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1 Introduction

Decision making problems generally consist of finding the most desirable alter-
native(s) from a given alternative set. Because of increasing of vagueness and
complexity of socio-economic environment, it is difficult to acquire accurate and
sufficient data in practical decision making. So it is necessary to deal with uncer-
tainty data in real decision making process, and thus, several different method-
ologies and theories have been proposed, among which the fuzzy set theory! is
outstanding and has been widely used in many fields in real life.2~® Since then
many extensions of fuzzy set (FS) such as intuitionistic fuzzy set (IFS),% interval-
valued fuzzy set (IVFS),” interval-valued intuitionistic fuzzy set (IVIFS),® hesi-
tant fuzzy set (HFS),%1? dual hesitant fuzzy set (DFS),!* and generalized hesitant
fuzzy set (GHFS)!? allowed people to deal with uncertainty and information in
much broader perspective. In particular, as a new development of F'S; the concept
of HF'S has been receiving increased attention and has recently become a popular
research topic.%10:13-16

HF'S is a significant extension of the FS that models the uncertainty roused
by hesitancy, which is a common phenomenon in decision making. Several possi-
ble values can be used to indicate the membership degree or an evaluation value
under hesitant fuzzy environment. Thus, it is suitable and convenient for describ-
ing the hesitancy experienced by the decision makers during the decision making
process. The original definition of the HFS was provided by Torra.? Xia and Xu'3
defined the hesitant fuzzy element (HFE), which is a set of values in the unit in-
terval [0, 1], and proposed and investigated the score function and comparison law
of the HFEs as the basis for its calculation and application. Many authors!”—23
developed the aggregation operators and used to fuse the hesitant fuzzy informa-
tion. However, we find that the occurring probabilities of the possible values in
the HFE are equal, which is obviously impractical, and thus HFE is unsuitable
for the hesitant judgments and evaluations of the decision makers in real decision
making process under the hesitant fuzzy environment. To overcome this draw-
back, Xu and Zhou?* proposed the hesitant probabilistic fuzzy set (HPFS) and



hesitant probabilistic fuzzy element (HPFE), which are developed by introducing
probabilities into the HFS and the HFE, respectively. For example, a decision
maker provides a HFE (0.3,0.4, 0.5) to evaluate the “comport” of a house because
he/she is hesitant to do this evaluation. However, he/she thinks 0.4 is more suit-
able than other values in this HFE, and 0.3 is less of possibility than others.
Then the HFE (0.3,0.4,0.5) cannot fully represent his/her evaluation, but the
HPFE (0.3]0.2,0.4/0.5,0.5]|0.3) can describe this dilemma vividly and it is more
convenient and reasonable than the HFE. Thus, the HPFE is more generalized
HFE and can be used to depict hesitant fuzzy information with probabilities.
They?* also applied the HPFS and HPFE to group decision making and built
the consensus of the decision makers based on the perspective of the aggregation
operator. By combining the HPFE and the weighted operator, they developed
basic weighted operators including the hesitant probabilistic fuzzy weighted aver-
aging/geometric (HPFWA or HPFWG) operators and the hesitant probabilistic
fuzzy ordered weighted averaging/geometric (HPFOWA or HPFOWG) operators.

On the other hand, the all aggregation operators introduced previously are
based on the algebraic product and algebraic sum of HPFEs. In fact, Einstein
operations including the Einstein product and Einstein sum are also good al-
ternatives for structuring aggregation operators, and they have been used to
aggregate the intuitionistic fuzzy values or the HFEs by many authors.?!—23:25-27
Thus, it is meaningful to use Einstein operations to aggregate hesitant proba-
bilistic fuzzy information. However, it seems that in the literature there is little
investigation on aggregation techniques using the Einstein operations to aggre-
gate hesitant probabilistic fuzzy information. In this thesis, motivated by Xu and
Zhou** and Yu,?! we propose the hesitant probabilistic fuzzy Einstein weighted
aggregation operators with the help of Einstein operations, and apply them to
multiple attribute group decision making (MAGDM) under hesitant probabilistic
fuzzy environment.

The remainder of this thesis is organized as follows. The following chapter
recalls briefly some basic concepts and notions related to the HPFSs and HPFEs.
In Chapter 3, based on the hesitant probabilistic fuzzy weighted aggregation op-



erator and the Einstein operations, we propose the hesitant probabilistic fuzzy
Einstein weighted aggregation operators including the hesitant probabilistic fuzzy
Einstein weighted averaging/geometric (HPFEWA or HPFEWG) operators and
the hesitant probabilistic fuzzy Einstein ordered weighted averaging/geometric
(HPFEOWA or HPFEOWG) operators. Chapter 4 gives some concluding re-

marks.



2 Preliminaries

2.1 HPFS and HPFE

The HPFS and HPFE are defined to represent hesitant fuzzy information with

probabilities as follows:

Definition 1.2* Let R be a fixed set, then a HPFS on R is expressed by a

mathematical symbol:

Hp = {E(7i|pi)|'7i7pi} : (1)

where h(7;|p;) is a set of some elements 7;|p; denoting the hesitant fuzzy infor-
mation with probabilities to the set Hp, v; € R, 0 < v, < 1,4 = 1,2,...,#h,
where #h is the number of possible elements in h(v;|p;), p; € [0, 1] is the hesitant
probability of ~;, and Zﬂi p; = 1.

For convenience, Xu and Zhou?* called h(v;|p;) a HPFE, and Hp the set of
HPFSs. In addition, they gave the following score function, deviation function

and comparison law to compare different HPFEs.

Definition 2.2 Let h(v;|p;) (i = 1,2,,...,#h) be a HPFE, then

(1) s(h) = Zﬂﬁ yip; is called the score function of h(7;|p;), where #h is the
number of possible elements in h(v;|p;);

(2) d(h) = Z;@l (7i—s(h))?p; is called the deviation function of A(v;|p;), where
s(h) = ijl ~ip; is the score function of h(7;|p;) and #h is the number of possible
elements in h(v;|p;).

If all probabilities are equal, i.e., p1 = ps = -+ = pyy, then the HPFE is
reduced to the HFE. So, in this case, the score function of the HPFE is consistent
with that of the HFE.

Definition 3.2* Let hy(y;]p;) and ho(7y;|p;) be two HPFEs, i = 1,2,, ..., #hy,
j=1,2,,...,4ho, s(h1) and s(hy) are the score functions of h; and hs, respec-
tively, and d(h;) and d(hy) are the deviation functions of h; and hs, respectively,
then



(1) If s(hy) < s(hy), then h; is smaller than hy, denoted by hy < ho;
(2) If s(hy) = s(hy), then
(a) If d(hy) > d(hy), then h; is smaller than hy, denoted by h; < ho;
(b) If d(hy) = d(hy), then h; and hy represent the same information,
denoted by hy = hs.

Some operations to aggregate HPFEs based on the operations of HFEs*!3 are

defined as follows:

Definition 4.2 Let h(vi|p:), h1(%;]p;) and ha(3|px) be three HPFEs, i =
1,2,...,#h, j=1,2,...,#h1, k=1,2,...,#hy, and X\ > 0, then
(1) (P)° = Uiz, gen {1 =) Ipi};
(2) Ah = Uiz12,... #h {1 —(1 —%) ’Pz}
(3) h* = U, 1,2,..., #h{( i) |pz}
(4) b1 ® ha = Ujzr o gy ke, o L (35 + 5 — 355 D5
(5) hy ® ho = Uiy a. sk ketan. 40 175 k1B5P}-
Theorem 1. Let h(yi|p;), hi(%;|p;) and ho(¥x|px) be three HPFEs, i =
1,2,...,#h, 5= 1,2, .., #h1, k = 1,2,...,#ho, A > 0, A\ > 0, and Ay > 0,

6 ?L@(}_h@;m):(}_l@ﬁl)@ﬁ%
hi ® ho)* = bt ® h3;

Proof. We only prove (3) and the other are trivial or similar to (3).

