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Uncertainty Analysis and Visualization of Open Pit

Optimization Results by Considering Variation in Mineral Prices

Jieun Baek

Department of Energy Resources Engineering, The Graduate School,

Pukyong National University    

Abstract  

This study proposes a new method to quantitatively represent the 

uncertainty existing in open pit optimization results due to variations in 

mineral prices. After generating multiple mineral prices using Monte 

Carlo simulation with data on past mineral prices, a probability model 

that represents the uncertainty was developed by integrating multiple 

open pit optimization results derived from the mineral prices. The 

results of applying the proposed method to the copper-zinc deposits 

showed that significant uncertainty exists in open pit optimization 

results due to the variation in copper prices. In addition, the study was 

able to quantify the probability that each block that represents deposits 

is included within the open pit optimal boundary when copper and 

zinc prices increase or decrease from the current reference prices. Using 
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these probabilities, reserves of the deposits were estimated as a function 

of confidence level. When confidence level was set at 90% or higher, 

reserve was estimated to be about 76,000 tonnes, and when confidence 

level was set at 50% or higher, reserve was estimated to be about 

2,550,000 tonnes. This suggests that the proposed method also has a 

potential as a tool for classifying the estimation results of ore reserve 

based on confidence level. 

Keywords: Uncertainty, Open pit optimization, Monte Carlo simulation, 

Revenue factor, Ore reserve estimation
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Ⅰ. Introduction

Determination of optimal open pit boundary is extremely important in 

planning an open pit mine. This is because profitability may vary 

significantly depending on the determination of open pit boundary. 

Algorithms to solve the open pit optimization problem have been 

developed by many researchers. Lerchs and Grossmann (1965) 

developed an open pit optimization algorithm based on graph theory. 

In 1968, Johnson proposed the method to determine optimized pit 

boundary using network flow algorithm, which was verified by Picard 

(1976). David et al. (1974) developed the Korobov algorithm, and Lane 

(1988) introduced the concept of cut-off grade to the open pit 

optimization problem. Caccetta and Giannini (1988) presented a dynamic 

programming method to implement the Lerchs and Grossmann 

algorithm. Berlanga et al. (1989) developed the floating cone algorithm 

that can optimize open pit boundaries based on heuristic theory. Zhao 

and Kim (1992) modified the Lerchs and Grossmann algorithm to take 

into account the boundary of ore and waste. Dowd and Onur (1993) 

modified the Korobov algorithm to overcome its limitations, and 

Yamatomi et al. (1995) presented an improvement plan for the floating 

cone algorithm. Underwood and Tolwinsk (1998) developed an 

improved network flow algorithm, and Hochbaum and Chen (2000) 

suggested the push-label algorithm by modifying the Lerchs and 

Grossmann algorithm. In addition, there have been many studies to 

solve the production scheduling optimization problems in open pit 
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mines (Gershon, 1983; Busnach et al., 1985; Gershon, 1987; Dendy and 

Schofield, 1994; Dendy and Schofield, 1995; Elevli, 1995; Tolwinski and 

Underwood, 1996; Caccetta and Hill, 2003; Kumral and Dowd, 2005; 

Ramazan, 2007; Boland et al., 2009; Bienstock and Zuckerberg, 2010; 

Bley et al., 2010; Souza et al., 2010; Cullenbine et al., 2011; Chicoisne et 

al., 2012; Epstein et al., 2012; Liu and Kozan, 2016). 

Open pit optimization algorithms determine the scope of deposit 

development required to ensure profitability while meeting the 

requirements for mine development. In the determination, the Block 

Economic Value (BEV) calculated in a block unit is usually used as 

input data for the algorithm. BEV represents the revenue estimated by 

dividing the 3D ore body model created based on geological data into 

blocks, and then considering sales revenue and production cost for each 

block. The problem is that BEV determined as a single value contains 

significant uncertainty due to the variations in mineral prices, 

production costs, and exchange rates. Consequently, the products of the 

open pit optimization algorithms that use BEV as input data also 

inevitably contain uncertainty. 

