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I Introduction

1. Background and purpose of research

The annual crop yields is the most basic unit of statistical data
as fundamental data for national food production, agricultural price
stabilization, and agricultural policy execution. Agricultural research is
possible to increase the productivity of crops by predicting annual crop
vields. The vegetation distribution of crops depends on the climatic
conditions of the plantation, but the growth of crops depends on the
environment of the plantation. Since the growth of crops is influenced
by meteorological factors such as temperature, precipitation, and
radiation flux, agricultural weather information is fundamental and
essential material for predicting crop yields.

A variety of methods have been tried to predict crop yields for
a long time. Recently, research 1s active using crop models that enable
quantitative analysis based on the growth model of crops by solil,
weather conditions, and variety of crops. Crop models are computer
programs that mimic the growth or development of crops. Models
simulate or mimic the actual crop behavior by predicting the growth of
components such as leaves, roots, stems, or grains. In a brief look at
the history of crop modeling, in the 1960s, there was a first attempt to

make photosynthetic rates model of crop canopies (de Wit, 1965). This



model was used to estimate potential food production in some areas
and to provide indications for crop cultivation and management. This
model led to the structure of the Elementary Crop growth Simulator
(ELCROS) which has basic statistical photosynthetic models and crop
growth simulation structures, including crop respiration by de Wit et
al. in 1970. After then, a functional equilibrium between shoot growth
and root, micrometeorology, and canopy resistance quantification to gas
exchanges were added to this model which developed into the Basic
Crop growth Simulator (BACROS) in 1978. In 1982, there was the
development of model by International Benchmark Sites Network for
Agrotechnology Transfer (IBSNAT) to help resource poor farmers. The
major product of IBSNAT was the Decision Support System for
Agro-Technology Transfer (DSSAT) which is widely being used as a
research tool until now (Oteng-Darko, P. et al., 2013). Similarly, major
crop models were developed through the process of projects in various
institutions throughout the world.

Crop models are classified into different types depending upon
the each purpose for which it is designed. There are empirical models,
mechanistic models, static models, dynamic models, deterministic
models, stochastic models, simulation models, and optimizing models
and so on. Among these models, the most commonly used models are
simulation models. Because these are designed to simulate the system
at short time intervals (daily time-step), these address the aspects of
variability associated with daily changes in weather and soil conditions.

This short time step simulation requires large input data to run the



model, such as climate parameters, soil characteristics, and crop
parameters. Around 40 years ago, various crop models have developed
and used for various purposes. In particular, it is mainly used to
analyze the yield of various agricultural crops, or to predict future crop
vields.

In Korea, studies have been conducted to predict crop yields
according to weather conditions using several crop models such as
CERES (Crop Environment Resource Synthesis), ORYZA 2000, and
EPIC (Jo and Yun, 1999; Yun and Jo, 2001; Lee et al., 2005 Lim et
al., 2015). However, these studies mostly use Korean environment
variables as the input data of crop models developed abroad to
estimate the production volumes of domestic rice crops and compare
them with actual yield. And these studies were conducted based on
historical weather data only. On the other hand, most studies on
predicting crop vyields are concentrated in studies on changes in
domestic crop vields due to climate change scenarios (Chung et al.,
2006; Chung, 2010; Sim et al., 2011; Lee et al., 2012; Nam et al., 2012).
The utilization of the climate change scenarios using these GCM is the
threshold for using a single result of the GCM model. Shin and Lee
(2014) used the ensemble seasonal prediction weather data to predict
crop vyields, and there were some limitations about large spatial
resolution and converting monthly data into daily data because of
utilizing several kinds of global meteorological forecast data. Korea has
various regional climate patterns because it consists of small but

complex terrain. This is because the nation’s territory is geographically



small but consists of complex terrain, which has a diverse regional
climate. Chun et al. (2012) proposed the 100m resolution
agrometeorological information analysis system based on the
observational data using LAPS (Local Analysis and Prediction System),
but only short-term predictions are possible because of using the
regional forecast results which has 10 km resolution and 6 hours
intervals as a input data of LAPS.

