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Chapter 1

Introduction and Organization

1.1 Introduction

Minimax programming problems have been the subject of immense interest
in the past few years. Some of the basic results of minimax programming
problems can be found in books by Danskin [17] and Demyanov and Moloze-
mov [18]. It is well known that optimality and duality lay down the foun-
dation of algorithms for a solution of an optimization problem and hence
constitute an important portion in the study of mathematical programming.
The necessary and sufficient conditions for generalized minimax program-
ming were first developed by Schmitendorf [40]. After the work of Schmiten-
dorf [40], many researchers have worked in this direction; see, for example,
Antczak [1], Lai et al. [31], Yang and Hou [47] and the references therein.
Mathematically, a minimax programming problem is the problem:

i j ; < =1,...
(P) min max fr(x) subject to g;(z) £0, i =1,...,m,

where f, : R" > R, ke K:={1,...,l} and ¢; : R" - R, i =1,...,m are
given functions.

In addition, a minimax fractional programming problem is the one:

(FP) min max Pe(®)
zeR" keK qp ()

subject to g¢;(z) £0, i=1,...,m,



where pg, —qx :R" >R, ke K:={1,...,l}and ¢, : R*" >R, i =1,...,m
are given functions.

As we mentioned above, with regards to the problems, both (P) and (FP)
have been studied by many researcher; see, for example, [1, 12, 31-33, 40, 47|

and the references therein.

On the other hand, the data of many real-world optimization problems
are often uncertain (that is, they are not known exactly at the time of
the decision) due to lack of information, estimation errors or prediction er-
rors. Recently, robust optimization approach, which associates an uncertain
mathematical programming with its robust counterpart (see, for example,
2, 4, 8, 23, 45]), has emerged as a powerful deterministic approach for
studying mathematical (both scalar and multiobjective) optimization with
data uncertainty. Moreover, a robust fractional optimization problem is to
optimize a fractional function over the constrained set defined by functions
with data uncertainty.

The minimax programming problem (P) and the minimax fractional pro-
gramming problem (FP) in the face of data uncertainty in the constraints

can be captured by the problems

. : ‘ N g —
(UP) min max fr(z) subject to g;(x,v;) <0, i=1,...,m,

and

(z)

(UFP) min max Dr

zER" keK Qk($) SU'b.]eCt to gz(xu U’L) = 07 (4 ]., e,y

respectively, where g; : R" x R? — R, g;(+,v;) is convex and v; € R? is an

uncertain parameter which belongs to the set V;, C R, i =1,...,m.



The robust programming approach tells us to seek for a solution which
simultaneously satisfies all possible realizations of the constraints. Through-
out the thesis, we explore optimality and duality theorems for the uncertain
minimax programming problem (UP) and the uncertain minimax fractional
programming problem (UFP) by examining their robust (worst-case) coun-
terparts:

- ; (ov) < eV oi=1...
(RP) min max fr(z) subject to g;(x,v;) £0, Yo, € Vi, i =1,...,m,

and

(RFP) min max Pe(®)

ZER™ keK Qk(l') SubjeCt to gi(xyvi> < O, Yu; € Vi, 7= 1, e, My,

respectively.

It is worth noting that, from the computational point of view, it may be
more meaningful to find not exact solutions but approximate ones. Indeed,
one can consider approximate solutions with a small error while solving opti-
mization problem by a numerical method and; moreover, in some problems,
if error value tends to zero, the limit of approximate solution is an exact
solution, if it exists. It is meaningful not only to find solutions but establish
necessary and sufficient conditions. It is well known that optimization prob-
lems may be viewed from either of two perspectives, i.e. the primal problem
or the dual problem. Moreover, for convex optimization problems, the du-
ality gap, i.e. the difference between optimal values of the primal and dual

problems, is zero under a constraint qualification.



1.2 Organization of the Dissertation

This dissertation consists of three main chapters.

Chapter 2 presents some characterizations of an optimal solution and a
quasi a-solution for the robust convex minimax optimization problem (RP),
a dual model in the sense of Wolfe is established, and duality relations are
also discussed; in addition, a nontrivial example is given.

Chapter 3 can be treated as applications of Chapter 2; namely, with the
help of the results obtained by Chapter 2, we study optimality conditions and
duality theorems both for a weak Pareto solution and a weak quasi e-Pareto
solution to the robust multiobjetive optimization problem.

In Chapter 4, we study a robust convex minimax fractional programming
problem in the face of data uncertainty. Again, using the robust optimization
approach (worst-case approach), optimality conditions and approximate du-
ality theorems for the robust convex minimax fractional programming prob-
lem are explored under the Slater condition.

Finally, the Conclusions are given in the end of the dissertation.



Chapter 2
Optimality Conditions and Duality for
Optimal and Approximate Solutions in

Robust Minimax Programming

2.1 Introduction

The study of optimality conditions and duality relations for optimal solutions
of minimax programming problems has been done by many researchers; see,
for example, [12, 32, 33| and the references therein.

Along with optimality conditions, we propose a dual problem to the pri-
mal one and examine weak and strong duality relations.

In addition, we employ the (necessary/sufficient) optimality conditions
obtained for the mimimax programming problem to derive the corresponding
ones for a multiobjective optimization problem. This approach seems to be
new in the literature, and we hope it will provide a useful opportunity to
learn about a multiobjective optimization problem from the related mimimax
programming problem, a scalar one.

The rest of the paper is organized as follows. Section 2 contains some
basic definitions from variational analysis and several auxiliary results. In
Section 3, we first establish necessary conditions for (local) optimal solutions

of a mimimax programming problem. Then we provide sufficient conditions



for the existence of such (global) solutions. Section 4 is devoted to studying
duality relations in mimimax programming. Applications to multiobjective

optimization problems are performed in Section 5.

2.2 Preliminaries

We use the following notation and terminology. R™ denotes the n-dimensional
Euclidean space with the inner product (-,-) and the associated norm || - ||.
We say that a set I' in R™ is convexr whenever ua; + (1 — p)ay € T' for
all p € [0,1], a;,a5 € T. We denote the domain of f by dom f, that is,
dom f:={z € R": f(r) < +o0}. f is said to be convez if for all X € [0, 1],

S =Nz +dy) < (1 =2 f(x) + Af(y)

for all z,y € R™. The function f is said to be concave whenever — f is convex.

The (convex) subdifferential of f at z € R™ is defined by

{zr e R" | (x*,y — ) < f(y) — f(x), Vy € R"}, ifx € dom [,

(0, otherwise.

o1(a) = {

Proposition 2.2.1 (Cauchy—Schwartz inequality). For any two vectors x,y €
R™ [(x,y)| < [|z||||y|l. The above inequality holds as equality if and only if

x = ay for some scalar a € R.

Lemma 2.2.1 (Moreau-Rockafellar sum rule). Consider two proper convex

functions f1, fa : R* = R such that ri dom f; Nri dom fo # 0. Then
Ofr + fo)(x) = 0f1(x) + O fa(x)

for every x € dom (f1 + f2).



Proposition 2.2.2 (max-function rule). Consider convex functions fr :

R* - R k=1,...,1, and let p(x) = max{ fi(z),..., fi(x)}. then

dp(z) =co |J Ofk(T),
keK(z)
where K(z) :={k € K:={1,...,1}: () = fr(Z)} denotes the active index

set.

2.3 Mathematical Model and Representation of the

Normal Cone

A standard form of minimax programming problem is the problem:

: : .
(P) min max fu(z) subject to 'gi(z) <0, i=1,...,m,

where f, :R" >R, ke K:={l1,...,l} and g; : R" > R, i =1,...,m are
convex functions.

The minimax programming problem (P) in the face of data uncertainty

in the constraints can be captured by the problem

i i (r,0) <0, i=1,...
(UP) min max fr(z) subject to g;(x,v;) £0, i=1,...,m,

where g; : R" x R? — R, g¢;(+,v;) is convex and v; € R? is an uncertain pa-
rameter which belongs to the set V; C R? ¢ =1,...,m. The problem (UP)
is to optimize an optimization problem with data uncertainty (incomplete
data), which means that input parameters of these problems are not known

exactly at the time when solution has to be determined [7]. Indeed, there



are two main approaches to deal with constrained optimization under data
uncertainty, namely robust programming approach and stochastic program-
ming approach; in stochastic programming, one works with the probabilistic
distribution of uncertainty and the constraints are required to be satisfied up
to prescribed level of probability [22], while robust programming approach
seeks for a solution which simultaneously satisfies all possible realizations of
the constraints. It seems to be more convenient to use the robust approach to
study optimization problems with data uncertainty, comparing with stochas-
tic programming approach.

Throughout the thesis, we explore optimality and duality theorems for
the uncertain minimax programming problem (UP) by examining its robust
(worst-case) counterpart [7]:

i i (z,v;) < eV, i=1,...,m.
(RP) min max fr(z) subject to g;(x,v;) £0, Yo, €V, i =1,...,m

Denote by F := {x € R": g;(x,v;) £ 0, Yo € V;, i = 1,...,m} as the
feasible set of (RP).

Definition 2.3.1. We say the Slater condition holds for (RP) if there exists
x € R" such that

gi(f,vi) <0,Yv; € Vi =1,2,...,m.

Now, we establish optimality theorems for (RP) under the Slater condi-
tion. Then, by using the obtained results, we study the optimality condition
for a quasi e-solution to (RP) under the Slater condition. Moreover, we

formulate a Wolfe type dual problem for the primal one and propose weak



duality between the primal problem and its Wolfe type dual problem as well
as strong duality which holds under the Slater condition. As a consequence,
we study the behaviours of a quasi e-solution to the dual problem. Before
that, we first give the following notions of an optimal solution and a quasi

e-solution to the problem (RP).