(3) Since hy & hy = Uj_y o iy heto.. 4k 175 + Tk — Vik|P;Pr}, by the oper-
ational law (2) in Definition 4, we have

My @ ha) = Uymrnpn, {1 = (1= (35 + 5k — 4575)) By |

k=1,2,...,#ho



= Ui, {1 = (L= 3) (L = 50) [}

k=1,2,...,#hgo
Since Ahy = Uj12,.. 40 {1 —(1- ’Vj)k‘pj} and Ahy = Uk=12,.. #hs {1 —(1- "Yk)/\’p'k}a
we have
= Usmrziy, {1 = (L= 45"+ 1= (1= 4" = (1= (1= 4)") (1 = (1= 5)Y) |, }

k=1,2,...,#hg

= Uymraepin, {1 = (1= 352 (1 = 40 [psie

k=1,2,...,#ho
Hence A(hy @ ha) = (Ahy) @ (\h
However, for a HPFE h(v|p;), i = 1,2,...,#h, A\y > 0 and )y > 0, the
operational laws ()\JL) P ()\271) = (N + )\2)1_1 and A @ b2 = h(AM1t22) do not hold

in general. To illustrate this case, we give an example as follows:

Example 1. Let h(v|p;) = (0.7]0.5,0.2/0.5) and \; = Ay = 1, then

2)- O

()\ﬂ_L) D ()\QFL) =h D h = U; j=12 {%‘ S %’7j|0.25}
= (0.91]0.25,0.76/0.25,0.76]0.25, 0.36/0.25),
(A1 + )= 2k = Uiy o {1 = (1 = :)?0.5} = (0.91/0.5,0.36/0.5)
and s((A1h) @ (A2h)) = 0.6975 > 0.635 = s((\; +A2)h) and hence (\h) ® (A2h) >
(AL + A2)h. Similarly, we have s(h ® h*?) = 0.2025 < 0.265 = s(h*17*2)) and
thus AN @ b2 < hhitde),
Based on Definition 4, in order to aggregate the HPFEs, Xu and Zhou?*
developed some hesitant probabilistic fuzzy aggregation operators as follows:
Definition 5.2* Let hy (t = 1,2,...,7) be a collection of HPFEs, w =
(wy, wy, . .., wr)T be the weight vector of hy with w, € [0,1] and 37, w; = 1, and
p; be the probability of 4, in the HPFE hy, then
(1) the hesitant probabilistic fuzzy weighted averaging (HPFWA) operator:

HPFWA(Bl, BQ, ey BT) = (wlﬁl) D (U)Qilg) DD (UJT?LT)

T
= U,y ch1 aha,...yr€hr {1 — I =) |pips - - -pT} : (2)
t=1

6



(2) the hesitant probabilistic fuzzy weighted geometric (HPFWG) operator:

HPFWG(hy, hy, ..., hr) ® (he)? ® - ® (hy)®T

= (hy)"
T
= U, chi nachan... 'yTehT{H V)" [p1p2 - - - pr } (3)

Definition 6.% Let h, (t = 1,2,...,T) be a collection of HPFEs, h, be
the tth largest of hy (t = 1,2,... ,T), and p,(;) be the probability of v, in the
HPFE Bg(t), then the following two aggregation operators, which are based on the
mapping H> — Hp with an associated vector w = (wy,ws,...,wr)? such that
w; €[0,1] and =L | w, = 1, are given by:

(1) the hesitant probabilistic fuzzy ordered weighted averaging (HPFOWA)

operator:

I‘IPFOVVAA(;Ll7 ]TLQ, e ,?LT) = (wlhg(l)) &) (WQEU(Q)) b---P (WTFLO'(T))

i}
- U%(1)€7La(1)7%(2)€fba(2) ~~~~~ Yo (1) EPo (1) {1 - H<1 - VU(t))Wt‘pff(l)pU(Q) o 'pU(T)} (4)
t=1

(2) the hesitant probabilistic fuzzy ordered weighted geometric (HPFOWG)
operator:

HPFOWG (A1, ha, - . ., hr) = (he@))*! & (ho@)* @ - @ (hy(r))“"

2.2 Einstein operations on HPFEs

It is well known that the t-norms and ¢-conorms are general concepts satisfying the
requirements of the conjunction and disjunction operators. Einstein operations

includes the Einstein sum @, and Einstein product ®., which are examples of



t-conorms and t-norms, respectively. They are defined by Klement et al.?® as
follows:

Ty @ Tty
1+(1-2)1-y) "7V " Tray

TRy = , x,y €1[0,1].

Based on the above Einstein operations, we give some new operations on
HPFEs as follows:

Definition 7. Let h(vi|p;), hi(%;]p;) and ho(¥k|px) be three HPFEs, i =
1,2,...,#h, j=1,2,...,#hy, k=1,2,...,#hy, and X > 0, then
1) hi @c he = Ujoq1 9 sk k=12, #hs {1+’Yg’7k |pjpk}

(1)

(2) hi ®: ho =Uj_1 o 4y ket o.... 4650 {ﬁ@;pk}
(3)

(

3)Ach= Uiz1,2,.. #h {%m}
— 2 A
4) WA =Uis1a . 4h {mm}
Thus, the above four operations on the HPFEs can be suitable for the HPFSs.
Moreover, some relationships can be discussed for operations on HPFEs given in

Definitions 4 and 7 as follows:

Theorem 2. Let h(vi|p;), hi(%;|p;) and ho(9x|px) be three HPFEs, i =
1,2,...,#B j:1 2, e Athy, B=1,2,...,#hg, and X > 0, then

3) (h1)° @e (ha)® = (h1 ®c ha)%;
4) (h1)® ®c (h)¢ = (hy B¢ ha)
Proof. (1)

TNC\AcA 2 2(1 = ’72'))\
(R))"" = Uizr2,... 4k { 2—(1 =)+ (1 =)

pi}
- ) 2(1 — ) .
=Ui—12.. #h { (1 + %-)))‘ + (1 - %‘))\ pz}
)\ (&
)

:<u {(H%)A_(l_%)
EL2 AR (L)) + (1 — )
= (A h).




(T4 (1 =) = (1= (1 =)
T+ Q=)+ (1= (1 =)

. A 27
=Uiz1.2,.. #h 2— )+ Di

) ) 27 )
= (Uiz12,.. #h mpz

)

Aec () = Uisio, . 4h {

— (7?,/\6)\)0.
(3)
(f_ll)c P (712)0 =Ui—12,.. #h {(1— ;Vj>|pj} ®e Uizt 2. 4hy {(1 = 5|}
(1=A)+ (1 =%) . .
=Uj=12,., fis . ! )
AR {1 0= A1 — ) B3
ViV N
= | Uj=12...#h ! s 4
( AN { 1T+ (1 —4,)(1— ) ‘papk}>
i (Bl ®a BQ)C.
(4)

(h1)° ®e (hy)° = Uiz12, iy 11 = iIPi} ®e Uizi o, ahy 11— &) Br}

{(1—%)(1—%)‘._13}

= Ujo12,... #hy, T
119:1122;2:&%12 i | ’Vj/)/k e
; " c
Yi T+ We . .
= | Ujzio, sk, § " |P;
( it { 1+ 9% |p]pk}>

- (7?,1 EBE }_lg)c.

