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OMI 자료와 회귀모델들을 이용한 지표 이산화질소 혼합비 추정

김 대 원

부경대학교 대학원 공간정보시스템공학과

요약

본 연구에서는 처음으로 OMI (Ozone Monitoring Instrument) 자료를 활용

하여 세 가지 회귀모델로 13시 45분에서의 지표 이산화질소 혼합비와 월 평균 

지표 이산화질소 혼합비를 대한민국 대도시인 서울, 경기, 대전, 광주에서 추정

하였다. 지점 장비로 측정된 지표 이산화질소 혼합비와 OMI 센서로 부터 획득

한 대류권 이산화질소 수직 칼럼 농도 사이의 관계를 통한 회귀모델과 행성 경

계층 높이, 지표면 압력, 지표면 온도, 지표면 이슬점 온도, 지표면 풍향, 지표

면 풍속 자료가 고려된 회귀모델을 사용하였다. 본 연구의 회귀모델의 회귀 계

수를 결정하기 위한 훈련 기간은 2007년부터 2013년까지이며, 회귀모델의 성

능은 2006년, 2014년의 지점 장비로 측정된 지표 이산화질소 혼합비와 비교를 

통하여 평가하였다. 세 가지 회귀모델 중에서 다중 회귀모델이 13시 45분의 

지표 이산화질소 혼합비와 월 평균 지표 이산화질소 혼합비 추정에 가장 좋은 

성능을 보였다. 검증년도에서 다중 회귀모델로 추정된 13시 45분의 지표 이산

화질소 혼합비와 지점 측정장비로 측정된 지표 이산화질소 혼합비사이의 평균 

R (correlation coefficient), 기울기, MB (mean bias), MAE (mean absolute 

error), RMSE (root mean square error), Percent difference는 각각 0.66, 

0.41, -1.36 ppbv, 6.89 ppbv, 8.98 ppbv, 31.50% 이다. 반면에 다른 두 회

귀모델로 추정된 13시 45분의 지표 이산화질소 혼합비와 지점 측정 장비로 측

정된 지표 이산화질소 혼합비 사이의 평균 R, 기울기, MB, MAE, RMSE, 

Percent difference는 각각 0.75, 0.41, -1.40 ppbv, 3.59 ppbv, 4.72 ppbv, 
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and 16.59% 이다. 월 평균 지표 이산화질소 혼합비 추정에 있어서는 다중 회

귀모델과 다른 두 회귀모델이 비슷한 성능을 보였다. 세 가지 회귀모델로 추정

된 월 평균 지표 이산화질소 혼합비와 지점 측정 장비로 측정된 지표 이산화질

소 혼합비 사이의 평균 R, 기울기, MB, MAE, RMSE, Percent difference는 

각각 0.74, 0.49, -1.90 ppbv, 3.93 ppbv, 5.05 ppbv, 18.76% 이다.
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1. Introduction

A main anthropogenic sources of nitrogen dioxide (NO2) is fossil fuel 

combustion while natural sources of NO2 are lightning, forest fire, and soil 

emissions [IPCC, 2007; Van der et al., 2008]. In particular, since NO2 is 

emitted in large quantities in automobile exhaust gas, NO2 is often used as 

an indicator for traffic-related air pollution in urban areas [Kharol et al., 

2015]. In terms of its effect on human health, Long-term NO2 exposure can 

lead to pulmonary depression and respiratory illness [Ackermann-Liebrich et 

al., 1997; Schindler et al., 1998; Gauderman et al., 2000; Panella et al., 

2000; Smith et al., 2000]. In addition, it is precursors of aerosol nitrate, 

tropospheric ozone, and the hydroxyl radical (OH), the main atmospheric 

oxidant [Boersma et al., 2009]. Therefore, NO2 is measured by various 

methods and chemiluminescence is one of the well known methods for 

measuring surface NO2 volume mixing ratio (VMR) [Demerjian, 2000]. 

