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1. Introduction

A main anthropogenic sources of nitrogen dioxide (NO,) is fossil fuel
combustion while natural sources of NO, are lightning, forest fire, and soil
emissions [IPCC, 2007; Van der et al., 2008]. In particular, since NO; is
emitted in large quantities in automobile exhaust gas, NO, is often used as
an indicator for traffic-related air pollution in urban areas [Kharol et al.,
2015]. In terms of its effect on human health, Long-term NO, exposure can
lead to pulmonary depression and respiratory illness [Ackermann-Liebrich et
al., 1997; Schindler et al.,, 1998; Gauderman et al.,, 2000; Panella et al.,
2000; Smith et al., 2000]. In addition, it is precursors of aerosol nitrate,
tropospheric ozone, and the hydroxyl radical (OH), the main atmospheric
oxidant [Boersma et al., 2009]. Therefore, NO, is measured by various
methods and chemiluminescence is one of the well known methods for
measuring surface NO, volume mixing ratio (VMR) [Demerjian, 2000].
In-situ measurement such as the chemiluminescence measurement method is,
in general, more accurate than remote sensing techniques, but it requires a
number of in-situ instruments to provide the spatial distribution of the NO,
VMR in high resolution. In recent years, the NO, vertical column density
(VCD) measurements via satellites that can monitor NO, of global scale in
a short time has been actively conducted. The following various satellite
sensors have been utilized to measure these regional or global NO;
distributions. Space-born sensors that observed global distributions of NO,

are Global Ozone Monitoring Experiment (GOME) (1995-2003) aboard



European Remote Sensing-2 (ERS-2), Scanning Imaging Absorption
Spectrometer for  Atmospheric ~ Chartography/Chemistry (SCIAMACHY)
aboard Environmental Satellite (Envisat) (2002~), Ozone Monitoring
Instrument (OMI) aboard EOS-AURA (2004~), and GOME-2 aboard
Meteorological operational satellite (MetOp)-A platform (2007~) and
MetOp-B platform (2012~) [Leue et al., 2001; Richter and Burrows, 2002;
Martin et al., 2002; Boersma et al., 2004; Boersma et al., 2007; Bucsela et
al., 2006]. In many countries, the NO, VCD obtained from satellites is can’t
be directly used for air quality regulation because the surface NO, VMR is
used for air quality regulation. In recent years, studies have been conducted
to investigate the feasibility of estimating the surface NO, VMRs using the
NO, VCD obtained from satellite measurements and the correlation between
the NO, VCD obtained from satellite measurements and the surface NO,
VMRs.

ORDONEZ et al., (2006) reported the correlation between the troposphere
NO; VCD and the NO, VCD measured by GOME and ground based in-situ
device in Milan. Kharol et al., (2015) estimated the annual average
ground-level NO, concentrations in North America using chemical transport
model (GEOS-Chem) data and OMI NO, columns. It also reported the
annual trend of the estimated ground-level NO, concentrations. However, no
studies have attempted to estimate the surface NO, VMR in higher temporal
resolution such as hourly and monthly using the NO, VCD measured by
satellites.

In this present study, we for the first time estimated the surface NO,

VMR at a specific time (13:45 Local time; LT) (NO: VMRgrestimae) and



monthly mean surface NO, VMR (NO; VMRyiestimate) UsSing two linear
regression models and a multiple regression model with the troposphere NO,
VCD obtained from OMI (Trop NO, VCDowi) in five metropolitan cities. In
addition, performances of each regression method were evaluated by
comparing the estimated surface NO, VMRs with those obtained from in-situ

measurement (NO; VMRiw).
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The study areas were selected where the surface NO, VMR was
continuously measured in Korean metropolitan cities. Metropolitan cities such
as Busan and Incheon where the OMI pixel covers both the sea and cities
are excluded since there is no surface NO, data available over the sea.
Therefore, the selected areas include Seoul, Gyeonggi, Daejeon, and
Gwangju. Among the study areas, Seoul, where four OMI pixels exist, is
divided into eastern and western areas (West Seoul and East Seoul). The
study period is nine years from 2006 to 2014. Seven years (2007 - 2013)
are the training period to determine the regression coefficients of the
regression models used in this study, whereas two years (2006, 2014) the
validation period when for the surface NO, VMRs estimated from three
regression models with the determined regression coefficients are evaluated
via comparison with the in-situ data. The three regression models used in

this study are described in detail in Section 3.



