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Chapter 1

Preliminaries

In this chapter, we briefly introduce the fundamental definitions and concepts
of commutative algebra based on two textbooks: Abstract Algebra [3] and Intro-

duction to Commutative Algebra [1].

Through out this paper, a ring is a commutative ring with a multiplicative
identity. A domain or integral domain is a ring without a zero divisor. A field
is a domain in which every non-zero element is a unit. That is, every non-zero
element has a multiplicative inverse. When a non-empty subset .S of a ring R is
itself a ring under the addition and multiplication in R, then we say that S is a
subring of R. Note that a subring does not need to have a multiplicative identity

to be sure.

A subring I of R is called an ideal of R if ar € I for all @ € [ and r € R. An
ideal M in R is said to be maximal if M # R and whenever J is an ideal such
that M C J C Rthen M = J or J = R. Anideal P in R is called prime, if P # R
and whenever ab € P then a or bin P. An ideal [ is said to be finitely generated
if I = {ayry + agry + -+ + ayry, | r; € R} with for some a; € I, and denote by
(ay,as, ..., a,). If I is generated by one element then we call [ is a principal ideal.
A domain in which every ideal is principal is called a principal ideal domain,
simply PID.

The ring of polynomials in n variables over R is written R[Xj, ..., X,]. We
call monomials that is the polynomial X{'lXé2 - X" € R[Xq, ..., X,,], the degree
of monomial is i; + -+ + 4,. Take any polynomial F' in R[Xj, ..., X,], then F’
has expression : F' = > a; XD with X@ are the monomials, a¢;) € R. Then we
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can define homogeneous as a polynomial that is every terms have same degree.
Any polynomial F' has a unique expression : F' = Fy + F; 1 + -+ + Fy where
F; are monomials of degree i, if F,; is not zero then d is the degree of F' and
written deg(F). For all f € R[X]| where R is a ring then f is of the form:
f(X)=agX¥+ag 1 X+ + a1 X +ag, if ag # 0 then ay is said to be leading
coefficient of f, and denoted by lc(f) = aq.

Let R be a domain, F' and G are homogeneous polynomials of ring R[ X7, ..., X,,].
Then FG is still a homogeneous polynomial. Suppose that deg(F) = s and
deg(G) = t, and we have :

F=) apXiXg X, G =) byX{'X§ - X,

where 41 + ---17, = s and j; + ---J, = t. Then clearly every terms of F'G are
monomials of degree s+ ¢, hence any finite product of homogeneous polynomials
is a homogeneous polynomial.

If every ideal in a ring R is finitely generated, then R is said to be noetherian

ring.
Proposition 1.1. If R is a noetherian ring and let S be the set of leading coeffi-
cient of all polynomials in ideal I in R[X|. Then S is an ideal in R.

Proof. First prove that S is a subgroup of R. Consider for all a, b in S then
there exist a polynomials f and ¢ in R[X] such that lc(f) = a, lc(g) = b, and
deg(f) = deg(g), then there exist —f, —g are in I and clearly (f — g) is in [I.

Focus on there leading coefficien.

f(X)=aX*+ -+ ag,
g(X) =bX" 4+ by,
(f = 9)(X) = (a = )X+ + (ag — by).

Thus le(f — g) = (a —b) € S, and hence S is a subgroup of R.

2



Second, prove the ideal property. Take for all n € R, for every a € S, then
a = lc(f) for some polynomial f € I. Consider the polynomial bf. Since I is an
ideal, bf € I. Thus le(bf) = ab € S. Furthermore, S is an ideal of R.

Lemma 1.2.Suppose that R is an noetherian. If I is an ideal of ring R[X], then
Sm={le(f)| f €1, deg(f) <m} is an ideal of R with m is a positive integer.

Proof. Clearly S,, is a subset of R. We must show that S, is a subgroup of R
and satisfy the ideal property on R. Let a,b be an elements of S,,, then a = le(f)
and b = lc(g) for some polynomials f, g € I with deg(f) = d; < m and deg(g) =
dy < m.

fX) =aX® +ag_1 X714 4 ay,

g(X) = bX% fbg, 1 X2 £ o 4 b

Since [ is an ideal, there exists —g(X) € I such that
1o = — b Thnt XN — 5, .

Assume that d; > dy. If dy = dy then (a — b) € S,,, we are done. Therefore
suppose that d; > dy Consider —g(X)X 442 :
—g(X)XDB = (=X =g, 1 XPT — = py) X PR
= —bXM — by XN — e = pp XN

This polynomial has degree d; and leading coefficient —b. Then polynomial

fX) —g(X)XN% = g X" 4 qg XD 4.0+ ag
— bXdl — bdQ,lelfl . — bOXdlfdz
= (@ — D)X + (ag,1 — bay_ 1) XD 4 - -

Therefore, f(X) — g(X)X%~% € [ and degree d; < m, and hence (a — b) € S,,.
Thus S, is a subgroup of R.



Now show that ideal property. Let a be an element of S,, and let b be an
element of R. Then a = lc(f) for some polynomial f € I with deg(f) < m. Then
bf(X) € I and deg(bf) = deg(f). Therefore lc(bf) = ab € S,,. Consequently, S,,

is an ideal of R.

A domain R is said to be a unique factorization domain provided that every
non-zero, non-unit element of R is the product of irreducible elements, and this
factorization is unique, written UFD. If R is UFD, then R[X] is also a UFD.
Therefore k[ X7, ..., X,,] is a UFD for any field k.

A field k is said to be algebraically closed if any non-constant polynomial
F € k[X] has a same number of root as degree of F. The field C of compelx

numbers is an algebraically closed field.

Let k be any field, then there are infinite number of irreducible monic polyno-
mials in k[ X]|. Suppose that there are finitely many monic polynomials Fi, ..., F,
in k[X]. We may assume that F; # 1 for all i. Let G be an irreducible factor
of the monic polynomial FiF; - - - F, + 1, then leading coefficient of G must be a
unit by multiplying G by the inverse of its leading coefficient. We may assume
that G is monic. Thus G = F; for some ¢. Hence F; divides F}F5 - -+ F,, + 1 hence
F; divides 1. Since F; # 1 and hence F; does not divides FiF5--- F,, + 1. This

contradicts the assumption.

Any algebraically closed field is infinite. The irreducible polynomials are of
the form X — a where a € k. However there are an infinite number of these

polynomials by above discussion, hence there must be infinitely many a € k.

[The first isomorphism theorem] Let R be a ring, and let ¢ : R — S be
a ring homomorphism. Then the image of ¢ is isomorphic to the quotient ring
R/Ker(p). If ¢ is surjective then S is isomorphic to R/ Ker(p).

Let I be an ideal of a ring R. Then [ is a prime ideal if and only if R/I is
domain. Let I be an ideal of a ring R. Then [ is a maximal ideal if and only if
R/1 is a field.



Lemma 1.3. Let I be an ideal of a PID R and if I is a prime ideal of R that is
not zero and whole ring. Then I is generated by an irreducible element and I is

a maximal ideal of R.

Proof. Since I is principal, then I = (g). Suppose that g = ab, then ab € I and
since [ is prime a or b in I, if a in I then a = gc for some ¢ € R. Thus g = ab =
gcb, and hence c¢b = 1. Therefore I becomes the whole. This is a contradiction.
Therefore g is an irreducible element of R. To show that I is maximal, suppose
that there exists ideal J € R such that I C J C R. Since I, J is principal, [ = (i),
J = (j) with i, j € R. Thus i € J, then there exists a in R such that i = ja.
Since generator of [ is irreducible, hence j =1 or a = 1.if j = 1 then J = R, if
a =1 then I = J. Thus [ is maximal ideal of R.

Lemma 1.4. For an infinie field k, a polynomial F € k[ X4, ..., X,)|. If F(aq, ..., a,)
= 0 with for every ay, ...,a, € k, then F' = 0.

