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Development of feed additives by using fisheries by-products in juvenile Nile tilapia, Oreochromis niloticus and

olive flounder, Paralichthys olivaceus

Yujin Song

Department of Fisheries Biology, Graduate School, Pukyong National University

Abstract

Two experiments were conducted to investigate the effects of dietary supplementation of different fisheries by-
product extracts with and without inosine momophosphate (IMP) on growth performance and non-specific
immune responses in juvenile Nile tilapia and juvenile olive flounder. In the first experiment, juvenile Nile
tilapia averaging 4.9 + 0.07g (mean + SD) were fed one of the six experimental diets; A basal diet without feed
additives was used as control (CON), the other five experimental diets were formulated to include 2% each of
100% shrimp soluble extract (SSE), 98% shrimp soluble extract + 2% IMP (SSEP,), 96% shrimp soluble extract
+ 4% IMP (SSEP4), 100% squid soluble extract (SQSE) and 100% tilapia soluble extract (TSE) replacing 2% of
soybean meal and other ingredients from CON diet. In the second experiment, juvenile olive flounder averaging
13.4 + 0.13g (mean + SD) were fed one of the five experimental diets. A basal diet without feed additives was
used as control (CON), the other four diets were formulated to include 2% each of 100% SSE processed at low
pH (SSEL), 100% SSE processed at high pH (SSEH), 95% SSE + 5% IMP processed in low pH (SSELP) and

95% SSE + 5% IMP processed in high pH (SSEHP) replacing 2% of wheat flour and other ingredients from



CON diet. The first experiment’s results that supplementation shrimp soluble extract without (SSE) and with 4%
IMP (SSEP,) as feed additives could have beneficial effects on growth performance and immune responses in
juvenile Nile tilapia. The second experiment’s results indicated that supplementation of shrimp soluble extract
produced in low or high pH without (SSEL and SSEH) and with IMP (SSELP and SSEHP) could have
beneficial effects on growth performance by SSEL and SSEH and on immune responses by SSELP and SSEHP

in juvenile olive flounder.
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Experiment 1.

Effects of three fisheries by-product extracts on growth performance and non-specific

immune responses in juvenile Nile tilapia, Oreochromis niloticus

An 8-week feeding trial was conducted to investigate the effects of dietary supplementation of three different
fisheries by-product extracts as the feed additives in juvenile Nile tilapia, Oreochromis niloticus. Twenty fish
averaging 4.9 + 0.07 g (mean + SD) were randomly distributed into 18 rectangular 30-L volume tanks and fed
one of the six experimental diets. A basal diet without feed additives was used as control (CON), other five diets
were formulated to include 2% each of 100% shrimp soluble extract (SSE), 98% shrimp soluble extract + 2%
inosine monophosphate (SSEP»), 96% shrimp soluble extract + 4% inosine monophosphate (SSEPs), 100%
squid soluble extract (SQSE) and 100% tilapia soluble extract (TSE) replacing 2% of soybean meal and other
ingredients from CON diet. After the feeding trial, weight gain and specific growth rate of fish fed SSE, SSEP,
and SSEP; diets were significantly higher than those of fish fed CON and SQSE diets (P<0.05), and however,
there were no significant differences among fish fed SSE, SSEP,, SSEP; and TSE diets (P>0.05).
Myeloperoxidase activities of fish fed SSE and SSEP; diets were significantly higher than those of fish fed CON,
SSEP, and SQSE diets (P<0.05), and however, there were no significant differences in among fish fed SSE,
SSEP, and TSE diets (P>0.05). Superoxide dismutase activities (SOD) of fish fed SSE and SSEP; diets were
significantly higher than those of fish fed CON, SSEP,, SQSE and TSE diets (P<0.05). Also, SOD of fish fed
SSEP, and TSE diets were significantly higher than those of fish fed CON and SQSE diets (P<0.05). In
challenge test with Aeromonas hydrophila for 10 days, cumulative survival rate (CSR) of fish fed SSE diet were
significantly higher than those of fish fed CON, SQSE and TSE diets (P<0.05). Also, CSR of fish fed SSEP,
diet were significantly higher than those of fish fed SQSE and TSE diets (P<0.05), and however, there were no
significant differences in CSR among fish fed CON, SSEP4, SQSE and TSE diets (P>0.05). Therefore, these
results indicated that supplementation of shrimp soluble extract without (SSE) or with inosine monophosphate
(SSEP,) as feed additives could have beneficial effects on growth performance and non-specific immune

responses of juvenile Nile tilapia.
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Experiment 2.

Effects of dietary shrimp soluble extract produced by high/low pH with and without

additional inosine monophosphate in juvenile olive flounder, Paralichthys olivaceus

A nine-week feeding trial was conducted to investigate the effects of dietary supplementation of shrimp
soluble extract (SSE) produced by high/low pH with and without inosine monophosphate (IMP) as feed
additives in juvenile olive flounder, Paralichthys olivaceus. Fifteen fish averaging 13.4 + 0.13g (mean + SD)
were randomly distributed into 18 rectangular 45-L volume tanks and fed one of the five experimental diets. A
basal diet without feed additives was used as control (CON), and 2x2 factorial designed with the other four diets
were formulated to include 2% each of 100% SSE processed at low pH (SSEL), 100% SSE processed at high
pH (SSEH), 95% SSE + 5% IMP processed in low pH (SSELP) and 95% SSE + 5% IMP processed in high pH
(SSEHP) replacing 2% of wheat flour and other ingredients from CON diet. After the feeding trial, weight gain
and specific growth rate of fish fed SSEL and SSEH diets were significantly higher than those of fish fed CON,
SSELP and SSEHP diets (P < 0.05). Feed efficiency and protein efficiency ratio of fish fed SSEL, SSEH,
SSELP and SSEHP diets were significantly higher than fish fed CON diet (P<0.05), however, there were no
significant differences among fish fed SSEL, SSEH, SSELP and SSEHP diets (P>0.05). Myeloperoxidase
activities of fish fed SSEHP diet were significantly higher than those of fish fed CON, SSEL and SSEH diets
(P<0.05). Superoxide dismutase activities of fish fed SSEHP diet were significantly higher than those of fish fed
CON, SSEL and SSEH diets (P < 0.05), however, there were no significant differences among fish fed SSELP
and SSEHP diets (P>0.05). Lysozyme activities of fish fed SSELP and SSEHP diets were significantly higher
than those of fish fed CON, SSEL and SSEH diets (P<0.05). In challenge test with Edwardsiella tarda for 9
days, cumulative survival rate (CSR) of fish fed SSEHP diet was significantly higher than those of fish fed
SSEH and SSELP diets (P<0.05), however, there were no significant differences in CSR among fish fed CON
and SSEL diets (P>0.05). Therefore, these results indicated that supplementation of feed by shrimp soluble
extract produced in low or high pH (SSEL and SSEH) without IMP could have beneficial effects on growth
performance without positive immune responses. However, supplementation of IMP (SSELP and SSEHP) could

have beneficial effects on immune responses without positive growth performance in juvenile olive flounder.
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I. Introduction

Aquaculture is one of the fastest growing animal-producing sectors now supplying
nearly 50% of the world’s food fish. The use of dietary additives in fish feeds is one of the
methods commonly used to improve weight gain, feed efficiency, and disease resistance in
cultured fish. Marine by-products additives of the contain valuable nutrients that can be utilized
as functional ingredients in feed industry. Studies have reported the beneficial effects of protein
hydrolysates derived from marine processing by-products have been considered as a great
ingredient in aquafeed due to their good nutritional value and functional properties (Chalamaiah
et al., 2012). With the aim of using these by-products, enzymatic hydrolysis has been employed
as one of the promising ways for conversion of fish by-products into acceptable forms with
improved quality and functional characteristics (Shahidi., 1994; Gildberg., 1993; Chalamaiah et
al., 2012). Also, based on their low molecular weight compounds and well-balanced amino acid
profile, hydrolysates have been used as chemo-attractant and fish meal replacer in aquafeeds
(Aksnes et al., 2006a, 2006b; Cahu et al., 2001; Kolkovski et al., 2000; Refstie et al., 2004). And
the beneficial effects on growth performance and feed utilization followed by dietary inclusion of
protein hydrolysates at moderate levels are often attributed to the improvement in palatability of
the feed related to their contents of free amino acids and peptides with short chain length
(Hevroy et al., 2005; Kolkovski et al., 2000; Refstie et al., 2004). In this point of view, marine
by-product like species can also be considered as potential ingredients for fish feed additives.

Crustacean protein hydrolysates have been used in aquafeeds as potential protein sources
(Plascencia-Jatomea et al., 2002) or as dietary supplements in small amounts for improvement of diet
palatability (Kolkovski et al., 2000). Shrimp head and shell generally contain good percentage of
protein with balanced amino acid profile and minerals like Ca, P, Na and Zn (Ibrahim et al.,
1999). Shrimp waste hydrolysates produced under controlled conditions yield desirable

functional properties, high nutritive value and reduced bitterness (Kristinsson et al., 2000). And,

1



the shrimp soluble extract (SSE) has high levels of amino acids and active peptides that are

highly digestible and absorbable for animals (Gildberg et al., 2001; Aksnes et al., 2006). Also,
use of shrimp soluble extract could reduce environmental problems that are caused by the improper
dumping of the inedible parts of shrimp, such as head, shell, and tail (Heu et al., 2003). Recovery of
the shrimp waste by enzymatic hydrolysis results in the formation of biologically active peptides with
pharmaceutical and growth-stimulating properties (Gildberg et al., 2001).