2.1. Data

The data used in this study include Trop NO, VCDowm, boundary layer
height obtained from Atmospheric Infrared Sounder (AIRS) (BLHawrs),
atmospheric temperature obtained from AIRS (Tempars), pressure obtained
from AIRS (Pressars), NO, VMRy,n, surface temperature obtained from
in-situ measurement (Tempisi), surface pressure from in-situ measurement
(Presspsiny), surface dew point from in-situ measurement (Dewpoint siw),
surface wind speed from in-situ measurement (WSp.w), and surface wind
direction from in-situ measurement (WDy,gy). The detailed information of

the data are summarized in Table 1.



Table 1. Satellite and In-situ data used in this study.

Data Time
Satellite Trop. NO, VCD OMI Level3 NO; Daily
data (OMNO2d)
13:45
BLH, Temperature, Pressure AIRS/Aqua L3  Daily
Support Product (AIRS +
AMSU) V006
(AIRX3SPD) 13:30
In-situ Surface = NO, VMR Air Korea
Surface Temperature, — Surface AWS (Automatic ~ 13:00 and 14:00

Pressure, Surface Dewpoint,
Surface Wind Speed, Surface
Wind Data

Weather System)




2.1.1. Ozone Monitoring Instrument (OMI) data

The OMI sensor was launched in July 2004. It measures hyperspectral
radiance in ultraviolet and visible wavelength range via push-broom. Since
the OMI sensor utilizes the hyperspectral feature, it can improve retrieval
accuracy of air pollutants and enable the OMI sensor to do precise
radiometric and wavelength calibration for a long time. The OMI sensor has
two ultraviolet channels including UV-1 (270 nm - 314 nm) and UV-2 (310
nm - 365 nm). The spectral resolutions of UV-1 and UV-2 are 0.42 nm
and 0.45 nm, respectively. The wavelength range and spectral range of
visible channel are from 350 nm to 500 nm and 0.63 nm, respectively.

The OMI sensor continues the heritage of the TOMS dataset. The OMI
sensor onboard Aura satellite is known as a main sensor to monitor ozone
hole and observes key air pollutants including nitrogen dioxide, sulfur
dioxide, and aerosols. The Aura is a polar orbiting satellite with an overpass
time of 13:45LT.

The Trop NO, VCDomis were obtained from OMI Level3 NO, Daily Data
(OMNO2d) provided by NASA Goddard Earth Sciences Data and
Information Services Center
(http://disc.sci.gsfc.nasa.gov/Aura/data-holdings/OMI). Cloud-screened NO, data
(Level-3 OMI NO, Cloud-Screened Total and Tropospheric Column NO,

(V003)) are used in this present study (Cloud Fraction < 30 %).



2.1.2. Atmospheric Infrared Sounder (AIRS) data

The BLHawrs, Tempars, and Pressars used in this study were obtained
from the AIRS / Aqua L3 Daily Support Product (AIRS + AMSU) 1
degree x 1 degree V006 (AIRX3SPD.00) of NASA Goddard Earth Sciences
Data and Information Services Center
(http://disc.sci.gsfc.nasa.gov/uui/datasets/AIRX3SPD V006/summary?keywords=
%22AIRS%?22). The AIRS / Advanced Microwave Sounding Unit (AMSU)
is a sounding suite that aboard the Aqua launched in May 2002 [Aumann
et al., 2003; Chahine et al., 2006]. The Aqua is a polar orbiting satellite
with an overpass time of 13:30 local time (day and night time) and a

spatial resolution of 40 km horizontal at nadir.

2.1.3. In situ NO, data

The NO, VMR i was obtained from Air Korea
(http://www.airkorea.or.kr/last amb_hour data). Since NO, VMRypgn 18
available hourly, the average value of 13:00 LT and 14:00 LT is used to be
closer the OMI overpassing time. The Previous study [ORDONEZ et al.,
2006], the in-situ measurement sited was grouped into five different NO,
levels, clean, slightly polluted, average polluted, polluted, and heavily
polluted account for many stations which are located close to streets and are
exposed to emissions. In addition, the NO, data obtained from many in-situ

measurement stations in the GOME pixels were averaged, since in-situ



measurements are only representative of a small fraction of the satellite
ground scene. In this present study, the NO, VMRy, s obtained from
in-situ measurements located close to streets were excluded in this study.
We used the average of three or more the NO, VMR, located at least 2

km distance away from each other.

