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1 Introduction

Decision making is generally made to find the most desirable alternative(s) in
a given set of alternatives. As the complexity of the socio—economic
environment increases, it is difficult to obtain accurate and sufficient data in real
decision making. Thus, it is necessary to deal with uncertainties in the actual
decision—making process. Thus, many different methodologies and theories are
presented, and in particular, fuzzy set (FS) [1] is widely used in many fields in
real life [2, 3, 4, 5]. Since then, many extensions of the fuzzy sets such as
intuitionistic fuzzy set [6], interval-valued fuzzy set [7], interval-valued
intuitionistic fuzzy set [8], hesitant fuzzy set (HFS) [9,10], dual hesitant fuzzy
set [11], and generalized hesitant fuzzy set [12] have allowed people to deal
with uncertainty and information much more extensively. In particular, as a new
development in FS, the concept of HFS has been gaining attention and has
recently become a popular subject for research [9, 10, 13, 14, 15, 16].

HFS is an important extension of the FS modelling that modelled the
uncertainty caused by a common phenomenon of decision making. Several
possible values can be used to indicate the membership degree or an evaluation
value under hesitant fuzzy environment. Thus, it is appropriate and convenient
to explain the hesitancy experienced by decision—makers during the decision—
making process. The hesitant fuzzy aggregation operator is one of the core
issues. Many authors [2, 17, 18, 19, 20, 21, 22, 23, 24, 25] developed the
hesitant fuzzy aggregation operators and used to fuse the hesitant fuzzy
information based on the algebraic product and algebraic sum, or the Einstein
product and Einstein sum operational rules of HFEs. Recently, Tan et al. [26]
extended the Hamacher t—norm and t—conorm to HFS and proposed a family of
hesitant fuzzy Hamacher operators that allow decision makers have more choice
in multiple attribute decision making problem. In this paper, motivated power
average (PA) operator [27] and power geometric (PG) operator [28], we
develop hesitant fuzzy power aggregation operators based on Hamacher t-
norm and t—-conorm for aggregating hesitant fuzzy information.

In order to do so, this paper is organized as follows. In Section 2, some basic
concepts of some power aggregation operators and HFSs are reviewed. Some
properties of the Hamacher operational rules on HFEs are investigated. In
Section 3, based on the Hamacher operational rules on HFEs, we introduce some
hesitant fuzzy Hamacher power weighted aggregation operators for hesitant
fuzzy information. Some of their desirable properties are investigated and the
relations between the various existing operators are discussed. In Section 4,
based on the proposed operators, we develop a technique for hesitant fuzzy
multiple attribute decision making.



2 Basic concepts and operations

2.1 Triangular norms and conorms

An important notion in fuzzy set theory is that of triangular norms and conorms
which are used to define the generalized intersection and union of fuzzy sets,
which is defined as follows:

Definition 1. [29] A triangular norm (t-norm) is a binary operation T on the
unit interval [0,1], i.e., a function T :[0,1] x [0,1] = [0,1], such that for all x,y,z €
[0,1], the following four axioms are satisfied:

(1) (Boundary condition) T(1,x) = x;

(2) (Commutativity) T(x,y) = T(y,x);

(3) (Associativity) T(x,T(y,2)) = T(T(x,y),2);

(4) (Monotonicity) T(xy,y:) < T(x,,v,) if x; <x, and y; < y,.

The corresponding triangular conorm (t—conorm) of T (or the dual of T) is the
function S :[0,1] x [0,1] = [0,1] defined by S(x,y) =1—-T(1 —x,1—1y) for each
x,y € [0,1].

For many t—-norms and t-conorms, there are basic t—norms and t—-conorms,
namely, minimum T, and maximum S,,, algebraic product T, and algebraic sum
S4, Einstein product Tr and Einstein sum Sz, bounded difference Ty and
bounded sum Sg, and drastic product T, and drastic sum S, given respectively
as follows:

Ty (x,y) = min(x,y), Sy(x,y) = max(x,y);

Ta(x,y) = xy, Sa(x,y) =x +y = xy;
xy
1+(1-x)1-y)’

Tg(x,y) = max(0,x +y — 1), Sg(x,y) = min(1,x + y);
0, if(x,y) € [0,1)? 1, if(x,y) € (0,1]?
min(x, y), otherwise max(x,y), otherwise °

x+y_
1+xy’

Tp(x,y) = Se(x,y) =

o) = { S0

These t—norms and t—-conorms are ordered as follows:
Tp <Tg <Tg <Ty<Ty.,and Sy <SS, <S; <Sg<Sp. (D

From (1), since the drastic product T, and minimum T, are the smallest and
the largest t—norms, respectively, it can be seen that T, < T < T,, for any t-—



norm T. Whereas the algebraic T, and the Einstein product Tg are two
prototypical examples of the class of strict Archimedean t—norms, which are
continuous, strictly monotone, and have the Archimedean property [29].

Hamacher [30] proposed a more generalized t-norm and t-conorm, called
the Hamacher t—-norm and t-conorm, which are defined as follows:

xy x+y—xy—(1—-xy
(+A-Dx+y—xy)’ {+(1—-xy

Especially, when ¢ =1, then the Hamacher t-norm and t—conorm reduce to
the algebraic t—norm T, and t—conorm S,, respectively; when { = 2, then the
Hamacher t-norm and t-conorm reduce to the Einstein t-norm Tz and t-—
conorm Sg, respectively.

Ts(x,y) = S5(x,y) = (>0, (2)

2.2 Power aggregation operators

The power average (PA) operator was originally introduced by Yager [27]. It
used a nonlinear weighted average aggregation tool to aid and provide more
versatility in the data aggregation process. In the following, we review some
proposed power aggregation operators.

(1) The power average (PA) operator [27] is a mapping PA : R® - R, that is
given by the following formula:

PA(ay, ay, -, a,) = @A+ T(a))a; o

XL +T(@)

where

T(@)= ) Sup(a;a) @

j=Lj#

and Sup(a, b) is the support for a from b, which satisfies the following three
properties:

(1) Sup(a,b) €[0,1];
(i1) Sup(a,b) = Sup(b,a);
(iii) Sup(a,b) = Sup(x,y) if |la —b| <|x —y|.

(2) The power geometric (PG) operator [28] is a mapping PG : R™ — R, which
1s given by the following formula:

1+T(a;)

n
PG(ab az -, an) = 1_[ ai2?=1(1+7(‘1i)), 5)
i=1
where T(a;) satisfies the condition (4).

3



(3) The power ordered weighted average (POWA) operator [27] is a mapping
POWA : R™ - R, which is given by the following formula:

n
POWA(al, a -, an) = Z Uils(i) » (6)

i=1

where
i n
_ g% Rty Ny =S
W=9\7y) ~9\ 7y ) i_-lgm’ _'16®’
Jj= i=

n
Vowy = 1+ T(as0). T(as)) = Z Sup(as(p),as(j)) 7
j=1,j#i
where a,(; is the ith largest argument among of all the arguments g; (i=
1,2,---,n), T(ao(i)) denotes the support of ith largest argument by all of the other
arguments, Sup(aq(;), aqs(j)) indicates the support of the ith largest argument for
the jth largest argument, and g : [0,1] = [0,1] is a basic unit-interval monotone
(BUM) function having the following properties:
(1) g(0)=0; (2) g(1) =1; and (3) g(x) = g(y) if x>y.

(4) The power ordered weighted geometric (POWG) operator [28] is a
mapping POWG : R" —» R, which is given by the following formula:

n
POWG(al, az' ey an) = H aztl)' (8)
i=1

where u; is a collection of weights satisfying the condition (7).

2.3 Hesitant fuzzy sets and hesitant fuzzy elements

In the following, some basic concepts of hesitant fuzzy set and hesitant fuzzy
element are briefly reviewed [9, 10, 13].

Definition 2. [9, 10] Let X be a fixed set, a hesitant fuzzy set (HFS) on X is
defined in terms of function h that returns a subset of [0,1] when applied to X.
The HFS can be represented as the following mathematical symbol:

E = {(x, hE(x)>|x € X}, (9)

where hg(x) is a set of values in [0,1] that denote the possible membership
degrees of the element x € X to the set E. For convenience, we refer to h =
hg(x) as a hesitant fuzzy element (HFE) and to H the set of all HFEs.

Given three HFEs h, h; and h,, Torra and Narukawa [9,10] defined the

4



following HFE operations:

(1) h® = Uyen {1 -7}

(2) hy Uhy = Uy en,ypen, 1 V712)

(3) hi Nhy = Uy en, ypen, (Y1 AV}

For the aggregation of hesitant fuzzy information, Xia and Xu [13] defined the
following new operations:

(1) h* = Uyen ¥} 2> 0

(@) A= Uy {1-1 -1, A>0;

(3) hi ® hy = Uy en,ppen, (V1 + 72 —1ivalh

4) hy @ hy = Uy, ehy y2€h, {riv2}

Xia and Xu [13] also defined the following comparison rules for HFEs:

Definition 3. [13] For a HFE h, s(h) = % is called the score function of h,

where [(h) is the number of elements in h. For two HFEs h; and h,,
@® if s(h)) > s(hy), then h; is superior to h,, denoted by h; > hy;
® if s(hy) =s(hy), then hy is indifferent to h,, denoted by h; = h,.

