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Abstract

In this paper, we first consider the existence and regularity of solutions
of the semilinear impulsive differential equation under natural assumptions
such as the local Lipschtiz continuity of nonlinear term. Thereafter, we will
also establish the approximate controllability for the equation when the cor-
responding linear system is approximately controllable.
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1 Introduction

In this paper, we are concerned with the global existence of solution and the ap-
proximate controllability for the semilinear impulsive control system:

x
′
(t) + Ax(t) = f(t, x(t)) + (Bu)(t), t ∈ (0, T ], t 6= tk,

k = 1, 2, · · · ,m,
∆x(tk) = x(t+k )− x(t−k ) = Ik(x(t−k )), k = 1, 2, · · · ,m,
x(0) = x0.

(1.1)

Let H and V be real Hilbert spaces such that V is a dense subspace in H. Let A
be the operator associated with a sesquilinear form a(·, ·) defined on V ×V satisfying

1
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G̊arding’s inequality:
(Au, v) = a(u, v), u, v ∈ V

where V is a Hilbert space such that V ⊂ H ⊂ V ∗. Then −A generates an analytic
semigroup in both H and V ∗(see [1, Theorem 3.6.1]) and so the equation (1.1) may
be considered as an equation in H as well as in V ∗. The nonlinear operator f from
[0, T ] × V to H is assumed to be locally Lipschitz continuous with respect to the
second variable. Let U be a Banach space of control variables and the controller
operator B be a bounded linear operator from the Banach space L2(0, T ;U) to
L2(0, T ;H). The impulsive condition

∆x(tk) = x(t+k )− x(t−k ) = Ik(x(t−k )), k = 1, 2, · · · ,m,

is a combination of traditional evolution systems and short term perturbations
whose duration is negligible in comparison with duration of the process, such as
biology, medicine, bioengineering etc. Let x(t; f, u) be a solution of the equa-
tion (1.1) associated with a nonlinear term f and a control u. We will show the
approximate controllability for the equation (1.1), namely that the reachable set
RT (f) = {x(T ; f, u) : u ∈ L2(0, T ;U)} is a dense subset of H. This kind of equa-
tions arise naturally in biology, in physics, control engineering problem, etc.

In the first part of this paper we establish the wellposedness and regularity
property for the following equation:

x
′
(t) + Ax(t) = f(t, x(t)) + k(t), t ∈ (0, T ], t 6= tk,

k = 1, 2, · · · ,m,
∆x(tk) = x(t+k )− x(t−k ) = Ik(x(t−k )), k = 1, 2, · · · ,m,
x(0) = x0.

(1.2)

The existence of solutions for a class of semilinear functional differential equations
has been studied by many authors. Recently, Kobayashi et el. [2] introduced the
notion of semigroups of locally Lipschitz operators which provide us with mild solu-
tions to the Cauchy problem for semilinear evolution equations. The regularity for
the semilinear heat equations has been developed as seen in section 4.3.1 of Barbu
[3] and [4, 5].

In this paper, we propose a different approach of the earlier works (briefly in-
troduced in [1, 15, 7]) about the mild, strong, and classical solutions of Cauchy
problems. Our approach is that results of the linear cases of Di Blasio [8] on the
L2-regularity remain valid under the above formulation of the semilinear problem
(1.2).

Next, based on the regularity for (1.2), we intend to establish the approximate
controllability for (1.1). Approximate controllability for semilinear control systems
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can be founded in [4.9-15]. Similar considerations of linear and semilinear systems
have been dealt with in many references, linear problems in the book [16] and
Nakagiri [17] , the system (1.1) with the uniform bounded nonlinear term in [18], the
system (1.1) with the uniform Lipschtz continuous nonlinear term in [4, 19, 20, 21].
However there are few papers treating the systems with local Lipschipz continuity,
we can just find a recent article Wang [22]. Among these literatures, in [19, 22], they
assumed that the semigroup S(t) generated by A is compact in order to guarantee
the compactness of the solution mapping, and the approximate controllability for
the equation (1.1) was investigated.

In this paper, in order to show that the main result of [19] is extended to the
nonlinear differential equation, we assume that the embedding D(A) ⊂ V is com-
pact. Then by virtue of the result in Aubin [23], we can take advantage of the fact
that the solution mapping u ∈ L2(0, T ;U) 7→ x(T ; f, u) is compact.

Under natural assumptions such as the local Lipschtiz continuity of nonlinear
term, we obtain the approximate controllability for the equation (1.1) when the
corresponding linear system is approximately controllable.

