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Chapter 1

Premliminaries

1.1 Rings and Ideals

Much of algebraic geometry comes from the fact that geometric problems
can be translated into algebraic problems. In this chapter, we construct some
fundamental algebraic concepts might be different to general algebraic concepts.
For details, see [2] [3] [8]. If we talk about a ring then it means that the ring is

commutative and with identity.

Definition 1.1.1. A ring is a set with two binary operations (addition and
multiplication ) such that
(1) A is ablian group with respect to addition.
(2) Multiplication is associative and distributive over addition.
(3) zy = yx for all z,y in A.
(4) There exist 1 in A such that z1 = 1z = «x for all z in A the identity element

is the unique.
Definition 1.1.2. A ring homomorphism mapping f of a ring A into a ring
B such that
(1) fle+y) = fz)+ f(y).
(2) f(zy) = f(=)f(y).
(3) f(1) =1.
Definition 1.1.3. A subset S of a ring A is a subring of A. If S is closed

under addition and multiplication and contain the identity element of A.

Let Id be a map from S to A by settling Id(x) = x for all  in S, then it is
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easy to verity I/d is a ring homomorphism.

Definition 1.1.4. An ideal I of a ring A is a subset of A which is an addition
subgroup and is such that Al is a subset of I.

Proposition 1.1.5. There is a one-to-one order-preserving correspondence

between the ideals J of A which contain I and the ideal J of A/I.

Definition 1.1.6. (1) A zero-divisor in ring A is an nonzero element x which
there exists y # 0 in A such that zy = 0.
(2) A ring with no zero-divisor is called an integral domain.
(3) An element x of A is called nilpotent, if ™ = 0 for some n > 0.

(4) The multiples az of an element = € A form a pricipal ideal denote by < x >.

Proposition 1.1.7. (1)If x is nilpotent, then x is zero-divisor.
(2) Let S be a set of units in A, then S is an abelian group.
(8) xis an unit if and only if <z >= A.

Proposition 1.1.8. Let A be a non-zero ring, then the following are equiva-
lent:
(1) A is a field.
(2) The only ideals in A are < 0 > and whole ring A.

(3) Every homomorphism of A into a non-zero ring B is injective.

Proof. (1)=-(2) Let a be a nonzero ideal in A. there exist a nonzero element x
in a, then x is unit, hence < x >= A is a subset of a, hence a is whole ring.
(2)=(3) Let ¢ be a ring homomorphism from A to B. Then ker¢ is a proper ideal
in A and B is non-zero ring. Therefore ker¢ = 0, hence ¢ is injective.

(3)=-(1) Let = be an element of which is not unit. Then < x > is a proper ideal,
hence B = A/ <z > is not 0. Let ¢ be a natural map from A to B. Then ¢ is a
homomorphism. By hypothesis ¢ is injective. Therefore < x >= 0, hence x = 0.

2



1.2 Prime ideals and maximal ideals

Definition 1.2.1. An ideal p in A is prime, if p is not whole ring A, xy is an

element in p, then z in p or y in p.

Definition 1.2.2. An ideal m in A is mazimal, if m is not whole ring and if

there is no ideal a such that m C a C A.

Proposition 1.2.3. If f is a ring homomorphism from A to B and q is a
prime ideal in B. Then f~1(q) is a prime ideal in A.

But if m is a maximal ideal in B. It is not necessarily true that f~'(m) is

maximal in a. For true that f~!(n) is prime.

Definition 1.2.4. A partial order on a set S is a relation < on S which is
(1) For all z in S, there is x < z.
(2) For all z,y in S, if x <y, y <z, then x = y.
(3) For all z,y,z in S, there is <y, y < z, then z < z.

Definition 1.2.5. (1) A partial order ” < ” on a set S is total order, if for
any x,y € S, either x <y or y < . In particular, if < is a partial order on a set
S and C is a subset of S, then we say that set C' is a chain if < is a total order
on C.

(2) Let < be a partial order on a set S. Let A be a subset of S. An upper bound
to the set A is an element s of S such that a < s for all a € A.

Let < be a partial order on a set S. m is an element of S is called a maximal

element of S if there is no element s € S and s is not m such that m < s.

Theorem 1.2.6. [Zorn’s Lemma] Let < be a partial order on a non-empty
set S. If every chain in S has an upper bound in S, then S contain a mazximal

element.

Theorem 1.2.7. For every ring A, If A is not 0, then A has at least one

maximal ideal.



Proof. Since A is a non-zero ring. Then we can take a set S is all proper
ideals in A. Since < 0 > is a proper ideal, so S is not an empty set. Let C be a
chain consisting of ideals in S. The union U of all ideals in the chain C'. Then for
all ideals in chain C' is always contained in U. Let a,b be elements of U. Then
there exists I, J in C' such that a is an element of I, b is an element of J. Since
C' is chain,therefore I is a subset of J or J is a subset of I, We can suppose [ is
a subset J. That means a,b are in J. Hence a — b is in J, therefore a — b is an
element of U. Let a be an element of U, and let r be in A. Then there exists [
in C' such that a is in I. That means ar is an element of [ in U. Therefore U
is an ideal in C'. Since 1 is not in any of the ideals in the chain C', so ¢ is not
in U. Therefore U is a proper ideal, then U is in C'. By Zorn’s Lemma, S has a

maximal element which in turn is a maximal ideal of ring A.

Corollary 1.2.8. If a is a proper ideal, there exists a maximal ideal of A

containing a.
Corollary 1.2.9. Every non-unit of A is contained in a mazximal ideal.

Definition 1.2.10. A ring A with exactly one maximal ideal m is called a

local ring.

Proposition 1.2.11. (1) Let A be a ring and m is a proper ideal of such
that for every x € A/m is a unit in A. Then A is a local ring and m its mazximal
1deal.

(2) Let A be a ring and m is a mazimal ideal of A, such that every element of
1+ m is a unit in A. Then A is local ring.

Proof. (1) Every proper ideal consists of non-units, hence every non-units
are contained in m, therefore m is the only maximal ideal of A.

