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Chapter 1
Introduction and Organization

1.1 Introduction

Minimax programming problems have been the subject of immense interest

in the past few years. Some of the basic results of minimax programming

problems can be found in books by Danskin [17] and Demyanov and Moloze-

mov [18]. It is well known that optimality and duality lay down the foun-

dation of algorithms for a solution of an optimization problem and hence

constitute an important portion in the study of mathematical programming.

The necessary and sufficient conditions for generalized minimax program-

ming were first developed by Schmitendorf [40]. After the work of Schmiten-

dorf [40], many researchers have worked in this direction; see, for example,

Antczak [1], Lai et al. [31], Yang and Hou [47] and the references therein.

Mathematically, a minimax programming problem is the problem:

(P) min
x∈Rn

max
k∈K

fk(x) subject to gi(x) <= 0, i = 1, . . . ,m,

where fk : Rn → R, k ∈ K := {1, . . . , l} and gi : Rn → R, i = 1, . . . ,m are

given functions.

In addition, a minimax fractional programming problem is the one:

(FP) min
x∈Rn

max
k∈K

pk(x)
qk(x) subject to gi(x) <= 0, i = 1, . . . ,m,
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where pk, −qk : Rn → R, k ∈ K := {1, . . . , l} and gi : Rn → R, i = 1, . . . ,m

are given functions.

As we mentioned above, with regards to the problems, both (P) and (FP)

have been studied by many researcher; see, for example, [1, 12, 31–33, 40, 47]

and the references therein.
On the other hand, the data of many real-world optimization problems

are often uncertain (that is, they are not known exactly at the time of

the decision) due to lack of information, estimation errors or prediction er-

rors. Recently, robust optimization approach, which associates an uncertain

mathematical programming with its robust counterpart (see, for example,

[2, 4, 8, 23, 45]), has emerged as a powerful deterministic approach for

studying mathematical (both scalar and multiobjective) optimization with

data uncertainty. Moreover, a robust fractional optimization problem is to

optimize a fractional function over the constrained set defined by functions

with data uncertainty.

The minimax programming problem (P) and the minimax fractional pro-

gramming problem (FP) in the face of data uncertainty in the constraints

can be captured by the problems

(UP) min
x∈Rn

max
k∈K

fk(x) subject to gi(x, vi) <= 0, i = 1, . . . ,m,

and

(UFP) min
x∈Rn

max
k∈K

pk(x)
qk(x) subject to gi(x, vi) <= 0, i = 1, . . . ,m,

respectively, where gi : Rn × Rq → R, gi(·, vi) is convex and vi ∈ Rq is an

uncertain parameter which belongs to the set Vi ⊂ Rq, i = 1, . . . ,m.
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The robust programming approach tells us to seek for a solution which

simultaneously satisfies all possible realizations of the constraints. Through-

out the thesis, we explore optimality and duality theorems for the uncertain

minimax programming problem (UP) and the uncertain minimax fractional

programming problem (UFP) by examining their robust (worst-case) coun-

terparts:

(RP) min
x∈Rn

max
k∈K

fk(x) subject to gi(x, vi) <= 0, ∀vi ∈ Vi, i = 1, . . . ,m,

and

(RFP) min
x∈Rn

max
k∈K

pk(x)
qk(x) subject to gi(x, vi) <= 0, ∀vi ∈ Vi, i = 1, . . . ,m,

respectively.

It is worth noting that, from the computational point of view, it may be

more meaningful to find not exact solutions but approximate ones. Indeed,

one can consider approximate solutions with a small error while solving opti-

mization problem by a numerical method and; moreover, in some problems,

if error value tends to zero, the limit of approximate solution is an exact

solution, if it exists. It is meaningful not only to find solutions but establish

necessary and sufficient conditions. It is well known that optimization prob-

lems may be viewed from either of two perspectives, i.e. the primal problem

or the dual problem. Moreover, for convex optimization problems, the du-

ality gap, i.e. the difference between optimal values of the primal and dual

problems, is zero under a constraint qualification.
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1.2 Organization of the Dissertation

This dissertation consists of three main chapters.

Chapter 2 presents some characterizations of an optimal solution and a

quasi α-solution for the robust convex minimax optimization problem (RP),

a dual model in the sense of Wolfe is established, and duality relations are

also discussed; in addition, a nontrivial example is given.

Chapter 3 can be treated as applications of Chapter 2; namely, with the

help of the results obtained by Chapter 2, we study optimality conditions and

duality theorems both for a weak Pareto solution and a weak quasi ε-Pareto

solution to the robust multiobjetive optimization problem.

In Chapter 4, we study a robust convex minimax fractional programming

problem in the face of data uncertainty. Again, using the robust optimization

approach (worst-case approach), optimality conditions and approximate du-

ality theorems for the robust convex minimax fractional programming prob-

lem are explored under the Slater condition.

Finally, the Conclusions are given in the end of the dissertation.
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Chapter 2
Optimality Conditions and Duality for
Optimal and Approximate Solutions in

Robust Minimax Programming

2.1 Introduction

The study of optimality conditions and duality relations for optimal solutions

of minimax programming problems has been done by many researchers; see,

for example, [12, 32, 33] and the references therein.

Along with optimality conditions, we propose a dual problem to the pri-

mal one and examine weak and strong duality relations.

In addition, we employ the (necessary/sufficient) optimality conditions

obtained for the mimimax programming problem to derive the corresponding

ones for a multiobjective optimization problem. This approach seems to be

new in the literature, and we hope it will provide a useful opportunity to

learn about a multiobjective optimization problem from the related mimimax

programming problem, a scalar one.

The rest of the paper is organized as follows. Section 2 contains some

basic definitions from variational analysis and several auxiliary results. In

Section 3, we first establish necessary conditions for (local) optimal solutions

of a mimimax programming problem. Then we provide sufficient conditions
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for the existence of such (global) solutions. Section 4 is devoted to studying

duality relations in mimimax programming. Applications to multiobjective

optimization problems are performed in Section 5.

2.2 Preliminaries

We use the following notation and terminology. Rn denotes the n-dimensional

Euclidean space with the inner product 〈·, ·〉 and the associated norm ‖ · ‖.

We say that a set Γ in Rn is convex whenever µa1 + (1 − µ)a2 ∈ Γ for

all µ ∈ [0, 1], a1, a2 ∈ Γ. We denote the domain of f by dom f , that is,

dom f := {x ∈ Rn : f(x) < +∞}. f is said to be convex if for all λ ∈ [0, 1],

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y)

for all x, y ∈ Rn. The function f is said to be concave whenever −f is convex.

The (convex) subdifferential of f at x ∈ Rn is defined by

∂f(x) =
{
{x∗ ∈ Rn | 〈x∗, y − x〉 ≤ f(y)− f(x), ∀y ∈ Rn}, if x ∈ domf,
∅, otherwise.

Proposition 2.2.1 (Cauchy–Schwartz inequality). For any two vectors x, y ∈

Rn, |〈x, y〉| <= ‖x‖‖y‖. The above inequality holds as equality if and only if

x = αy for some scalar α ∈ R.

Lemma 2.2.1 (Moreau–Rockafellar sum rule). Consider two proper convex

functions f1, f2 : Rn → R̄ such that ri dom f1 ∩ ri dom f2 6= ∅. Then

∂(f1 + f2)(x) = ∂f1(x) + ∂f2(x)

for every x ∈ dom (f1 + f2).
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Proposition 2.2.2 (max-function rule). Consider convex functions fk :

Rn → R, k = 1, . . . , l, and let ϕ(x) = max{f1(x), . . . , fl(x)}. then

∂ϕ(x̄) = co
⋃

k∈K(x̄)
∂fk(x̄),

where K(x̄) := {k ∈ K := {1, . . . , l} : ϕ(x̄) = fk(x̄)} denotes the active index

set.

2.3 Mathematical Model and Representation of the

Normal Cone

A standard form of minimax programming problem is the problem:

(P) min
x∈Rn

max
k∈K

fk(x) subject to gi(x) <= 0, i = 1, . . . ,m,

where fk : Rn → R, k ∈ K := {1, . . . , l} and gi : Rn → R, i = 1, . . . ,m are

convex functions.
The minimax programming problem (P) in the face of data uncertainty

in the constraints can be captured by the problem

(UP) min
x∈Rn

max
k∈K

fk(x) subject to gi(x, vi) <= 0, i = 1, . . . ,m,

where gi : Rn × Rq → R, gi(·, vi) is convex and vi ∈ Rq is an uncertain pa-

rameter which belongs to the set Vi ⊂ Rq, i = 1, . . . ,m. The problem (UP)

is to optimize an optimization problem with data uncertainty (incomplete

data), which means that input parameters of these problems are not known

exactly at the time when solution has to be determined [7]. Indeed, there
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are two main approaches to deal with constrained optimization under data

uncertainty, namely robust programming approach and stochastic program-

ming approach; in stochastic programming, one works with the probabilistic

distribution of uncertainty and the constraints are required to be satisfied up

to prescribed level of probability [22], while robust programming approach

seeks for a solution which simultaneously satisfies all possible realizations of

the constraints. It seems to be more convenient to use the robust approach to

study optimization problems with data uncertainty, comparing with stochas-

tic programming approach.

Throughout the thesis, we explore optimality and duality theorems for

the uncertain minimax programming problem (UP) by examining its robust

(worst-case) counterpart [7]:

(RP) min
x∈Rn

max
k∈K

fk(x) subject to gi(x, vi) <= 0, ∀vi ∈ Vi, i = 1, . . . ,m.

Denote by F := {x ∈ Rn : gi(x, vi) <= 0, ∀vi ∈ Vi, i = 1, . . . ,m} as the

feasible set of (RP).

Definition 2.3.1. We say the Slater condition holds for (RP) if there exists

x̄ ∈ Rn such that

gi(x̄, vi) < 0,∀vi ∈ Vi, i = 1, 2, . . . ,m.

Now, we establish optimality theorems for (RP) under the Slater condi-

tion. Then, by using the obtained results, we study the optimality condition

for a quasi ε-solution to (RP) under the Slater condition. Moreover, we

formulate a Wolfe type dual problem for the primal one and propose weak
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duality between the primal problem and its Wolfe type dual problem as well

as strong duality which holds under the Slater condition. As a consequence,

we study the behaviours of a quasi ε-solution to the dual problem. Before

that, we first give the following notions of an optimal solution and a quasi

ε-solution to the problem (RP).

Definition 2.3.2. Let ϕ(x) := max
k∈K

fk(x), x ∈ Rn.