Definition 2.3.2. Let p(x) := max fr(x), x € R™.
S

(i) A point & € F is said to be an optimal solution of problem (RP) if and
only if
o(z) £ p(z), VzeEF

(ii) Given € 2 0. A point © € F is said to be a quasi e-solution of problem
(RP) if

0(z) £ p(x) + Velz =z, VzeF.

It is worth noting that some characterizations of a quasi e-solution to the
problem (RP) has been minutely studied in [11, 28, 35].

In order to obtain Karush-Kuhn—Tucker (KKT) optimality condition in
terms of the constraint functions g;(z,v;) £ 0, Yv; € V;, i = 1,...,m, the
normal cone must be explicitly expressed in their terms. Below, we present
such a result under the Slater condition. The proof is motivated by |20,

Proposition 3.3] and [43, Proposition 2.3].

Lemma 2.3.1. Let x € C := {x € R": g(-,v) £ 0,v € V}, where V is a

certain convex compact uncertain subset in RY and g(-,v) is convez functions



for allv € V. Suppose that the Slater condition holds for (RP). Then & €

Ne() if and only if there exist A\ =0 and v € V such that
€ € \dg(z,v) and A\g(z,v) = 0.

Proof. Since V is convex and compact, we may let ¢(x) = supg(z,v) =
veV

max g(x,v), and the function ¢(x) is convex as pointwise maxima of convex
ve

functions [2, 39]. By the definition of normal cone to the convex set C' [the

convexity of C'is clear, since C' is the 0-level set of ¢(z)], we have
Ne(@)={(eR": {{,z—-7)<0, Vz e C}

={£eR": (=£,7) £ (=&, x), Ve e C}. (2.1)

Observe that from (2.1), we see Z is an optimal solution of the following

convex problem with a linear objective function:
(LP) min (—¢,x) subject to ¢(z) < 0.

Since the Slater condition holds, by the standard KKT condition, we have

there exist A = 0 such that
£ € X3p(Z) and Ap(Z) = 0;

furthermore, the compactness of V tells us there exist A = 0 and © € V such
that
¢ € MNg(z,v) and Ag(z,v) = 0.

Thus, the proof is complete. O

10



2.4 Optimality Conditions

In this section, we establish optimality conditions for both an optimal solu-

tion and a quasi e-solution to the problem (RP).

2.4.1 For an optimal solution

The following theorem gives a KKT necessary condition for optimal solutions

of the problem (RP).

Theorem 2.4.1. Consider the problem (RP), suppose that the Slater con-
dition holds for (RP). If & is an optimal solution of problem (RP), then
there exist T == (11,...,m) € RL\{0}, o € Vi, @ = 1,....m and X :=

(M- Am) € R, such that

0e zz:Tkaj% EE:A agz z

keK
7 (F(2) — max fi (7 )) =0, kek,

Proof. Let T be an optimal solution of the problem (RP). Then, = is a min-

imizer of the following problem:

min ¢ (),

where p(z) := maxgex fr(z). Observe that ¢(x) is a convex function, since
fr(x),k € K is convex [39]. Thus, z is a minimizer of the following uncon-

strained optimization problem
min{o(z) + op(z)}. (2.3)

zeR™

11



Applying the standard optimality condition to the unconstrained optimiza-

tion problem (2.3), we have

0€0(p+0r())(@.

Since the function ¢ is convex and the function dx(-) is also convex, it follows
from Lemma 2.2.1 that

which by the fact that 00p(Z) = Np(z) leads to

0 € 9p(z) + Ne(Z).

On the one hand, employing the formula for the convex subdifferential of
maximum functions (see Proposition 2.2.2) and the Moreau—Rochafellar sum

rule (see Lemma 2.2.1) we obtain

Op(z) = d(max fi)(®) =co |J 0fi(7)

heK kEK(3)

:{ Z Tkafk(ii‘)

kEK ()

Tk>O/€EK ZTk:l}

keK ()

where K(z) := {k € K: fi(Z) = ¢(Z)} # 0. On the other hand, since the

Slater condition holds, and from Lemma 2.3.1, we have

0 G{ Z Tkafk<£i‘)

keK(z)

Tk>OkEK ZTk_l}

keK( )

+{ > Xidgi(z,v;)

i€I(Z)

&g&ieﬂ@} (2.4)

12



Now, letting 74, :== 0 for k € K\ K(Z) and \; := 0 fori € {1,...,m} \ I(Z),
we see that (2.4) clearly implies (2.2), which completes the proof of the

theorem. ]

Theorem 2.4.2 (sufficient KKT condition). Consider the problem (RP),
assume that x € F satisfy the conditions in Theorem 2.4.1, then T is an

optimal solution to problem (RP).

Proof. Put ¢(z) := max fr(z) for x € R". Since Z satisfies the conditions
S

in Theorem 2.4.1, then there exist 7 := (r1,...,7) € RA\{0}, 5, € V;, i =
L...om, A= (A1,..., A\n) €ERT, & € 0fi(2), k € K, and 1; € 0g;(7,0;),1 =

1,...,m such that

keK i=1
7 (fe(®@) — 61()) =0, k€K, (2.6)

Assume to the contrary that Z is not an optimal solution of problem (RP).

Then there is & € F' such that
o(z) > (%) (2.8)

On the other hand, by definition of the subdifferential,
fule) = ul@) 2 (€7 — 7), Vo R, k€K, (2.9)

gl(xaf)l) - gl(j761) 2 <7717'r - j:>7 Va € IRn7 t=1,...,m, (21())

13



Combining the inequalities (2.9) and (2.10) along with (2.5) implies

o mefe(@) = > mfr(z) + zm:/\z‘gi(%@i) - i)\igz’(fﬂi) 20, Vz € R™.

keK keK i=1 i=1

For any z feasible to the problem (RP), g;(z,v;) < 0,7 = 1,...,m, which

along with the complementary slackness condition (2.7) and the fact that

A =0,i=1,...,m reduces the above inequality to
> mfel®) = D mfr(@) 20, Vo € F. (2.11)
keK keK

On the other side, by (2.6), it holds that

Y (@) = Y T fr(). (2.12)

keK keK

Now, taking (2.11) and (2.12) into account, we arrive at

Y (@) < Y o (2).

keK keK

This implies that

¢(7) = &(2) (2.13)

due to Ypcx 7 > 0. Obviously, (2.13) contradicts (2.8), which completes the

proof of the theorem. n

2.4.2 For a quasi e-solution

Below, we gives a KKT necessary condition for a quasi e-solution of problem

(RP), the proof is similar to Theorem 2.4.1.

14



Theorem 2.4.3 (necessary KKT condition). Consider the problem (RP),
suppose that the Slater condition holds for (RP). If = is a quasi e-solution
of problem (RP), then there exist 7 := (11,...,7m) € RI\{0}, v; € V;, i =
L...,mand A := (\1,..., \p) € RY, such that

0e ) mdfi(Z) + iAif?gi(',@i)(f) + \/€B,

keK =1
me(fu(@) — max fi(7)) =0, kK,

Proof. Let Z be a quasi e-solution of the problem (RP). Then, Z is a minimizer

of the following problem:

min{p(z) + Vel - =2},

where ¢(z) := maxgek fi (7). Again, p(x) is a convex function, since f(z),k €
K is convex [39]. Thus, z is a minimizer of the following unconstrained op-

timization problem

min {(z) +/el| - =Z|| + dp(2)}. (2.15)

reR”™

Again, applying the standard optimality condition to the unconstrained op-

timization problem (2.15), we have

0€0(p+ Vel - =zl + 0r () (2).

Since the function ¢, dg(+) and ||-—Z|| are convex, it follows from Lemma 2.2.1
that
0 € 0p(Z) + 00p(T) + Ved|| - —7,

15



which by the facts that 90p(Z) = Np(z) and 0| - —z|| = B leads to

0 € 0p(Z) + Np(Z) + v/eB.

On the one hand, employing the formula for the convex subdifferential of
maximum functions (see Proposition 2.2.2) and the Moreau-Rochafellar sum

rule (see Lemma 2.2.1) we obtain

dp(z) = O(max fi)(z) =co  |J 9fu(@)

kek keK(z)

:{ > mlfu(T) |7 20,k € K(Z), D Tkzl}a

keK(z) keK(z)

where K(z) := {k € K: fi(Z) = ¢(Z)} # 0. On the other hand, since the

Slater condition holds, and from Lemma 2.3.1, we have

06{ > 10fi(T)

keK(z)

mg&keﬂ@,Z'MZ%

keK(z)

+{2:MM@@J

i€I(Z)

&gogeﬂﬂ}+wﬁ (2.16)

Now, letting 74, := 0 for k € K\ K(z) and \; :== 0 for i € {1,...,m} \ I(z),
we see that (2.16) clearly implies (2.14), which completes the proof of the

theorem. O

Theorem 2.4.4 (sufficient KKT condition). Consider the problem (RP),
assume that x € F' satisfy the conditions in Theorem 2.4.3 with > ek T = 1,

then Z is a quasi e-solution of problem (RP).