Proof. Use induction on n, n = 1 then for all F' € k[X;]— {0} have a finite roots.
Suppose that is true for polynomials in (n — 1) variables. F' = Y, F; X! where
F; € k[ Xy, ..., Xn—1]. Then there exits (b, ...,b,—1) € k such that F;(by,...,b,—1) #
0. Then consider, the polynomial F(by,...,b,-1,X,) # 0 has a finite number of
roots. Therefore there are infinitely many choices for the variable X,, such that
F(by,...,b,_1,X,) # 0. Hence the only polynomial that vanish on every points in

k is the zero polynomial.



Chapter 2

Affine algebraic set

This chapter is devoted to prove Hilbert’s basis theorem and Hilbert’ Nullstel-
lensatz. For this aim, we investigate the basic notions and definitions of algebraic
geometry based on the textbook: Algebraic Curves-An Introduction to Algebraic
Geometry [2]

2.1 Hilbert’s Basis Theorem

2.1.1 Affine algebraic sets

Definition 2.1. Let k be any field. The cartesian product of k£ with n times:

A(k) =k x - Xk

n—times

we call A"(k) an affine space over k, and its elements call points.

A point P = (ay, ...,a,) € A"(k) is called a zero of f if f(P) = f(ay,...,an) =
0 with f € k[Xy,..., X,,]. And if f is not a constant, the set V(f) = {(a1, ..., an) |
f(ai,...,a,) = 0 with (aq,...,a,) € A"(k)} is called the hypersurface defined by
f. If fis a polynomial of degree one, V(f) is called a hyperplane in A™(k).

Let S be a set of polynomials in k[X7, ..., X,,], then V(5) is defined as follows:
V(S)={(a1,....,a,) € A™(k) | f(a1,...,a,) =0, for all f € S}.

Definition 2.2. The set X C A™(k) is called an affine algebraic set, if X = V/(.5)

for some S.



By definition 2.2, we may regard that an algebraic set as a set of common

root of polynomials.

Proposition 2.3. Let I be the ideal of k[ X1, ..., X,,| generated by the set of poly-
nomial S, then V(S) =V (I).
Proof. Let (ay,...,a,) be a point of V(I), then f(ai,...,a,) = 0 for all f € I.
Since S C I and g(ay,...,a,) = 0 for all g € S. Thus V(I) C V(S). Show that
V(I) 2 V(S), let (ay,...,a,) be a point of V(S) and g € I such that g = fih;
where f; € S and h; € k[X, ..., X,,]. Since fi(ai,...,a,) =0, g(a,...,a,) = g =
> filay, ...,an)hi(ay, ...,a,) = 0 for all i. Therefore V(I) 2 V(S), and hence
V(S)=V(I).

Therefore every algebraic set is equal to V() for some ideal I. Thus, instead
of thinking about V'(S), we can think of the property of ideal V' (1).

Proposition 2.4. If {I,} is any collection of ideals then V (Uyl,) = NaV (1,).

Proof. Let (ay,...,a,) be a point in V(U,1,), then for all « and all f € I, we
have f(ay,...a,) = 0, thus (ai,...a,) € N,V (I,). Therefore V(U,I,) C N,V (1,).
Let (ay,...,a,) be a point in N,V (1,), then for all & and for all f € I, we have
flar,...;an) = 0, thus (a1;...,a,) € V(Ual,), and hence V(U,l,) D N,V (1,).
Consequently, V(Ualy) = NaV(1y).

Proposition 2.4 give us, every algebraic set is written by the intersection of

any collection of algebraic sets, without whether the collection is infinite or not.
Proposition 2.5. If ideal I is a subset of ideal J, then V(I) 2 V(J).

Proof. Let (ay,...,a,) be a point in V(J). Then F(ay,...,a,) = 0 for all F' € J.
Since I C J we know that G(ay, ...,a,) = 0 for all G € I, and hence V(1) D V(J).
Proposition 2.6. Let F', G be a polynomials in k[X1, ..., X,], then V(FG)
V(F)UV(G); V() UV(J)=V{FG|Fel, GeJ}).

Proof. Let (ai,...,a,) be a point in V(I) U V(J). Then F(ay,...,a,) = 0 for
all F' € I or G(ay,...,a,) = 0 for all G € J. Then (FG)(ay,...,a,) = 0 for all

7



F € I and G € J since F(ay,...,a,) = 0. Therefore V(I) UV (J) C V({FG |
F eI, G € J}). Let (ay,...,a,) be a point in V{FG | FF € I, G € J}).
Then (FG)(ay,...,an,) = 0 for all F € I and G € J. If G(ay,...,a,) = 0 for all
G € J then (ay,...,a,) € V(J) C V(I)UV(J). Otherwise if G(ay,...,a,) # 0.
Then (FG)(ay,...,a,) = 0 for all ' € I, and hence F(ay,...,a,) = 0 for all
F € I. Thus (ay,...,a,) € V(I) C V(I)UV(J). Therefore V({FG | F € I,
GeJ}) CVI)uV(J).

Proposition 2.7. V(0) = A"(k), V(1) = @, V(X1—ay, ..., X;,—a,) = {(a1, ..., a,) }
with a; € k.

Proof. If V(0) # A" (k) then there exists (ay, ..., a,) € A"(k) such that 0(ay, ..., a,)
# 0. But it is impossible, and hence V(0) = A™(k). And if V(1) # & then there
exists (ay, ..., a,) € A"(k) such that 1(ay, ..., a,) = 0, this is also impossible. Thus
V(1) = @. By definition of algebraic set, V(X — aq, ..., X, — a,) = {(a1, ..., a,)}
is clear.

Consider the number of algebraic sets on Al(k), Let X be an algebraic set of
Al(k), then X = V(S) for some set of polynomials S. If S =0 then X = V(0) =
Al(k). If not there exists F' in V(9), then F has at most deg(F) roots, and hence
V(S) € V(F). Therefore V(S) = X has finite numbers of points. Therefore the
algebraic subsets of A!(k) are the finite subsets, together with A'(k) itself.

Let F' be a nonconstant polynomial in k[X7,..., X,,], k algebraically closed.
Then A"(k) — V(F) is infinite if n > 1, and V(F) is infinite if n > 2. Use
indction on n. If n = 1 AY(k) — V(F) then clearly A"(k) — V(F) is infinite.
Since any algebraic set of A!(k) is finite subset of A!(k). Suppose that the claim
holds for polynomial in n — 1 variables. Consider F'(X1, X, ..., X;,_1,1). This is a
polynomial in n — 1 variables and thus there are infinitely many points that are
not solutions to the equation F'(X;, Xy, ..., X,,—1,1) = 0 and therefore infinitely
points that are not solutions to the equation F'( X1, X, ..., X,,) = 0. For the second

part, for any ay, ...a,_1 € k the polynomial F(ay,...a,_1, X,) = 0 has at least one

8



solution. Since there are infinitely many choices for aq, ...a,,_; there are infinitely
solutions to F(Xy,...,X,) = 0. The conclusion follows since any algebraic set
V(I) choose F' € I then V(I) C V(F). Thus the complement of any proper

algebraic set is infinite.

Lemma 2.8 Let X and Y be an algebraic sets of A"(k) and A™ (k) respectively.
Then it satisfies the following :

X XY ={(x1, ', Tu, Y1, o, Ym) | (X1, .0y 20) € X, (Y1,.0,Ym) €Y'}

is an algebraic set in A" (k). It is called the product of X and Y .

Proof. X =V/(S) and Y = V(T for some set of polynomials S, T. Rename the
variable in 7" so that they begin at X, .1 and end at X,,,,, then X xY = V(XUY).

2.1.2 The ideal of a set of points

Definition 2.9. Let X be a subset of A™(k). Then the set I(X) is defined as

follows:
I(X)={f €ek[Xy,....Xy] | Fla1,...,an) = 0 for all (ay,...,a,) € X}.

Lemma 2.10. Under the situation as above, 1(X) is an ideal of k[X1, ..., Xy,
and I(X) is called the ideal of a set of points.