2.1.4 In situ meteorological data

The Tempmsi, PresSmsi, DeWpointm iy, WSmsi, and WD used in this
study are Automatic Weather System (AWS) data provided by Korea
Meteorological Administration
(http://sts.kma.go.kr/jsp/home/contents/statistics/newStatisticsSearch.do?menu=SF
C&MNU=MNU). Since meteorological data are available hourly, the mean
values of the data at 13:00 LT and 14:00 LT are used.

- 10 -



3. Methodology

In this study, NO; VMRsresimate and NO; VMRpyestimate Were estimated
using three regression models with Trop NO, VCDowm Table 2 shows the
summary of the three models used to estimate NO; VMRsrestimate and NO;
VMR \estimate-

- 11 -



Table 2. The regression models used for surface NOs VMR estimation in this study.

Model
Ml 13:45LT & Monthly
M2 13:45LT &  Monthly
M3 13:45LT
M4 Monthly

Equation

NOy, VMR, i, = 0™ Trop NOy VCD oyt

N02 VMR[nsitu = a* * BLHN02 VMRO]LJ[+ b

Section 3, Multiple regression equation (1)

Notes: *NO, tropospheric vertical column density obtained from OMI.

Trop NO, VCD X *** Gas constant R X**** Temp ;e X 10"

s BLHNO, VMR o, =

KHEEXX Avogadro constant NA X*¥¥**** BLH 1o XK FF****Pregs o

wxx Qusconstant = 8.314472m>pa k~ 'mol !

- 12 -



****Boundary layer mean temperature (K) obtained from AIRS.

sxxix 4 pogadro constant = 6.022 X 10% mol ™!
***kx*k*Boundary layer height (m) obtained from AIRS.

*xFxxk**Boundary layer mean pressure (pa) obtained from AIRS.

- 13 -



3.1 M1

M1 is the liner regression equation where Trop NO, VCDom; used as an
independent variable. Figure 2 shows the linear regression between Trop
NO,; VCDom; and NO; VMRpgy at 13:45LT during the training period. In
figure 2, R* (coefficient of determination), slope, and intercept are 0.47, 0.80
and 11.47, respectively. Figure 3 shows the linear regression between
monthly mean Trop NO, VCDowmr and monthly mean NO, VMRy,n during
the training period. In figure 3, R? slope, and intercept are 0.62, 0.77, and
10.95, respectively. The final form of the equation M1 to estimate NO,
VMRSt estimates 1S shown Table 4. Whereas, the final form of the equation

M1 to estimate NO, VMRp.csiimates 1S Shown Table 5.

- 14 -
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Figure 2. Correlation between Trop NOy VCDowi and NOy VMRi-situ tO
determine regression coefficient for the equation, M1 for the training

period between 2007 and 2013.
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Figure 3. Correlation between monthly mean Trop NOgz VCDomr and
monthly mean NOs VMRy-sity to determine regression coefficient for

the equation, M1 for the training period between 2007 and 2013.
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3.2 M2

Assuming that Trop NO, VCDowm is mostly present within the planetary
boundary layer (PBL), the relationship between Trop NO, VCDowm and the
surface NO, VMR may change as the planetary boundary layer varies. To
reflect the BLH in the regression equation, Trop NO, VCDow is first
divided by BLHaRrs to calculate the NO, concentration in the PBL and then
converted to the NO, mixing ratio in PBL (BLH NO, VMRgMm) using
Tempars and Pressars (see Table 2). Figure 4 shows the linear regression
between BLH NO, VMRowi and NO; VMRygw at 13:45LT during the
training period. In figure 4, R?, slope and intercept are 0.38, 1.58, and
14.30, respectively. Figure 5 shows the linear regression between monthly
mean BLH NO, VMRev; and monthly mean NO, VMRy during the
training period. In figure 5, R? slope and intercept are 0.59, 1.71, and
12.75, respectively. The final form of the equation M2 to estimate NO,
VMRSt estimates 1S shown Table 4. Whereas, the final form of the equation

M2 to estimate NO; VMRyestimates 1S shown Table 5.