All the take together, the agrometeorological data should take
into account the following to predict crop yields using crop models.
First, to predict the annual crop yields, long-term agrometeorological
prediction is required from seeding season to harvest season, and
secondly, it requires a weather parameter as the daily data for crop
models that are used for crop yields. Third, to predict regional crop
vields accurately on the Korean Peninsula, high resolution
agrometeorological prediction data are needed. Finally, to increase the
predictability of agrometeorological data, predictions must be made
again over time from seeding season to harvest season, and the
observation—based high resolution synthetic data should be replaced for
the past time, which should be used to predict the annual crop yields.
In light of all this, this study has established ‘A temporal adaptative
high resolution long-term prediction system for agrometeorological
outlook services'.

In the chapter 1, the background and purpose of research are
introduced. The description of Temporal adaptative high resolution

long-term prediction system and its important advantages are



introduced in detail. In the chapter 2, the methods to calculate
observation-based synthetic data and long-term prediction data are
described. In the chapter 3, agrometeorological variables for crop
models or pest models, observation-based synthetic temperature and
precipitation, final high resolution prediction data, and time series at
station point are described. Finally in the chapter 5, this study is

closed by conclusion.



2. Temporal adaptative high resolution long-term

prediction system introduction

Utilization of crop models for estimating the annual crop yields
and pest models in agricultural fields can ultimately contribute
significantly to improving the annual crop productivity. Since
agrometeorological information 1is essential in agriculture, it 1is
important to provide a one-year agrometeorological prediction for
annual crop yields production. The system proposed in this study have
a large aim to provide sustainable data for crop yields prediction and
analysis in Korea. The major advantage 1is, firstly, to produce
long—term agrometeorological prediction data from seeding season to
harvest season. Second, these data are calculated as the daily data to
enable input materials for crop models and pest models. Third, the
prediction data is high-resolution to predict crop yields by small region
in the Korean Peninsula with complex terrain. And finally, significant
advantage in this system is to update the data as the new prediction
data for the future and to replace the data with the observation-based
high resolution synthetic data for the past. As time goes by, it
provides the proper type data for continuous prediction of annual crop
yvields from seeding season to harvest season. Two methods have been
applied to enhance the predictability of long-term agrometeorological
data in this system. One is to update the prediction data as the new

every month. Another is ensemble prediction method. Further details of



method are described in the next chapter.

In this study, long-term agrometeorological prediction data for
crop seeding and harvest time in Korea. Most of the domestic studies
about crop models were mostly applied to rice varieties and corn in
some cases. In case of rice that is main crop in Korea, seeding season
1s different from region to region, but usually from early April to
middle part of April and harvest season is last part of September.
Corn is sown in middle part of April and harvested from late July to
early August. However, prediction periods has set up from March to
October to provide agrometeorological data in this system for various
crop varieties.

The Structure diagram of ‘“Temporal Adaptative High Resolution
Long-term Prediction System’ is shown in Fig. 1. If the present point
of view is the beginning of 2016, observation data can be used for the
analysis of crops in past years. To predict an annual crop yields in
2016, long-term prediction data are needed from seeding season to
harvest season. In January, it provides long-term prediction data from
March to October using GCM (General Circulation Model) except
February, the spin—up time of model simulation. When it comes to
February, the new prediction data are updated to the new prediction
from April to October except the spin—up time, March. For the March,
previous prediction data which was carried out in January is still used
for estimating an annual crop yields. Then becoming March, the
prediction data are replaced with the new, from May to October. With

this lapse of time, new predictions are carried out every month, and



updated to new prediction. Becoming April, it is able to get
observation data on March. The prediction data are replaced by
observation-based synthetic data for temperature and precipitation
which are the most important factors in crop models and pest models.
The new year begins after the crop harvest season and the new
long-term prediction is carried out again for the new year. This
time-traveling agrometeorological data provision system is “Temporal
Adaptative High Resolution Long-term Prediction System’.

