soft filter, it follows that every soft set
in N meets every soft set in B.

Conversely, suppose every soft set in N meets every soft set in B. Let (G, A)
be any neighborhood of xp and (H, A) be any soft set in the filter generated by
B. Then (G, A) includes a soft set (K, A) in A and (H,A) includes a soft set
(L, A) in B. Since (K, Ay m (L, A) # ®,, it follows that (G, A) m (H, A) # D 4.
So xF is adherent to B. O

The following corollary is simple consequence.

Corollary 3.3.18. Let (U, 7, A) be a soft topological space and F be a soft filter
on Uy. Then:

(1) A soft set xp is adherent to a soft filter F if and only if there is a soft
filter 7 which includes F and converges to xp.

(2) Every limit soft point of a soft filter F is adherent to F.

(3) Every adherent soft point of-an ultra soft filter F is-a limit soft point of
F.

Proof (1) Suppose xp is adherent to F. Then every soft set in V. (zp), the
neighborhood filter of 2, meets every soft set in F. Hence F UV, (zF) generates
a soft filter 7" on U,. Clearly, 7/ C F and F’ converges to Tp.

Conversely, suppose F C F’' where F' is a soft filter which converges to xp.

Then every neighborhood of zr belongs to F'. Since every soft set in F also
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belongs to F7, it follows that every soft set in F meets every neighborhood of z .
So xr is adherent to F.

(2) If zp is a limit soft point of a soft filter F then V. (zr) C F, where V. (zr)
is neighborhood filter of xr, and so every neighborhood of zr meets every soft
set in F. So xF is adherent to F.

(3) If zp is adherent to an ultra soft filter F then a soft filter F’ such that
F' C F and F’ converges to zr. But, since F is an ultra soft filter, 7/ = F. So

F converges to rp. O

3.4 Soft separation axioms and soft continuity

Definition 3.4.1. Let (U, 7, A) be a soft topological space. Then

(1) (U, T, A) is said to be Tj if for every pair of distinct soft points g, yo of
U 4, there exists a neighborhood of each which doees not contain the other;

(2) (U, T, A) is said to be Ty if for every pair of distinct soft points zp, ye of

U4, there exist disjoint neighborhoods of zp and yg.

Theorem 3.4.2. For a soft topological space (U,7, A), the following are equiva-
lent:

(1) (U, 1, A) is Ty;

(2) For every soft point xp of Uy, the soft set {zx} is soft closed;

(3) For every soft point zr of Uy, the intersection of the neighborhood soft
filter of xp is {zr}.

Proof (1)=(2): Let x5 be any soft.point of U4..We claim that {zp} = {zp}.
If yo is any soft point of U, distinet from ap, there is a soft open set (G, A)
containing ys which does not contain zp. Thus yg %m It follows that
{zr} = {xp} and so {zr} is soft closed.

(2)=-(3): Suppose that for every soft point yg of Ua, the soft set {y} is soft
closed. Let xp be any soft point of U, and yg be any soft point of UN (zf),
where N (zr) is the neighborhood soft filter of xz. Then every neighborhood of
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zp contains yg and so meets {yg}. Thus zpe{ys} = {ye}. So zr = yg. Hence
N (zr) = {zr}.

(3)=-(4): Suppose that for every soft point yg of Ua, we have AN (yo) = {ya}-
Let zp and yg be distinct soft points of Uy. Since yg €{xr} = AN (zF), there is a
neighborhood of x which does not contain yg. Similarly, there is a neighborhood

of ye which does not contain zp. Thus (U, 7, A) is 1. O

Theorem 3.4.3. For a soft topological space (U, T, A), the following are equiva-
lent:

(1) (U, T, A) is Ty;

(2) For every soft point zp of Uy, the intersection of the family of soft closed
neighborhoods of zp is {xp};

(3) If a soft filter F on Uy converges to a soft point zp, then xp is the only
adherent soft point of F;

(4) A soft filter F on Uy can-have at most one limit-soft point.

Proof (1)=-(2): Let zx be any soft point of U4 and y¢ be any soft point distinct
from zr. By (a), there exist disjoint-neighborhoods (F, A) of zp and (G, A) of
Y. Since (F, A) M (G, A) = &4, it follows that yg &(F, A), which is a soft closed
neighborhood of zr. Thus yg is not in every soft closed neighborhood of zg. So
the intersection of the family of soft closed neighborhoods of x5 is {xF}.

(2)=(3): Let F be a soft filter on U, which converges to zp, i.e., F 2 N (xp),
the neighborhood soft filter of zp. If ys is adherent to F, then yg belongs to the
soft closure of neighborhood of zr and hence to every soft. closed neighborhood
of zp. Thus yg = xp, i.e.; xp is the-only adherent soft point of F.

(3)=(4): Let F be a soft filter en Uy. If xr and ye are limit soft points of
F, they are also adherent soft points and so, by (3), zr = yg-.

(4)=-(1): If (U, 7, A) is not Ty, then there is a pair of distinct soft points =g
and yg such that every neighborhood of xr meets every neighborhood of yg.
Thus N (zr) UN (yg) generates a soft filter F which converges to both zp and
Y. This is a contradiction. Hence (U, 7, A) is Ts. O
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Now, we review the following notions to introduce the soft continuous.