(i) A point x̄ ∈ F is said to be an optimal solution of problem (RP) if and

only if

ϕ(x̄) <= ϕ(x), ∀x ∈ F.

(ii) Given ε >= 0. A point x̄ ∈ F is said to be a quasi ε-solution of problem

(RP) if

ϕ(x̄) <= ϕ(x) +
√
ε‖x− x̄‖, ∀x ∈ F.

It is worth noting that some characterizations of a quasi ε-solution to the

problem (RP) has been minutely studied in [11, 28, 35].

In order to obtain Karush–Kuhn–Tucker (KKT) optimality condition in

terms of the constraint functions gi(x, vi) <= 0, ∀vi ∈ Vi, i = 1, . . . ,m, the

normal cone must be explicitly expressed in their terms. Below, we present

such a result under the Slater condition. The proof is motivated by [20,

Proposition 3.3] and [43, Proposition 2.3].

Lemma 2.3.1. Let x̄ ∈ C := {x ∈ Rn : g(·, v) <= 0, v ∈ V}, where V is a

certain convex compact uncertain subset in Rq, and g(·, v) is convex functions
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for all v ∈ V. Suppose that the Slater condition holds for (RP). Then ξ ∈

NC(x̄) if and only if there exist λ̄ >= 0 and v̄ ∈ V such that

ξ ∈ λ̄∂g(x̄, v̄) and λ̄g(x̄, v̄) = 0.

Proof. Since V is convex and compact, we may let φ(x) = sup
v∈V

g(x, v) =

max
v∈V

g(x, v), and the function φ(x) is convex as pointwise maxima of convex

functions [2, 39]. By the definition of normal cone to the convex set C [the

convexity of C is clear, since C is the 0-level set of φ(x)], we have

NC(x̄) = {ξ ∈ Rn : 〈ξ, x− x̄〉 <= 0, ∀x ∈ C}

= {ξ ∈ Rn : 〈−ξ, x̄〉 <= 〈−ξ, x〉, ∀x ∈ C}. (2.1)

Observe that from (2.1), we see x̄ is an optimal solution of the following

convex problem with a linear objective function:

(LP) min 〈−ξ, x〉 subject to φ(x) <= 0.

Since the Slater condition holds, by the standard KKT condition, we have

there exist λ̄ >= 0 such that

ξ ∈ λ̄∂φ(x̄) and λ̄φ(x̄) = 0;

furthermore, the compactness of V tells us there exist λ̄ >= 0 and v̄ ∈ V such

that

ξ ∈ λ̄∂g(x̄, v̄) and λ̄g(x̄, v̄) = 0.

Thus, the proof is complete.
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2.4 Optimality Conditions

In this section, we establish optimality conditions for both an optimal solu-

tion and a quasi ε-solution to the problem (RP).

2.4.1 For an optimal solution

The following theorem gives a KKT necessary condition for optimal solutions

of the problem (RP).

Theorem 2.4.1. Consider the problem (RP), suppose that the Slater con-

dition holds for (RP). If x̄ is an optimal solution of problem (RP), then

there exist τ := (τ1, . . . , τl) ∈ Rl
+\{0}, v̄i ∈ Vi, i = 1, . . . ,m and λ :=

(λ1, . . . , λm) ∈ Rm
+ , such that

0 ∈
∑
k∈K

τk∂fk(x̄) +
m∑
i=1

λi∂gi(·, v̄i)(x̄),

τk
(
fk(x̄)−max

k∈K
fk(x̄)

)
= 0, k ∈ K,

λigi(x̄, v̄i) = 0, i = 1, . . . ,m. (2.2)

Proof. Let x̄ be an optimal solution of the problem (RP). Then, x̄ is a min-

imizer of the following problem:
min
x∈F

ϕ(x),

where ϕ(x) := maxk∈K fk(x). Observe that ϕ(x) is a convex function, since

fk(x), k ∈ K is convex [39]. Thus, x̄ is a minimizer of the following uncon-

strained optimization problem
min
x∈Rn
{ϕ(x) + δF (x)}. (2.3)
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Applying the standard optimality condition to the unconstrained optimiza-

tion problem (2.3), we have

0 ∈ ∂
(
ϕ+ δF (·)

)
(x̄).

Since the function ϕ is convex and the function δF (·) is also convex, it follows

from Lemma 2.2.1 that

0 ∈ ∂ϕ(x̄) + ∂δF (x̄),

which by the fact that ∂δF (x̄) = NF (x̄) leads to

0 ∈ ∂ϕ(x̄) +NF (x̄).

On the one hand, employing the formula for the convex subdifferential of

maximum functions (see Proposition 2.2.2) and the Moreau–Rochafellar sum

rule (see Lemma 2.2.1) we obtain

∂ϕ(x̄) = ∂(max
k∈K

fk)(x̄) = co
⋃

k∈K(x̄)
∂fk(x̄)

=

 ∑
k∈K(x̄)

τk∂fk(x̄)
∣∣∣∣ τk >= 0, k ∈ K(x̄),

∑
k∈K(x̄)

τk = 1

 ,

where K(x̄) := {k ∈ K: fk(x̄) = ϕ(x̄)} 6= ∅. On the other hand, since the

Slater condition holds, and from Lemma 2.3.1, we have

0 ∈

 ∑
k∈K(x̄)

τk∂fk(x̄)
∣∣∣∣ τk >= 0, k ∈ K(x̄),

∑
k∈K(x̄)

τk = 1


+

 ∑
i∈I(x̄)

λi∂gi(x̄, v̄i)
∣∣∣∣λi >= 0, i ∈ I(x̄)

 (2.4)
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Now, letting τk := 0 for k ∈ K \ K(x̄) and λi := 0 for i ∈ {1, . . . ,m} \ I(x̄),

we see that (2.4) clearly implies (2.2), which completes the proof of the

theorem.

Theorem 2.4.2 (sufficient KKT condition). Consider the problem (RP),

assume that x̄ ∈ F satisfy the conditions in Theorem 2.4.1, then x̄ is an

optimal solution to problem (RP).

Proof. Put φ(x) := max
k∈K

fk(x) for x ∈ Rn. Since x̄ satisfies the conditions

in Theorem 2.4.1, then there exist τ := (τ1, . . . , τl) ∈ Rl
+\{0}, v̄i ∈ Vi, i =

1, . . . ,m, λ := (λ1, . . . , λm) ∈ Rm
+ , ξk ∈ ∂fk(x̄), k ∈ K, and ηi ∈ ∂gi(x̄, v̄i), i =

1, . . . ,m such that

0 =
∑
k∈K

τkξk +
m∑
i=1

λiηi, (2.5)

τk
(
fk(x̄)− φk(x̄)

)
= 0, k ∈ K, (2.6)

λigi(x̄, v̄i) = 0, i = 1, . . . ,m. (2.7)

Assume to the contrary that x̄ is not an optimal solution of problem (RP).

Then there is x̂ ∈ F such that

φ(x̄) > φ(x̂) (2.8)

On the other hand, by definition of the subdifferential,

fk(x)− fk(x̄) >= 〈ξk, x− x̄〉, ∀x ∈ Rn, k ∈ K, (2.9)

gi(x, v̄i)− gi(x̄, v̄i) >= 〈ηi, x− x̄〉, ∀x ∈ Rn, i = 1, . . . ,m, (2.10)
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Combining the inequalities (2.9) and (2.10) along with (2.5) implies

∑
k∈K

τkfk(x)−
∑
k∈K

τkfk(x̄) +
m∑
i=1

λigi(x, v̄i)−
m∑
i=1

λigi(x̄, v̄i) >= 0, ∀x ∈ Rn.

For any x feasible to the problem (RP), gi(x, v̄i) <= 0, i = 1, . . . ,m, which

along with the complementary slackness condition (2.7) and the fact that

λi >= 0, i = 1, . . . ,m reduces the above inequality to∑
k∈K

τkfk(x)−
∑
k∈K

τkfk(x̄) >= 0, ∀x ∈ F. (2.11)

On the other side, by (2.6), it holds that∑
k∈K

τkφ(x̄) =
∑
k∈K

τkfk(x̄). (2.12)

Now, taking (2.11) and (2.12) into account, we arrive at∑
k∈K

τkφ(x̄) <=
∑
k∈K

τkφ(x̂).

This implies that

φ(x̄) <= φ(x̂) (2.13)

due to ∑k∈K τk > 0. Obviously, (2.13) contradicts (2.8), which completes the

proof of the theorem.

2.4.2 For a quasi ε-solution

Below, we gives a KKT necessary condition for a quasi ε-solution of problem

(RP), the proof is similar to Theorem 2.4.1.
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Theorem 2.4.3 (necessary KKT condition). Consider the problem (RP),

suppose that the Slater condition holds for (RP). If x̄ is a quasi ε-solution

of problem (RP), then there exist τ := (τ1, . . . , τl) ∈ Rl
+\{0}, v̄i ∈ Vi, i =

1, . . . ,m and λ := (λ1, . . . , λm) ∈ Rm
+ , such that

0 ∈
∑
k∈K

τk∂fk(x̄) +
m∑
i=1

λi∂gi(·, v̄i)(x̄) +
√
εB,

τk
(
fk(x̄)−max

k∈K
fk(x̄)

)
= 0, k ∈ K,

λigi(x̄, v̄i) = 0, i = 1, . . . ,m. (2.14)

Proof. Let x̄ be a quasi ε-solution of the problem (RP). Then, x̄ is a minimizer

of the following problem:

min
x∈F
{ϕ(x) +

√
ε‖ · −x̄‖},

where ϕ(x) := maxk∈K fk(x).Again, ϕ(x) is a convex function, since fk(x), k ∈

K is convex [39]. Thus, x̄ is a minimizer of the following unconstrained op-

timization problem

min
x∈Rn
{ϕ(x) +

√
ε‖ · −x̄‖+ δF (x)}. (2.15)

Again, applying the standard optimality condition to the unconstrained op-

timization problem (2.15), we have

0 ∈ ∂
(
ϕ+
√
ε‖ · −x̄‖+ δF (·)

)
(x̄).

Since the function ϕ, δF (·) and ‖·−x̄‖ are convex, it follows from Lemma 2.2.1

that

0 ∈ ∂ϕ(x̄) + ∂δF (x̄) +
√
ε∂‖ · −x̄‖,
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which by the facts that ∂δF (x̄) = NF (x̄) and ∂‖ · −x̄‖ = B leads to

0 ∈ ∂ϕ(x̄) +NF (x̄) +
√
εB.