Theorem 3. Let h(vi|p;), hi(7;|p;) and ho(9x|px) be three HPFEs, i
1,2, ., #h, j =1,2,...,#h1, k = 1,2,...,#ho, A >0, \y > 0, and \y >
then

(1) hy @ hy = hy @, hy;



e (Ao e ) = (MAa) e Iy
hi ® hy = hy ®. hy;
6 B ®s (Bl ®s B2> = (B ®5 Bl) ®€ BZ;
7) (s 8 o) = 7 @, RS

Proof. Since (1), (2), (5) and (6) are trivial, and (7) and (8) are similar to
(3) and (4), respectively, we only prove (3) and (4 )

(3) Since l_ll @5 BQ = Uj:172 ..... #h1,k=1,2,....#ho {
law (3) in Definition 7, we have

= |pjpk} by the operational

(+i%) - (-2%)
)

Ae (7?'1 De BQ) = \ )\‘ ka
. _ Yi+Yk it
e (1 e %) - (1 1er7ﬂk
= U {(1+%‘) ARG (1 %)A(l—% ‘p pk}
st omiig, LT ADMLE+ 56 + (1 =) (1 - ’

k=1,2,....#hg

Since Aehi = Uy_1.. 4oy { 582030t gt and Aeehy = Up_ya, pm { SEEZ0T0 55,

we have

g b

. h By L 1+7J A +(1—9, 1+9%) A +(1—
(eeh)@e (k) = UL ) i L CEE AL (AL
ey A+ +0-%)>  (+3) +1=56)>

— ; <1+ 2%‘)A(l + A — (1 — ) (1 — %
B J U#hl {(l—i-%)’\(lqtyk) (1 _'7])/\( ‘pjpk}

k=1,2,...,#hg

Hence M - (Bl EB& Bg) = ()\ }_Ll) EBg ()\ ]_12)
(4) Since Xy - h = U5 #h{(lﬂ’)& (1= 7’ AL |pz} then we have

(1472 +(1-
>\1 ‘e ()‘2 ‘e h)
(L4m)2 (=2 \M (1 () e—(1—p 2\ M
Ty ] (L+ G %)Az) (1 - Ggerim) ,
= Ui=1,2,...#h i

(1470 2 —(1—y;) 2 \ M (21— \ M
(1 + (1+%)A2+(1—%)A2> + <1 (1+’Yz‘)A2+(1—’Yi)A2)

10



— U B (1 + %-)(/\1)\2) _ (1 _ %>()\1)Q)
= Yi=1,2,..,#h (1 + ;) P1r2) 4 (1 — ;) (A1r2)

- ()\1)\2) ‘e h

)

O

For a HPFE h(yi|pi), i = 1,2,...,#h, A\; > 0 and A\, > 0, the operational
laws (A1 = h) @ (Ag -« h) = (A + Ag) -« b and heM @, h/d2 = pAe(itA2) o not

hold in general. To illustrate this case, we give an example as follows:

Example 2. Let h(v|p;) = (0.3/0.5,0.5/0.5) and A\; = Ay = 1, then

- - - - Yi + 5
Moh)@. (Mo h :h@ah:ui,,{ 0.25}
(A« h) &2 (A - ) 1+m‘
= (0.5505[0.25, 0.6957|0.25, 0.6957|0.25, 0.8/0.25),
7 7 (1+7)° — (1 —7)°
AM+X)ch=2-_h=U;— 0.5

= (0.5505/0.5, 0.8/0.5).

Clearly, s((A\; - h) @ (\g = h)) = 0.6856 > 0.6752 = s((A\; + Xo) -« h). Hence
()\1 ‘e 71) De (/\2 e }_1) < ()\1 + )\2) -4 ]_'L
Similarly, we have s(h"\s* @, h"*2) = 0.2566 > 0.13 = s(h"=*1722)) and thus

BAsAl ®8 il/\s)\Z < BAE()\1+)\2).

3 Some HPFE weighted aggregation operators

based on Einstein operation

One important issue is the question of how to extend Einstein operations to ag-
gregate the HPFE information provided by the decision makers. The optimal
approach is weighted aggregation operators, in which the widely used technolo-
gies are the weighted averaging (WA) operator, the ordered weighted averag-

29,30 2!

ing (OWA) operator, and their extended forms. proposed the hesitant

fuzzy Einstein weighted averaging (HFEWA) operator, the hesitant fuzzy Einstein

11



ordered weighted averaging (HFEOWA) operator, the hesitant fuzzy Einstein
weighted geometric (HFEWG) operator, and the hesitant fuzzy Einstein ordered
weighted geometric (HFEOWG) operator based on those operators. Similar to
these hesitant fuzzy information aggregation operators, we propose the corre-
sponding hesitant probabilistic fuzzy Einstein weighted and ordered operators,
to aggregate the HPFEs.

Definition 8. Let h; (t = 1,2,...,T) be a collection of HPFEs, then a
hesitant probabilistic fuzzy Einstein weighted averaging (HPFEWA) operator is
a mapping HL — Hp such that

HPFEWA (hy, b, ..., hr) = (w1 -« b)) ®: (w2 -2 ho) Be - -+ B (wr - hr),(6)

where w = (w1, ws,...,wr)T is the weight vector of h, (t = 1,2,...,T) with
w; € [0,1] and YL, w; = 1, and p; is the probability of 7, in HPFE h;. In
T
particular, if w = (%, T %) , then the HPFEWA operator is reduced to the
hesitant probabilistic fuzzy Einstein averaging (HPFEA) operator:
_ 3 1 - 1 - 1 -
HPFEA(hy, ha, ..., hy) = (= - h c(=-h e P (=-chr). (7
( 1,702, ) T) (T 1)@ (T 2)@ ©® (T T) ( )

By Definitions 7 and 8, we can get the following result by using mathematical

induction.

Theorem 4. Let by (t = 1,2,...,T) be a collection of HPFEs, then their
aggregated value by using HPFEWA operator is also a HPFE and

HPFEWA (hy, ho, ..., hy)

U {H?:l(l + )Y - T =)™
vrehr T (1 o)™+ T (1= o)™

pip2 - ‘pT} , (8)
y1€h1,v2€h2, ...,
where w = (w1, ws, ..., wr)T is the weight vector of hy (t = 1,2,...,T) with
w; € [0,1] and S=F , w;, = 1, and p;, is the probability of v, in HPFE h,.