Let SS(U)a and SS(V) g be families of soft sets. Let u: U — Vandp: A —
B be functions. Then a function f,, : SS(U)a — SS(V)p is defined as

(1) Let (F,A) € SS(U)4. The image of (F, A) under f,, [31], written as
Jou((F, A)) = (fou(F),p(A)), is a soft set in SS(V') g such that

Upr—l(y)ﬂAu(F<:[;>>7 p_l(y) NnA 7é (Z)a

3.1
0, otherwise, (3:1)

Sou(F)(y) = {
for all y € B.
(2) Let (G, By € SS(V)p. The inverse image of (G, B) under f,, [31], written
as [,/ ((G,B)) = (f,./(G),p~'(B)), is a soft set in SS(U) 4 such that
u (G(p(x))), plz) € B,

3.2
0, otherwise, (3:2)

for all z € A.
The function f,, is called surjective [68] iff p and w are surjective and is called

injective [68] iff p and w are injective:

Proposition 3.4.4. [31, 68] Let SS(U)4 and SS(V)p be families of soft sets.

For a function fp, : SS(U)a — SS(V)p, the following are true:

(1) fou(®a) = i, fru(Ua) V5.

(2) Fou(F, YOG A)) = fyu (B, AT, M({G, AY), where (F, 4, (G, 4) € SS

(U)a.
(3) It (F, AVE(G, A} € SEE) s, then fyu((F, ANE 5l (@ A1)

(4) If (H, B)E(K, B) € 58(V )+ then 2 HLBNC £((K, B)).

(5) £ ((H, BYY) = (£ ((H, BY)*for-any {H, B) € SS(V')p.

pu
(6) fou(fpuk((H,B)))C(H, B) for any (H,B) € SS(V)p. If f,, is surjective,
the equality holds.

(7) (F, A)if];}(fpu((F, A))) for any (F, A) € SS(U)a. If f,, is injective, the

equality holds.

f
f
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Let (U,7,A) and (V,7*, B) be soft topological spaces and fp, : SS(U)s —
SS(V)p be a function, where u : U — V and p : A — B are two functions. Then
fpu 18 soft continuous [68] if f,'((H, B)) € T for each (H,B) € T

Theorem 3.4.5. Let (U, 7, A) and (V, 7%, B) be soft topological spaces. For a
function fp, : SS(U)a — SS(V)p, the following are equivalent:
(1) fpu is soft pu-continuous.
(2) For each soft closed set (H, B) of Vp, f,,'((H, B)) is soft closed of Ua.
(3) For each soft set (H, B) € SS(V)g, WCJ‘W ((H,B)).
(4) For each soft set (F, A) € SS(U) 4, fou((F, A))C fu((F, A)).

Proof (1)<(2) is proved in [68].
(2)=(3) Let (H,B) € SS(V)p. Then (H, B) is soft closed set of Vp and
y (2) f,.((H,B)) is soft closed set of Uy containing f,.'((H, B)). Hence, by
(
)

Theorem 1(3) and (5) of [55], f,L((H, B)C f,.L((H.B)) = f,.}((H, B)).

( )=(2) Let (H, B) be a soft closed set of Vz. Then by Theorem 1 of [55],
{H, BY = (H, B) and soby (3), ol ((H, B))C f! ((F, BY) = £ *({H, B)). Hence

(< B)) is soft closed of Uy.

(3)<(4) follows from Proposition 3.4.4. O

/\

3.5 Conclusions

Many scholars have grafted the soft'set theory onto some areas of mathematics,
in particular algebra structures: Topology is a major area of mathematics. In
this chapter, we have attempted to-conduct _a further ‘study of soft topology
along the work of Cagman et al.-[12]. First, we have presented soft analogues
of many results concerning neighborhoods and closures in ordinary topological
spaces. Next, we have defined the soft filter on a soft set and have presented
its related properties. Its convergence and adherence in the soft topology have
been discussed. Consequently, we have used the soft filter as an effective tool

for studying on soft topological structures. To extend our work, further research
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could be done to study the interconnection between soft filters and soft separation

axioms.
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Chapter 4
Soft proximity spaces

In this chapter, we define the soft proximity on a soft set, and present its related
properties. The concepts of §-neighborhood, soft proximally continuity and soft
cluster are discussed. They furnish approaches to-the study of sot proximity

spaces.

4.1 Soft proximity

Definition 4.1.1. A soft proximity on U, is a binary relation § on SS(U)a
satisfying the following properties: for any (F, A), (G, A), (H, A) € SS§(U) 4,
(SP1) (F, A)d(G, A) implies (G, A)d(F, A);
(SP2) ((F, AYU(G, A))§(H, A) if'and only if (F, A)d(H, A) or (G, A)d(H, A);
(SP3) (F, A)0(G, A).implies (F, A) # ®4 and (G, A) #D 4;
(SP4) (F, A) §(G, A) implies that there existsva soft set (H, A) € SS(U)a
such that (F, A) §(H, A) and (H, A)“¥(G, A);
(SP5) (F, Ay m (G, A) # 4 implies (F, A)§(G, A).
The pair (Ua, 0) is called a soft proximity space. The phrase (F, A)0(G, A) is read
“(F, A) is near (G, A)" and ‘(F, A) is not near (G, A)’ is denoted by (F, A) §(G, A).