16



Proof. Put ¢(z) := max fr(x) for x € R™. Since Z satisfies the conditions
in Theorem 2.4.3, then there exist 7 := (1,...,7) € RL\{0}, 0 € V;, i =

17"'7m7 A= ()\17"'7/\m) € RT7 gk € afk<j)7k € K7 ni € agz(i‘yﬁl)uz =
1,...,m and b € B such that

0=">Y m& + fj Aini + v/ eb, (2.17)
keK =1
7e(f5(2) = (@) =0, k€K, (2.18)

On the other hand, by definition of the subdifferential,
fk(l') T fk(f) = <§]€,l’ — i‘), Ve e R", k€K, (220)

9i(z, ;) —9i(Z,0:) 2 (i, z — %), YEER", i =1,....m, (2.21)

and by the Cauchy—Schwartz inequality (see Proposition 2.2.1),
[bll[|z — 2| = (b,z — z), Yz € R™ (2.22)

Combining the inequalities (2.20), (2.21), and (2.22) along with (2.17) implies

Yo mefe(@) = D0 mfi(®) + D0 g, 0) = Y Niga( @, 0:) + Velb]l||x — 7
keK keK i=1 i=1
=0, Ve e R".

For any x feasible to the problem (RP), g;(z,v;) < 0,9 = 1,...,m, which

along with the complementary slackness condition (2.19) and the fact that

A =20,0=1,...,m reduces the above inequality to
> Tif(@) = D mfi(@) + Velbllllx — x| 2 0, Vo € F.
keK keK

17



As b e B, ||b]] £ 1, thereby leading to

S mefe(x) = D mfe(T) + Vellr — | 20, Vo € F. (2.23)

keK keK

On the other side, by (2.18), it holds that
Z Tk(lﬁ(f) = Z kak(i’)

keK keK

Since Y ek Tk = 1, we have ¢(Z) = Y ek T fr(Z). Finally, from (2.23), the

requisite results are yielded. O

2.5 Duality Relations

In this section we formulate a dual problem to the primal one in the sense of
Wolfe [46], and explore weak and strong duality relations between them, for

both an optimal solution and a quasi e-solution.

18



2.5.1 For an optimal solution

In connection with the robust minimax programming problem (RP), denote

o(y) == max fr(y), we consider a dual problem in the following form:

(RD)w  Maximize, vy ©(y) + D Nigi(y, vi)
i=1

subject to 0e > mdfily) + Z Ai0gi (-, vi)(y)

keK i=1

T(fe(y) —@(y)) =0, k€K

Tkgo, ZTkzl
keK

N=20, €V, 1=1,...,m

Let Fpp be the feasible set of (RD)w, where Fp = {(y, 7,v,\) € R" xR, xVx

R?:0 e Y m0fr(y) +§1 Ai0gi (- v) (W), T (fe(y) —@(y) = 0,k € K, 7 2

keK

0, > m% = 1,\ =2 0,v; € Vi = 1,...,m}. We should note that a point
keK

(,7,0,\) € Fp is called an optimal solution of problems (RD)y if for all
A

Z ;\ gz Y, Uz % (y> + Z Aigi(y’ Ui)'

=1

The following theorem describes a weak duality relation between the pri-

mal problem (RP) and the dual problem (RD)w
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Theorem 2.5.1 (weak duality). For any feasible solution x of (RP) and any
feasible solution (y,7,v,\) of (RD)w,

(@) 2 () + 3 Agaly, v,

i=1

Proof. Since (y,7,v,)) € Fp, there exist 7 := (7y,...,7) € R, with 3 7, =
keK

L A= (A,...,\) € R, & € Ofi(y), k € K and G € 9g:(-,vi)(y),1 =
1,...,m such that

> Tk + i XiG =0, (2.24)
keK =1
Te(fe(y) —e(y)) =0, k €K, (2.25)

thus from (2.24), we have

m

Z Tk(ék,ﬂﬁ gy R Z%’(@,% —y) =0,

keK i=1

by the convexity of fi(-),k € K and g;(-,v;),i =1,...,m,

m

S fe(@) = fuly) + D Nilgi(z,vi) — gi(y, vi)) = 0. (2.26)

keK i=1

Finally, from (2.25) and (2.26), and the fact A\;g;(x,v;) = 0, due to > pcx 7% =

1, we obtain

pla) = > memax fu(z) 2 > mfulw) 2 @ly) + i Xigi(y, v;).

keK keK =1

Thus the proof of the theorem is completed. O
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In what follows, a strong duality relation between the primal problem

(RP) and the dual problem (RD)y is given.

Theorem 2.5.2 (strong duality). Let z € F' be an optimal solution of the
robust problem (RP) such that the Slater condition holds at this point. Then

there exists (7,0,\) € R x RY x R such that (z,7,0,\) € Fp is an optimal

solution of problem (RD)w

Proof. Let & € F be an optimal solution of (RP) such that the Slater con-
dition holds at this point. By Theorem 2.4.1, there exist 7 := (7,...,7) €
R\ {0}, 9, € Viand \; 2 0,i=1,...,m such that

0e > nofu(z -I-Z)\a!h 2 0;)(Z),

keK i=1

7 (fr(Z) — maka( )) =0, k€K,

Putting
N Ai .
T 1= T , keK, N\ = ,i1=1,....m,
>_keK T >_keK Tk

we then have 7+ (71,...,7) € RL with e 7 = Land A i= (Ay,..., \y) €

R?'. Observe that the assertion in (2.27) is still valid when 7;,’s and A;’s are

replaced by 7,’s and A\g’s, respectively. Consequently, (z,7,v, ) is a feasible

solution of (RD)w
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Now, by Theorem 2.5.1 (weak duality), for any feasible (y,7,v,A) of
(RD)w,

p(z) + i_n: Xigi(Z,0;) = o(T) = o(y) + i Aigi(y, vi),

i=1
which means that (Z, 7,9, \) is an optimal solution of problem (RD)y. O

Here comes an example to illustrate our duality results. Note that this

example is modified by [35, Example 2].

Example 2.5.1. Consider the following minimax optimization problem with

data uncertainty:

(RP)" min - max { f1(z1,22), fa(z1,22)}

(z1,22)€R? ke{1,2}

subject to 3 — 2v12; —3 L0, v € [-1,1].

Let

e )= o, 4 23,

oy, me) = —xy + 3,

gl((atl, Tg), Ul) =27 — 2u1m; — 3.
Then, the feasible set of (RP)! is

F'={(z1,15) € R?: 22 — 2v121 — 3 <0, vy € [-1,1]}
={(z1,20) ER*| —1< 2, <1, 75 €R},

and {(0,0)} is the set of optimal solutions of (RP)*; moreover, it is clear that
the Slater condition holds for (RP)?.
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Now, we formulate a robust dual problem (RD)4; for (RP)! as follows:

(RD)II/V max Sp(ylva) + /\191<(y17?/2)a1}1)
(y,7,0,\)

subject to 0 € TOfi(y1,y2) + 20 f2(Y1,Y2) + MOg1 (-, v1) (Y1, y2)
7 (filynvs) — @, 1)) =0
Tz(fz(yl,yz) — (1, 92)) =0

7120, 220, m+m=1 A\ 20, v, € [-1,1],

where ¢(y1,y2) = I{I}a;f{fl(yl, Y2), f2(y1, y2) }-

By calculation, we have the set of all feasible solutions of (RD){y is F}, :=

{((0,0), (HZao 12001 ) /\1) : M € [0, 3], 01 € [—1,1]}. It is not difficult
to see the validness of Theorem 2.5.1 (weak duality) and Theorem 2.5.2

(strong duality).
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2.5.2 For a quasi e-solution

Denote again ¢(y) := max fr(y), here we consider a dual problem that enjoys
S

the following form:

(RD)q Maximize(y - 1) o(y) + Z Xigi(y, vi)

=1

subject to 0€ Y mdfi(y) + D Xidgi(-,vi)(y) + /B

keK =1

T(fe(y) = 0(y)) =0, k€K

Tkgo, ZTkzl
keK

AN=0 v,€V, i=1,...,me=0.
Let Fyy be the feasible set of (RD)q, where Fg = {(y,7,v,\) € R" x R}, x

VXRT:0€ 3 Tkafk(y)JrgIl Xi09:(+, vi)(y) +VeB, Tu(fe(y) — 0(y)) = 0,k €

keK

K20 S m=1L\N20v0u€eV,i=1 ...,m, =0}
Kek

Definition 2.5.1. Let ¢ = 0 be given, a point (y,7,0,)\) € Fq is called a

quasi e-solution of the problem (RD)q if for all (y,7,v,\) € Fo,
P(7) + D Nigi(,01) Z oY) + - Nigi(y, vi) — Velly — gll.
i=1 i=1

Remark 2.5.1. [28, Remark 4.1] The notion of a quasi e-solution of (RD)q
is motivated by Ekeland Variational Principle [21] as we have mentioned,

and for the notion of a quasi e-solution of (RD)q, which is motivated by [19]
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where the author introduced the notion of the quasi e-saddle point. It is
worth noting here that we consider the notion of a quasi e-solution over the

feasible set, and it is not necessary to mention how explicitly the feasible set

is defined by.

The following theorem shows a weak duality relation between the primal

problem (RP) and the dual problem (RD)q.