On the one hand, employing the formula for the convex subdifferential of

maximum functions (see Proposition 2.2.2) and the Moreau–Rochafellar sum

rule (see Lemma 2.2.1) we obtain

∂ϕ(x̄) = ∂(max
k∈K

fk)(x̄) = co
⋃

k∈K(x̄)
∂fk(x̄)

=

 ∑
k∈K(x̄)

τk∂fk(x̄)
∣∣∣∣ τk >= 0, k ∈ K(x̄),

∑
k∈K(x̄)

τk = 1

 ,

where K(x̄) := {k ∈ K: fk(x̄) = ϕ(x̄)} 6= ∅. On the other hand, since the

Slater condition holds, and from Lemma 2.3.1, we have

0 ∈

 ∑
k∈K(x̄)

τk∂fk(x̄)
∣∣∣∣ τk >= 0, k ∈ K(x̄),

∑
k∈K(x̄)

τk = 1


+

 ∑
i∈I(x̄)

λi∂gi(x̄, v̄i)
∣∣∣∣λi >= 0, i ∈ I(x̄)

+
√
εB (2.16)

Now, letting τk := 0 for k ∈ K \ K(x̄) and λi := 0 for i ∈ {1, . . . ,m} \ I(x̄),

we see that (2.16) clearly implies (2.14), which completes the proof of the

theorem.

Theorem 2.4.4 (sufficient KKT condition). Consider the problem (RP),

assume that x̄ ∈ F satisfy the conditions in Theorem 2.4.3 with ∑k∈K τk = 1,

then x̄ is a quasi ε-solution of problem (RP).
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Proof. Put φ(x) := max
k∈K

fk(x) for x ∈ Rn. Since x̄ satisfies the conditions

in Theorem 2.4.3, then there exist τ := (τ1, . . . , τl) ∈ Rl
+\{0}, v̄i ∈ Vi, i =

1, . . . ,m, λ := (λ1, . . . , λm) ∈ Rm
+ , ξk ∈ ∂fk(x̄), k ∈ K, ηi ∈ ∂gi(x̄, v̄i), i =

1, . . . ,m and b ∈ B such that

0 =
∑
k∈K

τkξk +
m∑
i=1

λiηi +
√
εb, (2.17)

τk
(
fk(x̄)− φk(x̄)

)
= 0, k ∈ K, (2.18)

λigi(x̄, v̄i) = 0, i = 1, . . . ,m. (2.19)

On the other hand, by definition of the subdifferential,

fk(x)− fk(x̄) >= 〈ξk, x− x̄〉, ∀x ∈ Rn, k ∈ K, (2.20)

gi(x, v̄i)− gi(x̄, v̄i) >= 〈ηi, x− x̄〉, ∀x ∈ Rn, i = 1, . . . ,m, (2.21)

and by the Cauchy–Schwartz inequality (see Proposition 2.2.1),

‖b‖‖x− x̄‖ >= 〈b, x− x̄〉, ∀x ∈ Rn. (2.22)

Combining the inequalities (2.20), (2.21), and (2.22) along with (2.17) implies
∑
k∈K

τkfk(x)−
∑
k∈K

τkfk(x̄) +
m∑
i=1

λigi(x, v̄i)−
m∑
i=1

λigi(x̄, v̄i) +
√
ε‖b‖‖x− x̄‖

>= 0, ∀x ∈ Rn.

For any x feasible to the problem (RP), gi(x, v̄i) <= 0, i = 1, . . . ,m, which

along with the complementary slackness condition (2.19) and the fact that

λi >= 0, i = 1, . . . ,m reduces the above inequality to∑
k∈K

τkfk(x)−
∑
k∈K

τkfk(x̄) +
√
ε‖b‖‖x− x̄‖ >= 0, ∀x ∈ F.
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As b ∈ B, ‖b‖ <= 1, thereby leading to∑
k∈K

τkfk(x)−
∑
k∈K

τkfk(x̄) +
√
ε‖x− x̄‖ >= 0, ∀x ∈ F. (2.23)

On the other side, by (2.18), it holds that∑
k∈K

τkφ(x̄) =
∑
k∈K

τkfk(x̄).

Since ∑k∈K τk = 1, we have φ(x̄) = ∑
k∈K τkfk(x̄). Finally, from (2.23), the

requisite results are yielded.

2.5 Duality Relations

In this section we formulate a dual problem to the primal one in the sense of

Wolfe [46], and explore weak and strong duality relations between them, for

both an optimal solution and a quasi ε-solution.
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2.5.1 For an optimal solution

In connection with the robust minimax programming problem (RP), denote

ϕ(y) := max
k∈K

fk(y), we consider a dual problem in the following form:

(RD)W Maximize(y,τ,v,λ) ϕ(y) +
m∑
i=1

λigi(y, vi)

subject to 0 ∈
∑
k∈K

τk∂fk(y) +
m∑
i=1

λi∂gi(·, vi)(y)

τk(fk(y)− ϕ(y)) = 0, k ∈ K

τk >= 0,
∑
k∈K

τk = 1

λi >= 0, vi ∈ Vi, i = 1, . . . ,m.

Let FD be the feasible set of (RD)W, where FD = {(y, τ, v, λ) ∈ Rn×Rl
+×V×

Rm
+ : 0 ∈ ∑

k∈K
τk∂fk(y) +

m∑
i=1

λi∂gi(·, vi)(y), τk(fk(y) − ϕ(y)) = 0, k ∈ K, τk >=

0, ∑
k∈K

τk = 1, λi >= 0, vi ∈ Vi, i = 1, . . . ,m}. We should note that a point

(ȳ, τ̄ , v̄, λ̄) ∈ FD is called an optimal solution of problems (RD)W if for all

(y, τ, v, λ) ∈ FD,

ϕ(ȳ) +
m∑
i=1

λ̄igi(ȳ, v̄i) >= ϕ(y) +
m∑
i=1

λigi(y, vi).

The following theorem describes a weak duality relation between the pri-

mal problem (RP) and the dual problem (RD)W.
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Theorem 2.5.1 (weak duality). For any feasible solution x of (RP) and any

feasible solution (y, τ, v, λ) of (RD)W,

ϕ(x) >= ϕ(y) +
m∑
i=1

λigi(y, vi).

Proof. Since (y, τ, v, λ) ∈ FD, there exist τ := (τ1, . . . , τl) ∈ Rl
+ with ∑

k∈K
τk =

1, λ := (λ1, . . . , λm) ∈ Rm
+ , ξ̄k ∈ ∂fk(y), k ∈ K and ζ̄i ∈ ∂gi(·, vi)(y), i =

1, . . . ,m such that
∑
k∈K

τkξ̄k +
m∑
i=1

λiζ̄i = 0, (2.24)

τk(fk(y)− ϕ(y)) = 0, k ∈ K, (2.25)

thus from (2.24), we have

∑
k∈K

τk〈ξ̄k, x− y〉+
m∑
i=1

λi〈ζ̄i, x− y〉 = 0,

by the convexity of fk(·), k ∈ K and gi(·, vi), i = 1, . . . ,m,

∑
k∈K

τk(fk(x)− fk(y)) +
m∑
i=1

λi(gi(x, vi)− gi(y, vi)) >= 0. (2.26)

Finally, from (2.25) and (2.26), and the fact λigi(x, vi) = 0, due to ∑k∈K τk =

1, we obtain

ϕ(x) =
∑
k∈K

τk max
k∈K

fk(x) >=
∑
k∈K

τkfk(x) >= ϕ(y) +
m∑
i=1

λigi(y, vi).

Thus the proof of the theorem is completed.
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In what follows, a strong duality relation between the primal problem

(RP) and the dual problem (RD)W is given.

Theorem 2.5.2 (strong duality). Let x̄ ∈ F be an optimal solution of the

robust problem (RP) such that the Slater condition holds at this point. Then

there exists (τ̄ , v̄, λ̄) ∈ Rl
+×Rq×Rm

+ such that (x̄, τ̄ , v̄, λ̄) ∈ FD is an optimal

solution of problem (RD)W.

Proof. Let x̄ ∈ F be an optimal solution of (RP) such that the Slater con-

dition holds at this point. By Theorem 2.4.1, there exist τ := (τ1, . . . , τl) ∈

Rl
+ \ {0}, v̄i ∈ Vi and λi >= 0, i = 1, . . . ,m such that

0 ∈
∑
k∈K

τk∂fk(x̄) +
m∑
i=1

λi∂gi(·, v̄i)(x̄),

τk(fk(x̄)−max
k∈K

fk(x̄)) = 0, k ∈ K,

λigi(x̄, v̄i) = 0, i = 1, . . . ,m. (2.27)

Putting

τ̄k := τk∑
k∈K τk

, k ∈ K, λ̄i := λi∑
k∈K τk

, i = 1, . . . ,m,

we then have τ̄i+(τ̄1, . . . , τ̄l) ∈ Rl
+ with ∑k∈K τ̄k = 1 and λ̄ := (λ̄1, . . . , λm) ∈

Rm
+ . Observe that the assertion in (2.27) is still valid when τk’s and λi’s are

replaced by τ̄k’s and λ̄k’s, respectively. Consequently, (x̄, τ̄ , v̄, λ̄) is a feasible

solution of (RD)W.
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Now, by Theorem 2.5.1 (weak duality), for any feasible (y, τ, v, λ) of

(RD)W,

ϕ(x̄) +
m∑
i=1

λ̄igi(x̄, v̄i) = ϕ(x̄) >= ϕ(y) +
m∑
i=1

λigi(y, vi),

which means that (x̄, τ̄ , v̄, λ̄) is an optimal solution of problem (RD)W.

Here comes an example to illustrate our duality results. Note that this

example is modified by [35, Example 2].

Example 2.5.1. Consider the following minimax optimization problem with

data uncertainty:

(RP)1 min
(x1,x2)∈R2

max
k∈{1,2}

{f1(x1, x2), f2(x1, x2)}

subject to x2
1 − 2v1x1 − 3 <= 0, v1 ∈ [−1, 1].

Let
f1(x1, x2) = x1 + x2

2,

f2(x1, x2) = −x1 + x2
2,

g1
(
(x1, x2), v1

)
= x2

1 − 2v1x1 − 3.