Example 4.1.2. Just as discrete and indiscrete soft topologies can be defined

on any soft set, we have discrete and indiscrete soft proximities. If we define
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(F,A)61(G, A) iff (F,A)m (G, A) # ®y4, then 0, is the discrete soft proximity
on Uy. On the other hand, if (F, A)d2(G, A) for every pair of non-null soft sets
(F,A) and (G, A) in SS(U) 4, then we obtain the indiscrete soft proximity on Uy.

Properties of the following lemma, which follows directly from definition, are

useful in several proofs.

Lemma 4.1.3. Let (Uy, 0) be a soft proximity space and (F, A), (G, A) € SS(U)a.
Then the following properties hold:

(1) If (F, A3 (G, A), (F, AYC(Fy, A) € SS§(U) 4 and (G, AYC(Gy, A) € SS(U) 4,
then (Fy, A)d(G1, A). Hence U,d(F, A) for every (F, A) # P 4.

(2) If there exists a soft point xp€U,4 such that (F, A)dzp and xp0(G, A),
then (F, A)§(G, A).

Proof (1) Let (Fy,A) = (F, A)U(H, A) for some (H,A) € SS(U)s. Then
(F1,A)6(H, A) by (SP2). Applying (SP2) once more, we-obtain (Fy, A)6(Gy, A).

(2) If (F, A) §(G, A), by (SP4) there exists a soft set (H, A)-such that (F, A) §
(H,A) and (H, A)° (G, A). But since either xp€(H, A) or xpe{(H, A)¢, by (1)
we have either (F, A)d(H, A) or (H; A)°0(G, A), a contradiction. O

Theorem 4.1.4. If a soft set (F, A) of a soft proximity space (Uy,d) is defined
to be soft closed iff xpd(F, A) implies zr€ (F, A), then the collection of soft com-

plements of all soft closed sets so defined yields a soft topology 7/ = 7(d) on
Uy.

Proof Obviously ®4 and Uy are-soft closed sets. Let {(F;,A) : i € I} be an
arbitrary collection of soft closed sets: If zzd M;c; (F;, A) then by Lemma 4.1.3,
xpd(F;, A) for each i € I, and so xp€(F;, A) for each i € I since (F}, A) is soft
closed. Thus zr€ M;c; (F};, A), which means M;c;(F;, A) is soft closed. Finally, if
(Fy, A) and (Fy, A) are soft closed and xpd(({F;, A)U(F;, A)) then by (SP2), either
xpd(Fy, A) or xpd(Fy, A). But since (Fy, A) and (Fy, A) are soft closed, implying
that xp€(Fy, A) or xp€(Fy, A), ie., 1p€((Fy, A)U(Fy, A)). Thus (Fy, A)U(F,, A)
is soft closed. O
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Theorem 4.1.5. Let (Uy,0) be a soft proximity space and 7 = 7(). Then the

T-soft closure (F, A) of a soft set (F, A) in SS(U)4 is given by

(F, Ay = {xp :xpd(F, A)}.

Proof If (F, A) denotes the intersection of all soft closed sets containing (F, A)

and (F, A)° = {xp : 2pd(F, A)}, then we must show that (F, A) = (F, A)0. If
rpe(F, A then xpd(F, A). By Lemma 4.1.3, this implies 270(F, A) and, since
(F, A) is soft closed, zp€(F,A). Thus (F, A)C(F, A)’. To prove the reverse
inclusion it suffices to prove that (F, A)? is soft closed, i.e., zpd(F, A)° implies
rpE€(F, A)’. Assuming zp & (F, A)’, then xp §(F, A) so that, by (SP4), there
is a soft set (G, A) € SS(U)4 such that zp §(G, A) and (G, A)° §(F, A). Thus
yp §(F, A) any soft point yp€(G, A)°, ie., (F, AYC(G, A), which together with
rp §{G, A) implies that xp J(F, A)°. O

Corollary 4.1.6. If (Uy,d) is a-soft proximity space-and (G, A) is a soft set in
SS(U) 4, then (G, A) € 7(6) iff xp §(G, A)¢ for every xp€(GA).

Proof (G,A) € 7(0) iff (G, A)¢ is 7(5)-closed iff (by [55]) (G, A)¢ = (G, A) ift
zr §(G, A)¢ for every zp€(G, A). 0

Corollary 4.1.7. If (Uy, §) is asoft proximity space and (F, A), (G, F') € SS(U) a,
then (F, A) §(G, A) implies

(1) G, A)C(F, 4)° and

(2) (G, A)S((F, A))°,

where the soft closure and soft. interior are taken with respect to'7(9).

Proof (1) follows from directly from Lemma 3.3.3:" To prove (2), we use the

identity: ((F, A)¢)° = ((F, A))¢ [68]. Then zp ((F, A)°)° implies zp€(F, A), so
that zp6(F, A) and hence zp &(G, A). O

Remark 4.1.8. (1) Theorem 4.1.5 is true if we omit the axiom (SP1) and add

the following condition:
(F, AVS[(G, AYU(H, A)] iff (F, A)§(G, A) or (F, A)6(H, A). (4.1)
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(2) An alternative method of introducing the same soft topology on a soft
proximity space (Uy, d) would be define for each soft set (F, A) in SS(U) 4,

(F, A’ = {zp : 2p0(F, A)} (4.2)

and show that ° is Kuratowski closure operator as follows:

(a) By (SP3), zp §®,4 implies &4 = ($,)°.

(b) By (SP5), zx&(F, A) implies z70(F, A), so that (F, A)C(F, A)°.

