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Chapter 1

Premliminaries

1.1 Rings and Ideals

Much of algebraic geometry comes from the fact that geometric problems

can be translated into algebraic problems. In this chapter, we construct some

fundamental algebraic concepts might be different to general algebraic concepts.

For details, see [2] [3] [8]. If we talk about a ring then it means that the ring is

commutative and with identity.

Definition 1.1.1. A ring is a set with two binary operations (addition and

multiplication ) such that

(1) A is ablian group with respect to addition.

(2) Multiplication is associative and distributive over addition.

(3) xy = yx for all x, y in A.

(4) There exist 1 in A such that x1 = 1x = x for all x in A the identity element

is the unique.

Definition 1.1.2. A ring homomorphism mapping f of a ring A into a ring

B such that

(1) f(x+ y) = f(x) + f(y).

(2) f(xy) = f(x)f(y).

(3) f(1) = 1.

Definition 1.1.3. A subset S of a ring A is a subring of A. If S is closed

under addition and multiplication and contain the identity element of A.

Let Id be a map from S to A by settling Id(x) = x for all x in S, then it is
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easy to verity Id is a ring homomorphism.

Definition 1.1.4. An ideal I of a ring A is a subset of A which is an addition

subgroup and is such that AI is a subset of I.

Proposition 1.1.5. There is a one-to-one order-preserving correspondence

between the ideals J of A which contain I and the ideal J̄ of A/I.

Definition 1.1.6. (1) A zero-divisor in ring A is an nonzero element x which

there exists y 6= 0 in A such that xy = 0.

(2) A ring with no zero-divisor is called an integral domain.

(3) An element x of A is called nilpotent, if xn = 0 for some n > 0.

(4) The multiples ax of an element x ∈ A form a pricipal ideal denote by < x >.

Proposition 1.1.7. (1)If x is nilpotent, then x is zero-divisor.

(2) Let S be a set of units in A, then S is an abelian group.

(3) xis an unit if and only if < x >= A.

Proposition 1.1.8. Let A be a non-zero ring, then the following are equiva-

lent:

(1) A is a field.

(2) The only ideals in A are < 0 > and whole ring A.

(3) Every homomorphism of A into a non-zero ring B is injective.

Proof. (1)⇒(2) Let a be a nonzero ideal in A. there exist a nonzero element x

in a, then x is unit, hence < x >= A is a subset of a, hence a is whole ring.

(2)⇒(3) Let φ be a ring homomorphism from A to B. Then kerφ is a proper ideal

in A and B is non-zero ring. Therefore kerφ = 0, hence φ is injective.

(3)⇒(1) Let x be an element of which is not unit. Then < x > is a proper ideal,

hence B = A/ < x > is not 0. Let φ be a natural map from A to B. Then φ is a

homomorphism. By hypothesis φ is injective. Therefore < x >= 0, hence x = 0.
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1.2 Prime ideals and maximal ideals

Definition 1.2.1. An ideal p in A is prime, if p is not whole ring A, xy is an

element in p, then x in p or y in p.

Definition 1.2.2. An ideal m in A is maximal, if m is not whole ring and if

there is no ideal a such that m ( a ( A.

Proposition 1.2.3. If f is a ring homomorphism from A to B and q is a

prime ideal in B. Then f−1(q) is a prime ideal in A.

But if m is a maximal ideal in B. It is not necessarily true that f−1(m) is

maximal in a. For true that f−1(n) is prime.

Definition 1.2.4. A partial order on a set S is a relation ≤ on S which is

(1) For all x in S, there is x ≤ x.

(2) For all x, y in S, if x ≤ y, y ≤ x, then x = y.

(3) For all x, y, z in S, there is x ≤ y, y ≤ x, then x ≤ z.

Definition 1.2.5. (1) A partial order ” ≤ ” on a set S is total order, if for

any x, y ∈ S, either x ≤ y or y ≤ x. In particular, if ≤ is a partial order on a set

S and C is a subset of S, then we say that set C is a chain if ≤ is a total order

on C.

(2) Let ≤ be a partial order on a set S. Let A be a subset of S. An upper bound

to the set A is an element s of S such that a ≤ s for all a ∈ A.

Let ≤ be a partial order on a set S. m is an element of S is called a maximal

element of S if there is no element s ∈ S and s is not m such that m ≤ s.

Theorem 1.2.6. [Zorn’s Lemma] Let ≤ be a partial order on a non-empty

set S. If every chain in S has an upper bound in S, then S contain a maximal

element.

Theorem 1.2.7. For every ring A, If A is not 0, then A has at least one

maximal ideal.

3



Proof. Since A is a non-zero ring. Then we can take a set S is all proper

ideals in A. Since < 0 > is a proper ideal, so S is not an empty set. Let C be a

chain consisting of ideals in S. The union U of all ideals in the chain C. Then for

all ideals in chain C is always contained in U . Let a, b be elements of U . Then

there exists I, J in C such that a is an element of I, b is an element of J . Since

C is chain,therefore I is a subset of J or J is a subset of I, We can suppose I is

a subset J . That means a, b are in J . Hence a − b is in J , therefore a − b is an

element of U . Let a be an element of U , and let r be in A. Then there exists I

in C such that a is in I. That means ar is an element of I in U . Therefore U

is an ideal in C. Since 1 is not in any of the ideals in the chain C, so i is not

in U . Therefore U is a proper ideal, then U is in C. By Zorn’s Lemma, S has a

maximal element which in turn is a maximal ideal of ring A.

Corollary 1.2.8. If a is a proper ideal, there exists a maximal ideal of A

containing a.

Corollary 1.2.9. Every non-unit of A is contained in a maximal ideal.

Definition 1.2.10. A ring A with exactly one maximal ideal m is called a

local ring.

Proposition 1.2.11. (1) Let A be a ring and m is a proper ideal of such

that for every x ∈ A/m is a unit in A. Then A is a local ring and m its maximal

ideal.

(2) Let A be a ring and m is a maximal ideal of A, such that every element of

1 +m is a unit in A. Then A is local ring.

Proof. (1) Every proper ideal consists of non-units, hence every non-units

are contained in m, therefore m is the only maximal ideal of A.

(2) Let x be an element of A/m. Since m is a maximal ideal. That means

< x > +m = A. Hence there exists an element y in A and an element t in m

such that xy + t = 1. Hence xy = 1− t is in 1 + m. Therefore x is unit. By (1)

A is local ring.
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1.3 Nilradical and Jacobson radical

Proposition 1.3.1. The set n of all nilpotent elements in a ring A is an ideal

and A/n has no nilpotent element( 6= 0).