Then, the feasible set of (RP)1 is

F 1 = {(x1, x2) ∈ R2 : x2
1 − 2v1x1 − 3 <= 0, v1 ∈ [−1, 1]}

= {(x1, x2) ∈ R2 | − 1 <= x1 <= 1, x2 ∈ R},

and {(0, 0)} is the set of optimal solutions of (RP)1; moreover, it is clear that

the Slater condition holds for (RP)1.
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Now, we formulate a robust dual problem (RD)1
W for (RP)1 as follows:

(RD)1
W max

(y,τ,v,λ)
ϕ(y1, y2) + λ1g1

(
(y1, y2), v1

)
subject to 0 ∈ τ1∂f1(y1, y2) + τ2∂f2(y1, y2) + λ1∂g1(·, v1)(y1, y2)

τ1
(
f1(y1, y2)− ϕ(y1, y2)

)
= 0

τ2
(
f2(y1, y2)− ϕ(y1, y2)

)
= 0

τ1 >= 0, τ2 >= 0, τ1 + τ2 = 1, λ1 >= 0, v1 ∈ [−1, 1],

where ϕ(y1, y2) = max
{1,2}
{f1(y1, y2), f2(y1, y2)}.

By calculation, we have the set of all feasible solutions of (RD)1
W is F 1

D :=

{
(
(0, 0), (1+2λ1v1

2 , 1−2λ1v1
2 ), v1, λ1

)
: λ1 ∈ [0, 1

2 ], v1 ∈ [−1, 1]}. It is not difficult

to see the validness of Theorem 2.5.1 (weak duality) and Theorem 2.5.2

(strong duality).
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2.5.2 For a quasi ε-solution

Denote again ϕ(y) := max
k∈K

fk(y), here we consider a dual problem that enjoys

the following form:

(RD)Q Maximize(y,τ,v,λ) ϕ(y) +
m∑
i=1

λigi(y, vi)

subject to 0 ∈
∑
k∈K

τk∂fk(y) +
m∑
i=1

λi∂gi(·, vi)(y) +
√
εB

τk(fk(y)− ϕ(y)) = 0, k ∈ K

τk >= 0,
∑
k∈K

τk = 1

λi >= 0, vi ∈ Vi, i = 1, . . . ,m, ε >= 0.

Let FQ be the feasible set of (RD)Q, where FQ = {(y, τ, v, λ) ∈ Rn × Rl
+ ×

V×Rm
+ : 0 ∈ ∑

k∈K
τk∂fk(y)+

m∑
i=1

λi∂gi(·, vi)(y)+
√
εB, τk(fk(y)−ϕ(y)) = 0, k ∈

K, τk >= 0, ∑
k∈K

τk = 1, λi >= 0, vi ∈ Vi, i = 1, . . . ,m, ε >= 0}.

Definition 2.5.1. Let ε >= 0 be given, a point (ȳ, τ̄ , v̄, λ̄) ∈ FQ is called a

quasi ε-solution of the problem (RD)Q if for all (y, τ, v, λ) ∈ FQ,

ϕ(ȳ) +
m∑
i=1

λ̄igi(ȳ, v̄i) >= ϕ(y) +
m∑
i=1

λigi(y, vi)−
√
ε‖y − ȳ‖.

Remark 2.5.1. [28, Remark 4.1] The notion of a quasi ε-solution of (RD)Q

is motivated by Ekeland Variational Principle [21] as we have mentioned,

and for the notion of a quasi ε-solution of (RD)Q, which is motivated by [19]
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where the author introduced the notion of the quasi ε-saddle point. It is

worth noting here that we consider the notion of a quasi ε-solution over the

feasible set, and it is not necessary to mention how explicitly the feasible set

is defined by.

The following theorem shows a weak duality relation between the primal

problem (RP) and the dual problem (RD)Q.

Theorem 2.5.3 (weak duality). For any feasible solution x of (RP) and any

feasible solution (y, τ, v, λ) of (RD)Q,

ϕ(x) >= ϕ(y) +
m∑
i=1

λigi(y, vi)−
√
ε‖x− y‖.

Proof. Since (y, τ, v, λ) ∈ FQ, there exist τ := (τ1, . . . , τl) ∈ Rl
+ with ∑

k∈K
τk =

1, λ := (λ1, . . . , λm) ∈ Rm
+ , ξ̄k ∈ ∂fk(y), k ∈ K and ζ̄i ∈ ∂gi(·, vi)(y), i =

1, . . . ,m, b ∈ B such that

∑
k∈K

τkξ̄k +
m∑
i=1

λiζ̄i +
√
εb = 0, (2.28)

τk(fk(y)− ϕ(y)) = 0, k ∈ K, (2.29)

thus from (2.28), we have

∑
k∈K

τk〈ξ̄k, x− y〉+
m∑
i=1

λi〈ζ̄i, x− y〉+
√
ε〈b, x− y〉 = 0,
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by the convexity of fk(·), k ∈ K and gi(·, vi), i = 1, . . . ,m,

∑
k∈K

τk(fk(x)− fk(y)) +
m∑
i=1

λi(gi(x, vi)− gi(y, vi)) +
√
ε‖x− y‖

>=
∑
k∈K

τk(fk(x)− fk(y)) +
m∑
i=1

λi(gi(x, vi)− gi(y, vi)) +
√
ε‖b‖‖x− y‖

>=0. (2.30)

Finally, from (2.29) and (2.30), and the fact λigi(x, vi) = 0, due to ∑k∈K τk =

1, we obtain

ϕ(x) =
∑
k∈K

τk max
k∈K

fk(x) >=
∑
k∈K

τkfk(x)

>= ϕ(y) +
m∑
i=1

λigi(y, vi)−
√
ε‖x− y‖.

Thus, we complete the proof.

Below, a strong duality relation between the primal problem (RP) and

the dual problem (RD)Q is proposed.

Theorem 2.5.4 (strong duality). Let x̄ ∈ F be a quasi ε-solution of the

robust problem (RP) such that the Slater condition holds at this point. Then

there exists (τ̄ , v̄, λ̄) ∈ Rl
+ × Rq × Rm

+ such that (x̄, τ̄ , v̄, λ̄) ∈ FQ is a quasi

ε-solution of problem (RD)Q.

Proof. Let x̄ ∈ F be a quasi ε-solution of (RP) such that the Slater condition

holds at this point. By Theorem 2.4.3, there exist τ := (τ1, . . . , τl) ∈ Rl
+\{0},
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v̄i ∈ Vi and λi >= 0, i = 1, . . . ,m, b ∈ B such that

0 ∈
∑
k∈K

τk∂fk(x̄) +
m∑
i=1

λi∂gi(·, v̄i)(x̄) +
√
εb,

τk(fk(x̄)−max
k∈K

fk(x̄)) = 0, k ∈ K,

λigi(x̄, v̄i) = 0, i = 1, . . . ,m. (2.31)

Putting

τ̄k := τk∑
k∈K τk

, k ∈ K, λ̄i := λi∑
k∈K τk

, i = 1, . . . ,m,

we then have τ̄i+(τ̄1, . . . , τ̄l) ∈ Rl
+ with ∑k∈K τ̄k = 1 and λ̄ := (λ̄1, . . . , λm) ∈

Rm
+ . Observe that the assertion in (2.31) is still valid when τk’s and λi’s are

replaced by τ̄k’s and λ̄k’s, respectively. Consequently, (x̄, τ̄ , v̄, λ̄) is a feasible

solution of (RD)Q.

Now, by Theorem 2.5.3 (weak duality), for any feasible (y, τ, v, λ) of

(RD)Q,

ϕ(x̄) +
m∑
i=1

λ̄igi(x̄, v̄i) = ϕ(x̄)

>= ϕ(y) +
m∑
i=1

λigi(y, vi)−
√
ε‖x̄− y‖,

which means that (x̄, τ̄ , v̄, λ̄) is a quasi ε-solution of problem (RD)W.
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Chapter 3
Robust Multiobjective Optimization
Problems via Minimax Programming

3.1 Introduction and Mathematical Modelling

It is well-known that mathematical optimization problems in the face of data

uncertainty have been treated by the worst case approach or the stochas-

tic approach. The worst case approach for optimization problems, which

has emerged as a powerful deterministic approach for studying optimization

problems with data uncertainty, associates an uncertain optimization prob-

lem with its robust counterpart. Recently, the study of convex programs

that are affected by data uncertainty is becoming increasingly important in

optimization [2, 3, 5–7, 24–27].

Many researchers [2, 25, 37, 44] have investigated optimality and duality

theories for linear or convex optimization problems under data uncertainty

with the worst-case approach (the robust approach). It was shown that the

value of the robust counterpart of primal problem is equal to the value of the

optimistic counterpart of the dual primal (“primal worst equals dual best”)

[2, 25, 27].
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Recently, many researchers [9, 10, 29, 30] have studied optimality and

duality theories for robust multiobjective optimization programming prob-

lems under different suitable constrained qualifications. In this chapter, we

investigate optimality conditions and duality theorems for robust multiobjec-

tive programming problems under data uncertainty via minimax programing;

namely, applying some results of the robust mimimax programming problem

obtained by Chapter 2 to a robust multiobjective optimization problem.

Let us consider the following multiobjective convex optimization problem

in the absence of data uncertainty:

(MP) min
(
f1(x), . . . , fl(x)

)
subject to gi(x) <= 0, i = 1, . . . ,m,

where fk : Rn → R, k ∈ K and gi : Rn → R, i = 1, . . . ,m are convex

functions.
The multiobjective onvex optimization problem (MP) in the face of data

uncertainty in the constraints can be captured by the problem:

(UMP) min
(
f1(x), . . . , fl(x)

)
subject to gi(x, vi) <= 0, i = 1, . . . ,m,

where gi : Rn × Rq → R, gi(·, vi) is convex and vi ∈ Rq is an uncertain

parameter which belongs to the set Vi ⊂ Rq, i = 1, . . . ,m.

The robust counterpart of (UMP) is

(RMP) min
(
f1(x), . . . , fl(x)

)
subject to gi(x, vi) <= 0, ∀vi ∈ Vi, i = 1, . . . ,m.

The robust feasible set of (RMP) is defined by

F := {x ∈ Rn : gi(x, vi) <= 0, ∀vi ∈ Vi, i = 1, . . . ,m}. (3.1)
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With the notation given at the beginning of Chapter 2 and for convenience,

we label the above constrained multiobjective robust optimization problem as

follows:
MinRl

+

{
f(x) : x ∈ F

}
, (RMP)

where the robust feasible set F is given by (3.1) and Rl
+ denotes the nonneg-

ative orthant of Rl.

Note that “MinRl
+

” in the above problem is understood with respect to

the ordering cone Rl
+. Now, we recall the notions of (robust) weak Pareto

solutions, which can be seen in [45, Section 4].

Definition 3.1.1. A point x̄ ∈ F is a weak Pareto solution of problem (RMP)

[or a robust weak Pareto solution of problem (UMP)] if and only if

f(x)− f(x̄) /∈ −intRl
+ ∀x ∈ F,

where intRl
+ stands for the topological interior of Rl

+.

