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농업기상 예측 서비스를 위한 시간 흐름을 따라가는 고해상도 장기예보 시스템에 

관한 연구

최 경 민

부 경 대 학 교   대 학 원   환 경 대 기 과 학 과 

요    약 

1년 작물 생산량은 국가 식량생산 계획, 농산물 가격안정, 농업정책 수행 등을 위한 기초자료를

산정하는 가장 기본적인 단위의 통계자료이다. 또한 한 해 작물 생산량을 예측함으로써 농작물의

생산성을 높이기 위한 농업적 연구가 가능하다. 우리나라에서도 작물 생산량 예측을 위해 다양한

작물 모델들을 이용한 연구가 진행되어왔다. 그러나 대부분의 연구들이 기후변화 시나리오에 따른

한반도 작물 생산량 변화에 초점이 맞추어져 온 실정이며 다른 작물 모델들의 연구에서 한해 작물

생산량 예측을 위한 고해상도 농업기상 예측자료에 대한 연구가 매우 드물다.

작물모델을 이용하여 한반도 작물 생산량 예측을 위해 필요한 농업기상 자료는 다음과 같은

사항들을 고려해야 한다. 첫째, 작물 생산량 산정을 위해 사용되는 작물 모델이 필요로 하는 일 자료

형태의 기상 변수가 요구되며, 둘째, 한 해 작물 생산량 예측을 위해서는 파종기부터 수확기까지의

장기예측 농업기상 자료가 필요하다. 셋째, 한반도의 지역별 작물 생산량을 정확하게 예측하기

위해서는 고해상도 농업기상 자료가 필요하다. 마지막으로, 농업기상 자료의 예측성을 높이기 위해

예측자료는 파종기부터 수확기까지 시간이 지남에 따라 새로운 예측이 이루어져야 하고, 과거기간에

대해 관측자료 기반의 고해상도로 복원된 자료가 대체되어 한해 생산량 예측에 이용되어야 한다. 이

모든 것을 고려하여 본 연구에서는 ‘농업기상 예측 서비스를 위한 시간 흐름을 따라가는 고해상도

장기예측자료 생산 시스템‘을 제안하고자 하였다.

본 연구에서는 한반도 지역을 대상으로 독일 기상청에서 사용하는 대기대순환모델(Atmospheric

General Circulation Model, AGCM)인 GME를 사용하여 40km의 수평 해상도를 갖는 일 단위의 농업기상

장기예측자료를 생산하고, 정량적 기온/강수 진단 모델(Quantitative Temperature/Precipitation

Model, QTM/QPM)을 이용하여 기온과 강수 변수에 대하여 1km 수평 해상도를 갖는 고해상도

예측자료를 생산하였다. GME와 QTM/QPM을 이용한 고해상도 장기예측은 2015~2016년에 대하여 매달

수행되어 시간이 흐름에 따라 새로운 예측자료가 대체되도록 하였고, 지나간 과거에 대하여는

관측자료 기반의 1km 고해상도 복원 자료가 대체되도록 하여 시간 흐름에 따라 적절한 타입의 자료가

제공되는 농업기상 장기예측 시스템을 구축하였다. 이는 농업분야에서 각종 작물의 한 해 생산량

예측과 수확량 분석에 유용한 농업기상자료가 될 것으로 사료된다.
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Ⅰ Introduction

1. Background and purpose of research

The annual crop yields is the most basic unit of statistical data

as fundamental data for national food production, agricultural price

stabilization, and agricultural policy execution. Agricultural research is

possible to increase the productivity of crops by predicting annual crop

yields. The vegetation distribution of crops depends on the climatic

conditions of the plantation, but the growth of crops depends on the

environment of the plantation. Since the growth of crops is influenced

by meteorological factors such as temperature, precipitation, and

radiation flux, agricultural weather information is fundamental and

essential material for predicting crop yields.