Theorem 2.5.3 (weak duality). For any feasible solution x of (RP) and any
feasible solution (y,T,v,\) of (RD)q,

), 2 oy g Sl e~ /<5 o

i=1

Proof. Since (y,7,v,\) € Fp, there exist 7 := (7,...,7) € R, with 3 7, =
ek

L A= (A,...,Am) € RY, B - Ofi(y), k € K and g€ 9g:(+,vi)(y),1 =
1,...,m, b € B such that

> e + i e Sfcm— 0 (2.28)
keK =1
T(fru(y) — o(y)) =0, k € K, (2.29)

thus from (2.28), we have

m

ka@k,x—y) +Z>\i<§_}-,x—y) +Velb,x —y) =0,

keK =1
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by the convexity of fi(:),k € K and g¢;(-,v;),i =1,...,m,

m

kZ Te(fr(z) — fuly)) + ; Xi(gi(z,vi) — gi(y, vi)) + Vellz — y|
%kZ Te(fe(x) — fr(y)) + i&'(gi(x,w) — gi(y, v:)) + Vellbll|lz — vl
>0. (2.30)

Finally, from (2.29) and (2.30), and the fact \;g;(x,v;) = 0, due to > pcx 7% =

1, we obtain

o) =D max fu(x) 2D i fi(x)

keK keK

> MO R B —

i=1
Thus, we complete the proof. O

Below, a strong duality relation between the primal problem (RP) and

the dual problem (RD)q is proposed.

Theorem 2.5.4 (strong duality). Let = € F be a quasi e-solution of the
robust problem (RP) such that the Slater condition holds at this point. Then

there exists (7,0, \) € RL x R? x R™ such that (z,7,0,\) € Fg is a quasi

e-solution of problem (RD)q.

Proof. Let z € F be a quasi e-solution of (RP) such that the Slater condition

holds at this point. By Theorem 2.4.3, there exist 7 := (7,...,7) € R, \ {0},

26



v eVyand \; =2 0,i=1,...,m, b € B such that

0€ > mdfu(z —1—2)\89, (-, 0;)(Z) + \/eb,

keK i=1

7 (fr(Z) — maka( ) =0, k€K,

Putting
Th < i
T 1= , keK, \ = r _i=1,...,m,
; > keK e DkeK Th

we then have 7, 4+ (7, ..., 7;) € ]Rl+ with Y pex 7 = 1 and A= X1, Am) €

R?. Observe that the assertion in (2.31) is still valid when 7;,’s and A;’s are

replaced by 7,’s and \y’s, respectively. Consequently, (z,7,v, ) is a feasible
solution of (RD)q.

Now, by Theorem 2.5.3 (weak duality), for any feasible (y,7,v,\) of
(RD)q,

o@) + 3 Mgi(®5) = (@)

i=1
= o(y) + > Nigiy, vi) — Vellz -y,
i=1
which means that (z,7,,\) is a quasi e-solution of problem (RD). ]
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Chapter 3
Robust Multiobjective Optimization

Problems via Minimax Programming

3.1 Introduction and Mathematical Modelling

It is well-known that mathematical optimization problems in the face of data
uncertainty have been treated by the worst case approach or the stochas-
tic approach. The worst case approach for optimization problems, which
has emerged as a powerful deterministic approach for studying optimization
problems with data uncertainty, associates an uncertain optimization prob-
lem with its robust counterpart. Recently, the study of convex programs
that are affected by data uncertainty is becoming increasingly important in
optimization [2, 3, 5-7, 24-27].

Many researchers [2, 25, 37, 44] have investigated optimality and duality
theories for linear or convex optimization problems under data uncertainty
with the worst-case approach (the robust approach). It was shown that the
value of the robust counterpart of primal problem is equal to the value of the
optimistic counterpart of the dual primal (“primal worst equals dual best”)

2, 25, 27].
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Recently, many researchers [9, 10, 29, 30] have studied optimality and
duality theories for robust multiobjective optimization programming prob-
lems under different suitable constrained qualifications. In this chapter, we
investigate optimality conditions and duality theorems for robust multiobjec-
tive programming problems under data uncertainty via minimax programing;
namely, applying some results of the robust mimimax programming problem
obtained by Chapter 2 to a robust multiobjective optimization problem.

Let us consider the following multiobjective convex optimization problem

in the absence of data uncertainty:
(MP) min (fl(z), ’ fl(x)) subject to g;(z) £0,i=1,...,m,

where f, : R® - R, k € Kand ¢g; : R" — R, ¢ = 1,...,m are convex
functions.

The multiobjective onvex optimization problem (MP) in the face of data

uncertainty in the constraints can be captured by the problem:
(UMP) min (fl(x), S ,fl(x)) subject to gi(z,v;) <0, i=1,...,m,

where g; : R" x R? — R, ¢;(-,v;) is convex and v; € R? is an uncertain
parameter which belongs to the set V;, C R, i =1,... ,m.
The robust counterpart of (UMP) is

(RMP) min (fl(x), . ,fl(x)> subject to g;(z,v;) £0, Vo, € V;, i =1,...,m.

The robust feasible set of (RMP) is defined by

F:={zeR": g(z,v;) £0, Vv, €V;, i =1,...,m}. (3.1)
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With the notation given at the beginning of Chapter 2 and for convenience,
we label the above constrained multiobjective robust optimization problem as

follows:
Ming, {f(z): x € F}, (RMP)
+
where the robust feasible set F is given by (3.1) and Rfk denotes the nonneg-

ative orthant of R’

Note that “MinRer 7 in the above problem is understood with respect to

the ordering cone R',. Now, we recall the notions of (robust) weak Pareto

solutions, which can be seen in [45, Section 4].
Definition 3.1.1. A point & € F is a weak Pareto solution of problem (RMP)
[or a robust weak Pareto solution of problem (UMP)] if and only if

f@) — f(z) ¢ —imtR,. vz e F,

where int RY, stands for the topological interior of Rl_k.

3.2 Optimality Conditions

The following result is a Karush—-Kuhn—Tucker (KKT) necessary condition

for weak Pareto solutions of problem (RMP).

Theorem 3.2.1 (necessary KKT condition for a weak Pareto solution). Let
the Slater condition be satisfied at x € F. If  is a weak Pareto solution of
problem (RMP), then there exist 7 := (7,...,m;) € RL\{0}, v; € Vi, @ =
L...,m and X := (A1, ..., \,) € RT such that

0€ > m0fu(@)+ > N0gi(z) and \igi(z,0;) =0, i=1,...,m. (3.2

keK i=1
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Proof. Let & be a weak Pareto solution of problem (RMP) and let

J?k:(f) = fe(z) — fu(Z), k€ K, x € R".

We will show that x is an optimal solution of the robust minimax program-

ming problem:

min max fi(z). (3.3)

To do this, let us put $(z) := maxyex fr(z) and prove that

P(z) < ¢(z), Vx €F. (3.4)

Indeed, if (3.4) is not valid, then there exists zy € F' such that @(zo) < ¢(z).
Since @(z) = 0, it holds that maxyex { fr(xo) — fe(Z)} < 0. Thus,

f(xo) — f(z) € —int R,

which contradicts the fact that r is a weak Pareto solution of the prob-
lem (RMP). So, we can employ the necessary KKT condition in Theo-
rem 2.4.1, but applied to problem (3.3). Then we find 7 := (7q,...,7;) €
RLAN{0}, 9, €V, i=1,...,mand X := (A1, ..., \,) € R such that

0e Y ndf(d)+ 3 Adoi(a).

keK i=1

-~

7 (fu(Z) — max fi(@)) =0, k€K,

keK

It is now clear that (3.5) implies (3.2) and thus, the proof is complete. [

31



The forthcoming theorem describes the KK'T optimality condition for a
weak quasi e-Pareto solution of problem (RMP). Before that, let us recall
the notion of a weak quasi e-Pareto solution, with regard to this notion, one

may refer to [38, 41, 42].

Definition 3.2.1. Let € = (ey,...,¢) € R, with R, denoting the positive

orthant of RL. A point z € F is said to be a weak quasi e-Pareto solution of

(RMP), if there exists no x € F such that

FeaNHNA 2 =2 Y AER), S K.

Theorem 3.2.2 (necessary KKT condition for a weak quasi e-Pareto solu-
tion). Let € = (e1,...,¢) € R be given, and the Slater condition be sat-
isfied at x € F. If T is a weak quasi e-Pareto solution of problem (RMP),
then there exist 7 == (7,..,m) € RE\{0}, v; € V;, ¢ = 1,...,m and
A= (A1, .., Am) € R such that
0 ¢ Z 710 fir(@) + i Aidgi(Z) + Z Tey/ €k B,
keK i=1 keK

Proof. Let z be a weak quasi e-Pareto solution of problem (RMP), and let

Folz) = fu(z) — fol@) + Vaillz — z||, k €K, z € R™.

We will show that x is an optimal solution of the robust minimax program-

ming problem:

min max fj,(z). (3.7)

zeF keK
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To this end, let us take @(z) := maxgek fi(x) and prove that

o(x) < p(z), VYrel. (3.8)
Actually, if (3.8) is not true, then there exists xy € I such that
P(x0) < @(2).

Since ¢(Z) = 0, it holds that
e Claw) — @)} <0
Thus,

f(wo) — f(2) + Vele — z]| € —int Ry, Ve = (Ver,..., Va),

which contradicts the fact that z is a weak quasi e-Pareto solution of the
problem (RMP).

Thereby, we now employ the necessary KKT condition in Theorem 2.4.1,
but applied to problem (3.7). Then we find 7 := (r,...,7) € RL\{0},
v; €V, i=1,...,m,and X := (A, ..., ) € R such that

keK =1 keK

~ o~

7 (fu(®) — max fi(@)) =0, k€K,

keK

It is now clear that (3.9) implies (3.6) and thus, the proof is complete. [
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3.3 Duality Theorems

In this section, we formulate a dual problem to the primal one in the sense
of Wolfe [46], and explore weak and strong duality relations between them,

for both a weak Pareto solution and a weak quasi e-Pareto solution.