3.2 Optimality Conditions

The following result is a Karush–Kuhn–Tucker (KKT) necessary condition

for weak Pareto solutions of problem (RMP).

Theorem 3.2.1 (necessary KKT condition for a weak Pareto solution). Let

the Slater condition be satisfied at x̄ ∈ F. If x̄ is a weak Pareto solution of

problem (RMP), then there exist τ := (τ1, ..., τl) ∈ Rl
+\{0}, v̄i ∈ Vi, i =

1, . . . ,m and λ := (λ1, ..., λm) ∈ Rm
+ such that

0 ∈
∑
k∈K

τk∂fk(x̄) +
m∑
i=1

λi∂gi(x̄) and λigi(x̄, v̄i) = 0, i = 1, . . . ,m. (3.2)
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Proof. Let x̄ be a weak Pareto solution of problem (RMP) and let

f̂k(x) := fk(x)− fk(x̄), k ∈ K, x ∈ Rn.

We will show that x̄ is an optimal solution of the robust minimax program-

ming problem:

min
x∈F

max
k∈K

f̂k(x). (3.3)

To do this, let us put ϕ̂(x) := maxk∈K f̂k(x) and prove that

ϕ̂(x̄) ≤ ϕ̂(x), ∀x ∈ F. (3.4)

Indeed, if (3.4) is not valid, then there exists x0 ∈ F such that ϕ̂(x0) < ϕ̂(x̄).

Since ϕ̂(x̄) = 0, it holds that maxk∈K {fk(x0)− fk(x̄)} < 0. Thus,

f(x0)− f(x̄) ∈ −int Rl
+,

which contradicts the fact that x̄ is a weak Pareto solution of the prob-

lem (RMP). So, we can employ the necessary KKT condition in Theo-

rem 2.4.1, but applied to problem (3.3). Then we find τ := (τ1, ..., τl) ∈

Rl
+\{0}, v̄i ∈ Vi, i = 1, . . . ,m and λ := (λ1, ..., λn) ∈ Rm

+ such that

0 ∈
∑
k∈K

τk∂f̂k(x̄) +
m∑
i=1

λi∂gi(x̄),

τk
(
f̂k(x̄)−max

k∈K
f̂k(x̄)

)
= 0, k ∈ K,

λigi(x̄, v̄i) = 0, i = 1, . . . ,m. (3.5)

It is now clear that (3.5) implies (3.2) and thus, the proof is complete.
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The forthcoming theorem describes the KKT optimality condition for a

weak quasi ε-Pareto solution of problem (RMP). Before that, let us recall

the notion of a weak quasi ε-Pareto solution, with regard to this notion, one

may refer to [38, 41, 42].

Definition 3.2.1. Let ε = (ε1, . . . , εl) ∈ Rl
++ with Rl

++ denoting the positive

orthant of Rl. A point z ∈ F is said to be a weak quasi ε-Pareto solution of

(RMP), if there exists no x ∈ F such that

fk(x) +√εk‖x− z‖ < fk(z), k ∈ K.

Theorem 3.2.2 (necessary KKT condition for a weak quasi ε-Pareto solu-

tion). Let ε = (ε1, . . . , εl) ∈ Rl
++ be given, and the Slater condition be sat-

isfied at x̄ ∈ F. If x̄ is a weak quasi ε-Pareto solution of problem (RMP),

then there exist τ := (τ1, ..., τl) ∈ Rl
+\{0}, v̄i ∈ Vi, i = 1, . . . ,m and

λ := (λ1, ..., λm) ∈ Rm
+ such that

0 ∈
∑
k∈K

τk∂fk(x̄) +
m∑
i=1

λi∂gi(x̄) +
∑
k∈K

τk
√
εkB,

λigi(x̄, v̄i) = 0, i = 1, . . . ,m. (3.6)

Proof. Let x̄ be a weak quasi ε-Pareto solution of problem (RMP), and let

f̂k(x) := fk(x)− fk(x̄) +√εk‖x− x̄‖, k ∈ K, x ∈ Rn.

We will show that x̄ is an optimal solution of the robust minimax program-

ming problem:

min
x∈F

max
k∈K

f̂k(x). (3.7)
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To this end, let us take ϕ̂(x) := maxk∈K f̂k(x) and prove that

ϕ̂(x̄) ≤ ϕ̂(x), ∀x ∈ F. (3.8)

Actually, if (3.8) is not true, then there exists x0 ∈ F such that

ϕ̂(x0) < ϕ̂(x̄).

Since ϕ̂(x̄) = 0, it holds that

max
k∈K
{fk(x0)− fk(x̄)} < 0.

Thus,

f(x0)− f(x̄) +
√
ε‖x− x̄‖ ∈ −int Rl

+,
√
ε = (√ε1, . . . ,

√
εl),

which contradicts the fact that x̄ is a weak quasi ε-Pareto solution of the

problem (RMP).

Thereby, we now employ the necessary KKT condition in Theorem 2.4.1,

but applied to problem (3.7). Then we find τ := (τ1, ..., τl) ∈ Rl
+\{0},

v̄i ∈ Vi, i = 1, . . . ,m, and λ := (λ1, ..., λm) ∈ Rm
+ such that

0 ∈
∑
k∈K

τk∂f̂k(x̄) +
m∑
i=1

λi∂gi(x̄) +
∑
k∈K

τk
√
εkB,

τk
(
f̂k(x̄)−max

k∈K
f̂k(x̄)

)
= 0, k ∈ K,

λigi(x̄, v̄i) = 0, i = 1, . . . ,m. (3.9)

It is now clear that (3.9) implies (3.6) and thus, the proof is complete.
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3.3 Duality Theorems

In this section, we formulate a dual problem to the primal one in the sense

of Wolfe [46], and explore weak and strong duality relations between them,

for both a weak Pareto solution and a weak quasi ε-Pareto solution.

3.3.1 For a weak Pareto solution

In connection with the robust multiobjective programming problem (RMP),

we consider a dual problem in the following form:

(RMD)W Maximize(y,τ,v,λ) f(y) +
m∑
i=1

λigi(y, vi)e

subject to 0 ∈
∑
k∈K

τk∂fk(y) +
m∑
i=1

λi∂gi(·, vi)(y)

τk >= 0,
∑
k∈K

τk = 1, e = (1, . . . , 1)

λi >= 0, vi ∈ Vi, i = 1, . . . ,m.

Let FMD be the feasible set of (RMD)W, where FMD = {(y, τ, v, λ) ∈ Rn ×

Rl
+ × V × Rm

+ : 0 ∈ ∑
k∈K

τk∂fk(y) +
m∑
i=1

λi∂gi(·, vi)(y), τk >= 0, ∑
k∈K

τk = 1, λi >=

0, vi ∈ Vi, i = 1, . . . ,m}.

In addition, let L(y, τ, v, λ) := f(y) +∑m
i=1 λigi(y, vi)e.

Definition 3.3.1. A point (ȳ, τ̄ , v̄, λ̄) ∈ FMD is said to be a weak Pareto

solution of problems (RMD)W if

L(y, τ, v, λ)− L(ȳ, τ̄ , v̄, λ̄) /∈ intRl
+, ∀(y, τ, v, λ) ∈ FMD
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Now, we give a weak duality relation between the primal problem (RMP)

and the dual problem (RMD)W in the following.

Theorem 3.3.1 (weak duality). For any feasible solution x of (RP) and any

feasible solution (y, τ, v, λ) of (RD)W,

ϕ(x) >= ϕ(y) +
m∑
i=1

λigi(y, vi).

Proof. Since (y, τ, v, λ) ∈ FD, there exist τ := (τ1, . . . , τl) ∈ Rl
+ with ∑

k∈K
τk =

1, λ := (λ1, . . . , λm) ∈ Rm
+ , ξ̄k ∈ ∂fk(y), k ∈ K and ζ̄i ∈ ∂gi(·, vi)(y), i =

1, . . . ,m such that ∑
k∈K

τkξ̄k +
m∑
i=1

λiζ̄i = 0, (3.10)

τk(fk(y)− ϕ(y)) = 0, k ∈ K, (3.11)

thus from (3.10), we have

∑
k∈K

τk〈ξ̄k, x− y〉+
m∑
i=1

λi〈ζ̄i, x− y〉 = 0,

by the convexity of fk(·), k ∈ K and gi(·, vi), i = 1, . . . ,m,
∑
k∈K

τk(fk(x)− fk(y)) +
m∑
i=1

λi(gi(x, vi)− gi(y, vi)) >= 0. (3.12)

Finally, from (3.11) and (3.12), and the fact λigi(x, vi) = 0, due to ∑k∈K τk =

1, we obtain

ϕ(x) =
∑
k∈K

τk max
k∈K

fk(x) >=
∑
k∈K

τkfk(x) >= ϕ(y) +
m∑
i=1

λigi(y, vi).
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Thus the proof of the theorem is completed.

In what follows, a strong duality relation between the primal problem

(RMP) and the dual problem (RMD)W is given.

Theorem 3.3.2 (strong duality). Let x̄ ∈ F be an optimal solution of the

robust problem (RMP) such that the Slater condition holds at this point.

Then there exists (τ̄ , v̄, λ̄) ∈ Rl
+×Rq×Rm

+ such that (x̄, τ̄ , v̄, λ̄) ∈ FMD is an

optimal solution of problem (RMD)W.

Proof. Let x̄ ∈ F be an optimal solution of (RMP) such that the Slater con-

dition holds at this point. By Theorem 3.2.1, there exist τ := (τ1, . . . , τl) ∈

Rl
+ \ {0}, v̄i ∈ Vi and λi >= 0, i = 1, . . . ,m such that

0 ∈
∑
k∈K

τk∂fk(x̄) +
m∑
i=1

λi∂gi(·, v̄i)(x̄),

τk(fk(x̄)−max
k∈K

fk(x̄)) = 0, k ∈ K,

λigi(x̄, v̄i) = 0, i = 1, . . . ,m. (3.13)

Putting

τ̄k := τk∑
k∈K τk

, k ∈ K, λ̄i := λi∑
k∈K τk

, i = 1, . . . ,m,

we then have τ̄i+(τ̄1, . . . , τ̄l) ∈ Rl
+ with ∑k∈K τ̄k = 1 and λ̄ := (λ̄1, . . . , λm) ∈

Rm
+ . Observe that the assertion in (3.13) is still valid when τk’s and λi’s are

replaced by τ̄k’s and λ̄k’s, respectively. Consequently, (x̄, τ̄ , v̄, λ̄) is a feasible

solution of (RD)W.
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Now, by Theorem 3.3.1 (weak duality), for any feasible (y, τ, v, λ) of

(RD)W,

ϕ(x̄) +
m∑
i=1

λ̄igi(x̄, v̄i) = ϕ(x̄) >= ϕ(y) +
m∑
i=1

λigi(y, vi),

which means that (x̄, τ̄ , v̄, λ̄) is an optimal solution of problem (RD)W.