(2) Let  be an element of A/m. Since m is a maximal ideal. That means
< x > +m = A. Hence there exists an element y in A and an element ¢ in m
such that zy +¢ = 1. Hence zy = 1 — t is in 1 + m. Therefore z is unit. By (1)

A is local ring.



1.3 Nilradical and Jacobson radical

Proposition 1.3.1. The set n of all nilpotent elements in a ring A is an ideal
and A/n has no nilpotent element(# 0).

Proof. If x is an element of n, then ax is in n for all a € A. Let z,y be in
n, then 2™ = 0, y" = 0. By the binomial theorem (valid in any commutative
ring). We have (x + )™ !is a sum of integer multiples of products z"y*, where
r+t=mn+m—1We can not have both r < m and s < n, thenz"y* = 0.
Therefore (z + y)"*™~! = 0. Hence x + y € n. Therefore n is an ideal, Let Z be
in A. n be represented by x is an element of A. Then z" is represented by z".
If z" = 0, then 2 € n that means (z")* = 0 for some k > 0. Hence x is in n,

therefore 7 = 0.

Definition 1.3.2. nis a set of all nilpotent elements of is called the nilradical
of A.

Proposition 1.3.3. The nilradical of A is the intersection of all prime ideals
of A.

Proof. Let n’ denote the intersection of all prime ideals of A. If f is nilpotent
of A and if P is a prime ideal, then f™ = 0 is in p for some n > 0. Hence f is in
p. Hence f is in n. If f is not nilpotent. Let X be the set of ideals a with the
property n > 0, then f" is not in a. 0 is in ¥ and ¥ is not an empty set. As in
Zorn’s lemma can be applied to the setting > order by inclusion. Therefore ¥ has
a maximal element. Let p be a maximal element of . Let x,y be not in p, then
p is a proper subset of < x > +p, and < y > +p, for some m,n. That means
< x> -+p, <y>+parenotin 2. Hence f™ and f™ arein < x > +p, <y > +p
respectively, for some m,n. It follows that f™*" is in p+ < zy >. That means
P+ < xy > are not in ¥. Hence zy is not in p. Therefore p is a prime ideal and

f is not in p. Therefore f is not in n.



Definition 1.3.4. The Jacobson radical R is defined to be the intersection

of all the maximal ideals of A.

Proposition 1.3.5. x € R if and only if 1 — xy is a unit in A for ally € A.

Proof. Suppose 1 — zy is not unit. Since m is a maximal ideal, then 1 — zy is

an element of m. But z is in R, and fR is a subset of m, that means xy is in m.
Then 1 is in m, which is absurd. Conversely, suppose x is not in fR, then z is not
in m, for some maximal ideal m. Then < x > +m = A, there exists an element
u in m and an element y in A such that v +zy =1, then 1 — zy is in m, 1 — zy

1s not a unit.



Chapter 2

Affine varieties

2.1 Algebraic sets and Hilbert Basis Theorem

In algebraic geometry, we study the common zero sets of polynomials. We
work over algebraically closed k£ with an arbitrary characteristic. In this chapter
we construct some funamental concept in algebraic geometry. For details, we
refer [7] [9].

Definition 2.1.1. n-dimensional affine space is A" := k" =k x --- x k.

If f € k[zy,...,x,] is a polynomial, f defines a function from A" to K setting
by f(a1,...,ay), for every point in A", If f € k[xq,...,z,] and p is in A" such
that f(p) = 0, then p is called a zero of f. If f € klxy,...,z,] is not a constant,
Z(f) is a set of all zero of f, z(f) is called a hyperplane define by f. Degree
of f is one is called hyperplane. If f is a linear form in kfzy,...,x,], Z(f) is

isomorphic to (n — 1)-dimensional linear space.

Definition 2.1.2. Let S be a set of k[x1,. .., z,], then Z(S) is defined by all
zero of all polynomials in S. X is called an affine algebraic set in A", if there
exists a subset of S in k[xy,...,x,] such that X = Z(95).

Proposition 2.1.3. Let S, T be subsets of polynomials in k[, ..., x,].
(1) If S is a subset of T, then Z(T) is a subset Z(S).
(2) If I is an ideal in k[xq, ..., x,] generated by S, then Z(S) = Z(I).

Proof. (1) If pisin Z(T'), then f(p) = 0, for any f of T"and S is a subset of

7



T. It implies for any polynomial g of S is in 7. Then g(p) = 0, therefore p is an
element of Z(S).

(2) Let I be an ideal generated by S, then S is a subset of /. That means Z(/)
is a subset of Z(S). Therefore for every p is in Z(S) and f is in S, there is
f(p) =0. If g is in I, then g can be expressed by a finite sum of f;g; for some g;

are polynomials of k[xy, ..., z,]. We know g(p) = > (fig:)(p) = fi(p)g:(p) = 0,
then p € Z(S). Therefore Z(S) = Z(I).

If we declare the affine algebraic sets are as the closed sets. Then we may
regard the affine space as topological spaces. For the set of all affine algebraic
set, we can give an induced topology to it.

Proposition 2.1.4. (1) {S.}aca is a family of subsets of klxy,. .., x,], then
NaZ(Sa) = Z(UaSa).

(2) If S, T C kl[z1,...,x,], then Z(S)U Z(T) = Z(ST), ST is a set of fg, for
feSandgeT.
(3) Z(0) is whole space and Z(1) is an empty set.

Proof. (1) By definition p is in N, Z(S,) if and only if f(p) =0, for all f in
any of the Sy, then pisin Z(U,S,).
(2) Let p be in Z(S) U Z(T) and f is a polynomial of S, g is a polynomial of 7.
Since f(p) = 0 or g(p) = 0, then fg(p) = f(p)g(p) = 0. Therefore p € Z(ST).
Let p be a point of Z(ST'), assume p is not in Z(S). Then there exist a polynomial
f of S such that f(p) is not 0. Since g is a polynomial of 7. Then fg is in ST.
fa(p) = f(p)g(p) = 0 and f(p) is not 0, hence g(p) = 0. Therefore p is a point of
Z(T).

Definition 2.1.5. We defined zariski topology on A" is taking the closed

subsets to algebraic sets.