Proof. for all f, g € I(X), then for all (ay,...,a,) € X consider (f — g) :
(f —9)ar,...,an) = flar, ..,an) —g(ar, ..,an) = 0

Thus I(X) is a subgroup of k[Xy,...,X,]. And for all f € I(X), for all g €
k[X71, ..., X,], then for all (ay,...,a,) € X

(fg)(al, --~7an) = f(ala -~-,an>g(a17 ooy an)
=0-g(ay,..,a,) =0



Therefore fg € I(X), and hence I(X) is an ideal of k[ X7, ..., X,,].

Proposition 2.11. If X is a subset of Y, then I1(X) D I(Y).

Proof. Let F' be a polynomial in /(Y’) then F(ay, ..., a,) = 0 for all (ay,...,a,) €
Y. Since X is a subset of Y we know F'(by, ..., b,) = 0 for all (by,...,b,) € X. Thus
F is an element of I(X).

Proposition 2.12. [(@) = k[Xq,..., X,,] and I(A"(k)) = (0) if k is an infinite
field.

Proof. I(@) = k[ Xy, ..., X,,] is clear. Show that I(A"(k)) = (0) if £k is an infinite
field. Suppose that F' € I(A"(k)) and nonzero polynomial, then F'(ay,...,a,) =0
with for all (aq,...,a,) € A™(k). Therefore we can take the set {(z1,0,...,0)} C
A™(k), then F(z4,0,...,0) = 0 for all z; € k. Since F(z1,0, ...,0) is a one variable
polynomial, hence F(z1,0,...,0) is satisfying the fundermental theorem of alge-
bra. Then F(z1,0,...,0) have must finite numbers of roots, but F(z1,0,...,0) has

infinitely many zeros, this is a contradiction. Thus F' = 0.

Proposition 2.13. I({(a1,...,a,)}) = (X5 — a1, ..., X,y — a,,) with a; € k.

Proof. I({(ay, ...,a,)}) D (X1—ay, ..., X;,—a,) is clear. Show that I ({(a4, ..., a,)})
C (X1—ay, ..., X;,—ay). Suppose that forall F' € I({(ai,...,a,)}), then F(ay, ..., a,)
= 0. Therefore F' = 3" | (X;—a;)G;, and hence F € (X;—ay, ..., X;,—ay,). There-
fore I({(a1,...,an)}) = (X1 — a1, ..., Xy, — an).

Proposition 2.14. Let S be a subset of k[ X1, ..., X, then I(V(S)) D S. And let
for all X be a subset of A™(k) then V(I(X)) D X.

Proof. Suposse that for all S C k[X, ..., X,,] then we can make the set V' (S) =
{p e A"(k) | F(p) =0, for all F € S}. If V(S) = @, then I(V(S)) = [(2) =
k[X1,...,X,] D S. If not, consider definition of I(V(S)) : is the set of polynomials
that vanish on V(S). Since every element of S vanish on V'(S), hence I(V(S)) D
S.

10



Proposition 2.15. Let for all S be a subset of k[ Xy, ..., X,,], then V(I(V(5))) =
V(S). And let for all X be a subset of A™(k) then I(V(I(X))) = I(X).

Proof. Take for all P € V(I(V(S5))), then point P is the root of for every polyno-
mials in I(V(9)). It means P € V (S) since I(V(5)) is the set of polynomials that
vanish on V(S). Thus V(I(V(S))) C V(S). Suppose that for all P € V(S) and
show that P € V(I(V(S))). Clearly P is root of every polynomials in I(V(.5)).
Thus P € V(I(V(S5))), and hence V(I(V(S))) = V(95).

Shows that I(V(I(X))) = I(X). First I(V(I(X))) C I(X), let F be a poly-
nomial in I(V(I(X))), then F(P) = 0 for all P € V(I(X)). Since P is the
root of every polynomials in I(X), thus P € X, and hence F' € I(X). Sec-
ond I(V(I(X))) D I(X), take any polynomial F' in I(X), then there exists
P e V(I(X)) such that G(P) = 0 with for all G € I(X). And any polynomial in
I(V(I(X))) vanish on P, thus F € I(V(I(X))). Therefore I(V(I/(X))) = I(X).

Definition 2.16. Let [ be an ideal of R. Define Rad(I) = {a € R | a" € I}
where integer n > 0. We called Rad(I) the radical of I. If I = Rad(I) then I is

said to be a radical ideal.

Proposition 2.17. Rad(l) is an ideal of ring R, I C Rad(T).

Proof. Clearly Rad(I) is an subset of R. Take for all a, b € Rad(I) then there
exist n, m such that a", b™ € I, if m is even, then ™ = (—b)™. Thus —b € Rad([).
If not, there exists —b™ € [ and —b™ = (—b)™, therefore —b € Rad(I). Then
consider as follow equation :

(a—b)"t™ = (n —('; m> a®(—b)™ " 4 (n —Ii m> a'(—b)™t Tl 4 gt

Every terms of above equation are elements of I, Thus (a—b) € Rad([I), and hence
Rad(I) is a subgroup of R. And show that ideal property. Take a € Rad(I),r € R,
then there exists a™ € I and clearly (a™)(r") = (ar)" € I. Therefore Rad(I) is an
ideal of R, and for all a € I is in Rad(I) consider as a'. As a result, Rad(I) is an
ideal of R that contains .

11



Proposition 2.18. For all X C A™(k) then 1(X) is a radical ideal.

Proof. I(X) C Rad(I(X)) is clear. Show that I(X) D Rad(I(X)). Take F €
Rad(I(X)), then there exits m such that F™ € I(X), and F™(P) = 0 for all
P € X. Since k has no zero divisors, hence F'(P) = 0 and then F' € I(X).

Let X, Y be algebraic sets in A"(k) and then X =Y if and only if I(X) =
I(Y). Proof is simple, if X =Y then I(X) = I(Y) is clear. Now suppose that
I(X)=1(Y) then X =V(I(X)) =V(I(Y)) =Y as required.

Proposition 2.19. Let I be a prime ideal of ring R, then I is a radical ideal.

Proof. Suppose that I is a prime ideal of ring R, and Rad([) is radical of I. Since
I C Rad(I) is clear. Thus we must show that I D Rad(l). For all a € Rad(I)
then there exists a” € I. Since I is a prime ideal, a® = aa" ! if a € I then we
are done. Thus we assume that a® ' € I, then aa® 2 € I,etc. This process will

surely end, and hence a € I, and I D Rad(I).

Lemma 2.20. Any ideal J of k[X, ..., X,], V(J) = V(Rad(J)) and Rad(J) C
L(V(J))-

Proof. Since J C Rad(J), we have V(J) D V(Rad(J)). Take p € V(J), F €
Rad(J), then there exists F"™ € J. Then F'™(p) = 0. Since k has no zero divisors,
then F(p) = 0. Therefore p € V(Rad(.J)). Take p € V(I), for all F' € Rad(J),
then there exists ™ € I. Then F™(p) = 0. Hence F(p) = 0, therefore F' €
L(V(J))-

Proposition 2.21. [ = (X;—ay, ..., X, —ay,) s an maximal ideal of k[ X1, ..., X,

and the natural homomorphism from k to k[X, ..., X,,]/I is an isomorphism.

Proof. Suppose that I C J C k[X7, ..., X,,)]. Take F € J—1I, then F(ay,...,a,) #
0.

F= Z oy (X1 — a1)i1(X2 — (lg)iZ (X, — an)i”.
(@)
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We can take G € [ :

G= Z iy (X1 — a)) ( Xy — ag) - (X, — an)™.