Proof. If x is an element of n, then ax is in n for all a ∈ A. Let x, y be in

n, then xm = 0, yn = 0. By the binomial theorem (valid in any commutative

ring). We have (x+ y)m+n−1is a sum of integer multiples of products xryt, where

r + t = n + m − 1. We can not have both r < m and s < n, thenxryt = 0.

Therefore (x + y)n+m−1 = 0. Hence x + y ∈ n. Therefore n is an ideal, Let x̄ be

in A. n be represented by x is an element of A. Then x̄n is represented by xn.

If x̄n = 0, then xn ∈ n that means (xn)k = 0 for some k > 0. Hence x is in n,

therefore x̄ = 0.

Definition 1.3.2. n is a set of all nilpotent elements of is called the nilradical

of A.

Proposition 1.3.3. The nilradical of A is the intersection of all prime ideals

of A.

Proof. Let n
′
denote the intersection of all prime ideals of A. If f is nilpotent

of A and if P is a prime ideal, then fn = 0 is in p for some n > 0. Hence f is in

p. Hence f is in n. If f is not nilpotent. Let Σ be the set of ideals a with the

property n > 0, then fn is not in a. 0 is in Σ and Σ is not an empty set. As in

Zorn’s lemma can be applied to the setting Σ order by inclusion. Therefore Σ has

a maximal element. Let p be a maximal element of Σ. Let x, y be not in p, then

p is a proper subset of < x > +p, and < y > +p, for some m,n. That means

< x > +p, < y > +p are not in Σ. Hence fm and fn are in < x > +p, < y > +p

respectively, for some m,n. It follows that fm+n is in p+ < xy >. That means

P+ < xy > are not in Σ. Hence xy is not in p. Therefore p is a prime ideal and

f is not in p. Therefore f is not in n.
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Definition 1.3.4. The Jacobson radical R is defined to be the intersection

of all the maximal ideals of A.

Proposition 1.3.5. x ∈ R if and only if 1− xy is a unit in A for all y ∈ A.

Proof. Suppose 1 − xy is not unit. Since m is a maximal ideal, then 1 − xy is

an element of m. But x is in R, and R is a subset of m, that means xy is in m.

Then 1 is in m, which is absurd. Conversely, suppose x is not in R, then x is not

in m, for some maximal ideal m. Then < x > +m = A, there exists an element

u in m and an element y in A such that u+ xy = 1, then 1− xy is in m, 1− xy
is not a unit.
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Chapter 2

Affine varieties

2.1 Algebraic sets and Hilbert Basis Theorem

In algebraic geometry, we study the common zero sets of polynomials. We

work over algebraically closed k with an arbitrary characteristic. In this chapter

we construct some funamental concept in algebraic geometry. For details, we

refer [7] [9].

Definition 2.1.1. n-dimensional affine space is An := kn = k × · · · × k.

If f ∈ k[x1, . . . , xn] is a polynomial, f defines a function from An to K setting

by f(a1, . . . , an), for every point in An. If f ∈ k[x1, . . . , xn] and p is in An such

that f(p) = 0, then p is called a zero of f . If f ∈ k[x1, . . . , xn] is not a constant,

Z(f) is a set of all zero of f , z(f) is called a hyperplane define by f . Degree

of f is one is called hyperplane. If f is a linear form in k[x1, . . . , xn], Z(f) is

isomorphic to (n− 1)-dimensional linear space.

Definition 2.1.2. Let S be a set of k[x1, . . . , xn], then Z(S) is defined by all

zero of all polynomials in S. X is called an affine algebraic set in An, if there

exists a subset of S in k[x1, . . . , xn] such that X = Z(S).

Proposition 2.1.3. Let S, T be subsets of polynomials in k[x1, . . . , xn].

(1) If S is a subset of T , then Z(T ) is a subset Z(S).

(2) If I is an ideal in k[x1, . . . , xn] generated by S, then Z(S) = Z(I).

Proof. (1) If p is in Z(T ), then f(p) = 0, for any f of T and S is a subset of
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T . It implies for any polynomial g of S is in T . Then g(p) = 0, therefore p is an

element of Z(S).

(2) Let I be an ideal generated by S, then S is a subset of I. That means Z(I)

is a subset of Z(S). Therefore for every p is in Z(S) and f is in S, there is

f(p) = 0. If g is in I, then g can be expressed by a finite sum of figi for some gi

are polynomials of k[x1, . . . , xn]. We know g(p) =
∑

(figi)(p) = fi(p)gi(p) = 0,

then p ∈ Z(S). Therefore Z(S) = Z(I).

If we declare the affine algebraic sets are as the closed sets. Then we may

regard the affine space as topological spaces. For the set of all affine algebraic

set, we can give an induced topology to it.

Proposition 2.1.4. (1) {Sα}α∈A is a family of subsets of k[x1, . . . , xn], then

∩αZ(Sα) = Z(∪αSα).

(2) If S, T ⊆ k[x1, . . . , xn], then Z(S) ∪ Z(T ) = Z(ST ), ST is a set of fg, for

f ∈ S and g ∈ T .

(3) Z(0) is whole space and Z(1) is an empty set.

Proof. (1) By definition p is in ∩αZ(Sα) if and only if f(p) = 0, for all f in

any of the Sα, then p is in Z(∪αSα).

(2) Let p be in Z(S) ∪ Z(T ) and f is a polynomial of S, g is a polynomial of T .

Since f(p) = 0 or g(p) = 0, then fg(p) = f(p)g(p) = 0. Therefore p ∈ Z(ST ).

Let p be a point of Z(ST ), assume p is not in Z(S). Then there exist a polynomial

f of S such that f(p) is not 0. Since g is a polynomial of T . Then fg is in ST .

fg(p) = f(p)g(p) = 0 and f(p) is not 0, hence g(p) = 0. Therefore p is a point of

Z(T ).

Definition 2.1.5. We defined zariski topology on An is taking the closed

subsets to algebraic sets.

If A is a subset of An, we can give the induced topology on it. In particular, if

X is an algebraic set, Then induced Zariski topology on X, if we take the closed
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sets to algebraic subsets in X .

Definition 2.1.6. Let X be a subset of An. The ideal of X is defined by

a set of polynomials of k[x1, . . . , xn] , if take f ∈ I(X) and every point p in X,

then f(p) = 0. The ideal of X is denote by I(X). That is I(X) is the ideal of all

polynomials vanishing on X. In particular, if X is an affine algebraic set, then

Z(I(X)) = X.

If X is an affine algebraic set in An. Then X can be expressed by some

finite set S of polynomials in k[x1, . . . , xn] by Hilbert Basis Theorem. Geometric

consequences for an algebraic set. Every affine algebraic set can be decomposed

into a finite number of ”pieces”.

Lemma 2.1.7. Let R be a ring, the following are equivalent:

(1) Every ideal I of R is finite generated.