(¢) By (SP2), then xp€((F, A)U(G, A))® iff zp6((F, A)U(G, A)) iff xpd(F, A)
or 2p0(G, A) iff vp€(F, A)® or xp€(G, A)0 iff xp€((F, AY’U(G, A)°). So ((F, A)U
(G, A))° = ((F, AYT(G, AY).

(d) To prove ((F, AY)SC(F, A, suppose xp &(F, A), i.e., zp §(F, A). Then
by (SP4), there exists an soft set (H, A) such that zp §(H, A) and (H, A)¢ §(F, A).
Now (F, AYC(H, A) and zp §(H, A), so that zp §(F, A)® and zp&((F, A)°)°.

Lemma 4.1.9. For soft subsets (F, A) and (G, A) of a soft proximity space
(UA75>7

(P AYS(G, AY ifE (F, Ayo(G, A,
where the soft closure is taken with-respect to 7(J).

Proof Necessity follows from Lemma 4.1.3. To prove sufficiency, suppose (F, A)
F#(G,A). Then by (SP4), there exists a soft set (H, A) in SS(U)4 such that

(F,A) §(H,A) and (H, A)° §(G,A). By Corollary 4.1.7, (G, A)C(H, A) and by

Lemma 4.1.3, (F, A) §(H, A) implies (F, A) #(G, A). It then follows from (SP1)
that (F, A) §(G, A). O

Just as the class of soft topologies on a given soft set ¢an be partially ordered
by soft inclusion, one can impose a.partial order on the class of soft proximities

defined on a soft set in the following manner:

Definition 4.1.10. If §; and &, are two soft proximities on a soft set Uy, we
define

01 > 0y iff (F, A)d1(G, A) implies (F, A)d2(G, A). (4.3)

The above is expressed by saying that d; is finer than ds, or d, is coarser than d;.
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The following theorem shows that a finer soft proximity structure induces a

finer soft topology:

Theorem 4.1.11. Let 4; and d, be two soft proximities defined on a soft set Ujy.
Then d; < &9 implies 7(d1) C 7(d2).

Proof Suppose (F, A) € 7(6;). Then by Corollary 4.1.6, xp # (F, A)¢ for each
rp€(F, A). Moreover, since §; < 0y, xp Fo(F, A)¢ for each xp€(F, A). Thus
(F,A) € 7(03), from which we conclude that 7(d;) C 7(d2). O

Given a soft topological space (U,T,A), a soft set (G, A) is said to be a
neighborhood [68] of a soft set (F,A) iff there exists a (H,A) € 7 such that
(F,AYC(H, AYC(G, A). An analogous concept, that of a d-neighborhood, can be
introduced in a soft proximity space and furnishes an alternative approach to the

study of sot proximity spaces.

Definition 4.1.12. A soft-subset (G, A) of a soft proximity space (Uy, d) is a J-
neighborhood of a soft set (F, A) (in symbols (F, A) < (G, A)) iff (F, A) §(G, A)°.

The second part of the following lemma (which is a strengthened form of
Corollary 4.1.7) justifies the term ‘d-neighborhood’.

Lemma 4.1.13. Let (Uy,d) be a soft proximity space and (F, A) and (F, A)°
denote, respectively, the soft closure and soft interior of (¥, A) in 7(¢). Then
(1) (F, A) < (G, A) implies (F, A) < (G, AY, and

(2) (F, Ay < (G, A)y-implies (F, A) < (G, A)°.

Therefore (F, A)C(G, A)°, showing.that a d-neighborhood is a soft topological
neighborhood.

Proof (1) Using Lemma 4.1.9, (F, A) §(G, A)° implies (F,A) §(G, A)°, i.e.,
(F, Ay < (G, A).
(2) Using Lemma 4.1.9, (F, A) (G, A)¢ implies (F, A) §(G, A)¢. By Lemma

3.2.9, equivalently, (F, A) §J((G, A)°)¢, ie., (F,A) < (G, A)°. O
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Lemma 4.1.14. Let (U4, d) be a soft proximity space. Then the axiom (SP4) is

equivalent to

(F, A) §(G, A) implies there exist soft sets (H, A) and (K, A) in SS(U)x
such that (F,A) < (H,A), (G, A) < (K, A) and (H,A) §(K,A). (4.4)

Proof To prove (4.4) implies (SP4), we note that if (H, A) §(K, A) then (H, A)
C(K, A)¢ by (SP5) and Proposition 3.1.4(4). Setting (S, A) = (H, A)¢, we have
(F,A) #(S,A) and (S, A)¢ §(G,A). On the other hand, suppose (SP4) holds.
Then (F, A) §(G, A) implies there is a soft set (K, A) such that (F, A) §(K, A) and
(K, A) §(G, A). Moreover, there exists a soft set (H, A) such that (F, A) §(H, A)°
and (H, A) §(K, A). Thus we have (F, A) < (H, A) and (G, A) < (K, A). O

Theorem 4.1.15. Given a soft proximity space (Uy,d), the relation < satisfies
the following properties:

(1) Usa < Uy.

(2) (F,A) < (G, A) implies (F, AYC(G, A). The converse holds if (U, d) is
discrete.

(3) (F, A)C(G, A) < (H, A)C (I A) implies (F, A) < (K, A).

(4) (F,A) < (G, Ay for i =4,2,...,niff (F,A) < N, (G, A).

(5) (F, A) < (G, A) implies (G, A)¢ < (F, A)°.