In-situ measurement such as the chemiluminescence measurement method is, 

in general, more accurate than remote sensing techniques, but it requires a 

number of in-situ instruments to provide the spatial distribution of the NO2 

VMR in high resolution. In recent years, the NO2 vertical column density 

(VCD) measurements via satellites that can monitor NO2 of global scale in 

a short time has been actively conducted. The following various satellite 

sensors have been utilized to measure these regional or global NO2 

distributions. Space-born sensors that observed global distributions of NO2 

are Global Ozone Monitoring Experiment (GOME) (1995–2003) aboard 
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European Remote Sensing-2 (ERS-2), Scanning Imaging Absorption 

Spectrometer for Atmospheric Chartography/Chemistry (SCIAMACHY) 

aboard Environmental Satellite (Envisat) (2002~), Ozone Monitoring 

Instrument (OMI) aboard EOS-AURA (2004~), and GOME-2 aboard 

Meteorological operational satellite (MetOp)-A platform (2007~) and 

MetOp-B platform (2012~) [Leue et al., 2001; Richter and Burrows, 2002; 

Martin et al., 2002; Boersma et al., 2004; Boersma et al., 2007; Bucsela et 

al., 2006]. In many countries, the NO2 VCD obtained from satellites is can’t 

be directly used for air quality regulation because the surface NO2 VMR is 

used for air quality regulation. In recent years, studies have been conducted 

to investigate the feasibility of estimating the surface NO2 VMRs using the 

NO2 VCD obtained from satellite measurements and the correlation between 

the NO2 VCD obtained from satellite measurements and the surface NO2 

VMRs.

ORDÓNEZ et al., (2006) reported the correlation between the troposphere 

NO2 VCD and the NO2 VCD measured by GOME and ground based in-situ 

device in Milan. Kharol et al., (2015) estimated the annual average 

ground-level NO2 concentrations in North America using chemical transport 

model (GEOS-Chem) data and OMI NO2 columns. It also reported the 

annual trend of the estimated ground-level NO2 concentrations. However, no 

studies have attempted to estimate the surface NO2 VMR in higher temporal 

resolution such as hourly and monthly using the NO2 VCD measured by 

satellites.

In this present study, we for the first time estimated the surface NO2 

VMR at a specific time (13:45 Local time; LT) (NO2 VMRST-estimate) and 
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monthly mean surface NO2 VMR (NO2 VMRM-estimate) using two linear 

regression models and a multiple regression model with the troposphere NO2 

VCD obtained from OMI (Trop NO2 VCDOMI) in five metropolitan cities. In 

addition, performances of each regression method were evaluated by 

comparing the estimated surface NO2 VMRs with those obtained from in-situ 

measurement (NO2 VMRIn-situ).
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2. Studay area & period

Figure 1. Study areas are located in South Korea.
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The study areas were selected where the surface NO2 VMR was 

continuously measured in Korean metropolitan cities. Metropolitan cities such 

as Busan and Incheon where the OMI pixel covers both the sea and cities 

are excluded since there is no surface NO2 data available over the sea. 

Therefore, the selected areas include Seoul, Gyeonggi, Daejeon, and 

Gwangju. Among the study areas, Seoul, where four OMI pixels exist, is 

divided into eastern and western areas (West Seoul and East Seoul). The 

study period is nine years from 2006 to 2014. Seven years (2007 - 2013) 

are the training period to determine the regression coefficients of the 

regression models used in this study, whereas two years (2006, 2014) the 

validation period when for the surface NO2 VMRs estimated from three 

regression models with the determined regression coefficients are evaluated 

via comparison with the in-situ data. The three regression models used in 

this study are described in detail in Section 3.
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2.1. Data

The data used in this study include Trop NO2 VCDOMI, boundary layer 

height obtained from Atmospheric Infrared Sounder (AIRS) (BLHAIRS), 

atmospheric temperature obtained from AIRS (TempAIRS), pressure obtained 

from AIRS (PressAIRS), NO2 VMRIn-situ, surface temperature obtained from 

in-situ measurement (TempIn-situ), surface pressure from in-situ measurement 

(PressIn-situ), surface dew point from in-situ measurement (DewpointIn-situ), 

surface wind speed from in-situ measurement (WSIn-situ), and surface wind 

direction from in-situ measurement (WDIn-situ). The detailed information of 

the data are summarized in Table 1. 
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Table 1. Satellite and In-situ data used in this study.