3.3.1 For a weak Pareto solution

In connection with the robust multiobjective programming problem (RMP),

we consider a dual problem in the following form:

(RMD)w ~ Maximizey o) F(¥)+ Y Nigi(y, vi)e

=1

subject to 0e > mdfi(y) + > Xidgi(-,vi)(y)

keK i=1

20, S 7 = Le=(1/...,1)
keK

)\120, UiEVi, 2:1,,m
Let Fyp be the feasible set of (RMD)w, where Fyp = {(y,7,v,\) € R" x
RQ XV X RT 0e Z Tkafk<y) + Z )\ﬁgi(-,vi)(y),rk g 0, Z Ty = 1,/\z %
kek i=1 keK
0,v; € V;,1 = 1,...,m}.
In addition, let L(y, 7,v,\) := f(y) + X7 Nigi(y, vi)e.

Definition 3.3.1. A point (4,7,9,\) € Fyp is said to be a weak Pareto
solution of problems (RMD)y if

L(yaTava)‘)_L(?L%)@a;‘) ¢1ntRl—|—a V(y,T,U,)\> eF1MD
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Now, we give a weak duality relation between the primal problem (RMP)

and the dual problem (RMD)y in the following.

Theorem 3.3.1 (weak duality). For any feasible solution x of (RP) and any
feasible solution (y,T,v,\) of (RD)w,

o) 2 o(y) + 3 Agi(y,v0).

=1

Proof. Since (y,7,v,)) € Fp, there exist 7:= (11,...,7) € R, with 3 7, =
keK

17 A= ()‘17"'7>\m) = RT? gk S afk(y)7k € K and 52 S agl(vvz)(y)vz =

1,...,m such that

> e + ﬁ”: X =0, (3.10)
keK =1
Te(fe(y) — () =0, k € K, (3.11)

thus from (3.10), we have
Z 7'k:<gk,$ - y> + Z)‘z«tz’x — y> = 07
keK i=1

by the convexity of fi(:),k € K and ¢;(-,v;),i =1,...,m,

S (i) — foly)) + 3 Mgl o) — gy, 01)) = 0. (3.12)

keK =1

Finally, from (3.11) and (3.12), and the fact A\;g;(x,v;) = 0, due to > pcx 7% =

1, we obtain

pla) = > memax fu(z) 2 > mfulw) 2 @ly) + i Xigi(y, v;).

keK keK =1
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Thus the proof of the theorem is completed. O

In what follows, a strong duality relation between the primal problem

(RMP) and the dual problem (RMD)y is given.

Theorem 3.3.2 (strong duality). Let &z € F be an optimal solution of the
robust problem (RMP) such that the Slater condition holds at this point.
Then there exists (7,0, \) € R, x R? x R such that (z, 7,0, \) € Fyp is an

optimal solution of problem (RMD)yy.

Proof. Let & € F be an optimal solution of (RMP) such that the Slater con-
dition holds at this point. By Theorem 3.2.1, there exist 7 := (71,...,7) €
R\ {0}, o, € Viand \; 20,i=1,...,m such that

0e > mdfu(@)+ i Aidgi(-, v;) (),

keK i=1

7 (fr(Z) — kea%fk(i’)) =0, keK,

Putting
Ai
T = T , ke K, \ = ,i1=1,...,m,
>_keK Tk >keK Tk

we then have 7;+ (71,...,7) € R, with ¥ pcx 7 = 1 and Ai= (A, ) €
R?. Observe that the assertion in (3.13) is still valid when 7;,’s and \;’s are
replaced by 7;,’s and \;’s, respectively. Consequently, (zZ,7, v, \) is a feasible

solution of (RD)w.
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Now, by Theorem 3.3.1 (weak duality), for any feasible (y,7,v,\) of
(RD)w,

P+ 30 Ril7,0) = (@) 2 6(0) + 3 Ny, )

=1

which means that (Z, 7,9, A) is an optimal solution of problem (RD)yw. O

3.3.2 For a weak quasi e-Pareto solution

In connection with the robust multiobjective programming problem (RMP),

we consider a dual problem in the following form:

(RMD)q Max(y 7.v,x) fly) + Z Aigi(y, vi)e

=1

subject to  0€ 3 mdfu(y) + S Ndgi( ) (y) + 3 Ti/eB
=1

keK keK

P50 > 7 =Lz (lg§¥ 1)
keK

)\7,%0, Vi GVZ‘, Z:]_,,m
Let Fgp be the feasible set of (RMD)q, where Fop = {(y, 7,v,\) € R"xR. x
VY x RT 0e kZKTkafk(ZD -+ Zl)\ﬁgl(,vz)(y) + EkeK Tk\/aB,Tk % O,kZKTk =
€ i= €

17)\i gO,UZ' S VZ,Z = 1,...,m}.
In addition, let L(y, 7,v,\) :== f(y) + > Nigi(y, vi)e.
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Definition 3.3.2. A point (j,7,9,\) € Fgp is said to be a weak Pareto
solution of problems (RMD)q if

L(y,7,v,\) — L(y, T, v, 5\) ¢ int Ri, Y(y,7,v,\) € Fop

The following theorem shows a weak duality relation between the primal

problem (RMP) and the dual problem (RMD)q.

Theorem 3.3.3 (weak duality). For any feasible solution x of (RMP) and
any feasible solution (y,T,v,\) of (RMD)q,

200} Z oy St G ) v el ol

i=1

Proof. Since (y,7,v,\) € Fgp, there exist 7 := (71,...,7) € R, with

Z Tk = ]-) A= (Ah 4, - 7)‘771) Q RT7 gk € afk(y),k € Kand 5% jE agz(avl>(y)7Z -

keK

1,...,m, b € B such that

> e+ i XiGi + /eb= 0, (3.14)
keK =1
T(fr(y) —@(y)) =0, k € K, (3.15)

thus from (3.14), we have

m

Zrk<§k,:c—y) +Z)\i<§iax_y> +Ve(b,x —y) =0,

keK =1
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by the convexity of fi(:),k € K and g¢;(-,v;),i =1,...,m,

m

kZ Te(fr(z) — fuly)) + ; Xi(gi(z,vi) — gi(y, vi)) + Vellz — y|
%kZ Te(fe(x) — fr(y)) + i&'(gi(x,w) — gi(y, v:)) + Vellbll|lz — vl
>0. (3.16)

Finally, from (3.15) and (3.16), and the fact A\;g;(x,v;) = 0, due to > pcx 7% =

1, we obtain

o) =D max fu(x) 2D i fi(x)

keK keK

> MO R B —

i=1
Thus, we complete the proof. O

Below, a strong duality relation between the primal problem (RMP) and
the dual problem (RMD)q is proposed.

Theorem 3.3.4 (strong duality). Let = € F be a quasi e-solution of the
robust problem (RMP) such that the Slater condition holds at this point.

Then there exists (7,0, )\) € R, x R? x R? such that (z,7,0, \) € Fop is a

quasi e-solution of problem (RMD)q.

Proof. Let & € F be a quasi e-solution of (RMP) such that the Slater con-

dition holds at this point. By Theorem 3.2.2, there exist 7 := (7,...,7) €
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RLN\ {0}, 9, € Viand \; 20,i=1,...,m, b € B such that

0€ > m0fu( +Z)\0g, (-, 0;)(Z) + \/eb,

keK i=1

7 (fr(Z) — maka( )) =0, k€K,

Putting
= Ai .
Ty 1= L , keK, \ = Fr=1,...,m,
dokeK R >_keK Tk

we then have 7; + (7, .., 7) € RL with Sy 7o = Land A i= (Ay,..., \y) €

R?". Observe that the assertion in (3.17) is still valid when 7,’s and A;’s are

replaced by 7,’s and \y’s, respectively. Consequently, (z,7,v, ) is a feasible
solution of (RMD)q.

Now, by Theorem 3.3.3 (weak duality), for any feasible (y,7,v,\) of
(RMD)q,

o(z) + ij\igi(ja ;) = ()

i=1

> o(y) + 3 Mgsly,vi) — velz -yl

1=1

which means that (Z, 7,9, \) is a quasi e-solution of problem (RMD)yw. O
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Chapter 4
Optimality Conditions and Duality for
Optimal and Approximate Solutions in

Robust Minimax Fractional Programming

4.1 Introduction

In this chapter, we study the optimality conditions and duality for an op-
timal solution and an approximate solution in robust minimax fractional
programming. First, let us recall that a standard form of minimax fractional

programming problem is the one:

(FP) min max Pr(@)
zeR™ keK g (x)

subject to ¢;(z) £0, i =1,...,m,

where pr, —qx :R" > R, ke K:={1,...,[}and g; . R" >R, i=1,...,m
are convex functions.
The minimax fractional programming problem (FP) in the face of data

uncertainty in the constraints can be captured by the one

(UFP) min max Pe(@)
zeR" keK  qp(z)

subject to g¢;(x,v;) £0, i =1,...,m,

where g; : R" x R? — R, ¢;(-,v;) is convex and v; € R? is an uncertain

parameter which belongs to the set V;, C R, i =1,...,m.
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The robust counterpart of the problem (UFP) is as follows:

(RFP) rrelliRn max ];kE;U; subject to g¢;(x,v;) £0, Yo, € V;, i =1,...,m.
x n k

Denote again by F':= {zx € R": g;(z,v;) £0, Yv; € V;, i =1,...,m} as the
feasible set of (RFP).