(6) (F,A) < (G, A) implies there is a soft set (H, A) such that (F, A) <
(H,A) < (G, A).

Proof (1) Since Uy §®4 by (SP3), Us < Ug.

(2) If (F,A) §(G, A)*then(F, A) m (G, A)° = &y, mmplying (F, A)C(G, A).
The second part is easy consequence-of the definition of discrete soft proximity
given in Example 4.1.2.

(3) If (F, A) &« (K, A), then (F, A)d(K, A)¢. This implies that (G, A)6(H, A)°
or (G,A) « (H,A), a contradiction.

(4) It suffices to consider n = 2. (F, A) < (G1,A) and (F, A) < (Gq, A) iff
(F, A) (G, A and (F, A) J(Ga, A iff (by (SP2)) (F, 4) [(Gr, A)0(Ga, AY]
iff (F, A) § [(G1, A) M (Ga, A)]*iff (F, A) < ((G1, A) M (G2, A)).
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(5) (F, A) < (G, A) implies (F, A) §(G, A). By (SP1), (G, A)¢ §(F, A), i.e
(G, A) < (F, A).

(6) (F,A) < (G, A) implies (F, A) §(G, A)°. By (SP4), there exists a soft
set (H, A)¢ such that (F,A) §(H,A)° and (H,A) §(G,A)% that is, (F,A) <
(H,A) < (G, A). O

Corollary 4.1.16. Let (Uy, 0) be a soft proximity space. Then (F;, A) < (G;, A)

fort=1,2,...,n implies
@?:1 <Flv A> < @?:1<Gi’ A) and G]iﬂ:l(Fi’ A) < L/-VJ?:1<G'i7 A)

Note that (SP4) is equivalent to Theorem 4.1.15(6). The following is a con-
verse of Theorem 4.1.15.

Theorem 4.1.17. If < is a binary relation on S§(U) 4 satisfying the conditions
(1)-(6) of Theorem 4.1.15 and ¢ is defined by

(F, A) {G, A)ift (F]A) <{G,A),

then ¢ is a soft proximity on Us. Thus (G, A) is é-neighborhood of (F, A) iff
(F,A) < (G, A).

Proof (SP1) (F,A) (G, A) implies (F, A) < (G, A)°. By Theorem 4.1.15(5),
(G, A) < (F,A)°, and so (G, A) §(F, A).

(SP2) ((F, A)J(G, A)) g(H,A) implies ({(F, A)U(G, A)) < (H, A)°. By The-
orem 4.1.15(3), (F, A) < (H, A)“and (G, A) < (H,A)°; that is, (F, A) §(H, A)
and (G, A) §(H, A). Conversely, if ((F, A)U(G, A))S6(H, A) then by (SP1), (H, )
(F, A)T(G, A)). Henee (HAY &-(F, AT(G, A, oxMBHA) £ ((F, A)°
(G, A)°). Thus by Theorem 4:1.15(4), (H, A) & (F, A)C (H,A) & (G,A> .
Hence (H, A)d(F, A) or (H, A)6(G, A) and it follows, since J is symmetric, that
(F,A)6(H, A) or (G,A)§(H, A).

(SP3) is a direct consequence of Theorem 4.1.15(1).

(SP4) Suppose (F, A) (G, A), i.e., (F, A) < (G, A)°. Then Theorem 4.1.15(6)
assures the existence of a soft set (H , A) such that (F, A) < (H,A)° < (G, A)°.
Thus there is a soft set (H, A) such that (F, A) §(H, A) and (H, A)° §J(G, A).
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(SP5) If (F, A) §(G, A), then (F, A) < (G, A)°. From Theorem 4.1.15(2), we
have (F, AYC(G, A), ie., (F,A) @ (G, A) = & 4.

Therefore 0 is a soft proximity on Uy. Clearly, (G, A) is é-neighborhood of
(FVA) iff (F,A) §(G, A)ciff (FLA) < ((G,A)°)° = (G, A). O

Theorem 4.1.18. If (Uy, §) is a soft proximity space and (F, A) € SS(U) 4, then

(F, A) = Mira)<(c,4)(G, A).
Proof From Lemma 4.1.13(1) and Theorem 4.1.15(2), we conclude that (F, A)

< (G, Ay implies (F, A)C(G, A), and hence (F, A)C f(p 4y« (.4 (G, A). To show

the reverse soft inclusion, suppose that xp &(F, A). Then zp §(F, A) and, by

Lemma 4.3.14, (F, A) has a é-neighborhood (G, A).,
Thus Ip/é @(F,A)<<(G,A> <G, A) O

not soft containing xp.

4.2 Soft proximally continuity

In the study of soft topological spaces, soft continuous functions play an important
role. This analogue in the theory of soft proximity spaces is the concept of a soft

proximally continuous mapping.

Definition 4.2.1. Let (Uy, ;) and (Vp,02) be two soft proximity spaces. Let
w:U — Vand p: A — B be functions. A function f,, : SS(U)s — SS(V)5
is said to be a soft proximally continuous mapping iff (F, A)d1(G, A) implies
fou((F, A))02 fru({G A)).

Equivalently, f,, is a-soft preximally continuous mapping iff (H, B) #» (K, B)
implies f&}((H, B)) ;XJ;}((K, B))yor (H, B) &, (K, B) implies fpj}(<H, B)) <4
fou (K, B)).

It is easy to see that the composition of two soft proximally continuous map-

pings is a soft proximally continuous mapping.