..........

can take another polynomial F’ € J — I and G’ € I as follows:
F' =% B —a) (X = a) - (X = a,)'",
(%)

¢ = Z B(i) (Xl T al)il (XQ o a2)i2 oy (Xn F an)iny

() £(0,..0)
where B, 0) = — 7. since k is a field. Then F' — G’ = 1/oo,..0) € J. Then
clearly (F — G)(F' = G') = aqo,..., 0)a(01 5= 1 € J. Therefore J = k[Xq, ..., X,),

and hence I = (X; —ay, ..., X;, —a,) is an maximal ideal of k[ X1, ..., X,,]. Let ¢ be
the nautral homomorphism from k to k[Xj, ..., X,,]/I. Consider 0 — ©(0;) =
Or + I, thus 05 € Ker(yp) and any other element of & does not in Ker(y) by the
natural condition, and hence ¢ is injective. Suppose that for all F' € k[ X1, ..., X,)]
then F' has the form :

F=> a@n(Xi—a)" (X2 —a)? - (X, — an)™.
(@)
Then consider F' + I € k[Xy,...,X,]/I with [ = (X; — a4, ..., X,, — a,). Since
every terms of F' are factorized into (X7 —ay), ..., (X,, —a,), they are all element
of I. Therefore on k[X7, ..., X,]/I they are zero, except constant term. Thus
F+1=aqaq,.0+1¢cklXy,.. X,|/I with aq, o € k. Since k[X1,..., X,|/1

is a field, for all a € k[X1, ..., X,,]/I then there exists a € k such that ¢(a) = a.

Consequently, ¢ is an isomorphism.
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2.1.3 Hilbert’s Basis Theorem

We know that every algebraic set is equal to for some intersection of hy-
persurface. But this time you’ll see that a finite number of hypersurfaces is
enough. This is the beginning, we have any hypersurface V(S) with S is a set
of polynomials in k[X7,..., X,]. Then there exists ideal I € k[Xq,..., X,] such
that V(1) = V(S). If I is finitely generated by ¢i,...,g, € k[Xi,..., X,] then
clearly V/(S) = V(I) = V(g1, ..., 9r) = V(g1) N --- NV (g,). Thus, if k[X, ..., X,]
is a noetherian ring, our claim is over. This can be confirmed by Hilbert’s basis

theorem.

The Hilbert Basis Theorem. If k is a noetherian ring, then k[X7,..., X,,] is a

noetherian ring.

Proof. If we can prove that k is a noetherian then k[X] is a noeterian, since
k[ X1, ..., X,] 2 k[Xq, ..., X,,1][X.,] it is enough to show the theorem. Thus shows
that k is a noetherian then k[ X] is a noeterian. Let I be an ideal of k[ X], our claim
is for some ideal I" of k[z] is finitely generated and it is same as I. Consider ideal J
of k, defined by J = {le(f) | for all f € I} by propositionl.1. Since k is a noethe-
rian ring, J = (g1, ..., g») with g; € k. Then there exist a polynomials G, ..., G, €
k[X] such that lc(G;) = g;. Take an integer N > max(deg(Gy), ...,deg(G,)),
for each m < N, J,, = {le(f) | f € k[X] and deg(f) < m} is an ideal of k
by Lemmal.2; and J,,, = (gm1, .-, §mu) Sinc k is a noetherian. Then we can find
polynomials Gy1, ..., Gy € k[X] such that l¢(Gpi) = gmi. Suppose that I is
generated by Gy, ...,G, and G,,1, ..., Gy, and show that I = I'. Clearly, I' C [
since I contains every generators of I’. Take a polynomial H € I — I’ such that
deg(H) < deg(F) forall F € I —I'. If deg(H) > N, then we can find polynomial
Q; such that > Q;G;, deg(d>_ Q;G;) = deg(H) and le() | Q;G;) = lc(H). Consider
the degree of (H — > Q;G;), it is lower than deg(H), thus (H — > Q;G;) € I
and H € I'. Second, if deg(H) < N then then we can find polynomial @; such
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that > QiGni, deg(d> . QmiG;) = deg(H) and lc(> QniGi) = lc(H). According
to the above method, (H — > Q:;Gyi) € I’ and H € I'. Therefore H can not
exist, and hence I = I'. As a result if k is a noetherian ring, then k[X1, ..., X,,] is

a noetherian ring.

Corollary 2.22. If k is any field, then k[X7, ..., X,,] is a noetherian ring.
Proof. Every field is PID, therefore field k is a noetherian ring. By the hilbert

basis theorem, corollary is done.
Therefore every algebraic set is the intersection of a finite number of hyper-

surfaces.
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2.2 Hilbert’s Nullstellensatz

The aim of this section is to prove Hilbert’s Nullstellensatz. We begin with

the following basic concepts.

2.2.1 Module

Definition 2.23. Let R be a ring. An R-module is a abelian group (M,+)
together with a scalar multiplication(R x M — M defined by (a,b) — ab)
satisfying:

1. (a4+b)m =am+bm with a, b € R, m € M.

2. a(m+n)=am+an witha € R, m,n € M.

3. (ab)m = a(bm) with a, b € R, m € M.

4. 1gm = m with m € M, 1 is the multiplicative identity of R.

A subgroup S of an R-module M is called a submodule if sm € S, for all
s € R, for every m € S, then S is an R — module. Suppose that G C R-module
M, the submodule generated by G is defined by {> r;g; | 7; € R, s; € G}, then
it is the smallest submodule of M that contains GG. The module M is said to be
finitely generated if M = ) Rg; for some gy, ...g, € M.

Let S be a ring with subring R. We say that S is module-finite over R if
S is finitely generated as an R-module. We say that S is ring-finite over R if
S = Rlvi, ..., vy] = {Sa@vi ---vir} for some vy,...,v, € 9, it is the smallest
ring contains ring R and vy, ..., v,. Note that module-finite implies ring-finite, but
the converse is false. If L is ring-finite over K, with L, K fields, then L is a finite

extension of K.
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Proposition 2.24. Let S be a ring with subring R. If S is module-finite over R,
then S 1s ring-finite over R.

Proof. The ring S is module-finite over R, then write S = ) Rv; for some
vy, ..., v, € S. And if S is ring-finite, S = > Rvj'v}? - - - vin. Thus any element of
ring-finite over R is in the module-finite over R.

Proposition 2.25. Let K, L be a fields. If L is ring-finite over K, then L is a
finitely generated field extension of K.

Proof. L is ring-finite over K, thus L = K{uvy, ..., v,] for some vy, ..., V,, € L, and
clearly L = Klvy,...,v,] € K(vy,...,v,). Since K (vy,...,v,) is the smallest field
containing vy, ..., v, we know that L = Klvy,...,v,] = K(vq,...,v,) since L is a
field.

Proposition 2.26. If L = K(X) is a finitely generated field extension of K, but

L is not ring-finite over K.

Proof. Suppose that L = Kluvy, ..., v,] for some v; € L, and f(X) € K[X] =L
such that f = by - - b, with v; = a;/b;(a;, b; are relatively prime). Choose g(X) €
K[X] such that gt f™ for all m € N. then there exists é € kv, ...;un] =L :

1 i1 @
_:Za(i)vl ""UTT
(4)

9

Multiply by fv on both sides of the displayed equation for sufficiently large N so
that the denominators on the left hand side are all cleared if N = E(i) (i1 4+ 1)
will do. Then % € K[X], a contradiction as g does not divide f~ € K[X].