(2) R satisfies the asending chain condition: If I1 ⊆ I2 ⊆ I3 ⊆ . . . chain of ideal,

then it become stationary. If R fulfill the properties, R is called Noetherian.

Proof. (1) ⇒ (2) Let I1 ⊆ I2 ⊆ I3 ⊆ . . . be a chain of ideal in R. Put

I := ∪i>0Ii, then I is an ideal. By(1) we can write I =< f1, . . . , fk >. Eachfi lies

in Iii for some ii > 0. Let N = max{i1, . . . , ik}, then f1, . . . , fk are in IN , that

means I is a subset of IN . Since IN is also a subset of I. Therefore IN = IN+1.

(2) ⇒ (1) Let I be an ideal of R, assume I is not finite generator, take f1 is

in I1 and f2 is inI\ < f1 >, inductively we take fn+1 is not in < f1, . . . , fk >. So

we have an ideal chain : < f1 >(< f1, f2 >( · · · (< f1, . . . , fk >( . . . . Infinite

chain where does not become stationary.

Theorem 2.1.8.[Hilber Basis Theorem] Let R be a Noetherian ring, then

R[x1, . . . , xn] is Neotherian.

Proof. Since R[x1, . . . , xn]=R[x1, . . . , xn−1][xn]. That is enough to prove (by

induction), if R is Neotherian ring, then R[x] is Noetherian. Let I be an ideal
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in R[x] is not finite generated. let f1 ∈ I\{0} such that deg(f1) is minimal. let

f2 ∈ I\{f1} be a polynomial of minimal degree. Inductively fn+1 ∈ I\{f1, . . . , fn}
is a polynomial of minimal degree. ni = deg(fi), ai ∈ R{0} is leading coefficient

of fi. Notice: n1 ≤ n2 ≤ n3 ≤ . . . and < a1 >⊂< a1, a2 >⊂< a1, a2, a3 >⊂ . . . .

Assume < a1, . . . ak >=< a1, . . . ak, ak+1 >. It implies ak+1 is an element of

< a1, . . . ak, ak+1 >. We can write ak+1 =
∑k

i=1 biai, for some bi is in R. Let

g := fk+1 −
∑k

i=1 bix
nk+1−ni � fi = fk+1 − (b1x

nk+1−n1 � f1 + b2x
nk+1−n2 � f2 + · · ·+

bkx
nk+1−nk � fk). g is in I\ < f1, . . . fk, >, All sums of g have degree nk+1, and

the sum of leading term is ak+1 −
∑k

i=1 aibi = 0,then deg(g) < nk+1. This is

a contradiction with the way that take fk+1. Hence the chain does not become

stationary. Therefore R is not Noetherian.

Corollary 2.1.9. Every affine algebraic set X ⊆ An is intersection of finitely

many hypersurfaces.

Proof. I(X) is an ideal of k[x1, . . . , xn]. K is a field, it implies k[x1, . . . , xn] is

Neotherian. By Hilbert Basis Theorem, we have I(x) =< f1, . . . , fk >. Z(I(X)) =

X. Then X = Z(f1) ∩ · · · ∩ Z(fk).

2.2 Irreducible components

A topological space may be the union of some smaller topological space. A

topological space X is called reducible, if we can write X = X1 ∪X2, for X1, X2

are closed sets of X and X1 ( X,X2 ( X. X is called irreducible, if it is not

reducible.

Proposition 2.2.1. Let X be an irreducible topological space and U is a

nonempty open subset, then U is dense in X.

Proof. X = (X\U) ∪ Ū , X is irreducible. Then X = X\U or X = Ū . Since

U is nonempty, X is not X\U , therefore X = Ū .
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Example 2.2.2. (1) A point p ∈ An is irreducible.

(2) Z(XY ) ⊂ A2 is reducible. Since Z(XY ) = Z(X) ∪ Z(Y ).

Definition 2.2.3. A topological space X is called Noetherian if every de-

scending chain X ⊃ X1 ⊃ X2 ⊃ . . . of closed subsets becomees stationary.

Proposition 2.2.4. (1) Any subspace Y of a Noetherian topological space X

is Neotherian. (2) An is a Noetherian topological space.

Proof.(1) A desecending chain of closed subset. Y ⊃ Y1 ⊃ Y2 ⊃ . . . , then

for all i there exist Yi = Xi ∩ Y, X is closed subset of Xi. Put x′i = ∩j≤iXj and

Xi ∩ Y = Yi. Then we have X ′1 = X1 ,Y1 = Y ∩X1 = Y ∩X ′1. Then we have a

descending chain of a closed set of X: X ⊃ X ′1 ⊃ X ′2 ⊃ . . . . Since X is Noetherian

topological space, then there exist integer N such that X ′N = XN+1 = . . . . Then

also Y ⊃ Y1 ⊃ Y2 ⊃ . . . becomes stationary. Therefore Y is a Noetherian

topological space.

(2) Let An = X1 ⊃ X2 ⊃ . . . be the chain of closed subsets in An. Then

I(X1) ⊂ I(X2) ⊂ . . . is an ascending chain of ideals in k[x1, . . . , xn]. Thus it

becomes stationary, I(XN) = I(XN+1) = . . . . Therefore An is a Noetherian

topological space.

Theorem 2.2.5 Let X be Noetherian space. (1) X is a union of finitely many

irreducible closed subsets : X = X1 ∪ · · · ∪ Xr. (2) If we require Xj * Xi for

i 6= j, then this decomposition is unique, up to reorder.

Proof. (1) Assume X does not have a decomposition into finitely many

irreducible closed subsets. Then X is not irreducible (if X is irreducible, then

X = X has finitely irreducible decomposition.) Then we can write X = X1 ∪ Y1
X1, Y1 is a closed subset and X1, Y1 6= X. Then at least there is one of {X1, Y1}
does not have a decomposition into finitely many irreducible closed subsets. We

use the same statement as the assumption about X1, repeat argument, X1 =

X2 ∪ Y2 . . . . We get descending chain X ) X1 ) X2 ) . . . . This chain does not
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become stationary which is a contradiction to X being Neotherian.

(2) Let X = X1∪· · ·∪Xr = Y1∪· · ·∪Ys and Xi * Xj, Yi * Xj for i 6= j. We can

write Xi = X ∩Xi = ∪sj=1(Yj ∩Xi), (Xi ∩ Yj is closed.) Since Xi is irreducible,

then Xi = Xi∩Yj for some j.(i.e., Xi ⊂ Yj). Similarly Yj ⊂ Xk for some k. Then

Xi ⊂ Yj ⊂ Xk, it means Xi = Xk and Yj = Xi. So each Xi is equal to one of

Yj, and each Yj is equal to one of Xi. Hence r = s. Then this decomposition is

unique, up to reorder.