If A is a subset of A", we can give the induced topology on it. In particular, if

X is an algebraic set, Then induced Zariski topology on X, if we take the closed

8



sets to algebraic subsets in X .

Definition 2.1.6. Let X be a subset of A". The ideal of X is defined by
a set of polynomials of klzy,...,xz,| , if take f € I(X) and every point p in X,
then f(p) = 0. The ideal of X is denote by I(X). That is I(X) is the ideal of all

polynomials vanishing on X. In particular, if X is an affine algebraic set, then

Z(I(X)) = X.

If X is an affine algebraic set in A”. Then X can be expressed by some
finite set S of polynomials in k[z1, ..., x,] by Hilbert Basis Theorem. Geometric
consequences for an algebraic set. Every affine algebraic set can be decomposed

into a finite number of ”pieces”.

Lemma 2.1.7. Let R be a ring, the following are equivalent:
(1) Every ideal I of R is finite generated.
(2) R satisfies the asending chain condition: If Iy C I, C I3 C ... chain of ideal,
then it become stationary. If R fulfill the properties, R is called Noetherian.

Proof. (1) = (2) Let [; € I, C I3 C ... be a chain of ideal in R. Put
I := U;>ol;, then [ is an ideal. By(1) we can write I =< fi,..., fx >. Eachf; lies
in I, for some i; > 0. Let N = maz{iy,...,ix}, then fi,..., fx are in Iy, that
means [ is a subset of Iy. Since Iy is also a subset of 1. Therefore Iy = Ivy1.

(2) = (1) Let I be an ideal of R, assume [ is not finite generator, take f is
in [; and fo is in\ < f; >, inductively we take f,,.; is not in < fi,..., fr >. So
we have an ideal chain : < f; >C< f1, fo >C --- C< f1,..., fr >C .... Infinite
chain where does not become stationary.

Theorem 2.1.8.[Hilber Basis Theorem| Let R be a Noetherian ring, then

R|x1,...,x,)] is Neotherian.

Proof. Since R[zy,...,z,]=R[z1,...,2,_1][z,]. That is enough to prove (by
induction), if R is Neotherian ring, then R[x] is Noetherian. Let I be an ideal

9



in R[z] is not finite generated. let f; € I\{0} such that deg(f;) is minimal. let
fo € I\{f1} be a polynomial of minimal degree. Inductively f,.1 € I\{f1,..., fu}
is a polynomial of minimal degree. n; = deg(f;), a; € R{0} is leading coefficient
of f;. Notice: ng < np <nz3 <... and < a; >C< ay,a, >C< ay,as,a3 >C ....
Assume < aq,...ap >=< ai,...0, Qg1 >. 1t implies a1 is an element of
< ay,...ag,agp1 >. We can write app 1 = Zle b;a;, for some b; is in R. Let
9= frpr — oy b L = frg — (D@ Ty a2 fy e
bpr™ 17", fi). gisin I\ < fi,... fr, >, All sums of g have degree ng., and
the sum of leading term is a4, — Zle a;b; = 0,then deg(g) < ngy1. This is
a contradiction with the way that take fr.;. Hence the chain does not become
stationary. Therefore R is not Noetherian.

Corollary 2.1.9. Every affine algebraic set X C A" is intersection of finitely
many hypersurfaces.

Proof. I(X) is an ideal of k[zy, ..., 2,]. K is afield, it implies k[zy, ..., z,] is
Neotherian. By Hilbert Basis Theorem, we have I(z) =< fi,..., fr >. Z(I(X)) =
X. Then X =Z(fy)n--- N Z(fx).

2.2 Irreducible components

A topological space may be the union of some smaller topological space. A
topological space X is called reducible, if we can write X = X; U X5, for X, X,
are closed sets of X and X; € X, Xy C X. X is called irreducible, if it is not

reducible.

Proposition 2.2.1. Let X be an irreducible topological space and U is a

nonempty open subset, then U s dense in X.

Proof. X = (X\U)UU, X is irreducible. Then X = X\U or X = U. Since
U is nonempty, X is not X\U, therefore X = U.

10



Example 2.2.2. (1) A point p € A" is irreducible.
(2) Z(XY) C A? is reducible. Since Z(XY) = Z(X)U Z(Y).

Definition 2.2.3. A topological space X is called Noetherian if every de-

scending chain X D X; D Xy D ... of closed subsets becomees stationary.

Proposition 2.2.4. (1) Any subspace Y of a Noetherian topological space X
is Neotherian. (2) A™ is a Noetherian topological space.

Proof.(1) A desecending chain of closed subset. Y DY} D Y, D ..., then
for all ¢ there exist Y; = X; NY, X is closed subset of X;. Put z; = N;<;X; and
X;NY =Y, Then we have X{ = X; .Y =Y NX; =Y NX|. Then we have a
descending chain of a closed set of X: X D X| D X} D .... Since X is Noetherian
topological space, then there exist integer N such that X}, = Xy, =.... Then
also Y D Y] D Yy D ... becomes stationary. Therefore Y is a Noetherian
topological space.

(2) Let A" = X; D Xy D ... be the chain of closed subsets in A". Then
I(X,) € I(X3) C ... is an ascending chain of ideals in k[xy,...,x,]. Thus it
becomes stationary, I(Xy) = I[(Xyy1) = .... Therefore A" is a Noetherian

topological space.

Theorem 2.2.5 Let X be Noetherian space. (1) X is a union of finitely many
irreducible closed subsets : X = X;U---UX,. (2) If we require X; ¢ X; for

1 # j, then this decomposition is unique, up to reorder.

Proof. (1) Assume X does not have a decomposition into finitely many
irreducible closed subsets. Then X is not irreducible (if X is irreducible, then
X = X has finitely irreducible decomposition.) Then we can write X = X; UY)
X1,Y) is a closed subset and X3,Y]; # X. Then at least there is one of {X1,Y;}
does not have a decomposition into finitely many irreducible closed subsets. We
use the same statement as the assumption about X, repeat argument, X; =
XoUYsy. ... We get descending chain X 2 X; 2 X, O .... This chain does not

11



become stationary which is a contradiction to X being Neotherian.