3.3.2 For a weak quasi ε-Pareto solution

In connection with the robust multiobjective programming problem (RMP),

we consider a dual problem in the following form:

(RMD)Q Max(y,τ,v,λ) f(y) +
m∑
i=1

λigi(y, vi)e

subject to 0 ∈
∑
k∈K

τk∂fk(y) +
m∑
i=1

λi∂gi(·, vi)(y) +
∑
k∈K

τk
√
εB

τk >= 0,
∑
k∈K

τk = 1, e = (1, . . . , 1)

λi >= 0, vi ∈ Vi, i = 1, . . . ,m.

Let FQD be the feasible set of (RMD)Q, where FQD = {(y, τ, v, λ) ∈ Rn×Rl
+×

V ×Rm
+ : 0 ∈ ∑

k∈K
τk∂fk(y) +

m∑
i=1

λi∂gi(·, vi)(y) +∑
k∈K τk

√
εB, τk >= 0, ∑

k∈K
τk =

1, λi >= 0, vi ∈ Vi, i = 1, . . . ,m}.

In addition, let L(y, τ, v, λ) := f(y) +∑m
i=1 λigi(y, vi)e.
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Definition 3.3.2. A point (ȳ, τ̄ , v̄, λ̄) ∈ FQD is said to be a weak Pareto

solution of problems (RMD)Q if

L(y, τ, v, λ)− L(ȳ, τ̄ , v̄, λ̄) /∈ intRl
+, ∀(y, τ, v, λ) ∈ FQD

The following theorem shows a weak duality relation between the primal

problem (RMP) and the dual problem (RMD)Q.

Theorem 3.3.3 (weak duality). For any feasible solution x of (RMP) and

any feasible solution (y, τ, v, λ) of (RMD)Q,

ϕ(x) >= ϕ(y) +
m∑
i=1

λigi(y, vi)−
√
ε‖x− y‖.

Proof. Since (y, τ, v, λ) ∈ FQD, there exist τ := (τ1, . . . , τl) ∈ Rl
+ with∑

k∈K
τk = 1, λ := (λ1, . . . , λm) ∈ Rm

+ , ξ̄k ∈ ∂fk(y), k ∈ K and ζ̄i ∈ ∂gi(·, vi)(y), i =

1, . . . ,m, b ∈ B such that

∑
k∈K

τkξ̄k +
m∑
i=1

λiζ̄i +
√
εb = 0, (3.14)

τk(fk(y)− ϕ(y)) = 0, k ∈ K, (3.15)

thus from (3.14), we have

∑
k∈K

τk〈ξ̄k, x− y〉+
m∑
i=1

λi〈ζ̄i, x− y〉+
√
ε〈b, x− y〉 = 0,
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by the convexity of fk(·), k ∈ K and gi(·, vi), i = 1, . . . ,m,

∑
k∈K

τk(fk(x)− fk(y)) +
m∑
i=1

λi(gi(x, vi)− gi(y, vi)) +
√
ε‖x− y‖

>=
∑
k∈K

τk(fk(x)− fk(y)) +
m∑
i=1

λi(gi(x, vi)− gi(y, vi)) +
√
ε‖b‖‖x− y‖

>=0. (3.16)

Finally, from (3.15) and (3.16), and the fact λigi(x, vi) = 0, due to ∑k∈K τk =

1, we obtain

ϕ(x) =
∑
k∈K

τk max
k∈K

fk(x) >=
∑
k∈K

τkfk(x)

>= ϕ(y) +
m∑
i=1

λigi(y, vi)−
√
ε‖x− y‖.

Thus, we complete the proof.

Below, a strong duality relation between the primal problem (RMP) and

the dual problem (RMD)Q is proposed.

Theorem 3.3.4 (strong duality). Let x̄ ∈ F be a quasi ε-solution of the

robust problem (RMP) such that the Slater condition holds at this point.

Then there exists (τ̄ , v̄, λ̄) ∈ Rl
+ × Rq × Rm

+ such that (x̄, τ̄ , v̄, λ̄) ∈ FQD is a

quasi ε-solution of problem (RMD)Q.

Proof. Let x̄ ∈ F be a quasi ε-solution of (RMP) such that the Slater con-

dition holds at this point. By Theorem 3.2.2, there exist τ := (τ1, . . . , τl) ∈
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Rl
+ \ {0}, v̄i ∈ Vi and λi >= 0, i = 1, . . . ,m, b ∈ B such that

0 ∈
∑
k∈K

τk∂fk(x̄) +
m∑
i=1

λi∂gi(·, v̄i)(x̄) +
√
εb,

τk(fk(x̄)−max
k∈K

fk(x̄)) = 0, k ∈ K,

λigi(x̄, v̄i) = 0, i = 1, . . . ,m. (3.17)

Putting

τ̄k := τk∑
k∈K τk

, k ∈ K, λ̄i := λi∑
k∈K τk

, i = 1, . . . ,m,

we then have τ̄i+(τ̄1, . . . , τ̄l) ∈ Rl
+ with ∑k∈K τ̄k = 1 and λ̄ := (λ̄1, . . . , λm) ∈

Rm
+ . Observe that the assertion in (3.17) is still valid when τk’s and λi’s are

replaced by τ̄k’s and λ̄k’s, respectively. Consequently, (x̄, τ̄ , v̄, λ̄) is a feasible

solution of (RMD)Q.

Now, by Theorem 3.3.3 (weak duality), for any feasible (y, τ, v, λ) of

(RMD)Q,

ϕ(x̄) +
m∑
i=1

λ̄igi(x̄, v̄i) = ϕ(x̄)

>= ϕ(y) +
m∑
i=1

λigi(y, vi)−
√
ε‖x̄− y‖,

which means that (x̄, τ̄ , v̄, λ̄) is a quasi ε-solution of problem (RMD)W.
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Chapter 4
Optimality Conditions and Duality for
Optimal and Approximate Solutions in

Robust Minimax Fractional Programming

4.1 Introduction

In this chapter, we study the optimality conditions and duality for an op-

timal solution and an approximate solution in robust minimax fractional

programming. First, let us recall that a standard form of minimax fractional

programming problem is the one:

(FP) min
x∈Rn

max
k∈K

pk(x)
qk(x) subject to gi(x) <= 0, i = 1, . . . ,m,

where pk, −qk : Rn → R, k ∈ K := {1, . . . , l} and gi : Rn → R, i = 1, . . . ,m

are convex functions.
The minimax fractional programming problem (FP) in the face of data

uncertainty in the constraints can be captured by the one

(UFP) min
x∈Rn

max
k∈K

pk(x)
qk(x) subject to gi(x, vi) <= 0, i = 1, . . . ,m,

where gi : Rn × Rq → R, gi(·, vi) is convex and vi ∈ Rq is an uncertain

parameter which belongs to the set Vi ⊂ Rq, i = 1, . . . ,m.
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The robust counterpart of the problem (UFP) is as follows:

(RFP) min
x∈Rn

max
k∈K

pk(x)
qk(x) subject to gi(x, vi) <= 0, ∀vi ∈ Vi, i = 1, . . . ,m.

Denote again by F := {x ∈ Rn : gi(x, vi) <= 0, ∀vi ∈ Vi, i = 1, . . . ,m} as the

feasible set of (RFP).

Moreover, we let fk(x) := pk(x)
qk(x) , and ϕ(x) =: max

k∈K
fk(x)

(
=: max

k∈K
pk(x)
qk(x)

)
for

convenience. Note that a very remarkable phenomenon of a (robust) frac-

tional programming problem is that its objective function is, in general, not

convex functions, even under more restrictive convexity/concavity assump-

tions. Hence, fk(x) is generally nonconvex.

4.2 Preliminaries

In this section, we recall some notations and give preliminary results for next

sections. Throughout this paper, Rn denotes the n-dimensional Euclidean

space with the inner product 〈·, ·〉 and the associated Euclidean norm ‖ · ‖.

We say that a set Γ in Rn is convex whenever µa1 + (1 − µ)a2 ∈ Γ for

all µ ∈ [0, 1], a1, a2 ∈ Γ. We denote the domain of f by dom f, that is,

dom f := {x ∈ Rn : f(x) < +∞}. f is said to be convex if for all λ ∈ [0, 1],

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y)

for all x, y ∈ Rn. The function f is said to be concave whenever −f is convex.

The (convex) subdifferential of f at x ∈ Rn is defined by

∂f(x) =
{
{x∗ ∈ Rn | 〈x∗, y − x〉 ≤ f(y)− f(x), ∀y ∈ Rn}, if x ∈ domf,
∅, otherwise.
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Let g : Rn → R be a locally Lipschitz function, that is, for each x ∈ Rn,

there exist an open neighborhood U and a constant L > 0 such that for all

y and z in U,

|g(y)− g(z)| ≤ L‖y − z‖.

Definition 4.2.1. For each d ∈ Rn, the Clarke directional derivative of g at

x ∈ Rn in the direction d, denoted by g◦(x; d), is given by

g◦(x; d) = lim sup
h→0, t→0+

g(x+ h+ td)− g(x+ h)
t

.

We also denote the usual one-sided directional derivative of g at x by g′(x; d).

Thus

g′(x; d) = lim
t→0+

g(x+ td)− g(x)
t

,

whenever this limit exists.

Definition 4.2.2. The Clarke subdifferential of g at x, denoted by ∂◦g(x),

is the (nonempty) set of all ξ in Rn satisfying the following condition:

g◦(x; d) ≥ 〈ξ, d〉, for all d ∈ Rn.

We summarize some fundamental results in the calculus of the Clarke
subdifferential (for more details, see [13–16, 34]):

• ∂◦g(x) is a nonempty, convex, compact subset of Rn;

• The function d 7→ g◦(x; d) is convex;
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• For every d in Rn, one has

g◦(x; d) = max{〈ξ, d〉 : ξ ∈ ∂◦g(x)}.

Let V ⊂ Rq be a compact set and let g : Rn×V → R be a given function.

Here after all, we assume that the following assumptions hold:

• (A1) g(x, v) is upper semicontinuous in (x, v).

• (A2) g is locally Lipschitz in x, uniformly for v in V , that is, for each

x ∈ Rn, there exist an open neighborhood U of x and a constant L > 0

such that for all y and z in U, and v ∈ V ,

|g(y, v)− g(z, v)| ≤ L‖y − z‖.