Let h; and h, be two HFEs. In the most case, [(h,) # l(h,); for convenience,
let | = max{l(h,),l(h,)}. To compare h; and h,, Xu and Xia [31] extended the
shorter HFE until the length of both HFEs was the same. The simplest way to
extend the shorter HFE is to add the same value repeatedly. In fact, we can
extend the shorter ones by adding any values in them. The selection of these
values mainly depends on the decision makers risk preferences. Optimists
anticipate desirable outcomes and may add the maximum value, while pessimists
expect unfavorable outcomes and may add the minimum value [31]. In this paper,
we assume that the decision makers are all pessimistic (other situation can also
be studied similarly).

Xu and Xia [31] proposed a variety of distance measures for HFEs, including
the hesitant normalized Hamming distance, which is defined as follows:

l
1 X .
d(hy, hy) = 72|h1”°) RCI (10)
i=1

where hla(i) and hza(i) are the largest values in h; and h,, respectively.

Intrinsically, the addition and multiplication operators proposed by Xia and Xu
[13] are algebraic sum and algebraic product operational rules on HFEs,
respectively, a special pair of dual t-norm and t-conorm. Recently, Tan et al.
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[26] extended these operations to obtain more general operations on HFEs by
means of the Hamacher t—-norm and Hamacher t-conorm as follows:

Definition 4. For any given three HFEs h, h;, h,, and > 0, the Hamacher
operations on HFEs are defined as follows:

_ Y1+Y2—Y1Y2—(1-Qvivz ],
(D) by @y hy = Upyenyppen, | TR0

— Y1Y2 .
@) by ®y by = UYlEhl‘YZEhZ{ HA-D(y1+v2-v1Y2) }’

_ 1+@-ypr-a-nt .
) Awh= UVE“{ A+@-DYA+G-D -yt } A>0;

A

A
@) W' = Upen { B

(1+@G-D A~y +@C-Dy? }' A>0.

Especially, if =1, then these operations on HFEs reduce to those proposed
by Xia and Xu [13]; if ¢ =2, then these operations on HFEs reduce to the
following:

Y1t Y2
(1) hy &, hy = U}’1€h1-}’2€h2{ };

1-v1v7
Y1Y2 }
1+A-yDA-vyy) )’
a+pt-a-p*
A+ + A -yt
2y*
Q-+

which are defined as Einstein operations on HFEs by Yu [21].

(2) hl ®. h2 = U}’1€h1n}’2€h2{

3 )\-sh=Uyeh{ },)\>0;

(‘Uhl\Hi = Uyen { }’ -’

Theorem 1. [26] For three HFEs h, h;, h,, and A >0, the following
properties hold:

(1) h1C Dy hzc = (h1 ®y hz)ci
() h" ®y h," = (hy By hy)S
(3) Ay () = (WG

@) (RN = -y R)C.

Theorem 2. Let h, h; and h, be three HFEs, A >0, A; >0 and 1, > 0, then



(1) hy ®y hy =h, ®y hy;

2) h &y (hy &y hy) =(h &y hy) ®yhy;
3) Aoy (hy @y h) = Aoy by) @y Aoy ho);
() Me (g ch) = uhy) e b

(5) hy ®y hy =h; ®y hy;

6) h ®y (b ®y hy)=(h ®y hy) ®y hy;
@) (hy @y k)M = mM ®, b

8) (A yM’E = prn

Proof. Since (1), (2), (5) and (6) are trivial, we prove (3), (4), (7) and (8).

: = 1+¥v2=v1v2—(1=0r1y2 .
(3) Since h; ®y h, = UY1Eh1.YZEh2{ PR }, by the operational law

(3) in Definition 4, we have

Ay (b ©p hy)

(1 + (4 V1+Y2—Y1Y2—(1—()Y1Y2)}\ o (1 i Y1+Y2—Y1Y2—(1—()Y1}’2)A

= Uyen e 1-(1-Dy1v2 1-(1-Dr1y2
— YV1€hy¥2€hz A A
1 -1 V1t¥V2=v1V2—(A-Qv1v2 ~D(1- Yitv2—¥iv2—(1-Oviv2
( +¢-1 1-(1-r1v2 ) U ( 1-(1-Dr1r2 )

(A + @ =Dy A + G =Dy ) — (1 —y) (A =v5)) }
(A + Q= DY)+ C= Dy + G- (A -y (1 —v2)

1+@-DyD*-a-y?*
A+@-DyDM+@-D -y } ardl

= UV1 €hy,¥2€h, {

Since Ay hy = Uylehl{

)\. h _ { (1+(Z_1)Y2)A_(1_Y2)A
h 2 v2€h2 | (14@-1)y2) 2+ (- D(a-y)?

Ay h) &y Ay hy)
1+@-DyD)*-a-y?* (1+@-Dy2)*-a-y)*
[ (1+@-DyD*+@-DA-yD*  A+@-Dy)M+C-1D(A-y2)* ]
| B G e D) Y e e P AU C B (e ) Y e e PO |
A+@-Dy DM+ @ DA-yD* T Q+Q-Dy2)+ @D (a-y)?

}, we have

l_( -0 A+G-DyD*--yD*  A+G-Dy)-(-y)*
—u A+EDyDM+ @Dy A+E-Dy)+@-D-y2)*
iehuraehz ) (1 — () @D yr | 4Gy -Gy,

A+@-DyDMHC-DA-yD*  (1+@-Dy) M+ @-D(A-y)A




(A + @ - Dy) A+ G- Dy ))* = (1 —y) (A —v)"
(1 + Q- Dy)A + Q= Dy ) + G- D(A - y)A —v)"
Hence Ay (hy ®y hy) = Ay hy) @y (A-y hy).

= UV1 €hy,¥2€h;

- a+@-vpt2-a-y*2
(4) Since A, -y h = Ureh{ D2+ D2 } then we have

Moy (2w h)
A
_ a+@-vptz-a-prz "
(1 +@-D (1+(<—1)v)‘2+(<—1)(1—vz)‘2)
~(1- +@-Dy2-(-y2 )“
_ A+@-Dy) 2 +@-1Da-yp*2
- Ureh< A

B (1+@-Dy)*2-(1-y)r2
(1 + (Z 1) (1+((—1)y)7‘2+((—1)(1—Yi)12)

_ @+ @-nyre-(a-pz
k+(< D (1 (1+(§—1)Y)}‘2+(<—1)(1—Yi)}‘2)

_ 1+ G- DY P — (1 — y)Para)
e { 1+ Q- Dy)P2) + (- 1)1 — y) P12 }

= (7\17\2) ‘H h.

M

: v’ Yivz :
(7) Since h; ®y h, = Uylehl.yzehz{ TR W }, by the operational law

(4) in Definition 4, we have

A
Yiv2
¢ (("'(1—0 (y1+r2 —Y1Y2))

A
_ _ Yivz
(1 +@-1) (1 §+(1—()(Y1+Y2—Y1Y2)))

\ +((-1) ( Yiv2 )/1

A=D1 +Y2-v1Y2)

A
(hy By hZ)AH = Uy enyyseh,

iyt
(1+@-Da-yD)(1+ G- D0 - yz)))A + Q= Dvatv2?

= Uy enypsen,

Since h Mt U { tvat } and
1 V1€t | (14 @Dy + @1y, A
At { v }
™ = Upsen, | @rena—vayieaoovar Ve have



A A
A A
hl H ®H hZ H

= Uy ehypsen,

= UV1 €hy,¥2€h;

1

A A

Qv1 . Qv2
A+@-DA-y )M+ G- Dyid A+@-D)A-v2) +@-Dy2?

iyt iyt

+
+(1-0 A+EDA-yOMHE-Dy1d T A+EGDA-v2 ) +G- 1y

A A

_ Cy1 . $7]
W+E-DA-y )M+ @C-Dyi*  @A+EC-DA-v2) A+ @ 1)y

ZYIAVZ}L

((1+@- DA -1+ @ - DA-7)) + G- Dy

Hence (hy, ®y hy)M = h, M @, h," .

A
(8) Since WM™ = Ureh{ s }: we have

(WY’

A+@-Da-y)M1+@G-1yM

Az

fyr
¢ ((1+(<—1)(1—v))11+(<—1)y"1)

= Uren ]

Az
gyt
1+@-1)(1-
( ¢ )< (1+(<—1)(1—y))“+(<—1)vh>>

Az

+@-1( i )

A+@-DA-y)r1+@C-1)yM

Zy()‘l}\z) }

= Uyen { 1+ (Z - 1)1 = Y))(?\ﬂ\z) + (( - 1)y(7\17\2)

— hAH(llaZ)




3. Hesitant fuzzy Hamacher power weighted
aggregation operator

The above—-mentioned power aggregation operators have usually been used in
situations where the input arguments are the exact values. In this section, we
shall extend the power aggregation operators to accommodate the situations
where the input arguments are hesitant fuzzy information based on the
Hamacher operations.

3.1 Hesitant fuzzy Hamacher power weighted average
operator and hesitant fuzzy Hamacher power weighted
geometric operators

On the basis of the hesitant fuzzy Hamacher weighted average (HFHWA)
operator [12] and PA operator, we firstly give the definition of the hesitant
fuzzy Hamacher power weighted average (HFHPWA) operator as follows.

Definition 5. Let h;(i = 1,2,---,n) be a collection of HFEs and w = (wy, wy, -+, wy,)T
be the weight vector of h;(i = 1,2,---,n) such that w; € [0,1] and Y-, w; =1. A
hesitant fuzzy Hamacher power weighted average (HFHPWA) operator is a
function H™ - H such that

(1D

w;(1+ T(hy)) -5 hi
HFHPWA((hphz.“',hn) =®H£1< i( (h)) -y 1) |

2iegwi(1+T(hy)
where parameter ¢ >0, T(h;)) = X7 j»; w;Sup(h;, h;) and Sup(hy, k) is the support
for h; from h;, satisfying the following conditions:

(1) Sup(hy, h;) € [0,1];

(2) Sup(hy, hy) = Sup(h; , h;);

(3) Sup(hy, hy) = Sup(hg, he) if d(hy, hy) < d(hg, he), where d is the hesitant
normalized Hamming distance measure between two HFEs given in Eq. (10).