Proof. We prove Eq. (8) by mathematical induction. For T' = 2: Since

= l+ wy _(1— w1y - 1_,’_ w _ (1 wo
wiehy = Us,en, { g oager 1} and wa o = Upyen, { (5 2m st 2ges P2}

12



then

El-f"Yl;wl gl 71; + EH—W;‘“? El 72;“’2

— — . 1+'Y w1+17,y w1 1+’Y w2 4 (1 ,.ng

(wl ‘e hl) @s (w2 ‘e h2) - U { 1 I (11+’Yl)w1*(11*’)’1)w1 ] (1+272)w2 (1 272)1112 ppo}
(I+y1) 1 +(1=71)%1  (I4+72)2+(1—72)"2

2

y1€h1,72€R2

- U {Hfﬂ(l + 7)™ — Ty (1 — )™
Ty (1 + ye)we + TTmy (1 — )™

71 6517726;12

If Eq. (8) holds for T' = k, that is

(wl ‘e Bl) @a (w2 ‘e BQ) @6 o @e (wk ‘e Bk)
- U {mau+mw 15, (1 — )™
ehi [Ty (1 ) 4+ TTEy (1 — )

)

Y1€h1,v2€h2,. ..,

then when T'= k + 1, by the Einstein operations of HPFEs, we have

Y1€h1,72€R, ...,

(wy ¢ 711) ®. (wy - 712) Be -+ Be (Wit e Bk—f—l)

= ((wl e hy) @e (g e hs) e - D (W -« f_lk)) Be (Wr1 e Prr1)
_ U {Hle(l + )™ — Ty (1 — 7)™ Pk }

Yk Ehy, P14 (1 4 ol W) "
S Ry }
@5 p
'Yk+1L€Jf_lk+1 { (14 Yega) 52 + (1 = i) 00t £y

_ U frisa s Dot -
(1 + WY [ (1 — )™

pbip2 - - 'pkpk+1} )
Y1€h1,7v2€R2, ... Yk € Vo1 ERR41

i.e., Eq. (8) holds for "=k 4 1. Hence Eq. (8) holds for all 7. Thus

HPFEWA (hy, ho, . .., hr)

- U {HtTl(l )" — H?:l(l — )™
yr€hT H?zl(l + Wt)wt + Hle(l — ’Yt)wt

bip2 - 'pT} )
Y1€h1,v2€h2, ...,

which completes the proof of theorem. O
Based on Theorem 4, we have basic properties of the HPFEWA operator as

follows:

13



Theorem 5. Let Bt(yft) Ipt) (t=1,2,...,T) be a collection of HPFEs, w =
(wy,wy, . .., wr)T be the weight vector of h; (t =1,2,...,T) such that w, € [0, 1]
and 27 w, = 1, and p, be the corresponding probability of %(t) in HPFE h,,
then we have the followings:

(1) (Boundary):

h~ < HPFEWA(hy, hy, ..., hy) < ht, (9)

where A~ = (minj<,<7 minge;, vi|p1 - - - pr) and h™ = (max;<j<7 max,ep, Ve|p1 - - - pr)-

(2) (Monotonicity): Let ki (3\”|p;) (t =1,2,...,T) be a collection of HPFEs
with #, = #h; = #h} for t = 1,2,...,T, w = (wy,ws, ..., wr)? be the weight
vector of h} (t = 1,2,...,T) such that w, € [0,1] and L ,w, = 1, and p,
be the probability of 4" in HPFE Af. If v < 3" for each i = 1,2,..., 4,
t=1,2,...,T, then

HPFEWA (hy, hy, . .., hy) < HPFEWA(R], by, ..., hb). (10)
Proof. (1) Let f(z) = }jﬁ, z € [0,1], then f'(z) = ﬁ < 0, ie

f(x) is a decreasing function. Let max~y, = maxj<;<y max,cj, v and minvy, =
min, <;<p min,ep, . For any v, € hy (t = 1,2,...,T), since min,, 5, v < 7 <
max.,cp, Ve, then f(max,, cz, ) < f(7) < f(min,,cp, v¢), and so
1 — maxy < 1 —max,, 5, % | 1—y Z 1 —min,, 5, " o 1 — min
I+maxy — 14+max,cp v~ 1+% = l+min, g % 1 +min-y;

Since w = (wy,wa, ..., wr)T is the weight vector of h, (t = 1,2,...,T) with
w; €10,1] and 7, w; = 1, we have

f(m) ) e )

1 4+ max v 14 v 14 min

1 t — Z: we — " wt
Since H%ﬂ(m) — (%) S ST (M) _

1+max vt 1+max vt 1+max vt 1+min vy

(1 mln’yt)zt 1 1—min vy,

14+min vy = 14+min~y;’ we get

1—max’yt< LN —— wt<1—min’yt
I+ maxy, — ; 1+ — 1+ min-y,

14



o2 <1+ ﬁ L=\ 2
1+ max~y — 1 \ L+ ~ 14 miny,
1 + min Mo 1 1 + max -y,
wr
RS = :
2
< miny; < ; — 1 < maxy,

LT (55)
ie.,
HtT (L4 9)" — Hthl(l — )™
T () T (1= )
Let HPFEWA (hy, hy, ..., hy) = h(vi|pip2---pr), i = 1,2,..., #h, where
#h = #hy xFhy X - -xFthp, h™ = (miny|pips - - - pr) and b = (maxy,[pips - - pr),
then Eq. (11) is transformed into the following forms: min-y, < 7; < max~y, for
all i =1,2,... 77#71- Thus s(h~) = minypips - pr < i vipips -+ pr = s(h)
and s(h) = S yipipe - - pr < maxypips - - pr = s(h ).
If s(h™) < s(h) and s(h) < s(h*), then by Definition 3, we have h~ <
HPFEWA(l_zl,l_zg,.. Jhp) < Bt If s(h) = s(ht), ie., maxy, = Zﬁl i, then
d(h) = Zz 1(% — s(h))’pipe---pr = (maxqy — s(h))’pipa---pr = d(h¥), in

this case, from Definition 3, it follows that HPFEWA (hy, hy, ..., hy) = hT. If
s(h) = s(h™), then by the similar way, we have HPFEWA (hy, hs, ..., hy) = h™.

min y; < < max . (11)

( ) Let f(z) = {72, = € [0,1], then f(x) is a decreasing function. If AP <
) for each i = \ & ...,#t, -2 . B f(%(t)) f(fyl ) for each
) )
1= 1,2,...,#, t = T, e, 1_:’@ > 1+Z?t),foreachz: J 20 He

t=1,2,....,T. Forany v\ € by (t =1,2,...,T), since w= (wy,ws, ..., wr)" is
the Weight vector of by (t =1,2,...,T) such that w, € [0,1], ¢t =1,2,...,7 and

Zt Lwy = 1, we have

(t) S\ "
1- 15

7’() 2 ) t=12,...T
1+, L+

Then



=1 \ 1+, =1 \ 1+
- 1 < 1
1_~O\ Yt — 1—4®
Lih () e ()
&S 2 1< 2 1
1~ O\ Wt = 10\ Wt )
1 +Ht 1 (1+zl(t)) 1 +H?:1 (1+,.Yl_(t))

ie.,

I (14900 = T (=)™ T (407" =TI (1= 5:7)™
I (L) T (1= ) ™ T (1 3+ T (1= 30

Let HPFEWA (hy, ha, . .., hr) = h(i|pips - - - pr) and HPFEWA (R}, R, ... b)) =
R*(Yi|lpipz - - - pr), where i = 1,2, ..., #, and # = #| X #4 X - - - X # is the num-
ber of possible elements in A(v;|pips---pr) and h*(Fs|pips - - - pr), respectively,
then the Eq. (12) is transformed into the form: ~; < 4; (i = 1,2,...,#). Thus
s(h) = X vipip2 - pr < Sl Aipipa -+ pr = s(h¥).

If s(h) < s(h*) then by Definition 3, we have HPFEWA(hl,hg, ..., hr) <
HPFEWA (R}, b3, ... k%), If s(h) = s(h*), ie., S, v = 7 4, then d(h) =
ZEW—#MWWrWﬁzZMW—dWDmM~m—dW%mmw%w
by Definition 3, it follows HPFEWA(hy, ho, ..., hy) = HPFEWA(h], AL, ... hY).