Theorem 4.2.2. Let (Ua,d;) and (Vp,d2) be two soft proximity spaces and
Jou : SS(U)a — SS(V)p be a function. If f,, is soft proximally continuous

mapping, then f, is soft pu-continuous with respect to 7(d;) and 7(ds).
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Proof This result follows easily from Theorem 3.4.5 and the fact that zpd; (F, A)
implics ()5 o ((F, AY), L., fou(TF, AD)E Tl (F, V) 0

It is natural to inquire as to when the converse of Theorem 4.4.2 is true.

Theorem 4.2.3. Let (Uy,61) and (Vp,d2) be soft proximity spaces and fp, :
SS(U)4 — SS(V)p be a function. If (Uy, d;) is a soft proximity space satisfying

the condition

(F, A)5,(G, A) iff (F, A) m (G, A) # ® 4,

then every soft pu-continuous mapping f,, is soft proximally continuous.

Proof If (F, A) and (G, A) are soft sets such that (F, A)d; (G, A), then (F, A)m

(G,A) # ®,. But this implies that f,,((F,A)) @ f.((G,A)) # ®p, ie.,
Fou((F, A5 fou((G, A)). Since f,, is soft pu-continuous, it follows from The-
orem 3.4.5 that f,,((F, A>)§fpu(<F7 A)) and [, ((G, A))épr“GvA»a yielding
Jou((F, A))do fru((G, A)). From Lemma 4.1.9, it follows that f,, ((F, A))d2 fu((G,

A)), and we conclude that f,, is a soft proximally continuous mapping. O

Theorem 4.2.4. Let fp, : SS(U)a — SS(V)p be a function and (Vg,d2) be a

soft proximity space. If we define a relation d, on Uy by

(F, A) §o(G, A) iff there exists a (H, B) € S§(V)p such that
fPU(<F? A)) 52<H7 B>C and fp_ul(<H7 B>)§<G> A>C’

then Jy is the coarsest. soft proximity on Uy such that.f,, is soft proximally

continuous mapping.

Proof We first verify that dy is a soft proximity on Uy.

(SP1) Suppose (F, A) §o(G, A) and let (K, B) = (fpu((F, A))). Since f,.,((G,
A)) C(H.B)® and f((F, A)) §o(H, B)°, we have f,,((G,A)) §(H, B)°. Moreover,
we have f (K, B)) = (! fyu((F, AY)°C(F, A Hence (G, A) §o(F, A).

(SP2) ((F, A)U(G, A)) #o(H, A) implies the existence of a (K, B) € SS(V)p
such that [fpu((F, A))Ufu((G, A))] Fo(K,B)* and [ '((K, B))C(H, A)¢, from
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which (F, A) §o(H, A) and (G, A) §y(H, A) follow. If (F, A) §y(H, A) and (G, A)
do(H, A), there exist (K7, B) and (K5, B) in SS(V) g such that f,,((F, A)) §a (K7,
BY, foul(G, AY) $olIon, BYY, [ (Fy, BY)E(H, AY and f (Ko, B))C(H, A)"
Hence [fpu((F, A))Ufpu((G, A))] fol (K1, B)U(Ky, B))® and f,'((K1, B)U(K3, B))
C(H,A), ie., ((F,AU(G, A)) §o(H, A).

(SP3) If (F, A) = ® 4, then f,,((F, A)) foVp and f,,}(®5)C(G, A)°. Hence we
have (F, A) §y(G, A).

(SP4) If (F, A) #o(G, A), then there exists a (H, B) such that f,.! ((H, B))C(G,
A) and f,,((F, A)) §o(H, B)°. Since 6, is soft proximity, the latter relation and
(SP4) together assure the existence of a soft set (K, B) such that f,,((F, A)) #
(K, B) and (K, B)* o(H, B)". Let (J, A) = [,/ ((K, B)). Since fpu((F, A)) f2(K,
BY, (F, A) §o(J, A). As fu((J, A¥)E(K, BY fo(H, B)* and f1((H, B)E(G, A),
we have (J, A)° §o(G, A).

(SP5) (F, A) §y(G, A) implies there exists a (H, B) such that f,,((F, A)) §(H,
B)¢and f,,'((H, B))C(G, A)e. Therefore f,,((F,A))A(H,B)° = &5 and Fou (fou
((F, A))) 1 fl ((H, B)*),= @, Since (F, A)C fr(fyu((F A))).and (G, A7
((H, B)°), we have (F;yA) M{(G, A) = 4.

In order to show that f,, is a-soft proximally continuous mapping, suppose
that f((F, A)) dafpu((G; A)). Since fu((F, A)) < (fpul(G; A)))% by Theorem
4.1.15(6), there exists a (H, B) such that f,,((F,A)) < (H, B) < (fu((G, A)))".
Thus we have fu((F,A)) fo(H,B) and fR((H, B))C(f,, ((G,A)))°C(G, A)°,
(F, A) Jo(G. A).