Theorem 3. Let h;(i = 1,2,++,n) be a collection of HFEs and w = (wy, wy, - w;,)T
be the weight vector of h;(i =1,2,---,n) such that w; €[0,1] and X, w; =1,
then the aggregated value by HFHPWA operator is also a HFE, and

HFHPWA¢(hy, hy, -, hy)

10



( _wi(1+7(r) \
n (14 (@ — 1)y)Ei=a i)

—I* — v ) wi+T(hy)

= '=1(1 y) i=1"1 i

= Uyiehupaehssmein T e - (12)
n (14 (= 1)y;)xi=a wiG 70D

Wi(1+T(hi))

+(@ = DT, (1 — )R 70D

Proof. Eq. (12) can be proved by mathematical induction on n as follows.

For n =1, the result of Eq. (12) is clear.
Suppose that Eq. (12) holds for n = k, that is

HFHPWA, (hy, hy, -+, hy)

wi(1+7(ny)) wi(1+T(hy)
= ) K W ;
B B (0= Dy S T (1 — )P M)

€hq,y2€hy, ", YKER
V1€, Y2€R2, VEENK . Wi(1+T(hi))

S+ @ - Dy )R T

w;(1+T(h;))

YK w.a+T(h))
@SR TA(1 — v)) 270D )

=Uu

Then, when n =k + 1, by Definitions 4 and 5, we have
HFHPWA;(hy, Ry, +++, Rycrq)

(Wi(l +T(h)) -y hy ) <Wk+1(1 + T (his1)) 'm hict 1 )
A\ I w1 +TR))) Hlw,(1+T(hy))

HiE

w;(1+T(h;)) w;(1+T(h;))

_ (1 + @ — Dy PE 0D [T (3 = y) P i)
= Uyiehyysehy, yiehi w;(1+T(R;)) w;i(1+T(h;))
;;1(1 + (( . 1)yi)zli€=‘rllwi(1+T(hi)) + (( - 1) l‘”c=1(1 _ yi)E{-‘:llwi(HT(hi))
Wit 1 (14T (hgey1)) Wit 1 (14T (hgey 1))
(14 @ = Dyiep) BT — (1 — ) BET OO0
®n Uy ies1€hicsn { Wiep1@+T(Rjpq1)) wk+1(1+T(hk+1))l'
WL+ @ = Dyies ) HE S TOD 1 (€= 1)(1 =y B 1070 )
wi(1+7(R))) w;(1+7(ny))
Let a; = [T, (1 + (G = Dy) S Tt py = [T, (1 -y = w0,
Wit 1 (14T (hgey 1)) Wit 1 (4T (Rgeyq))

a;=01+C- 1)Yk+1)zﬁllwi(1”(hi)) and b, = (1 - Yk+1)zé€;11wi(1”(hi)), then

HFHPWA¢(hy, By, -+, Ryey1)
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- bl - b2
= Uyienyysehg - yiehy {a +( —1)b, } ®n Y Vk+1€hk+1 {a + (- 1)1’)2}

~by __ai-bi
{ la1+(( 1)by az+(5 Dby  a1+(@- 1)b1 az+(€ 1)b2

‘|
—(1-p— .t
J}

a3 +({-1)by az+(5—1)bz

= U

1’1Eh1""J’kEhkrYk+1€hk+1 S ai=by by
l ar+({-1by  az+({-1)by
a,a; — by b,
= Uy ehy yo€hy, - yisi€h { }
1 1,72 2, Yk+1 k+1 a1a2 + (( — 1)b1b2
(1+T(hi))
Hk+1(1 + (Z _ 1)y )ZL T wi(+T(hy)
wi(1+T(hy))
—Ta -y .)ZiF:llwi(1+T(hi))
= UylehLVZEth”'rYk+1€hk+1 ) l(1+T(hi)) ¢
M + (§ = Dy e i 7D
wi(1+T(hy)
+(< _ 1) Hk+1(1 F )Z{H'll wi(1+T(h;))

i.e., Eq. (12) holds for n = k + 1. Thus Eq. (12) holds for all n. O

Remark 1. (1) If Sup(h;, h;) =k, for all i #j, then
HFHPWAZ(hl, hz, e, hn) = $Hln=1 (Wl ‘H h’l)

U { @+ @ Dy — I (1 =y
V1R =T Yn i 1(1 +@— Dy)vi + (- 1) I, (1 —y)vi

which indicates that when all supports are the same, the HFHPWA operator
reduces to the hesitant fuzzy Hamacher weighted average (HFHWA) operator
[12]. Especially, if Sup(hi, hj) =0 for all i #j, i.e., all the supports are zero,
then there is no support in the aggregation process, and in this case, we have
T(h) =0, i=1.2,--,n, then

w; (1 + T(hy))

iwi(1+T(hy))
and thus, it is clear that the HFHPWA operator reduces to the HFHWA operator
[12].

(2) For the HFHPWA operator, if {= 1, then the HFHPWA operator reduces to
the following:

} o (13)

=w;, i = 1,2,“',7’1

n w;(1+T(h;))

HEPWA, (s, s, o) = Uy, i [1 -] la —vi)2?=1w“”T(h"))} s

i=1

12



which is called the hesitant fuzzy power weighted average (HFPWA) operator
and if ¢= 2, then the HFHPWA operator reduces to the hesitant fuzzy Einstein
power weighted average (HFEPWA) operator [40]:

HFEPWAZ (h]_, hz, Yy hn)

( wi(1+7(ny)) wi(1+7(h) )
= (1 + Yi)m -1, (1 - yi)m I
= Uneharehanchn wi(147(hy)) w;(1+7(ny)) ) (15)

U-lel(l + Yi)z?zlwi(ur(hi)) + T, (1 - yi)z?zlwi(ur(hi))J
Especially, if w= (%%%)T then the HFHPWA operator reduces to the
hesitant fuzzy Hamacher power average (HFHPA) operator:

A+T'(h)) 'y hy )
(A +T'(hy))

HFHPA((hl, hz; Y hn) = ®Hin=1 <

(1 + (= Dy P
— [T (1 —y,)Zi=a (T ()
Y1€h1,y2€h, - yn€hn : M ' (16)

[T, + (= 1)yy)Zima @7k
1+77(hy))

R DI, (1 YT

=Uu

where T'(h;) =% ?:1,j¢isuP(hi: hj)'

In order to analyze the relationship between the HFHPWA operator and the
HFPWA operator, we introduce the following lemma.

Lemma 1. [32,33] Let x; >0, w;>0,i=1,2,-,n and Y-,w; =1 then
oY < 3wy x;, with equality if and only if x = x5 = == x,.

Theorem 4. Let h;(i = 1,2,-+-,n) be a collection of HFEs and w = (wy, wy, -+, w,)T
be the weight vector of h; such that w; € [0,1] and Y-, w; =1, then

HFHPWA;(hy, hy, -+, hy) < HFPWA(hy, hy, -+, hy).

Proof. For any vy; € h;(i = 1,2,--,n), by Lemma 1, we have

n wi(1+7(hy)) n wi(147(ny))
[ Ja+@- vy 04 g -] Ja - ypieva s
i=1 i=1

w;(1+ T(h))
= L3 wid+T ()

?:1 Wi(l + T(hi))

A+E-DW+E-D) 5 1-v=¢

13



Then,

P (1 + @ = Dy Z= 0D — [T (1 — y) P iCHrD
P (14 = Dy B0 4 (g — 1) [T, (1 — ) S MO0
Wi(1+T(hi))
I, (1 - yi)m

- o] o

ra+@- 1)Yi)2?:1wz(1+r(hi)) + -1, - yi)Z?zlwi(1+T(hi))

wi(1+T(hy)) (erted)
<1-— CIT=1 (1 — yy)2i=a™it® -1— 1_[(1 - yi)2?=1wi(1+r(hi))
< Z | ’
=1

which implies that @y _ <W> < @n <M

?:1 Wi(1+T(hi)) i=1 ?=1Wi(1+T(hi))

HFHPWA, (hy, hy, -+, hy) < HFPWA(hy, hy, -+, hyy). 0

). Thus we obtain

Theorem 4 shows that the values aggregated by the HFHPWA operator are not
larger than those obtained by the HFPWA operator. That is to say, the HFHPWA
operator reflects the decision maker's pessimistic attitude than the HFPWA
operator in aggregation process. Furthermore, based on Theorem 3, we have
the properties of the HFHPWA operator as follows.

Theoremb. Let h;(i = 1,2,:--,n) be a collection of HFEs and w = (wy, wy, -+, wy)T
be the weight vector of h; such that w; € [0,1] and Y-, w; = 1, then we have
the followings:

(1) Boundedness: If h~ = min{y;|y; € h;} and h* = max{y;|y; € h;}, then
h= < HFHPWA(hy, hy, -+, hy) < h*.
(2) Monotonicity: Let hj(i =1,2,:--,n) be a collection of HFEs, if w = (wy,w,,
~+,wy)T is also the weight vector of h{, and y; <vy;’ for any h; and
h; (i=12,---,n), then
HFHPWA(hy, hy, -+, hy) < HFHPWA (RS, h), -, hy).