The paper is organized as follows. In section 2, the results of general linear evo-
lution equations besides notations and assumptions are stated. In section 3, we will
obtain that the regularity for parabolic linear equations can also be applicable to
(1.2) with nonlinear terms satisfying local Lipschitz continuity. The approach used
here is similar to that developed in [1, 4] on the general semilnear evolution equa-
tions, which is an important role to extend the theory of practical nonlinear partial
differential equations. Thereafter, we investigate the approximate controllability for
the problem (1.1) in Section 4. In the proofs of the main theorems, we need some
compactness hypothesis. So we make the natural assumption that the embedding
D(A) ⊂ V is compact instead of the compact property of semigroup used in [9, 19].
Finally we give a simple example to which our main result can be applied.

2 Regularity for linear equations

If H is identified with its dual space we may write V ⊂ H ⊂ V ∗ densely and the
corresponding injections are continuous. The norm on V , H and V ∗ will be denoted
by || · ||, | · | and || · ||∗, respectively. The duality pairing between the element v1
of V ∗ and the element v2 of V is denoted by (v1, v2), which is the ordinary inner
product in H if v1, v2 ∈ H.

For l ∈ V ∗ we denote (l, v) by the value l(v) of l at v ∈ V . The norm of l as
element of V ∗ is given by

||l||∗ = sup
v∈V

|(l, v)|
||v||

.
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Therefore, we assume that V has a stronger topology than H and, for brevity, we
may regard that

||u||∗ ≤ |u| ≤ ||u||, ∀u ∈ V. (2.1)

Let a(·, ·) be a bounded sesquilinear form defined in V × V and satisfying
G̊arding’s inequality

Re a(u, u) ≥ ω1||u||2 − ω2|u|2, (2.2)

where ω1 > 0 and ω2 is a real number. Let A be the operator associated with this
sesquilinear form:

(Au, v) = a(u, v), u, v ∈ V.

Then −A is a bounded linear operator from V to V ∗ by the Lax-Milgram Theorem.
The realization of A in H which is the restriction of A to

D(A) = {u ∈ V : Au ∈ H}

is also denoted by A. From the following inequalities

ω1||u||2 ≤ Re a(u, u) + ω2|u|2 ≤ C|Au| |u|+ ω2|u|2 ≤ max{C, ω2}||u||D(A)|u|,

where

||u||D(A) = (|Au|2 + |u|2)1/2

is the graph norm of D(A), it follows that there exists a constant C0 > 0 such that

||u|| ≤ C0||u||1/2D(A)|u|
1/2. (2.3)

Thus we have the following sequence

D(A) ⊂ V ⊂ H ⊂ V ∗ ⊂ D(A)∗, (2.4)

where each space is dense in the next one which continuous injection.

Lemma 2.1. With the notations (2.3), (2.4), we have

(V, V ∗)1/2,2 = H,

(D(A), H)1/2,2 = V,

where (V, V ∗)1/2,2 denotes the real interpolation space between V and V ∗(Section
1.3.3 of [24]).
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It is also well known that A generates an analytic semigroup S(t) in both H and
V ∗. For the sake of simplicity we assume that ω2 = 0 and hence the closed half
plane {λ : Reλ ≥ 0} is contained in the resolvent set of A.

If X is a Banach space, L2(0, T ;X) is the collection of all strongly measur-
able square integrable functions from (0, T ) into X and W 1,2(0, T ;X) is the set of
all absolutely continuous functions on [0, T ] such that their derivative belongs to
L2(0, T ;X). C([0, T ];X) will denote the set of all continuously functions from [0, T ]
into X with the supremum norm. If X and Y are two Banach space, L(X, Y ) is
the collection of all bounded linear operators from X into Y , and L(X,X) is simply
written as L(X). Let the solution spaces W(T ) and W1(T ) of strong solutions be
defined by

W(T ) = L2(0, T ;D(A)) ∩W 1,2(0, T ;H),

W1(T ) = L2(0, T ;V ) ∩W 1,2(0, T ;V ∗).

Here, we note that by using interpolation theory, we have

W(T ) ⊂ C([0, T ];V ), W1(T ) ⊂ C([0, T ];H).

Thus, there exists a constant M0 > 0 such that

||x||C([0,T ];V ) ≤M0||x||W(T ), ||x||C([0,T ];H) ≤M0||x||W1(T ). (2.5)

The semigroup generated by −A is denoted by S(t) and there exists a constant M
such that

|S(t)| ≤M, ||s(t)||∗ ≤M.

The following Lemma is from Lemma 3.6.2 of [1].

Lemma 2.2. There exists a constant M > 0 such that the following inequalities
hold for all t > 0 and every x ∈ H or V ∗:

|S(t)x| ≤Mt−1/2||x||∗, ||S(t)x|| ≤Mt−1/2|x|.

Lemma 2.3. (a) Aα is a closed operator with its domain dense.