In the future we mostly consider only irreducible an algebraic set.

Definition 2.2.6. An affine variety is a irreducible affine algebraic set.

Proposition 2.2.7. Let X be a subset of An is an affine algebraic set. X is

irreducible if and only if I(X) is a prime ideal.

Proof. Let f, g be polynomials of k[x1, . . . , xn] such that fg is in I(X), then

X is a subset of Z(fg) = Z(f) ∪ Z(g). Hence X = (X ∩ Z(f)) ∪ (X ∩ Z(g)

)and (X ∩ Z(f)), (X ∩ Z(g) are closed subsets of X. Then X = (X ∩ Z(f)) or

X = (X∩Z(g)). Therefore X ⊂ Z(f) or X ⊂ Z(g). Assume X is not irreducible

We can write X = X1 ∪ X2 and Xi are closed subsets of X. Z(I(X1)) = X1 is

a subset of X = Z(I(X)), then I(X) is a proper subset of I(X1). Similar: I(X)

is a proper subset of I(X2), let f be in I(X1)\I(X) and g is in I(X2)\I(X). fg

vanishes on X1 ∪X2 = X, then fg is in I(X), therefore I(x) is not irreducible.

Example 2.2.8. An is irreducible.

Definition 2.2.9. Let X 6= ∅ be an irreducible topological space. the di-

mension of X is the largest integer n such that there is an ascending chain

∅ 6= X0 ( X1 ( X2 ( · · · ( Xn = X of irreducible closed subsets of X. If X is a

Neotherian topological space then dim(X) is defined to be the maximum of the

dimensions of the irreducible components of X.

Example 2.2.10. (1) points have dimension 0. (2) A1 has dimension 1. Only

irreducible closed subsets of. A1 are points and A1. (3) An has dimension n (In
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the moment can not prove). It is easy to verify that dim(An) ≥ n. Because

ascending chain: {0} ( Z(x2, . . . xn) ( Z(x3 . . . xn) ( · · · ( Z(xn) ( An, Ao (
A1 ( · · · ( An.

2.3 Hilbert Nullstellensatz

If K is algebraically closed field and f(x) is a polynomial of K[x1, . . . , xn].

We knew the zero set of f(x) is not an empty set.

The question is we are not looking at a single polynomial, we looking a bunch of

polynomials, even be finite and we are not looking at polynomials in one variable,

we working on several variable polynomial ring. We want to get the similar result

like above at the more general case. The weak Nullstellensatz tell we can get the

same result by the just one condition, if k is a algebraically closed field and f(x)

is a polynomial of K[x1, . . . , xn] ,then the zero set of f(x) is not an empty set.

Theorem 2.3.1.[Weak Nullstellensatz] If I is a proper ideal in K[x1, . . . , xn],

then Z(I) 6= ∅.

Proof. We may assume that I is a maximal ideal for there is a maximal

ideal J containing I, and Z(J) is a subset of Z(I). So L = K[x1, . . . , xn]/I is a

field, and K is isomorphic to K + I. Suppose we knew that K = L. Then for

each xi, there is an ai ∈ K such that xi + I = ai + I if and only if xi − ai ∈ I.

Since (x1− a1, . . . , xn− an) is a maximal ideal. So I = (x1− a1, . . . , xn− an) and

Z(I)={(a1, . . . , an)} is not an empty set.

We will show that by two step:

(1) L,K are filed and K is L a subfield. If L is ring-finite over K, then L is

module-finite over K.

(2) If K is an algebraic closed field. If L is module-finite over K, then L = K.

13



Definition 2.3.2. Let R, S be rings, and R is a subring of S. (1)S is said

to be module-finite over R, if S is finitely generated as R-module, S =
∑n

i=1Rsi,

si ∈ S. If S and R are fields, S is a vector space over R dimension by [S : R].

(2) S is called ring-finite over R, if S = R[v1, . . . , vn] for some v1, . . . vn ∈ S.

(3) S is called finitely generated field extension of R, if S = R(v1, . . . , vn) for some

v1, . . . , vn ∈ S.

Definition 2.3.3. Let R be a subring of a ring S. An element v ∈ S is said

to be integral over R, if there is a monic polynomial. F = xn+a1x
n−1+ · · ·+an ∈

R[x], such that F (v) = 0. If R, S are fields, we say that v is algebraic over R. (If

v is integral over R.)

Proposition 2.3.4. Let R be a subring of a domain S. v ∈ S. Then the

following are equivalent.

(1) v is integral over R.

(2) R[v] is module-finite over R.

(3) There is a subring R
′

of S containing R[v], that is module-finite over R.

Proof. (1)⇒(2) Let v be integral over R. Then there exist a monic polyno-

mail. F = xn+a1x
n−1+· · ·+an such that F (v) = vn+a1v

n−1+· · ·+an = 0. Then

we have a equation vn = −a1vn−1 − · · · − an , ai ∈ R it implies vn ∈
∑n−1

i=0 Rv
i.

it follows that vm is in
∑n−1

i=0 Rv
i for all m. So R[v] =

∑n−1
i=0 Rv

i.

(2)⇒(3) Take R
′
= R[v].

(3)⇒(1) If R
′
=

∑n
i=1Rwi, wi ∈ R. Since R[v] is a subset of R

′
, then

vw1 = a11w1 + · · ·+ a1nwn,
...

vwn = an1w1 + · · ·+ annwn.

Since S is a domain, we can consider these equations in the quotient field of S.
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Let

A =


v − a11 . . . −a1n

...
...

−an1 . . . v − ann

 .

We see that (w1, . . . , wn) is a nontrivial solution. So det(A) = 0. This deter-

mination has form vn + a1v
n−1 + · · · + an = 0, ai ∈ R. So v is integral over

R.

Corollary 2.3.5. The set of elements of S that are integral over R is a

subring of S containing R.

Proof. a, b are integral over R, then b is integral over R[a]. So R[a, b] is

module finite over R, and a ± b, ab ∈ R[a, b]. Since R[ab], R[a ± b] ⊆ R[a, b]

module-finite over R. Therefore ab, a± b is integral over R.

Definition 2.3.6. S is integral over R if every element of S is integral over

R.

Proposition 2.3.7. Let L be a field, K is an algebraically closed subfield of

L.

(1) Show that any element of L that is algebraic over K is already in K.

(2) An algebraically closed field has no module-finite field extensions except itself.

Proof. (1) Let a be an element of L and a is algebraic over K. Then there

exist a monic polynomial f ∈ K[x] such that f(a) = 0. Since K is algebraic

closed. Therefore a is in K.