The experimental design is shown in Fig. 2 for this system. To
produce high resolution observation-based data and prediction data
which have 1 km x 1 km resolution, the observation data and
prediction data from AGCM (Atmospheric General Circulation Model)
are used as the input data for quantitative model. Using quantitative
temperature/precipitation  models, high resolution synthetic and
prediction data are produced. Domain 1s the Korean Peninsula and

period is March to October for two years (2015, 2016).
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II Method

1. Calculating method for synthetic data

The diagnostic models QTM (Quantitative Temperature Model)
and QPM (Quantitative Precipitation Model) consider the small-scale
topography effect, which is not treated in the mesoscale resolution. In
this study, to calculate to high resolution temperature and precipitation
data, the diagnostic models have been used as the downscaling method
which was used Kim and Oh (2010), Bae (2015) and Kang (2017). As
the small-scale topography, DEM (Digital Elevation Model) data which

have 1 km resolution, from Consortium for Spatial Information.

"



A. Quantitative Temperature Model (QTM)

QTM calculates the temperature using the high resolution
topography data. The method of calculating detailed regional
temperatures using QTM is to consider the detailed terrain effects that
are not addressed in mesoscale resolution. The high resolution
temperature 1s calculated by add and subtraction as much as the
temperature lapse rate which is occurred by difference of altitude
between the mesoscale topography and high resolution topography at
each point. The temperature lapse rate parameter (I') considered in
QTM is calculated at of each point, rather than the environmental

lapse rate which has the value of 6.5 C/km (Eq. 1).

r R D ) (1)
S dz ZLl - ZLQ

Where I,_;, is the temperature lapse rate in layer between L1 and
L2 isobaric surfaces. 1j; and 7}, are the temperatures in the L1 and

L2 isobaric surfaces from the observation data or mesoscale model
data for prediction. Z;; and Z;, are the geopotential height in the L1
and L2, respectively. This method was introduced in Kang (2017).
Using the temperature in the five vertical levels (1000 hPa, 850 hPa,
700 hPa, 500 hPa and 300 hPa), the temperature lapse rate for four
layers is calculated at each point, every time interval of data. For

calculating the temperature by topography effect, mesoscale or

12



observation temperature is calculated to 1000 hPa level value using the

eq. 2.
ﬂOOOhPa = 7101)5. +F><Hmeso (2)
Where T 1s the observation which can be mesoscale model

obs
temperature as well, I' is the temperature lapse rate which was

calculated from input dat of QTM, and H is the topography which

has mesoscale resolution. Then, the 1000 hPa temperature is
interpolated to 1 km resolution using bilinear interpolation method.
Finally, the temperature is calaulated with small-scale topography
effects using DEM topography data and temperature lapse rate for

each point (Eq. 3).

T T

gtm = ntp. aFy

I )X Hppy, (3)

Where T, is final temperature which has 1 km resolution, T, is

the interpolated temperature from Tjyyp,p,, and Hpg, is DEM

topography data.
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B. Quantitative Precipitation Model (QPM)

QPM calculates precipitation in detailed region considering
small-scale topography effect. QPM was used many studies(Bell, 1978;
Misumi et al., 2001, Kim and Oh, 2010; Bae, 2015). It has the
advantages of saving computing resources using numerical model to
calculate the small-scale precipitation intensity.

The following description is the simple progress of QPM
calculating to small-scale precipitation. The mixing ratio of rainfall can
be presented as the mass of rainfall containing dry mass of unit mass
with condensation rate and evaporation rate of rainfall. Eq 4 is shown

the continuity equation (Kessler, 1996).

Q. Q.  0Q, Q. 1 8
praa’ = —v Y e +;g(pV7,QT)+P1—E1 (4)

Where z,y and z are horizontal and vertical coordinates, ¢ is time, u, v
and w are horizontal and vertical wind components, p is air density,

(). is mixing ratio of rainfall, V, is falling speed of rainfall, P, is

T
condensation rate, and E; is evaporation rate.
The continuity equation of raindrop mixing ratio can be
separated to mesoscale field and small-scale perturbation field as given

Eq. 5.