Proof. (1) Let f(x) =2% x € [0,1), then f'(x) = (1_1)2 >0, thus f(x) is an

increasing function. Since h~™ <vy; < h* for all i, then f(h7) < f(y)) < f(hY), ie.,

1+({-1)h~ < 1+(Q-1)y; < 14+(¢-1)n*
1-h~ 1-vy; 1-ht
h; satisfying w; € [0,1] and Y, w; =1, then for all i, we have

. Since w = (wy,wy,+,w,)T is the weight vector of

14



wi(147(;)) wi(14T(n;)) wi(147(hy))

(1 + (- 1)h‘>ZF=1Wi(1+T(hi)) < (1 + (- 1)yi>2?=1Wi(1+T(hi)) < (1 + (- 1)h+>2?=1Wi(1+T(hi))

1-h 1-v, 1-ht
wi(1+7(ry)) _wi(7(h) _wi(1(m)
th™ )z?=1wi(1+r(hi)) 1+ (@ — Dy, \TE, vt (ht \TE,wiarT(h)
1 <|——— <|1
4:»( T =\ 1oy, =\It1ow
wi(1+T(hi))

)E?:1 wi(+T(hg))

= ﬁ(l + ¢
L 1—h-

, wi(147(ny)) n wi1+7(hy)
- 1—[ (1 + (- 1)yi>2?:1wi(1+T(hi)) < 1—[ (1 N tht )E?zlwi(HT(hi))
< - = _n+
i=1 1=vi i=1 toh
G (L Qo Dy g
— Yi i=1 Wi 1+ i
o1 < — =1
i=
Ch™ T+ Q-1 E"Wi(lf(’;i()lz » ¢h*
= Y i=1 Wi 1+ i
i=1
1 1 o
< L+ tht = wi(1+7(h;)) ~ 7+ K<
1—-h+ ?:1 (1+(1(_—y1i)Yi)E?=1wi(1+T(hi)) + (( _ 1) 1—h-
wy(147(n;))
1-ht (1 — ;)R W@ T () 1-h"
o < <
wi(1+7 () wi(1+7(1y)) ¢
1+ @ = DY)TE D 4 (= 1) T, (1 — y) T
Wi(1+T(hi))
Sy (1 — yp) s i)
_ht —n
©1-h"< wi( 147 (1) wi(1+7(hy)) si-h
a1+ @ = DyHa 0D 4 Q= DT, (1 — yy) Mo i
Wi(1+T(hi))
n . .
©Sh <1- ¢l (1 - Yi)zi:lwl(lw(hl)) +
w;(1+T(n;)) wi(1+7(h;))
(1 + (@ 1)y, B Wi+ i) 4 (7 — 1) (- V)P Wi ()
nwi(1+T(hi)) nWi(“T("i))
oh < (1 + @ Dy )M 0D — I, (1 - y) @D
= w;(1+7(ny)) wi(147(r)) T

a(1+ (@ = Dy H= @10 4 (€= DT, (1 = y) Mm@ TD
Thus, we have h™ < HFHPWA(hy, hy, -+, hy,) < h*.

(2) Let f(x) = 1+(1<_—;)x’ x € [0,1), then by (1), f(x) is an increasing funcntion. If
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for all h; and hi, y; <vy; then 1+§<_—;)w SHf__yl{)yi. For convenience, let t; =
M , then we have
izlwi(1+T(hi))
<1+@—1inf<(1+@—1w§“
1-v; B 1-v;
n t: n t:
1+@—Dy; \* 1+ @—Dy;\"
@I]&_E_)ﬁ) +“‘”STK—J£fBﬂ -1
L 1-vy; L 1-v;
i=1 =1
1 1

>
1+@-1y; \% B 1+(-1y]\ "
LS 6D I (M) q-n

1-y; 1-
¢l (1 — Y
=11+ @ — Dyt + (@— DI, (1 -y
> ¢l (1 — yg)ti
TS+ @@= Dyl + (@@= DI, A =—vyDh
_ SMEE(E — Yt
i (+ @@= Dyt +C— DI, -yl
/S ¢TIy (1 v
7 =1 (1 + €= Dyt + €=, (1 —yph
L1+ @ - Dydb — [T, (1 —vy)"
(T + @ =Dyt + @@= DL, (A — vyt
=@+ @@= DyDb =TI, (@ -y~
T+ @Dyt + @@= DI, —yDh

Thus, by Theorem 3 HFHPWA¢(hy, hy, -, hy) < HFHPWA(h{, hy, -+, hy). O

o1

Based on the HFHWG operator [12] and PG operator, we develop the hesitant
fuzzy Hamacher power weighted geometric operator as follows.

Definition 6. Let h;(i = 1,2,---,n) be a collection of HFEs and w = (wy, Wy, =+, w;)T
be the weight vector of h;(i =1,2,-:-,n) such that w; € [0,1] and Y, w; =1. A
hesitant fuzzy Hamacher power weighted geometric (HFHPWG) operator is a
function H™ - H such that

w;(1+7(ny))

A NTTVTY)
HFHPWG;(hl, hy, -+, hy) = ®Hi"=1 hy BT wi(+T(hy) ) (17)

where parameter { >0, T(h;) = X7, j; w;Sup(h;, h;) and Sup(h;, h;) is the support
for h; from h;.
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Theorem 6. Let h;(i = 1,2,---,n) be a collection of HFEs and w = (wy, wy, -+, wy,)T
be the weight vector of h;(i =1,2,---,n) such that w; € [0,1] and Y-, w; =1,
then the aggregated value by HFHPWG operator is also a HFE, and

HFHPWG((hl, hz; t hn)

¢ ITi () 700

e _wi1(hy) : (18)

LA+ @-Da- yi))2?=1wi(1+T(hi))
wi(1+7(ny))

+(@ = DT, () Hm T

=Uu

Proof. Similar to the proof of Theorem 3, Eq. (18) can be proved by mathematical

induction on n. O

Remark 2. (1) If Sup(hi,hj) =k, forall i #j, then
HFHPGy(hy, by, -+, b)) = @y (™M) (19)

which indicates that when all supports are the same, the HFHPWG operator
reduces to the hesitant fuzzy Hamacher weighted geometric (HFHWG) operator
[12]. Especially, if Sup(hi,hj) =0 for all i # j, then there is no support in the
aggregation process, and in this case, the HFHPWG operator reduces to the
HFHWG operator [12].

(2) If T=1, then the HFHPWG operator reduces to the hesitant fuzzy power
weighted geometric (HFPWGQG) operator:

n Wi(1+T(hi))
HFPWG, (1, ) = Uy, ehssome ]| | 0FF0H 700 (20)

i=1

and if = 2, then the HFHPWG operator reduces to the hesitant fuzzy Einstein
power weighted geometric (HFEPWG) operator [40]:

HFEPWG, (hy, hy,++, hy)

Wi(1+T(hi))
2[Ti, (v 5T
V1€h1,¥2€R2, - Yn€hn Wi(l"'T(hi)) Wi(1+T(hi)) ! (21)

U_[?=1(2 - yi)z?=1wi(1+r(hi)) + H?=1(Yi)2?=1wi(1+T(hi)))

=uU

Especially, if w= (%%%)T then the HFHPWG operator reduces to the
hesitant fuzzy Hamacher power geometric (HFHPG) operator:

17



A (1+71(ny))
HFHPGq(hy, by, -+, hy) = @y | by B0

¢TI (vi )2”1<1+Tf(h,>)
B () [ 22)
nL(LH Q- D — )R D)
+(Q— DT, ()= 1<1+Tf(nl>>

where T'(h;) = =¥}y ;2 Sup(hi h)).
Theorem 7. Let h;(i = 1,2,---,n) be a collection of HFEs and w = (wy, wy, -, w,)T

be the weight vector of h; such that w; € [0,1] and Y-, w; =1, then
HFHPWG((hl, hz, LW hn) 2 HFPWG(hl, hz, e ) hn)

Proof. For any vy; € h;(i = 1,2,--,n), by Lemma 1, we have

n Wl(1+T(hl)) 1(1+T(ht))
[ [a+@-Da=y)T@ oD + g - 1) ]_[(y Oy
i=1

= = i= 1W1(1 +T(h‘))

1+T(h,
+((_1)Zzwl( +T(h)) .

(1+@=-DA-¥)

wi L+ TR "
Then,
(1+T(hi))
ZH 1(Y )El L wi(+T(h;))
(1+T(hl)) wl(1+T(hi))
P (14 = 1D(1 = )T T 4 (7 — 1) [T () S 0
n w;(1+7(ny))

(yi)2?=1wi(1+T(hi))’
i=1
. wi 1+T(hi)) Wi(l"'T(hi))
which implies that ®ur, h; I wia+T(h) | > M, | b Zitawi@+T(h) | That is,

HFHPWG; (hy, hy, -+, hy) = HEPWG(hy, hy, -+, hy). O

18



Theorem 7 shows that the values aggregated by the HFHPWG operator are not
smaller than those obtained by the HFPWG operator. That is to say, the
HFHPWG operator reflects the decision maker’s more optimisitc attitude than
the HFPWG operator in aggregation process. Furthermore, similar to Theorem
3, we have the properties of the HFHPWG operator as follows.