(b) If 0 < α < β , then D(Aα) ⊃ D(Aβ).
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(c) For any T > 0, there exists a positive constant Cα such that the following
inequalities hold for all t > 0.

||AαS(t)||L(H) ≤
Cα
tα
, ||AαS(t)||L(H,V ) ≤

Cα
t3α/2

.

Proof. From [1,Lemma 3.6.2] it follows that there exists a positive constant C
such that the following inequalities hold for all t > 0 and every x ∈ H or V ∗ :

|AS(t)x| ≤ C

t
|x|, ||AS(t)x|| ≤ C

t3/2
|x|.

First of all, consider the following linear system{
x
′
(t) + Ax(t) = k(t),

x(0) = x0.
(2.6)

By virtue of Theorem 3.3 of [8](or Theorem 3.1 of [4], [1]), we have the following
result on the corresponding linear equation of (2.6).

Lemma 2.4. Suppose that the assumptions for the principal operator A stated above
are satisfied. Then the following properties hold:
1) For x0 ∈ V = (D(A), H)1/2,2(see Lemma 2.1) and k ∈ L2(0, T ;H), T > 0, there
exists a unique solution x of (2.6) belonging to W(T ) ⊂ C([0, T ];V ) and satisfying

||x||W(T ) ≤ C1(||x0||+ ||k||L2(0,T ;H)), (2.7)

where C1 is a constant depending on T .
2) Let x0 ∈ H and k ∈ L2(0, T ;V ∗), T > 0. Then there exists a unique solution x
of (2.6) belonging to W1(T ) ⊂ C([0, T ];H) and satisfying

||x||W1(T ) ≤ C1(|x0|+ ||k||L2(0,T ;V ∗)), (2.8)

where C1 is a constant depending on T .

Lemma 2.5. Suppose that k ∈ L2(0, T ;H) and x(t) =
∫ t
0
S(t − s)k(s)ds for 0 ≤

t ≤ T . Then there exists a constant C2 such that

||x||L2(0,T ;D(A)) ≤ C1||k||L2(0,T ;H), (2.9)

||x||L2(0,T ;H) ≤ C2T ||k||L2(0,T ;H), (2.10)

and
||x||L2(0,T ;V ) ≤ C2

√
T ||k||L2(0,T ;H). (2.11)
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Proof. The assertion (2.9) is immediately obtained by (2.7). Since

||x||2L2(0,T ;H) =
∫ T
0
|
∫ t
0
S(t− s)k(s)ds|2dt ≤M

∫ T
0

(
∫ t
0
|k(s)|ds)2dt

≤M
∫ T
0
t
∫ t
0
|k(s)|2dsdt ≤M T 2

2

∫ T
0
|k(s)|2ds

it follows that
||x||L2(0,T ;H) ≤ T

√
M/2||k||L2(0,T ;H).

From (2.3), (2.9), and (2.10) it holds that

||x||L2(0,T ;V ) ≤ C0

√
C1T (M/2)1/4||k||L2(0,T ;H).

So, if we take a constant C2 > 0 such that

C2 = max{
√
M/2, C0

√
C1(M/2)1/4},

the proof is complete. �

3 Semilinear differential equations

Let f be a nonlinear mapping from V into H.

Assumption (F). There exists a function L : R+ → R such that L(r1) ≤ L(r2)
for r1 ≤ r2 and

|f(t, x)| ≤ L(r), |f(t, x)− f(t, y)| ≤ L(r)||x− y||

hold for any t ∈ [0, T ], ||x|| ≤ r and ||y|| ≤ r.

Assumption (I). The functions Ik : V → H are continuous and there exist
positive constants L(Ik) and β ∈ (1/3, 1] such that

|AβIk(x)| ≤ L(Ik)||x||, |AβIk(x)− Ik(y)| ≤ L(Ik)||x− y||, k = 1, 2, · · · ,m

for each x, y ∈ V , and

||x(t−k )|| ≤ K, k = 1, 2, · · · ,m.

From now on, we establish the following results on the local solvability of the
following equation;

x
′
(t) + Ax(t) = f(t, x(t)) + k(t), t ∈ (0, T ], t 6= tk,

k = 1, 2, · · · ,m,
∆x(tk) = x(t+k )− x(t−k ) = Ik(x(t−k )), k = 1, 2, · · · ,m,
x(0) = x0.

(3.1)
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Let us rewrite (Fx)(t) = f(t, x(t)) for each x ∈ L2(0, T ;V ). Then there is a constant,
denoted again by L(r), such that

||Fx||L2(0,T ;H) ≤ L(r)
√
T , ||Fx1 − Fx2||L2(0,T ;H) ≤ L(r)||x1 − x2||L2(0,T ;V )

hold for x1, x2 ∈ Br(T ) = {x ∈ L2(0, T ;V ) : ||x||L2(0,T ;V ) ≤ r}.