(2) Suppose K is module finite over K. Then L = Kv1+· · ·+Kvn ⊆ K[v1, . . . , vn]

is a subset of L vi is in L. Therefore L is ring-finite over K. That means v1, . . . , vn

are algebraic over K, then v1, . . . , vn ∈ K, therefore L = K.

Suppose K is subfield of a filed L, and L = K(v), for some v ∈ L. Let φ

be a map from k[x] to L = k(v). BY setting φ(x) = v. Since K[x] is PID, let
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kerφ = (F ) F ∈ K[x], then K[x]/(F ) be isomorphic to K[v], therefore (F ) is a

prime ideal.

case (1), F = 0. Then k[x] is isomorphic to K[v]. So K(v) = L is isomorphism

to k(x). In this case L is not ring-finite over K.

case (2), F 6= 0. We may assume F is monic. Then (F ) is a prime ideal, then

F is irreducible, hence (F ) is maximal, then K[x]/(F ) is a field, we can know

K[v] = K(v) is a field. Since F is in kerφ, then F (v) = 0. Then v is algebraic

over K. By proposition 2.3.4. We have L = K[v] = k(v) is module-finite over

K. Theorem 2.3.8.[Zariski] If a field L is ring-finite over a subfield K, then L

is module-finite over K.

Proof. Suppose L = K[v1, . . . , vn]. The case n = 1 is taken care of by the

above discussion. Assume the result for all extensions generated by n−1 element.

Let K1 = K(v1), by induction L = k1[v2, . . . , vn] is module finite over K1, Assume

v1 is not algebraic over K.(If not the proof finished). Each vi satisfies equations:

vn2
2 + a21v

n2−1
2 + · · ·+ a2,n2 = 0,

...

vnn
n + an1v

nn−1
n + · · ·+ an,nn = 0.

Take a ∈ K[v1] such that multiply of all denominators of aij, we get equations:

(av2)
n2 + aa21(av2)

n2−1 + · · ·+ an2a2,n2 = 0,
...

(avn)nn + aan1(avn)nn−1 + · · ·+ annan,nn = 0.

Hence av2, . . . avn is integral over K[v1] ∀z ∈ L = K[v1, . . . , vn]. By Corollary 5,

there is an N ∈ N, such that aNz is integral over k[v1]. Since k(v1) is a subset

of L, this must holed for z is in K(v1). But K(v1) is isomorphic to the field of

rational function in one variable over K, that is impossible.
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If I is a subset of k[x1, . . . , xn] is an ideal, then Z(I) is an affine algebraic set

in An. If X is an affine algebraic set, then I(X) is an ideal in k[x1, . . . , xn].

We know that if X is an affine algebraic set, then Z(I(X)) = X.

But it is not true I(Z(J)) = J , J is an ideal in k[x1, . . . , xn]. But clear we know

J is a subset of I(Z(J)).

If I is an ideal in k[x1, . . . , xn] such that Z(I) is empty if and only if a unit is

in I, when k is algebraic closed, otherwise this theorem is false.

Definition 2.3.9. Let I be an ideal in ring R. The radical of I is a set of for

some positive n and r is R such that rn is in I. The radical of I denote by
√
I.

I is called a radical ideal, if I =
√
I.

Proposition 2.3.10. If X ⊂ An is an affine algebraic set, then I(X) is a

radical ideal.

Proof. Let f be a polynomial of k[x1, . . . , xn] with fn ∈ I(X), then fn is in

I(X), it implies fn(p) = 0. fn(p) = f(p)n = 0, that means f(p) = 0. Therefore

f is in I(X).

Theorem 2.3.11.[Strong Hilbert Nullstellensatz] Let I ⊂ k[x1, . . . , xn]

be an ideal, then I(Z(I)) =
√
I.

Proof. While I is an ideal and generated by f1, . . . , fr,. We know I(Z(I))

is a radical ideal containing I,then I(Z(I)) is a subset of
√
I. Let J be a ideal

of k[x1, . . . , xn, t] and J is generated by I ∪ ft− 1. Let (p,a) be in An+1 and

p is in An, a is in k. (p, a) ∈ Z(J)if and only if p is in Z(I), f(p) � a = 1

if and only if f1(p) = f2(p) = · · · = fr(p) = 0. Since p is a point of Z(I),

then f(p) � a = 0 = 1 this is impossible. Hence Z(J) is an empty set. By

weak Hilbert Nulltellensatz. 1 is in J , then J = k[x1, . . . , xn, t]. Let 1 =

g0(ft − 1) +
∑r

i=1 gifi, g0, . . . .gr ∈ k[x1, . . . , xn, t]. Back to k[x1, . . . , xn] with
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k(x1, . . . , xn). Define ring homomorphism φ from k[x1, . . . , xn, t] to k(x1, . . . , xn)

by φ((x1, . . . , xn, t)) = g(x1, . . . , xn,
1
f
). Apply φ to 1 = g0(ft − 1) +

∑r
i=1 gifi,

g0, . . . .gr ∈ k[x1, . . . , xn, t], then φ(1) = φ(g(f � 1
f
− 1)) +

∑r
i=1 φ(gi)φ(fi) in

k(x1, . . . , xn) 1 =
∑r

i=1 φ(gi)fi.

There exists ni ∈ Z+, such that φ(gi) = Gi

fni
, Gi ∈ k[x1, . . . xn]. Let N =

max{n1, . . . , nr}, multiply by fN . fN =
∑r

i=1 = GifN−ni
� fi ∈ I. Thus I(Z(I))

is a subset of
√
I. Therefor I(Z(I)) =

√
I.

Corollary 2.3.12. We have mutually inverse inclusion-reversing bijection

between affine algebraic sets in An to radical ideals in k[x1, . . . xn].

Corollary 2.3.13. (1) If I is a prime ideal in k[x1, . . . , xn],then Z(I) is

irreducible.

(2) If f is irreducible in k[x1, . . . , xn], then Z(f) is irreducible.

Proof. (1) Let I be a prime ideal, we know I is a subset of
√
I. Let f be a

polynomial of
√
I, then fN is in I. Since I is a prime ideal. then f is in I. Hence

I =
√
I, then I = I(Z(I)). I(X) is prime if and only if X is irreducible.

(2) k[x1, . . . , xn] is a UFD, if f is in k[x1, . . . , xn] is irreducible. then < f > is a

prime ideal. Hence Z(f) = Z(< f >) is irreducible.
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Chapter 3

Projective varieties

3.1 Porjective algebraic sets

In this chapter we construct some basic concept in projective geometry. For

details, see [10].

Let (X, d) is a metric space and S is a subset of X. If S is a subset of { Oα | Oα

are open sets of X}, then ∪α∈AOα is called an open cover of S, and S is called a

compact set, if for all open cover Oα of S, there exist α1, . . . αm are elements of

A such that S ⊆ ∪mi=1Oαr .