Moreover, we let fi(x) := %’

. . Pr(z)
and ¢(z) =: max fk(l“)< = max qk(a:)> for

convenience. Note that a very remarkable phenomenon of a (robust) frac-
tional programming problem is that its objective function is, in general, not
convex functions, even under more restrictive convexity/concavity assump-

tions. Hence, fi(x) is generally nonconvex.

4.2 Preliminaries

In this section, we recall some notations and give preliminary results for next
sections. Throughout this paper, R™ denotes the n-dimensional Euclidean
space with the inner product (-, -) and the associated Euclidean norm || - ||.
We say that a set I' in R™ is convex whenever pay + (1 — p)ay € T' for
all u € [0,1], a;,a2 € I'. We denote the domain of f by dom f, that is,
dom f:={z € R": f(z) < +oo}. f is said to be convez if for all X € [0, 1],

ST =Nz +Ay) < (1 =) f(2) + Af(y)

for all z,y € R™. The function f is said to be concave whenever — f is convex.

The (convex) subdifferential of f at z € R™ is defined by

{zr e R" | (x*,y —z) < f(y) — f(z), Vy € R"}, ifx € dom [,

(0, otherwise.

o1(a) = {
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Let ¢ : R® — R be a locally Lipschitz function, that is, for each x € R",
there exist an open neighborhood U and a constant L > 0 such that for all

y and z in U,
l9(y) — 9(2)] < Llly — =||.

Definition 4.2.1. For each d € R"™, the Clarke directional derivative of g at
x € R™ in the direction d, denoted by g°(x;d), is given by
g(x+h+td) —g(z+h)

g¢°(z;d) = limsup :
h—0, t—0+ t

We also denote the usual one-sided directional derivative of g at x by ¢'(x; d).

Thus

whenever this limit exists.

Definition 4.2.2. The Clarke subdifferential of g at x, denoted by 0°g(x),

is the (nonempty) set of all & in R™ satisfying the following condition:
¢°(x;d) > (&, d), forall deR"

We summarize some fundamental results in the calculus of the Clarke

subdifferential (for more details, see [13-16, 34]):
e 0°g(z) is a nonempty, convex, compact subset of R";

e The function d — ¢°(z;d) is convex;
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e For every d in R", one has
9°(z;d) = max{(,d) : { € O°g(x)}

Let V C RY be a compact set and let g: R” xV — R be a given function.

Here after all, we assume that the following assumptions hold:
e (Al) g(z,v) is upper semicontinuous in (z,v).

e (A2) g is locally Lipschitz in z, uniformly for v in V, that is, for each
x € R", there exist an open neighborhood U of z and a constant L > 0

such that for all ¥ and z in U, and v € V,
l9(y,v) = g(z,v)| < Llly — .
e (A3) gi(x,v;-) = g..(x,v;-), the derivatives being with respect to x.
We define a function ¢: R® — R by
P(z) := max{g(z,v) v € V},

and observe that our assumptions (A1)-(A2) imply that ¢ is defined and

finite (with the maximum defining ¢ attained) on R™. Let
V(z) ={veV:gx,v) =19},

then for each x € R", V(x) is a nonempty closed set.
The following lemma, which is a nonsmooth version of Danskin’s theorem

[17] for max-functions, makes connection between the functions ¢’(x; d) and
9o (2, v;d).
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Lemma 4.2.1. Under the assumptions (A1)-(A3), the usual one-sided di-

rectional derivative ' (x;d) exists, and satisfies
V(@ d) = ¢°(z;d) = max{g;(z,v;d) : v € V(z)}
= max{(¢,d) : { € Gpg(x,v), veV(x)}
Proof. See [15, Theorem 2] (see also [13, Theorem 2.1], [17]). O
The following result will be useful in the sequel.

Lemma 4.2.2. [36] In addition to the basic assumptions (A1)—(A3), suppose
that V is convex, and that g(x,-) is concave on V, for each x € U. Then the

following statements hold:
(i) The set V(x) is conver and compact.
(ii) The set
0yg9(x, V() :={¢: Fv e V(x) such that & € 0,9(x,v)}
is conver and compact.
(iii) 0°¢(z) ={&: Fv € V(z) such that & € 05g(x,v)}.

Proposition 4.2.1. [16, Proposition 2.3.3] If f;,i = 1,...,1 is a finite family

of functions each of which is Lipschitz near x, it follows easily that their sum

!
f =X fi is also Lipschitz near x. Moreover, one has
i=1

l

(> fi)@) ;8°fi(a:).

i=1
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Proposition 4.2.2. [16, Proposition 2.3.12] Let f;,i € I = {1,...,l} be
Lipschitz near x, then one has
0°f(x) C co{0°fi(x) | i € I(x)},

where I(x) :={i € I| fi(x) =0}. and if f; is reqular at x for each i in I(x),

then equality holds and f is regular at x.

Proposition 4.2.3. [16, Proposition 2.3.14] Let 91,19 be Lipschitz near x,

and suppose Py # 0. Then ; is Lipschitz near x, and one has

Y1 V2(2)0°91(x) — 1 (2)0°¢a()
(%)(:c) 4 Y3 () .
If in addition ¥y (x) > 0,19(x) > 0 and if ¥y and —1y are reqular at x, then

equality holds and 1y /1y is reqular at x.

4.3 Optimality Conditions

Theorem 4.3.1 (KKT condition for an optimal solution). Consider the
problem (RFP), assume that the Slater condition holds. If z is an optimal
solution of the problem (RFP), then there exist 7 := (7,...,7) € RL\{0},

v, €V, i=1,...,mand \ := (Al,...,Am)ERT, such that

OEZ 7)0pk(z) — - Pk ()0gk( Z:)\agz ,0:)(

3
keK qk(x) ieM

pe(@) o Pe(E))
Tk(flk(f) keK qi(T) 0, kekK,

Aigi(:ﬁ,z’;i):(), izl,...,m.
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Proof. Let z be an optimal solution of the problem (RFP), and let fi(z) :=

P ’“Ez)), furthermore, p(z) =: max fr(x). Then, Z is a minimizer of the following
S
problem:
min p(z), (4.1)

observe that ¢(x) is a locally Lipschitz function. Applying the standard

optimality condition [16, Propostion 2.4.2] to the problem (4.1), we have
0-€ 0°0o(x) + Np(Z)-

On the one hand, employing Proposition 4.2.2 and Proposition 4.2.3, we

obtain

0°p() = 0°(max fi)(2) = co |J 0°fi(®)

keK(z)

U (D)) = Pr(T)94x(T)

- kEK(Z) q;(7)
2)0pi () — pu()0qk(7)
{keg(x)Tk< q%(f) ) TkZO ]{IGK ke;)ﬂc—l}

where K(z) := {k € K: fi(Z) = ¢(Z)} # 0. On the other hand, since the

Slater condition holds, and from Lemma 2.3.1, we have

0e

{ 5 oSBT @),

+{ > Nidgi(z, v;)

i€I(z)

A= 0,i€ 1(3—;)} . (4.2)
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Now, letting 7, :== 0 for £k € K\K(Z) and A; :=0fori € {1,...,m}\I(x), we
see that (4.2) clearly implies the conditions in the theorem, which completes

the proof of the theorem. O

Theorem 4.3.2 (KKT condition for a quasi e-solution). Consider the prob-
lem (RFP), assume that the Slater condition holds. If z is a quasi e
solution of the problem (RFP), then there exist 7 := (7,...,7) € RL\{0},

v; eV, i=1,...,mand X := (\,...,\y) € RT, such that

ar(Z)Opw(T) — pr(Z)0qi(T) - (o .
06%{%( PR )+§4Azagz<, )(Z) + v/eB,

q(T)  keK qr(T)

T, (pk(:f) max pk(i)) =)0k c I8

)\igi(i,ﬁi):o, i:1,...,m.

Proof. Let  be a quasi e-solution of the problem (RFP). Then, z is a mini-

mizer of the following problem:

min{ip(x) + Vel| - =]}, (43)

where ¢(x) =: max fr(x), and fr(z) := 2:83 Applying the standard opti-
€

mality condition [16, Propostion 2.4.2] to the problem (4.3), we have

0 € (¢ + Vel - —2[)(x) + Nr(2).

Since the function ¢ is Lipschitz, and ||-—Z|| is convex and hence Lipschitz,

it follows from Proposition 4.2.1 that
0 € 9°(F) + Ved|| - —7| + Ne().
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Moreover, the fact and J|| - —z|| = B leads to

0 € 0°p(z) + Np(Z) + v/eB.

On the one hand, employing Proposition 4.2.2 and Proposition 4.2.3, we

obtain

0@ = O (pax fi)(®) =0 U A

keK(z)

U {Qk(@ﬁpk(f) — Pk(f)a%(f)}

- kEK(Z) G (7)
Z)Op () — pi()0gy(2)
{kggx)ﬂg< q’%@_) ) 2 0,k € K(z ke%:)Tk—l}

where K(z) := {k € K: fi(Z) = ¢(z)} # 0. On the other hand, since the

Slater condition holds, and from Lemma 2.3.1, we have

0e

{ 5 o LELD)  p@00())

keK () g ()

T>0]{TEK ZTk—l}

kEK(x)

+{§:&&M%m

)

N =0,i€ I(:c)} + VB (4.4)
Now, letting 7 := 0 for k£ € K\K(z) and \; := 0 fori € {1,...,m}\I(z), we

see that (4.4) clearly implies the conditions in the theorem, which completes

the proof of the theorem. O
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4.4 Duality Theorems

In this section, we formulate a dual problem to the primal one in the sense
of Wolfe [46], and explore weak and strong duality relations between them,

for both an optimal solution and a quasi e-solution.