(2) Let X = XjU---UX, =Y1U---UY,and X; € X;,Y; € X; for i # j. We can
write X; = X N X; = U;_ (Y; N X;), (X;NYjis closed.) Since Xj is irreducible,
then X; = X;NY, for some j.(i.e., X; C Y;). Similarly Y; C X}, for some k. Then
X; CY; C Xy, it means X; = X, and Y; = X;. So each X; is equal to one of
Y;, and each Yj is equal to one of X;. Hence r = s. Then this decomposition is
unique, up to reorder.

In the future we mostly consider only irreducible an algebraic set.
Definition 2.2.6. An affine variety is a irreducible affine algebraic set.

Proposition 2.2.7. Let X be a subset of A" is an affine algebraic set. X s
irreducible if and only if I(X) is a prime ideal.

Proof. Let f, g be polynomials of k[zy, ..., x,]| such that fg is in I(X), then
X is a subset of Z(fg) = Z(f)U Z(g). Hence X = (X N Z(f)) U (X N Z(g)
Jand (X N Z(f)),(X N Z(g) are closed subsets of X. Then X = (X N Z(f)) or
X =(XNZ(g)). Therefore X C Z(f) or X C Z(g). Assume X is not irreducible
We can write X = X; U X, and X; are closed subsets of X. Z(I(X;)) = X; is
a subset of X = Z(I(X)), then I(X) is a proper subset of I(X;). Similar: 1(X)
is a proper subset of I(X,), let f be in I(X7)\/(X) and ¢ is in I(X5)\I(X). fg
vanishes on X; U Xy = X, then fg is in I(X), therefore I(x) is not irreducible.

Example 2.2.8. A" is irreducible.

Definition 2.2.9. Let X # () be an irreducible topological space. the di-
mension of X is the largest integer m such that there is an ascending chain
h#XoC X CXyC--C X, =X of irreducible closed subsets of X. If X is a
Neotherian topological space then dim(X) is defined to be the maximum of the
dimensions of the irreducible components of X.

Example 2.2.10. (1) points have dimension 0. (2) A! has dimension 1. Only

irreducible closed subsets of. A! are points and A'. (3) A" has dimension n (In

12



the moment can not prove). It is easy to verify that dim(A") > n. Because
ascending chain: {0} € Z(xo,...2,) € Z(xg...2,) C -+ € Z(z,) € A", A° C

Alg...gAn_

2.3 Hilbert Nullstellensatz

If K is algebraically closed field and f(z) is a polynomial of Klz1,...,x,].
We knew the zero set of f(z) is not an empty set.
The question is we are not looking at a single polynomial, we looking a bunch of
polynomials; even be finite and we are not looking at polynomials in one variable,
we working on several variable polynomial ring. We want to get the similar result
like above at the more general case. The weak Nullstellensatz tell we can get the
same result by the just one condition, if k is a algebraically closed field and f(z)

is a polynomial of K[x1,...,z,] ,then the zero set of f(x) is not an empty set.

Theorem 2.3.1.[Weak Nullstellensatz]| If I is a proper ideal in K[xq,. .., x,],
then Z(I) # (.

Proof. We may assume that I is a maximal ideal for there is a maximal
ideal J containing I, and Z(J) is a subset of Z(I). So L = Klxy,...,x,]/I is a
field, and K is isomorphic to K + I. Suppose we knew that K = L. Then for
each z;, there is an a; € K such that z; + [ = a; + I if and only if z; — a; € I.
Since (z1 —aq, ..., T, —a,) is a maximal ideal. So I = (z; —ay,..., 2z, —a,) and
Z(D)={(ay,...,a,)} is not an empty set.

We will show that by two step:

(1) L, K are filed and K is L a subfield. If L is ring-finite over K, then L is

module-finite over K.

(2) If K is an algebraic closed field. If L is module-finite over K, then L = K.

13



Definition 2.3.2. Let R, S be rings, and R is a subring of S. (1)S is said
to be module-finite over R, if S is finitely generated as R-module, S = >"" | Rs;,
s; € S. If S and R are fields, S is a vector space over R dimension by [S : R].
(2) S is called ring-finite over R, if S = R[vy,...,v,] for some vy,...v, € S.

(3) S is called finitely generated field extension of R, if S = R(vy,...,v,) for some
Vi,...,0, €85.

Definition 2.3.3. Let R be a subring of a ring S. An element v € S is said
to be integral over R, if there is a monic polynomial. F' = 2" +a;2" ' 4---+a, €
R[z], such that F(v) = 0. If R, S are fields, we say that v is algebraic over R. (If
v is integral over R.)

Proposition 2.3.4. Let R be a subring of a domain S. v € S. Then the
following are equivalent.

(1) v is integral over R.
(2) R[v] is module-finite over R.
(3) There is a subring R of S containing R[v], that is module-finite over R.

Proof. (1)=-(2) Let v be integral over R. Then there exist a monic polyno-
mail. F = z"+a;z" ' +---+a, such that F(v) = v"+av" "'+ - -+a, = 0. Then
we have a equation v" = —a;v™' — -+ —a, , a; € R it implies v" € 31" Rv".
it follows that v™ is in3_"— ' Rv’ for all m. So R[v] = Y"1~ Rv'.,

(2)=(3) Take R = R[v].
(3)=(1) If R =" | Rw;, w; € R. Since R[v] is a subset of R, then

VW, = AWy + v AWy,

VW, = ApiW1 + -+ + QppWy,.

Since S is a domain, we can consider these equations in the quotient field of S.

14



v—ay ... —Q1n

—Qp1 oo U — Qpp

We see that (wy,...,w,) is a nontrivial solution. So det(A) = 0. This deter-
mination has form v™ + a;v™" ' + --- +a, = 0, a; € R. So v is integral over

R.

Corollary 2.3.5. The set of elements of S that are integral over R is a

subring of S containing R.

Proof. a,b are integral over R, then b is integral over Rla]. So R[a,b] is
module finite over R, and a £ b, ab € R[a,b]. Since R[ab], Rla + b] C Rla,b]

module-finite over R. Therefore ab,a £ b is integral over R.