- 17 -
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Figure 4. Correlation between BLH NO; VMRow at specific
time(13:45LT) and NOs; VMR -situ to determine regression coefficient

for the equation, M2 for the training period between 2007 and 2013.
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monthly mean NOs VMRi—siy to determine regression coefficient for

the equation, M2 for the training period between 2007 and 2013.
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3.3 M3 & M4

M3 and M4 are multiple regression equations to estimate NO,
VMRSt estimates and NOz VMRypestimates:  Multiple regression equation consists
of a dependent variable, independent variables, and their regression
coefficients. For the independent variable candidates, in addition to Trop
NO, VCDowmi and BLHars, meteorological factors (surface temperature,
surface dew point, atmospheric pressure, wind direction, and wind speed) are
used as independent variable candidates for the multiple regression equation
in this present study. In previous study [Xue and Yin, 2014], these
meteorological factors were also used for the multiple regression equation as
independent variable candidates to estimate surface SO, concentration in
Shanghai, China.

The multiple regression equation can be defined as the following

equations:

3;: By + Byxy + Boxy + -0+ Bz, T e (D

where ;& and By are dependent variable (NO, VMRy,w) and regression
coefficient, x;, X»,...X, are the candidates of independent variables (Trop NO;
VCDowmi, Dewpointinsi, Pressm-sin, T€Mpinsi, BLHARS, WSinesituy WDimusitu)> P,
B2, ..., Pn are the regression coefficients of the independent variables, and ¢
is the difference between observations (NO, VMRp,w) and estimates values

(NO2 VMRestimates). The regression coefficients can be estimates by the least

- 20 -



square fitting (Equation 2).

Yy, —y)* @)

m
Jj=1

m
E:EQZ
. J
j=1

Where y; is observed value with m numbers of data points. By
minimizing the sum of &’, regression coefficients can be derived. To
determine independent variable (x,) and regression coefficients (B,) included
in the final form of the equations M3 and M4, we considered variation
inflation factor (VIF) and p-value to ensure statistical significance of those
variables and their coefficient. First, we examined the VIF that explains the
multicollinearity of an independent variable candidate with regard to other
independent variable candidates. The VIF of the j-th independent variable is

expressed as:

1

e 3
- 3)

V[F(xj) =

Where R% is the coefficient of determination for the regression of x;
against the other (a regression that does not involve the dependent variable
j). The VIF indicates how much x; is correlated with the variables. A
candidate for independent variables with a very high VIF can be considered
redundant and should be removed from the multiple regression equations.
The candidates for independent variables that do not satisfy the criterion

VIF < 10 [Kutner et al., 2004], were excluded from the independent

21 -



variables. p-value was also used to select independent variables. The highest,
still statistically significant p-level was shown by Sellke et al. (2001) to be
5%. Among the independent variables that satisfy the VIF criterion, those
that also satisfy the p-value less than 0.05 (p-value < 0.05) are selected as
final independent variables in the multiple regression equations. The lists of
independent variables selected for the equations M3 and M4 are shown in
Table 3. The final form of the equation M3 to estimate NO, VMRsr estimates
is shown Table 4. Whereas, the final form of the equation M4 to estimate

NO> VMRum.estimates 18 shown Table 5.

- 22 -



Table 3. Final independent variables included in multiple regression equations (M3 and M4).

Final included independent variables p-value VIF

Trop NO, VCDowm 0 1.26

FEEEETempy g 0.000032 7.02

*Dewpointp.si 0.000306 7.16

M3 **Pressin.sit 0.009981 3.14
BLHaRs 1.73 x 10" 1.12

*EEWST it 3.86 x 107 1.33

#EE WD i 1.7493 x 107 1.07

Trop NO, VCDowm 2.4832 x 10 1.64

*Dewpointy it 0.000421 6.47

**Pressimsiu 0.034582 6.65

M4 BLHairs 0.000834 2.32
*RFWS | i 3.86 x 107 1.59

#£ WD it 1.699 x 107 1.25

Notes: *Surface dewpoint
**Surface pressure
***Surface wind speed
*x*k*Surface wind direction

*x*x*kSurface temperature

- 23 -



Table 4. Final form of the regression models used for surface NO; VMR at specific time estimations and
R? obtained from the regression between NO; VMRy-siv and each model’s independent variable for the

training period.