Here, we note that by using interpolation theory, we have that for any t > 0,

L2(0, t;V ) ∩W 1,2(0, t;V ∗) ⊂ C([0, t];H).

Thus, for any t > 0, there exists a constant c > 0 such that

||x||C([0,t];H) ≤ c||x||L2(0,t;V )∩W 1,2(0,t;V ∗). (3.2)

Let
0 = t0 < t1 < · · · < tk < · · · < tm = T.

Then by Assumption (I) and (3.1), it is immediately seen that

x ∈ W 1,2(ti, ti+1;V
∗), i = 0, · · · ,m− 1.

Thus by virtue of Assumption (I) and (3.2), we may consider that there exists a
constant C3 > 0 such that

max
0≤t≤T

{|x(t)| : x is a solution of (3.1)} ≤ C3||x||L2(0,T :V ). (3.3)

From now on, we establish the following results on the solvability of the equa-
tion(3.1).

Theorem 3.1. Let Assumption (F) be satisfied. Assume that x0 ∈ H, k ∈ L2(0, T ;V ∗).
Then, there exists a time T0 ∈ (0, T ) such that the equation (3.1) admits a solution

x ∈ W1(T0) ⊂ C([0, T0];H). (3.4)

Proof. For a solution of (3.1) in the wider sense, we are going to find a local
solution of the following integral equation

x(t) = S(t)x0 +

∫ t

0

S(t− s){(Fx)(s) + k(s)}ds+
∑

0<tk<t

S(t− tk)Ik(x(t−k )). (3.5)

To prove a local solution, we will use the successive iteration method. First, put

x0(t) = S(t)x0 +

∫ t

0

S(t− s)k(s)ds
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and define xj+1(t) as

xj+1(t) = x0(t) +

∫ t

0

S(t− s)(Fxj)(s)ds+
∑

0<tk<t

S(t− tk)Ik(xj(t−k )). (3.6)

By virtue of Lemma 2.4, we have x0(·) ∈ W1(t), so that

||x0(·)||W1(t) ≤ C1(|x0|+ ||k||L2(0,t;V ∗)), (3.7)

where C1 is a constant in Lemma 2.4. Choose r > C1(|x0| + ||k||L2(0,t;V ∗)). Putting

p(t) =
∫ t
0
S(t− s)(Fx0)(s)ds, by (2.11) of Lemma 2.5, we have

||p||L2(0,t;V ) ≤ C2

√
t||Fx0||L2(0,t;H) ≤ C2L(r)t. (3.8)

Putting g(t) := S(t− tk)Ik(x(t−k )), by Assumption (I) and Lemma 2.3, we have

||g(t)||L2(0,t;V ) ≤ 2(3β)−1/2(3β − 1)−1C1−βKL(Ik)t
3β/2. (3.9)

Put
M1 := max{C2L(r)t, 2(3β)−1/2(3β − 1)−1C1−βKL(Ik)t

3β/2} (3.10)

then for any t satisfying, M1 < r, from (3.4) and (3.5).
so that, from(3.7) and (3.8) and (3.9),

||x1||L2(0,t;V ) ≤ r + C2L(r)t+ 2(3β)−1/2(3β − 1)−1C1−βK
∑

0<tk<t

L(Ik)t
3β/2 ≤ 3r.

By induction, it can be shown that for all j = 1, 2, ...

||xj||L2(0,t;V ) ≤ 3r, 0 ≤ t ≤M1. (3.11)

Hence, from the equation

xj+1(t)− xj(t) =

∫ t

0

S(t− s){f(t, xj(s))− f(t, xj−1(s))}ds

+
∑

0<tk<t

S(t− tk){Ik(xj(t−k ))− Ik(xj−1(t−k )}.

Set
h(t) := S(t− tk){Ik(x1(t−k ))− Ik(x2(t−k ))}.

Then from (3.2) and (3.3) it follows that
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||h||L2(0,T ;V ) = [

∫ T

0

||
∫ t

tk

S
′
(s− tk){Ik(x1(t−k ))− Ik(x2(t−k ))}ds||2dt]1/2

≤ [

∫ T

0

||
∫ t

tk

AS(s− tk){Ik(x1(t−k ))− Ik(x2(t−k ))}ds||2dt]1/2

≤ [

∫ T

0

{
∫ t

tk

C1−β

(s− tk)3(1−β)/2
L(Ik)|(x1(t−k )− x2(t−k ))|ds}2dt]1/2

≤ (3β)−1/22(3β − 1)−1C1−βC3L(Ik)T
3β/2||x1 − x2||L2(0,T ;V ).