Proposition 2.27. Let R be a subring of S and S a subring of T'.
1. If S =Y Rv;, T =Y Sw; then T =) Rvw;.
2. If S = Rlvy, ..., v, T = Slwy, ..., wy,) then T = Rlvy, ..., U, W1, ooy Wiy

3. If R, S, T are fields, and S = R(vy,...,v,), T = S(wy,...,w,,) then T =

R(U1, ey Uy W1y ey W) -
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Proof. Prove the first condition, T O ) Rvw; is clear. we must shows that
T C Y Rvw,;. Since R is subring of T" and v;, w; € T for all 4, j. Take for all
t €T, thent =73 \jw; with A € S. Then \; =3, &;v; for all j.

t= Z Ajw; = Z Zfz’jviw]’ = Zfijviwj € Z Rv;w;
J j ot 1] 0,J

Therefore T' = ) Rv;w;. Prove the second condition, T' D Rlvy, ..., Up, W1, ..., Wy,
is clear. shows that T C R[vy, ..., vp, w1, ..., wy,]. Take for all t € T then t =
> ) s@Wy -+ win with sy € S, and sy = Zr(j)v{l Cepdn

t—Zs )wl
_ZZT(] . an w;’;

it § J1 s aydna B im

(4),(4)
Therefore t € R[vy, ..., Un, w1, ..., wy,], and hence T = Rlvy, ..., Up, W1, ..., Wp,].
Prove the third condition, S is the smallest field containing R and vy, ...v,, and

T is the smallest field containing S and wy, ...w,,. Then
T8, ")
= R(v1, ey Up ) (W1, .., Wiy}

= R(U1, vy Upy W1, ey W)

Thus the three finiteness conditions impose a transitive relation.
2.2.2 Integral elements

Let R be a subring of a ring S. We say that v € S is integral over R if there is
a monic polynomial f = X9+ a; X971 +...+ay in R[X] satisfy that f(v) = 0,and
it R, S are fields, we say that v is algebraic over R.
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Proposition 2.28. If R is a subring of domain S, and v € S, then the following

are equivalent:
(1) v is integral over R.
(2) R[v] is module-finite over R.
(8) There is a subring R’ of S containing R[v] that is module-finite over R.

Proof. 1 = 2 : Since v is integral over R, there exists monic polynomial F' € R|[X]
such that F(v) = v? + ag_1v*" -+ ag = 0, then v¢ € 371 Rv'. It means
v" € S50 Ryt for all n, since v € R. thus R[v] = 3297, Ru'.

2 = 3 : we just take R = R|v], then we are done.

3=1:1f R =>" Ruw, thenvw;, = Z?:l a;;w; for some a;; € R. Then
Z?Zl(fijv —a;j)w; = 0 for all i, where &; = 0 if ¢ # j and ;; = 1. If we consider
these equations in the quotient field of S, we see that (wy, ..., w,) is a nontrivial
solution, thus det(&;;v — a;;) = 0. Since v appears only in the diagonal of the
matrix, this determinant has the form v" +a,,_1v" ' + - - - +ag, a; € R. Therefore

v is integral over R.

Corollary 2.29. The set of elements of S that are integral over R is a subring
of S containing R.

Proof. If a, b are integral over R, then b is integral over Rla] D R, thus R]a,b] is
module-finite over R. And a + b, ab € R[a, b], therefore they are integral over R.

If every element of S is integral over R, then S is said to be integral over R.

And if S, R are a fields, S is algebraic over R.
Proposition 2.30. Let L be ring-finite over K. Then L is module-finite over K
if and only if L is integral over K.

Proof. (=) Suppose that L = > Kv; with vy, ..., v, € L. Since L is module-finite
over K and K[v;] C L, thus v; is integral over K by Proposition 3 to 1. By the
corollary 5, K C S = {a € L | a is integral over K} C L. Since S is subring of
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L and containing vy, ..., v, and K, and for all z € L has the form : z = > k;v;.
Thus every terms of z is in S. therefore S = L. (<) Suppose that L is integral
over K. By the Proposition (1) to (3), clearly L is module-finite over K.

Proposition 2.31. Let L, K be fields such that K C L and K s an algebraically
closed. (1) Then the set S = {v € L | v is algebraic over K } C K. (2) And K

has no module-finite field extensions except itself.

Proof. (1) : Let v € L be algebraic over K. Sice K is algebraically closed,
therefore every root of any polynomial F' € K[X] is already in K. (2) Suppose
that L is module-finite over K. then we know that L is algebraic over K. By (1)
L=K.

Proposition 2.32. Let R be a subring of S and S is a subring T'. If S is integral

over R, and T s integral over S. Then T is integral over R.

Proof. Suppose that z € T', R’ = Rlay, ..., a,| and R” = R[ay, ..., a,, z] where the
a; € S are the coefficients of a monic polynomial which vanish on z. Using part
(2) of proposition 21 repeatedly we see that R’ is moudle finite over R. The ring
R" is module finite over R’ sice R’ = Z?;(} R'z'. By transitivity R” is module
finite over R. Since R” is a subset of T" containing R|[z| that is module-finite over

R, we can use part (3) of proposition 21 to conclude z is integral over R.

Proposition 2.33. Let K be a field, L = K(X) the field of rational functions in
one variable over K. Then (1) z € L such that z is integral over K[X] is already
in K[X], and (2) there is no non-zero element F' € K[X| such that for all z € L,

Fz is integral over K[X] for some n > 0.

Proof. proof (1), Suppose that z € L be integral over K[X]. Then there exists
monic polynomial H such that H(z) = 0, write H(z) = 2" + a;2" ' 4+ --- = 0.
Since z is an element of the field of rational functions L = K(X), thus z = F/G
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with ', G € K[X] are relatively prime. Then

G'"H(z)=G"(z"+a;z" " +--) =0,
G"H(F/G)=G"((F/G)" 4+ ay(F/G)" +---) =0
="+, GF" 4. =0,

Since G divides F™, therefore G must divides F. But this is contradiction to G
and F are relatively prime. Thus z € L is integral over K[X], then z € K[X].
proof (2) Choose C(X) € K[X] such that C does not divide any power of F.
Then setting z = 1/C we can conclude that F™/C is integral over K[X], then
there exists some a; € K[X] such that

and since C divides every term in the right hand side it must divide F™? a
contradiction.

Zariski lemma can be proved by combining the results so far.

Proposition 2.34. If a field L is ring-finite over a subfield K, then L is module-
finite over K.

Proof. Suppose that L = Klvy, ..., v,]. We use induction on n. The case n = 1,
L = K(v1), consider the homomorphism £ : K[X;] — L = k(v;) defined by X;
to v1. Then by the first isomorphism theorem, Im(§) = K|v| = K[X;]/Ker(§).
Since K[X;] is PID, we can write Ker(§) = (F') for some F' € K[X;] and K|v]
is a domain, hence (F') is a prime ideal. By the property of PID, (F') is maximal
in K[X;]. Thus K[X,]/(F) is a field, and hence K[v,] = K(vy). And F(v,) = 0,
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thus vy is algebraic over K and L = K[v;] is module-finite over K by Proposition
21, 1 to 2. Assume that the claim is true for n — 1. Then L = K, [vy, ..., v,_1] is
moudle-finite over K, with K, = K(v,). If v, is algebraic over K then we are
done by Proposition 20-1. Hence suppose that v,, is not algebraic over K. Then

. . . _1
each v; satisfies an equation U? '+ aﬂvfl

+ -+ = 0 where a;; € K,,. Then we
take f € K[v,] that is a multiple of all the denominators of the a;;. Multiply both
sides of the above equation by " : (8v;)" + a;;8(Bv;))™ ! + -+ = 0, it means
pv; is algebraic over K[v,]|. Consider subring S = {a € L | a is integral over K},
by corollary K C K[V,] C S C L. Therefore for all z € L = K[X},..., X,;], there
is an N such that 8"z is integral over K[V,] (Bv;, v, € S). In particular this
must hold for z € K(v,) C L. Since K (v,,) is isomorphic to the field of rational

function K (X)), this is contradiction by Proposition 25-(2).

2.2.3 Hilbert’s Nullstellensatz

Weak Hilbert’s Nullstellensatz. If K is algebraically cloed and I is a proper
ideal in K[X}, ..., X,], then V(I) # 2.

Proof. We may assume that [ is a maximal ideal of K[X7,..., X,,], because any
proper ideal contained for some maximal ideal. Suppose that L = K[X;, ..., X,,|/I
is a field. Then L is ring-finite over K and since K is algebraically closed, L = K
by the above propositions. Then each ¢ there is an v; € K that the [-residue of
X; is v; or X; —v; € I for some v; € L. But we know that (X; — vy, ..., X,, — v,)
is maximal ideal, therefore V(1) = (vy, ..., v,) # @.

Hilbert’s Nullstellensatz. If k is algebraically cloed and [ is an ideal of
k[X1, ..., X,], then I(V (1)) = Rad(I).