14



0(Q+Q)  _ 2(Q+Q) . 2(Q+Q) = 2(Q+Q)
at " oz Ty YT
+%a%[m@+ QN+ (P+P)—(E+E) (5)

There are some assumptions. First, the atmosphere is steady

state. Second, variations of rainfall mixing ratio are consistent over
time in steady state. And third, wind components (u, v, w) and air
density (;) are approximated to the values from the mesoscale data.
The perturbation of rainfall mixing ratio (Q,’) is difference of rainfall
mixing ratio from additional condensation (P,") and evaporation (E,)
according to the small-scale topography effect. In the terrain—following
coordinate system, @, is calculated through the parameterization
process. Finally, precipitation intensity is calculated from changes of
the rainfall between the water vapor due to the influence of the terrain

(Eq. 6).
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C. Data

To produce observation-based synthetic temperature and
precipitation in the Korean Peninsula, following data that used as the
input of QTM and QPM is described in Table 1. The observation data
are obtained from Automatic Weather System (AWS) and the
Automatic Synoptic Observation System (ASOS) which has 1 hour
interval. The 3 hours interval observation data are used for calculating
synthetic temperature and precipitation in South Korea. These
observation data are from the Korea Meteorological Administration
(KMA). KMA performs their own quality control. The number of
AWS station points is 494 and the number of ASOS station points are
93 (Fig. 3).

The MERRA 2 reanalysis data are used as the vertical data in
the Korean Peninsula and the surface data in North Korea. Because it
1s almost impossible to get the observation data in North Korea,
reanalysis data which processed from global observation data are used
for producing observation-based synthetic data. Kang (2017) set this
dataset for QTM and QPM in his study. Additionally MERRA data are
updated with MERRA 2 in this study because the National
Aeronautics and Space Administration (NASA) provides new dataset.
And the reanalysis data points are added more points for accuracy
precipitation data compared to Kang’s study. Kang (2017) produced the
observation-based synthetic climate data of temperature and

precipitation for 15 years (2000-2014). But the new climate data

16



calculated again in this study using the updated method.
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Table 1. Information of AWS & ASOS observation data used in QPM, QTM

i ) Number of station
Data Time interval .
or resolution

AWS / ASOS (KMA) 3 hours 494 / 93

vertical data: 3 hours 1.25° x 1.25°, 72 levels

MERRA 2 (NASA)
surface data: 3 hours 0.667° x 0.5°

18
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2. High resolution prediction method

A. Prediction model and data description

In this study the agrometeorological data are produced for 2015,
2016 according to the concept of “Temporal adaptative high resolution
long-term prediction system’. To predict the meteorological variables,
global model GME (Operational Global Model (GM) and the regional
model for central Europe) has been used. GME 1is hydrostatic model
that is developed by DWD (Deutscher Wetterdienst). Because it has
icosahedral-hexagonal grid, there are several advantages. A major
advantage of this grid makes it to avoid the pole problem by CFL
(Courant-Frierich-Lewy) condition that exists in Cartesian grid
coordinate system. It is also easy condition to increase the resolution
of prediction. Grid has consists of the equilateral triangles (Fig. 4).
This model increases resolution by creating a new triangle to connect
the middle points of the same triangle grid. It can be divided to equal
interval of grid and be used less computing resource to increase
resolution (Majewski, et al., 2002).

In this study, long-term prediction has carried out using GME
version 3.0. Because the GME model is AGCM, boundary condition
data is used to consider the ocean condition (Table 2). The SST (Sea
Surface Temperature) data have got from NOAA OI (National Oceanic
and Atmospheric Administration Optimum Interpolation) and sea ice

data have got from ECMWF (European Centre for Medium Range

20



Icosahedron

By connecting the mid-points of the geodesic arcs,
four sub-triangles are generated.

By iterating this process,
a finer grid structure is obtained.

Figure 4. Process of increasing resolution grid structure in the

icosahedral-hexagonal grid
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Weather Forecasts). Present SST and sea ice changes compared with
climatological data are considered whether consistent or not. Then final
boundary data are used as the input of GME model. AGCM is
calculates the future weather condition using several equations.
Therefore, the initial data is also required to present the start points
atmospheric condition. ECA (The European Climate Assessment)
reanalysis dataset which has gaussian grid is used as the initial data
for GME. This data has got from ECMWE. After the initial data are
horizontally re-gridding to GME model grid, it used to run the model.