A variety of methods have been tried to predict crop yields for

a long time. Recently, research is active using crop models that enable

quantitative analysis based on the growth model of crops by soil,

weather conditions, and variety of crops. Crop models are computer

programs that mimic the growth or development of crops. Models

simulate or mimic the actual crop behavior by predicting the growth of

components such as leaves, roots, stems, or grains. In a brief look at

the history of crop modeling, in the 1960s, there was a first attempt to

make photosynthetic rates model of crop canopies (de Wit, 1965). This
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model was used to estimate potential food production in some areas

and to provide indications for crop cultivation and management. This

model led to the structure of the Elementary Crop growth Simulator

(ELCROS) which has basic statistical photosynthetic models and crop

growth simulation structures, including crop respiration by de Wit et

al. in 1970. After then, a functional equilibrium between shoot growth

and root, micrometeorology, and canopy resistance quantification to gas

exchanges were added to this model which developed into the Basic

Crop growth Simulator (BACROS) in 1978. In 1982, there was the

development of model by International Benchmark Sites Network for

Agrotechnology Transfer (IBSNAT) to help resource poor farmers. The

major product of IBSNAT was the Decision Support System for

Agro-Technology Transfer (DSSAT) which is widely being used as a

research tool until now (Oteng-Darko, P. et al., 2013). Similarly, major

crop models were developed through the process of projects in various

institutions throughout the world.

Crop models are classified into different types depending upon

the each purpose for which it is designed. There are empirical models,

mechanistic models, static models, dynamic models, deterministic

models, stochastic models, simulation models, and optimizing models

and so on. Among these models, the most commonly used models are

simulation models. Because these are designed to simulate the system

at short time intervals (daily time-step), these address the aspects of

variability associated with daily changes in weather and soil conditions.

This short time step simulation requires large input data to run the
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model, such as climate parameters, soil characteristics, and crop

parameters. Around 40 years ago, various crop models have developed

and used for various purposes. In particular, it is mainly used to

analyze the yield of various agricultural crops, or to predict future crop

yields.

In Korea, studies have been conducted to predict crop yields

according to weather conditions using several crop models such as

CERES (Crop Environment Resource Synthesis), ORYZA 2000, and

EPIC (Jo and Yun, 1999; Yun and Jo, 2001; Lee et al., 2005; Lim et

al., 2015). However, these studies mostly use Korean environment

variables as the input data of crop models developed abroad to

estimate the production volumes of domestic rice crops and compare

them with actual yield. And these studies were conducted based on

historical weather data only. On the other hand, most studies on

predicting crop yields are concentrated in studies on changes in

domestic crop yields due to climate change scenarios (Chung et al.,

2006; Chung, 2010; Sim et al., 2011; Lee et al., 2012; Nam et al., 2012).

The utilization of the climate change scenarios using these GCM is the

threshold for using a single result of the GCM model. Shin and Lee

(2014) used the ensemble seasonal prediction weather data to predict

crop yields, and there were some limitations about large spatial

resolution and converting monthly data into daily data because of

utilizing several kinds of global meteorological forecast data. Korea has

various regional climate patterns because it consists of small but

complex terrain. This is because the nation's territory is geographically
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small but consists of complex terrain, which has a diverse regional

climate. Chun et al. (2012) proposed the 100m resolution

agrometeorological information analysis system based on the

observational data using LAPS (Local Analysis and Prediction System),

but only short-term predictions are possible because of using the

regional forecast results which has 10 km resolution and 6 hours

intervals as a input data of LAPS.

All the take together, the agrometeorological data should take

into account the following to predict crop yields using crop models.

First, to predict the annual crop yields, long-term agrometeorological

prediction is required from seeding season to harvest season, and

secondly, it requires a weather parameter as the daily data for crop

models that are used for crop yields. Third, to predict regional crop

yields accurately on the Korean Peninsula, high resolution

agrometeorological prediction data are needed. Finally, to increase the

predictability of agrometeorological data, predictions must be made

again over time from seeding season to harvest season, and the

observation-based high resolution synthetic data should be replaced for

the past time, which should be used to predict the annual crop yields.

In light of all this, this study has established ‘A temporal adaptative

high resolution long-term prediction system for agrometeorological

outlook services’.