Hence, from the equation

xj+1(t)− xj(t) =

∫ t

0

S(t− s){(Fxj)(s)− (Fxj−1)(s)}ds

+
∑

0<tk<t

S(t− tk){Ik(xj(t−k ))− Ik(xj−1(t−k ))}.

Put

M2 := C2L(3r)
√
t+ (3β)−1/22(3β − 1)−1C1−βC3

∑
0<tk<t

L(Ik)t
3β/2. (3.12)

Then from (2.11), (3.11) and Assumption (F), we can observe that the inequality

||xj+1 − xj||L2(0,t;V ) ≤ C2L(3r)
√
t||xj − xj−1||L2(0,t;V )

+ (3β)−1/22(3β − 1)−1C1−βC3

∑
0<tk<t

L(Ik)t
3β/2||xj − xj−1||L2(0,t;V )

≤M2||xj − xj−1||L2(0,t;V )

≤ (M2)
j||x1 − x0||L2(0,t;V ).

Choose T0 > 0 satisfying max{M1,M2} < 1. Then {xj} is strongly convergent
to a function x in L2(0, T0;V ) uniformly on 0 ≤ t ≤ T0. By letting j →∞ in (3.6)
has a unique solution x in W1(T ). �

From now on, we give a norm estimation of the solution of (3.1) and establish
the global existence of solutions with the aid of norm estimations.

Theorem 3.2. Under the assumption (F) for the nonlinear mapping f , there exists
a unique solution x of (3.1) such that

x ∈ W1(T ) ≡ L2(0, T ;V ) ∩W 1,2(0, T ;V ∗) ⊂ C([0, T ];H), T > 0.
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for any x0 ∈ H, k ∈ L2(0, T ;V ∗). Moreover, there exists a constant C3 such that

||x||W1(T ) ≤ C4(1 + |x0|+ ||k||L2(0,T ;V ∗)), (3.13)

where C4 is a constant depending on T .

Proof. Let x be a solution of (3.1) on [0, T0], T0 > 0 satisfies max{M1,M2} < 1.
Here M1 and M2 be constants in (3.10) and (3.12), respectively. Then by virtue of
Theorem3.1, the solution x is represented as

x(t) = x0(t) +

∫ t

0

S(t− s)(Fx)(s)ds+
∑

0<tk<t

S(t− tk)Ik(x(t−k )).

where

x0(t) = S(t)x0 +

∫ t

0

S(t− s)k(s)ds.

By (3.7), we have x0(·) ∈ W1(T0), so that

||x0||W1(T0) ≤ C1(|x0|+ ||k||L2(0,T0;V ∗)),

where C1 is constant in Lemma2.4. Moreover, from (3.7)-(3.9), it follow that

||x||W1(T0) ≤ C1(|x0|+ ||k||L2(0,T0;V ∗)) + max{M1,M2}||x||W1(T0). (3.14)

Thus, Moreover, there exists a constant C4 such that

||x||W1(T0) ≤ C4(1 + |x0|+ ||k||L2(0,T0;V ∗)).

Now from

|S(t)x0 +

∫ t

0

S(t− s){(Fx)(s) + k(s)}ds| ≤M |x0|+MtL(r) +M
√
t||k||L2(0,t;H),

|
∑

0<tk<t

S(t− tk)Ik(x(t−k ))| ≤MK|A−β|
∑

0<tk<t

L(Ik).

it follow

|x| ≤M |x0|+MT0L(r) +M
√
T0||k||L2(0,T0;H) +MK|A−β|

∑
0<tk<T0

L(Ik) <∞.

Hence, we can solve the equation in [T0, 2T0] with the initial value x(T0) and
obtain an analogous estimate to (3.14). Since the condition (3.10),(3.12) is inde-
pendent of initial value, the solution can be extended to the interval [0, nT0] for
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any natural number n, i.e., for the initial u(nT0) in the interval [nT0, (n + 1)T0], as
analogous estimate (3.14) holds for the solution in [0, (n+ 1)T0]. �

From the following result, we obtain that the solution mapping is continuous,
which is useful for physical application of the given equation.

Theorem 3.3. Let the assumption (F) and (I) be satisfied and (x0, k) ∈ H ×
L2(0, T ;V ). Then the solution x of the equation (3.1) belongs to x ∈ W1 ≡
L2(0, T ;V ) ∩W 1,2(0, T ;V ∗) and the mapping

H × L2(0, T ;V ∗) 3 (x0, k) 7→ x ∈ W1(T ) (3.15)

is continuous.