The time-lagged ensemble method is used to reduce the
uncertainty of prediction by the longer model running time. This
time-lagged ensemble method is one of prediction method carrying out
several predictions. It is proposal the statistical probability of prediction
results through many model simulations rather than a deterministic
outcome. In this study, 10 ensemble predictions have carried out from
seeding season to harvest season in every month.

Finally, the agrometeorological long—term prediction data which

has 40 km resolution have been produced for 2015, 2016.
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Table 2. Details of SST and sea ice boundary data

; SST .
Variable Sea ice
(Sea Surface Temperature)
Grid Number
360x180 144x73
(Lon/Lat)
File Format NetCDF NetCDF

Time Period

1971-2000 Daily Data

1971-2000 Daily Data

Data Source

NOAA OI (National Oceanic

and Atmospheric Administration

Optimum Interpolation)

ECMWFEF (European
Centre for Medium Range

Weather Forecasts)

Table 3. Details of ECMWFEF reanalysis data grid and resolution information

Spectral

Gaussian

Lat/Lon

Grid Number

T511

N256

0.351

1024x512
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B. Calculation the high resolution prediction data

To calculate high resolution (1 km x 1 km) prediction data from
mesoscale (40 km x 40 km) prediction output, QTM and QPM have
used. It can be denominated as ‘GME-QTM’ and ‘GME-QPM’ in this
study. The method is same with to calculate observation-based
synthetic data except the use of model topography data and model
data. The high resolution prediction temperature and precipitation data
are produced considered the small-scale topography effect which are
not be treated in mesoscale topography. The comparison topography
data is shown in Fig. 5 which have different resolutions.

In this study the long-term prediction data are calculated to
high resolution in 2015, 2016 and AMIP (Atmospheric Model
Intercomparison Project) type model climatology for 30 years
(1979-2008) is calculated as well.

Final high resolution data obtained from difference between
mean of ensemble prediction and model climatology added to present

climatology (Fig. 6).
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Figure 6. Process to calculate the final prediction
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I Results

1. Result of agrometeorological variables prediction

dataset

The essential agrometeorological variables are different by what
kind of crop models is used. Song et al. (2014) reviewed 14 crop
models to estimate possibility of application to Korean for prediction
the crop yields. For the major agrometeorological input data for crop
model are temperature, precipitation and radiation. However the other
meteorological variables are still used even that have consist value.

Several variables of prediction data of GME model which are
possible to be input data of crop models and pest models have been
set (Table 4 and Fig. 7). These 22 variables can be combined to the
other variables. For example, using zonal wind (U_10M) and meridional
wind (V_10M), wind speed can be created by calculating. The
variables of input data can be selected depending on the kind of crop
models. The list of variables is enable to run any crop model as the
meteorological input data of crop model or pest model. These are
calculated to daily data what is required common data type for crop
models.

The ensemble prediction results of GME have 40 km resolution.
Those are presented in Fig. 7 for the sample period in May, 2016. For

visualization the monthly averaged value are plotted.
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Table 4. Prediction variables list from GME model for crop models

GME Variable name

Element (Unit)

T_2M temperature 2m above ground (K)
TMIN_2M minimum of temperature 2m above ground (K)
TMAX_2M | maximum of temperature 2m above ground (K)
Temperature
T M temperature at a depth of © 8 - 10 cm of
B the old 2-layer soil model (K)
T_SO soil temperature (K)
TOT_PREC Total precipitation (kg/m2)
RUNOFF_S surface water run-off (kg/m2)
RUNOFF_G ground water run-off (kg/m2)
Water W_I water content of interception storage (mmH20)
contents Wl water content of upper soil layer (0 - 10
N cm) of the old 2-layer soil model (mmH20)
W G2 water content of lower soil layer (10 - 100
B cm) of the old soil model (mmH20)
av.S specific humidity at the surface; over water, this
Humidity oy corresponds to 100% relative humidity. (kg/kg)
QV_2M specific humidity 2m above ground (kg/kg)
CLCT total cloud cover (%)
Cloud CLCH high cloud cover (0 - 400 hPa) (%)
cover CLCM medium cloud cover (400 - 800 hPa) (%)
CLCL low cloud cover (800 hPa - surface) (%)
ASOB_S solar radiation balance at the surface (W/m2)
Radiation
ALB_RAD (solar) shortwave albedo at the surface (%)
U_10M zonal wind 10m above ground (m/s)
Wind
V_10M meridional wind 10m above ground (m/s)
Pressure PS

surface pressure on model orography (Pa)
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Figure 7. Prediction variables of ensemble prediction sample for crop

models that have same orders with Table 4. (visualization period of
samples: May, 2016 / initial date: May 21-30, 2016.)
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2. Observation-based synthetic temperature/precipitation