In the chapter 1, the background and purpose of research are

introduced. The description of Temporal adaptative high resolution

long-term prediction system and its important advantages are
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introduced in detail. In the chapter 2, the methods to calculate

observation-based synthetic data and long-term prediction data are

described. In the chapter 3, agrometeorological variables for crop

models or pest models, observation-based synthetic temperature and

precipitation, final high resolution prediction data, and time series at

station point are described. Finally in the chapter 5, this study is

closed by conclusion.
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2. Temporal adaptative high resolution long-term

prediction system introduction

Utilization of crop models for estimating the annual crop yields

and pest models in agricultural fields can ultimately contribute

significantly to improving the annual crop productivity. Since

agrometeorological information is essential in agriculture, it is

important to provide a one-year agrometeorological prediction for

annual crop yields production. The system proposed in this study have

a large aim to provide sustainable data for crop yields prediction and

analysis in Korea. The major advantage is, firstly, to produce

long-term agrometeorological prediction data from seeding season to

harvest season. Second, these data are calculated as the daily data to

enable input materials for crop models and pest models. Third, the

prediction data is high-resolution to predict crop yields by small region

in the Korean Peninsula with complex terrain. And finally, significant

advantage in this system is to update the data as the new prediction

data for the future and to replace the data with the observation-based

high resolution synthetic data for the past. As time goes by, it

provides the proper type data for continuous prediction of annual crop

yields from seeding season to harvest season. Two methods have been

applied to enhance the predictability of long-term agrometeorological

data in this system. One is to update the prediction data as the new

every month. Another is ensemble prediction method. Further details of
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method are described in the next chapter.

In this study, long-term agrometeorological prediction data for

crop seeding and harvest time in Korea. Most of the domestic studies

about crop models were mostly applied to rice varieties and corn in

some cases. In case of rice that is main crop in Korea, seeding season

is different from region to region, but usually from early April to

middle part of April and harvest season is last part of September.

Corn is sown in middle part of April and harvested from late July to

early August. However, prediction periods has set up from March to

October to provide agrometeorological data in this system for various

crop varieties.

The Structure diagram of ‘Temporal Adaptative High Resolution

Long-term Prediction System’ is shown in Fig. 1. If the present point

of view is the beginning of 2016, observation data can be used for the

analysis of crops in past years. To predict an annual crop yields in

2016, long-term prediction data are needed from seeding season to

harvest season. In January, it provides long-term prediction data from

March to October using GCM (General Circulation Model) except

February, the spin-up time of model simulation. When it comes to

February, the new prediction data are updated to the new prediction

from April to October except the spin-up time, March. For the March,

previous prediction data which was carried out in January is still used

for estimating an annual crop yields. Then becoming March, the

prediction data are replaced with the new, from May to October. With

this lapse of time, new predictions are carried out every month, and
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updated to new prediction. Becoming April, it is able to get

observation data on March. The prediction data are replaced by

observation-based synthetic data for temperature and precipitation

which are the most important factors in crop models and pest models.

The new year begins after the crop harvest season and the new

long-term prediction is carried out again for the new year. This

time-traveling agrometeorological data provision system is ‘Temporal

Adaptative High Resolution Long-term Prediction System’.

The experimental design is shown in Fig. 2 for this system. To

produce high resolution observation-based data and prediction data

which have 1 km × 1 km resolution, the observation data and

prediction data from AGCM (Atmospheric General Circulation Model)

are used as the input data for quantitative model. Using quantitative

temperature/precipitation models, high resolution synthetic and

prediction data are produced. Domain is the Korean Peninsula and

period is March to October for two years (2015, 2016).