Tilapia processing industries generate a huge quantity of by-product having potentially high
nutritional and functional values. Tilapia protein hydrolysate is a desirable source of essential amino
acids and minerals suggesting it as a potential ingredient in aquafeeds (Foh et al., 2011). As for other
hydrolysate manufactured from fish by-products, strong antioxidative activities were identified from
tilapia hydrolysate (Fan et al., 2012; Zhang et al., 2012).

In the same way, the level of protein in squid-processing by product is high enough for proteolytic
hydrolysis for the generation of peptides and free amino acids. It also possesses most of the amino
acids essential to the growth and survival of fish (Jobling M., 1998). At this high-protein level, the
most viable approach to the full utilization of squid by product would be a bioconversion into
hydrolysate as an aquaculture nutrient additive (Lee et al., 2008). And use of squid hydrolysate has
feed attractant and stimulant properties and improved growth and survival (Lian et al., 2003a, 2003b).

Nucleotides are the base units for DNA and RNA synthesis during cell construction, provide
energy for normal cellular process and are therefore essential to growth and development
(Vanburen et al., 1994). Over the last 35 years, the roles of nucleotides and their related products
in fish diets have been sparingly studied as functional nutrients (Li et al., 2006; Hossain et al.,
2016a, b). However, dietary supplementations of nucleotides or nucleosides have been shown to
benefit many mammalian physiological and nutritional functions (Carver., 1994; Hasko et al.,
2000; Quan., 1992; Uauy., 1989). Inosine monophosphate (IMP), a nucleoside monophosphate,
is the first compound formed during the synthesis of purine. IMP may be involved in cell

signaling pathways as well as serve as nutrients for biosynthesis. Numerous studies on different



aquatic species already reported that dietary supplementation of inosine or IMP, either alone or in
combination with certain free amino acids, significantly improves the growth rate of fish (Lin et
al., 2009; Hossain et al.,, 2016a, 2016b) and it can also improve disease resistance and immune
responses such as lysozyme activity, myloperoxidase activity and nitro-blue-tetrazolium activity
of Japanese flounder, (Paralichthys olivaceus) (Song et al., 2012). Such biological activities could
find application in new development of fish feed for higher performances.

Nile tilapia, Oreochromis niloticus has become iconic fresh water cultured fish species around the
world by contributing a global production of 3.9million MT in 2015 (FAO., 2017). The tilapia is an
omnivorous species that has a digestive system that differs both from that of carnivorous and many
herbivorous fish (Albino et al., 2009). It uses a wide spectrum of foods (Sklan et al., 2004a),
efficiently uses dietary carbohydrates (Boscolo et al., 2002) and has a great ability to digest plant
protein (Olvera-Novoa et al., 2002; Shelton et al., 2006; Gatlin et al., 2007). Also, Nile tilapia is one
of the most economically important species in aquaculture to culture because of its rapid growth, good
survival in high density culture and disease tolerance (El-Sayed., 2006).

Olive flounder, Paralichthys olivaceus is a carnivorous fish and is one of the most important marine
finfish for aquaculture in East Asian countries such as Korea, Japan and China. The aquaculture of
olive flounder started from the late 1980s in Korea (Kim et al., 2002). In 2016, the production of olive
flounder in Korea is approximately 41,620 metric tons and maximum aquaculture production is nearly
55,000 tons in 2009 (KOSTAT., 2017). Accordingly, many feeding trials have been performed to
determine dietary nutrient requirements (Lee et al. 2000a, 2002), the optimum feeding frequency (Lee
et al. 2000b), alternative protein sources for fish meal (Kikuchi et al., 1994, 1997; Kikuchi., 1999),
and the best feeding strategy (Cho et al., 2005; Cho et al. 2006c).

In this study, the effects of dietary fisheries by-product with and without additional inosine
monophosphate at process pH in juvenile Nile tilapia and olive flounder were determined for growth

performance and non-specific immune responses.



I1. Effects of dietary soluble extracts additive on growth
performance and non-specific immune responses in

juvenile Nile tilapia, Oreochromis niloticus

Materials and Methods

Experimental diets

Fisheries by-products tested in this study were provided by VNF Company (Vietanm Food Joint
Stock Company), Ca Mau, Vietnam. Fisheries by-products production process in divided into the
following key stages. Heads collected from seafood processors are processed to eliminate extraneous
matter, then cut and pressed to obtain liquid extract. The shell leftovers are used to produce chitin and
glucosamine. This liquid extract will go through centrifugal processing to acquire its purest form. The
extract is then sent to chemical processing area where the protein will be broken into peptides and
digestible single protein (amino acid) such as: aspartic acid, threonine, serine, glutamic acid, proline,
glycine, alanine, valine, cystein, methionine, isoleucine, leucine, tyrosine, phenylalanine, lysine,
histidine, arginine. Many among these amino acids are widely used as growth stimulants for livestock
and aquaculture (aspartic acid, threonine, methionine, lysine). Chemically processed extract is
densified to create products that will meet various levels of quality standards according to customer
demands. Densified soluble is mixed and added with flavor-preservation additives, to maintain the
product’s unique scent. Amino acid profile of the fisheries by-product have been provided in Tables 1

respectively.
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Fig 1. Fisheries by-products production process

Ingredients and proximate composition of the six experimental diets are shown in Table 2. Six
experimental diets were formulated to be isonitrogenous and isocaloric in terms of crude protein (33%)
and gross energy (kcal energy/kg). The amino acid compositions of all experimental diets are
presented in Table 3. A basal diet without feed additives was used as control (CON), other five diets
were formulated to include 2% each of 100% shrimp soluble extract (SSE), 98% shrimp soluble
extract + 2% inosine monophosphate (SSEP»), 96% shrimp soluble extract + 4% inosine
monophosphate (SSEP,), 100% squid soluble extract (SQSE) and 100% tilapia soluble extract (TSE)
replacing 2% of soybean meal and other ingredients from CON diet. Fish meal, soybean meal,
rapeseed meal, mate and bone meal, poultry offal meal and squid liver powder were used as the

protein sources, soybean oil and fish oil as the lipid source, and wheat flour as the carbohydrate



source in the experimental diets. Pellets were air-dried for 48-96 h, broken and sieved to achieve the

desired particle size and stored at -20°C until use.



Table 1. Free amino acid contents of the fisheries by-products (% of wet matter basis)

Fisheries by-products

i ids 98% SSE + 96% SSE +
0, o o 0, 0, I

Alanine 1.33 1.25 1.27 0.62 1.43
Arginine 0.61 0.52 0.62 0.60 1.24
Aspartic acid 1.42 1.26 1.28 0.90 1.81
Glutamic acid 1.97 1.78 1.89 1.06 2.71
Glycine 0.94 1.02 1.49 0.64 1.95
Histidine 1.03 0.68 0.95 0.68 0.99
Isoleucine 0.78 0.70 0.74 0.49 0.76
Valine 0.97 0.87 0.91 0.51 0.91
Leucine 1.12 1.02 1.07 0.70 1.30
Lysine 0.93 0.86 0.88 0.56 1.42
Phenylalanine 0.71 0.62 0.67 0.37 0.72
Proline 0.63 0.60 0.64 0.53 115
Serine 0.46 0.42 0.46 0.38 0.77
Threonine 0.53 0.48 0.51 0.42 0.79
Tyrosine 0.24 0.26 0.24 0.08 0.21




Table 2. Composition and proximate analysis of the basal diet for juvenile Nile tilapia (% of dry

matter basis)

Ingredients %
Fish meal (Tuna)' 8.00
Soybean meal' 34.6
Wheat flour' 34.99
Rapeseed meal' 10.0
Meat and bone meal' 2.00
Poultry offal meal' 2.00
Squid liver powder' 2.00
Soybean oil' 1.30
Fish oil' 2.00
Others® 3.11

Proximate analysis (% of DM basis)

Moisture 9.42
Crude protein 333
Crude lipid 5.20
Crude ash 8.02

'CJ CheilJedang Co. Seoul, Korea.
2 Protide (nucleotide by product), C-IMP (inosine monophosphate), phos mono, fish mineral, protase,
vitamin C, koking tocopherol and koking choline



Table 3. Amino acid contents of the juvenile Nile tilapia experimental diets (% of dry matter basis)