O

(12)

However, the HPFEWA operator does not satisfy the idempotency. To illus-

trate this, we give an example as follows:

Example 3. Let hy = hy = (0.3|0.5,0.7/0.5) and w = (0.2,0.8)7 be the
weight vector h; (t = 1,2), then

T T H? (14 7) — H? (1 —=y)™ }
HPFEWA (7, hy) = U, e, o
( 1 2) Y1E€h1,v2€R {Ht 1(1+7t)wt+Ht 1<1_ t) | P1p2

= (0.3|0.25,0.3980.25,0.639|0.25, 0.7]0.25)
and thus HPFEWA (hy, hy) # (0.3]0.5,0.7]0.5).
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Based on the HPFWG operator and Einstein operation, we develop the hesi-

tant probabilistic fuzzy Einstein weighted geometric operator as follows:

Definition 9. Let h, (t = 1,2,...,T) be a collection of HPFEs, then a
hesitant probabilistic fuzzy Einstein weighted geometric (HPFEWG) operator is
a mapping H: — Hp such that

HPFEWG (hy, ha, ..., hr) = hY*" @, by @, --- @, =T, (13)

where w = (wy,ws, ..., wr)T is the weight vector of hy (t = 1,2,...,T) with

w, € [0,1] and Y7, w, = 1, and p, is the probability of v, in HPFE h,. In
T

particular, if w = (%, %, cee %) , then the HPFEWG operator is reduced to the

hesitant probabilistic fuzzy Einstein geometric (HPFEG) operator:

1
_/\E?

- — _ A L AL
HPFEG (hy, o, ..., hy) = hy*T ®@. By T @, - @, By T (14)

Theorem 6. Let h, (t = 1,2,...,T) be a collection of HPFEs, then their
aggregated value by using HPFEWG operator is also a HPFE and

HPFEWG (hy, ho, ..., hr)

_ U { 2 H?:l Y
- T w T w
y1€h1,y2€hR2,....yTERT Ht:1(2 ™ fyt) ‘T Ht:l Tt t

pip2 - 'pT} ) (15)

where w = (wy,ws, ..., wr)T is the weight vector of hy (t = 1,2,...,T) with
w; € [0,1] and L, w; = 1, and p;, is the probability of v, in HPFE h,.
Proof. We prove Eq. (15) by mathematical induction on 7. When T = 2,

— wq — w
: Newi __ _ 2'71 AR 3 272
since h}*" = U, cp, {(QVI)MUFW? |p1} and hy=™ = U, e, {(272)@“;2 2 ¢, we

have
2,7'{”1 ) 27'2“’2
w w
f_zi\swl ® f_lé\ewz = U =)yt 2—72)W2 4y, ° ‘p1p2
g - w w
Y1€h1,72E€R2 1+(1- Lﬂq 1— sz
(2771)w1+71 (2*'72)w2+')’2

— U { 2 H?:l o p1p2}
TT_1(2 = 7)™t + [Ty ™

716?11,’72652

17



Assume that Eq. (15) holds for T' =k, i.e.,

Bi\suu e Bé\swz Qe+ ++ ¢ Bl/c\swlC
_ U { 21T %"
T (2 = 3oy + Ty 7

Y1€h1,v2€h2 Y ERE

P1p2"'pk}-

By the Einstein operational laws of HPFEs for T' = k + 1, we have

7 Newq 7 New2 7 N\eWk41
hlg ®e h25 Qe+ Qe hk+1

— (B{\EW1 ®E BQ\EMQ ®E “ee ®€ Bé\awk) ®5 Bgilkarl

_ U { 2111 7"
- k w k w
"/1651,’726%2 .... "/keflk Ht:1(2 - /Yt) t+ Ht:1 Ve ‘

2,ywk+1

d 2 — We+1
= Vet1) Vk+1

p1p2"'pk}

_ U { 2 e o
i1 (2 — )@ +TIE 2™

Y1€h1,72€R2 .. Yk ERR Vo1 Eﬁk+1

pip2 - - 'pkpk+1} )

i.e., Eq. (15) holds for 7' = k + 1. Then, Eq. (15) holds for all 7. Hence we
complete the proof of the theorem. O

Based on Theorem 6, we have basic properties of the HPFEWG operator as

follows:

Theorem 7. Let 2, (7\"|p,) (t = 1,2,...,T) be a collection of HPFEs, w =
(w1, wy, ..., wr)T be the weight vector of h; (t = 1,2,...,T) such that w, € [0, 1]
and X7 w, = 1, and p, be the corresponding probability of %-(t) in HPFE h,,
then we have the followings:

(1) (Boundary):

h™ < HPFEWG (hy, hy, ..., hy) < hT, (16)

where h™ = (minj<;<p minges, ve|p:1 - - - pr) and bt = (max; <7 max,ep, vi|p1 - - pr)-
(2) (Monotonicity): Let h (‘yi(t) Ip¢) (t =1,2,...,T) be a collection of HPFEs
with #, = #h, = #h! for t = 1,2,...,T, w = (wy,ws, ..., wy)” be the weight

18



vector of A} (t = 1,2,...,T) such that w; € [0, 1] and 1w, = 1, and p;
be the probability of 4" in HPFE hf. If v\ < 3" for each i = 1,2,..., 4,
t=1,2,...,T, then

HPFEWG (hy, hy, ..., hy) < HPFEWG(h}, b}, ... k3. (17)
Proof. (1) Let g(z) = 2%, z € (0,1], then ¢'(z) = =F < 0, i.e., g(z) is a de-
creasing function. Let maxy, = max;<<p max,cj, v and min v, = min; <;<p minyp, V.

For any v € hy (t = 1,2,...,T), since min,cz, % < % < max.,s, Y, then
g(max, o5, 1) < g(7:) < g(min,, gz, 1), and so

2 — max "y, < 2 —max,, e, Ve < 2—y < 2 —min,, ¢, Ve < 2 — miny,
max<y;  maXyep, Y% % min%E;Lt Y+ miny
Since w = (wy,wa,...,wy)? is the weight vector of hy (t = 1,2,...,T) with
w; €10,1] and 7, w, = 1, we have

R < () A )

max v i min 7y,

T
Since TTZ 1(%)““ = (m)Zt:lwt Bpzomaxy g, [T 1(%) v _

max vt max vt max vt min vy
(72’?““1%>Zt:1 — 2ominy - we obtain
min ¢ min 7yt
2 — maxy; < ﬁ (2 — ’yt>wt < 2 — min
maxys - i\ W ~ minvy
E <1+ﬁ<2_%>wt< 2
max -y i Vi ~Tmin
min -y, = 1 - max Yy
™ - L -
a5, = L=t
2
& miny < o < max -y,
LI (55)

ie.,

2 T, we
i < max ;. (18)

min y; < o <
H?:l@ — ) vt HtT:1 Ve
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Let HPFEWG (hy, ha, ..., hy) = h(vipip2---pr), i = 1,2,..., #h, where
#h = #hy X#ho X - - xF#hp, k™ = (miny;|pips - - - pr) and ht = (max v, |pip2 - - - pr),
then Eq. (18) is transformed into the following forms: miny; < ~; < max -y, for
all i = 1,2,..., #h. Thus s(h™) = minypips - pr < SF vipipe -+ pr = s(h)
and s(h) = S vipips - - pr < maxypips - - -pr = s(ht). If s(h™) < s(h) and
s(h) < s(h*), then by Definition 3, we have h= < HPFEWG(EI, ho, ..., hr) <
ht. It s(h) = s(ht), ie., maxy, = X7 4, then d(h) = S5 (v,—s(h))2pips - - - pr =
(maxy; —s(h))?pips - - - pr = d(h"), in this case, from Definition 3, it follows that
HPFEWG (hy, hy, ..., hy) = h*. If s(h) = s(h™), then by the similar way, we
have HPFEWG (hy, ho, ..., hy) = h™.