It remains to show that if §; is any soft proximity on Uy such that f,, is soft
proximally continuous, then dyis finer than dg. If (F, A) (G, A), then there exists
a (H, B) such that f,,((F, A)) f.(H,B)° and f, X({H, B))C(G, A)°. Since f, is
soft proximally continuous, (F, A) Fi(f,.-((H, B)))¢, and (G, A)C(f,.'((H, B)))°
implies (F, A) #,(G, A). Thus &; > dy. O

Corollary 4.2.5. Let fp, : SS(U)a — SS(V)p be a function and (Vp,d2) be a

soft proximity space. If dq is a soft proximity on Uy, given in Theorem 4.2.4, then

Jou [7(02)] € 7(9).
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Proof It follows from Theorems 4.2.2 and 4.2.3. O

4.3 Soft clusters and ultra soft filters

Ultra soft filters play an important role in soft topological spaces because such
notions as soft convergence and soft compactness can be characterized in terms
of ultra soft filters. In this section we consider their counterparts, namely soft
clusters, in soft proximity spaces. We show that ultra soft filters and soft clusters
are closely related, and used this relationship to drive several important results

in the theory of soft proximity spaces.

Definition 4.3.1. A collection o of soft subsets of soft proximity space (Uy, d)
is called a soft cluster iff the following conditions are satisfied:

(C1) If (F, A) and (G, A) belong to o, then (F, A)0(G, A);

(C2) If (F, A)d(H, A) for every (H, A) € o, then(F, A) € o;

(C3) If ((F, AYU(G, A)) € g, then (F, A) € o or (G, A) €.

Remark 4.3.2. (1) For each 2,€U,, the collection o,,. = {{F,A) € SS(U)4 :
(F,A)oxp} is a soft cluster. We call such a soft cluster a soft point cluster and
use this notation.

(2) If o is any soft cluster in Uga, then Uy € @ by (C2). Hence for each soft
set (F, A) in SS(U) 4, either (F, A) € o or (F, A)¢ € 0. Recall that an ultra soft
filter also has this property.

(3) If (F, A) € o and (F, AYC(GA), then (@, A) € 0. This toois a property
of an ultra soft filter.

(4) If o is any cluster in-Uy, then'(F, A)-€ o iff (F, AY € o. This follows from
Lemma 4.1.9, (C2) and (3).

Lemma 4.3.3. If 0y and oy are two soft cluster in proximity space (Uy,d) such
that 01 Q g9, then 01 = 09.
Proof If (F, A) € o9, then (F, A)do(H, A) for every (H, A) € oy. Since o1 C 09,

(F,A)6(G, A) for every (G, A) € oy, which shows that (F, A) € oy. Thus oy C 0.
O
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The following lemma on ultra soft filters is useful in deriving the fundamental

relationship between ultra soft filters and soft clusters.

Lemma 4.3.4. Let P be a collection of soft sets in SS(U) 4 such that (1) &4 ¢ P,
and (2) (F, AYU(G, A) € P iff (F,A) € P or (G,A) € P. If (I, A) € P, then
there exists an ultra soft filter F such that

(a) (Fp, A) € F and (b) F CP.

Proof By Zorn’s lemma, there exists a maximal collection F of soft sets in
SS(U) 4 satisfying

(a) (Fo, A) € F and

(b) (F;, A) € F for i =1,2,...,n implies M}, (F;, A) € P.
Obviously &4 ¢ F. If (F,A) and (G, A) belong to F then by (b), (F,A) m
(G, A) € P. Since F is maximal, we must have (F, Aym(G, A) € F. If (F, A) € F
and (F, AYC(H, A), then (H, A) € P and hence belongs to F since F is maximal.
Having shown that F is soft filter, it remains to show that F is an ultra soft filter.
Supposing the contrary, there would exist a soft set (K, A) in SS(U) 4 such that
neither (K, A) nor (K, A)¢ belongs to F. Hence there are soft sets (Fi, A) and
(Fy, A) in F such that neither (Fy, A) m (K, A) nor (Fy, A) M (K, A)¢ belongs to
P. If (F, Ay = (Fy, Ay m (Fy, A), then (F, A) € P while neither (F, A) m (K, A)
nor (F, A) m (K, A)¢ belongs to P, a contradiction. O

Theorem 4.3.5. A collection o of soft subsets of a soft proximity space (Uy, 9)

is a soft cluster if and only if there exists an ultra soft filter F on U, such that
o={(F,A) € SS(U)a:(F,A)(G, A) for every (G, A) € F}. (4.5)

Moreover, given o and (Fy, A) € o, there exists an ultra soft filter F satisfying
(4.5) and which contains (Fp, A).

Proof Let F be an ultra soft filter on U and let o be defined by (4.5). We
shall first show that o is a soft cluster.

(C1) Suppose (F,A) and (G, A) belong to F. For every soft set (H, A) in
SS(U)a, either (H, A) or (H, A)¢ is in F. This means either (a) (F, A)6(H, A)
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and (G, A)d(H,A) or (b) (F,A)6(H,A)¢ and (G, A)6(H, A)°. Hence for every
soft set (H, A) in SS(U) 4, either (F, A)6(H,C) or (H, A)°0(G, A) which shows
(by (SP4)) that (F, A)d(G, A).

(C2) Suppose (F, A)d(H, A) for every (H, A) € 0. Since F C o, (F, A)6(G, A)
for every (G, A) € F, which shows that (F, A) € o.

(C3) If neither (F, A) nor (G, A) belongs to o, there exist (F’, A) and (G’, A)
in F such that (F, A) J(F', A) and (G, A) §(G', A). Using Theorem 4.1.15(3), we
obtain (F, A) J[(F", A) m (G', A)] and (G, A) §[(F', A) m (G’, A)]. Thus by (SP2),
[(F, AYU(G, A)] § [(F', A) ® (G', A)]. Since [{F', A) m (G’, A)] € F, it follows that
[(F, A)U(G, A)] ¢ F, as required.