Definition 2.3.6. S is integral over R if every element of S is integral over

R.

Proposition 2.3.7. Let L be a field, K is an algebraically closed subfield of
L.
(1) Show that any element of L that is algebraic over K is already in K.
(2) An algebraically closed field has no module-finite field extensions except itself.

Proof. (1) Let a be an element of L and a is algebraic over K. Then there
exist a monic polynomial f € KJz] such that f(a) = 0. Since K is algebraic
closed. Therefore a is in K.

(2) Suppose K is module finite over K. Then L = Kv;+---+Kv, C Kluvy,...,v,]
is a subset of L v; is in L. Therefore L is ring-finite over K. That means vy, ..., v,

are algebraic over K, then vy, ..., v, € K, therefore L = K.

Suppose K is subfield of a filed L, and L = K(v), for some v € L. Let ¢
be a map from k[z] to L = k(v). BY setting ¢(x) = v. Since K[x] is PID, let
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ker¢ = (F) F € Klz|, then K[z]/(F) be isomorphic to K[v], therefore (F) is a
prime ideal.

case (1), FF = 0. Then k[z] is isomorphic to K[v]. So K(v) = L is isomorphism
to k(x). In this case L is not ring-finite over K.

case (2), F' # 0. We may assume F' is monic. Then (F') is a prime ideal, then
F' is irreducible, hence (F') is maximal, then K[z]/(F) is a field, we can know
K[v] = K(v) is a field. Since F is in ker¢, then F(v) = 0. Then v is algebraic
over K. By proposition 2.3.4. We have L = K[v] = k(v) is module-finite over
K. Theorem 2.3.8.[Zariski] If a field L is ring-finite over a subfield K, then L

is module-finite over K.

Proof. Suppose L = KJvy,...,v,). The case n = 1 is taken care of by the
above discussion. Assume the result for all extensions generated by n—1 element.
Let K7 = K(v1), by induction L = ky[vg, ..., v,] is module finite over K7, Assume

vy is not algebraic over K.(If not the proof finished). Each v; satisfies equations:

ng na—1 _
Uy + A210, + i+ agn, =0,

-1
Ut A+ AU A, = 0.

Take a € K|v;| such that multiply of all denominators of a;;, we get equations:

(av2)™ + aag (ave)™2 ™t + - - + a™ag,,, = 0,

(avp)™ + aan(avy)™ '+ -+ a™ayp, = 0.

Hence avy, ... av, is integral over K[v] Vz € L = K[vy,...,v,]. By Corollary 5,
there is an N € N, such that ¥z is integral over k[v;]. Since k(v;) is a subset
of L, this must holed for z is in K(v;). But K(v;) is isomorphic to the field of

rational function in one variable over K, that is impossible.
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If I is a subset of k[xy,...,z,] is an ideal, then Z(I) is an affine algebraic set
in A", If X is an affine algebraic set, then I(X) is an ideal in k[xy, ..., z,].
We know that if X is an affine algebraic set, then Z(/(X)) = X.
But it is not true I(Z(J)) = J, J is an ideal in k[xy, ..., x,]. But clear we know
J is a subset of I(Z(J)).

If I is an ideal in k[zy,. .., x,] such that Z(I) is empty if and only if a unit is

in I, when k is algebraic closed, otherwise this theorem is false.

Definition 2.3.9. Let I be an ideal in ring R. The radical of I is a set of for
some positive n and r is R such that 7" is in I. The radical of I denote by /1.
I is called a radical ideal, if I = TG,

Proposition 2.3.10. If X C A" is an affine algebraic set, then 1(X) is a

radical ideal.

Proof. Let f be a polynomial of k[xy,...,x,] with f* € I(X), then f" is in
I(X), it implies f"(p) = 0. f"(p) = f(p)* = 0, that means f(p) = 0. Therefore
fisin I(X).

Theorem 2.3.11.[Strong Hilbert Nullstellensatz| Let I C klzy,...,x,]
be an ideal, then I(Z(I)) = /1.

Proof. While [ is an ideal and generated by fi,..., f.,. We know I(Z(I))
is a radical ideal containing I,then I(Z(I)) is a subset of v/I. Let J be a ideal
of k[xy,...,z,,t] and J is generated by I U ft — 1. Let (p,a) be in A" and
pisin A" ais in k. (p,a) € Z(J)if and only if p is in Z(I), f(p)va =1
if and only if fi(p) = falp) = -+ = f-(p) = 0. Since p is a point of Z(I),
then f(p)«a = 0 = 1 this is impossible. Hence Z(J) is an empty set. By
weak Hilbert Nulltellensatz. 1 is in J, then J = k[zy,...,z,,t]. Let 1 =
go(ft —=1)+ > 1 9ifiy Gos----9r € k[21,...,2,t]. Back to k[zi,...,z,] with
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k(xy,...,x,). Define ring homomorphism ¢ from k[zq,...,x,,t] to k(x1,...,z,)
by ¢((x1, ..., 20, 1)) = g(x1,.. ., 2p, %) Apply ¢ to 1 = go(ft — 1)+ >.i_, gifs,
9os----gr € K[z, 1], then ¢(1) = (g(f + 7 — 1)) + X0, d(g:)¢(fi) in
k(xi,...,wn) 1=>""_ 0(9:) fi-

There exists n; € Z', such that ¢(g;) = fGT, Gi € k[ry,...x,]. Let N =
maz{ni,...,n,}, multiply by f¥. fN =37 = Gifn_n, « fi € I. Thus I(Z(I))
is a subset of v/I. Therefor I(Z(I)) = V/I.

Corollary 2.3.12. We have mutually inverse inclusion-reversing bijection

between affine algebraic sets in A" to radical ideals in k[xy, ... x,].

Corollary 2.3.13. (1) If I is a prime ideal in klzi,...,x,],then Z(I) is
irreducible.

(2) If f is irreducible in kl[zq, ..., x,], then Z(f) is irreducible.

Proof. (1) Let I be a prime ideal, we know I is a subset of \/I. Let f be a
polynomial of /I, then f isin I. Since I is a prime ideal. then f is in I. Hence
I =+/1,then I = I(Z(I)). I(X) is prime if and only if X is irreducible.