Theorem 8. Let h;(i = 1,2,---,n) be a collection of HFEs and w = (wy, wy, =+, wy,)T
be the weight vector of h; such that w; € [0,1] and >, w; =1, then we have
followings:

(1) Boundedness: If h~ = min{y;|y; € h;} and h* = max{y,|y; € h;}, then
h™ < HFHPWG;(hy, hy, -+, hy) < h*.
(2) Monotonicity: Let hj(i = 1,2,---,n) be a collection of HFEs, if w = (w, w,,
«+,wy)T is also the weight vector of hj, and y; <y; for any h; and
hi(i =1,2,---,n), then
HFHPWG, (hy, By, -+, hy) < HFHPWG, (hy, hj, -+, B)).

Proof. (1) Let g(x) = w x € (0,1], then g'(x) = ;—2( <0, thus g(x) is a
decreasing furlction. Since h- <y; <h?* {or all i, then g(h™) = g(y;) = g(h"),
LHE-DA-RY) o 1 EDAY) - SEDARD Gl s 4 s e wh)T s the

v nt Yi y h™

weight vector of h; satisfying w; € [0,1] and X7, w; = 1, then for all i, let t; =
Wi(1+T(hi))

T awi(+T(h))

(1 + QDL h*))“ h <1 + @G- —yi))“' g (1 +@-Da —h-))“‘

we have

% Yi h-
n 1+(<—1)(1—h+) t;
[ [
T(1+@-DA=y)\" _TT(1+@-DA-h)\"
SH( Yi ) Si=1< h- )
/1 -1 -vy; ti
@hé—(z—nsl_[( 6o y)) B
=1+ - 1)(1 - ; ti
@%SD( @ Yi)( Y)) +(Z—1)Shi_
h~ 1 -
(=14 ? = n 1+(Q-1)(1-vy) t; < ?
L () 4@
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h~ Tyt h*
S —< < —
¢TI, A+@-DA -y + @— DI, G — ¢
o O (v <nt

<

[, A+ @C-DA -y +@C— DI, (b
Thus, we have h™ < HFHPWG¢(hy, hy, -, hy,) < h*.

(2) Let g(x) = W x € (0,1], then by (1), g(x) is a decreasing function.

ey ) 5 1Dy For convenience, let
> : . ,
Yi Yi

Then for all i, y; <vy;, we have

£ = Wi(1+T(hi))
i

="~ then h
S wi AT (h) then we have

<1+@—1x1—wv“>(1+@—1x1—wv“
Yi B Yi

1+ C-DA-v)\T T/ 1+ Q- DA -v)\"
~[[(5) =)

i=1 i=1

1+ Q-1 —y)\"
@[I( 5 ) +(@-1)

i=1
= (1+ @ -@L=79\"
21—[< + (@ - 1)( YJ) L @-1)

i=1 Vi
1 1
1+@-D(A-y)\ = 1+@-1(1-y)\ "
(B0 4 gy, (BEDAD) gy
CIl= (v
1+ C—-DA -y +@C— DI ()b
< ZH?:1(Y§)“
T A+ @-DA -y + @@= DI, G
Thus, by Theorem 6 HFHPWG;(hl, hy, -, hy) < HFHPWG;(h;,h’Z,m,h;l). O

Theorem 9. Let h;(i =1,2,---,n) be a collection of HFEs and w = (wy, wy, =+, wy,)T
be the weight vector of h; such that w; € [0,1] and Y-, w; =1, then we have

(1) HFHPWA (RS, hS, -+, hS) = (HFHPWG¢(hy, hy, -+, hy))S
(2) HFHPWG(hS, hS, -+, hS) = (HFHPWA(hy, hy, -+, hy))C.

Proof. Since (2) is similar (1), we only prove (1).
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HFHPWA, (hS, hS, -+, hS)
m (14 (@ = 1) (1 — yy)) R Wi+ T
4 — [T, (y) P Wi 70D
Y1€hy1,¥2€h2, - Yn€hn Wi(HT(hi))

n (14 Q= 1)1 = yy))Ei= Wi+ T
N +(Q = 1) [T, (yp) Fi=a Wi+ T ()

= U

wi(1+7(R)))
ZH?:l(Yi)m
Y1€h1,y2€h, - Yn€hn M
n (14 @@= DL — yy))EE Wi ()
wi(1+T(hy))

+@ = DT, (y)Hm i1

(HFHPWG¢(hy, by, -+, hy))C. =

=u

In what follows, we define the generalized hesitant fuzzy Hamacher power
weighted average (GHFHPWA) operator and the generalized hesitant fuzzy
Hamacher power weighted geometric (GHFHPWG) operator.

Definition 7. Let h;(i = 1,2,---,n) be a collection of HFEs, w = (wy,wy, -, w,)T
be the weight vector of h;(i = 1,2,---,n) such that w; € [0,1] and Y}, w; = 1. For
a parameter A> 0, a generalized hesitant fuzzy Hamacher power weighted
average (GHFHPWA) operator is a function H* —» H such that

L K By

GHFHPWA;(h{, hy,-+,h,) = | ©yn <
tha e g fie Y wi(1+T(R)

where parameter >0, T(h;) = X1 j- w;jSup(h;, hj) and Sup(h;, k;) is the support
for h; from h;.

Theorem 10. Let h;(i = 1,2,---,n) be a collection of HFEs, w = (wy,wy, -+, w,)T

be the weight vector of h;(i =1,2,---,n) such that w; € [0,1] and Y-, w; =1,
then the aggregated value by GHFHPWA operator is also a HFE, and
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GHFHPWA¢ (hy, hy, -+, hy)

1
Wi(1+T(hi)) Wi(1+T(hi)) A
¢\ Iizs aiz?zlwi(lw(hi)) | biz?zlw"(HT(hi))

=Uu

V1€R1,Y2€h2, - Yn€hn 15 -5, (24—)
wi(1+7(1;)) w;(1+7(hy))
H?:l aiZ?:1wi(1+T(hi)) + ((2 - 1) H?:l biz?zlwi(HT(hi))

>

b

nwi(1+T(hi)) nwi(1+T(hi))
+(< _ 1) H?:l ai2i=1wi(1+r(hi)) _ H?:l bi2i=1wi(1+T(hi))

where a; =1+ Q- DA -y, D+ (@ - Dy and b; = 1+ @ — DA —y)* — v

Proof. We first use the mathematical induction on n to prove

Wi(1+T(hi)) Wi(1+T(hi))
Wl-(l + T(hi)) - hi/\HA n, aiz?zlwi(ur(hi)) BT, biz{;lwi(ur(hi)) .
®Hin:1 ( ?=1 Wl(l + T(hl)) ) N Wi(1+T(hi)) ( )
n T Wi
= l

Wi(1+T(hi))
+(§ = D [Ty b1

=1 sinea Wil TR))
(1) When n =1, since n wi(1+T(hy)
i - . .A A
o, (wl(}l +T(hy)) -y hH ) = b
=1\ 3, wi(1+T(hy)

=1, we have

- U { ZYlA }
MM (14 (@ = DA —y))r + (@ — Dy,

- U { a, — by }
— o le + Q- DbyJ

Thus, Eq. (25) holds for n = 1.
(2) Suppose that Eq. (25) holds for n =k, that is

wi(1+T(h)) -y b1
! ( i wi(1+T(hy) )

k
H
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{ ka Zl 1 ,(1+T(hl)> T, b; sk, L(1+T(hl)) }
= U
et

€hq,y2€hy, " YKEhR
V1€, Y2€N2, YV EENK 1(1+T(h1)

1) Hk b; zK L wia+T(h;)

WL(1+T(hL))
ka 1 Qi Zl 1 Wi+T(hg)) +(@-

i

then, when n = k + 1, by the operational laws in Definition 4, we have

@ (Wl(l + T(hl)) ‘H hiAH)\>
HE TS w (1 + T (hy))

o (Wz(l + T(hi)) ‘H hiAH}‘) Wk+1(1 + T(hk+1)) H hk+1
Hizy Ty, (1 +T(hy)) H w1+ T ()

( Wi(1+T(hi)) Wi(1+T(hi)) \
kg wia () _ Tk p B wia ()
= Uyienyyaeny, yieny w;(1+7(ny))
| kw(uim)) + (@ = DI, b T () |
(e, ooy )
{ W1 (14T (hes1)) W1 (14T(Ryey1)) ‘\
g ST Wi T S wi T (A)
k+1 k+1
Uritr€hiers W1 1+T(hk+1)) Wk+1(1+T(hk+1))
i wia+T(ny) 2 wia+T(hy)
tak+1 + @ - Db )
( Wi(1+T(hi)) Wi(1+T(hi)) \
ket g BRI wiGT(h) _ [TkHL p S wia+T(h))
= Uyieh1v2€hp, - yk€hi Yics1€hiess wi(1+7(R;)) ’
ﬁ DT p SRy a+T(hy))
Kk+1 zk“ a+r(hy) T @ = DIy b=

i=1

i.e., Eq. (25) holds for n =k + 1. Thus, Eq. (25) holds for all n.

wi(1+7(n;)) wi(1+7(hy))
. n o N wiAT(h) _qn ) XL, wi+T(hy)
For convenience, let B= Mz a7 iz b and t; =
Wi(1+T(hi)) Wi(1+T(hi))

M, at=a MO D) gy p i w0+
Wi(1+T(hi))
?:1 w;(1+T(hy))

. By the operational laws in Definition 4, we have
1
A MHY
GHEHPWAG (hy, by, =, o) = (@, (1 ')

B
1+ @ - D - B + @ — DA

= Uy ehyys€hs - nehn
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=Uu

= Uy ehyys€hsnehn

V1€R1.Y2€R, -~ YnERn

1
, qo\s
(( M7y @i 1M1 byt )h

MY, aibi+@-1 M, bt

—
— _ H1i1=1aiti_n7il=1biti )}t
<1 tE-D (1 My @t i+ @-D I, byt

1
+@- 1) (e )

t. .
i+ @G- by

|

Z(H?ﬂ a;'i = [T, biti)X ¥
(I @it + (@2 — DITL, b |
+@ = DTy @i — T, b))

which completes the proof of the theorem.