9

Figure 2. Structure diagram of Temporal Adaptative High Resolution

Long-term Prediction System
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Figure 3. The experimental design for the system
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Ⅱ Method

1. Calculating method for synthetic data

The diagnostic models QTM (Quantitative Temperature Model)

and QPM (Quantitative Precipitation Model) consider the small-scale

topography effect, which is not treated in the mesoscale resolution. In

this study, to calculate to high resolution temperature and precipitation

data, the diagnostic models have been used as the downscaling method

which was used Kim and Oh (2010), Bae (2015) and Kang (2017). As

the small-scale topography, DEM (Digital Elevation Model) data which

have 1 km resolution, from Consortium for Spatial Information.
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A. Quantitative Temperature Model (QTM)

QTM calculates the temperature using the high resolution

topography data. The method of calculating detailed regional

temperatures using QTM is to consider the detailed terrain effects that

are not addressed in mesoscale resolution. The high resolution

temperature is calculated by add and subtraction as much as the

temperature lapse rate which is occurred by difference of altitude

between the mesoscale topography and high resolution topography at

each point. The temperature lapse rate parameter () considered in

QTM is calculated at of each point, rather than the environmental

lapse rate which has the value of 6.5 ℃/km (Eq. 1).

 







Where  is the temperature lapse rate inlayer between and

isobaric surfaces.  and  are the temperatures in the  and

isobaric surfaces from the observation data or mesoscale model

data for prediction.  and  are the geopotential height in the 

and , respectively. This method was introduced in Kang (2017).

Using the temperature in the five vertical levels (1000 hPa, 850 hPa,

700 hPa, 500 hPa and 300 hPa), the temperature lapse rate for four

layers is calculated at each point, every time interval of data. For

calculating the temperature by topography effect, mesoscale or
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observation temperature is calculated to 1000 hPa level value using the

eq. 2.

 × 

Where  is the observation which can be mesoscale model

temperature as well,  is the temperature lapse rate which was

calculated from input dat of QTM, and  is the topography which

has mesoscale resolution. Then, the 1000 hPa temperature is

interpolated to 1 km resolution using bilinear interpolation method.

Finally, the temperature is calaulated with small-scale topography

effects using DEM topography data and temperature lapse rate for

each point (Eq. 3).

 × 

Where  is final temperature which has 1 km resolution,  is

the interpolated temperature from , and  is DEM

topography data.
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B. Quantitative Precipitation Model (QPM)

QPM calculates precipitation in detailed region considering

small-scale topography effect. QPM was used many studies(Bell, 1978;

Misumi et al., 2001; Kim and Oh, 2010; Bae, 2015). It has the

advantages of saving computing resources using numerical model to

calculate the small-scale precipitation intensity.

The following description is the simple progress of QPM

calculating to small-scale precipitation. The mixing ratio of rainfall can

be presented as the mass of rainfall containing dry mass of unit mass

with condensation rate and evaporation rate of rainfall. Eq 4 is shown

the continuity equation (Kessler, 1996).



















  

Where   and  are horizontal and vertical coordinates,  is time,  

and  are horizontal and vertical wind components,  is air density,

 is mixing ratio of rainfall,  is falling speed of rainfall,  is

condensation rate, and  is evaporation rate.

The continuity equation of raindrop mixing ratio can be

separated to mesoscale field and small-scale perturbation field as given

Eq. 5.
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

′


 ′
 

 ′


 ′







 
′

′
′ 

There are some assumptions. First, the atmosphere is steady

state. Second, variations of rainfall mixing ratio are consistent over

time in steady state. And third, wind components (  ) and air

density ( ) are approximated to the values from the mesoscale data.

The perturbation of rainfall mixing ratio (′) is difference of rainfall

mixing ratio from additional condensation (′) and evaporation (′)

according to the small-scale topography effect. In the terrain-following

coordinate system, ′ is calculated through the parameterization

process. Finally, precipitation intensity is calculated from changes of

the rainfall between the water vapor due to the influence of the terrain

(Eq. 6).

  
′ 
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C. Data

To produce observation-based synthetic temperature and

precipitation in the Korean Peninsula, following data that used as the

input of QTM and QPM is described in Table 1. The observation data

are obtained from Automatic Weather System (AWS) and the

Automatic Synoptic Observation System (ASOS) which has 1 hour

interval. The 3 hours interval observation data are used for calculating

synthetic temperature and precipitation in South Korea. These

observation data are from the Korea Meteorological Administration

(KMA). KMA performs their own quality control. The number of

AWS station points is 494 and the number of ASOS station points are

93 (Fig. 3).