(2) k[z1,...,2,) is a UED, if fisin k[zy,...,a,)] is irreducible. then < f > is a
prime ideal. Hence Z(f) = Z(< f >) is irreducible.

18



Chapter 3

Projective varieties

3.1 Porjective algebraic sets

In this chapter we construct some basic concept in projective geometry. For
details, see [10].
Let (X,d) is a metric space and S is a subset of X. If S is a subset of { O, | O,
are open sets of X}, then U,c40, is called an open cover of S, and S is called a
compact set, if for all open cover O, of S, there exist aq, ..., are elements of
A such that S C U™, 0,,.
We define an equivalence relation On k"*'\{0}. (ay, . . ., a,) is relative to (b, - . ., b,)
if and only if there exists a non-zero real number A such that (ao,...,a,) =
A(bo, - .., by). Denote by [ag, ..., a,] for equivalence class. n-dimensional projec-
tive space is a quotient set P" := (k"*1\{0})/ ~.
Let U; := {lag,...,a,) € P" | a; #0i=0,...,n}. The map ¢; is between U; to

A", by o([ag, ..., an]) = (2,..., Z;, ..., ) is obviously bijective withe inverse w;
is from Ao U, setting by w;(bo, ..~ biy s bn) = [bos-- ., 1, ..., byl. 2 s called
the affine coordinates of p = |ay, . .., a,] with respect to U;.

Usually we fix ¢« = 0, we want to know A" as a subset of P", by identifying the
point (aq,...,a,) € A" with [1,a4,...,a,] € P". In particular, P" = A" U H,, =
UpUH o, with Ho, := P"\Uy = {[ao, - . . ,an] | ag = 0}, Hy, is called the hyperplane
at infinity. We want to define a projective algebraic set C P as zero set of poly-
nomials in k[x, ..., z,]. Since f(ag,...,a,) # f(Aao, ..., Aay,), [ € k[zo, ..., x,].
Thus f does not define a function. If f is homogeneous, f can define a function
from P to k.
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If f € k[zo,...,x,] is homogeneous of degree d, then for all A € k. There is
f(Xag, ..., a,) = Xf(ag, ..., a,). Whether g(ag,...,a,) = 0 depends only on
lag, ..., a,).

Definition 3.1.1. Let g € k[zo,...,z,] be homogeneous, a point p =
lag, .. .,a,] is a zero of g(g(p) = 0) if and only if glag,...,a,) = 0. By the
above this is independent of the representive (aq, ...,a,). Let S C klxo, ..., z,]
be a set of homogeneous polynomials, the projective zero set of S. Z(.S) := {p €

P | f(p) =0,Vf € S} is called a projective algebraic set.
Example 3.1.2. (1) 0 = Z(1), P" = Z(0).

(2) If p = [ao,...,a,] € P, then {p} = Z(a12¢ — apx1,a2x0 — aoT2, ..., a,To —
ATy,)-

Definition 3.1.3. Any polynomial f € k[xq,...,z,] can be written in a
unique way as a sum f = f© 4+ ... 4 f(@ of forms £ of degree i. f( are called

homogenous components of f.

Definition 3.1.4. Anideal I C k[xy,...x,] is called homogeneous ideal if for

f € I all the homogeneous components f are in I.

Proposition 3.1.5. An ideal I € k[xo,...,x,] is homogeneous if and only if

it 1s generated by homogeneous elements.

Proof Assume I is homogeneous. Let {f,}, be a set of generators of I.
Then { féi) }a,i) are a set of homogeneous generators. Let I be generated by
homogeneous polynomials {g;}, let f be a polynomial in 7. We can write f =
> i aigi, a; € klxo, ..., z,). By g; is homogeneous, thus the homogeneous part of
a;g; of degree d is just dl(-d_deg(gi)) . gi, then f@ =" agd_deg(gi)) . g; € I (since
g; €1).

Definition 3.1.6. Let I C k[xo,...,z,| be a homogeneous ideal. The pro-
jective zero set of I is defined by Z,(I) = Z(I) = {p € P* | f(p) = 0} for

all homogeneous f € I. For a subset X in P", the homogeneous ideal of X is
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defined by Iy(X) = I(X) =< {f € k[xg,...,x,] | f : homogeneous, f(p) =
0, for all p € X} >, by definition this is a homogeneous ideal.

If f = fO4+ fWyp...4 £ ig the decomposition into homogeneous component,
then Z(f) = N, (f®). If f have non-zero constant part, then Z(f) is an empty

set.

3.2 Zariski topology of projective varieties

Many properties on affine space is also hold on projective space, such as :
(1) If X C Y, P" are projective algebraic sets, then I(X) D I(Y).
(2) If Y C P™ is a projective algebraic set, then Z(I(X)) = X.
(3) I C k[xo,...,x,] is homogeneous ideal, I(Z(I)) D I.
(4) If S C k[zg, ..., x,] is a set of homogeneous Z(S) = Z(< S >).

(5) For a family {S,}. of a set of homogeneous polynomials. Z(< U,S, >) =
Z(UaSa) = NaZ(S4)-

(6) If S, T C k[xg,...,z,] set of homogeneous polynomial ST = {fg | f €
S,g € T}, then Z(ST) = Z(S)U Z(T).

Then we know that arbitrary intersections and finite unions of projective algebraic
sets are projective algebraic set (), P" are projective algebraic sets, now we can

define a topology on projective space.

Definition 3.2.1. The Zariski topology on P" is the topology whose closed
sets are projective algebraic set. If X C P" is a subset give it the induce topology.
(The Zariski topology on X.)
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Definition 3.2.2. A projective variety is an irreducible projective algebraic
set. A quasi-projective algebraic set is an open subset of a projective variety. A

variety is a locally closed subvariety of A", or P".

Proposition 3.2.3. k[zo,...,x,] is Noetherian,then the same proof as in

affine case shows P" is Noetherian topological space.

Proof. If z1 D x5 D ... chain of closed subsets of P, then I(x;) C I(x2) C
. is a chain of ideals in k[zg,...,x,]. Thus k[zo,...,z,| is Noetherian. As

x; = Z(I(x;)), also the original chain z; D x9 D ... become stationary.