4.4.1 For an optimal solution

In connection with the robust minimax fractional programming problem
(RFP), denote ¢(y) = max fuly), and fi(z) = 22 we consider a dual

ax(z)’

problem in the following form:

(RFD)w Maximize(, vy  @(y) + Z Aigi(y,v;)

=1

subject to 0€ > mofely) + > X0gi(-,v:)(y)
=1

keK i=

T(fe(y) —o(y)) =0, k€K

T = 0, ZTk:1
keK

)\2207 UZGV’H Z:17am

Let Fp be the feasible set of (RD)w, where Fp = {(y,7,v,A) € R* xR, xVx
R”: 0 € k%:KTkafk(y) + ; Ai0gi (- vi) (), T (fe(y) —0(y)) = 0,k € K, 7, 2

0, > 1% =1\ =2 0,v; € V;;i = 1,...,m}. We should note that a point
keK
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(3,7,0,\) € Fp is called an optimal solution of problems (RD)y if for all
A

o)+ S Mg, 5) 2 o) + 3 Mgy, v0).

i=1 =1

The following theorem describes a weak duality relation between the pri-

mal problem (RP) and the dual problem (RD)w.

Theorem 4.4.1 (weak duality). For any feasible solution x of (RP) and any
feasible solution (y,7,v,\) of (RD)w,

o(2) e T ).

i=1

Proof. Since (y,7,v,)) € Fp, there exist 7 := (71,...,7) € R, with 3 7, =
keK

L A= (A, ..., ) € R, & € Ofi(y),k € K and 748 < 9g:(-,vi)(y),1 =
1,...,m such that

keK 1=l
7 (fi(y) = (y)) =0, k € K, (4.6)

thus from (4.5), we have

Sl —y) + > NGy x —y) =0,

keK =1

by the convexity of fi(:),k € K and ¢;(-,v;),i =1,...,m,

> m(fe(@) = fly) + i Ailgi(z, vi) — gi(y, vi)) =2 0. (4.7)
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Finally, from (4.6) and (4.7), and the fact A\;g;(z,v;) = 0, due to > pcx 7% = 1,

we obtain
Z i, TAxX fr(z) = Z Tefre(z) = o(y) + Z Aigi(y, vi).
keK keK i=1
Thus the proof of the theorem is completed. O

In what follows, a strong duality relation between the primal problem

(RP) and the dual problem (RD)y is given.

Theorem 4.4.2 (strong duality). Let z € F be an optimal solution of the
robust problem (RP) such that the Slater condition holds at this point. Then

there exists (7,0,A) € RL xR X R such that (z,7,0,\) € Fp is an optimal

solution of problem (RD)w

Proof. Let z € F be an optimal solution of (RP) such that the Slater con-
dition holds at this point. By Theorem 2.4.1, there exist 7:= (7,...,7) €
RY\ {0}, 9, € Viand \; 2 0,i=1,...,m such that

0e ZTkafk Z/\ag, ’UZ

keK

7 (fr(Z) — maka( ) =0, k€K,

Putting
_ )\7,
7:16: T 7kEK7 )‘Z_ aZ:]-a -, M,
2 okeK Tk >okek Tk



we then have 7,4+ (71,...,7) € R, with Yk 7% = 1 and A= (A, ) €
R?. Observe that the assertion in (4.8) is still valid when 73,’s and \;’s are
replaced by 7’s and \’s, respectively. Consequently, (z, 7,0, 5\) is a feasible
solution of (RD)w.

Now, by Theorem 4.4.1 (weak duality), for any feasible (y,7,v, ) of
(RD)w,

p(z) + i_n: Xigi(Z,0;) = o(T) Z o(y) + i Aigi(y, vi),

i=1

which means that (Z,7,, \) is an optimal solution of problem (RD)y. O

4.4.2 For a quasi e-solution

Denote again p(y) := max fx(y), here we consider a dual problem that enjoys
S

the following form:

(RD)q Maximize(, - v ©(y) + Z Aigi (Y, vi)

=}

subject to 0€ Y mdfi(y) + D Xidgi(-,vi)(y) + /eB
iz1

keK

T(fe(y) —o(y)) =0, k€K

Tkgo, ZTk:l
keK

AN=20, v,€V, i=1,...,m,e=0.
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Let Fiy be the feasible set of (RD)q, where Fg = {(y,7,v,\) € R" x R}, x
VxR 0€ 3 mdfi(y)+ 2 i0gi(s i) (y) +VeB, 7l fu(y) —¢(y) = 0.k €

K7Tk207 Z Tk:17Az§O7UZ€Vl7Z:177m7620}
keK

Definition 4.4.1. Let ¢ = 0 be given, a point (y,7,0,\) € Fq is called a

quasi e-solution of the problem (RD)q if for all (y,7,v,\) € Fy,

oY) + f: Xigi (905 = o(y) + i Xigi(y, vi) — Velly — 7.

i=1 =1

The following theorem shows a weak duality relation between the primal

problem (RP) and the dual problem (RD)q.

Theorem 4.4.3 (weak duality). For any feasible solution x of (RP) and any
feasible solution (y,7,v,\) of (RD)q,

o) 2R+ Aigi(y, v5) = /Al o

=1

Proof. Since (y,7,v, ) € Fy, there exist 7 := (71,...,7) € R, with 3 7, =
keK

17 A= ()‘17"'7>\m) S RT? gk € afk(y)7k € K and QTZ S agl(vvz)(y)vz -
1,...,m, b € B such that

> e+ i AiGi + Veb =0, (4.9)
(fe(y) —¢(y)) =0, k€K, (4.10)
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thus from (2.28), we have

m

ZTk@k,x—y) +Z)\i<@,l’—y> + Ve(b,z —y) =0,

keK i=1

by the convexity of fi(:),k € K and g¢;(-,v;),i =1,...,m,

S lfole) )+ i M(gs(@, 1) — galys v2)) + Vel — vl
2 3 (o)~ fely) + i €02, ) — st 2)) + Velblllz — v
>0, (4.11)

Finally, from (4.10) and (4.11), and the fact A\jg;(x,v;) = 0, due to > pcx 7% =

1, we obtain

o(0) = S e o) 2 3 (@)

keK

Z9(y)-+ i)\igi(yavD — Vellz =yl

i=1
Thus, we complete the proof. O]

Below, a strong duality relation between the primal problem (RP) and

the dual problem (RD)q is proposed.

Theorem 4.4.4 (strong duality). Let = € F be a quasi e-solution of the

robust problem (RP) such that the Slater condition holds at this point. Then
there exists (7,0, \) € R, x RY x R™ such that (z,7,0,)\) € Fg is a quasi

e-solution of problem (RD)q.
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Proof. Let z € F be a quasi e-solution of (RP) such that the Slater condition
holds at this point. By Theorem 2.4.3, there exist 7 := (7,...,7) € R, \ {0},
vieViand \; 20,i=1,...,m, b € B such that

keK i=1

7 (fr(Z) — maka( )) =0, k€K,

Putting
- Tk i
Ti = , k - K, )\7, 1 =0 -, Mm,
5 > keK Tk > kek Tk

we then have 7, +(71,...,7) € Rl+ with > e 7 = 1 and A= (5\1, cesAm) €

R?. Observe that the assertion in (4.12) is still valid when 7;,’s and A;’s are

replaced by 7i’s and A’s, respectively. Consequently, (z,7,v, ) is a feasible
solution of (RD)q.

Now, by Theorem 4.4.3 (weak duality), for any feasible (y,7,v, ) of
(RD)q;

i/_\ gz z 90(5:)

> o(y) + 3 Ay, 00) — Vellz — gl

i=1

which means that (z,7,v, ) is a quasi e-solution of problem (RD)w. ]
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Conclusions

In this dissertation, we studied some characterizations of an optimal so-
lution and a quasi a-solution for the robust convex minimax optimization
problem (RP). By using the obtained results, we then studied optimality
conditions and duality theorems both for a weak Pareto solution and a weak
quasi e-Pareto solution to the robust multiobjetive optimization problem.
Moreover, a robust convex minimax fractional programming problem in the
face of data uncertainty is also discussed by using the robust optimization
approach (worst-case approach). Optimality conditions and approximate
duality theorems for such a robust convex minimax fractional programming

problem were explored under the Slater condition.

o7



1]

[6]

[7]

References

Antczak, T.: Parametric saddle point criteria in semi-infinite minimax
fractional programming problems under (p;r)-invexity. Numer. Func.

Anal. Optim., 36, 1-28 (2015)

Beck, A., Ben-Tal, A.: Duality in Robust Optimization: Primal Worst
Equals Dual Best, Oper. Res. Lett., 37 (1), 1-9 (2009)

Ben-Tal, A., Ghaoui, L. E., Nemirovski, A.: Robust optimzation.
Princeton series in applied mathematics. Priceton, NJ: Priceton Uni-

versity Press. (2009)

Ben-Tal, A., Nemirovski, A.: Robust convex optimization. Math. Oper.
Res. 23, 769-805 (1998)

Ben-Tal, A., Nemirovski, A.: Robust solutions to uncertain linear pro-

grams. Oper. Res. Lett., 25, 1-13 (1999)

Ben-Tal, A., Nemirovski, A.: Robust optimization-methodology and ap-
plications. Math. Program., Ser B, 92, 453-480 (2002)

Ben-Tal, A., Nemirovski, A.: A selected topics in robust convex opti-

mization, Math. Program., Ser B, 112, 125-158 (2008)

58



[8] Ben-Tal, A., Ghaoui, L.E., Nemirovski, A.: Robust Optimization.