Proof. Take p € V(I), for all F' € Rad(J), then there exists F € I. Then
F™(p) =0, thus F(p) =0and F' € I[(V(J)). Thus I(V(I)) D Rad(I). Let’s show
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the opposite direction. Suppose that I = ([}, ..., F,) with F; € K[X{, ..., X,] and
take G € I(V(I)), then G = A1 Fy1 +- - -+ A, F, for some A; € K[X3, ..., X,;]. Con-
sider ideal J = (Fy, ..., F,, X;,;1G—1) in K[X7, ..., X;,.1]. Since F; and X, 1G —1
has no common zeros, V(J) = @. By the Weak Nullstellensatz, J is whole ring
K[Xy,..., Xpy1]. It implies 1 € J, therefore we have an equation :

1= Z Bi<X17 "'7Xn+1)ﬂ + C(X17 e Xn+1)<Xn+1G - 1)7

where B;, C € K[Xy, ..., X;,41]. Let setting Y = # Then multiply the equation

1

by a high power of Y :
yN — Z Di(Xq, ... Xp, V)F; + E(Xq, ..., X0, YI(G = Y).
Substituting G for Y then

GY =) Di(Xy, ..., Xn G)F;

=3 Hi(Xi,.., Xn)F,

Thus GY € I = G € Rad(I). Therefore I(V(I)) C Rad(I).

Corollary 2.35. Let [ be a radical ideal of k[ Xy, ..., X,], then I(V(])) = I.

1-1

Therefore {radical ideal} ;3 {algebraic set}.

Corollary 2.36. Let I be a prime ideal of k[X7, ..., X,,], then V(I) is irreducible.
Thus {prime ideal} 1= {irreducible algebraic set}, and the maximal ideals

correspond to points.
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Chapter 3

Projective algebraic set

Let k be algebraically closed field. We denote P™ the quotient of k"' — {0} by
the operation of the group k* : P" := (k"' —{0})/~, where ~ is the equivalence
relation defined by: (xq, -+ ,2,) ~ (Yo, ,yn) if there is a non-zero element A
in k such that (zo, -+ ,x,) = (Ao, -+, Ayn). P" is roughly the set of the lines in
k™*1 passing through the origin.

If we want to refer to the projective space of one -dimensional subspaces of
a vector space V over the field k£ without specifying an isomorphism of V' with
K™ denote it by P(V) or simply PV.

Let’s look at the point of P now. It is usually written as a homogeneous
vector [Zy, ..., Z,|, by which we mean the line generated by (Zy, ..., Z,) € k"1
Let v be any non-zero vector in V, then av € V for all scalar multiplication « is
a same point in PV = P,

An affine variety X C A" is defined by the common zero locus of a collection
of polynomials in k[ X1, ..., X,,]. However, a projective variety is not defined as the
common zero locus of a collection of polynomials but is defined as the common

zero locus of a collection of homogeneous polynomials.

Let U; C P™ be the subset of points [Z, ..., Z,| with Z; # 0. Then on U; the
ratios z; = Z;/Z; are well-defined and give a bijection U; = A" If X is variety
of P", then the intersection X; = X N U; is an affine variety. The following two

definitions will clarify our thinking.

Definition 3.1. Let K be a domain. Take any polynomial f € K[Xy,..., X,,] of

24



degree d, then we can write f as follow:

f=f+fit+-+ fa

where f; is a form of degree 7, and let’s define f* :

X X,
f*:Xgﬂfo‘i‘Xg;}fl+""|‘Xn+1fd71+fd:Xg+1f - 3 .
Xn+1 XnJrl

Then f* € K[Xy,..., X,41] is a form of degree d.

We call this process Homogenization.

Definition 3.2. Let K be a domain. Take any form F € K[Xy,..., X,,41], let’s
define F; :

F. = BXy ..., X, 1)

Then F, € K[X3, ..., X,]. We call this process Dehomogenization.

The purpose of the dehomogenization is to eliminate some X;. Therefore,
1 may be substituted anywhere. Consider the homogeneous polynomial F' €
k[X1, ..., Xpy1] with deg(F) = d. Then we can dehomogenization against X; of F'

Xl = F(LXQ, e Xn+1),
X2 = F(Xh ]-7X37 "'aX’rH-l)v

X, = F(Xl,XQ, ey Xn_17 1, Xn+1),
Xpy1 = F(X1, X, .., X, 1).
Thus projective space is the union of affine spaces, and every projective variety
is the union of affine varieties. In particular, a subset X in P" is a projective

variety if and only if X; = X N U; are all affine varieties, following propositions

are propoerties of homogenization and dehomogenization.
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Proposition 3.3. (FG), = F.G, and (fg)* = f*g*
Proof. Suppose that F', G € K[Xy,..., X,41] are a forms, then clearly FG is a
form. Consider (FG).

(FG), = (FG)(X1, ..., Xp, 1)
- F(Xl, '-'7Xn7 1)G(X1, ...,Xn, 1)
= I.G,.

Therefore (FG). = F.G..
Assume that f,g € K[X3, ..., X,] with deg(f) = dy, and deg(g) = dy. Then fg is
a polynomial of K[Xj, ..., X,,] with degree d; 4+ dy. Consider the following :

X X
= Xitda y g
(fg) n+1 (fg) (Xn+]_ Xn+1
X, X,
Xﬁf{%( o >g< o )
n—l—l n+1 n+1 n+1

:Xg}i-l X R " XS?H 2 ) e
Xn+1 Xn+1 Xn+1 Xn+1

=g
Proposition 3.4. (f*), = f and X!, |(F.)* = F where F # 0, and h is the
highest power that satisfy following X" na | F.
Proof. Assume that f is any polynomial of K[Xj, ..., X,,], and deg(f) = d. Then

Xn
* = e
f +1f < n—l—l Xn+1>

(f*)* = (f*)(Xb ...,Xn, 1)

And consider (f,)*
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Suppose that F' € K[Xq,...,X,11] a form of degree d and r is the highest
power of X"t that divides F :

a i int1
F Z (i1,82,--, in+1)X1 e Xn+1
" A(iy,i i in | yin1—T
X” 1 Z (1,02, Znﬂ)Xl Xn L

where i1 + iy + -+ + i,y1 = d. Then F, is a polynomial of K[X7,..., X,,], and it

has a form as follow:
F, = Za(il,ig ..... z’n)Xil Y. 4]

where a(;, i,,..i,) € K, and degree of F, is d — r. Now Consider (F,)*,

x. ' 3, Y §
F Xd & A3y ig,... in " ° i
( ) n+1 Z ( 1,225.--, ) (Xn+1> <Xn+1)

Finally, let’s look at the following :
. ; \ AR xIA”
Xn+1(F*> n+1XrCLl+1 Z Q(iy iz, < ) L (X +1>
11 in
X X
- Xd i i 7; L, o .. n 3
n+1za(1,2 ..... n)<Xn+1> (X'n,+1>

Since i1 + iy + -+ iy =d — iy

X
- Z a(il,iz ..... in)Xil Ce X:;Tiﬁil
=F.

X1 (F) Xg+1za(i1,iz ..... in)

Proposition 3.5. (F + G), = F. + G..
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Proof. Suppose that F' and G € K[Xj, ..., X,,41] are forms. Then

(F+G)=(F+G)(Xq,..., Xn, 1)
= F(Xy, .., Xn, D)+ G(X1, .., Xy 1)
=F, +G,.

Proposition 3.6. X! (f 4+ g)" = X/ f*+ X3 ,.9%, where r = deg(g), s =
deg(f), andt =r+ s —deg(f + g).

Proof. Assume that f,¢g € K[Xy,..., X,] are polynomials of degree s, r respec-
tively. Then (f + g)* =

de de de de —r
n+g1f+g fot - B g (f+9)— °f. +Xn+gl(f+g)g e +Xn+gl(f+g) gr.
Consider X!, (f +g)* = X/ 11~ ded f+g)(f +9)°

=X o+ X0 i+ X s X0+ + X0
= Xon (Ko fo+ 51}f1+---+f5)+ P g0+ ek )
_XT_Hf —|— _Hg

Corollary 3.7. Up to powers of X, 4, factoring a form F € K[Xy,..., X,,41] is
the same as factoring F, € K[X7, ..., X,,]. In particular, if F' € K[X,Y] is a form,

K algebraically closed, then F' factors into a product of linear factors.