(2) Let g(z) = 2%, = € (0,1], then g(z) is a decreasing function. If A <
%(t) for each i = 1,2,..., 4, t = 1,2,...,T, then g(v(t)) g(%()) for each
P= 12t =12 T ie. 27;5” > 7,§ Cfor each i = 1,2, .4,

t=1,2,...,T. Forany v\ € by (t =1, 2 T),smcew:(wl,wg,...,wT)T is
the Weight vector of by (t =1,2,...,T) such that w; € [0,1], t =1,2,...,7T and

ST w, =1, we have

2 — " 9 4
( (7)1 ) E(Tf? , b= 1,2\ t=1,2, LT

Then

N 1 < 1
9B\ Wt — 9_4®
1+HZ’_1(V;13) 1+Hf:1< Z»)
2 2
< r (290" 1= v (25" L
L+ 11— ( NG ) L+ o ( NG )



ie.,

2111, ()™ _ 211, ()™
I (2 - %'(t))wt + H;F:l(%(t))wt I (2— %( ) 1(% ))

Let HPFEWG (hy, ho, . .., hy) = h(yi|pip2 - - - pr) and HPFEWG (R, B, . .., hh) =
h*(Ailpipa - - - pr), where i = 1,2,. .., #, and # = #£ X # X - - - X #¢ is the num-
ber of possible elements in A(v;|p1ps - --pr) and h*(4s|pips - - - pr), respectively,
then the Eq. (19) is transformed into the form: ~;, < 5; (i = 1,2,...,#).
Thus s(h) = S, vipipa - pr < S Apipe - -pr = s(h*). If s(h) < s(h"),
then by Definition 3, HPFEWG(hy, hy, ..., hy) < HPFEWG(h}, b, ..., h%). If
s(h) = s(h*), ie., Sy = X A, then d(h) = >E (i = s(h))*paps - - pr =
SF (5 — s(h*)2pips - - - pr = d(h*), in this case, from Definition 3, it follows
that HPFEWG (hy, hy, ..., hy) = HPFEWG(RY, b, ..., h%). O

(19)

If all probabilities of values in each HPFE are equal, i.e., p; = py = -+ =
Pyn, (t =1,2,...,T), then the HPFE is reduced to the HFE. In this case, the
score function of the HPFEWA (resp. HPFEWG) operator is consistent with
that of the HFEWA (resp. HFEWG) operator.?! So we can conclude that the
HPFEWA (resp. HPFEWG) operator is reduced to the HFEWA (resp. HFEWG)
operator.?! In order to analyze the relationship between the HPFEWA (resp.
HPFEWG) operator and the HPFWA (resp. HPFWG) operator,?! we introduce

the following lemma.

Lemma 1.3 Let #; > 0, w; > 0,4 = 1,2,...,N, and ¥, w; = 1, then
Hf\il xt < Zf\il w;x;, with equality if and only if 21 = 29 = --- = 2.

Theorem 8. If b, (t = 1,2,...,T) are a collection of HPFEs and w =
(w1, wy, ..., wr)T is the weight vector of hy, with w; € [0,1] and 7, w;, = 1, and
p; is the probability of v, in HPFE h,, then

(1) HPFEWA(;Ll, BQ, ey BT) S HPFWA(Bl, BQ, ceey FLT)7

(2) HPFEWG (hy, ha, . . ., hy) > HPFWG(hy, ha, . .., hy).

Proof. (1) For any v, € h; (t = 1,2,...,T), by Lemma 1, we obtain the
inequality TT7, (1+7,) " + 112, (1 —v)* < L w(14+9) + 58w (1 —v,) =2
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and then

T AT ) . VO R
T (1 + ye)we + TTy (1 — ) Tl (1 + ye)®e + TTy (1 — )™
T
<1l- H(l — )"
t=1

Hence we can obtain the inequality:

U {Hfl(l + )"t — H?:l(l — 7)™ }
yrE€hT

Y1€h1,72€hs, ..., ITZ (14 ye)e 4 T (1 = )™

T
< U {1—H<1—%>w}. (20)
y1€h1,y2€R2,.... YT ERT t=1
Let HPFEWA (hy, ho, . .., hr) = h(7i|p;) and HPEWA (hy, by, . .., hy) = h* (7| ps),
= 1,2,...#, where # = #h = #h* is the number of possible elements
in h(y;lp:) and h*(3:|p;), respectively, then the Eq. (20) is transformed into
the form: ~; < 4 (i = 1,2,...,#). According to s(h) = Efjﬁ ~ipi, we have
HPFEWA (hy, hy, ..., he) < HPFWA(hy, hy, ..., hy).
(2) For any ; € hy (t =1,2,...,T), by Lemma 1, we have [T, (2 — v,)"* +

e, v <S8 w2 = v) + X5, wyy, = 2 and then

1

2 szl IYZUt L Wt
T w T wi Z H -
] (2 - ’Yt) o | t=1

Hence by similar way to (1), HPFEWG (hy, hy, . .., hy) > HPFWG(hy, ho, ..., hr).
]

Example 4. Let hy = (0.5/0.5,0.6]0.5) and hs = (0.1]0.2,0.3]0.3,0.4|0.5) be
two HPFEs and w = (0.6,0.4)” be the weight vector of them, then by Eq. (8),
the aggregated values by the HPFEWA operator is

= U {H%l(l + )" — H%:l(l — )™ p1p2}
€h1n2€hs TT7oy (14 ye) e+ TIeoy (1 — )

= {0.3537]0.1,0.4247|0.15, 0.4614/|0.25, 0.4268]0.1, 0.4928|0.15, 0.5265|0.25 } .

HPFEWA(}_Ll, 712) = (wl ‘e }_Ll) EBE (w2 ‘e }_12)
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If we use the HPFWA operator (Eq. (2)) to aggregate two HPFEs, then we

have
HPFWA (hy, hy) = (wihy) ® (wahs)

2
- U {1 - H(l — )" p1p2}
71651,726712 t=1

= {0.3675/0.1,0.4280(0.15, 0.4622|0.25, 0.4467]0.1, 0.4996|0.15, 0.5296|0.25 } .

Then s(HPFEWA (hy, hy)) = 0.4627 and s(HPFWA(hy, hy)) = 0.4685, and thus
HPFEWA (hy, hy) < HPFWA (hy, hs).
On the other hand, by Eq. (15), the aggregated value by HPFEWG operator

is
HPFEWG (hy, hy) = h{<"" @, hy="?

- U { 21Ty ™ m}
H§:1(2 =72 H?:l 2 A

716711,72652

= {0.2748]0.1,0.4108|0.15, 0.4581|0.25, 0.31260.1, 0.4622|0.15, 0.5135|0.25 }.

If we use the HPFWG operator (Eq. (3)) to aggregate two HPFEs, then we
get

HPFWG (hy, hy) = (7)™ & (hy)™?

- U |

7 651,726712 t=1

= {0.2627]0.1,0.4076|0.15, 0.4573|0.25, 0.2930/0.1, 0.4547|0.15,0.5102|0.25}.