A number of methods to consider this uncertainty have been 

developed to date. Godoy (2003) developed a method to quantify the 

geological uncertainty in long-term production scheduling of open pit 

mines, and Menebde et al. (2004) treated the uncertainty in BEV using 

conditional simulation methods. Gabriel et al. (2006) developed a model 

to evaluate rates of return of mining projects by considering 

uncertainties such as mineral prices, production costs, and tax. 
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Golamnejad et al. (2006) considered the uncertainty in BEV using 

probability models. Dimitrakopoulos and Sabour (2007) proposed the 

Real Option Valuation (ROV) technique to evaluate mining projects by 

considering uncertainty of economic variables. Ramazan and 

Dimitrakopoulos (2007) provided a new integer programming 

formulation for stochastic optimization of long-term production 

scheduling by considering the uncertainty of geological variables. Boland 

et al. (2008) suggested a multistage stochastic programming approach to 

open pit mine production scheduling with uncertain geology. Akbari et 

al. (2008) performed open pit optimization considering uncertainty of 

mineral prices, and Albor and Dimitrakopoulos (2010) developed a 

method to simultaneously consider the uncertainties of multiple 

variables in push back design of open pit mines.

Sabour and Dimitrakopoulos (2011) developed the technique to 

generate multiple open pit optimization results considering uncertainty 

of economic and geological variables, and then prioritizing the results. 

Evatt et al. (2012) provided a method to estimate ore reserves under 

mineral price uncertainty, Lamghari and Dimitrakopoulos (2012) 

considered the uncertainty of metal contents in mine production 

scheduling problems by a diversified Tabu search approach. Asad and 

Dimitrakopoulos (2013) developed a parametric maximum flow 

algorithm for optimal open pit mine design under uncertain market 

conditions. Furthermore, Alonso-Ayuso et al. (2014) provided a method 

to optimize the copper extraction planning considering the uncertainty 

in future copper prices, and Kizilkale and Dimitrakopoulos (2014) 
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presented a distributed and dynamic programming framework to the 

mining production rate target tracking of multiple metal mines under 

financial uncertainty. However, no study has been conducted to 

quantitatively represent the uncertainty itself inevitably present in open 

pit optimization results using probability models or other methods. 

Thus, the objective of this study is to present a method to 

quantitatively represent the uncertainty included in open pit 

optimization results due to variation in mineral prices. In this study, 

multiple mineral prices are generated using Monte Carlo simulation 

based on past mineral prices data, and open pit optimization is 

conducted iteratively using the generated prices. The study aims to 

generate a probability model to quantitatively represent the uncertainty 

due to variation in mineral prices by integrating multiple open pit 

optimization results generated by iterative calculation. This paper 

describes the method to represent the uncertainty in open pit 

optimization results due to variation in mineral prices, and presents the 

results of applying the method to copper-zinc deposits.
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Ⅱ. Methods

The method developed in this study to represent uncertainty in open 

pit optimization results due to variation in mineral prices consists of 

four steps (Fig. 2.1).
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Fig. 2.1  Study process of uncertainty representation for pit optimization 

results using the proposed method.



- 7 -

2.1 Survey of past mineral prices and generation of 

cumulative relative frequency curves

To investigate the variations in mineral prices, data on mineral price 

of the past over a long period are collected, and statistics such as 

maximum values, minimum values, and the means of the collected data 

are obtained using statistical analysis. Using the results of statistical 

analysis, the class width required for creating cumulative relative 

frequency curves of mineral prices can be calculated (Eq. (1)). In 

general, the number of classes is set as between 10 and 20,

 

  
(1)

Once the class width is determined, the frequency of data included in 

each class is obtained by examining the collected data on mineral 

prices, and the relative frequency of each class is calculated by dividing 

the data frequency of each class by the total number of data (Eq. (2)). 

Cumulative relative frequency can be calculated using the relative 

frequency of each class (Eq. (3)).


  


(2)


  

  




 (3)
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Here, 
 denotes the relative frequency of i-th class,  denotes the 

data frequency of i-th class, N denotes the total number of data, 


denotes the cumulative relative frequency of n-th class.