Proof. First claim, Suppose that any form F' € K[Xy, ..., X, 4] If F = F,--- F
and F' = X] ;G where r is the highest power that divides F. Then

F =X (B

=X {(F1 - F)
Xy {(F1)s -+ (B}

= Xo o { (). (B

(

= X {(F) 3" { ().

28



Second claim, Assume that F' € K[X,Y] and K algebraically closed. Then
F =Y'H, where Y { H. Therefore, F, = H, and since K is algebraiclly closed,

F.=H, =8][(X - a).
Consider F = Y7 (F,)*
Pviey = oy {T[0c-a))
= BY”" H(X —a;Y).

Therefore every factors of F' have form a linear factor.
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Chapter 4

Defining equations of

rational curves on S(1,2)

In this chapter, we completely determine the minimal generators of rational
curves on a rational normal surface scroll S(1,2) in P*
Definition 4.1. The rational normal curve C C P? is defined to be the image
of the map vy : P' — P4 given by vg : [Xo : Xi] — [X$, X371 Xy, ... X{]. It is
well-known that the rational normal curve C' is defined by (2 x 2) — minors of

the matrix as follow :
Xo X1 Xo -0 Xy-—1
X, Xo Mg il NS
If Qij = XiXj11 — Xin X with 4 # j and 0 < 4, j < d (i, are the column
numbers of the matrix). Then C is generated by the set S = {Q;; | 0 <14, j <d
and i # j}.
Let define C;; C P4, is the rational curve as follow :

Cy = {[sYP) : s 't(P) : s>t 2(P) : st *(P) : t%(P)] | P € P'}.

In this chapter, C; always means the above the rational curve.

If P* NP’ = & then v, : P! < P by setting [s,t] — [s% : s*7 1t -1 1.
vy : P — PP by setting [s,t] — [s: s"71¢ 1 - 1 #°]. We know that (), v,(P?)
are normal rational curves in Pa**1 and P = 1 (P!) = 1, (P?).
Definition 4.2. S(a,b) = Uv,(p)u(p),p € P'. We call S(a,b) is rational normal
scroll S(a,b).
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Definition 4.3. Rational normal surface scroll (1,2) It is well-known that the
rational normal surface scrolls S(1,2) C P* is defined by (2 x 2) — minors of the
matrix

Xo Xo X3

lxl X, Xj
Thsu S(1,2) is generated by XoX3 — X1 Xo, Xo Xy — X1 X3, Xo Xy — X2,
Lemma 4.4. C,; is smooth and of degree d.
Proof. The case where d = 4, then Cj is rational normal curve. Suppose that

d > 4, then we can see that the parametrization comes from the embedding
vy : P — P4 by

P < [s4(P):s¥1%(P):--- st Y(P): t(P)] for P € P*

of a projective line P!. More precisely, we denote 5d the image of P! by the map
vg and let L be a (d — 3)-dimensional linear subspace of P spanned by (d — 4)

standard coordinate points
{[0,0,1,0,...,0,0],[0,0,0,1,0,...,0,0},...,[0,0,--- ,0,1,0,0,0]}.

Then Cy is obtained by the linear projection map 7y, : @l BB of 50{ from L.
Since L C P\ C?, the map 7y, is an isomorphism. Thus Cy is a smooth rational
curve of degree d.

Proposition 4.5. The curve Cy is contained in the rational normal surface scroll
S(1,2).

Proof. If we want to prove Cq C S(1,2), it is enough to see Ig, D Ign2). It
means F(p) = 0 with for every p € Cy and for all F' € I, ). Since S(1,2) is
generated by Q1 = Xo X3 — X1 Xy, Q2 = XXy — X1 X3 ,Q3 = Xp Xy — X2, we just
show that Q1, Q2, Q3 vanishes on for all p = [s?, s, 597242 st¢1 9 € Cy. On

()1 for example

Q1(p) = s¥st¥! — s 152402 = gAHpdol _ gdHld=l —
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In the same way, Q2(p), Q3(p) are zero. Thus Cy C S(1,2).

Example 4.6. For d = 5,6,7,8,9,10, let C; C P* be curves defined as the
parametrization : Cy = {[s%(P) : s¥7(P) : s*t972(P) : st¥1(P) : t4(P)] | P €
P'}. We looked up the set M, of generators of Cy through the Computer Algebra
System Singulatr[4] as follows :

Q1 = Xo Xy — X32> Qz = XoXy — X1X3, Q3 = Xo X3 — X1 Xy;
and @1, Q)2, Q3 are fixed.

M5 = {Q1,Q2,Q3, X1 X4 — X5, X7 X> — X7}
Mg = {Q1,Q2, @3, X1%2 1 X2 XEDGXXS X P =2 X XX, — X4}
My ={Q1,Q2, Q3, X1 X§ — X3, Xg X5 — X7 Xy, X5 X5 — X7}
Ms = {Q1, @2, Q3, X1 X§ — X3 X3, X, X3 X7 — X5, Xo X5 — X7 X], X0 X3 — X{ Xy,
X5 X, — X0
My ={Q1, Q2. Q3, X1 X§ — X5, Xg X35 — X7 XJ, Xo X5 — X7 Xy, XX — X[}
Mo = {Q1, Q2,Qs, X1 X — X5 X3, X1 X5 X7 — X7, Xo Xy — XPXF, X0 X3 — X1 X3,
Xo0X3 — X0X,, XXy — X3}

Counsider the case of when d is odd or even numbers.

Casel. d =2n + 1 with n > 2.

M5 - {Qh QQa Q3a X1X4 - X227X§X2 - Xf}
My = {Q1,Qq,Q3, X1 X7 — X3, X0 X3 — X7 Xy, X0 X0 — X7}
My = {Q1,Q2, Q3, X1 X3 — X3, X2X3 — X3X3 X X2 — X7 Xy, X0X, — XT}.
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Case2. d = 2n with n > 2.

Mg ={Q1,Q2,Q3, X1 X2 — X2X5, X1 X5 X, — X3, X0 X2 — X2X,, X3X, — X1}

Mg = {Q1, @2, Qs, X1 XJ — X5 X3, X1 Xs X7 — X5, Xo X3 — XT X, X§X5 — X[ Xy,
XoXo — X7}

Mg ={Q1,Qs, Q3, X1 X§ — X5 X5, X1 X3 X3 — X3 Xo X3 — X2X3, X3X3 — X} X2,
XoX2 - X0X,, XIX, — X3}

We have found the following pattern in the above equations of each case:
Q1= XoXa— X3, Qo =XoXa— X1 X3, Q3= XoX3— X1 Xy

In all cases, ()1, ()2, and ()3 are fixed.

Casel. d = 2n with n > 2, then

My = {Ql) Q27 Q37 F[n,n]y F[n+1,n—1]7 T, F[Qn—2,2]7 F[2n—l,1]}

where Fjg,_;;) = Xg”_QiXé — X12”_2i+1Xi_1 for1 <i:<n.

Case2. d = 2n with n > 2, then
Mq =A{Q1, @2, @3, G}, Gin)s Fin1) Flugr,2)s -+ 5 Finj—11}
where
G = X1 X5X7 1 = XJP 71X, with j =0, 1.
and
Flrjrg = X7 ' X0 7 - XPXy 7 Hfor 1 <j<m—1.