We define an equivalence relation On kn+1\{0}. (a0, . . . , an) is relative to (b0, . . . , bn)

if and only if there exists a non-zero real number λ such that (a0, . . . , an) =

λ(b0, . . . , bn). Denote by [a0, . . . , an] for equivalence class. n-dimensional projec-

tive space is a quotient set Pn := (kn+1\{0})/ ∼.

Let Ui := {[a0, . . . , an] ∈ Pn | ai 6= 0 i = 0, . . . , n}. The map ϕi is between Ui to

An, by ϕ([a0, . . . , an]) = (a0
ai
, . . . , âi

ai
, . . . , an

ai
) is obviously bijective withe inverse ui

is from Anto Ui, setting by ui(b0, . . . , b̂i, . . . , bn) = [b0, . . . , 1, . . . , bn].
aj
ai

is called

the affine coordinates of p = [a0, . . . , an] with respect to Ui.

Usually we fix i = 0, we want to know An as a subset of Pn, by identifying the

point (a1, . . . , an) ∈ An with [1, a1, . . . , an] ∈ Pn. In particular, Pn = An ∪H∞ =

U0∪H∞, withH∞ := Pn\U0 = {[a0, . . . , an] | a0 = 0}, H∞ is called the hyperplane

at infinity. We want to define a projective algebraic set ⊂ Pn as zero set of poly-

nomials in k[x0, . . . , xn]. Since f(a0, . . . , an) 6= f(λa0, . . . , λan), f ∈ k[x0, . . . , xn].

Thus f does not define a function. If f is homogeneous, f can define a function

from Pn to k.
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If f ∈ k[x0, . . . , xn] is homogeneous of degree d, then for all λ ∈ k. There is

f(λa0, . . . , λan) = λdf(a0, . . . , an). Whether g(a0, . . . , an) = 0 depends only on

[a0, . . . , an].

Definition 3.1.1. Let g ∈ k[x0, . . . , xn] be homogeneous, a point p =

[a0, . . . , an] is a zero of g(g(p) = 0) if and only if g[a0, . . . , an) = 0. By the

above this is independent of the representive (a0, . . . , an). Let S ⊂ k[x0, . . . , xn]

be a set of homogeneous polynomials, the projective zero set of S. Z(S) := {p ∈
Pn | f(p) = 0, ∀f ∈ S} is called a projective algebraic set.

Example 3.1.2. (1) ∅ = Z(1), Pn = Z(∅).
(2) If p = [a0, . . . , an] ∈ Pn, then {p} = Z(a1x0 − a0x1, a2x0 − a0x2, . . . , anx0 −
a0xn).

Definition 3.1.3. Any polynomial f ∈ k[x0, . . . , xn] can be written in a

unique way as a sum f = f (0) + · · ·+ f (d) of forms f (i) of degree i. f (i) are called

homogenous components of f .

Definition 3.1.4. An ideal I ⊂ k[x0, . . . xn] is called homogeneous ideal if for

f ∈ I all the homogeneous components f (i) are in I.

Proposition 3.1.5. An ideal I ∈ k[x0, . . . , xn] is homogeneous if and only if

it is generated by homogeneous elements.

Proof Assume I is homogeneous. Let {fα}α be a set of generators of I.

Then {f (i)
α }(α,i) are a set of homogeneous generators. Let I be generated by

homogeneous polynomials {gi}, let f be a polynomial in I. We can write f =∑
i aigi, ai ∈ k[x0, . . . , xn]. By gi is homogeneous, thus the homogeneous part of

aigi of degree d is just d
(d−deg(gi))
i � gi, then f (d) =

∑
i a

(d−deg(gi))
i � gi ∈ I (since

gi ∈ I).

Definition 3.1.6. Let I ⊂ k[x0, . . . , xn] be a homogeneous ideal. The pro-

jective zero set of I is defined by Zp(I) = Z(I) = {p ∈ Pn | f(p) = 0} for

all homogeneous f ∈ I. For a subset X in Pn, the homogeneous ideal of X is
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defined by IH(X) = I(X) :=< {f ∈ k[x0, . . . , xn] | f : homogeneous, f(p) =

0, for all p ∈ X} >, by definition this is a homogeneous ideal.

If f = f (0)+f (1)+· · ·+f (d) is the decomposition into homogeneous component,

then Z(f) = ∩di=0(f
(i)). If f have non-zero constant part, then Z(f) is an empty

set.

3.2 Zariski topology of projective varieties

Many properties on affine space is also hold on projective space, such as :

(1) If X ⊂ Y, Pn are projective algebraic sets, then I(X) ⊃ I(Y ).

(2) If Y ⊂ Pn is a projective algebraic set, then Z(I(X)) = X.

(3) I ⊂ k[x0, . . . , xn] is homogeneous ideal, I(Z(I)) ⊃ I.

(4) If S ⊂ k[x0, . . . , xn] is a set of homogeneous Z(S) = Z(< S >).

(5) For a family {Sα}α of a set of homogeneous polynomials. Z(< ∪αSα >) =

Z(∪αSα) = ∩αZ(Sα).

(6) If S, T ⊂ k[x0, . . . , xn] set of homogeneous polynomial ST = {fg | f ∈
S, g ∈ T}, then Z(ST ) = Z(S) ∪ Z(T ).

Then we know that arbitrary intersections and finite unions of projective algebraic

sets are projective algebraic set ∅, Pn are projective algebraic sets, now we can

define a topology on projective space.

Definition 3.2.1. The Zariski topology on Pn is the topology whose closed

sets are projective algebraic set. If X ⊂ Pn is a subset give it the induce topology.

(The Zariski topology on X.)
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Definition 3.2.2. A projective variety is an irreducible projective algebraic

set. A quasi-projective algebraic set is an open subset of a projective variety. A

variety is a locally closed subvariety of An, or Pn.

Proposition 3.2.3. k[x0, . . . , xn] is Noetherian,then the same proof as in

affine case shows Pn is Noetherian topological space.

Proof. If x1 ⊃ x2 ⊃ . . . chain of closed subsets of Pn, then I(x1) ⊂ I(x2) ⊂
. . . is a chain of ideals in k[x0, . . . , xn]. Thus k[x0, . . . , xn] is Noetherian. As

xi = Z(I(xi)), also the original chain x1 ⊃ x2 ⊃ . . . become stationary.

Every subspace of Pn is Noetherian, in particular quasi-projective variety is

Noetherian. That means quasi-projective variety has a unique decomposition into

irreducible components.

If we use the identification: An = U0 = {[1, a1, . . . , an] ∈ Pn} ⊂ Pn, we get

An = Pn\Z(x0) is an open subset of Pn. (i.e., An is a quasi-projective variety.)