O

Remark 3. (1) If A=1, then a; =¢(1+ (C—1)y;) and b; =71 —vy;), and the

have

GHFHPWA,(hy, hy, -+, hy,)

= U]/1 €hy,¥2€hy, - Yn€h

= U]/1 €hy,Y2€hy, - Yn€hn

Wi(1+T(hi)) Wi(1+T(hi))
¢l T, ai2?=1wi(1+T(hi)) — I, bi2?=1wi(1+r(hi))
7 ) w;(1+7(ny)) w;(1+7(n;))
=t = ai2?=1wz(1+r(hi)) +(@-DIT, bizl”:lwi(ur(hi))
wi(1+7(hy)) wi(1+7(R;))

+(C-1) n aiZ’i‘zlwi(HT(hi)) -, biz’i‘zlwi(ur(hi))

w;(1+7(ny)) wi(1+7(hy))
Hltlzl aiZlnzlwi(HT(hi)) _ H?:l bi2?=1wi(1+T(hi))
wi(1+7(n;))

wi(1+7(ny))
e, Btz i) (7 — 1) e, b, Xtz wi+T (i) J
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GHFHPWA operator reduces to the HFHPWA operator. In fact, by Eq. (24), we




n (1 + (@ — Dy;) iz i+ (i)
Wi(1+T(hi))
[T - yi)m
ne i) ’
=1+ - 1)y;)Zi=a Wi+ T(h)
F(@ = 1) [T, (1 — y;)Ri=a Wi 70D

= U

= HFHPWA (hy, hy, -+, hy).
(2) If Sup(hy, hj) =k, for all i #j, then

1
AHY
GHFHPWA¢(hy, hy, -+, hy) = (@H?ﬂ (w; u h/‘H")) * (26)

and thus the HFHPWA operator reduces to the generalized hesitant fuzzy
Hamacher weighted average (GHFHWA) operator [12]. Especially, if
Sup(hi, hj) =0 for all i # j, then there is no support in the aggregation process,
and thus it is clear that the GHFHPWA operator reduces to the GHFHWA
operator [12].

(3) If ¢ =1, then the GHFHPWA operator reduces to the generalized hesitant
fuzzy power weighted average (GHFPWA) operator:

GHFPWA, (hy, hy, -, hy)

1

n w;(1+T(h;)) s
— MNI . w;(1+T(h;
= Uy ehy ya€ha, - ynehn 1= 1_[(1 —Yi )Zl_lwl( ( l))>

i=1

(27)

and if ¢ =2, then the GHFHPWA operator reduces to the generalized hesitant
fuzzy Einstein power weighted average (GHFEPWA) operator [40]:

GHFEPWA, (hy, hy, -+, hy)
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>

Wi(1+T(hi)) Wi(1+T(hi))
2 n aiz?zlwi(ur(hi)) -, biz?zlwi(ur(hi))

= UhEhLVZ‘5’12:"'11’11‘5hn< - = (28)
i) wi(147(1:))
H?=1 aiZ?:1 w;(1+T(h;)) +3 H?=1 biz?zlwi(HT(hi))

>

>R

+| M2, ai2?=1wi(1+r(hi)) -, bi2?=1wi(1+r(ni)>

where a; = (2 — yi)7‘ + 3yix, b, =2 - yi)7‘ - Yi}‘-

Especially, if w= (%,%,---,%)T, then the GHFHPWA operator reduces to the
generalized hesitant fuzzy Hamacher power average (GHFHPA) operator:

/\Hl
(1+T'(h) u hi“m)

GHFHPA{(hy, hy, -+, hy) = | @y '
¢(hy, hay s h) Hl=1< L (1 +T'(hy)

1
(1+T1(h;)) (1+71(ry)) \ X
7| T, @ Z=a @+ — [ pZima T

=u

Y1€Rh1,¥2€h2,Yn€hn (29)

[

(1+11(ny)) (1+11(1y)) T
H?:1 aiz?ﬂ(“T'(hi)) + (Zz t 1) H7i1=1 bi2?=1(1+Tr(hi))

1
wi(1+7(1y)) wi(1+7(ny)) \*
n > w;a+T(hi) n S w;a+T(hy)
+(@— 1| T2 ai==2" P — [z by =™t :

where a; = (1+ @ = DA -y + @ - Dy, b =1+ @G- DA -y)*— v and
T'(h;) =% ?:1,j¢isup(hi' hj)'

Definition 8. Let h;(i = 1,2,---,n) be a collection of HFEs w = (wy, wy, -+, wy,)T
be the weight vector of h;(i =1,2,:--,n) such that w; € [0,1] and Y7, w; = 1.
For A > 0, a generalized hesitant fuzzy Hamacher power weighted geometric
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(GHFHPWG) operator is a function H® - H such that

wi(1+T(hi))

AHTT i
‘H ®H?1 (}\ ‘H hi ) H2i=lwi(1+T(hi)) , (30)

=1

>

GHFHPWG¢(hy, hy, -+, hy) =

where >0, T(h;) = Xj_1x wjSup(h; h;) and Sup(h;, k) is the support for h;
from h;.

Theorem 11. Let h;(i = 1,2,---,n) be a collection of HFEs w = (wy,wy, -+, w,)T
be the weight vector of h;(i =1,2,---,n) such that w; € [0,1] and Y-, w; =1,
then the aggregated value by GHFHPWG operator is also a HFE, and

GHFHPWGq (hy, hy, -+, hy)

14
| J ci2?=1wi(1+T(hi)) + (@ - DI, di2?=1wi(1+r(hi))
1
— [ T, ¢ Zi=a i) _ [ g Zima Wi+ ()
= Uy ehyy€hs ynehn | = l—_ ,(31)
?=1 Ci2?=1wi(1+T(hi)) + (@@ -1) H?:l di2?=1wi(1+r(hi))
1
+@—-D | MY, ¢ Zm i) _ T g Ty wiGH ()

where ¢; = (1+ @ - Dy)* + (@ - DA —y)* and d; = 1+ G- Dy)* — Q- v

Proof. We first use the mathematical induction on n to prove

A wi(1+7(R;))
H
®un | Auhy) I wi+T(hy)

wi(1+7(R;))
{7, d;Zi=a Wi T ()

= UY1Eh1-7/2€h2.""Yn€hnI wi(1+7(ny)) wy(147(y)) l : (32)

-, CiZ{l:lwi(uT(hi)) +@C- DY, diZ?zlwi(1+T(hi))

(1) When n =1, then we have
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Wi(1+T(hi))

AR T )y
®Hik=1 (Ag hy) 2= 0D ) =3 by

{ 1+ (( - 1)Y1)}\ -(1- Yl))\ }
M1+ @ - Dy + @ — DA —yp)?

= Upen, {cl-l-(((d—il)dl}

Thus, Eq. (32) holds for n=1.
(2) Suppose that Eq. (32) holds for n =k, that is

Wi(1+T(hi))

AH 7
K . h:
®ch:1 Ay hy)  Zima Wi+ T

1(1+T(’H))
(Hl— dEl L wi@+T(hy)
= Unchureheieh | 70) (1)

U‘[ .G 3K wia+T(hy)) +(@C—1) Hk d; 2K wia+T(hy)
then, when n =k + 1, by the operational laws in Definition 4, we have

wl(1+T(h1))

® it | Ao By T

wi(1+47(ny)) Wi (14T (g 1))

=Quk | Ay h) " wia () ®ul| Ay hk+1)AHZ{'(=+11Wi(1+T(hi))
i=1

-

WL(1+T(’1£)) \
LTI, d i wiar(r)
Y1€h1.¥2€R2, Y kERK Wi(1+T(hi)) Wi(1+T(h'i))

Hi'(—1 Cizﬁllwi(ur(hi)) +@-1 Hi‘(—l dizfgllwiuw(hi)))

= U

Wk+1(1+T(hk+1))
d s w1 ()
® V] Z k+1
H ¥Yik+1€hp+1 Wk+1(1+T(hk+1)) Wk+1(1+T(hk+1))
S L wia+T(hy)) st wia+T ()
k+1 + (- 1)dk+1
wi(1+7(ny))
g, K wi T (hy)
= Uy enyy2€hs - yi€hiyicer Ehien wi(1+7(ny)) wi(1+7(n;)) '
[T Ciz{-‘“ wi(+T(h)) 4 Q- 1) [T d,% Mlw l(1+T(hL))J
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i.e., Eq. (32) holds for n = k+ 1. Thus, Eq. (32) holds for all n.