Proof. From Theorem 3.2, it follows that if (x0, k) ∈ H × L2(0, T ;V ∗) then x
belongs to W1(T ). Let (x0i, ki) ∈ H × L2(0, T ;V ∗) and xi ∈ W1(T ) be the solution
of (3.1) with (x0i, ki) in place of (x0, k) for i = 1, 2. Hence, we assume that xi
belongs to a ball Br(T ) = {y ∈ W1(T ) : ||y||W1(T ) ≤ r}.

Let

(pxj)(t) =

∫ t

0

S(t− s)Fxj(s)ds+
∑

0<tk<t

S(t− tk)Ik(xj(t−k )).

Then, by virtue 2) of Lemma2.4, we get

||x1 − x2||W1(T ) = C1{|x1 − x2|+ ||k1 − k2||L2(0,T ;V ∗) + ||px1 − px2||L2(0,T ;V ∗)}.
(3.16)

Set || · ||L2(0,T0;V ) = || · ||L2 for brevity, where T0 > 0 satisfies max{M1,M2} < 1.
Then, we have

||px1 − px2||L2(0,T0;V ∗) ≤ ||px1 − px2||L2

= ||
∫ t

0

S(t− s){Fx1 − Fx2}ds||L2

+ ||
∑

0<tk<t

S(t− tk){Ik(xi(t−k ))− Ik(x2(t−k ))||L2

≤M2||x1 − x2||L2 . (3.17)

Hence, by (3.16), (3.17), we see that

xn 7→ x ∈ W1(T0) ≡ L2(0, T0;V ) ∩W 1,2(0, T0;V
∗).
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This implies that (xn(T0), (xn)T0) 7→ (x(T0), xT0) in H ×L2(0, T ;V ∗). Hence the
same argument show that xn 7→ x in

L2(0,min{2T0, T};V ) ∩W 1,2(0,min{2T0, T};V ∗).

Repeating this process we conclude that xn 7→ x in W1(T ).
�

4 Approximate Controllability

Consider the following nonlinear equation. Let U be a Banach space of control
variables. Here B is a linear bounded operator from L2(0, T ;U) to L2(0, T ;H),
which is called a controller.

x
′
(t) + Ax(t) = f(t, x(t)) + (Bu)(t), t ∈ [0, T ], t 3 tk,

x(0) = x0.

∆x(tk) = x(t+k )− x(t−k ) = Ik(x(t−k )), k = 1, 2, · · · ,m.
(4.1)

Let x(T ; f, u) be a state value of the system (4.1) at time T corresponding to the
nonlinear term f and the control u. Let S(·) be the analytic semigroup generated
by −A. Then the solution x(t; f, u) can be written as

x(t; f, u) = S(t)x0+

∫ t

0

S(t−s){f(s, x(s, f, u))+(Bu)(s)}ds+
∑

0<tk<t

S(t−s)Ik(x(t−k )),

and in view of Theorem 3.2

||x(·; f, u)||W1(T ) ≤ C4(1 + |x0|+ ||B||||u||L2(0,T ;U)). (4.2)

We define the reachable sets for the system (4.1) as follows:

RT (f) = {x(T ; f, u) : u ∈ L2(0, T ;U)},
RT (0) = {x(T ; 0, u) : u ∈ L2(0, T ;U)}.

Definition 4.1. The system (4.1) is said to be approximately controllable at time
T if for every desired final state x1 ∈ H and ε > 0 there exists a control function
u ∈ L2(0, T ;U) such that the solution x(T ; f, u) of (4.1) satisfies |x(T ; f, u)−x1| < ε,
that is, RT (f) = H where RT (f) is the closure of RT (f) in H.
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We define a linear bounded operator Ŝ from L2(0, T ;H) to H by

Ŝp =

∫ T

0

S(T − t)p(t)dt,

for p(·) ∈ L2(0, T ;H).
Assumption (B) For any ε > 0, p ∈ L2(0, T ;H) there exists a u ∈ L2(0, T ;U)

such that {
|Ŝp− ŜBu| ≤ ε

||Bu||L2(0,t;H) ≤ q1||p||L2(0,t;H), 0 ≤ t ≤ T

where q is a constant independent of p.

Assumption (F1) The nonlinear operator f is a nonlinear mapping of [0, T ]×H
into H satisfying the following. There exists a constant L1 = L1(r) > 0 such that

|f(t, x)− f(t, y)| ≤ L1||x− y||, t ∈ [0, T ],

hold for ||x|| ≤ r and ||y|| ≤ r.

Assumption (H) We assume the following inequality condition:

max{q, 1}{1−M2}−1C2L1

√
T < 1.

where C2 is the constant in (2.11),

M2 = C2

√
TL1 + (3β)−1/22(3β − 1)−1C1−βC3T

3β/2
∑

0≤tk≤T

L(Ik)

as seem in (3.12).