To calculate the observation-based synthetic temperature and
precipitation, the observation (AWS, ASOS, and MERRA 2) data have
been used to QPM and QTM.

In this study, the observation temperature and precipitation have
been calculated to 1 km high resolution data in two kinds of period for
different purposes. First purpose is to produce the observation—-based
high resolution data as the past data which replace prediction data for
the past time. The simulation period is March to October for 2 years
(2015, 2016) by experiment design of this study. The results of high
resolution synthetic temperature and precipitation as the historical data
which replaces prediction data is shown in Fig. 8 and 7 respectively.
And second purpose is to obtain the present climatology data. This
present climate data is required to calculate final high resolution
prediction. In the process to calculate the high resolution final
prediction, model anomaly prediction data are added to historical
synthetic climatology (Fig. 6). This historical synthetic climatology
from observation data indicates the present climatology in The Korean
Peninsula. It would be the standard data compared with future wether
conditions. Therefore, by adding model anomaly prediction which
indicates future climate changes compared to present climate, final high
resolution prediction can be obtained. For the present climatology, 15
yvears observation data have been calculated using QTM and QPM.

The period is from 2000 to 2014. After calculating to detailed data in

29



every for 15 years, the data have been averaged to daily data.

For the QPM and QTM results using observation data are
described in the previous studies (Kim and Oh, 2010; Bae, 2015; Kang,
2017).
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Figure 8. Observation—-based synthetic temperature over the Korean Peninsula
in March to October (a) 2015 and (b) 2016
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Observation-based Synthetic Precipitation (1km)
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Figure 9. Observation—based synthetic precipitation over the Korean Peninsula
in March to October (a) 2015 and (b) 2016
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3. Final high resolution long-term prediction data

To obtain the high resolution long-term temperature and
precipitation prediction, the GME-QTM and GME-QPM process have
been carried out. Using GME prediction results, the temperature and
precipitation have been calculated to 1 km high resolution data by
QPM and QTM.

There are two kinds of high resolution prediction data through
their different purpose of usages. From January to August in 2015 and
2016, 10 times simulation have performed every month for ensemble
prediction. Total simulation number is 160. Each simulations have been
calculated to detailed data using QTM and QTM. Then the 1 km high
resolution data are averaged to ensemble mean. Another calculating the
GME simulation is to obtain the high resolution model climatology.
The period of GME model climatology is 1979 to 2008, 30 years by
AMIP (Atmospheric  Model Intercomparison Project). The GME
climatology has been calculated to 1 km high resolution data for 30
yvears. Then the high resolution climatology data have been averaged
to daily data.

Finally, the high resolution long-term prediction data have been
obtained by the model anomaly prediction data added to historical
synthetic climatology (Fig. 6). The results of final prediction is shown
in Fig. 10. For visualization sample date has been selected. Initial date

of this ensemble prediction is 21-30 January in 2015.
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4. Time series at station point

The 16 ASOS station points have been selected to indicate the
results of temporal adaptative prediction system. 2 station points in
each district are where produce large crop yields in Korea. The details
of station are described in Table 5. The distribution of stations are
pointed in Fig. 11. The stations are evenly spread.