The MERRA 2 reanalysis data are used as the vertical data in

the Korean Peninsula and the surface data in North Korea. Because it

is almost impossible to get the observation data in North Korea,

reanalysis data which processed from global observation data are used

for producing observation-based synthetic data. Kang (2017) set this

dataset for QTM and QPM in his study. Additionally MERRA data are

updated with MERRA 2 in this study because the National

Aeronautics and Space Administration (NASA) provides new dataset.

And the reanalysis data points are added more points for accuracy

precipitation data compared to Kang’s study. Kang (2017) produced the

observation-based synthetic climate data of temperature and

precipitation for 15 years (2000-2014). But the new climate data
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calculated again in this study using the updated method.
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Data Time interval
Number of station

or resolution

AWS / ASOS (KMA) 3 hours 494 / 93

MERRA 2 (NASA)

vertical data: 3 hours 1.25˚⨯1.25˚, 72 levels

surface data: 3 hours 0.667˚⨯0.5˚

Table 1. Information of AWS & ASOS observation data used in QPM, QTM
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Figure 3. Data points distribution of (a) MERRA 2

reanalysis data and (b) AWS (black points) & ASOS (blue

points) sites

(a)

(b)
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2. High resolution prediction method

A. Prediction model and data description

In this study the agrometeorological data are produced for 2015,

2016 according to the concept of ‘Temporal adaptative high resolution

long-term prediction system’. To predict the meteorological variables,

global model GME (Operational Global Model (GM) and the regional

model for central Europe) has been used. GME is hydrostatic model

that is developed by DWD (Deutscher Wetterdienst). Because it has

icosahedral-hexagonal grid, there are several advantages. A major

advantage of this grid makes it to avoid the pole problem by CFL

(Courant-Frierich-Lewy) condition that exists in Cartesian grid

coordinate system. It is also easy condition to increase the resolution

of prediction. Grid has consists of the equilateral triangles (Fig. 4).

This model increases resolution by creating a new triangle to connect

the middle points of the same triangle grid. It can be divided to equal

interval of grid and be used less computing resource to increase

resolution (Majewski, et al., 2002).

In this study, long-term prediction has carried out using GME

version 3.0. Because the GME model is AGCM, boundary condition

data is used to consider the ocean condition (Table 2). The SST (Sea

Surface Temperature) data have got from NOAA OI (National Oceanic

and Atmospheric Administration Optimum Interpolation) and sea ice

data have got from ECMWF (European Centre for Medium Range
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Figure 4. Process of increasing resolution grid structure in the

icosahedral-hexagonal grid
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Weather Forecasts). Present SST and sea ice changes compared with

climatological data are considered whether consistent or not. Then final

boundary data are used as the input of GME model. AGCM is

calculates the future weather condition using several equations.

Therefore, the initial data is also required to present the start points

atmospheric condition. ECA (The European Climate Assessment)

reanalysis dataset which has gaussian grid is used as the initial data

for GME. This data has got from ECMWF. After the initial data are

horizontally re-gridding to GME model grid, it used to run the model.

The time-lagged ensemble method is used to reduce the

uncertainty of prediction by the longer model running time. This

time-lagged ensemble method is one of prediction method carrying out

several predictions. It is proposal the statistical probability of prediction

results through many model simulations rather than a deterministic

outcome. In this study, 10 ensemble predictions have carried out from

seeding season to harvest season in every month.