It is clear that HPFEWG (hy, hy) > HPEWG (hy, hs)-

Theorem 9. If h, (t = 1,2,...,T) are a collection of HPFEs, w = (wy, wy, . . .,
wr)?” is the weight vector of h, with w, € [0,1] and ¥Z_, w, = 1, and p, is the
probability of 4, in HPFE h,, then

(1) HPFEWA((hy)S, (ho)S, . . ., (hy)¢) = (HPFEWG (hy, ha, . . ., hy))*;

(2) HPFEWG((1)<, (ho)°, . .., (k1)) = (HPFEWA (hy, ho, . . ., hy))C.
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Proof. Since (2) is similar (1), we only prove (1).

HPFEWA((hy)S, (ho)C, . . ., (hp)°)

_ I (14 (1 =)™ =TI, (1= (1= 3)™
= e AT (=) T (1 (L gy PP 0T
v1€h1,v2€R2, ... yT ERT Ht:l( - ( Tt t=1 Tt
= U { - 2 HtT:l i pip2 - 'pT}
- T wt T wt
Y1€h1,v2€R2,...,.yT ERT Ht:l(Q o ,Yt) T Ht:l T
= (HPFEWG (hy, ha, ..., hr))".
O

Theorem 8 shows that (1) the values aggregated by the HPFEWA operator
are not larger than those obtained by the HPFWA operator. That is to say,
the HPFEWA operator reflects the decision maker’s pessimistic attitude than
the HPFWA operator in aggregation process; (2) the values aggregated by the
HPFWG operator are not larger than those obtained by the HPFEWG operator.
Thus the HPFEWG operator reflects the decision maker’s optimistic attitude
than the HPFWG operator in aggregation process. Moreover, we develop the
following ordered weighted operators based on the HPFOWA operator?! and the
HPFOWG operator,?* to aggregate the HPFEs.

Let h, (t =1,2,...,T) be a collection of HPFES, Ba(t) be the tth largest of h,
(t=1,2,...,T), and p, be the probability of 7, in the HPFE h,(;, then we
develop the following two aggregation operators, which are based on the mapping
HY — Hp with an associated vector w = (wy,ws,...,wr)? such that w; € [0,1]
and Zthl wy = 1:

(1) The hesitant probabilistic fuzzy Einstein ordered weighted averaging (HPFE-
OWA) operator:

HPFEOWA(BM BQ) ey BT) - (Wl ‘e Ba(l)) @5 (WQ ‘e BO’(Z)) @6 e @a (WT ‘e BO’(T))

U {HtT=1(1 + ’Vcr(t))wt - HtT:1<1 - ’ch(t))wt
Hthl(l + Yo(r))“t + Hthl(l = Vo))"

pau)pa@)"'Paaq}- (21)

Vo (i) €ho (i)
i=1,2,...,T

(2) The hesitant probabilistic fuzzy Einstein ordered weighted geometric (HPFE-
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OWG) operator:

HPFEOWG (hy, ha, . .., hr) = (hot) @ (Ri52) ®c - - @c (hyipT)

2112, Yoty
= U - o [Po()Po(2) - Po(r) | - (22)
Yo (i) ENo () {HtT—l(Q N 7"“)) o Hthl %Et) ’

i=1,2,...,T

i=1

,,,,,

Example 5. Let h; = (0.5/0.5,0.6]0.5) and hy = (0.1]0.2,0.3]0.3,0.4/0.5) be
two HPFEs and suppose that the associated aggregated vector is w = (0.55,0.45)7.
Based on Definition 3, the score values of h; and h, are s(l_zl) = 0.55 and
s(hg) = 0.31. Since s(hy) > s(hy), then

o1y = b1 = (0.5]0.5,0.6|0.5), hy2) = he = (0.1|0.2,0.3]0.3,0.4]0.5).
From Eq. (21), the aggregated values by the HPFEOWA operator is
HPFEOWA (hy, hs) = (w1 e ho(1)) Pe (w2 = ho2))
= {0.3340/0.1,0.4023]0.1, 0.4148|0.15, 0.4564/0.25, 0.4781|0.15, 0.5167|0.25}.

On the other hand, from Eq. (22), the aggregated values by the HPFEOWG
operator is
HPFEOWG (hy, ho) = (h)it) @ (his7)
= {0.2937|0.1,0.2859]0.1,0.4005|0.15, 0.4466|0.15, 0.4530|0.25, 0.5033]0.25 } .

In following, let us look at the HPFEOWA and HPFEOWG operators for
some special cases of the associated vector w:
(1) If w = (1,0,...,0)T, then

=>I

HPFEOWA (hy, hy, . .
HPFEOWG (hy, ha, . .

= 710(1) = max{h;},
n) ]_10(1) = max{ﬁt}.

°

>

*

(2) If w = (0,0,...,1)T, then

HPFEOWA (hy, ho, . .., hy)

HPFEOWA (hy, hy, . .., hy)

EU(T) = min{h,},
}_ZJ(T) = min{ﬁt}.
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(3) If ws =1, w; =0, s#t, then

ho(ry < HPFEOWA (h1, ha, . .., hr) = ho(s) < hoq),
}_lo(T) < HPFEOWG(?M, }_Lg, cee hT) = }_lg(s) < h
where l_za(s) is the sth largest of h, (t =1,2,...,T).
(4) fw=(7,%,...,7)7, then
HPFEOWA (hy, hs, . .., hr)
T2 (1 + 7o) T — T (1= o) T
Y { (L) T =)y
r Yo (t)

Yo (i) €ho (i)
i=1,2,...,T

.....

[T, (1 +7)7 — [T (1 — 5T
Y { Lt T A=
yr€hr r

1
716711,72652 ..... + H;—;le(l - ’yt>T
== HPFEA(iLl, BQ, cee ,BT),

HPFEOWA (hy, ks, . .., hy)
1le
Y 215
- 1

1
'ya(i)eha(’;)’ HtT:1(2 i %(t))T + Hthl %T(t)

i=1,2,...,

Po(1)Po(2) ** * Po(T)

1
2 HtT:1 Ve
L

{ = ] pe pip2 - - 'pT}
yi€h1ye€ha,oyrehr \TTi=1 (2 = %) T + [Ti=1 %"
— HPFEG(hy, sy, . . ., hr),

i.e., the HPFEOWA (resp. HPFEOWG) operator is reduced to HPFEA (resp.
HPFEG) operator.

Similar to Theorems 8 and 9, the above ordered weighted operators have the
relationship below:

Theorem 10. If h; (t = 1,2,...,T) are a collection of HPFEs, w = (wy, wo, .
T

. ey

wr)’ is associated vector of the aggregation operator such that w, € [0,1] and
ST w, =1, then

26



(1) HPFEOWA (hy, ha, ..., hy) < HPFOWA (hy, ho, . .., hr);
(2) HPFEOWG (hy, ha, ..., hy) > HPFOWG(hy, hy, ..., hy).
T)

Theorem 11. Ifh, (t =1,2,...
T

are a collection of HPFEs, w = (wq,wa, .. .,
wr)’ is associated vector of the aggregation operator such that w; € [0,1] and
I wi =1, then

(1) HPFEOWA((hy)¢, (hy)®, . (ET)C) = (HPFEOWG (hy, hy, . . ., hy))S;

(2) HPFEOWG((h1)¢, (hs)°, ..., (h1)°) = (HPFEOWA (hy, ha, . .., hr))°.

Clearly, the fundamental characteristic of the HPFEWA and HPFEWG op-
erators are that they consider the importance of each given HPFE, whereas the
fundamental characteristic of the HPFEOWA and HPFEOWG operators are the
reordering step, and they weight all the ordered positions of the HPFEs instead
of weighing the given HPFEs themselves. By combining the advantages of the
HPFEWA (resp. HPFEWG) and HPFEOWA (resp. HPFEOWG) operators, in
the following, we develop some hesitant probabilistic fuzzy hybrid aggregation
operators that weight both the given HPFEs and their ordered positions.