Equation R?
M1 N02 VMRST—estimate =1.71X T?“OpNOQ VODO]\/[]_ 0.68 0.47
M2 NOQ VMRST*estimate = 419 X BLHNOQ VMRO]W[—i_ 157 038

13:45LT

NOy VMR g1 . stimate = 0-000602 X Trop NO, VCD o1
—0.000107 X Zempy, s, — 0-000083 X Dewpoint j, i,
+0.000061 X Press i — 0-000002 X BLH 45
—0.002435 X WS}, 45t +0.001190 X WDy, sir, — 0.039996

M3 0.47

- 24 -



Table 5. Final form of the regression models used for monthly mean surface NO; VMR estimations and R?

obtained from the regression between NOy; VMR-« and each model’s independent variable for the training

period.
Equation
M1 NO2 VMRA/[_ esiThalomm 1.23 X TT'Op NO2 VCDOAf[+ 4.74
M2 NOYVMR - cstimate = 2:92X BLHNOy VMR 3+ 6.74
Monthly
mean

NOy VMR, o srimate = 0.657241X Trop NOyVCOD o1
— 0.137334 X Dewpointy, ., +0.136096 X Press;, it
—0.004331 X BLH 4 ;54— 0.770356 X WS}, et
+2.370956 X WD(west) ; ..., T~ 157.361668

M4

Table 4 and Table 5 show equations of M1, M2, M3, and M4, which reflect the regression coefficients determined

- 25 -



from the training period.




4. Results

4.1 Daily estimation

Figure 6 shows daily variations of NO, VMRysin and NO; VMRt estimates
estimated at 13:45LT using the M1, M2 and M3 of Table 4 in from West
Seoul and East Seoul. The NO; VMRgr estimaes are estimated using M1, M2,
and M3 in Table 4 with the inputs of independent variable data for the
years 2006 and 2014, the validation period. A slightly large difference in
magnitude is found between NO, VMRypgn and NO, VMRt estimates Obtained
from M3 compared to those between NO, VMR, and NO, VMRSt estimates
obtained from M1 and M2. However, NO, VMRt cstimates Obtained from M3
showed good agreement with NO, VMRy.n in hourly pattern. The graph

showing the same as figure 6.
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Figure 6. Time series of NOy VMR -situ and NOg VMRstT-cstimates €Stimates by M1, M2 and M3 in study areas
for the period 2006 ((a), (c), (e), (g), and (i), and 2014 ((b), (d), (©, (h), and ().
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Figure 7. (a) R, (b) slope, (c) MB, (d) MAE, (e) RMSE, and (f)
percent difference between NOs; VMRsr-cstimates @against NOs VMRin-situ
in 2006 and 2014.
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Figure 7 shows the (a) R (correlation coefficient), (b) slope, (c) mean bias
(MB), (d) mean absolute error (MAE), (e¢) root mean square error (RMSE)
and (f) percent difference between NO, VMRsrestimaes and NO; VMRy i in
validation period (2006 and 2014). The R between NO, VMRsr cstimates
obtained from M1 and NO, VMRyw ranges from 0.49 to 0.71, showing
better agreement than that of NO, VMRgrestimates from M2 (047 < R <
0.65). M3 showed the best correlation with NO, VMRy, 4y (0.67 <R <0.90)
among the three methods. The slopes between NO, VMR and NO;
VMRS estimates from both M1 and M2 are close 1 in East Seoul, whereas
they are lower the other cities. The MB between NO, VMR and NO,
VMRS estimates from M1, M2, and M3 range from -7.74 to 5.80 ppbv. In all
study areas, MAE (5.79 ppbv < MAE < 8.25 ppbv) of M3 is lower than
those (6.58 ppbv < MAE < 11.41 ppbv) of M1 and M2, which means that
NO:; VMRgrestimates: €stimated from M3 show good agreement with NO;
VMRpsiw  in - the magnitude. RMSE between NO, VMRyp, and NO,
VMRt estimates  from M3 is found to be lower than those between NO,
VMRpiw and NO, VMRgrestimates from M1 and M2. The NO; VMRst-estimates
by M3 showed the lowest RMSE in all study areas (7.21 ppbv < RMSE <
11.37 ppbv). In addition, percent differences between NO; VMRgr estimates
estimated from M3 and NO, VMRyw were lower in all study areas than
estimated values by Ml and M2. In estimating NO; VMRgrestimates, M3,
which is a multiple regression method with inputs of various independent

variables, generally showed good statistical performance except for MB.
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4.2 Monthly estimation