Diets

CON SSE SSEP, SSEP, SQSE TSE
Alanine 1.60 1.65 1.64 1.67 1.59 1.65
Arginine 2.09 2.18 2.11 2.15 2.16 2.11
Aspartic acid 3.20 3.30 3.13 3.31 3.10 3.22
Glutamic acid 6.54 6.74 6.52 6.74 6.49 6.62
Glycine 1.79 1.85 1.80 1.85 1.76 1.65
Histidine 1.01 1.06 1.03 1.09 1.12 1.02
Isoleucine 1.48 1-52 1.49 1.54 1.49 1.55
Valine 1.68 1.69 1.67 iy 1.64 1.74
Leucine 243 2.50 2.45 2.52 2.44 2.48
Lysine 1.82 1.88 1.90 1.88 1.85 1.90
Phenylalanine 1.54 1.59 1.52 1.59 1.56 1.56
Proline 2.07 1.98 1.65 2.09 2.16 2.11
Serine 1.44 1.55 1.50 F3R 1.49 1.39
Threonine 1.25 1.30 1.27 1.31 1.27 1.25
Tyrosine 0.89 0.93 0.92 0.94 0.94 0.89
Total 30.84 31.72 30.60 31.93 31.04 31.31




Experimental fish and feeding trial

This experiment was conducted at the Institute of Fisheries Sciences, Pukyong National
University, Busan, Korea, and juvenile Nile tilapia were obtained from a private hatchery (Docheon
Aquafarm, Changnyeong, Republic of Korea) and fed a commercial diet for two weeks to be
acclimated to the experimental conditions and facilities. Three hundred sixty fish averaging 4.9 £ 0.07
g (mean £ SD) were weighed and randomly distributed into 18 indoor tanks (20 fish/tank) with a 30-L
volume receiving a constant flow (0.8~1.0 L/min) of fresh water. Each tank was then assigned
randomly to one of the three replicates of the six dietary treatments. Fish were fed twice daily (09:00

and 18:00 h) for 8 wk to apparent satiation. Throughout the experimental period, the water

temperature and pH were maintained at 27 + 0.5°C and 7.5 + 0.3, respectively. And supplemental

aeration was provided to maintain the dissolved oxygen near saturation.

Sample collection and analysis

At the end of the feeding trial, fish were starved for 24h, and the total number and weight of fish
in each tank were determined for calculation of initial body weight, final body weight, weight gain
(WQ), specific growth rate (SGR), feed efficiency (FE), protein efficiency ratio (PER), and survival.
Three fish per tank were randomly sampled, individually weighed, and then dissected to obtain liver
and viscera samples for determination of hepatosomatic index (HSI), viscerosomatic index (VSI) and

condition factor (CF), respectively (Yoo et al. 2007; Kim et al. 2014).

Weight gain (WG, %) = (final wt. - initial wt.) x 100 / initial wt
Specific growth rate (SGR, %/day) = (loge final wt. - loge initial wt.) x 100 / days

Feed Efficiency (FE, %) = (wet weight gain / dry feed intake) x 100
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Survival rate (%) = (total fish - dead fish) % 100 / total fish

Protein efficiency ratio (PER) = (wet weight gain / protein intake)

Daily feed efficiency (DFI, %) = specific growth rate x 100 / feed efficiency
Hepatosomatic index (HSI, %) = liver wt. x 100 / body wt

Visceralsomatic index (VSI, %) = viscera wt. x 100 / body wt

Condition factor = (wet weight / total length®) x 100

Three additional fish per tank were randomly captured and anesthetized with ethylene glycol phenyl
ether (200mg/L) and blood samples were obtained from the caudal vein using 1 mL disposable

syringe without anticoagulant. The blood sample was separated by centrifugation (5000 x g) for 10

min. Then, the serum was stored at -70°C for later analysis of plasma glucose, total cholesterol and

activities of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were measured by
a chemical analyzer (Fuji DRI-CHEM3500i, Fuji Photo Film, Ltd., Tokyo, Japan). Another set of

blood samples of the same fish were allowed to clot at room temperature for 30 min. Then, the serum

was separated by centrifugation at 5000 x g for 10 min and stored at -70°C for the analysis of non-

specific immune responses including lysozyme, superoxide dismutase (SOD) and myeloperoxidase

(MPO) activities.

Analyses of moisture, crude protein, lipid, and ash of whole-body samples and experimental diets

were performed using standard methods (AOAC 1995). Samples of diets and fish were dried to
constant weights at 105°C to determine their moisture content. Ash was determined by incineration at
550°C, crude lipid was determined by Soxhlet extraction using the Soxtec system 1046 (Tecator AB,

Hoganas, Sweden), and crude protein content was determined by the Kheldahl method (N x 6.25)
after acid digestion. The plasma glucose, total cholesterol and activities of AST and ALT were

measured by a chemical analyzer (Fuji DRI-CHEM35001, Fuji Photo Film, Ltd., Tokyo, Japan).

11



Myeloperoxidase (MPO) activity was measured according to Quade and Roth (1997). Briefly, 20 pL.
of serum was diluted with HBSS (Hanks balanced salt solution) without Ca®* or Mg*" (Sigma-Aldrich)
in 96-well plates. Then, 35 pL o f 3.3°5.5’- tetramethlybenzidine hydrochloride (TMB, 20 mM)
(Sigma-Aldrich) and H>O, (5 mM) was added. The color change reaction was stopped after 2 min by
adding 35 pL of 4 M sulfuric acid. Finally, the optical density was read at 450 nm in the micro-plate

reader.

Superoxide dismutase (SOD) activity was measured by the superoxide radical based on reaction
inhibition rate of enzyme with WST-1 (Water Soluble Tetrazolium dye) substrate and xanthine
oxidase using the SOD Assay Kit (Sigma-Aldrich, 19160) in accordance with the procedure of
products. Each endpoint assay was observed by absorbance at 450 nm (the absorbance wavelength for
the colored product of WST-1 effect with superoxide) and after 20 minutes of reaction time at 37°C.

The percent inhibition was normalized by mg protein and expressed as SOD unit/mg.

A turbidimetric assay was used for determination of serum lysozyme level by the method described
by Hultmark et al. (1980) with slight modification. Briefly, Micrococcus lysodeikticus (0.75 mg/mL)
was suspended in sodium phosphate buffer (0.1 M, pH 6.4), 200uL of suspension was placed in each
well of 96-well plates, and 20 pL. serum was added subsequently. The reduction in absorbance of the
samples was recorded at 570nm after incubation at room temperature for 0 and 30 min in a microplate

reader (UNM340, Biochrom, Cambridge, UK).

Challenge test

Challenge test a bacterial pathogen, Aeromonas hydrophila, was obtained from the Department
of Biotechnology, Pukyong National University, Busan, Republic of Korea. Fish (n = 5 per tank) were

distributed according to their dietary treatment groups into 50 L aquarium for the challenge test with
12



no water exchange. Fish were injected intraperitoneally with 0.1 mL of culture suspension of

pathogenic A. hydrophila containing 1 x 10 CFU/mL. Fish mortality was recorded daily for 10 days.

Statistical Analysis

After confirming normality and homogeneity of variance, data were analyzed by one-way
ANOVA using SAS version 9.1 (SAS Institute, Cary, NC, USA). LSD’s multiple range test LSD was

used to compare significant differences among the treatments diets at P < 0.05 significance.
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Results

Table 4 and Figures 2-6 shows the growth performance and survival rate of juvenile Nile tilapia
fed different experimental diets for 8 weeks. weight gain (WG) and specific growth rate (SGR) of fish
fed SSE, SSEP; and SSEP;, diets were significantly higher than those of fish fed CON and SQSE diets
(P < 0.05), however, there were no significant differences among fish fed SSE, SSEP,, SSEP4 and
TSE diets (P > 0.05). Feed efficiency (FE) and Protein efficiency ratio (PER) were no significant
differences in of fish fed all experimental diets (P > 0.05). Daily feed intake (DFI) of fish fed SSE diet
was significantly higher than those of fish fed CON diet (P < 0.05), however, there was no significant
differences among fish fed SSE, SSEP,, SSEP4, SQSE and TSE diets (P > 0.05). There were no
significant differences in Hematosomatic index, Viscerosomatic index and Condition factor among
the treatments. Also, there were no significant differences in survival rate of fish fed all experimental
diets (P > 0.05). There were no significant (P > 0.05) differences in whole-body proximate
composition of fish in all experimental groups (Table 5). Table 6 shows hematological parameters of
juvenile Nile tilapia fed different experimental diets. There were no significant differences in
Aspartate aminotransferase, Alanine aminotransferase, glucose and total cholesterol contents of fish
fed experimental diets. Table 7 and Figures 7-9 shows the Myeloperoxidase (MPO), superoxide
dismutase (SOD) and lysozyme activities of fish fed different experimental diets for 8 weeks. MPO
activities of fish fed SSE and SSEP4diets were significantly higher than those of fish fed CON, SSEP;
and SQSE diets (P < 0.05), however, there were no significant differences in among fish fed SSE,
SSEP4 and TSE diets (P > 0.05). SOD of fish fed SSE and SSEP4diets were significantly higher than
those of fish fed CON, SSEP,, SQSE and TSE diets (P < 0.05). Also, SOD of fish fed SSEP, and TSE
diets were significantly higher than those of fish fed CON and SQSE diets (P < 0.05). Lysozyme of
fish fed SSEP4 and SQSE diets were significantly higher than those of fish fed SSE and SSEP; diets
(P < 0.05), however, there were no significant differences in among fish fed CON, SSEP4, SQSE and