In addition, the cumulative relative frequency curve can be generated 

by plotting the mineral prices on the x-axis and cumulative relative 

frequencies on the y-axis.
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2.2 Mineral price generation and revenue factor 

calculation using Monte Carlo simulation

When using a cumulative relative frequency curve of past mineral 

prices generated in the previous step, n mineral prices can be generated 

based on Monte Carlo simulation as follows:

   ≤  (4)

The function of cumulative relative frequency curve F(x) gives the 

probability P that the mineral price X will be less than or equal to x. 

Because F(x) obviously ranges from zero to one, we can look at this 

equation in the reverse direction to find the value of x for a given 

value of F(x) as follows:

     (5)

Here,  is the inverse function, r is a random real number 

between zero and one. 

In this study, n mineral prices are generated by generating n random 

real numbers between zero and one, and then assuming each generated 

real number as the y value of the cumulative relative frequency curve, 

and finding x values corresponding to the y values.

Next, using the generated n mineral prices, n revenue factors (RF) are 
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calculated (Eq. (6)). The revenue factor represents the ratio of the 

uncertain future mineral price (SP) to the current mineral price (CP). 

Because RF can indicate the increase or decrease of mineral price, the 

change in optimal open pit boundary as a result of mineral price can 

be analyzed using RF (Hall, 2004).

  


(6)
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2.3 BEV calculation and open pit optimal boundary 

analysis

In the proposed model, n BEVs are calculated for all blocks using the 

RF values calculated in the previous step (Eq. (7)-(9)):

 or   ×  ×  ×  ×      (7)

    × (8)

   or    (9)

Here,  denotes the mass of ore block (tonne), g denotes the grade 

of ore, r denotes recovery of ore, RF denotes revenue factor, P denotes 

the price of mineral ($/tonne), SC denotes selling cost ($/tonne), PC

denotes processing cost ($/tonne), MC denotes mining cost ($/tonne), 

and  denotes the mass of waste block (tonne). 

Once n BEV values for all blocks have been calculated, open pit 

optimal boundary can be determined by inputting the values in 

optimization algorithms such as the Lerchs–Grossmann algorithm, 

Korobov algorithm and floating cone algorithm. This study used the 

floating cone algorithm proposed by Berlanga et al. (1989). For each 
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block with a positive BEV value, the floating cone algorithm involves 

constructing a cone with sides oriented parallel to the pit slope angles, 

and then determining the value of the cone by summing the values of 

blocks enclosed within it. If the value of the cone is positive, all blocks 

within the cone are mined. This process starts from the uppermost level 

and moves downward searching for positive blocks. The process 

continues until no positive cones remain in the block model (Elahizeyni 

et al., 2011). An advantage of the floating cone algorithm is its speed of 

calculation (Magassouba, 2006). Therefore, it is useful when optimal 

boundary analysis needs to be performed many times, as in this study. 

Other open pit optimization algorithms can be used in this step, 

however the comparison of results from different optimization 

algorithms is beyond the scope of this study. Interested readers should 

refer to texts such as Hustralid et al. (2013).

As n BEVs are calculated, the pit boundary optimization process is 

also conducted n times, and as a result, n optimization results are 

generated.
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2.4 Formation of probability model using overlay 

analysis

In the final step, a probability model is developed by overlaying n 

open pit optimization results into one (Fig. 2.2). To that end, the results 

of open pit optimal boundary analysis are examined; 1.0 is assigned if 

a block exists within the optimal boundary, and 0.0 is assigned 

otherwise. This binarization is performed on n results of optimal 

boundary analysis. After completing binarization, a probability model is 

formed by averaging the values assigned to all blocks (Eq. (10)). 

  


×
  



 (10)

Here, Z denotes the probability that a block exists within the open pit 

optimal boundary (0.0–1.0), and  denotes the binarized value 

assigned to the result of i-th open pit optimal boundary analysis. Z 

should be calculated for all blocks.
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(a) (b) (c)

Fig. 2.2 Example of probability model formation representing the uncertainty. (a) Binarized block model. (b) Probability 

model formation by overlay analysis. (c) Sectional view of probability model.
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Ⅲ. Study area and data

The uncertainty representation method of open pit optimization results 

due to variation in mineral prices developed in this study was applied 

to copper-zinc deposits located in the OO region. The ore body was 

widely distributed in a plate form (Fig. 3.1). This region has the 

sea-level altitude of about 150 m, relatively flat terrain, and adequate 

infrastructure for mine development as there is a mining city in the 

vicinity.