Princeton and Oxford: Princeton University Press (2009)

[9] Chuong, T.D.: Optimality and duality for robust multiobjective opti-
mization Problems. Nonlinear Anal., 134, 127-143 (2016)

[10] Chuong, T.D., Kim, D.S. Nonsmooth semi-infinite multiobjective opti-
mization problems. J. Optim. Theory Appl., 160, 748-762 (2014)

[11] Chuong, T.D., Kim, D.S.: Approximate solutions of multiobjective op-
timization problems, Positivity 20 (1), 187-207 (2016)

[12] Chuong, T.D., Kim, D.S.: Nondifferentiable minimax programming
problems with applications, Ann. Oper. Res., 251, 73-87 (2017)

[13] Clarke, F.H.: Generelized gradients and applications. Trans. Amer.
Math. Soc., 205, 247-262 (1975)

[14] Clarke, F.H.: A new approach to Lagrange multipliers. Math. Oper.
Res., 1 165-174 (1976)

[15] Clarke, F.H.: Generalized gradients of Lipschitz functions. Adv. in
Math., 40 52-67 (1981)

[16] Clarke, F.H.: Optimization and Nonsmooth Analysis. Classics in Ap-
plied Mathematics, Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA (1990)

[17] Danskin, J.M.: The Theory of Max-Min and its Application to Weapons
Allocation Problems. Springer-Verlag, New York (1967)

59



18]

[19]

[20]

[21]

[22]

[23]

[25]

Demyanov,V.F., Molozemov, V. N.: Introduction to Minmax, John Wi-
ley and Sons, New York (1974)

Dutta, J.: Necessary optimality conditions and saddle points for ap-

proximate optimization in banach space. Top 13, 127-143 (2005)

Dhara, A., Dutta, J.: Optimality Conditions in Convex Optimization:
a Finite-Dimensional View. CRC Press Taylor & Francis Group (2012)

Ekeland, I.: On the variational principle. J. Math. Anal. Appl., 47, 324—
353 (1974)

Houda, M.: Comparison of approximations in stochastic and robust
optimization programs, In: Huskova, M., Janzura, M. (eds.) Prague

Stochastics 2006, pp. 418-425. Prague, Matfyzpress (2006)

Ide, J., Schobel, A.: Robustness for uncertain multi-objective optimiza-
tion: a survey and analysis of different concepts. OR Spectrum. 38(1),

235-271 (2016)

Jeyakumar, V., Li, G.: Characterizing robust set containments and so-
lutions of uncertain linear programs without qualifications. Oper. Res.

Lett., 38, 188-194 (2010)

Jeyakumar V., Li, G.Y.: Strong duality in robust convex programming:

complete characterizations, STAM J. Optim., 20, 3384-3407 (2010)

60



[26]

[27]

[28]

[32]

[33]

Jeyakumar, V., Lee, G.M., Li, G.: Characterizing robust solutions sets
convex programs under data uncertainty. J. Optim. Theory Appl., 64,
407-435 (2015)

Jeyakumar, V., Li, G., Lee, G.M.: Robust duality for generalized convex
programming problems under data uncertainty. Nonlinear Anal., 75,

1362-1373 (2012)

Jiao, L.G., Lee, J.H.: Approximate Optimality and Approximate Du-
ality for Quasi Approximate Solutions in Robust Convex Semidefinite

Programs. J. Optim. Theory Appl., 176, 74-93 (2018)

Kuroiwa, D., Lee, G.M.: On robust multiobjective optimization. Viet-

nam J. Math., 40, 305-317 (2012)

Kuroiwa, D., Lee, G.M.: On robust convex multiobjective optimization.

J. Nonlinear Convex Anal., 15, 1125-1136 (2014)

Lai, H.C., Liu, J.C., Tanaka, K.: Necessary and sufficient conditions for
minimax fractional programming. J. Math. Anal. Appl., 230 311-328
(1999)

Lai, H.C., Huang, T.Y.: Optimality conditions for a nondifferentiable
minimax programming in complex spaces, Nonlinear Anal., 71, 1205—

1212 (2009).

Lai, H.C., Huang, T.Y.: Nondifferentiable minimax fractional program-
ming in complex spaces with parametric duality, J. Global Optim., 53,

243-254 (2012).

61



[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Lebourg, G.: Generic differentiability of Lipschitzian functions. Trans.

Amer. Math. Soc., 256, 125-144 (1979)

Lee, J.H., Jiao, L.G.: On quasi e-solution for robust convex optimization

problems. Optim. Lett., 11, 1609-1622 (2017)

Lee, G.M., Son, P.T.: On nonsmooth optimality theorems for robust
optimization problems. Bull. Korean Math. Soc., 51, 287-301 (2014)

Li, G.Y., Jeyakumar, V., Lee, G.M.: Robust conjugate duality for con-
vex optimization under uncertainty with application to data classifica-

tion. Nonlinear Anal., 74, 2327-2341 (2011).

Liu, J.C.: e-Duality theorem of nondifferentiable nonconvex multiobjec-

tive programming. J. Optim. Theory Appl., 69, 153-167 (1991)

Rockafellar, R.T.: Convex Analysis, Princeton Univ. Press, Princeton,

N. J. (1970)

Schmitendorf, W.E.: Necessary conditions and sufficient conditions for

static minimax problems. J. Math. Anal. Appl., 57, 683-693 (1977)

Son, T.Q., Kim, D.S.: e-mixed type duality for nonconvex multiobjective
programs with an infinite number of constraints. J. Global Optim., 57,

447465 (2013)

Son, T.Q., Kim, D.S., Jiao, L.G.: An Approach to e-Duality Theorems
for Nonconvex Semi-Infinite Multiobjective Optimization Problems. Tai-

wanese J. Math., to appear (2018)

62



[43] Strodiot, J.J., Nguyen, V.H., Heukemes, N.: e-Optimal solutions in non-
differentiable convex programming and some related questions. Math.

Program., 25, 307-328 (1983)

[44] Suzuki, S., Kuroiwa, D., Lee, G.M.: Surrogate duality for robust opti-
mization. European J. Oper. Res., 231, 257-262 (2013)

[45] Wiecek, M.M., Dranichak, G.M.: Robust Multiobjective Optimization
for Decision Making Under Uncertainty and Conflict. In: Gupta, A.,
Capponi, A. (eds.) TutORials in Operations Research, Optimization
Challenges in Complex, Networked, and Risky Systems, pp. 84-114.
INFORMS (2016)

[46] Wolfe, P.: A duality theorem for nonlinear programming, Quart. Appl.
Math., 19, 239244 (1961)

[47] Yang, X.M., Hou, S.H.: On minimax fractional optimality conditions
and duality with generalized convexity. J. Glob. Optim., 31 235252
(2005)

63



	1 Introduction and Organization
	1.1 Introduction
	1.2 Organization of the Dissertation

	2 Optimality Conditions and Duality for Optimal and Approximate Solutions in Robust Minimax Programming
	2.1 Introduction
	2.2 Preliminaries
	2.3 Mathematical Model and Representation of the Normal Cone
	2.4 Optimality Conditions
	2.4.1 For an optimal solution
	2.4.2 For a quasi ε-solution

	2.5 Duality Relations
	2.5.1 For an optimal solution
	2.5.2 For a quas ε-solution


	3 Robust Multiobjective Optimization Problems via Minimax Programming
	3.1 Introduction and Mathematical Modelling
	3.2 Optimality Conditions
	3.3 Duality Theorems
	3.3.1 For a weak Pareto solution
	3.3.2 For a weak quasi ε-Pareto solution


	4 Optimality Conditions and Duality for Optimal and Approximate Solutions in Robust Minimax Fractional Programming
	4.1 Introduction
	4.2 Preliminaries
	4.3 Optimality Conditions
	4.4 Duality Theorems
	4.4.1 For an optimal solution
	4.4.2 For a quasi ε-solution


	Conclusions
	References


<startpage>8
1 Introduction and Organization 1
 1.1 Introduction 1
 1.2 Organization of the Dissertation 4
2 Optimality Conditions and Duality for Optimal and Approximate Solutions in Robust Minimax Programming 5
 2.1 Introduction 5
 2.2 Preliminaries 6
 2.3 Mathematical Model and Representation of the Normal Cone 7
 2.4 Optimality Conditions 11
  2.4.1 For an optimal solution 11
  2.4.2 For a quasi ε-solution 14
 2.5 Duality Relations 18
  2.5.1 For an optimal solution 19
  2.5.2 For a quas ε-solution 24
3 Robust Multiobjective Optimization Problems via Minimax Programming 28
 3.1 Introduction and Mathematical Modelling 28
 3.2 Optimality Conditions 30
 3.3 Duality Theorems 34
  3.3.1 For a weak Pareto solution 34
  3.3.2 For a weak quasi ε-Pareto solution 37
4 Optimality Conditions and Duality for Optimal and Approximate Solutions in Robust Minimax Fractional Programming 41
 4.1 Introduction 41
 4.2 Preliminaries 42
 4.3 Optimality Conditions 46
 4.4 Duality Theorems 50
  4.4.1 For an optimal solution 50
  4.4.2 For a quasi ε-solution 53
Conclusions 57
References 58
</body>