Any affine algebraic sets are quasi-projective algebraic sets.

3.3 Affine cones and the projective Nullstellen-
satz

Projective varieties of Nullstellensatz is also hold on projective space. In

other words we have bijective from closed sets of Pn to homogeneous ideals in

k[x0, . . . , xn].

{projective algebraic set in Pn} I−−−→ {homogeneous ideals in k[x0, . . . , xn]}

{projective algebraic set in Pn} Z←−−− {homogeneous ideals in k[x0, . . . , xn]}
We will prove by reducing to the case of An+1 making use of affine cones.

Definition 3.3.1. A non-empty affine algebraic set X ⊂ An+1 is called a

cone, if for all p = (a0, . . . , an) ∈ X and all λ ∈ k, λp = (λa0, . . . , λan) ∈ X.
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Example 3.3.2. The projective variety X = Z(x2 + y2 − z2) ⊂ P2 is called

a conic curve.

If X ⊂ Pn is a projective algebraic set the affine cone over X is C(X) :=

{(a0, . . . , an) ∈ An+1 | [a0, . . . , an] ∈ X} ∪ {0} is a cone.

Lemma 3.3.3. Let X be a nonempty projective algebraic set.

(1) X = Zp(I) for I is a homogeneous ideal in k[x0, . . . , xn], then C(X)=Z(I) is

a subset of An+1 (in particular affine algebraic set).

(2) I(c(X)) = IH(X).

Theorem 3.3.4. [Projective Nullstellensatz] Let I be a homogeneous ideal of

k[x0, . . . xn], then (1) Zp(I) is an empty set if and only if I contain all forms of

degree ≥ N for some N . (2) If Zp(I) is a nonempty set, then I(Zp(I)) =
√
I.

Proof. (1) Let X = Zp(I), X be an empty set if and only if C(X) = {0},
C(X) = Z(I) ∪ {0}. Thus X is an empty set if and only if Z(I) is an empty set

or Z(I)={0}. By affine Nullsteeensatz
√
I = k[x0, . . . , ξn] or

√
I =< x0, . . . , xn >,

then < x0, . . . , xn > is a subset of I(C(X)) =
√
I. Therefore for each i = 0, . . . , n,

there exists ji with xjii ∈ I. We can take N =: j0+, . . . , jn.

(2) Let X = Z(I) be a non-empty set, then IH(X) = I(C(X)) = I(Za(I)) =
√
I.

So we get a very similar version of the Nullstellensatz, only the ideal <

x0, . . . , xn > lead to exceptions. It is called the irrelevant ideal.

Corollary 3.3.5. IH and Zp are mutually inverse bijection between non-

irrelevant homogeneous radical ideals I ⊂ k[x0, . . . , xn] and projective algebraic

set X ⊂ Pn. i.e.,

{projective algebraic set inPn} IH−−−→ {homogeneous ideals in k[x0, . . . , xn]}

{projective algebraic set inPn} Zp←−−− {homogeneous ideals in k[x0, . . . , xn]}

Proposition 3.3.5. (1) A projective algebraic set X ⊂ Pn is a projective

variety if and only if X = Z(I) I ⊂ k[x0, . . . , xn] is a homogeneous prime ideal.
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(2) f ∈ k[x0, . . . , xn] is homogeneous and irreducible if and only if Zp(f) is irre-

ducible in Pn.

Proof. (1) Assume X is reducible. Then X = X1 ∪ X2 for closed subset

X1, X2 is a proper subset of X. Hence C(X) = C(X1) ∪ C(X2) is a reducible

subset of An+1. Therefore IN(X) = I(C(X)) is not a prime ideal.

Assume I := IH(X) is not a prime ideal. Then there exists f, g is in k[x0, . . . , xn]\I,

and fg is in I. Let i, j ∈ Z+ be minimal with f (i), g(j) is not in I. Sub-

tracting homogeneous component of lower degree of f and g. We can assume

f starts in degree i, g starts in degree j. f (i)g(j) is homogeneous component of

minimal degree in fg ∈ I, (I is homogeneous ideal.) then f (i)g(j) ∈ I. Let

X1 = Zp(I ∪ f (i)) = Zp(I) ∩ Z(f (i)), X2 = Zp(I ∪ g(i)) = Zp(I) ∩ Z(g(i)). Hence

X1, X2 ( X, and X = X1 ∪X2. Therefore X is reducible.

(2) Follows in the same way as in the affine case.
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Chapter 4

Equations defining rational curves
on a rational surface scroll S(1,1)

In this chapter, we would like to focus our interest on the problem to describe

the equations defining the rational curves. As a beginning of this problem we

study the rational curve Cd ⊂ P3 parameterized as

Cd = {[sd(P ) : sd−1t(P ) : std−1(P ) : td(P )] | P ∈ P1}.

This parametrization of Cd is a kind of generalization of the rational normal

curve C ⊂ P3 of degree 3. Then the curve Cd is a smooth rational curve of

degree d contained in a smooth rational normal surface scroll S(1, 1). These

investigations enable us to determine the precise shapes of the minimal generators

of the homogenous ideal ICd
of Cd. The following is our main result.

Theorem 4.1.1. Let Cd ⊂ P3 be a rational curve defined as the parametriza-

tion

Cd = {[sd(P ) : sd−1t(P ) : std−1(P ) : td(P )] | P ∈ P1}

where d ≥ 3. Then

(1) The curve Cd is a smooth rational curve of degree d contained in the ratio-

nal normal surface scroll S(1, 1).

(2) The defining ideal ICd
of Cd is minimally generated as following:

ICd
= 〈X0X3 −X1X2, Fd,1, Fd,2, . . . , Fd,d−1〉

where Fd,i = Xd−i−1
0 X i

2 −Xd−i
1 X i−1

3 for 1 ≤ i ≤ d− 1.
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Notation and Remark 4.1.2. (1) Let S(1, 1) ⊂ P3 be the rational normal

surface scroll of degree 2. Let S = k[X0, X1, X2, X3] be the homogeneous coordi-

nate ring of P3. Then S(1, 1) is defined by the quadratic equation X0X3−X1X2.

(2) Let C ⊂ P3 be a rational normal curve of degree 3. Then C can be defined

by the parameterization

C = {[s3(P ) : s2t(P ) : st2(P ) : t3(P )] | P ∈ P1}

and the ideal IC of C is generated by the following three quadratic equations:

{X0X2 −X2
1 , X1X3 −X2

2 , X0X3 −X1X2}.

Thus C is contained the rational normal surface scroll S(1, 1).