The block model of ore body used in this study is 25m × 25m × 5m 

blocks. The number of blocks is 92 on the axis x (easting), 106 on the 

axis y (northing), and 74 on the axis z (elevation). Each block is 

classified into ore or waste and includes information on mass. In 

addition, ore blocks have grades of copper and zinc assigned to them. 

The mean grade is about 0.84% for copper, and about 0.21% for zinc. 



- 16 -

Fig. 3.1 Block model of copper-zinc deposits in the study area.
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Ⅳ. Results

4.1 Results of cumulative relative frequency curves of 

copper and zinc

To examine the variation in metal prices, the data on copper and zinc 

prices for about 10 years  (January 2005–April 2015) published by the 

London Metal Exchange (LME) were collected and analyzed (Fig. 4.1). 

The results showed that the mean copper price for the past 10 years is 

6796 $/tonne, the maximum price was 10,148 $/tonne, and the minimum 

price was 2770 $/tonne. In the case of zinc, the mean price for the past 

10 years was 2109 $/tonne, the maximum price was 4620 $/tonne, and 

the minimum price was 1042 $/tonne. 

To plot a cumulative relative frequency curve, the number of classes 

for copper prices was set at 13, and class width was set at 600 $/tonne 

based on Equation (1). In the same manner, the number of classes for 

zinc prices was set at 13, and class width was set at 300 $/tonne. The 

results of calculating frequency of each class, relative frequency, and 

cumulative relative frequency using the copper and zinc prices for the 

past 10 years are shown in Table 4.1 (copper) and Table 4.2 (zinc). 

Figure 4.2 shows the cumulative relative frequency curves of copper 

and zinc prices for the past 10 years. 



- 18 -

(a) (b)

Fig. 4.1 Price fluctuation graph. (a) Average monthly copper prices. (b) Average monthly zinc prices.
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Table 4.1 Cumulative relative frequency of copper prices.

Class interval 

($/tonne)
Frequency Relative frequency

Cumulative relative 

frequency

2700 – 3300 92 0.0353 0.0353

3300 – 3900 181 0.0694 0.1047

3900 – 4500 91 0.0349 0.1396

4500 – 5100 125 0.0479 0.1876

5100 – 5700 84 0.0322 0.2198

5700 – 6300 144 0.0552 0.2750

6300 – 6900 340 0.1304 0.4054

6900 – 7500 590 0.2263 0.6318

7500 – 8100 442 0.1695 0.8013

8100 – 8700 290 0.1112 0.9125

8700 – 9300 121 0.0464 0.9590

9300 – 9900 95 0.0364 0.9954

9900 – 10500 12 0.0046 1.0000

Table 4.2 Cumulative relative frequency of zinc prices.

Class interval 

($/tonne)
Frequency Relative frequency

Cumulative relative 

frequency

1000 - 1300 224 0.0859 0.0859

1300 - 1600 193 0.0740 0.1600

1600 - 1900 470 0.1803 0.3402

1900 - 2200 729 0.2796 0.6199

2200 - 2500 532 0.2041 0.8239

2500 - 2800 66 0.0253 0.8493

2800 - 3100 61 0.0234 0.8727

3100 - 3400 116 0.0445 0.9171

3400 - 3700 118 0.0453 0.9624

3700 - 4000 42 0.0161 0.9785

4000 - 4300 23 0.0088 0.9873

4300 - 4600 31 0.0119 0.9992

4600 - 4900 2 0.0008 1.0000
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(a) (b)

Fig. 4.2 Cumulative relative frequency curves. (a) Copper prices. (b) Zinc prices.
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4.2 Revenue factor of copper and zinc price calculation 

results using Monte Carlo simulation

Using the cumulative relative frequency curves of copper and zinc 

prices shown in Figure 4.2, 100 copper prices and 100 zinc prices were 

generated using Monte Carlo simulation (Fig. 4.3). In the 100 copper 

prices generated by Monte Carlo simulation, the mean was 6591.13 

$/tonne, the maximum was 9486.18 $/tonne, and the minimum was 

3342.66 $/tonne. In addition, in the 100 zinc prices generated, the mean 

was 1985.00 $/tonne, the maximum was 3571.96 $/tonne, and the 

minimum was 924.44 $/tonne. 