Lemma 4.1. Let u1 and u2 be in L2(0, T ;U). Then under Assumption(B) and
Assumption(F1), one has that, for 0 ≤ t ≤ T ,

||x(t : f, u1)− x(t : f, u2)||L2(0,T ;V ) ≤ {1−M2}−1C2

√
t||Bu1 −Bu2||L2(0,T ;H). (4.3)

Proof. Let x1(t) = x(t : f, u1) and x2(t) = x(t : f, u2). Then for 0 ≤ t ≤ T ,we
have

x1(t)− x2(t) =

∫ t

0

S(t− s){f(s, x1(s))− f(s, x2(s))}ds

+

∫ t

0

S(t− s){Bu1 −Bu2}ds

+
∑

0≤tk≤T

S(t− s){Ik(x1(t−k ))− Ik(x2(t−k ))}. (4.4)
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By Assumption(F1) and Lemma 2.5 of (2.11), we obtain

||
∫ t

0

S(t− s){f(s, x1(s))− f(s, x2(s))}ds||L2(0,t;V ) ≤ C2

√
tL1||x1 − x2||L2(0,t;V ).

Moreover, by Lemma 2.5 of (2.11) and Theorem 3.1, we have

||
∫ t

0

S(t− s){Bu1 −Bu2}ds||L2(0,t;V ) ≤ C2

√
T ||Bu1 −Bu2||L2(0,t;H)

and

||
∑

0≤tk≤t

S(t− s){Ik(x1(t−k ))− Ik(x2(t−k ))}||L2(0,t;V )

≤ (3β)−1/22(3β − 1)−1C1−βC3t
3β/2

∑
0≤tk≤t

L(Ik)||x1(t−k )− x2(t−k )||L2(0,t;V ).

Thus, from (4.4) it follows that

||x(t; f, u1)− x(t; f, u2)||L2(0,T ;V )

≤ C2

√
T ||Bu1 −Bu2||L2(0,T ;H) + C2

√
TL1||x1 − x2||L2(0,T ;V )

+ (3β)−1/22(3β − 1)−1C1−βC3t
3β/2

∑
0≤tk≤t

L(Ik)||x1(t−k )− x2(t−k )||L2(0,T ;V ).

Theorem 4.1. Under Assumptions (B),(F1), and (H) the system(4.1) is approxi-
mately controllable on [0, T ].

Proof. The reachable set for the system(4.1) is given by

RT = {x(T ; f, u) : u ∈ L2(0, T ;U)}.

We will show that D(A) ⊂ RT (f), i.e., for given ε > 0 and ξT ∈ D(A), there
exists u ∈ L2(0, T ;U) such that

|ξT − x(T ; f, u)| < ε, (4.5)

where

x(T ; , f, u) = S(T )x0 +

∫ T

0

S(T − s){f(s, x(s, f, u)) + (Bu)(s)}ds

+
∑

0<tk<T

S(T − s)Ik(x(t−k )). (4.6)
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As ξT ∈ D(A) there exists a p ∈ L2(0, T ;H)such that

Ŝp = ξT − S(T )x0,

for instance, take p(s) = (ξT − sAξT ) − S(s)x0/T . Let u1 ∈ L2(0, T ;U)be
arbitrary fixed. Since by Assumption (B) there exists u2 ∈ L2(0, T ;U) such that

|Ŝ(p− f(·, x(·; f, u1)))− ŜBu2| <
ε

4
, (4.7)

it follows that

|ξT − S(T )x0 − Ŝf(·, x(·; f, u1))− ŜBu2| <
ε

4
. (4.8)

We can also choose w2 ∈ L2(0, T ;U) by Assumption (B) such that

|Ŝ(f(·, x(·; f, u2))− f(·, x(·; f, u1)))− ŜBw2| <
ε

8
(4.9)

||Bw2||L2(0,T ;H) ≤ q||f(·, x(·; f, u2))− f(·, x(·; f, u1))||L2(0,T ;H).

Choose a constant r1 satisfying

||x(·; f, u1)||C([0,T ];H) ≤ r1, ||x(·; f, u2)||C([0,T ];H) ≤ r1.

Therefor, in view of Lemma4.1 and Assumption (B)

||Bw2||L2(0,T ;H) ≤ q||f(s, x(s; f, u2))− f(s, x(s; f, u1))||L2(0,T ;H)

≤ qL1||x(t; f, u1)− x(t; f, u2)||L2(0,T ;V )

≤ q{1−M2}−1C2L1

√
T ||Bu1 −Bu2||L2(0,T ;H). (4.10)

Put u3 = u2 − w2. We determine w3 such that

|Ŝ(f(·, x(·; f, u3))− f(·, x(·; f, u2)))− ŜBw3| <
ε

8
||Bw3||L2(0,T ;H) ≤ q||f(·, x(·; f, u3))− f(·, x(·; f, u2))||L2(0,T ;H).