4.1 Minimal set of generators of an ideal

Let Z ⊂ Pr be a nondegenerate projective irreducible curve and let IZ be the

homogeneous ideal of Z inR. Then we can choose the minimal set of homogeneous

generators for IZ as IZ is finitely generated. For the convenience of the reader,

we revisit the notion of minimal set of generators of an ideal IZ . Let

M = {Gi,j ∈ K[X0, X1, . . . , Xr] | Gi,j ∈ IZ for 2 ≤ i ≤ m and 1 ≤ j ≤ `i}

be the set of homogeneous polynomials of degree deg(Gi,j) = i. Let (IZ)≤t be

the ideal generated by the homogeneous polynomials in IZ of degree at most t.

Then M is the minimal set of generators of IZ if and only if the following three

conditions hold:

(i) IZ is generated by the polynomials in M (i.e., IZ = 〈M〉).

(ii) Gi,1, Gi,2, . . . , Gi,`i are K-linearly independent forms of degree i for each

2 ≤ i ≤ m.

26



(iii) Gi,j /∈ (IZ)≤i−1 for each 2 ≤ i ≤ m.

4.2 Proof of Main Theorem

This section is devoted to proving Theorem . We keep the notations in the pre-

vious section. Let Cd ⊂ P3 (d ≥ 3) be a rational curve defined as the parametriza-

tion

(0.1) Cd = {[sd(P ) : sd−1t(P ) : std−1(P ) : td(P )] | P ∈ P1}.

Lemma 4.2.1. Let Cd be a curve just stated as above. Then Cd is smooth

and of degree d.

Proof. The case where d = 3 follows from Notation and Remark .(2). Sup-

pose that d > 3. Then we can see that the parametrization (0.1) comes from the

embedding νd : P1 → Pd by

P ↪→ [sd(P ) : sd−1t(P ) : · · · : std−1(P ) : td(P )] for P ∈ P1

of a projective line P1. More precisely, we denote C̃d the image of P1 by the map

νd and let L be a (d − 4)-dimensional linear subspace of Pd spanned by (d − 3)

standard coordinate points

{[0, 0, 1, 0, . . . , 0, 0], [0, 0, 0, 1, 0, . . . , 0, 0], . . . , [0, 0, · · · , 0, 1, 0, 0]}.

Then Cd is obtained by the linear projection map πL : C̃d → P3 of C̃d from L.

Since L ⊂ Pr \ C2
d , the map πL is an isomorphism by Notation and Remark .(3).

Thus Cd is a smooth rational curve of degree d.

Proposition 4.2.2. Let Cd be as in Lemma . Then the curve Cd is contained

in the rational normal surface scroll S(1, 1).

Proof. Consider the parametrization (0.1) of Cd. Then it is easy to see that

the defining ideal ICd
of Cd contains the quadratic equation X0X3 − X1X2 and

hence Cd is a subvariety of S := S(1, 1) by Notation and Remark .(1).
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Example 4.2.3. For d = 4, 5, 6, 7, 8, 9, 10, let Cd ⊂ P3 be curves defined as

the parametrization (0.1). For the simplicity, put

Fd,i = Xd−i−1
0 X i

2 −Xd−i
1 X i−1

3

for 4 ≤ d ≤ 10 and 1 ≤ i ≤ d − 1. Then by means of the Computer Algebra

System Singular [6], the defining ideal ICd
for d = 4, 5, 6, 7, 8, 9, 10 are respectively

minimally generated as followings:

(i) IC4 = 〈X0X3 −X1X2, F4,1, F4,2, F4,3〉,

(ii) IC5 = 〈X0X3 −X1X2, F5,1, F5,2, F5,3, F5,4〉

(iii) IC6 = 〈X0X3 −X1X2, F6,1, F6,2, F6,3, F6,4, F6,5〉

(iv) IC7 = 〈X0X3 −X1X2, F7,1, F7,2, F7,3, F7,4, F7,5, F7,6〉

(v) IC8 = 〈X0X3 −X1X2, F8,1, F8,2, F8,3, F8,4, F8,5, F8,6, F8,7〉

(vi) IC9 = 〈X0X3 −X1X2, F9,1, F9,2, F9,3, F9,4, F9,5, F9,6, F9,7, F9,8〉

(vii) IC10 = 〈X0X3 −X1X2, F10,1, F10,2, F10,3, F10,4, F10,5, F10,6, F10,7, F10,8, F10,9〉.

These examples and the observations about the pattern of the minimal gen-

erators of defining ideals ICd
enable us to pose the following proposition.

Proposition Let Cd be as in Lemma . Then the defining ideal ICd
of Cd is

minimally generated as following:

ICd
= 〈X0X3 −X1X2, Fd,1, Fd,2, . . . , Fd,d−1〉
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where Fd,i = Xd−i−1
0 X i

2 −Xd−i
1 X i−1

3 for 1 ≤ i ≤ d− 1.

Proof. If d = 3, then Cd is a rational normal curve (see Notation and Remark

.(2)). So we may assume that d ≥ 4. PutMd = {X0X3−X1X2, Fd,1, Fd,2, . . . , Fd,d−1}.
Then since Cd ⊂ S(1, 1) by Proposition . (1), we can see that X0X3−X1X2 ∈ ICd

.

Also it can be shown that Fd,i([s
d : sd−1t : std−1 : td]) = 0 for all 1 ≤ i ≤ d − 1

as the parametrization (0.1). This shows that Md ⊂ ICd
. Now we will show that

ICd
= 〈Md〉 by verifying the three conditions (ii), (iii) and (i) in subsection 2. 2

hold for the set Md in tern. For the condition (ii), it suffices to show that {Fd,i}
are K-linearly independent polynomials of degree d− 1. To do this, consider the

degree of X0 in each Fd,i for 1 ≤ i ≤ d− 1. Then one can see that Fd,i for each i

can not be written by a linear combination of the other F ′d,js.

Let < Md >= I ⊆ ICd
and. Q = X0X3 −X1X2. We claim that Fd,i /∈< Q >

1 ≤ i ≤ d− 1. Let F ∈< Q > , then F = (X0X3−X1X2) ·
∑
ajX

i0
0 X

i1
1 X

i2
2 X

i3
3 =∑

amX
i0+1
0 X i1

1 X
i2
2 X

i3+1
3 +

∑
akX

i0
0 X

i1+1
1 X i2+1

2 X i3
3 i0, i1, i2, i3 ≥ 0, j m k ∈ Z+,

aj am ak ∈ k\{0}. That means F has a monomial always has varieties X0, X3.

Therefore Fd,i /∈< Q > 1 ≤ i ≤ d − 1 To show that (i) (iii) hold, we use

[4, Theorem 4.8] or [5, Theorem 5.1]. In these papers the authors provided the

number of minimal generators of the defining ideal ICd
of Cd. Indeed one can

verity that the number of polynomials in M is same with the number of minimal

generators of the defining ideal ICd
of Cd.
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