TSE diets (P> 0.05).
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Challenge test

Mortality was initially observed in all fish groups at 1 day after A. hydrophila infection (Fig.
10). At the end of day 1, the cumulative survival rate (CSR) of fish fed the CON, SSE, SSEP, and
SSEP, diets were significantly higher than TSE diet (P < 0.05). However, there was no significant
differences in CSR among fish fed CON, SSE, SSEP, , SSEP, and SQSE diets (P > 0.05). At day 10,
CSR of fish fed SSE diet were significantly higher than those of fish fed CON, SQSE and TSE diets
(P < 0.05). Also, CSR of fish fed SSEP, diet was significantly higher than those of fish fed SQSE and
TSE diets (P < 0.05). However, there was no significant differences in CSR among fish fed CON,

SSEP4, SQSE and TSE diets (P > 0.05).
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Table 4. Growth performance, feed efficiency and organosomatic indices of juvenile Nile tilapia fed

the experimental diets for 8 weeks'

Diets Pooled
SEM"
CON SSE SSEP; SSEP, SQSE TSE

IBW? 4.9 4.8 4.9 4.9 4.9 4.9 0.02
FBW? 17.2 17.6 17.6 17.8 17.4 17.5 0.09
WG (%)* 254° 264* 265% 265% 253° 257% 1.56
SGR (%/day)’ 2.63° 2.69* 2.70% 2.70% 2.63° 2.65% 0.01
FE (%)° 76.9 71.4 75.0 74.2 72.9 72.6 0.77
PER’ 2.31 2.14 2.28 2.23 2.25 2.25 0.02
DFI (%)® 3.43° 3.77% 3.60%® 3.64%® 3.61%® 3.66® 0.04
HSI (%)’ 0.69 0.74 0.72 0.73 0.71 0.71 0.04
VSI (%)" 6.68 6.77 6.64 6.71 6.66 6.75 0.21
CF! 1.53 1.56 1.55 1.53 1.55 1.55 0.04

"'Values are means from triplicate groups of shrimp where the values in each row with different
superscripts are significantly different (P < 0.05)

?Initial body weight (g).

3 Final body weight (g).

*Weight gain (WG, %) = (final wt. - initial wt.) x 100 / initial wt

>Feed efficiency (FE, %) = (wet weight gain / dry feed intake) x 100

®Specific growth rate (SGR, %) = (loge final wt. - log. initial wt.) x 100 / days

"Protein efficiency ratio (PER) = (wet weight gain / protein intake)

¥ Daily feed intake (DFI, %) = specific growth rate x 100 / feed efficiency

? Hematosonatic index (HSI, %) = liver wt. x 100 / body wt.

1" Visceralsomatic index (VSI, %) = viscera wt. x 100 / body wt.

' Condition factor = (wet weight / total length®) x 100

12pgoled standard error of mean : SD/vn
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Fig.2. Weight gain of juvenile Nile tilapia fed the experimental diets for 8 weeks.

CON - Basal diet (0 % of soluble extract)

SSE — 2% of 100% shrimp soluble extract

SSEP; — 2% of 98% shrimp soluble extract + 2% inosine monophospate
SSEP, — 2% of 96% shrimp soluble extract + 4% inosine monophospate
SQSE — 2% of 100% squid soluble extract

TSE — 2% of 100% tilapia soluble extract
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Fig.3. Specific growth rate of juvenile Nile tilapia fed the experimental diets for 8 weeks.

CON - Basal diet (0 % of soluble extract)

SSE — 2% of 100% shrimp soluble extract

SSEP; — 2% of 98% shrimp soluble extract + 2% inosine monophospate
SSEP, — 2% of 96% shrimp soluble extract + 4% inosine monophospate
SQSE — 2% of 100% squid soluble extract

TSE — 2% of 100% tilapia soluble extract
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Fig.4. Feed efficiency of juvenile Nile tilapia fed the experimental diets for 8 weeks.

CON - Basal diet (0 % of soluble extract)

SSE — 2% of 100% shrimp soluble extract

SSEP; — 2% of 98% shrimp soluble extract + 2% inosine monophospate
SSEP, — 2% of 96% shrimp soluble extract + 4% inosine monophospate
SQSE — 2% of 100% squid soluble extract

TSE — 2% of 100% tilapia soluble extract
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Fig.5. Protein efficiency ratio of juvenile Nile tilapia fed the experimental diets for 8 weeks.

CON - Basal diet (0 % of soluble extract)

SSE — 2% of 100% shrimp soluble extract

SSEP; — 2% of 98% shrimp soluble extract + 2% inosine monophospate
SSEP, — 2% of 96% shrimp soluble extract + 4% inosine monophospate
SQSE — 2% of 100% squid soluble extract

TSE — 2% of 100% tilapia soluble extract
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Fig.6. Daily feed intake of juvenile Nile tilapia fed the experimental diets for 8 weeks.

CON - Basal diet (0 % of soluble extract)

SSE — 2% of 100% shrimp soluble extract

SSEP; — 2% of 98% shrimp soluble extract + 2% inosine monophospate
SSEP, — 2% of 96% shrimp soluble extract + 4% inosine monophospate
SQSE — 2% of 100% squid soluble extract

TSE — 2% of 100% tilapia soluble extract

21



Table 5. Whole-body proximate composition of juvenile Nile tilapia fed the experimental diets for 8

weeks (%, dry matter basis)'

Diets Pooled

2
CON  SSE  SSEP, SSEP,  SQSE TSE SEM
Moisture (%) 6.86™ 587 490 7.0 6.44 6.61 0.38
Crude protein (%) 577 577 584 572 58.7 58.0 0.44
Crudelipid (%)  24.1™ 244 237 254 252 233 0.67
Crudeash (%) 167" 168 Z2NAr 17.4 16.6 0.36

'Values are means from triplicate groups of fish where the values in each row with different
superscripts are significantly different (P < 0.05)

2Pooled standard error of mean : SD/\n
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Table 6. Hematological parameters of juvenile Nile tilapia fed the experimental diets for 8 weeks'

Diets Pooled

4
CON SSE  SSEP, SSEP, SQSE TSE oM
AST (U/LY? 76.0 77.0 75.0 75.0 75.0 74.0 0.6
ALT (U/L) 3.0 2.0 3.0 2.7 2.7 2.7 02
Glucose (mg/dl) 443 43.0 453 44.0 43.0 43.0 0.3
T-cholesterol 224 224 225 224 224 225 0.3

(mg/dl)

'Values are means from triplicate groups of fish where the values in each row with different

superscripts are significantly different (P < 0.05)

2 AST (U/L) : Aspartate aminotransferase.

3ALT (U/L) : Alanine animotransferase.

4Pooled standard error of mean : SD/\n
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Table 7. Non-specific immune responses of juvenile Nile tilapia fed the experimental diets for 8

weeks'
Diets Pooled
4
CON SSE SSEP,  SSEP, SQSE TS  SEM
MPO’ 0.98° 1.09* 0.96° 1.09* 1.04° 1.06® 0.01
SOD’ 66.5¢ 88.3° 77.6° 89.2° 70.5¢ 76.2 2.08
Lysozyme (U/ml) g 0.78° 0.61¢ 0.90? 0.88° 0.86% 0.03

'Values are means from triplicate groups of fish where the values in each row with different

superscripts are significantly different (P < 0.05)

2MPO (absorbance) : Myeloperoxidase

3SOD (% inhibition): Superoxide dismutase

4Pooled standard error of mean : SD/\n
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Fig.7. Myeloperoxidase (MPO) in juvenile Nile tilapia fed the experimental diets for 8 weeks

CON - Basal diet (0 % of soluble extract)

SSE — 2% of 100% shrimp soluble extract

SSEP; — 2% of 98% shrimp soluble extract + 2% inosine monophospate
SSEP4 — 2% of 96% shrimp soluble extract + 4% inosine monophospate
SQSE — 2% of 100% squid soluble extract

TSE — 2% of 100% tilapia soluble extract
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Fig.8. Superoxide dismutase (SOD) in juvenile Nile tilapia fed the experimental diets for 8 weeks

CON - Basal diet (0 % of soluble extract)

SSE — 2% of 100% shrimp soluble extract

SSEP; — 2% of 98% shrimp soluble extract + 2% inosine monophospate
SSEP, — 2% of 96% shrimp soluble extract + 4% inosine monophospate
SQSE — 2% of 100% squid soluble extract

TSE — 2% of 100% tilapia soluble extract
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Fig.9. Lysozyme (U/ml) in juvenile Nile tilapia fed the experimental diets for 8 weeks

CON - Basal diet (0 % of soluble extract)

SSE — 2% of 100% shrimp soluble extract

SSEP; — 2% of 98% shrimp soluble extract + 2% inosine monophospate
SSEP, — 2% of 96% shrimp soluble extract + 4% inosine monophospate
SQSE — 2% of 100% squid soluble extract