Data Time
Satellite Trop. NO2 VCD   OMI Level3  NO2 Daily 

data (OMNO2d)
13:45

BLH, Temperature, Pressure   AIRS/Aqua L3 Daily   
Support Product (AIRS + 
AMSU) V006 
(AIRX3SPD) 13:30

In-situ Surface   NO2 VMR Air Korea

13:00 and 14:00Surface Temperature,   Surface 
Pressure, Surface Dewpoint, 
Surface Wind Speed, Surface 
Wind Data

AWS (Automatic 
Weather System)
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2.1.1. Ozone Monitoring Instrument (OMI) data

The OMI sensor was launched in July 2004. It measures hyperspectral 

radiance in ultraviolet and visible wavelength range via push-broom. Since 

the OMI sensor utilizes the hyperspectral feature, it can improve retrieval 

accuracy of air pollutants and enable the OMI sensor to do precise 

radiometric and wavelength calibration for a long time. The OMI sensor has 

two ultraviolet channels including UV-1 (270 nm - 314 nm) and UV-2 (310 

nm - 365 nm). The spectral resolutions of UV-1 and UV-2 are 0.42 nm 

and 0.45 nm, respectively. The wavelength range and spectral range of 

visible channel are from 350 nm to 500 nm and 0.63 nm, respectively. 

The OMI sensor continues the heritage of the TOMS dataset. The OMI 

sensor onboard Aura satellite is known as a main sensor to monitor ozone 

hole and observes key air pollutants including nitrogen dioxide, sulfur 

dioxide, and aerosols. The Aura is a polar orbiting satellite with an overpass 

time of 13:45LT.

The Trop NO2 VCDOMIs were obtained from OMI Level3 NO2 Daily Data 

(OMNO2d) provided by NASA Goddard Earth Sciences Data and 

Information Services Center 

(http://disc.sci.gsfc.nasa.gov/Aura/data-holdings/OMI). Cloud-screened NO2 data 

(Level-3 OMI NO2 Cloud-Screened Total and Tropospheric Column NO2 

(V003)) are used in this present study (Cloud Fraction < 30 %).
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2.1.2. Atmospheric Infrared Sounder (AIRS) data

The BLHAIRS, TempAIRS, and PressAIRS used in this study were obtained 

from the AIRS / Aqua L3 Daily Support Product (AIRS + AMSU) 1 

degree x 1 degree V006 (AIRX3SPD.00) of NASA Goddard Earth Sciences 

Data and Information Services Center 

(http://disc.sci.gsfc.nasa.gov/uui/datasets/AIRX3SPD_V006/summary?keywords=

%22AIRS%22). The AIRS / Advanced Microwave Sounding Unit (AMSU) 

is a sounding suite that aboard the Aqua launched in May 2002 [Aumann 

et al., 2003; Chahine et al., 2006]. The Aqua is a polar orbiting satellite 

with an overpass time of 13:30 local time (day and night time) and a 

spatial resolution of 40 km horizontal at nadir.

2.1.3. In situ NO2 data

The NO2 VMRIn-situ was obtained from Air Korea 

(http://www.airkorea.or.kr/last_amb_hour_data). Since NO2 VMRIn-situ is 

available hourly, the average value of 13:00 LT and 14:00 LT is used to be 

closer the OMI overpassing time. The Previous study [ORDÓNEZ et al., 

2006], the in-situ measurement sited was grouped into five different NO2 

levels, clean, slightly polluted, average polluted, polluted, and heavily 

polluted account for many stations which are located close to streets and are 

exposed to emissions. In addition, the NO2 data obtained from many in-situ 

measurement stations in the GOME pixels were averaged, since in-situ 
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measurements are only representative of a small fraction of the satellite 

ground scene. In this present study, the NO2 VMRIn-situs obtained from 

in-situ measurements located close to streets were excluded in this study. 

We used the average of three or more the NO2 VMRIn-situ located at least 2 

km distance away from each other.

2.1.4 In situ meteorological data

The TempIn-situ, PressIn-situ, DewpointIn-situ, WSIn-situ, and WDIn-situ used in this 

study are Automatic Weather System (AWS) data provided by Korea 

Meteorological Administration 

(http://sts.kma.go.kr/jsp/home/contents/statistics/newStatisticsSearch.do?menu=SF

C&MNU=MNU). Since meteorological data are available hourly, the mean 

values of the data at 13:00 LT and 14:00 LT are used.
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3. Methodology

In this study, NO2 VMRST-estimate and NO2 VMRM-estimate were estimated 

using three regression models with Trop NO2 VCDOMI Table 2 shows the 

summary of the three models used to estimate NO2 VMRST-estimate and NO2 

VMRM-estimate.
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Table 2. The regression models used for surface NO2 VMR estimation in this study.