By entering the generated copper prices and zinc prices in Equation 

(6), RF was estimated. For the reference price for the minerals, the 

monthly average copper price of 6027.96 $/tonne and monthly average 

zinc price of 2206.90 $/tonne, published by LME for April 2015 when 

this study was conducted, were used. As the numbers of previously 

generated copper prices and zinc prices were 100 each, 100 RF values 

were also estimated for each. Figure 4.4 shows the estimated RFs of 

copper and zinc represented in the histogram.
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(a) (b)

Fig. 4.3 Results from Monte Carlo simulations. (a) Histogram of randomly extracted copper prices. (b) Histogram of 

randomly extracted zinc prices. 
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(a) (b)

Fig. 4.4 Results from revenue factor calculation. (a) Histogram of revenue factors related to copper prices. (b) Histogram 

of revenue factors related to zinc prices. 
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4.3 BEV calculation and open pit optimal boundary 

analysis results

The BEV for the block model of the study area shown in Figure 3.1 

was calculated using Equation (11), instead of Equation (7), because the 

study area has copper-zinc mixed deposits. 

 or   × ××× 

×××
(11)

Here,  denotes the mass of ore block (tonne),  denotes the grade 

of copper ore (grade),  denotes the grade of zinc (grade),  denotes 

recovery of copper ore (recovery),  denotes recovery of zinc ore 

(recovery),  denotes RF of copper,  denotes RF of zinc, 

denotes the price of copper mineral ($/tonne),  denotes the price of 

zinc mineral ($/tonne),  denotes selling costs of ore ($/tonne), 

denotes of processing costs of ore ($/tonne), and  denotes mining 

costs of ore ($/tonne). The factor values assumed in this study to 

calculate BEV are presented in Table 4.3. As 100 copper RFs and 100 

zinc RFs were estimated, the BEV calculation of the block model of the 

study area was also conducted 100 times. 
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Table 4.3 Economic parameters for calculating blocks’ economic values

Input parameters Unit Copper Zinc

Price of metal (P) $/tonne 6027.96 2206.90

Recovery (r) % 0.90 0.65

Selling cost (SC) $/tonne 120.00 120.00

Mining cost (MC) $/tonne 2.70 2.70

Processing cost (PC) $/tonne 40.08 40.08
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The previously calculated block model’s BEVs were entered into the 

floating cone algorithm for analyzing optimal pit boundaries, and it was 

assumed that the angle of the slope was 45° and that cutoff grade was 

0.007%, incorporating copper prices. As 100 BEVs of block model were 

estimated for each, the boundary optimization with the floating cone 

algorithm was also conducted 100 times. 

Figure 4.5 shows graphical representation of five open pit optimization 

results arbitrarily selected from 100 results. They demonstrate that when 

the RF of copper applied in BEV calculation increases, the open pit 

boundary increases gradually.
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(a) (b) (c)

(d) (e)

Fig. 4.5 Pit optimization results using the floating cone algorithm. (a) Result No. 34 (Revenue Factor(RF) of Cu = 0.86, 

RF of Zn = 0.79). (b) Result No. 25 (RF of Cu = 1.01. RF of Zn = 1.00). (c) Result No. 55 (RF of Cu = 1.17. RF 

of Zn = 0.91). (d) Result No. 11 (RF of Cu = 1.34, RF of Zn = 1.58). (e) Result No. 21 (RF of Cu = 1.57. RF of 

Zn = 1.14).