These examples and the observations about the pattern of the minimal gen-

erators of defining ideals I, enable us to pose the following theorem.
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Remark 4.7. [Minimal set of generators of an ideal]

Let Z C P" be a nondegenerate projective irreducible curve and let I, be the
homogeneous ideal of Z in R. Then we can choose the minimal set of homogeneous
generators for Iy as I is finitely generated. For the convenience of the reader,

we revisit the notion of minimal set of generators of an ideal I;. Let
M:{Gi,jEK[Xo,Xl,...,XT] | Gi’jEIZ for2§z§mand1§j§&}

be the set of homogeneous polynomials of degree deg(G; ;) = i. Let (Iz)<; be
the ideal generated by the homogeneous polynomials in I of degree at most .
Then M is the minimal set of generators of I, if and only if the following three

conditions hold:
(1) Iz is generated by the polynomials in M (i.e., Iz = (M)).

(i7) Gi1,Gig,...,Giy, are K-linearly independent forms of degree i for each
2<i1<m.

(i1i) G, ¢ (Iz)<i—1 foreach 2 <i <m.
Main Theorem 4.8. Let the rational curve Cy; be defined as
Cyq = {[s*(P) : s '(P) : s*t*72(P) : st *(P) : t%(P)] | P € P'}.
Then the defining ideal I, of C,; is minimally generated as follows:
Q1= XoX, — X3, Qa=XoXy—X1X3, Q3=XoX3— X;Xy;

and 1, ()2, Q3 are fixed all the case.
Casel. d = 2n + 1 with n > 2, then

ICd = <Q17 QZ? Q?n F[n,n]7 F[nJrl,nfl]; to 7F[2n72,2]7 F1[2n71,1]>
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where Flop_;; = Xg" X3 — X7 2 X for 1 <i <n.

Case2. d = 2n with n > 2, then

ICd = <Q17 QQ; Q37 G[n,O}u G[n,l}a F[n,1]7 F[n+1,2}; T 7ﬂn+j—1,j]>

where

G = X1 X4 X7 = X371 X7 with i = 0, 1;
Frpicig=XI X0 l=XUx I for1<j<n-—1
[n+j-15 = <0 2 17 orl=jg=n .

Proof. During the proof, @1, @), and ()3 are the same as the above theorem.
We must show that the three condition of above Remark. We want to prove the
theorem in the following order: (1) My C I¢,, (2) condition (éi) of the Remark
1, (3) condition (i7i) of the Remark 1, (4) (My) = I¢, by using the result of the
theorem[5].

Now we start (1). If M, C I¢, is ture, implies that any point in Cy kill all the
polynomial in M. Since we have coordinate of Cy, thus we just substitution X
to s, X; to st etc, and check that every polynomial is zero. And it work.

Next, let’s prove (2). We must first prove @1, @2 and @3 before prove the case 1
and case 2. But this is easy, for example ()5 and Q3 are K-linearly independent and
(21 is not. Then (), = Q2 A1+ Q3 A, for some constant A;. Since Q1 = QA1+ Q3As
is an identity equation, therefore we can assign a point p = [0,0,0, X3,0] € P* in
the formula. Then —X2 = 0, this is a contradiction, since Q; = Qo4; + Q3A; is
an identity equation. In the same way, ()2 and (3 can be proved easily.

Now let us consider two cases : d = 2n+ 1 and d = 2n. If d = 2n + 1, then
we have : Q1, Q2, Q3, Flnn)s Flnvin—1), s Flan—2,2], Flon—1,1]- Since every Flo,_;
has a different degree, thus we only need to think about deg(Fia,— ) = 2. It im-
plies that n = 2, we have Q1, Q2, @3, Flz,2], Fl31). Show that @1, Q2, Q3 and Fjp o
are K-linearly independent forms of degree 2. Since @1, Q2,3 are K-linearly
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independent. Hence suppose that Fjpo and Q1,Q2, @3 are not K-linearly in-
dependent. Then we have an identity equation Fjyg = Q141 + Q245 + Q34s.
Take p = [0,0, X5,0,0] € P, then Fay(p) = X3 = Q1(p)Ai1(p) + Q2(p)A2(p) +
Q3(p)As(p) = 0 : X3 = 0. This can not happen. Thus Q1, Q2, Qs, 29 are K-
linearly independent. Now suppose that d = 2n, since @)1, @2, Q)3 are K-linearly
independent, and every FJ,;_1; has a different degree. Therefor we have to show
that G, 0, Gpn,1) and Fj,q) are K-linearly independent. First step, show that
Gno G are K-linearly independent. If not, then we have an identity equa-
tion G0 = G|pAs for some constant A; : Xle’l — X;“ng = (Xng,Xjf’2 -
X5)A;. We can not create the term X5 ! X3 by multiplying the right side by a con-
stant, thus G, g are G|, 1) K-linearly independent. Now consider G, o), G[,,1) and
Fjy15- Suppose that G, g, Gpn1) and Fj, q) are not K-linearly independent. Then
we have Fj, ;) = XoXPPh—/X2XP° = (X X T XE 7 XA (X X3 X2 —
XAy = Gn,0 A1 + G, Az for some constant A;. However, since X3’ can not be
canceled, this formula can not be established. Therefore Gy, o, G and F,

are K-linearly independent form of degree n.

Prove (3). Assume that d = 2n + 1, we know that Fj, ) € (Q1,Q2,Q3). So,

prove that Fio,_j 1 € (Q1, Q2. Q3, Flnnps Fintin=11> -+ » Fizn—k—2,6+2), Flon—k—1,k41])
for 1 < k < n. Now suppose that

Flon_ix € (Q1, Q2, Q3, Flnn), Fintin—1)> "+ » Flan—k—2,6+2)> Flon—k—1,k+1])

for 1 <k < n. Then we have an identity equation : Flo,_p ) = Q1 A1 + Q242 +
Q3A3+ Fiy ) Bo + Flnpin—1B1+ - + Flan—p—2.5+2) Bn—k—1 + Flan—k—1,k+1) Bn— for
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some A;, B; € k[Xo, -+, X,]. Then

XS”‘Q’“XQ“ X2 ke 2 Xy — X2) A + (XoX4 — X1X3)As+
XoX3 — X1 X5)As + (X3 — X1 X)) Bo+
2Xn 1 X3X"_2)Bl 4+t

kA xht2 | xon-2=3 ykihyp 4

2n—2k—2 vy k+1 2n—2k—1 vk
X2 Xk X3 XM B,_s

=(X
(
(X
(X
(

Take point p = [1,0, X5,0,0] € P4, and let substituting p in the equation above.
Then we have an identity equation: X} = X2 B/o+ X5 B+ -+ X5P2B' 1+
X5+1B’ .. The equations do not hold because the degree of all terms on the right
is greater than k. Thus

Fon—ikx € (Q1, @2, Q3, Finn), Finrin—11> -+ » Flan—k—2,6+2), Fion—k—1,k+1))-

Suppose that d = 2n. We know that G, o), Gjn1), Fln,n) are K-linearly independent.
Now we take k for 1 < k <n — 1, and shows that

Fingi-14 € (Q1, Q2,Q3, Gino)s Gn1)y Fin1]s Fint1,2)s -+ > Flntk—36—2)> Flntk—2,6-1])-
Suppose not, then we have an identity equation :
XXy F — XPEXPF =X Xy = X5 A + (XoXa— X1X3) A,
+ (XoX3s — X1 X2)As + (X1 X! — X1 X5) B,
+ (XX X[ 72 = X5) By + (X X5 ™! = X{X[7)C)
+ (X0 X537 = X{X[70)Cy
b (X Xk y2k2ym—kyon
Take p = [1,0, X5,0,0] € P* and put into above equation. Then we have :
X0F = —XUB' + X2 + X 4+ X 4+ xR e

Since the degree of the right side is n — (k — 1) when it is smallest, but the

degree of the left side is n — k, this is a contradiction. Therefore Fj, x_14 &
<Q17 Q27 Q37 G[n,0]7 G[n,l]’ ﬂn,1]7 F[n+1,2]’ Tt F[n—i—k—S,k—Q]’ ﬂn+k—2,k—1]>-
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The number of minimal generators of /¢, can be known from the results of the
theorem[5] and compared with the number of generators of My, then I, = (My)

and M; is the set of minimal generators of I¢,.
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