Model Equation

M1 13:45LT &   Monthly   

M2 13:45LT &   Monthly   

M3 13:45LT

Section 3, Multiple regression equation   (1)

M4 Monthly

Notes: *NO2 tropospheric vertical column density obtained from OMI.

**  × ×Pr

 ×× × 

***   
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****Boundary layer mean temperature (K) obtained from AIRS.

*****   × 

******Boundary layer height (m) obtained from AIRS.

*******Boundary layer mean pressure (pa) obtained from AIRS.
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3.1 M1

M1 is the liner regression equation where Trop NO2 VCDOMI used as an 

independent variable. Figure 2 shows the linear regression between Trop 

NO2 VCDOMI and NO2 VMRIn-situ at 13:45LT during the training period. In 

figure 2, R2 (coefficient of determination), slope, and intercept are 0.47, 0.80 

and 11.47, respectively. Figure 3 shows the linear regression between 

monthly mean Trop NO2 VCDOMI and monthly mean NO2 VMRIn-situ during 

the training period. In figure 3, R2, slope, and intercept are 0.62, 0.77, and 

10.95, respectively. The final form of the equation M1 to estimate NO2 

VMRST-estimates is shown Table 4. Whereas, the final form of the equation 

M1 to estimate NO2 VMRM-estimates is shown Table 5.
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Figure 2. Correlation between Trop NO2 VCDOMI and NO2 VMRIn-situ to 

determine regression coefficient for the equation, M1 for the training 

period between 2007 and 2013.
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Figure 3. Correlation between monthly mean Trop NO2 VCDOMI and 

monthly mean NO2 VMRIn-situ to determine regression coefficient for 

the equation, M1 for the training period between 2007 and 2013. 
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3.2 M2

Assuming that Trop NO2 VCDOMI is mostly present within the planetary 

boundary layer (PBL), the relationship between Trop NO2 VCDOMI and the 

surface NO2 VMR may change as the planetary boundary layer varies. To 

reflect the BLH in the regression equation, Trop NO2 VCDOMI is first 

divided by BLHAIRS to calculate the NO2 concentration in the PBL and then 

converted to the NO2 mixing ratio in PBL (BLH NO2 VMROMI) using 

TempAIRS and PressAIRS (see Table 2). Figure 4 shows the linear regression 

between BLH NO2 VMROMI and NO2 VMRIn-situ at 13:45LT during the 

training period. In figure 4, R2, slope and intercept are 0.38, 1.58, and 

14.30, respectively. Figure 5 shows the linear regression between monthly 

mean BLH NO2 VMROMI and monthly mean NO2 VMRIn-situ during the 

training period. In figure 5, R2, slope and intercept are 0.59, 1.71, and 

12.75, respectively. The final form of the equation M2 to estimate NO2 

VMRST-estimates is shown Table 4. Whereas, the final form of the equation 

M2 to estimate NO2 VMRM-estimates is shown Table 5.
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Figure 4. Correlation between BLH NO2 VMROMI at specific 

time(13:45LT) and NO2 VMRIn-situ to determine regression coefficient 

for the equation, M2 for the training period between 2007 and 2013.
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Figure 5. Correlation between monthly mean BLH NO2 VMROMI and 

monthly mean NO2 VMRIn-situ to determine regression coefficient for 

the equation, M2 for the training period between 2007 and 2013.
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3.3 M3 & M4

M3 and M4 are multiple regression equations to estimate NO2 

VMRST-estimates and NO2 VMRM-estimates. Multiple regression equation consists 

of a dependent variable, independent variables, and their regression 

coefficients. For the independent variable candidates, in addition to Trop 

NO2 VCDOMI and BLHAIRS, meteorological factors (surface temperature, 

surface dew point, atmospheric pressure, wind direction, and wind speed) are 

used as independent variable candidates for the multiple regression equation 

in this present study. In previous study [Xue and Yin, 2014], these 

meteorological factors were also used for the multiple regression equation as 

independent variable candidates to estimate surface SO2 concentration in 

Shanghai, China.