Wi(1+T(hi))
n o B wi(+T(hy)
Now, for convenience, let § = Oy 4721 7 : and t;: =
m, o Wi TRy g m, 4 2= Wi+ T ()
M . By the operational laws in Definition 4, we have
Zizlwi(1+T(hi))
1 . Wi(1+T(hi))
GHFHPWG((hl,hZ, v hy) = X ®Hin=1 Ay hy) T wi(1+T(hy))
1 1
A+@-Dr— (1 -6
= Uyien, vo€hy,ynen 1 1
AI+@-DO*+C— 1D - )
¢ 1
—— (H?=1di i A
(1 V% P et (C-D Y, dt
= =i} ZH?=1diti %
. (i g, e
— “V1€hyy2€hy, - yn€hy 1

(1 Ty L )X

MY, bt (@~ R, d;t

h N (n‘{;lditi %
B (1 n?=1citi+(l—1)l'[?=1diti))

1
(TR + 1) IT7-, d:"0)7
1
—(y 't — MM di"
= Uyien, v2€hy,ynehn B &
(TP +4(C2 — 1) T2, d;")F '

+@ = DA, ¢t — T, dﬁ)%J

which completes the proof of the theorem:. ]

Remark 4. (1) If A=1, then ¢; =71+ - 1)1 —vy;)) and d; =Ty;, and the
GHFHPWG operator reduces to the HFHPWG operator. In fact, by Eq. (31), we
have

GHFHPWG¢ (hy, hy, -+, hy)
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[ Wi(1+T(hi)) Wi(“'T(hi)) 'l
[Ty @700 4 2 — 1) [T, 4 a7
Wi(1+T(hi)) Wi(1+T(hi))
-, CL.Z?=1 wi(1+T(hy)) _ -, diz?=1 w;(1+T(hy))

= U

V1€ Y2€h2, - Yn€hn Wl(1+T(hI.)) 1(1+T(h1))

M, c S wit+T(h) (@ - 1D, d; I wia+T(h)
WL(1+T(hl)) WL(1+T(hl))

]

|

_nlorg) i) |

+@ = | Ty e T — [T g Hma i r J

——————]

Wi(l"'T(hi))
U, d 2= Wit T ()

= Uyiehi ya€hpynehn w;(1+7(ny))
wi(147(ny)) n WM—TL@)) |
[1i- 1 Gi ZiLq wi(+T(hy)) +@-1 Hi:l diFi=a™ l }

i=

(1+T(hl))
LI () T )
By -yl ) >
n (14 @ = 1)1 — yy)Eea Wi )

wi(1+7(hy))
+(§ = DT (y) e im0

HFHPWG, (hy, hy, -+, ).
(2) If Sup(hy, kj) =k, for all i #j, then

1
GHFHPWG (s, ha, -+ i) = =1y (@, (- B (33)

and thus the HFHPWG operator reduces to the generalized hesitant fuzzy
Hamacher weighted geometric (GHFHWG) operator [12]. Especially, if
Sup(hi, h]-) =0 for all i #j, then the GHFHPWG operator also reduces to the
GHFHWG operator [12].

(3) If 7=1, then the GHFHPWG operator reduces to the generalized hesitant
fuzzy power weighted geometric (GHFPWG) operator:

1

wi(1+T(R;)) A
GHFPWG, (hq, hy, -+, hy) = Uy, chyya€ha - ynchn <1_[(Y A)ZL 1 1(1+T(h—L))> .(34)

i=1

and if ¢ =2, then the GHFHPWG operator reduces to the generalized hesitant
fuzzy Einstein power weighted geometric (GHFEPWG) operator [40]:
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GHFEPWG, (hy, hy, -+, hy)

= Uy enyy2€h0 - yn€hn \ T

where ¢; = (1 +y)*+30 =y di= A +y) = @A =y)M

14
Wi(1+T(hi)) Wi(1+T(hi)) x
1—[?:1 Ci2?=1wi(1+T(hi)) +3 H?=1 diz'il=1wi(1+r(hi))
1
w;(1+7(ny)) wi(1+7(hy)) \*
_ :1:1 Ci2?=1wi(1+T(hi)) _ H?=1 diz'il=1wi(1+r(hi))
— ,(35)
w;(1+7(hy)) wi(1+1(n)) \*
H?:]_ Ci2?=1wi(1+T(hi)) +3 H?:l di2?=1wi(1+T(hi))
e
+@C-1 | ~, Ciz?zlwi(ur(hi)) -, diz'il:lwi(ur(hi))

Especially, if w= (%,%,m,%)T, then the GHFHPWA operator reduces to the
generalized hesitant fuzzy Hamacher power average (GHFHPA) operator:

GHFHPA¢(hy, hy, -+, hy) =

> =

= U}’l €hy,¥2€hz, - Yn€hn

(1+71(ny))

AHST Tt
‘H ®le1=1 (7\'}1 hi) B, ()

(1+T’(hi))
[T, ¢ 2=+ ()

(1+Tl(hi))

(1+T’(hi))
] Ci2?=1(1+T'(hi))

(
(s+7(n)

k— [T &7 00

+(@ = DI, 450D

P

v

(1+T’(hi))

Ciz‘?=1(1+T’(hi))

(1+71(ny))

[T,

(1+77(ny))

n Ci2?=1(1+Tl(hi))

i=1
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+@-1 (1+Tr(hi))
-1, di2?=1(1+T’(hi))

1
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where ¢;= 1+ Q- Dy)*+ (@ -DA -y d; =1+ @C—Dy)*— (1A —v)* and
T/(h) = 25y Sup(h )

Theorem 12. Let h;(i = 1,2,---,n) be a collection of HFEs and w = (wy, wy, -+, w,)T
be the weight vector of h; such that w; € [0,1] and Y-, w; =1, then we have

(1) GHFHPWA(h$, hS, -+, hS) = (GHFHPWGq (hy, hy, -+, hy))S;
(2) GHFHPWGq(hS, S, -+, hS) = (GHFHPWA;(hy, hy, -+, hy))C.

Proof. Since (2) is similar (1), we only prove (1). For convenience, let t; =

wi(1+T(hy)) C3C ... 3C
ey o then GHFHPWAL (G, hS, -, hS).

3.2 Hesitant fuzzy Hamacher power ordered weighted
average operator and hesitant fuzzy Hamacher power
ordered weighted geometric operator

Motivated by the idea of the POWA operator [27], POWG operator [28] and
Hamacher operations, we define the hesitant fuzzy Hamacher power ordered
weighted average operator and hesitant fuzzy Hamacher power ordered
weighted geometric operator as follows.

Definition 8. Let h;(i =1,2,---,n) be a collection of HFEs. A hesitant fuzzy
Hamacher power ordered weighted average (HFHPOWA) operator is a function
H™ - H such that

HFHPOWA, (hy, hy, , h) = @ (i 4 hop) 37)

where parameter { >0, hy) is the ith largest HFE of h;(j =1,2,---,n), and
u;(i = 1,2,---,n) is a collection of weights such that

R R i n

. =

w=9 () -9 (F) & :ZVJU» TVZZVU(D :
j= i=

n
Vo = 1+ T(ho@), T(how) = Z Sup(ho(i) o) (38)
j=1j#i

where T(h,q)) denotes the support of ith largest HFE by all of the other HFEs,
Sup(hgi), he(jy) indicates the support of the ith largest HFE for the jth largest
HFE, and g:[0,1] - [0,1] is a basic unit-interval monotone (BUM) function
having the following properties: (1) g(0) = 0; (2) g(1) =1; and (3) g(x) = g(¥)
if x> y.
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Theorem 13. Let h;(i = 1,2,---,n) be a collection of HFEs, then the aggregated
value by HFHPOWA operator is also a HFE, and

HFHPOWA,(hy, hy, -+, hy)
( L1+ Q= Do) )
~ (1= Vo)™
(14 @ - Dye)™
+@ = DI (1= vor) ™

where w;(i = 1,2,-++,n) is a collection of weights satisfying the condition (38).

=u

, (39

Yo1)€ho1)Yo2)Eha(2): " Vo(n)€Ehom)

Proof. Similar to the proof of Theorem 3, Eq. (39) can be proved by
mathematical induction on n. O

Remark 5. (1) If g(x) = x, then the HFHPOWA reduces to the HFHPA operator.
In fact, by Eq. (39), we have

HFHPOWAG(hy, hy, -, hy) = @pn (Wi i hon)

. R; Ri_4

=®ur, \(9\7y) — 9y ) | 1 how
Vi

=z, (77w heto)

( 1+ T(hog) R (,))
ol

(1 +T(he))

1+ T (kg

LA +T(h)) "
= HFHPAZ(hl, hz, Fee, hn).

ie
i=1

(2) If Sup(h;,hj) =k, for all i # j, and g(x) =x, then
1
HFHPOWA (hy, hy, -, ) = @pn_ (E . hi>

which indicates that the HFHPOWA operator reduces to the hesitant fuzzy
Hamacher average (HFHA) operator [26]. Especially, if Sup(h;, h;) =0 for all

i#j, and g(x) =x, then u; = % i=1,2,--,n, and thus the HFHPOWA operator
also reduces to the HFHA operator [26].

(3) If ¢=1, then the HFHPOWA operator reduces to the hesitant fuzzy power
ordered weighted average (HFPOWA) operator [20]:
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HFPOWAl (hl’ hz, see hn) = @:l=1(ulho—(l))

n

— _ _ u;

- UYa'(l)eha'(l):Va'(Z)eha’(z)r"‘v]’o’(n)eho’(n) [1 1_[(1 fo(n)) L}'(40)
i=1

where u;(i =1,2,---,n) is a collection of weights satisfying the condition (38). If
{ =2, then the HFHPOWA operator reduces to the hesitant fuzzy Einstein power
ordered weighted average (HFEPOWA) operator [24]:

HFEPOWA, (hy, hy,*++, hy,)

?:1(1 + YU(n))ui - H?:l(l - YU(n))ui

~ retee e oy Tomeha {H:Lm o) + L0~ Vo)™ } b

where w;(i = 1,2,-++,n) is a collection of weights satisfying the condition (38).