The meaning of ‘temporal adaptative’ is that the data is changed
as time goes by. The temporal adaptative temperature data are shown
in Fig. 12. The temperature data is at the Seosan station which is the
largest rice crop yields region in Korea. Each name of 11 plots means
the month when the data is provided. In JAN 2015, there is prediction
data only. In Feb 2015, there are the new prediction data and previous
prediction data for the period of March which occurred by model
spin-up time. In APR, the prediction on March that the past time
becomes observation-based synthetic temperature. The same as thes
way, data are changed to their proper type. In the same way,
precipitation dataset is shown in Fig. 13. This figure is also Seosan
station data. As time goes by, precipitation data are changed by more
observation—based synthetic data. Because of the prediction is ensemble
prediction data and the final prediction is obtained by model anomaly
prediction added to synthetic present climatology, for the precipitation,
it is tend to have number of precipitation days more than observation
data with less amount. The time series graph at the other stations, are

not shown here at all. But the results indicate the temporal adaptative

35



dataset in the same way. On each month, temperature and precipitation
data are can be used for the prediction the annual crop yields using

crop model and for the prediction vermination using the pest models.
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Table 5. The information of 16 ASOS stations where produced large crop
yields in South Korea

L ) Station Latitude Longitude
District Station name ) )
number of station of station
Icheon 203 37.264 127.4842
Gyeonggi—do
Paju 99 37.8859 126.7665
Cheorwon 95 38.1479 127.3042
Gangwon—do
Wonju 114 37.3376 127.9466
Cheongju 131 36.6392 127.4407
Chungcheongbuk-do
Chungju 127 36.9704 127.9527
Buyeo 236 36.2724 126.9208
Chungcheongnam-do
Seosan 129 36.7766 126.4939
Buan 243 35.7295 126.7166
Jeollabuk-do
Jeongeup 245 35.5632 126.8661
Goheung 262 34.6182 127.2757
Jeollanam-do
Haenam 261 34.5536 126.569
Sangju 137 36.4084 128.1574
Gyeongsangbuk—do
Gyeongju 283 35.8175 129.2009
Hapcheon 285 35.565 128.1699
Gyeongsangnam-—do
Miryang 288 35.4915 128.7441
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IV Conclusion

This study has established ‘A temporal adaptative high
resolution long—-term prediction system for agrometeorological outlook
services. This agrometeorological data provision system considers four
significances to predict crop yields using crop models. First, to predict
the annual crop vyields, long-term agrometeorological prediction 1is
required from seeding season to harvest season, and secondly, it
requires a weather parameter as the daily data for crop models that
are used for crop yields. Third, to predict regional crop yields
accurately on the Korean Peninsula, high resolution agrometeorological
prediction data are needed. Finally, to increase the predictability of
agrometeorological data, predictions must be made again over time
from seeding season to harvest season, and the observation-based high
resolution synthetic data should be replaced for the past time, which
should be used to predict the annual crop yields.

To produce high Tresolution observation-based data and
prediction data which have 1 km x 1 km resolution, the observation
data and prediction data from AGCM are used as the input data for
quantitative model. Using QTM and QPM, high resolution synthetic
and prediction data are produced. The diagnostic model, QTM and
QPM, consider the small-scale topography effect, which is not treated
in the mesoscale resolution. Domain i1s Korean peninsula and period is
March to October for two years(2015, 2016).

As a results, 3 kinds of data are obtained. First is 22 variables
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of prediction data of GME model which are possible to be input data
of crop models and pest models. This data has 40 km resolution.
Second results is high resolution observation-based data To produce
high resolution observation-based, using QTM and QPM with AWS,
ASOS and MERRA 2 observation or reanalysis data. Two kinds of
observation-based synthetic data are calculated. Those are the
synthetic data for the past data for 2 years (2015-2016) through the
experiment design and the present climatology data for 15 years
(2000-2014) which are used for prediction data. And third is the final
prediction data which have 1 km high resolution. To obtained the final
prediction data, the model climatology for 30 years (1979-2008) and
long—-term prediction data for 2 years (2015-2016) have been calculated
to detailed data. Then the high resolution long-term prediction data
have been obtained by the model anomaly prediction data added to
historical synthetic climatology. Additionally the time series at the 16
station data have been analysis to indicate the temporal adaptative
system.

Through the concept of temporal adaptative high resolution long-term
prediction system, the high resolution temperature and precipitation
data is provided for the future, and the new prediction data is updated
every month, on the other hand, the observation-based synthetic data
1s replaced the prediction data for the past. This changeable dataset
would be useful data for prediction and analysis annual crop yields

using crop models and pest models.
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