The multiple regression equation can be defined as the following 

equations:

     ⋯   (1)

where   and β0 are dependent variable (NO2 VMRIn-situ) and regression 

coefficient, x1, x2,...xn are the candidates of independent variables (Trop NO2 

VCDOMI, DewpointIn-situ, PressIn-situ, TempIn-situ, BLHAIRS, WSIn-situ, WDIn-situ), β1, 

β2, …, βn are the regression coefficients of the independent variables, and ε 

is the difference between observations (NO2 VMRIn-situ) and estimates values 

(NO2 VMRestimates). The regression coefficients can be estimates by the least 
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square fitting (Equation 2). 


  




 

  






 (2)

Where yj is observed value with m numbers of data points. By 

minimizing the sum of ε2, regression coefficients can be derived. To 

determine independent variable (xn) and regression coefficients (βn) included 

in the final form of the equations M3 and M4, we considered variation 

inflation factor (VIF) and p-value to ensure statistical significance of those 

variables and their coefficient. First, we examined the VIF that explains the 

multicollinearity of an independent variable candidate with regard to other 

independent variable candidates. The VIF of the j-th independent variable is 

expressed as:

 





(3)

Where R2
j is the coefficient of determination for the regression of xj 

against the other (a regression that does not involve the dependent variable 

j). The VIF indicates how much xj is correlated with the variables. A 

candidate for independent variables with a very high VIF can be considered 

redundant and should be removed from the multiple regression equations. 

The candidates for independent variables that do not satisfy the criterion 

VIF < 10 [Kutner et al., 2004], were excluded from the independent 
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variables. p-value was also used to select independent variables. The highest, 

still statistically significant p-level was shown by Sellke et al. (2001) to be 

5%. Among the independent variables that satisfy the VIF criterion, those 

that also satisfy the p-value less than 0.05 (p-value < 0.05) are selected as 

final independent variables in the multiple regression equations. The lists of 

independent variables selected for the equations M3 and M4 are shown in 

Table 3. The final form of the equation M3 to estimate NO2 VMRST-estimates 

is shown Table 4. Whereas, the final form of the equation M4 to estimate 

NO2 VMRM-estimates is shown Table 5.
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Table 3. Final independent variables included in multiple regression equations (M3 and M4).

Notes: *Surface dewpoint

**Surface pressure

***Surface wind speed

****Surface wind direction

*****Surface temperature

Final included independent variables p-value VIF

M3

Trop NO2 VCDOMI 0 1.26
*****TempIn-situ 0.000032 7.02
*DewpointIn-situ 0.000306 7.16

**PressIn-situ 0.009981 3.14
BLHAIRS 1.73 × 10-15 1.12

***WSIn-situ 3.86 × 10-133 1.33
****WDIn-situ 1.7493 × 10-38 1.07

M4

Trop NO2 VCDOMI 2.4832 × 10-89 1.64
*DewpointIn-situ 0.000421 6.47

**PressIn-situ 0.034582 6.65
BLHAIRS 0.000834 2.32

***WSIn-situ 3.86 × 10-133 1.59
****WDIn-situ 1.699 × 10-7 1.25
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Table 4. Final form of the regression models used for surface NO2 VMR at specific time estimations and 

R2 obtained from the regression between NO2 VMRIn-situ and each model’s independent variable for the 

training period.

  

Equation R2

13:45LT

M1   ×  0.47

M2   × 0.38

M3

  ×

 ×  ×
× Pr  ×

 × ×  

0.47
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Table 5. Final form of the regression models used for monthly mean surface NO2 VMR estimations and R2 

obtained from the regression between NO2 VMRIn-situ and each model’s independent variable for the training 

period.

Table 4 and Table 5 show equations of M1, M2, M3, and M4, which reflect the regression coefficients determined 

Equation

Monthly 
mean

M1   ×

M2   ×

M4

  ×

 × × Pr
 ×  ×

× 
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from the training period.