Similar to Theorems 4 and 5, we have the properties of HFHPOWA operator
as follows.

Theorem 14. If h;(i = 1,2,---,n) is a collection of HFEs and w;(i =1,2,---,n) is
the collection of the weights which satisfies the condition (38), then

HFHPOWA (hy, hy, -+, hy) < HFPOWA(hy, by, hy)

Theorem 15. If h;(i = 1,2,:-,n) is a collection of HFEs and w;(i = 1,2,::-,n) is
the collection of the weights which satisfies the condition (38), then we have
the followings:

(1) Boundedness: If A~ = min{y;|y; € h;} and h* = max{y;|y; € h;}, then
h~ < HFHPOWA{(hy, hy, =+, h,) < h*.
(2) Monotonicity: Let hi(i = 1,2,---,n) be a collection of HFEs, if for any hea
and hy (i = 1,2,-,1), VYe@) < Yoq) then
HFHPOWA(hy, hy, "+, hy,) < HFHPWA(h}, hy, -+, hy).

Definition 9. Let h;(i =1,2,---,n) be a collection of HFEs. A hesitant fuzzy
Hamacher power ordered weighted geometric (HFHPOWG) operator is a
function H™ - H such that

HFHPOWG; (hy, hz, , hy) = @ (W1 ) (42)

a(n)

where parameter (>0, hy; is the ith largest HFE of h;(j = 1,2,---,n), and
u;(i = 1,2,--,n) is a collection of weights satisfying the condition (38).

Theorem 16. If h;(i = 1,2,-=-,n) is a collection of HFEs, then the aggregated
value by HFHPOWG operator is also a HFE, and
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HFHPOWG; (hy, hy, -+, hy)

|( }
Ol (Vo)™
—u __ (43)
Yo(1)€ho(1)Ya2)Eha(2) Yam)ENa(n) uj
[T, (1 +@-D(- Vcr(i)))
\ +@ = DT Fow)™ )

where hgq(; is the ith largest HFE of h;(j = 1,2,--,n) and w;(i = 1,2,--+,n) is the
collection of the weights satisfying the condition (38).

Proof. Similar to the proof of Theorem 3, Eq. (43) can be proved by
Mathematical induction on n. U]

Remark 6. (1) If g(x) = x, then the HFHPOWG reduce to the HFHPG operator.
In fact, by Eq. (42), we have

A
HFHPOWG((hl, hz:"':hn) 3 ®H h . )

i=1 \ a()

/\H< 1+T(ha'(i))
_ 2+ T(hg () )
=@z, | hoy

AH( n1+T(hi() ))
_ Yi—,(+T(h;))
= Oqz, (g~

= HFHPGZ(hl, hz, ey, th)'
(2) If Sup(h;, hj) =k, for all i #j, and g(x) = x, then

1
HFHPOWG (hy, hy, -+, hn) = ®pn (hi/\H;)

which indicates that the HFHPOWG operator reduces to the hesitant fuzzy
Hamacher geometric (HFHG) operator [26]. If Sup(h;, k) =0 for all i # j, and
g(x) = x, then the HFHPOWG operator also reduces to the HFHG operator [26].

(3) If =1, then the HFHPOWG operator (43) reduces to the hesitant fuzzy
power ordered weighted average (HFPOWG) operator [20]:

HFPOWGl (hlﬂ h2! Y hn) = ®?=1(h0'(i))ui
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n
— Ui
- UYcr(l)Eha‘(l)fyo‘(z)Eho‘(Z)'""yo'(n)Eho‘(n) [l | (YO‘(L)) ¢ }' (44)

i=1

where w;(i =1,2,---,n) is a collection of weights satisfying the condition (38). If
{ =2, then the HFHPOWG operator reduces to the hesitant fuzzy Einstein power
ordered weighted geometric (HFEPOWG) operator [24]:

HFEPOWG, (hq, hy, -+, hy)

_ 0 { 2T (Yo@)™ } 5)
= ho(1) Rg(2) h ; —(r
Yo(1)€ha(1)Yo(2)ENa(2) Y a(m)ERa(n) ?:1(2 _ Va(i))u‘ + H?:l(ya(i))u’

where w;(i = 1,2,-++,n) is a collection of weights satisfying the condition (38).
Similar to Theorems 7, 8 and 9, we have the properties of HFHPOWG operator
as follows.
Theorem 17. If h;(i = 1,2,---,n) is a collection of HFEs and w;(i = 1,2,---,n) is
the collection of the weights which satisfies the condition (38), then
HFHPOWG, (hy, hy, -+, hy) = HFPOWG(hy, hy, -+, ).
Theorem 18. If h;(i =1,2,---,n) is a collection of HFEs and w;(i = 1,2,---,n) is

the collection of the weights which satisfies the condition (38), then we have
the followings:

(1) Boundedness: If h~ = min{y;|y; € h;} and h* = max{y;|y; € h;}, then
h_ S HFHPOWG((hl, hz, "',hn) S h+.

(2) Monotonicity: Let hi(i =1,2,--,n) be a collection of HFEs, if for any hy
and hyy (i =1,2,--,n), Y@ < Ysq then

HFHPOWGq (hy, hy, -+, hy,) < HFHPOWG, (hy, by, -+, hy,).
Theorem 19. If h;(i = 1,2,---,n) is a collection of HFEs and w;(i = 1,2,---,n) is
the collection of the weights satisfying the condition (38), then we have
(1) HFHPOWA;(hS, RS, -+, h$) = (HFHPOWG¢ (hy, hy, -+, hy))S;
(2) HFHPOWG(hS, RS, -+, hS) = (HFHPOWA;(hy, hy, -+, hy))".
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4 An approach to multiple attribute decision
making based on hesitant fuzzy Hamacher
power aggregation operators

In this section, we use hesitant fuzzy Hamacher power aggregation operators
to develop an approach to multiple attribute decision making (MADM) with
hesitant fuzzy information.

Let X = {x;,x,,+-,x,} be a set of n alternatives and G ={g,,92 *,gm} be a
set of m attributes. Suppose the decision maker provides the evaluating values
that the alternatives x;(i =1,2,--,n) satisfy the attributes g;(j =1,2,---,m)
represented by the HFEs h;;(i=1,2,---,m; j=1,2,--,n). All these HFEs are
contained in the hesitant fuzzy decision matrix D = (h;;)mxn (see Table 1).

Table 1. Hesitant fuzzy decision matrix D

x1 xz cee xn
91 hyy hyz hin
92 hay hzz hzn
Im hml hmZ o hmn

The following steps can be used to solve the MADM problem under the
hesitant fuzzy environment, and obtain an optimal alternative:

step 1: Obtain the normalized hesitant fuzzy decision matrix. In general, the
attribute set G can be divided two subsets: G; and G, where G, and G, are
the set of benefit attributes and cost attributes, respectively. If all the attributes
are of the same type, then the evaluation values do not need normalization,
whereas if there are benefit attributes and cost attributes in MADM, in such
cases, we may transform the evaluation values of cost type into the evaluation
values of the benefit type by the following normalization formula:

h'ij' ]E Gl
ri] =

hi,  JEG

(46)

where hl-cj: Uy, jeh;; {1 -7y} is the complement of h;;. Then we obtain the
normalized hesitant fuzzy decision matrix H = (1;;)mxn (see Table 2).
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Table 2. Normalized hesitant fuzzy decision matrix H

xl xz e xn
91 11 T12 Tin
92 21 T22 T2n
Im Tm1 Tm2 Tmn

step 2: Calculate the supports
Sup(ryj,m;) =1—d(mpmeg), j=1,2,+,n, i,k=1,2,--,m (47)

which satisfy conditions (1)-(3) in Definition 5, Here we assume that d(1j, 1)

is the hesitant normalized Hamming distance between r;; and 7; given in Eq.
(10).

step 3: Calculate the weights of evaluating values. Calculate the support
T(r;;) of the HFE r; by the other HFEs n;(k = 1,2,---,m,and k # i):

m

T(ryj) = Z Sup(7ij, ;) (48)

k=T,k#i
and then calculate the weights p;;(i = 1,2,--,m) that are associated with HFEs
T'”(l = 1, 2, "',m):

(@ +T@y) _
Pij = m, L= 1,2, , m, (49)

where p;; 20, i=1,2,--,m, and X% p;; = 1.

step 4: Compute overall assessments of alternative. Utilize the HFHPWA
operator (Eq. (12)):

T)- = HFHPWAz(hl, hz, Tty hn)
ﬁ1(1 + (C— 1)Yij)pij — T2, (1 —y;)Pu
m (1 @ - Dyy)™ + Q- DI, A —vy)Py
or the HFHPWG operator (Eq. (18)):
r; = HFHPWGq (hy, hy, -+, hy)

=u } (50)

Y1j€T1jY2j€T 25 Ymj€ mj {

s s R e
Y1j€T1jY2j€T2j " Ymj€Tmj lrzl(l + (- 1)(1 _ Yij))Pij +@-1) H?i1(Yij)pij )

to aggregate all the evaluating values 7; (i =1,2,---,m) of the jth column and
get the overall rating value 7; corresponding to the alternative x;(j =1,2,---,n).

=u
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step 5: Rank the order of all alternatives. Utilize the method in Definition 3 to
rank the overall rating values 7r(j=1,2,-+,n), rank all the alternatives
x;(j =1,2,--,n) in accordance with r(j =1,2,---,n) in descending order, and

finally select the most desirable alternative(s) with the largest overall evaluation
value.

step 6: End.
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