Finally, the agrometeorological long-term prediction data which

has 40 km resolution have been produced for 2015, 2016.
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Variable
SST

(Sea Surface Temperature)
Sea ice

Grid Number

(Lon/Lat)
360×180 144×73

File Format NetCDF NetCDF

Time Period 1971-2000 Daily Data 1971-2000 Daily Data

Data Source

NOAA OI (National Oceanic

and Atmospheric Administration

Optimum Interpolation)

ECMWF (European

Centre for Medium Range

Weather Forecasts)

Table 2. Details of SST and sea ice boundary data

Spectral Gaussian Lat/Lon Grid Number

T511 N256 0.351 1024×512

Table 3. Details of ECMWF reanalysis data grid and resolution information
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B. Calculation the high resolution prediction data

To calculate high resolution (1 km × 1 km) prediction data from

mesoscale (40 km × 40 km) prediction output, QTM and QPM have

used. It can be denominated as ‘GME-QTM’ and ‘GME-QPM’ in this

study. The method is same with to calculate observation-based

synthetic data except the use of model topography data and model

data. The high resolution prediction temperature and precipitation data

are produced considered the small-scale topography effect which are

not be treated in mesoscale topography. The comparison topography

data is shown in Fig. 5 which have different resolutions.

In this study the long-term prediction data are calculated to

high resolution in 2015, 2016 and AMIP (Atmospheric Model

Intercomparison Project) type model climatology for 30 years

(1979-2008) is calculated as well.

Final high resolution data obtained from difference between

mean of ensemble prediction and model climatology added to present

climatology (Fig. 6).
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Figure 5. Comparison topography data between (a) GME model

topography and (b) DEM topography which is used in QPM

and QTM

Figure 6. Process to calculate the final prediction
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Ⅲ Results

1. Result of agrometeorological variables prediction

dataset

The essential agrometeorological variables are different by what

kind of crop models is used. Song et al. (2014) reviewed 14 crop

models to estimate possibility of application to Korean for prediction

the crop yields. For the major agrometeorological input data for crop

model are temperature, precipitation and radiation. However the other

meteorological variables are still used even that have consist value.

Several variables of prediction data of GME model which are

possible to be input data of crop models and pest models have been

set (Table 4 and Fig. 7). These 22 variables can be combined to the

other variables. For example, using zonal wind (U_10M) and meridional

wind (V_10M), wind speed can be created by calculating. The

variables of input data can be selected depending on the kind of crop

models. The list of variables is enable to run any crop model as the

meteorological input data of crop model or pest model. These are

calculated to daily data what is required common data type for crop

models.

The ensemble prediction results of GME have 40 km resolution.

Those are presented in Fig. 7 for the sample period in May, 2016. For

visualization the monthly averaged value are plotted.
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GME Variable name Element (Unit)

Temperature

T_2M temperature 2m above ground (K)

TMIN_2M minimum of temperature 2m above ground (K)

TMAX_2M maximum of temperature 2m above ground (K)

T_M
temperature at a depth of ~ 8 – 10 cm of

the old 2-layer soil model (K)

T_SO soil temperature (K)

Water

contents

TOT_PREC Total precipitation (kg/m2)

RUNOFF_S surface water run-off (kg/m2)

RUNOFF_G ground water run-off (kg/m2)

W_I water content of interception storage (mmH2O)

W_G1
water content of upper soil layer (0 – 10

cm) of the old 2-layer soil model (mmH2O)

W_G2
water content of lower soil layer (10 – 100

cm) of the old soil model (mmH2O)

Humidity
QV_S

specific humidity at the surface; over water, this

corresponds to 100% relative humidity. (kg/kg)

QV_2M specific humidity 2m above ground (kg/kg)

Cloud

cover

CLCT total cloud cover (%)

CLCH high cloud cover (0 – 400 hPa) (%)

CLCM medium cloud cover (400 – 800 hPa) (%)

CLCL low cloud cover (800 hPa – surface) (%)

Radiation
ASOB_S solar radiation balance at the surface (W/m2)

ALB_RAD (solar) shortwave albedo at the surface (%)

Wind
U_10M zonal wind 10m above ground (m/s)

V_10M meridional wind 10m above ground (m/s)

Pressure PS surface pressure on model orography (Pa)

Table 4. Prediction variables list from GME model for crop models
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Figure 7. Prediction variables of ensemble prediction sample for crop

models that have same orders with Table 4. (visualization period of

samples: May, 2016 / initial date: May 21-30, 2016.)
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2. Observation-based synthetic temperature/precipitation

To calculate the observation-based synthetic temperature and

precipitation, the observation (AWS, ASOS, and MERRA 2) data have

been used to QPM and QTM.