Let r2 be a constant satisfying r2 ≥ r1 and

||x(·; f, u+ 3)||C([0,T ];H) ≤ r2.

Then, in a similar way to (4.10) we have

||Bw3||L2(0,T ;H) ≤ q||f(s, x(s; f, u3))− f(s, x(s; f, u2))||L2(0,T ;H)

≤ qL1||x(t; f, u3)− x(t; f, u2)||L2(0.T ;V )

≤ q{1−M2}−1C2L1

√
T ||Bu2 −Bu3||L2(0,T ;H)

≤ (q{1−M2}−1C2L1

√
T )2||Bu1 −Bu2||L2(0,T ;H).
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By proceeding with this process and from

||B(un − un+1)||L2(0,T ;H)

= ||Bwn||L2(0,T ;H) ≤ (q{1−M2}−1C2L1

√
T )n−1||B(u2 − u1)||L2(0,T ;H).

Here, nothing that Assumption (H) is equivalent to

q{1−M2}−1C2L1

√
T < 1,

it follows that there exists u∗ ∈ L2(0, T ;H) such that

lim
n→∞

Bun = u∗ in L2(0, T ;H).

From(4.8),(4.9) it follow that

|ξT − S(T )x0 − Ŝf(·, x(·; f, u2))− ŜBu3|
= |ξT − S(T )x0 − Ŝf(·, x(·; f, u1))− ŜBu2 + ŜBw2

− [Ŝf(·, x(·; f, u2))− Ŝf(·, x(·; f, u1))]|

< (
1

22
+

1

23
)ε.

By choosing wn ∈ L2(0, T ;U) by Assumption (B), such that

|Ŝ(f(·, x(·; f, un))− f(·, x(·; f, un−1)))− ŜBwn| <
ε

2n+1

putting un+1 = un − wn we have

|ξT − S(T )x0 − Ŝf(·, x(·; f, un))− ŜBun+1|

< (
1

22
+ · · ·+ 1

2n+1
)ε, n = 1, 2, ....

Therefor, for ε > 0 there exists integer N such that

|ŜBuN+1 − ŜBuN | <
ε

2
,

|ξT − S(T )x0 − Ŝf(·, x(·; f, uN))− ŜBuN |
≤ |ξT − S(T )x0 − Ŝf(·, x(·; f, uN))− ŜBuN+1|+ |ŜBuN+1 − ŜBuN |

≤ (
1

22
+ · · ·+ 1

2N+1
)ε+

ε

2
≤ ε.
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Thus the system (4.1) is approximately controllable on [0, T ] as N tends to
infinity. �

Example. We consider the semilinear heat equation dealt with by Naito [19]
and Zhou [21]. Let

H = L2(0, π), V = H1
0 (0, π), V ∗ = H−1(0, π),

a(u, v) =

∫ π

0

du(x)

dx

dv(x)

dx
dx

and
A = −d2/dx2 with D(A) = {y ∈ H2(0, π) : y(0) = y(π) = 0}.

We consider the following retarded functional differential equation

∂
∂t
x(t, y) + Ax(t, y) = f(t, x(t, y)) +Bu(t), t ∈ (0, T ], t 6= tk,

k = 1, 2, · · · ,m,
∆x(tk) = x(t+k , y)− x(t−k , y) = Ik(x(t−k )), k = 1, 2, · · · ,m,
x(t, 0) = x(t, π) = 0, t > 0

x(0, y) = x0(y).

(4.8)

The eigenvalue and the eigenfunction of A are λn = −n2 and φn(x) = sinnx,
respectively. Let

U = {
∞∑
n=2

unφn :
∞∑
n=2

u2n <∞},

Bu = 2u2φ1 +
∞∑
n=2

unφn, for u =
∞∑
n=2

un ∈ U,

T > 0.

In [19] Naito showed that the operator B is one to one, R(B) is closed and L2(0, T ) =
R(B) +N , where R(B) is the range of the operator B. It follows that the operator
B satisfies Assumption (A).

We assume that the nonlinear operator f : [0, T ] × V → H is continuous and
there is a constant 0 < γ < 1 and a function k ∈ L2[0, T ] such that

|f(t, x)| ≤ k(s)||x||γ, ∀(t, x) ∈ [0, T ]× V.

Hence, Assumption (F) and (4.4) are satisfied. Therefore, by Theorem 4.1 with con-
dition on Assumption (I), the semilinear system (4.8) is approximately controllable
at time T .
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