- 28 -

4.4 Results of probability model formation

A probability model was formed by overlaying 100 open pit 

optimization results of the study area into one according to the method 

described in Section 2.4. Figure 4.6 shows the plan view of the 

probability model. The optimal open pit boundaries estimated when the 

RFs of copper and zinc were 1.0 (i.e., when the mineral prices of April 

2015) are shown by the black solid lines. Each block has a value 

between 0.0 and 1.0, and the value indicates the probability that the 

block is included in the optimal boundary of open pit.

When the uncertainty of the open pit optimization results due to the 

variation in mineral prices is large, many blocks with probabilities 

greater than 0.0 exist outside the open pit optimal boundary for the RF 

of 1.0, or many blocks with probabilities smaller than 1.0 exist inside 

the optimal boundary. On the other hand, when the uncertainty of 

open pit optimization results due to the variation in mineral prices is 

small, there are many blocks with probability of 1.0 inside the open pit 

optimal boundary for the RF of 1.0, and many blocks with probability 

of 0.0 outside the boundary. 

The probability model showed that significant uncertainty exists in 

open pit optimization results considering the variation in copper and 

zinc prices in the past 10 years. It was found that when copper and 

zinc prices decrease from current reference prices, the probability that 

the open pit boundary for RF of 1.0, which is shown by the solid black 

line (Fig. 4.6), satisfies the optimal boundary is about 70% or higher for 
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Pit 1 and about 80% or higher for Pit 2. It is believed that when 

resetting the optimal open pit boundary based on only the blocks with 

probability higher than the aforementioned probabilities (e.g., 90% or 

higher), the size of the open pit will be smaller than that for RF of 1.0. 

On the other hand, if copper and zinc prices increase from the current 

reference prices, it is possible that the optimal open pit boundary 

further expands from the solid black line, and Figure 4.6 shows the 

probabilities that the blocks are located within the open pit boundary. 

In the east of the study area, there is a possibility that an additional 

open pit can be formed if mineral prices increase; however, the 

probability is not high, at 20%.
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Fig. 4.6 Probability model representing the uncertainty in the pit optimization 

results
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4.5 Deposit reserve estimation as a function of 

confidence level

Figure 4.7 is a visual representation of the blocks that will be 

distributed within the open pit optimal boundary despite the variation 

in copper and zinc prices, using the probability model formation results. 

The results of graphic representation of the blocks to be distributed 

within the optimal boundary by applying three confidence levels (90% 

or higher, 80% or higher, and 70% or higher) showed that setting 

confidence level higher resulted in a smaller size of open pit, and 

setting confidence level lower resulted in a larger size of open pit. 

After extracting the blocks to be distributed within the optimal 

boundary of the study area by applying various confidence levels, the 

ore reserve was estimated based on the extracted blocks, and the results 

are shown in Figure 4.8. It was found that when confidence level was 

set at 90% or higher, ore reserve was about 76,000 tonnes, the grade of 

copper was 1.53%, and the grade of zinc was 0.15%. On the other 

hand, when confidence level was set at 50%, ore reserve was about 

2,550,000 tonnes, the grade of copper was 1.33%, and the grade of zinc 

was 0.15%. These indicate that when setting confidence level higher 

when extracting blocks within optimal boundary in the probability 

model, ore reserve estimates decrease. The mean grade of the blocks 

within optimal boundary varied somewhat depending on the confidence 

level of the probability model, but did not show any particular pattern.
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Fig. 4.7 Blocks representing ore reserve above optimal pit boundary. (a) Case 1: probability ≥ 90%. (b) Case 2: probability 

≥ 80%. (c) Case 3: probability ≥ 70%.
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Fig. 4.8 Probability-tonnage-grade graph for ore reserve estimation
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Ⅴ. Discussion

Figure 5.1 is the plan view of the probability model formed by 

separating when considering variation in copper prices without 

considering variation in zinc prices, and when considering variation in 

zinc prices without considering variation in copper prices. The results of 

the probability model formations show that when considering variation 

in copper prices only, significant uncertainty exists in open pit 

optimization results, whereas when considering variation in zinc prices 

only, uncertainty is small in boundary optimization results. These 

results of probability model formations by separating the case of 

considering only the variation in copper prices and the case of 

considering only the variation in zinc prices suggest that, in the case of 

copper-zinc mixed deposits in the study area, variation in copper prices 

has greater impact on uncertainty of open pit optimization results than 

variation in zinc prices does. 
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(a) (b)