Figure 8 shows temporal variations of NO; VMRyiestimaes and monthly
mean NO, VMRyn estimated using the M1, M2 and M4 of Table 5 in
from West Seoul and East Seoul. The NO, VMRpiestimates are obtained from
M1, M2 and M4 in Table 5 with the inputs of monthly mean independent
variables during the validation period (see the detailed input data in Section
2.1). Figure 8 shows a good agreement between the estimated NO,
VMR estimates and monthly mean NO, VMRpg, in the temporal pattern.
However, we found a large difference between NO, VMRpgw and NO,
VMR estimates in the period when there was a change difference in NO,
VMR estimates Detween the previous and the following months. For example,
there was no models that calculated NO, VMRyicstimates that were similar to
NO:; VMRpq in December 2006 which changes largely compared to that
in November 2006. NO, VMRj s (NO2 VMRyiestimaes from M1, M2, and
M4) in November and December in 2006 are 19.32 ppbv (15.94, 17.96, and
17.62 ppbv) and 30.30 ppbv (15.94, 17.96, and 17.62 ppbv) in Daejeon,
15.26 ppbv (12.29, 13.87, and 18.09 ppbv) and 32.55 ppbv (12.73, 14.57,
and 18.46 ppbv) in Gwangju, 29.31 ppbv (25.86, 25.97, and 22.35 ppbv)
and 40.64 ppbv (29.91, 29.15, and 26.85 ppbv) in Gyeonggi, and 31.25
ppbv (22.80, 24.55, and 23.64 ppbv) and 45.93 ppbv (28.65, 28.92, and
26.49 ppbv) in West Seoul. Especially in West Seoul, There are several
periods when NO, VMR changes rapidly compared to the previous
month. The NO; VMRyiestimates Obtained from the three models are in poor

agreement with NO; VMRy,n in monthly pattern. As described in Section
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2, despite the use of NO; VMRpgn located away from the streets, the
in-situ measurement sites in West Seoul are located closer to the streets
than the in-situ measurement sites in Daegjeon and Gwangju. For this reason,
there thought to be more periods when NO, VMR, changes rapidly
compared to the previous month. It is difficult to estimate the rapid change
of NO, VMR near NO; source by regression models that reflect the
relationship between the in-situ measurements and the OMI sensor covering

both source and non-source areas in a single pixel.
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Figure 8. Time series of NOs VMRpp-situ and NOs VMRy-estimates €Stimates by M1, M2, and M4 for the period
2006 and 2014.
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Figure 9 shows the (a) R, (b) slope, (¢) MB, (d) MAE, (¢) RMSE and
(f) percent difference between NO, VMRyiestimaes and monthly mean NO,
VMRpsiw in 2006 and 2014. In general, NO, VMRyjestimates Showed better
agreement with NO, VMRy, g than the NO; VMRsr.esimatess: R between NO,
VMR estimates  Obtained from M1, M2 and M4 and monthly mean NO,
VMR, areas range from 0.68 to 0.82 in all areas. MB was close to 0 in
most study areas. MAE was less than 5 ppbv in Daejeon, Gwangju,
Gyeonggi, and East Seoul where there are good agreements between NO,
VMR estimates from M1, M2, and M4 and monthly mean NO, VMRy,iw,
whereas MAEs in West Seoul ranges from 5.66 to 6.79. RMSEs between
NO> VMR and NO, VMRwiestimaes from M1, M2, and M3 are found to
be lower than 7 ppbv in study areas except for West seoul. In addition, the
three models showed percent difference of less than 30% except for

estimated value from M1 in Gwangju.
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5. Discussion

In previous study [ORDONEZ et al., 2006], tropospheric NO, VCDs
obtained from GOME were compared with tropospheric NO, VCDs
calculated using both NO, concentrations obtained from in-situ measurements
and Model of Ozone and Related Tracers 2 (MOZART-2). There are also
several previous studies estimating surface NO, VMR using satellite data
[Lamsal et al., 2008; Kharol et al., 2015]. Among them, Kharol et al.
(2006) estimated the annual variation of ground-level NO, concentrations
using both GEOS-Chem data and OMI data. However, in this present study,
NO; VMRsrestimates @and NOz VMR estimates Were estimated for the first time
in higher temporal resolution using the three regression models with the

inputs of Trop NO, VCDowm.