TSE — 2% of 100% tilapia soluble extract
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Fig.10. Cumulative survival after intraperitoneal injection with A. Aydrophila in six experimental
groups of juvenile Nile tilapia fed diets. Each value represents mean + SE (n=3). Different letters are

significantly (P < 0.05) different by LSD test

CON - Basal diet (0 % of soluble extract)

SSE — 2% of 100% shrimp soluble extract

SSEP; — 2% of 98% shrimp soluble extract + 2% inosine monophospate
SSEP4 — 2% of 96% shrimp soluble extract + 4% inosine monophospate
SQSE — 2% of 100% squid soluble extract

TSE — 2% of 100% tilapia soluble extract
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Discussion

Result of this study showed that fish fed the SSE, SSEP, and SSEP, diets showed a significantly
higher growth performance. Consistent with our observations, some studies reported the use of shrimp
soluble extract that showed better growth performances in Nile tilapia (Albino., 2009). Shrimp soluble
extract is replaced with alternative protein sources, adverse effects related to deficiencies of certain
essential amino acids. Fish nutritionists have supplemented the diet with amino acids to improve
growth performance (Hardy., 2010). This study use of top-coated protein sources with
supplementation of soluble extract. (Plascencia-Jatomea et al., 2002) concluded that shrimp protein
silage could be included in tilapia diets at concentrations as high as 15%, improving fish growth rate.
The experimental amino acid composition of all experimental diets appeared to meet the requirement
levels that were reported for growing Nile tilapia (NRC., 2011). The essential amino acid
requirements for juvenile Nile tilapia have been known, for lysine 1.10 to 1.90 % of the diet, for
methionine 0.15 % to 1.35 % of the diet (in the presence of 0.02% of cystein) (NRC., 2011).
(Santiago et al., 1988) experiment showed weight gains analyzed by the broken line regression
method indicated the following requirements as a percentage of the dietary protein: lysine, 5.12;
arginine, 4.20; histidine, 1.72; valine, 2.80; leucine, 3.39; isoleucine, 3.11; threonine, 3.75; tryptophan,
1.00; methionine with cystine (0.54% of the protein), 3.21; and phenylalanine with tyrosine (1.79% of
the protein), 5.54. Consistent with our observations, some studies reported the supplement of protein
hydrolysates that showed better growth performances in fish and abalone. (Bautista-Teruel et al., 2003;
Zhu et al., 2011; Burr et al., 2012; Kader et al., 2012; Jo et al., 2016). In other studies, it has been
demonstrated that supplementation of blended protein sources and SSE had a beneficial effect on
growth performance in Malabar grouper, Epinephelus malabaricus (Li et al., 2009), and red sea
bream, Pagrus major (Khosravi et al., 2015), respectively. Hematological parameters are useful
indicators for evaluating the physiological and health status (Maita., 2007). In the biochemical
parameters, alanine aminotransferase (ALT), aspartate aminotransferase (AST), glucose and total

cholesterol were found to be not much affected by dietary supplements of fisheries by-products. And
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blood enzymes such as ALT and AST are known to be health markers of the animal’s physiological
condition (Ozgur et al., 2010). It is also known that these markers are sensitive indicators for tissue
damage (De la Tore et al., 2000). Other researchers have reported that the blood parameters of fish are
not affected by the dietary substitution of alternative protein sources for fishmeal (Cho et al., 2005;
Jeon et al., 2014; Lee et al., 2012). The non-specific defense mechanism of fish include neutrophil
activation, the production of peroxidase, oxidative radicals, and initiation of other inflammatory
factors (Ainsworth et al. 1991). And they have an important role in the immune function of teleost
fish (Irianto et al., 2002). In this study, SOD and MPO activities of fish fed the SSE and SSEP, diets
were significantly higher than those of fish fed other diets. Enhancement of SOD provides further
evidence for earlier in vitro studies that found production of superoxide anion was stimulated by
peptides from fish protein hydrolysate in Atlantic salmon leucocytes (Gildberg et al., 1996). The MPO
is an important enzyme having microbicidal activity, utilize one of the oxidative radicals (H>O») to
produce hypochlorous acid. The enzymes such as SOD and MPO activities play significant roles in
vivo due to their antioxidant function, and their elevated expression and activities are indication of
oxidative stress (Yonar., 2012). A similar tendency was observed in our study, indicating the
enhancement of the fish immune system by inclusion of SSE (Jo et al., 2016). These effects of SSE
are mainly attributed to their bioactive peptide contents that have antioxidative, antimicrobical, and
immunomoculatory acivities (He et al., 2013). (Khosravi et al., 2015) showed that inclusion of 3%
shrimp hydrolysate enhanced the lysozyme activity in diets of the sea bream. These effects of SSE are
mainly attributed to their bioactive peptide contents that have antioxidative, antimicrobial, and
immunomodulatory activities (He et al., 2013). Dietary nucleotides have most recently received
considerable attention as immunomodulating compounds for various fish species; however, these
compounds also may actually influence diet intake of fish. Inosine and inosine 5’-monophosphate
have been effective in improving diet consumption by different fish species (Gatlin et al., 2007).
Numerous studies on humans and animals have reported that dietary supplementation of nucleotides
has positive influence on growth performance, immune responses and disease resistance (Carver.,

1995; 1990; Devresse., 2000). Dietary supplementation of other nucleotides also showed an
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improvement in growth performance of different fish species such as grouper (Epinephelus
malabaricus), rainbow trout, (Oncorhynchus mykiss), Atlantic salmon, (Salmo salar) and red sea
bream, (Pagrus major) (Burrells et al., 2001; Lin et al., 2009; Tahmasebi-Kohyani et al., 2011;
Hossain et al., 2016b). In consistent with our findings, recent studies also reported that dietary
supplementation of inosine monophosphate (IMP) improved growth of red sea bream (Pagrus major)
(Hossain et al., 2016a) and olive flounder (Paralichthys olivaceus) (Song et al., 2012). In conclusion,
this study indicated that supplementation of shrimp soluble extract without (SSE) or with inosine
monophosphate (SSEP,4) as feed additives could have beneficial effects on growth performance and

non-specific immune responses of juvenile Nile tilapia.
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III. Effects of dietary shrimp soluble extract produced by
high/low pH with and without additional inosine
monophosphate in juvenile olive flounder, Paralichthys

olivaceus

Materials and Methods

Experimental diets

Shrimp soluble extract source tested in this study were provided by VNF Company (Vietanm Food
Joint Stock Company), Ca Mau, Vietnam. Shrimp soluble extract production process in divided into
the following key stages. Shrimp heads collected from seafood processors are processed to eliminate
extraneous matter, then cut and pressed to obtain liquid extract. The shell leftovers are used to
produce chitin and glucosamine. This liquid extract will go through centrifugal processing to acquire
its purest form. The extract is then sent to chemical processing area where the protein will be broken
into peptides and digestible single protein (amino acid) such as: aspartic acid, threonine, serine,
glutamic acid, proline, glycine, alanine, valine, cystein, methionine, isoleucine, leucine, tyrosine,
phenylalanine, lysine, histidine, arginine. Many among these amino acids are widely used as growth
stimulants for livestock and aquaculture (aspartic acid, threonine, methionine, lysine). Chemically
processed extract is densified to create products that will meet various levels of quality standards
according to customer demands. Densified soluble is mixed and added with flavor-preservation
additives, to maintain the product’s unique scent. Amino acid profile of the shrimp soluble extract

have been provided in Tables 8 respectively.
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Ingredients and proximate composition of the six experimental diets are shown in Table 9. Six
experimental diets were formulated to be isonitrogenous and isocaloric in terms of crude protein (53%)
and gross energy (kcal energy/kg). The amino acid compositions of all experimental diets are
presented in Table 10. A basal diet without feed additives was used as control (CON), and 2x2
factorial designed with the other four diets were formulated to include 2% each of 100% SSE
processed at low pH (SSEL), 100% SSE processed at high pH (SSEH), 95% SSE + 5% IMP
processed in low pH (SSELP) and 95% SSE + 5% IMP processed in high pH (SSEHP) replacing 2%
of wheat flour and other ingredients from CON diet. Fish meal, meat and bone meal, poultry by-
product meal, blood meal and squid liver powder were used as the protein sources, fish oil as the lipid

source, and wheat flour and starch as the carbohydrate source in the experimental diets. Pellets were

air-dried for 48-96 h, broken and sieved to achieve the desired particle size and stored at -20°C until

use.
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Table 8. Free amino acid contents of the fisheries by-products (% of wet matter basis)

Fisheries by-products

Amino acids

Y )
100% SSEL  100% SSEH > 70 SSEL -+ 95% SSEH +

5% IMP 5% IMP
Alanine 1.35 1.44 1.26 1.49
Arginine 0.61 1.18 0.56 1.22
Aspartic acid 1.41 2.13 1.32 2.17
Glutamic acid 1.99 2.79 1.83 2.89
Glycine 0.96 1.28 1.64 2.11
Histidine 0.71 0.96 0.93 1.14
Isoleucine 0.78 0.92 0.72 0.97
Valine 0.97 1.10 0.91 1.15
Leucine 1.11 1.42 1.04 1.49
Lysine 0.94 1.36 0.87 1.42
Phenylalanine 0.69 0.93 0.64 0.98
Proline 0.66 0.97 0.61 1.02
Serine 0.45 0.73 0.43 0.73
Threonine 0.54 0.81 0.50 0.82
Tyrosine 0.20 0.45 0.22 0.40
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Table 9. Composition and proximate analysis of the basal diet for juvenile olive flounder (% of dry

matter basis)