In this study, the observation temperature and precipitation have

been calculated to 1 km high resolution data in two kinds of period for

different purposes. First purpose is to produce the observation-based

high resolution data as the past data which replace prediction data for

the past time. The simulation period is March to October for 2 years

(2015, 2016) by experiment design of this study. The results of high

resolution synthetic temperature and precipitation as the historical data

which replaces prediction data is shown in Fig. 8 and 7 respectively.

And second purpose is to obtain the present climatology data. This

present climate data is required to calculate final high resolution

prediction. In the process to calculate the high resolution final

prediction, model anomaly prediction data are added to historical

synthetic climatology (Fig. 6). This historical synthetic climatology

from observation data indicates the present climatology in The Korean

Peninsula. It would be the standard data compared with future wether

conditions. Therefore, by adding model anomaly prediction which

indicates future climate changes compared to present climate, final high

resolution prediction can be obtained. For the present climatology, 15

years observation data have been calculated using QTM and QPM.

The period is from 2000 to 2014. After calculating to detailed data in
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every for 15 years, the data have been averaged to daily data.

For the QPM and QTM results using observation data are

described in the previous studies (Kim and Oh, 2010; Bae, 2015; Kang,

2017).
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Figure 8. Observation-based synthetic temperature over the Korean Peninsula

in March to October (a) 2015 and (b) 2016

(a)

(b)
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Figure 9. Observation-based synthetic precipitation over the Korean Peninsula

in March to October (a) 2015 and (b) 2016

(a)

(b)
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3. Final high resolution long-term prediction data

To obtain the high resolution long-term temperature and

precipitation prediction, the GME-QTM and GME-QPM process have

been carried out. Using GME prediction results, the temperature and

precipitation have been calculated to 1 km high resolution data by

QPM and QTM.

There are two kinds of high resolution prediction data through

their different purpose of usages. From January to August in 2015 and

2016, 10 times simulation have performed every month for ensemble

prediction. Total simulation number is 160. Each simulations have been

calculated to detailed data using QTM and QTM. Then the 1 km high

resolution data are averaged to ensemble mean. Another calculating the

GME simulation is to obtain the high resolution model climatology.

The period of GME model climatology is 1979 to 2008, 30 years by

AMIP (Atmospheric Model Intercomparison Project). The GME

climatology has been calculated to 1 km high resolution data for 30

years. Then the high resolution climatology data have been averaged

to daily data.

Finally, the high resolution long-term prediction data have been

obtained by the model anomaly prediction data added to historical

synthetic climatology (Fig. 6). The results of final prediction is shown

in Fig. 10. For visualization sample date has been selected. Initial date

of this ensemble prediction is 21-30 January in 2015.
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Figure 10. Process of final high resolution (a) temperature and (b)

precipitation prediction which obtained by the model anomaly prediction data

added to historical synthetic climatology

(a)

(b)
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4. Time series at station point

The 16 ASOS station points have been selected to indicate the

results of temporal adaptative prediction system. 2 station points in

each district are where produce large crop yields in Korea. The details

of station are described in Table 5. The distribution of stations are

pointed in Fig. 11. The stations are evenly spread.

The meaning of ‘temporal adaptative’ is that the data is changed

as time goes by. The temporal adaptative temperature data are shown

in Fig. 12. The temperature data is at the Seosan station which is the

largest rice crop yields region in Korea. Each name of 11 plots means

the month when the data is provided. In JAN 2015, there is prediction

data only. In Feb 2015, there are the new prediction data and previous

prediction data for the period of March which occurred by model

spin-up time. In APR, the prediction on March that the past time

becomes observation-based synthetic temperature. The same as thes

way, data are changed to their proper type. In the same way,

precipitation dataset is shown in Fig. 13. This figure is also Seosan

station data. As time goes by, precipitation data are changed by more

observation-based synthetic data. Because of the prediction is ensemble

prediction data and the final prediction is obtained by model anomaly

prediction added to synthetic present climatology, for the precipitation,

it is tend to have number of precipitation days more than observation

data with less amount. The time series graph at the other stations, are

not shown here at all. But the results indicate the temporal adaptative



36

dataset in the same way. On each month, temperature and precipitation

data are can be used for the prediction the annual crop yields using

crop model and for the prediction vermination using the pest models.
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District Station name
Station