Let hy (t = 1,2,...,T) be a collection of HPFEs, w = (wy,ws, ..., wr)"
be the weight vector of h,, with w; € [0,1] and ZtT:1 wy = 1 and p; be the
probability of 7; in the HPFE hy, then we develop the following two aggregation
operators, which are based on the mapping H. — Hp with an associated vector
w = (wi,wy, . ..,wr)T such that w; € [0,1] and ¥F ; w; = 1:

(1) The hesitant probabilistic fuzzy FEinstein hybrid averaging (HPFEHA)

operator:

HPFEHA(Bl, BQ, ey BT) = (CU1 ‘e ha‘(l)) @5 (O)Q ‘e ]:La'(2)) @g e . @5 (WT ‘e ilg(T))

HT 1+;YO’ e HT ;YO' b . . .
U { =il WM el (t))% Po(1)Do(2) - Do(r) ( +(23)
Ht 1(1+% ) +Ht (1 %(t))

Yo (i) €ho (i)
i=1,2,...,T

where h ) is the tth largest of the weighted HPFEs hy = Twy-hy (t=1,2,...,7),
T is the balancmg coefficient, and p,() be the probability of 4, in the HPFE
ho’(t)'
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(2) The hesitant probabilistic fuzzy Einstein hybrid geometric (HPFEHG)
operator:

HPFEHG (hy, ha, . .., hy) = @fo?) - (h)ig?) ®. - @. (hher)

o(T)
U 211
vame’la(z) ITima (2 - o (1)) + Ht 17 wt

i=1,2,...,

Po(1)Do(2) " * 'P&(T)} , (24)

where h ) is the tth largest of the weighted HPFEs hy = hpT (t=1,2,...,T),
T is the balancmg coefficient, and ps(;) be the probability of 4, in the HPFE

Especially, if w = (7, 7,...,7)", then he = hy = by (t = 1,2,...,T), in
this case, the HPFEHA (resp. HPFEHG) operator is reduced to the HPFE-
OWA (resp. HPFEOWG) operator. If w = (&, &

T s T)T then since

T e
. ~ . e ;
hy = % e (Twy e hy) = Uy ehy {8113“;—&-8 3t§wt pt} and ht = (hi\ST YAt
2+,t
Useehs {@%;W pt}, we have
— _ e, 1 . 1 1 )
HPFEHA (b1, has s hr) = (5 0 o)) @ (5 e ho(2) @e oy (< hotr)

_ U {Hzl(lJr%)w O, (1 ;)™
y1E€R1,v2€R2,..;.yTERT Ht 1(1 + gl )wt 1) Ht 1(1 B "Yt)wt
— HPFEWA (hy, ho, . .., hy),

bip2 - 'PT}

HPFEHG (hi, by, .. . hr) = (hy() @ (hoi) ® - @ (hyif)
- D gl
- T wt U)t
Y1Eh1,¥2€h2,....yT EAT Ht:1(2 | ) a5 Ht Ly
— HPFEWG Iy, ha, . .., hy),

pip2---Pr }

i.e., the HPFEHA (resp. HPFEHG) operator is reduced to the HPFEWA (resp.
HPFEWG) operator.

Example 6. Let h; = (0.50.5,0.6/0.5) and hy = (0.1]0.2,0.3/0.3,0.5/0.5) be
two HPFEs. Suppose that the weight vector of them is w = (0.63,0.37)T, and
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the aggregation associated vector is w = (0.3,0.7)T. Then
h B (1 + 0'5)2><0.63 _ (1 _ 0.5)2><0.63 (1 + 0.6)2X0'63 _ (1 _ 0.6>2X0'63 ‘O .
1= (1 + 0‘5)2><0.63 + (1 _ 0‘5)2><0.63 (1 + 0.6)2X0‘63 + (1 _ 0.6)2X0'63 :
= (0.5993|0.5,0.7031]0.5),

0.5,

. (1 4 0.1)2><0.37 _ (1 _ 0_1)2><0.37 (1 + 0.3)2><0.37 _ (1 _ 0.3)2><0.37
ha = (1 + 0.1)2><0.37 + (1 _ 0_1)2><0.37 |0'2’ (1 + 0_3)2x0.37 + (1 _ 0.3)2><0.37‘0‘3’
(1 + 0'5)2><0.37 . (1 o 0.5)2><0.37
(1 + 0.5)2><0.37 + (1 _ 0.5)2><0.37 ‘0'2
= (0.7411(0.2,0.2251(0.3,0.3851|0.5)
and s(hy) = 0.6512 and s(hy) = 0.4083. Since s(hy) > s(hsy), we have
hoy = b = (0.5993)0.5,0.7031]0.5),
ho@) = hy = (0.7411]0.2,0.2251/0.3,0.3851/0.5).
From Eq. (23), we have
HPFEHA (hy, o) = (w1 -2 T (1)) @e (W2 - ho(2)
_ U {H?ZI(l +9o1) " — i1 (1 = Yo(9)™ Po(1)D (2)}
H?:l(l 5 '70(t))wt = H?:l(l . ’.Ya(t))wt

Yo (1) EPo (1) o (2) ERa (2)

= {0.3715]0.15,0.4175|0.15, 0.4557|0.25, 0.4977|0.25, 0.7037|0.1, 0.7302|0.1}.

On the other hand,
h _ 2 % 0.52><O.63 92 % 0.62X0'63
1= (2 11 0‘5)2><0.63 + 0.52%0.63 |0'5’ (2 _ 0.6)2><0'63 + 0.62%0.63 |0'5
= (0.4007|0.5,0.5117]0.5),

h _ 2 % 0.12><0.37 92 % 0.32><O.37
2= (2 _ 0'1)2><0,37 ™ 0_12><0.37 |0'2’ (2 —r 0'3)2><0,37 i 0_32><0.3

2) 0_52><0.37
- 0.5

-10.3,

(2 _ 0_5)2><0.37 + 0'52><0.37
= (0.2033]0.2,0.4339(0.3, 0.6145/0.5)

and since s(ﬁl) = 0.4562 > 0.4465 = s(ﬁg), we have ﬁg(l) = h; and ﬁa(g) = hy.
From Eq. (24), we have

HPFEHG (h1, hy) = (h)35) ®- (hhis?)
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U { 2 H?:l VZU(tt) 'j?' 15 }
- 2 _ w 2w |Pe(1)Po(2)
Ho(1)Eha(1)Fo(2) Eho(2) Miz1 (2 = Yow)* + izt %oty

= {0.2512/0.1,0.2728|0.1,0.4237|0.15, 0.4563|0.25, 0.5441|0.15, 0.5825|0.25}.

4 Conclusions

In this thesis, we have been defined some new operation laws of HPFEs such as
Einstein sum, Einstein product and Einstein scalar multiplication, and have been
developed some new hesitant probabilistic fuzzy Einstein aggregation operators,
including the HPFEWA, HPFEWG, HPFEOWA, HPFEOWG, HPFEHA and
HPFEHG operators, to accommodate the situations where the given arguments
are HPFEs. We have investigated desirable properties of these operators and
have given some numerical examples to illustrate the developed operators. Fur-
thermore, we have compared the developed operators with the existing hesitant

probabilistic fuzzy aggregation operators proposed by Xu and Zhou.?*
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