• (A3) g◦x(x, v; ·) = g′x(x, v; ·), the derivatives being with respect to x.

We define a function ψ : Rn → R by

ψ(x) := max{g(x, v) : v ∈ V},

and observe that our assumptions (A1)-(A2) imply that ψ is defined and

finite (with the maximum defining ψ attained) on Rn. Let

V(x) := {v ∈ V : g(x, v) = ψ(x)},

then for each x ∈ Rn, V(x) is a nonempty closed set.

The following lemma, which is a nonsmooth version of Danskin’s theorem

[17] for max-functions, makes connection between the functions ψ′(x; d) and

g◦x(x, v; d).
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Lemma 4.2.1. Under the assumptions (A1)–(A3), the usual one-sided di-

rectional derivative ψ′(x; d) exists, and satisfies

ψ′(x; d) = ψ◦(x; d) = max{g◦x(x, v; d) : v ∈ V(x)}

= max{〈ξ, d〉 : ξ ∈ ∂◦xg(x, v), v ∈ V(x)}.

Proof. See [15, Theorem 2] (see also [13, Theorem 2.1], [17]).

The following result will be useful in the sequel.

Lemma 4.2.2. [36] In addition to the basic assumptions (A1)–(A3), suppose

that V is convex, and that g(x, ·) is concave on V , for each x ∈ U. Then the

following statements hold:

(i) The set V(x) is convex and compact.

(ii) The set

∂◦xg(x,V(x)) := {ξ : ∃v ∈ V(x) such that ξ ∈ ∂◦xg(x, v)}

is convex and compact.

(iii) ∂◦ψ(x) = {ξ : ∃v ∈ V(x) such that ξ ∈ ∂◦xg(x, v)}.

Proposition 4.2.1. [16, Proposition 2.3.3] If fi, i = 1, . . . , l is a finite family

of functions each of which is Lipschitz near x, it follows easily that their sum

f =
l∑

i=1
fi is also Lipschitz near x. Moreover, one has

∂◦
( l∑
i=1

fi
)
(x) ⊂

l∑
i=1

∂◦fi(x).

45



Proposition 4.2.2. [16, Proposition 2.3.12] Let fi, i ∈ I := {1, . . . , l} be

Lipschitz near x, then one has

∂◦f(x) ⊂ co {∂◦fi(x) | i ∈ I(x)},

where I(x) := {i ∈ I | fi(x) = 0}. and if fi is regular at x for each i in I(x),

then equality holds and f is regular at x.

Proposition 4.2.3. [16, Proposition 2.3.14] Let ψ1, ψ2 be Lipschitz near x,

and suppose ψ2 6= 0. Then ψ1
ψ2

is Lipschitz near x, and one has

∂◦
(ψ1

ψ2

)
(x) ⊂ ψ2(x)∂◦ψ1(x)− ψ1(x)∂◦ψ2(x)

ψ2
2(x) .

If in addition ψ1(x) ≥ 0, ψ2(x) > 0 and if ψ1 and −ψ2 are regular at x, then

equality holds and ψ1/ψ2 is regular at x.

4.3 Optimality Conditions

Theorem 4.3.1 (KKT condition for an optimal solution). Consider the

problem (RFP), assume that the Slater condition holds. If x̄ is an optimal

solution of the problem (RFP), then there exist τ := (τ1, . . . , τl) ∈ Rl
+\{0},

v̄i ∈ Vi, i = 1, . . . ,m and λ := (λ1, . . . , λm) ∈ Rm
+ , such that

0 ∈
∑
k∈K

τk
(qk(x̄)∂pk(x̄)− pk(x̄)∂qk(x̄)

q2
k(x̄)

)
+
∑
i∈M

λi∂gi(·, v̄i)(x̄),

τk
(pk(x̄)
qk(x̄) −max

k∈K

pk(x̄)
qk(x̄)

)
= 0, k ∈ K,

λigi(x̄, v̄i) = 0, i = 1, . . . ,m.
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Proof. Let x̄ be an optimal solution of the problem (RFP), and let fk(x) :=
pk(x)
qk(x) , furthermore, ϕ(x) =: max

k∈K
fk(x). Then, x̄ is a minimizer of the following

problem:

min
x∈F

ϕ(x), (4.1)

observe that ϕ(x) is a locally Lipschitz function. Applying the standard

optimality condition [16, Propostion 2.4.2] to the problem (4.1), we have

0 ∈ ∂◦ϕ(x̄) +NF (x̄).

On the one hand, employing Proposition 4.2.2 and Proposition 4.2.3, we

obtain

∂◦ϕ(x̄) = ∂◦(max
k∈K

fk)(x̄) = co
⋃

k∈K(x̄)
∂◦fk(x̄)

=co
⋃

k∈K(x̄)
{qk(x̄)∂pk(x̄)− pk(x̄)∂qk(x̄)

q2
k(x̄) }

=

 ∑
k∈K(x̄)

τk
(qk(x̄)∂pk(x̄)− pk(x̄)∂qk(x̄)

q2
k(x̄)

) ∣∣∣∣ τk >= 0, k ∈ K(x̄),
∑

k∈K(x̄)
τk = 1

 ,
where K(x̄) := {k ∈ K: fk(x̄) = ϕ(x̄)} 6= ∅. On the other hand, since the

Slater condition holds, and from Lemma 2.3.1, we have

0 ∈ ∑
k∈K(x̄)

τk∂
(qk(x̄)∂pk(x̄)− pk(x̄)∂qk(x̄)

q2
k(x̄)

) ∣∣∣∣ τk >= 0, k ∈ K(x̄),
∑

k∈K(x̄)
τk = 1


+

 ∑
i∈I(x̄)

λi∂gi(x̄, v̄i)
∣∣∣∣λi >= 0, i ∈ I(x̄)

 . (4.2)
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Now, letting τk := 0 for k ∈ K\K(x̄) and λi := 0 for i ∈ {1, . . . ,m}\I(x̄), we

see that (4.2) clearly implies the conditions in the theorem, which completes

the proof of the theorem.

Theorem 4.3.2 (KKT condition for a quasi ε-solution). Consider the prob-

lem (RFP), assume that the Slater condition holds. If x̄ is a quasi ε-

solution of the problem (RFP), then there exist τ := (τ1, . . . , τl) ∈ Rl
+\{0},

v̄i ∈ Vi, i = 1, . . . ,m and λ := (λ1, . . . , λm) ∈ Rm
+ , such that

0 ∈
∑
k∈K

τk
(qk(x̄)∂pk(x̄)− pk(x̄)∂qk(x̄)

q2
k(x̄)

)
+
∑
i∈M

λi∂gi(·, v̄i)(x̄) +
√
εB,

τk
(pk(x̄)
qk(x̄) −max

k∈K

pk(x̄)
qk(x̄)

)
= 0, k ∈ K,

λigi(x̄, v̄i) = 0, i = 1, . . . ,m.

Proof. Let x̄ be a quasi ε-solution of the problem (RFP). Then, x̄ is a mini-

mizer of the following problem:

min
x∈F
{ϕ(x) +

√
ε‖ · −x̄‖}, (4.3)

where ϕ(x) =: max
k∈K

fk(x), and fk(x) := pk(x)
qk(x) . Applying the standard opti-

mality condition [16, Propostion 2.4.2] to the problem (4.3), we have

0 ∈ ∂◦(ϕ+
√
ε‖ · −x̄‖)(x̄) +NF (x̄).

Since the function ϕ is Lipschitz, and ‖·−x̄‖ is convex and hence Lipschitz,

it follows from Proposition 4.2.1 that

0 ∈ ∂◦ϕ(x̄) +
√
ε∂‖ · −x̄‖+NF (x̄).
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Moreover, the fact and ∂‖ · −x̄‖ = B leads to

0 ∈ ∂◦ϕ(x̄) +NF (x̄) +
√
εB.

On the one hand, employing Proposition 4.2.2 and Proposition 4.2.3, we

obtain

∂◦ϕ(x̄) = ∂◦(max
k∈K

fk)(x̄) = co
⋃

k∈K(x̄)
∂◦fk(x̄)

=co
⋃

k∈K(x̄)
{qk(x̄)∂pk(x̄)− pk(x̄)∂qk(x̄)

q2
k(x̄) }

=

 ∑
k∈K(x̄)

τk
(qk(x̄)∂pk(x̄)− pk(x̄)∂qk(x̄)

q2
k(x̄)

) ∣∣∣∣ τk >= 0, k ∈ K(x̄),
∑

k∈K(x̄)
τk = 1

 ,

where K(x̄) := {k ∈ K: fk(x̄) = ϕ(x̄)} 6= ∅. On the other hand, since the

Slater condition holds, and from Lemma 2.3.1, we have

0 ∈ ∑
k∈K(x̄)

τk∂
(qk(x̄)∂pk(x̄)− pk(x̄)∂qk(x̄)

q2
k(x̄)

) ∣∣∣∣ τk >= 0, k ∈ K(x̄),
∑

k∈K(x̄)
τk = 1


+

 ∑
i∈I(x̄)

λi∂gi(x̄, v̄i)
∣∣∣∣λi >= 0, i ∈ I(x̄)

+
√
εB (4.4)

Now, letting τk := 0 for k ∈ K\K(x̄) and λi := 0 for i ∈ {1, . . . ,m}\I(x̄), we

see that (4.4) clearly implies the conditions in the theorem, which completes

the proof of the theorem.
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4.4 Duality Theorems

In this section, we formulate a dual problem to the primal one in the sense

of Wolfe [46], and explore weak and strong duality relations between them,

for both an optimal solution and a quasi ε-solution.

4.4.1 For an optimal solution

In connection with the robust minimax fractional programming problem

(RFP), denote ϕ(y) := max
k∈K

fk(y), and fk(x) := pk(x)
qk(x) , we consider a dual

problem in the following form:

(RFD)W Maximize(y,τ,v,λ) ϕ(y) +
m∑
i=1

λigi(y, vi)

subject to 0 ∈
∑
k∈K

τk∂fk(y) +
m∑
i=1

λi∂gi(·, vi)(y)

τk(fk(y)− ϕ(y)) = 0, k ∈ K

τk >= 0,
∑
k∈K

τk = 1

λi >= 0, vi ∈ Vi, i = 1, . . . ,m.