Every subspace of P" is Noetherian, in particular quasi-projective variety is
Noetherian. That means quasi-projective variety has a unique decomposition into
irreducible components.

If we use the identification: A" = Uy = {[1,a4,...,a,] € P*} C P", we get
A" = P"\Z(x) is an open subset of P". (i.e., A" is a quasi-projective variety.)

Any affine algebraic sets are quasi-projective algebraic sets.

3.3 Affine cones and the projective Nullstellen-
satz

Projective varieties of Nullstellensatz is also hold on projective space. In

other words we have bijective from closed sets of P™ to homogeneous ideals in

k‘[l’o, e ,l‘n].
{projective algebraic set in P"} SELEN {homogeneous ideals in k[zg, ..., x,]}
{projective algebraic set in P"} - {homogeneous ideals in k[zg,...,x,]}

We will prove by reducing to the case of A"™! making use of affine cones.

Definition 3.3.1. A non-empty affine algebraic set X C A""! is called a
cone, if for all p = (ao,...,a,) € X and all A € k, \p = (Aag, ..., Aa,) € X.
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Example 3.3.2. The projective variety X = Z(2? + y*> — 2?) C P? is called

a conic curve.

If X C P" is a projective algebraic set the affine cone over X is C'(X) :=
{(ag,...,a,) € A" | [ag,...,a,] € X} U{0} is a cone.

Lemma 3.3.3. Let X be a nonempty projective algebraic set.
(1) X = Z,(I) for I is a homogeneous ideal in klxo,...,x,], then C(X)=Z(I) is
a subset of A" (in particular affine algebraic set).
(2) 1(c(X)) = In(X).

Theorem 3.3.4. [Projective Nullstellensatz] Let I be a homogeneous ideal of
klzo,...x,), then (1) Z,(I) is an empty set if and only if I contain all forms of
degree > N for some N. (2) If Z,(I) is a nonempty set, then I(Z,(I)) = /1.

Proof. (1) Let X = Z,(I), X be an empty set if and only if C'(X) = {0},
C(X)=Z(I)u{0}. Thus X is an empty set if and only if Z(7) is an empty set
or Z(I)={0}. By affine Nullsteeensatz v/I = k[xo, . .., &) or VI =< xq, ..., T, >,
then < z, ..., x, > is asubset of I(C(X)) = v/I. Therefore for cach i =0,...,n,
there exists j; with x{ € I. We can take N =: jo+, ..., jn.

(2) Let X = Z(I) be a non-empty set, then I7(X) = I(C(X)) = I(Z,(I)) = V1.

So we get a very similar version of the Nullstellensatz, only the ideal <

Zo, ..., T, > lead to exceptions. It is called the irrelevant ideal.

Corollary 3.3.5. Iy and Z, are mutually inverse bijection between non-
irrelevant homogeneous radical ideals I C klxg, ..., z,| and projective algebraic
set X C P". ie.,

{projective algebraic set inP"} SELEN {homogeneous ideals in k[zg,...,x,]}
{projective algebraic set inP"} B {homogeneous ideals in k[xg, ..., x,]}

Proposition 3.3.5. (1) A projective algebraic set X C P™ is a projective
variety if and only if X = Z(I) I C k[zo,...,x,] is a homogeneous prime ideal.
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(2) f € klzo,...,x,] is homogeneous and irreducible if and only if Z,(f) is irre-
ducible in P™.

Proof. (1) Assume X is reducible. Then X = X; U X, for closed subset

X1, X3 is a proper subset of X. Hence C(X) = C(X;) U C(X3) is a reducible
subset of A"*!. Therefore Iy(x) = I(c(x)) is not a prime ideal.
Assume [ := [y(X) is not a prime ideal. Then there exists f, g isin k[x, ..., z,]\I,
and fg is in I. Let i,j € Z* be minimal with f®, ¢ is not in I. Sub-
tracting homogeneous component of lower degree of f and g. We can assume
f starts in degree i, g starts in degree j. f @) g(j) is homogeneous component of
minimal degree in fg € I, (I is homogeneous ideal.) then f@Wgl) € I. Let
X, =Z,(1U f9) = Z,(I) " Z(fD), Xo = Z,(I U gW) = Z,(I) N Z(g?). Hence
X1, X € X, and X = X; U X,. Therefore X is reducible.

(2) Follows in the same way as in the affine case.
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Chapter 4

Equations defining rational curves
on a rational surface scroll S(1,1)

In this chapter, we would like to focus our interest on the problem to describe
the equations defining the rational curves. As a beginning of this problem we

study the rational curve C; C P? parameterized as
Cy = {[sY(P) : s 1(P) : st®1(P) - t(P)] | P € P'}.

This parametrization of Cy is a kind of generalization of the rational normal
curve C' C P3 of degree 3. Then the curve Cy is a smooth rational curve of
degree d contained in a smooth rational normal surface scroll S(1,1). These
investigations enable us to determine the precise shapes of the minimal generators

of the homogenous ideal I, of Cy. The following is our main result.

Theorem 4.1.1. Let Cy C P? be a rational curve defined as the parametriza-
tion
Cyq = {[s*(P) : s1t(P): st™(P) : t4(P)] | P € P}
where d > 3. Then

(1) The curve Cy is a smooth rational curve of degree d contained in the ratio-

nal normal surface scroll S(1,1).

(2) The defining ideal I, of Cy is minimally generated as following:
Io, = (Xo X3 — X0Xo, Fy1, Faa, ..., Faa)

where Fy; = X&' X8 — X=X for 1 <i<d—1.
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Notation and Remark 4.1.2. (1) Let S(1,1) C P? be the rational normal
surface scroll of degree 2. Let S = k[Xy, X7, X5, X3] be the homogeneous coordi-
nate ring of P2. Then S(1,1) is defined by the quadratic equation X, X3 — X; Xo.
(2) Let C' C P? be a rational normal curve of degree 3. Then C' can be defined
by the parameterization

C ={[s*(P): s°t(P) : st*(P) : t*(P)] | P € P'}
and the ideal Io of C' is generated by the following three quadratic equations:
{XoXo — X2, X1 X5 — X2, XoX3— X1 X5}

Thus C' is contained the rational normal surface scroll S(1,1).