Ingredients %

Fish meal (Sardin)’' 50.0
Fish meal (Tuna)' 10.0
Meat and bone meal' 5.00
Polutry by-product meal’ 5.00
Blood meal' 2.00
Squid liver powder' 2.00
Starch(Tapioca) ' 4.00
Wheat flour' 12.5
Fish oil" 2.00
Others® 7.48

Proximate analysis (% of DM basis)

Moisture 12.8
Crude protein 52 4
Crude lipid 11.3
Crude ash 9.33

' CJ CheilJedang Co. Seoul, Korea.
? Protide (nucelotide by product), fish mineral, koking tocopherol, vitamin C and premier vitamin A,
Lysine, Methionine
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Table 10. Amino acid contents of the juvenile olive flounder experimental diets (% of dry matter basis)

Diets
CONT SSEL SSEH SSELP SSEHP SQSE
Alanine 3.47 3.87 3.71 3.72 3.77 3.75
Arginine 3.07 3.46 3.27 3.35 3.31 3.28
Aspartic acid 5.27 5.85 5.59 5.43 5.68 5.58
Glutamic acid 7.44 8.33 7.90 8.02 8.13 8.01
Glycine 3.61 3.79 3.68 3.69 3.76 3.79
Histidine 1.86 2.13 2.01 1.98 2.02 1.99
Isoleucine 2.24 2.60 247 2.54 2.56 2.49
Valine 2.77 3.24 3.07 3.09 3.15 3.11
Leucine 3.95 4.50 4.36 4.33 4.40 4.35
Lysine 431 4.80 4.63 4.67 4.75 4.70
Phenylalanine 2.17 2.47 2.40 2.41 2.42 2.40
Proline 2.89 2.30 3.26 2.81 3.05 3.17
Serine 2.08 2.29 2.17 2.19 2.11 2.08
Threonine 2.21 2.46 2.36 837 2.36 2.32
Tyrocine 1.32 1.49 1.50 1.50 1.40 1.43
Total 48.6 53.59 52.38 52.1 52.8 52.4
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Experimental fish and feeding trial

This experiment was conducted at the Institute of Fisheries Sciences, Pukyong National
Universilty, Busasn, Korea, and juvenile olive flounder were obtained from a private hatchery
(Hwang-geum Aquafarm, Goheung, Republic of Korea) and fed a commercial diet for two weeks to
be acclimated to the experimental conditions and facilities. Two hundred seventy fish averaging 13.4
+ 0.13 g (mean + SD) were weighed and randomly distributed into 18 indoor tanks (15 fish/tank) with
a 45-L volume receiving a constant flow (0.8~1.0 L/min) of sea water. Each tank was then assigned
randomly to one of the three replicates of the six dietary treatments. Fish were fed twice daily (09:00

and 16:00 h) for 9 wk to apparent satiation. Throughout the experimental period, the water

temperature and pH were maintained at 18 = 1°C and 7.5 + 0.3, respectively. And supplemental

aeration was provided to maintain the dissolved oxygen near saturation.

Sample collection and analysis

At the end of the feeding trial, fish were starved for 24 h, and the total number and weight of fish
in each tank were determined for calculation of initial body weight, final body weight, weight gain
(WQ), specific growth rate (SGR), feed efficiency (FE), protein efficiency ratio (PER), and survival.
Three fish per tank were randomly sampled, individually weighed, and then dissected to obtain liver
and viscera samples for determination of hepatosomatic index (HSI), viscerosomatic index (VSI) and

condition factor (CF), respectively (Yoo et al., 2007; Kim et al., 2014).

Weight gain (WG, %) = (final wt. - initial wt.) x 100 / initial wt
Specific growth rate (SGR, %/day) = (loge final wt. - loge initial wt.) x 100 / days

Feed Efficiency (FE, %) = (wet weight gain / dry feed intake) x 100
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Survival rate (%) = (total fish - dead fish) % 100 / total fish

Protein efficiency ratio (PER) = (wet weight gain / protein intake)

Daily feed intake (DFI, %) = specific growth rate x 100 / feed efficiency
Hepatosomatic index (HSI, %) = liver wt. x 100 / body wt
Visceralsomatic index (VSI, %) = viscera wt. x 100 / body wt

Condition factor = (wet weight / total length®) x 100

Three additional fish per tank were randomly captured and anesthetized with ethylene glycol phenyl
ether (200mg/L) and blood samples were obtained from the caudal vein using 1 mL disposable

syringe without anticoagulant. The blood sample was separated by centrifugation (5000 x g) for 10

min. Then, the serum was stored at -70°C for later analysis of plasma glucose, total cholesterol and

activities of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were measured by
a chemical analyzer (Fuji DRI-CHEM3500i, Fuji Photo Film, Ltd., Tokyo, Japan). Another set of

blood samples of the same fish were allowed to clot at room temperature for 30 min. Then, the serum

was separated by centrifugation at 5000 x g for 10 min and stored at -70°C for the analysis of non-

specific immune responses including lysozyme, superoxide dismutase (SOD) and myeloperoxidase

(MPO) activities.

Analyses of moisture, crude protein, lipid, and ash of whole-body samples and experimental diets

were performed using standard methods (AOAC 1995). Samples of diets and fish were dried to
constant weights at 105°C to determine their moisture content. Ash was determined by incineration at
550°C, crude lipid was determined by Soxhlet extraction using the Soxtec system 1046 (Tecator AB,

Hoganas, Sweden), and crude protein content was determined by the Kheldahl method (N x 6.25)
after acid digestion. The plasma glucose, total cholesterol and activities of AST and ALT were

measured by a chemical analyzer (Fuji DRI-CHEM35001, Fuji Photo Film, Ltd., Tokyo, Japan).
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Myeloperoxidase (MPO) activity was measured according to Quade and Roth (1997). Briefly, 20 pL.
of serum was diluted with HBSS (Hanks balanced salt solution) without Ca®* or Mg*" (Sigma-Aldrich)
in 96-well plates. Then, 35 pL o f 3.3°5.5’- tetramethlybenzidine hydrochloride (TMB, 20 mM)
(Sigma-Aldrich) and H>O, (5 mM) was added. The color change reaction was stopped after 2 min by
adding 35 pL of 4 M sulfuric acid. Finally, the optical density was read at 450 nm in the micro-plate

reader.

Superoxide dismutase (SOD) activity was measured by the superoxide radical based on reaction
inhibition rate of enzyme with WST-1 (Water Soluble Tetrazolium dye) substrate and xanthine
oxidase using the SOD Assay Kit (Sigma-Aldrich, 19160) in accordance with the procedure of
products. Each endpoint assay was observed by absorbance at 450 nm (the absorbance wavelength for
the colored product of WST-1 effect with superoxide) and after 20 minutes of reaction time at 37°C.

The percent inhibition was normalized by mg protein and expressed as SOD unit/mg.

A turbidimetric assay was used for determination of serum lysozyme level by the method described
by Hultmark et al. (1980) with slight modification. Briefly, Micrococcus lysodeikticus (0.75 mg/mL)
was suspended in sodium phosphate buffer (0.1 M, pH 6.4), 200uL of suspension was placed in each
well of 96-well plates, and 20 pL. serum was added subsequently. The reduction in absorbance of the
samples was recorded at 570nm after incubation at room temperature for 0 and 30 min in a microplate

reader (UNM340, Biochrom, Cambridge, UK).

Challenge test

Challenge test a bacterial pathogen, Edwardsiella tarda, was obtained from the Department of
Biotechnology, Pukyong National University, Busan, Republic of Korea. Fish (n = 5 per tank) were
distributed according to their dietary treatment groups into 50 L aquarium for the challenge test with
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no water exchange. Fish were injected intraperitoneally with 0.1 mL of culture suspension of

pathogenic E. tarda containing 1 x 10° CFU/mL. Fish mortality was recorded daily for 9 days.