Let FD be the feasible set of (RD)W, where FD = {(y, τ, v, λ) ∈ Rn×Rl
+×V×

Rm
+ : 0 ∈ ∑

k∈K
τk∂fk(y) +

m∑
i=1

λi∂gi(·, vi)(y), τk(fk(y) − ϕ(y)) = 0, k ∈ K, τk >=

0, ∑
k∈K

τk = 1, λi >= 0, vi ∈ Vi, i = 1, . . . ,m}. We should note that a point
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(ȳ, τ̄ , v̄, λ̄) ∈ FD is called an optimal solution of problems (RD)W if for all

(y, τ, v, λ) ∈ FD,

ϕ(ȳ) +
m∑
i=1

λ̄igi(ȳ, v̄i) >= ϕ(y) +
m∑
i=1

λigi(y, vi).

The following theorem describes a weak duality relation between the pri-

mal problem (RP) and the dual problem (RD)W.

Theorem 4.4.1 (weak duality). For any feasible solution x of (RP) and any

feasible solution (y, τ, v, λ) of (RD)W,

ϕ(x) >= ϕ(y) +
m∑
i=1

λigi(y, vi).

Proof. Since (y, τ, v, λ) ∈ FD, there exist τ := (τ1, . . . , τl) ∈ Rl
+ with ∑

k∈K
τk =

1, λ := (λ1, . . . , λm) ∈ Rm
+ , ξ̄k ∈ ∂fk(y), k ∈ K and ζ̄i ∈ ∂gi(·, vi)(y), i =

1, . . . ,m such that ∑
k∈K

τkξ̄k +
m∑
i=1

λiζ̄i = 0, (4.5)

τk(fk(y)− ϕ(y)) = 0, k ∈ K, (4.6)

thus from (4.5), we have

∑
k∈K

τk〈ξ̄k, x− y〉+
m∑
i=1

λi〈ζ̄i, x− y〉 = 0,

by the convexity of fk(·), k ∈ K and gi(·, vi), i = 1, . . . ,m,
∑
k∈K

τk(fk(x)− fk(y)) +
m∑
i=1

λi(gi(x, vi)− gi(y, vi)) >= 0. (4.7)
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Finally, from (4.6) and (4.7), and the fact λigi(x, vi) = 0, due to ∑k∈K τk = 1,

we obtain

ϕ(x) =
∑
k∈K

τk max
k∈K

fk(x) >=
∑
k∈K

τkfk(x) >= ϕ(y) +
m∑
i=1

λigi(y, vi).

Thus the proof of the theorem is completed.

In what follows, a strong duality relation between the primal problem

(RP) and the dual problem (RD)W is given.

Theorem 4.4.2 (strong duality). Let x̄ ∈ F be an optimal solution of the

robust problem (RP) such that the Slater condition holds at this point. Then

there exists (τ̄ , v̄, λ̄) ∈ Rl
+×Rq×Rm

+ such that (x̄, τ̄ , v̄, λ̄) ∈ FD is an optimal

solution of problem (RD)W.

Proof. Let x̄ ∈ F be an optimal solution of (RP) such that the Slater con-

dition holds at this point. By Theorem 2.4.1, there exist τ := (τ1, . . . , τl) ∈

Rl
+ \ {0}, v̄i ∈ Vi and λi >= 0, i = 1, . . . ,m such that

0 ∈
∑
k∈K

τk∂fk(x̄) +
m∑
i=1

λi∂gi(·, v̄i)(x̄),

τk(fk(x̄)−max
k∈K

fk(x̄)) = 0, k ∈ K,

λigi(x̄, v̄i) = 0, i = 1, . . . ,m. (4.8)

Putting

τ̄k := τk∑
k∈K τk

, k ∈ K, λ̄i := λi∑
k∈K τk

, i = 1, . . . ,m,
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we then have τ̄i+(τ̄1, . . . , τ̄l) ∈ Rl
+ with ∑k∈K τ̄k = 1 and λ̄ := (λ̄1, . . . , λm) ∈

Rm
+ . Observe that the assertion in (4.8) is still valid when τk’s and λi’s are

replaced by τ̄k’s and λ̄k’s, respectively. Consequently, (x̄, τ̄ , v̄, λ̄) is a feasible

solution of (RD)W.

Now, by Theorem 4.4.1 (weak duality), for any feasible (y, τ, v, λ) of

(RD)W,

ϕ(x̄) +
m∑
i=1

λ̄igi(x̄, v̄i) = ϕ(x̄) >= ϕ(y) +
m∑
i=1

λigi(y, vi),

which means that (x̄, τ̄ , v̄, λ̄) is an optimal solution of problem (RD)W.

4.4.2 For a quasi ε-solution

Denote again ϕ(y) := max
k∈K

fk(y), here we consider a dual problem that enjoys

the following form:

(RD)Q Maximize(y,τ,v,λ) ϕ(y) +
m∑
i=1

λigi(y, vi)

subject to 0 ∈
∑
k∈K

τk∂fk(y) +
m∑
i=1

λi∂gi(·, vi)(y) +
√
εB

τk(fk(y)− ϕ(y)) = 0, k ∈ K

τk >= 0,
∑
k∈K

τk = 1

λi >= 0, vi ∈ Vi, i = 1, . . . ,m, ε >= 0.
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Let FQ be the feasible set of (RD)Q, where FQ = {(y, τ, v, λ) ∈ Rn × Rl
+ ×

V×Rm
+ : 0 ∈ ∑

k∈K
τk∂fk(y)+

m∑
i=1

λi∂gi(·, vi)(y)+
√
εB, τk(fk(y)−ϕ(y)) = 0, k ∈

K, τk >= 0, ∑
k∈K

τk = 1, λi >= 0, vi ∈ Vi, i = 1, . . . ,m, ε >= 0}.

Definition 4.4.1. Let ε >= 0 be given, a point (ȳ, τ̄ , v̄, λ̄) ∈ FQ is called a

quasi ε-solution of the problem (RD)Q if for all (y, τ, v, λ) ∈ FQ,

ϕ(ȳ) +
m∑
i=1

λ̄igi(ȳ, v̄i) >= ϕ(y) +
m∑
i=1

λigi(y, vi)−
√
ε‖y − ȳ‖.

The following theorem shows a weak duality relation between the primal

problem (RP) and the dual problem (RD)Q.

Theorem 4.4.3 (weak duality). For any feasible solution x of (RP) and any

feasible solution (y, τ, v, λ) of (RD)Q,

ϕ(x) >= ϕ(y) +
m∑
i=1

λigi(y, vi)−
√
ε‖x− y‖.

Proof. Since (y, τ, v, λ) ∈ FQ, there exist τ := (τ1, . . . , τl) ∈ Rl
+ with ∑

k∈K
τk =

1, λ := (λ1, . . . , λm) ∈ Rm
+ , ξ̄k ∈ ∂fk(y), k ∈ K and ζ̄i ∈ ∂gi(·, vi)(y), i =

1, . . . ,m, b ∈ B such that

∑
k∈K

τkξ̄k +
m∑
i=1

λiζ̄i +
√
εb = 0, (4.9)

τk(fk(y)− ϕ(y)) = 0, k ∈ K, (4.10)
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thus from (2.28), we have

∑
k∈K

τk〈ξ̄k, x− y〉+
m∑
i=1

λi〈ζ̄i, x− y〉+
√
ε〈b, x− y〉 = 0,

by the convexity of fk(·), k ∈ K and gi(·, vi), i = 1, . . . ,m,

∑
k∈K

τk(fk(x)− fk(y)) +
m∑
i=1

λi(gi(x, vi)− gi(y, vi)) +
√
ε‖x− y‖

>=
∑
k∈K

τk(fk(x)− fk(y)) +
m∑
i=1

λi(gi(x, vi)− gi(y, vi)) +
√
ε‖b‖‖x− y‖

>=0. (4.11)

Finally, from (4.10) and (4.11), and the fact λigi(x, vi) = 0, due to ∑k∈K τk =

1, we obtain

ϕ(x) =
∑
k∈K

τk max
k∈K

fk(x) >=
∑
k∈K

τkfk(x)

>= ϕ(y) +
m∑
i=1

λigi(y, vi)−
√
ε‖x− y‖.

Thus, we complete the proof.

Below, a strong duality relation between the primal problem (RP) and

the dual problem (RD)Q is proposed.

Theorem 4.4.4 (strong duality). Let x̄ ∈ F be a quasi ε-solution of the

robust problem (RP) such that the Slater condition holds at this point. Then

there exists (τ̄ , v̄, λ̄) ∈ Rl
+ × Rq × Rm

+ such that (x̄, τ̄ , v̄, λ̄) ∈ FQ is a quasi

ε-solution of problem (RD)Q.
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Proof. Let x̄ ∈ F be a quasi ε-solution of (RP) such that the Slater condition

holds at this point. By Theorem 2.4.3, there exist τ := (τ1, . . . , τl) ∈ Rl
+\{0},

v̄i ∈ Vi and λi >= 0, i = 1, . . . ,m, b ∈ B such that

0 ∈
∑
k∈K

τk∂fk(x̄) +
m∑
i=1

λi∂gi(·, v̄i)(x̄) +
√
εb,

τk(fk(x̄)−max
k∈K

fk(x̄)) = 0, k ∈ K,

λigi(x̄, v̄i) = 0, i = 1, . . . ,m. (4.12)

Putting

τ̄k := τk∑
k∈K τk

, k ∈ K, λ̄i := λi∑
k∈K τk

, i = 1, . . . ,m,

we then have τ̄i+(τ̄1, . . . , τ̄l) ∈ Rl
+ with ∑k∈K τ̄k = 1 and λ̄ := (λ̄1, . . . , λm) ∈

Rm
+ . Observe that the assertion in (4.12) is still valid when τk’s and λi’s are

replaced by τ̄k’s and λ̄k’s, respectively. Consequently, (x̄, τ̄ , v̄, λ̄) is a feasible

solution of (RD)Q.

Now, by Theorem 4.4.3 (weak duality), for any feasible (y, τ, v, λ) of

(RD)Q,

ϕ(x̄) +
m∑
i=1

λ̄igi(x̄, v̄i) = ϕ(x̄)

>= ϕ(y) +
m∑
i=1

λigi(y, vi)−
√
ε‖x̄− y‖,

which means that (x̄, τ̄ , v̄, λ̄) is a quasi ε-solution of problem (RD)W.
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Conclusions

In this dissertation, we studied some characterizations of an optimal so-

lution and a quasi α-solution for the robust convex minimax optimization

problem (RP). By using the obtained results, we then studied optimality

conditions and duality theorems both for a weak Pareto solution and a weak

quasi ε-Pareto solution to the robust multiobjetive optimization problem.

Moreover, a robust convex minimax fractional programming problem in the

face of data uncertainty is also discussed by using the robust optimization

approach (worst-case approach). Optimality conditions and approximate

duality theorems for such a robust convex minimax fractional programming

problem were explored under the Slater condition.
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