4.1 Minimal set of generators of an ideal

Let Z C P" be a nondegenerate projective irreducible curve and let /7 be the
homogeneous ideal of Z in R. Then we can choose the minimal set of homogeneous
generators for I, as Iy is finitely generated. For the convenience of the reader,

we revisit the notion of minimal set of generators of an ideal I;. Let
M:{Gi’jEK[Xo,Xl,...,XT] | Gi,jEIZ for2§2§mand1§j§&}

be the set of homogeneous polynomials of degree deg(G; ;) = i. Let (Iz)<; be
the ideal generated by the homogeneous polynomials in I, of degree at most t.
Then M is the minimal set of generators of I, if and only if the following three

conditions hold:

(1) Iz is generated by the polynomials in M (i.e., I, = (M)).

(17) Gi1,Giza,...,Giy, are K-linearly independent forms of degree i for each
2<i1<m.
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(ZZ’Z) Gi,j ¢ ([Z)Sifl for each 2 S 1 S m.

4.2 Proof of Main Theorem

This section is devoted to proving Theorem . We keep the notations in the pre-
vious section. Let Cy C P? (d > 3) be a rational curve defined as the parametriza-

tion
(0.1) Cq = {[s*(P) : s 't(P) : st (P) : tY(P)] | P € P'}.

Lemma 4.2.1. Let Cy be a curve just stated as above. Then Cy is smooth
and of degree d.

Proof. The case where d = 3 follows from Notation and Remark .(2). Sup-
pose that d > 3. Then we can see that the parametrization (0.1) comes from the

embedding vy : P! — P? by
P < [sYR)+'st (R, - : st”  @BEEER)| for PlEP!

of a projective line P'. More precisely, we denote éd the image of P! by the map
vq and let L be a (d — 4)-dimensional linear subspace of P? spanned by (d — 3)

standard coordinate points
{[0,0,1,0,...,0,0],[0,0,0,1,0,...,0,0],...,[0,0,---,0,1,0,0]}.

Then C, is obtained by the linear projection map my, : 5d — P3 of 6’d from L.
Since L C P"\ €2, the map m, is an isomorphism by Notation and Remark .(3).
Thus Cy is a smooth rational curve of degree d.

Proposition 4.2.2. Let Cy be as in Lemma . Then the curve Cy is contained
in the rational normal surface scroll S(1,1).

Proof. Consider the parametrization (0.1) of Cy. Then it is easy to see that
the defining ideal I, of Cy contains the quadratic equation X¢X3 — X;.X5 and
hence Cy is a subvariety of S := S(1,1) by Notation and Remark .(1).
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Example 4.2.3. For d = 4,5,6,7,8,9,10, let Cy C P? be curves defined as
the parametrization (0.1). For the simplicity, put

_ d—i—1 vy d—i yi—1

for 4 <d<10and 1 <7 < d—1. Then by means of the Computer Algebra
System Singular [6], the defining ideal I, for d = 4,5,6,7,8,9, 10 are respectively

minimally generated as followings:

(1) I, = (XoX3 — X1Xo, Fy1, Fuo, Fy3),
(11) Ioy = (XoX35 — X1 Xo, F51, Fs0, F5 3, F5.4)
(W) ICG = <X0X3 —X1Xs, Fﬁ,l,F6,27F6,3;F6,47F6,5>
() Io, = (XoX3 — X1Xa, Fry, Fra, Fr3, Fru, Frs, Frg)
(v) Icy = (XoX3 — X1Xo, Fgn1, Fso, Fs3, Fsa, Fs5, Fs 6, Fs7)
(vi) Ioy = (XoX3 — X1Xa, Fo1, Foo, Fo3, Fou, Fos, Fog, For, Fog)
(vit) Icy, = (XoXs — X1Xo, Fio1, Fioz2, Fios, Fio.4. Fios, Fioe, Fio7: Fios, Fio,9)-
These examples and the observations about the pattern of the minimal gen-
erators of defining ideals I, enable us to pose the following proposition.

Proposition Let Cy be as in Lemma . Then the defining ideal Ic, of Cy is

manimally generated as following:
Io, = (XoX3 — X1 X9, Fu1, Fuz, - Faa1)
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where Fyg; = X&1 X0 — XX for1<i<d—1.

Proof. If d = 3, then Cy is a rational normal curve (see Notation and Remark
.(2)). So we may assume that d > 4. Put My = {XoX3—X1Xo, Fy1, Fuo, .., Faa1}-
Then since Cy C S(1,1) by Proposition . (1), we can see that X X3—X; X5 € I¢,.
Also it can be shown that Fy,;([s?:s¥ 1 :stdl:td))=0forall 1 <i<d-—1
as the parametrization (0.1). This shows that My C I¢,. Now we will show that
Ic, = (M) by verifying the three conditions (ii), (iii) and (i) in subsection 2. 2
hold for the set My in tern. For the condition (ii), it suffices to show that {F};}
are K-linearly independent polynomials of degree d — 1. To do this, consider the
degree of X in each Fy; for 1 <i < d—1. Then one can see that F}; for each ¢
can not be written by a linear combination of the other F} ;s.

Let < My >=1C Iz, and. Q = XoX3 — X;Xy. We claim that F,; ¢< Q >
1<i<d—1. Let FE€<Q >, then F = (XoX3— X1 Xy) Y a; XX X2 X5 =
S XPTI XD X2 X L 5" 0 X XA X2TXE . 4 i1 iy, > 0,5 m k € ZF,
aj am ap € k\{0}. That means F has a monomial always has varieties Xo, X3.
Therefore Fy; ¢< Q > 1 < i < d— 1 To show that (i) (iii) hold, we use
[4, Theorem 4.8] or [5, Theorem 5.1]. In these papers the authors provided the
number of minimal generators of the defining ideal /-, of C;. Indeed one can
verity that the number of polynomials in M is same with the number of minimal

generators of the defining ideal I, of Cjy.
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