number

Latitude

of station

Longitude

of station

Gyeonggi-do

Icheon 203 37.264 127.4842

Paju 99 37.8859 126.7665

Gangwon-do

Cheorwon 95 38.1479 127.3042

Wonju 114 37.3376 127.9466

Chungcheongbuk-do

Cheongju 131 36.6392 127.4407

Chungju 127 36.9704 127.9527

Chungcheongnam-do

Buyeo 236 36.2724 126.9208

Seosan 129 36.7766 126.4939

Jeollabuk-do

Buan 243 35.7295 126.7166

Jeongeup 245 35.5632 126.8661

Jeollanam-do

Goheung 262 34.6182 127.2757

Haenam 261 34.5536 126.569

Gyeongsangbuk-do

Sangju 137 36.4084 128.1574

Gyeongju 283 35.8175 129.2009

Gyeongsangnam-do

Hapcheon 285 35.565 128.1699

Miryang 288 35.4915 128.7441

Table 5. The information of 16 ASOS stations where produced large crop

yields in South Korea
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Figure 11. Distribution of 16 station points
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Figure 12. Temporal adaptative daily temperature data with combination of

observation-based synthetic data and prediction data at Seosan station
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Figure 13. Temporal adaptative daily precipitation data with combination of

observation-based synthetic data and prediction data at Seosan station
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Ⅳ Conclusion

This study has established ‘A temporal adaptative high

resolution long-term prediction system for agrometeorological outlook

services’. This agrometeorological data provision system considers four

significances to predict crop yields using crop models. First, to predict

the annual crop yields, long-term agrometeorological prediction is

required from seeding season to harvest season, and secondly, it

requires a weather parameter as the daily data for crop models that

are used for crop yields. Third, to predict regional crop yields

accurately on the Korean Peninsula, high resolution agrometeorological

prediction data are needed. Finally, to increase the predictability of

agrometeorological data, predictions must be made again over time

from seeding season to harvest season, and the observation-based high

resolution synthetic data should be replaced for the past time, which

should be used to predict the annual crop yields.

To produce high resolution observation-based data and

prediction data which have 1 km × 1 km resolution, the observation

data and prediction data from AGCM are used as the input data for

quantitative model. Using QTM and QPM, high resolution synthetic

and prediction data are produced. The diagnostic model, QTM and

QPM, consider the small-scale topography effect, which is not treated

in the mesoscale resolution. Domain is Korean peninsula and period is

March to October for two years(2015, 2016).

As a results, 3 kinds of data are obtained. First is 22 variables
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of prediction data of GME model which are possible to be input data

of crop models and pest models. This data has 40 km resolution.

Second results is high resolution observation-based data To produce

high resolution observation-based, using QTM and QPM with AWS,

ASOS and MERRA 2 observation or reanalysis data. Two kinds of

observation-based synthetic data are calculated. Those are the

synthetic data for the past data for 2 years (2015-2016) through the

experiment design and the present climatology data for 15 years

(2000-2014) which are used for prediction data. And third is the final

prediction data which have 1 km high resolution. To obtained the final

prediction data, the model climatology for 30 years (1979-2008) and

long-term prediction data for 2 years (2015-2016) have been calculated

to detailed data. Then the high resolution long-term prediction data

have been obtained by the model anomaly prediction data added to

historical synthetic climatology. Additionally the time series at the 16

station data have been analysis to indicate the temporal adaptative

system.

Through the concept of temporal adaptative high resolution long-term

prediction system, the high resolution temperature and precipitation

data is provided for the future, and the new prediction data is updated

every month, on the other hand, the observation-based synthetic data

is replaced the prediction data for the past. This changeable dataset

would be useful data for prediction and analysis annual crop yields

using crop models and pest models.
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