- 27 -

4. Results

4.1 Daily estimation

Figure 6 shows daily variations of NO2 VMRIn-situ and NO2 VMRST-estimates 

estimated at 13:45LT using the M1, M2 and M3 of Table 4 in from West 

Seoul and East Seoul. The NO2 VMRST-estimates are estimated using M1, M2, 

and M3 in Table 4 with the inputs of independent variable data for the 

years 2006 and 2014, the validation period. A slightly large difference in 

magnitude is found between NO2 VMRIn-situ and NO2 VMRST-estimates obtained 

from M3 compared to those between NO2 VMRIn-situ and NO2 VMRST-estimates 

obtained from M1 and M2. However, NO2 VMRST-estimates obtained from M3 

showed good agreement with NO2 VMRIn-situ in hourly pattern. The graph 

showing the same as figure 6.
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Figure 6. Time series of NO2 VMRIn-situ and NO2 VMRST-estimates estimates by M1, M2 and M3 in study areas 

for the period 2006 ((a), (c), (e), (g), and (i)), and 2014 ((b), (d), (f), (h), and (j)).
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Figure 7. (a) R, (b) slope, (c) MB, (d) MAE, (e) RMSE, and (f) 

percent difference between NO2 VMRST-estimates against NO2 VMRIn-situ 

in 2006 and 2014. 
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Figure 7 shows the (a) R (correlation coefficient), (b) slope, (c) mean bias 

(MB), (d) mean absolute error (MAE), (e) root mean square error (RMSE) 

and (f) percent difference between NO2 VMRST-estimates and NO2 VMRIn-situ in 

validation period (2006 and 2014). The R between NO2 VMRST-estimates 

obtained from M1 and NO2 VMRIn-situ ranges from 0.49 to 0.71, showing 

better agreement than that of NO2 VMRST-estimates from M2 (0.47 < R < 

0.65). M3 showed the best correlation with NO2 VMRIn-situ (0.67 <R <0.90) 

among the three methods. The slopes between NO2 VMRIn-situ and NO2 

VMRST-estimates from both M1 and M2 are close 1 in East Seoul, whereas 

they are lower the other cities. The MB between NO2 VMRIn-situ and NO2 

VMRST-estimates from M1, M2, and M3 range from -7.74 to 5.80 ppbv. In all 

study areas, MAE (5.79 ppbv < MAE < 8.25 ppbv) of M3 is lower than 

those (6.58 ppbv < MAE < 11.41 ppbv) of M1 and M2, which means that 

NO2 VMRST-estimates estimated from M3 show good agreement with NO2 

VMRIn-situ in the magnitude. RMSE between NO2 VMRIn-situ and NO2 

VMRST-estimates from M3 is found to be lower than those between NO2 

VMRIn-situ and NO2 VMRST-estimates from M1 and M2. The NO2 VMRST-estimates 

by M3 showed the lowest RMSE in all study areas (7.21 ppbv < RMSE < 

11.37 ppbv). In addition, percent differences between NO2 VMRST-estimates 

estimated from M3 and NO2 VMRIn-situ were lower in all study areas than 

estimated values by M1 and M2. In estimating NO2 VMRST-estimates, M3, 

which is a multiple regression method with inputs of various independent 

variables, generally showed good statistical performance except for MB.
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4.2 Monthly estimation

Figure 8 shows temporal variations of NO2 VMRM-estimates and monthly 

mean NO2 VMRIn-situ estimated using the M1, M2 and M4 of Table 5 in 

from West Seoul and East Seoul. The NO2 VMRM-estimates are obtained from 

M1, M2 and M4 in Table 5 with the inputs of monthly mean independent 

variables during the validation period (see the detailed input data in Section 

2.1). Figure 8 shows a good agreement between the estimated NO2 

VMRM-estimates and monthly mean NO2 VMRIn-situ in the temporal pattern. 