Statistical Analysis

All data were analyzed by two-way ANOVA to test for the effects of the dietary treatments. When
significant differences were found, a least significant difference (LSD) test used to identify
differences among experimental groups. Treatment effects were considered with the significance level
at P < 0.05. All statistical analyses were carried out by SAS version 9.1 (SAS Institute, Cary, NC,

USA).
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Results

Table 11 and Figures 11-15 shows the growth performance and survival rate of juvenile olive
flounder fed different experimental diets for 9 weeks. weight gain (WG) and specific growth rate
(SGR) of fish fed SSEL and SSEH diets were significantly higher than those of fish fed CON, SSELP
and SSEHP diets (P < 0.05). Feed efficiency (FE) and protein efficiency ratio (PER) of fish fed SSEL,
SSEH, SSELP and SSEHP diets were significantly higher than fish fed CON diet (P < 0.05), however,
there were no significant differences among fish fed SSEL, SSEH, SSELP and SSEHP diets (P >
0.05). Daily feed intake (DFI) of fish fed CON diet was significantly higher than those of fish fed
SSEHP diet (P < 0.05), however, there were no significant differences among fish fed CON, SSEL,
SSEH and SSELP diets (P > 0.05). There were no significant differences in Hematosomatic index,
Viscerosomatic index and Condition factor among the treatments. Also, there were no significant
differences in survival rate of fish fed all experimental diets (P > 0.05). There were no significant (P >
0.05) differences in whole-body proximate composition of fish in all experimental groups (Table 12).
Table 13 shows hematological parameters of juvenile Nile tilapia fed different experimental diets.
There were no significant differences in Aspartate aminotransferase, Alanine aminotransferase,
glucose and total cholesterol contents of fish fed experimental diets. Table 14 and Figures 16-18
shows the Myeloperoxidase (MPO), superoxide dismutase (SOD) and lysozyme activities of fish fed
different experimental diets for 9 weeks. MPO activities of fish fed SSEHP diet were significantly
higher than those of fish fed CON, SSEL and SSEH diets (P < 0.05). SOD activities of fish fed
SSEHP diet were significantly higher than those of fish fed CON, SSEL and SSEH diets (P < 0.05),
however, there were no significant differences among fish fed SSELP and SSEHP diets (P > 0.05).
Lysozyme activities of fish fed SSELP and SSEHP diets were significantly higher than those of fish

fed CON, SSEL and SSEH diets (P < 0.05).
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Challenge test

Mortality was initially observed in all fish groups at day 2 after E. tarda infection (Fig. 19). At
day 3, the cumulative survival rate (CSR) of fish fed the SSELP and SSEHP diets were significantly
higher than SSEL, SSEH, and SQSE diets (P < 0.05), however, there was no significant differences in
CSR among fish fed CON, SSELP and SSEHP diets (P > 0.05). At day 9, CSR of fish fed SSEHP diet
was significantly higher than those of fish fed SSEH and SSELP diets (P < 0.05), however, there were

no significant differences in CSR among fish fed CON and SSEL diets (P > 0.05).
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Table 11. Growth performance, feed efficiency and organosomatic indices of juvenile olive flounder

fed the experimental diets for 9 weeks'

Diets Pooled
12
CON SSEL  SSEH  SSELP SSEHP SEM

IBW? 13.4 13.4 13.4 13.2 13.3 0.03
FBW? 41.4 51.7 49.2 47.9 49.0 1.24
WG (%)* 217° 312° 314 270° 268" 9.10
SGR (%/day)’ 2.51° 3.08" 3.09° 2.85° 2.83° 0.05
FE (%)° 116° 1528 149 139° 147 3.52
PER’ 2,254 2.67° 2.72° 2.53° 2.67° 0.05
DFI (%) 2.15° 2.03®  2.08® 2.04% 1.92° 0.03
HSI (%)’ 1.08 1.03 1.05 0.99 1.06 0.03
VSI (%)"° 3.18 3.03 3.18 3.07 3.09 0.10
CF! 0.83 0.86 0.86 0.86 0.83 0.01

!'Values are means from triplicate groups of shrimp where the values in each row with different
superscripts are significantly different (P < 0.05)

?Initial body weight (g).

3 Final body weight (g).

*Weight gain (WG, %) = (final wt. - initial wt.) x 100 / initial wt

>Feed efficiency (FE, %) = (wet weight gain / dry feed intake) x 100

®Specific growth rate (SGR, %) = (loge final wt. - log. initial wt.) x 100 / days

"Protein efficiency ratio (PER) = (wet weight gain / protein intake)

¥ Daily feed intake (DFI, %) = specific growth rate x 100 / feed efficiency

? Hematosonatic index (HSI, %) = liver wt. x 100 / body wt.

1" Visceralsomatic index (VSI, %) = viscera wt. x 100 / body wt.

' Condition factor = (wet weight / total length®) x 100

12pgoled standard error of mean : SD/vn
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Fig.11. Weight gain of juvenile olive flounder fed the experimental diets for 9 weeks.

CON - Basal diet (0 % of soluble extract)

SSEL — 2% of 100% shrimp soluble extract (pH2)

SSEH — 2% of 100% shrimp soluble extract (pH4)

SSELP — 2% of 95% shrimp soluble extract (pH2) + 5% inosine monophospate
SSEHP — 2% of 95% shrimp soluble extract (pH4) +5% inosine monophospate
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Fig.12. Specific growth rate of juvenile olive flounder fed the experimental diets for 9 weeks.

CON - Basal diet (0 % of soluble extract)

— 2% of 100% shrimp soluble extract (pH2)
— 2% of 100% shrimp soluble extract (pH4)
— 2% of 95% shrimp soluble extract (pH2) + 5% inosine monophospate
— 2% of 95% shrimp soluble extract (pH4) +5% inosine monophospate
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Fig.13. Feed efficiency of juvenile olive flounder fed the experimental diets for 9 weeks.

CON - Basal diet (0 % of soluble extract)

SSEL — 2% of 100% shrimp soluble extract (pH2)

SSEH — 2% of 100% shrimp soluble extract (pH4)

SSELP — 2% of 95% shrimp soluble extract (pH2) + 5% inosine monophospate
SSEHP — 2% of 95% shrimp soluble extract (pH4) +5% inosine monophospate
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Fig.14. Protein efficiency ratio of juvenile olive flounder fed the experimental diets for 9 weeks.

CON - Basal diet (0 % of soluble extract)

SSEL — 2% of 100% shrimp soluble extract (pH2)

SSEH — 2% of 100% shrimp soluble extract (pH4)

SSELP — 2% of 95% shrimp soluble extract (pH2) + 5% inosine monophospate
SSEHP — 2% of 95% shrimp soluble extract (pH4) +5% inosine monophospate
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Fig.15. Daily feed intake of juvenile olive flounder fed the experimental diets for 9 weeks.

CON - Basal diet (0 % of soluble extract)

SSEL — 2% of 100% shrimp soluble extract (pH2)

SSEH — 2% of 100% shrimp soluble extract (pH4)

SSELP — 2% of 95% shrimp soluble extract (pH2) + 5% inosine monophospate
SSEHP — 2% of 95% shrimp soluble extract (pH4) +5% inosine monophospate
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Table 12. Whole-body proximate composition of juvenile olive flounder fed the experimental diets for

9 weeks (%, dry matter basis)'

Diets Pooled

2
CON SSEL  SSEH  SSELP  SSEHP SEM

Moisture (%) 2.39 2.42 2.14 2.55 2.57 0.10
Crude protein (%) 76.0 75.6 76.3 76.8 76.2 0.29
Crude lipid (%) 10.0 10.1 10.4 9.66 10.6 0.19
Crude ash (%) 14.8 14.8 14.5 14.4 15.8 0.20

'Values are means from triplicate groups of fish where the values in each row with different
superscripts are significantly different (P < 0.05)

2Pooled standard error of mean : SD/\n
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Table 13. Hematological parameters of juvenile olive flounder fed the experimental diets for 9 weeks'

Diets Pooled

4
CON  SSEL  SSEH  SSELP  SSgup  °FM
AST (U/L)2 11.0 11.3 10.7 11.3 11.0 0.1
ALT (U/L)3 6.3 6.3 6.0 6.3 6.3 0.1
Glucose (mg/dl) 21.7 21.3 21.7 21.7 21.3 0.3
T-cholesterol (mg/dl) 207 209 234 215 231 4.9

'Values are means from triplicate groups of fish where the values in each row with different
superscripts are significantly different (P < 0.05)

2 AST (U/L) : Aspartate aminotransferase.

3ALT (U/L) : Alanine animotransferase.

4Pooled standard error of mean : SD/\n
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Table 14. Non-specific immune responses of juvenile olive flounder fed the experimental diets for 9

weeks'
Diets Pooled
4
CON SSEL  SSEH  SSELP SSEHP SEM
MPO’ 1.64¢ 1.78< 1.80% 1.84% 1.87 0.02
SOD’ 61.6° 68.9% 70.0® 72.3 73.22 1.04
Lysozyme (U/ml) 0.42¢ 0.47% 0.52° 0.62° 0.63% 0.03

'Values are means from triplicate groups of fish where the values in each row with different
superscripts are significantly different (P < 0.05)

2MPO (absorbance) : Myeloperoxidase

3SOD (% inhibition): Superoxide dismutase

4Pooled standard error of mean : SD/\n
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Fig.16. Myeloperoxidase (MPO) in juvenile olive flounder fed the experimental diets for 9 weeks

CON - Basal diet (0 % of soluble extract)

SSEL — 2% of 100% shrimp soluble extract (pH2)

SSEH — 2% of 100% shrimp soluble extract (pH4)

SSELP — 2% of 95% shrimp soluble extract (pH2) + 5% inosine monophospate
SSEHP — 2% of 95% shrimp soluble extract (pH4) +5% inosine monophospate
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Fig.17. Superoxide dismutase (SOD) in juvenile olive flounder fed the experimental diets for 9 weeks

CON - Basal diet (0 % of soluble extract)

SSEL — 2% of 100% shrimp soluble extract (pH2)

SSEH — 2% of 100% shrimp soluble extract (pH4)

SSELP — 2% of 95% shrimp soluble extract (pH2) + 5% inosine monophospate
SSEHP — 2% of 95% shrimp soluble extract (pH4) +5% inosine monophospate
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Fig.18. Lysozyme activity in juvenile olive flounder fed the experimental diets for 9 weeks

CON - Basal diet (0 % of soluble extract)

SSEL — 2% of 100% shrimp soluble extract (pH2)

SSEH — 2% of 100% shrimp soluble extract (pH4)

SSELP — 2% of 95% shrimp soluble extract (pH2) + 5% inosine monophospate
SSEHP — 2% of 95% shrimp soluble extract (pH4) +5% inosine monophospate
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Fig.19. Cumulative survival after intraperitoneal injection with Edwardsiella tarda in six

experimental groups of juvenile olive flounder fed diets. Each value represents mean = SE (n=3).