Fig. 5.1 Probability model representing the uncertainty in the pit optimization results. (a) Case 1: When 

considering the variation of copper prices only. (b) Case 2: When considering the variation of zinc prices 

only.
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Ⅵ. Conclusion

This study presented a method to quantitatively represent the 

uncertainty in open pit optimization results due to variation in mineral 

prices using a probability model. The results of applying the proposed 

method to the copper-zinc mixed deposits showed that significant 

uncertainty exists in open pit optimization results considering the 

variation in copper and zinc prices for the past 10 years. In addition, 

the study was able to quantify the probability that each block that 

represents deposits is included within the open pit optimal boundary 

when copper and zinc prices increase or decrease from the current 

reference prices. Using these probabilities, reserves of the deposits were 

estimated as a function of confidence level. When confidence level is set 

at 90% or higher, reserve was estimated to be about 76,000 tonnes, and 

when confidence level was set at 50% or higher, reserve was estimated 

to be about 2,550,000 tonnes. This suggests that the proposed method 

also has a potential for use in ore reserve estimation. The results of 

probability model formation by separating the cases of variation in 

copper prices only and in zinc prices only showed that the uncertainty 

in the results of open pit optimization in the study area was more 

influenced by the variation in copper prices than by that in zinc prices. 

In this study, the uncertainty in open pit optimization results was 

represented by a probability model considering only the variations in 

mineral prices. However, the proposed method is expected to be 

applicable in a similar fashion, when variations in geological variables 
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as well as other economic variables such as production costs, exchange 

rates, and taxes are considered. In future work, it would be interesting 

to develop an extended method to simultaneously consider the 

uncertainties of multiple variables because it can change the results of 

uncertainty representation for open pit optimization.

The proposed method is applicable to a wide range of deposits for a 

general purpose, and may be used in combination with various open 

pit optimization algorithms. Therefore, it is expected to be a valuable 

tool to assist sound long-term development planning of open pit mines.
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광물 가격의 변동에 따른 노천광산 최적 경계의 

불확실성 분석 및 가시화

백지은

부경대학교 대학원 에너지자원공학과

요 약 

본 연구에서는 광물 가격의 변동으로 인해 노천채광장 경계 최적화 결과

에 나타나는 불확실성을 정량적으로 표현할 수 있는 방법을 제시하였다. 

과거 광물 가격에 대한 자료들을 기반으로 몬테카를로 시뮬레이션을 통해 

다수의 광물 가격들을 생성한 후, 이들로부터 도출된 다수의 노천채광장 

경계 최적화 결과들을 하나로 통합하여 불확실성을 나타내는 확률모델을 

형성하였다. 제시된 방법을 구리·아연 복합광상에 적용한 결과 지난 10년

간 구리와 아연 가격의 변동성을 고려할 때 연구지역 노천채광장 경계 최

적화 결과에 큰 불확실성이 존재한다는 것을 확인할 수 있었다. 또한, 구

리와 아연 가격이 현재의 기준 가격보다 상승하거나 하락할 경우 광상을 

나타내는 각각의 블록들이 노천채광장의 최적 경계 안에 포함될 확률을 정

량화할 수 있었다. 이러한 확률 값들을 이용하여 신뢰수준에 따른 광상의 

reserve를 추정하였다. 신뢰 수준을 90%로 설정할 때 reserve는 약 

76,000톤으로 추정되며, 신뢰 수준을 50% 이상으로 설정할 경우에는 

reserve가 약 2,550,000톤으로 추정되었다. 이를 통해 본 연구에서 제안한 
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방법이 등급에 따른 광상의 reserve 추정 시에도 활용될 수 있는 가능성을 

확인할 수 있었다. 

주요어: 불확실성, 노천채광장 경계 최적화,  Monte Carlo 시뮬레이션, 수

익 지수, 매장량 추정
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