® Estimation of surface NO, VMRs of a specific time (13:45LT).

v Among the three regression models, the multiple regression model
M3, showed the best performance in estimating NO, VMRgr.estimatie- In
estimation of NO; VMRsgr.estimatie; the linear regression model (M2), in
which BLH is used also as an independent variable in addition to
Trop NO, VCDomi, shows performance comparable with that of the
model (M1) which uses Trop NO, VCDowm as the only independent
variable. The BLH varies with latitude [Zeng et al., 2004]. The BLH
is not well reflected by the latitude change since the spatial resolution
of the AIRS used in this study is larger than the spatial resolution of

OMI. We expected better results by using BLH data obtained from
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Lidar or by correcting spatial resolution difference between OMI and
AIRS.

v' A slightly large differences in magnitude were found between NO,
VMRisiw and NO; VMRst.estimaes Obtained from M1, M2 and M3,
while there were good agreements in daily patterns of NO, between
NO, VMRygiw and NO> VMRgresimates Obtained from M1, M2 and
M3 (Figure 4).

v In terms of statistical evaluation via comparison between NO,
VMRt estimates and NO, VMRp g, M3 showed in general the best

performance.

® Estimation of monthly mean surface NO, VMRs of a specific time

(13:45LT).

v We found a good agreement between the estimated NO; VMR estimates
and monthly mean NO; VMRy, s, in the temporal pattern (Figure 8).
However, it was shown that a large difference between NO,
VMRpsiw and NO; VMRyiesimates in the period when there was a
change difference in NO; VMRyiestimates between the previous and the
following months. Despite the use of NO, VMR located away
from the streets, the in-situ measurement sites in West Seoul are
located closer to the streets than the in-situ measurement sites in
Daejeon and Gwangju. For this reason, there thought to be more
periods when NO, VMRyw changes rapidly compared to the
previous month. It is difficult to estimate the rapid change of NO,

VMR near NO, source by regression models that reflect the
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relationship between the in-situ measurements and the OMI sensor
covering both source and non-source areas in a single pixel.

v In terms of statistical evaluations, performances in estimating NO,
VMRM.estimates Using three regression models (M1, M2, and M4) were
found to be similar (Figure 9).

v' NO; VMRyestimates Shows better agreement with the NO, VMRpin
than NO; VMRsr.estimates: The reason for the better performances in the
monthly mean estimation could be attributed to the reduced errors in
monthly mean OMI data [OMI Team, 2009] and also fewer occasions
with sudden monthly changes in NO, VMRp. than rapid daily
changes in NO, VMRy,iq,.

In this study, it is expected that the regression methods used to estimate
the surface NO, VMR using Trop NO, VCDowm will be useful in providing
information on surface NO; VMR in metropolitan cites. For future
researches, the estimation of surface NO, VMR can be attempted in higher
time resolution with —geostationary satellite —sensors (e.g., geostationary
environmental monitoring spectrometer (GEMS), tropospheric emissions:

monitoring of pollution (TEMPO), and sentinel-4).
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6. Conclusions

In this study, NO; VMRgrestimates and NOz; VMRyestimates Were estimated
for the first time using three regression models in four metropolitan cities
for the two years period 2006 and 2014. Multiple regression model (M3) is
found to show the best performance in estimating NO; VMRgr estimates in all
cities. For the surface NO, estimates at the specific time (13:45LT), there
are generally better R, MAE, RMSE, and percent difference between NO,
VMRt estimaes  ffom M3 and NO, VMRyiw than those between NO,
VMRS estimates from other two models (M1 and M2) and NO; VMRy . In
comparison of the performances between monthly surface NO, VMR
estimates and those at specific time, agreement between NO, VMRp, and
NO; VMRueesiimates found to be better than that between NO, VMR and
NO; VMRt estimates- In estimating NO,; VMRypestimates, three regression models
(M1, M2, and M4) showed similar performances. In estimating daily surface
NO, VMR variation and monthly surface NO, VMR variation, when surface
NO,; VMR rapidly change, difference between surface NO, VMR estimated
from all models and NO, VMRpw is found to be large. For the future
studies, using higher spatial resolution satellites is expected to improve the
relationship with in-situ measurements. In addition, independent variables that

can estimate the rapid change of surface NO, VMR should be investigated.
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