Conversely, let o be a soft cluster and suppose (Fy, A) € F. Taking P = o
in Lemma 4.3.4, we obtain an ultra soft filter F C ¢ such that (Fy, A) € F.
If o' = {{F,A) € SS(U)a : (F,A)0(G, A) for every (G, A) € F}, then o C o’.
Thus by Lemma 4.3.4, 0 = ¢/, and (4.5) is satisfied. O

Corollary 4.3.6. If F is an ultra soft filter such that F C g;.then o is uniquely

determined.

Remark 4.3.7. (1) If F and o are as in Theorem 4.3.5, we say that ‘F generates
o’ or ‘o is determined by F’.
(2) In Theorem 4.3.5, F need only be an ultra soft filterbase.

Lemma 4.3.8. If a soft cluster o in a soft proximity space (Uy,d) is determined
by an ultra soft filter F, then o is“a soft point cluster o,, it and only if F

converges to xp.

Proof o =o0,, iff {zp} € o iff wpd(F, A) for every (F;A) € F iff xp is a cluster
soft point of F iff (Corollary 3.3.18 in soft filter) F converges to xp. O

A soft topological space is compact if and only if every ultra soft filter in
the space converges to a soft point. The following analogue of this result follows

directly from the above lemma.
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Theorem 4.3.9. A soft proximity space is compact if and only if every soft

cluster in the space is soft point cluster.

If (F, A)m (G, A) # ® 4, then there exists an ultra soft filter F which contains
both (F, A) and (G, A). A similar result holds for soft clusters in soft proximity

Spaces:

Theorem 4.3.10. If (F, A)J(G, A), then there exists a soft cluster ¢ in a soft
proximity space (Uy,d) such that (F, A) and (G, A) belong to o.

Proof Let P ={(H,A) € SS(U)4: (H,A)0(G,A)}. From Lemma 4.3.8, there
exists an ultra soft filter F such that (F,A) € F C P. The soft cluster o
determined by F contains both (F, A) and (G, A). O

We now prove a result similar to: if F is an ultra soft filter on U, and
(F, AYCU,, then the trace of F on Uy is an ultra soft filter on (F, A) iff (F, A) €
F.

Theorem 4.3.11. Let o be asoft cluster in a soft proximity space (Ua,d) and let
(F, A) € 0. Then there exists a unique soft cluster ¢’ in ((F, A), 6 1)) contained
in o, namely o’ = {(G, A)C(F,A) : (G, A) € o}.

Proof By Theorem 4.2.4, ¢ is determined by an ultra soft filter F containing
(F,A). Then Fpay,={(G, A) m(F, A) : (G,A) € F}, the trace of F on (F, A),
is an ultra soft filter'on (F, A) and so generates a soft cluster o’ on (F, A). If
(H,A) € o', then (H, A)J[(G,;-A) m (F, A)] lfor each (Gy'A) € F. This implies
(H,A)0(G, A) for each (G, A) € Fyiey (H;A) €o. Thus ¢’ C o, and clearly

{(G, AYC(F, A) : (G, A)§(H, A) for every (H, A) € F}
{(G,AYC(F, A) : (G, A) € g}

/
g

That o’ is the only soft cluster on (F, A) contained in o is shown by a method

similar to that used in Lemma 4.3.4. O
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Let fou : SS(U)a — SS(V)p be a mapping. The following results are well
known:

If F is an ultra soft filterbase on Uy, then f,,(F) = {f,u((G, A)) : (G, A) € F}
is an ultra soft filterbase on Vjg.

We find the following analogue in soft proximity spaces:

Theorem 4.3.12. If f,, : SS(U)a — SS(V)p is a mapping, fp, is a soft proxi-
mally continuous mapping from (Uga, d1) to (Vp, d2), then each soft cluster o1 on

U4, there corresponds a soft cluster oo on Vg such that
oy ={(H,B) € SS(V)p : (H,B)d2fpu((G, A)) for each (G, A) € o}.

Proof oy is determined by an ultra soft filter 7 on Us. Now f,,(F) is an ultra
soft filterbase on Vi and generates a soft cluster o9 on V. If (H, B)ds fpu((G, A))
for every (G, A) € oy, then (H, B)dsf,u((F, A)) for every (F,A) € F, so that

(H, B) € 09. To prove the reverse inclusion, we first note that

fpu(al) g 09.

This follows from the fact that if (G,A) € oy, then (G, A)6(F,A) for ev-
ery (F,A) € F, and f,, being a soft proximally continuous mapping implies
(G, A))0a fru((F, A)) for each (F,A) € F, ie., fu((G,A)) € go. Thus if
(H,B) € 09, then (H, A)d> f,u({G, A)) for every (G, A) € 0.

4.4 Conclusions

In soft topology, a soft proximity space is an axiomatization of notions of “near-
ness” that hold soft set-to-soft sety-as opposed to the better known soft point-
to-soft set notions that characterize soft topological spaces. The concepts of
0-neighborhood and soft proximally continuity be introduced in a soft proximity
space and furnish approaches to the study of sot proximity spaces. We consider
soft clusters in soft proximity spaces and show that ultra soft filters and soft
clusters are closely related, and used this relationship to drive several important

results in the theory of soft proximity spaces.
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