Different letters are significantly (P < 0.05) different by LSD test

CON - Basal diet (0 % of soluble extract)

SSEL — 2% of 100% shrimp soluble extract (pH2)

SSEH — 2% of 100% shrimp soluble extract (pH4)

SSELP — 2% of 95% shrimp soluble extract (pH2) + 5% inosine monophospate
SSEHP — 2% of 95% shrimp soluble extract (pH4) +5% inosine monophospate
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Discussion

Result of this study showed that fish fed the SSEL and SSEH diets showed a significantly higher
growth performance. (Kolkovski et al.,, 2000) reported the growth promoting effect of krill
hydrolysate when it was supplemented in diets for larval and juvenile fish. Increased growth
performance of fish following dietary krill hydrolysate application has been reported to be enhanced
diet ingestion rate as kirll hydrolysate is a rich source of low molecular weight compounds acting as
chemo-attractant in fish diets (Kolkovski et al., 2000). Shrimp soluble extract is replaced with
alternative protein sources, adverse effects related to deficiencies of certain essential amino acids.
Fish nutritionists have supplemented the diet with amino acids to improve growth performance
(Hardy., 2010). This study use of top-coated protein sources with supplementation of SSE. The
experimental amino acid composition of all experimental diets appeared to meet the requirement
levels that were reported for growing olive flounder (NRC., 2011). The essential amino acid
requirements for olive flounder have been known, for lysine 1.5 to 2.1 % of the diet, for methionine
1.4 % to 1.5% of the diet (in the presence of 0.06% of cystein) (NRC., 2011). Consistent with our
observations, some studies reported the supplement of protein hydrolysates that showed better growth
performances in fish and abalone. (Bautista-Teruel et al., 2003; Zhu et al., 2011; Burr et al., 2012;
Kader et al., 2012; Jo et al., 2016). (Kader et al., 2012) reported that some additives such as fish
soluble extract, krill meal, and 2015 fish feeds. In other studies, it has been demonstrated that
supplementation of blended protein sources and SSE had a beneficial effect on growth performance in
Malabar grouper, Epinephelus malabaricus (Li et al. 2009), and red sea bream, Pagrus major
(Khosravi et al. 2015), respectively. Hematological parameters are useful indicators for evaluating the
physiological and health status (Maita., 2007). And blood enzymes such as AST and ALT are known
to be health markers of the animal’s physiological condition (Ozgur et al., 2010). It is also known that
these markers are sensitive indicators for tissue damage (De la Tore et al., 2000). In the biochemical
parameters, alanine aminotransferase (ALT), aspartate aminotransferase (AST), glucose and total

cholesterol were found to be not much affected by dietary supplements of shrimp soluble extract.
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Other researches have reported that the blood parameters of fish are not affected by the dietary
substitution of alternative protein sources for fishmeal (Cho et al., 2005; Jeon et al., 2014; Lee et al.,
2012). The non-specific defense mechanism of fish include neutrophil activation, the production of
peroxidase, oxidative radicals, and initiation of other inflammatory factors (Ainsworth et al., 1991).
And they have an important role in the immune function of teleost fish (Irianto et al., 2002). In this
study, MPO activities of fish fed SSEHP diets were significantly higher than those of fish fed CON,
SSEL, and SSEH diets. The MPO is an important enzyme having microbicidal activity, utilize one of
the oxidative radicals (H,O,) to produce hypochlorous acid. In this study, SOD activities of fish fed
the SSEHP diet were significantly higher than those of fish fed CON, SSEL and SSEH diets.
Enhancement of SOD provides further evidence for earlier in vitro studies that found production of
superoxide anion was stimulated by peptides from fish protein hydrolysate in Atlantic salmon
leucocytes (Gildberg et al., 1996). The enzymes such as MPO and SOD activities play significant
roles in vivo due to their antioxidant function, and their elevated expression and activities are
indication of oxidative stress (Yonar., 2012). A similar tendency was observed in our study, indicating
the enhancement of the fish immune system by inclusion of SSE (Jo et al., 2016). These effects of
SSE are mainly attributed to their bioactive peptide contents that have antioxidative, antimicrobical,
and immunomoculatory acivities (He et al., 2013). (Khosravi et al., 2015) showed that inclusion of 3%
shrimp hydrolysate enhanced the lysozyme activity in diets of the sea bream. These effects of SSE are
mainly attributed to their bioactive peptide contents that have antioxidative, antimicrobial, and
immunomodulatory activities (He et al., 2013). Dietary nucleotides have most recently received
considerable attention as immunomodulating compounds for various fish species; however, these
compounds also may actually influence diet intake of fish. Inosine and inosine 5’-monophosphate
have been effective in improving diet consumption by different fish species (Gatlin et al., 2007).
Numerous studies on humans and animals have reported that dietary supplementation of nucleotides
has positive influence on growth performance, immune responses and disease resistance (Carver.,
1995; 1990; Devresse., 2000). Dietary supplementation of other nucleotides also showed an

improvement in growth performance of different fish species such as grouper (Epinephelus
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malabaricus), rainbow trout (Oncorhynchus mykiss), Atlantic salmon (Sa/mo salar) and red sea bream
(Burrells et al., 2001; Lin et al., 2009; Tahmasebi-Kohyani et al., 2011; Hossain et al., 2016b). In
consistent with our findings, recent studies also reported that dietary supplementation of inosine
monophosphate (IMP) improved growth of red sea bream (Pagrus major) (Hossain et al., 2016a) and
olive flounder (Paralichthys olivaceus) (Song et al., 2012).

In conclusion, this study indicated that supplementation of feed by shrimp soluble extract produced
in low or high pH (SSEL and SSEH) without IMP could have beneficial effects on growth
performance without positive immune responses. However, supplementation of IMP (SSELP and
SSEHP) could have beneficial effects on immune responses without positive growth performance in

juvenile olive flounder.
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Appendix

Exp. 1
Rep | WG (%) SGR (%/day) FE (%) PER | DFI (%) | Survival (%)

1 344.0 2.63 78.1 2.35 3.36 100

CON 2 348.8 2.66 76.5 2.30 3.48 100
3 340.2 2.61 75.9 2.28 3.44 100

1 348.1 2.69 68.9 2.07 3.91 100

SSE 2 350.7 2.67 72.6 2.17 3.69 100
3 357.5 2.71 72.9 2.19 3.72 100

1 353.5 243 L1.% 2.18 3.81 100

SSEP; 2 3.52.3 2.67 80.1 2.44 3.33 100
3 355.5 2.68 73.2 2.23 3.67 100

1 360.0 2.68 74.5 2.24 3.60 100

SSEP4 2 3 Sl P .72 75.9 2.28 3.58 100
3 353.6 2.69 72.1 2.17 3.73 100

1 355.7 2.66 76.0 2.35 3.50 100

SQSE 2 332.9 2.59 71.5 2.21 3.62 100
3 338.4 2.65 71.2 2.20 3.72 94.7

1 347.9 2.68 69.8 2.16 3.83 100

TSE 2 341.1 2.66 78.3 2.42 3.39 100
3 347.1 2.62 69.6 2.16 3.76 94.7
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Exp. 2

Rep | WG (%) | SGR (%/day) | FE (%) | PER | DFI(%) | Survival (%)
1 213.5 2.48 118 2.28 2.09 100
CON 2 213.0 2.48 120 2.33 2.05 100
3 2251 2.56 110 2.13 2.31 92.9
1 306.4 3.05 147 2.58 2.07 92.9
SSEL 2 278.1 2.89 154 2.72 1.87 100
3 324.2 3.14 150 2.64 2.09 92.9
1 312.6 3.08 153 2.79 2.01 92.9
SSEH 2 294.3 2.98 156 2.84 1.91 100
3 298.3 3.00 134 2.44 2.24 92.9
1 251.7 2.73 136 2.49 2.00 100
SSELP 2 271.7 2.85 144 2.63 1.98 100
3 271.7 2.89 140 2.56 2.06 92.9
1 276.4 2.88 145 2.65 1.98 100
SSEHP 2 239.0 2.65 140 2.56 1.98 100
3 268.9 2.84 144 2.63 1.97 100
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