However, we found a large difference between NO2 VMRIn-situ and NO2 

VMRM-estimates in the period when there was a change difference in NO2 

VMRM-estimates between the previous and the following months. For example, 

there was no models that calculated NO2 VMRM-estimates that were similar to 

NO2 VMRIn-situ in December 2006 which changes largely compared to that 

in November 2006. NO2 VMRIn-situ (NO2 VMRM-estimates from M1, M2, and 

M4) in November and December in 2006 are 19.32 ppbv (15.94, 17.96, and 

17.62 ppbv) and 30.30 ppbv (15.94, 17.96, and 17.62 ppbv) in Daejeon, 

15.26 ppbv (12.29, 13.87, and 18.09 ppbv) and 32.55 ppbv (12.73, 14.57, 

and 18.46 ppbv) in Gwangju, 29.31 ppbv (25.86, 25.97, and 22.35 ppbv) 

and 40.64 ppbv (29.91, 29.15, and 26.85 ppbv) in Gyeonggi, and 31.25 

ppbv (22.80, 24.55, and 23.64 ppbv) and 45.93 ppbv (28.65, 28.92, and 

26.49 ppbv) in West Seoul. Especially in West Seoul, There are several 

periods when NO2 VMRIn-situ changes rapidly compared to the previous 

month. The NO2 VMRM-estimates obtained from the three models are in poor 

agreement with NO2 VMRIn-situ in monthly pattern. As described in Section 
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2, despite the use of NO2 VMRIn-situ located away from the streets, the 

in-situ measurement sites in West Seoul are located closer to the streets 

than the in-situ measurement sites in Daejeon and Gwangju. For this reason, 

there thought to be more periods when NO2 VMRIn-situ changes rapidly 

compared to the previous month. It is difficult to estimate the rapid change 

of NO2 VMR near NO2 source by regression models that reflect the 

relationship between the in-situ measurements and the OMI sensor covering 

both source and non-source areas in a single pixel. 
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Figure 8. Time series of NO2 VMRIn-situ and NO2 VMRM-estimates estimates by M1, M2, and M4 for the period 

2006 and 2014.
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Figure 9. (a) R, (b) slope, (c) MB, (d) MAE, (e) RMSE, and (f) 

percent difference between NO2 VMRM-estimates against monthly mean 

NO2 VMRIn-situ in 2006 and 2014. 
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Figure 9 shows the (a) R, (b) slope, (c) MB, (d) MAE, (e) RMSE and 

(f) percent difference between NO2 VMRM-estimates and monthly mean NO2 

VMRIn-situ in 2006 and 2014. In general, NO2 VMRM-estimates showed better 

agreement with NO2 VMRIn-situ than the NO2 VMRST-estimates. R between NO2 

VMRM-estimates obtained from M1, M2 and M4 and monthly mean NO2 

VMRIn-situ areas range from 0.68 to 0.82 in all areas. MB was close to 0 in 

most study areas. MAE was less than 5 ppbv in Daejeon, Gwangju, 

Gyeonggi, and East Seoul where there are good agreements between NO2 

VMRM-estimates from M1, M2, and M4 and monthly mean NO2 VMRIn-situ, 

whereas MAEs in West Seoul ranges from 5.66 to 6.79. RMSEs between 

NO2 VMRIn-situ and NO2 VMRM-estimates from M1, M2, and M3 are found to 

be lower than 7 ppbv in study areas except for West seoul. In addition, the 

three models showed percent difference of less than 30% except for 

estimated value from M1 in Gwangju.
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5. Discussion

In previous study [ORDÓNEZ et al., 2006], tropospheric NO2 VCDs 

obtained from GOME were compared with tropospheric NO2 VCDs 

calculated using both NO2 concentrations obtained from in-situ measurements 

and Model of Ozone and Related Tracers 2 (MOZART-2). There are also 

several previous studies estimating surface NO2 VMR using satellite data 

[Lamsal et al., 2008; Kharol et al., 2015]. Among them, Kharol et al. 

(2006) estimated the annual variation of ground-level NO2 concentrations 

using both GEOS-Chem data and OMI data. However, in this present study, 

NO2 VMRST-estimates and NO2 VMRM-estimates were estimated for the first time 

in higher temporal resolution using the three regression models with the 

inputs of Trop NO2 VCDOMI.

l Estimation of surface NO2 VMRs of a specific time (13:45LT).

ü Among the three regression models, the multiple regression model 

M3, showed the best performance in estimating NO2 VMRST-estimatie. In 

estimation of NO2 VMRST-estimatie, the linear regression model (M2), in 

which BLH is used also as an independent variable in addition to 

Trop NO2 VCDOMI, shows performance comparable with that of the 

model (M1) which uses Trop NO2 VCDOMI as the only independent 

variable. The BLH varies with latitude [Zeng et al., 2004]. The BLH 

is not well reflected by the latitude change since the spatial resolution 

of the AIRS used in this study is larger than the spatial resolution of 

OMI. We expected better results by using BLH data obtained from 
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Lidar or by correcting spatial resolution difference between OMI and 

AIRS.

ü A slightly large differences in magnitude were found between NO2 

VMRIn-situ and NO2 VMRST-estimates obtained from M1, M2 and M3, 

while there were good agreements in daily patterns of NO2 between 

NO2 VMRIn-situ and NO2 VMRST-estimates obtained from M1, M2 and 

M3 (Figure 4).

ü In terms of statistical evaluation via comparison between NO2 

VMRST-estimates and NO2 VMRIn-situ, M3 showed in general the best 

performance.

l Estimation of monthly mean surface NO2 VMRs of a specific time 

(13:45LT).

ü We found a good agreement between the estimated NO2 VMRM-estimates 

and monthly mean NO2 VMRIn-situ in the temporal pattern (Figure 8). 

However, it was shown that a large difference between NO2 

VMRIn-situ and NO2 VMRM-estimates in the period when there was a 

change difference in NO2 VMRM-estimates between the previous and the 

following months. Despite the use of NO2 VMRIn-situ located away 

from the streets, the in-situ measurement sites in West Seoul are 

located closer to the streets than the in-situ measurement sites in 

Daejeon and Gwangju. For this reason, there thought to be more 

periods when NO2 VMRIn-situ changes rapidly compared to the 

previous month. It is difficult to estimate the rapid change of NO2 

VMR near NO2 source by regression models that reflect the 
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relationship between the in-situ measurements and the OMI sensor 

covering both source and non-source areas in a single pixel.

ü In terms of statistical evaluations, performances in estimating NO2 

VMRM-estimates using three regression models (M1, M2, and M4) were 

found to be similar (Figure 9).

ü NO2 VMRM-estimates shows better agreement with the NO2 VMRIn-situ 

than NO2 VMRST-estimates. The reason for the better performances in the 

monthly mean estimation could be attributed to the reduced errors in 

monthly mean OMI data [OMI Team, 2009] and also fewer occasions 

with sudden monthly changes in NO2 VMRIn-situ than rapid daily 

changes in NO2 VMRIn-situ.

In this study, it is expected that the regression methods used to estimate 

the surface NO2 VMR using Trop NO2 VCDOMI will be useful in providing 

information on surface NO2 VMR in metropolitan cites. For future 

researches, the estimation of surface NO2 VMR can be attempted in higher 

time resolution with geostationary satellite sensors (e.g., geostationary 

environmental monitoring spectrometer (GEMS), tropospheric emissions: 

monitoring of pollution (TEMPO), and sentinel-4).
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6. Conclusions

In this study, NO2 VMRST-estimates and NO2 VMRM-estimates were estimated 

for the first time using three regression models in four metropolitan cities 

for the two years period 2006 and 2014. Multiple regression model (M3) is 

found to show the best performance in estimating NO2 VMRST-estimates in all 

cities. For the surface NO2 estimates at the specific time (13:45LT), there 

are generally better R, MAE, RMSE, and percent difference between NO2 

VMRST-estimates from M3 and NO2 VMRIn-situ than those between NO2 

VMRST-estimates from other two models (M1 and M2) and NO2 VMRIn-situ. In 

comparison of the performances between monthly surface NO2 VMR 

estimates and those at specific time, agreement between NO2 VMRIn-situ and 

NO2 VMRM-estimates found to be better than that between NO2 VMRIn-situ and 

NO2 VMRST-estimates. In estimating NO2 VMRM-estimates, three regression models 

(M1, M2, and M4) showed similar performances. In estimating daily surface 

NO2 VMR variation and monthly surface NO2 VMR variation, when surface 

NO2 VMR rapidly change, difference between surface NO2 VMR estimated 

from all models and NO2 VMRIn-situ is found to be large. For the future 

studies, using higher spatial resolution satellites is expected to improve the 

relationship with in-situ measurements. In addition, independent variables that 

can estimate the rapid change of surface NO2 VMR should be investigated.
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