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1. Introduction

Let X denote the class of functions of the form

1 ~—
f(z) = ~ + Z ag?
k=0
which are analytic in the punctured open unit disk D ={z € C: 0 < |z| < 1}. For
analytic functions g and h with ¢g(0) = h(0), ¢ is said to be subordinate to h if there
exists an analytic function w such that w(0) = 0, |w(z)| < 1 in U = DU {0}, and
f(2) = g(w(z)). We denote this sunordination by g < h or g(z) < h(z) (z € U). In
particular, if the functionf is univalent in U, the above subordination is equivalent
to g(0) = h(0) and ¢g(U) C h(U) (see, e.g., Miller and Mocanu [9]).

Now we define the function ¢(a, c; z) by

(a)k—i-l k
+ 2" (a>0; ¢#£0,—1,—-2,-~+5 z D), 1.1
EO W ( # ) (1.1)

| =

#(a,c;2) =

o]
k=

where (\)g is the'Pochhammer symbol (or the shifted factorial) defined by

1 k=0
(Mg =
AA+1) 4 k—1) ifkeN={1,2--}.

Corresponding to the function ¢(a,c; z), we introduce a linear operator L(a, )

which is defined by means of the following Hadamard product (or convolution):

L(a, ) f(z) = ¢la,c;2) = f(2) (f € ), (1.2)

It is easily verified from (1.1) and (1.2) that

z(L(a,c)f(2)) =al(a+1,¢)f(2) — (a+ 1)L(a,c)f(z). (1.3)



The operator L(a,c) was introduced and studied by Liu and Srivastava [7] re-
cently. This operator L(a,c) was motivated essentially by the familiar Carson-
Shaffer operator L(a,c) which has been used widely on the space of analytic and
univalent functions in U(see, for details [3]; see also [15]).

Let AV be the class of analytic functions h with h(0) = 1, which are convex and
univalent in U and Re{h(2)} >0 (2 € U).

Making use of the principle of subordination between analytic functions, we
introduce the following new subclasses ¥4(n;a,c;h) and X.(n;a,c; A, B;«a) of the
class X..

Let the functions gy, -+ , g, be in the class ¥. Then we say that the functions

g1, , gn are in the class 3;(n; a, c; h) if they satisfy the condition:

1 aI(a, 0)g:(2))
7 L1 L(a, 0)g;(2)
where 27, L(a,c)g;(z) #0 in U.

<h(z) (zeU; i=1,--+,n; he N), (1.4)

In particular, we set

1+ A
IR (n;a,c;%) =Xs(n;a,6A B) (1< B<A<1; z€l).

For n = a = ¢ = 1, the class ¥(n;a,c;h) is the well-known class of meromorphic
starlike functions in U. Furthermore, we note that the classes ¥ (n;a,1;h) and
Ys(1;a,1; h) have been studied by Bharati and Rajagopal [2], and Padmanabhan
and Manjini [12], respectively.

Let ¥.(n;a,c; A, B;a) be the class of functions f € X satisfying the argument

inequality:

< goz (1.5)

g (a0 1))
T3 L 0g ()

2




(z€eU; 0<a<l; gj€Xsna,c;AB); j=1,---,n).

If wetaken =a=c=a=1in (1.5), ¥.(n;a,c; A, B; a) is the familiar subclass
of meromorphic close-to-convex functions in U introduced by Libera and Robertson
[6](also, see [14]).

In the present paper, we give some argument properties of meromorphic func-
tions belonging to > which contain the basic inclusion relationship among the classes
Ys(n;a,c;h) and X.(n;a,c; A, B;a). The integral preserving properties in connec-
tion with the operator L(a,c) defined by (1.2) are also considered. Furthermore, we
obtain the previous results of Bajpai [1], Bharati.and Rajagopal [2], Goel and Sohi

[5], Padmanabhan and Manjini [12] as special cases.

2. Main Results

The following results will be required in our investigation.

Lemma 2.1 [4]. ' Let h be convez univalent in U with h(0) =1 and Re (Ah(z)+
v) > 0(\, v € C). If q is analylie.in U with q(0) = 1, then

20 ()

RSB

= hZz)" (2 € 1)

implies

q(z) < h(z) (2 €T).

Lemma 2.2 [8]. Let h be convex univalent in U and w be analytic in U with

Re w(z) > 0. If q is analytic in U and q(0) = h(0), then

q(2) +w(z)zq'(z) < h(z) (2 €U)

3



implies

q(z) < h(z) (z€0).

Lemma 2.3 [11]. Let g be analytic in U, q(0) = 1, and q(z) # 0 in U. Suppose

that there exists a point zy € U such that

larg {q(2)} < ga for |z| < |zo| (2.1)
and
larg 44(z0)}| = ga (o > 0). (2.2)
Then
Z‘;Cj(lij;) = ika, (2.3)
where
k> % (b—l— %) when arg {q(zy)} = goz, (2.4)
k< —% (b—i— %) when arg {q(z0)} = —ga, (2.5)
and
{q(z)}= =+ib  (b>0). (2.6)

First of all, with the help of Lemma 2.1 and Lemma 2.2, we obtain the following.



Proposition 2.1. Let a > 0 and h € N with max.cy Re {h(z)} < a+1. If

gi," ", 9n c Es(n;a+1vc;h)7 then gi, -, 09n € Es(n;a7c; h)

Proof.  Let

2(L(a, 0)gi(2))’

Ple) =~ T gy b
By using the equation (1.3), we get
% Z(L(C% ¢)g;(2))pi(2) = la+1)L(a;¢)gi(2) = —aL(a+1,¢)gi(2). (2.7)

By differentiating both sides of (2.7) with respect to z, and simplifying, we have

2pi(z z(L(a+1,c)g;(2))
pi(2) + == (2 - (n( )9:(2)) = h(z). (2.8)
T izlpz(z) +a+1 n Zj:l L(a’ - 1: C)gj(z)
(7l Y 1)
since gq, -+, gn € Ns(n;@+1,c¢; h). Since h is convex, for any zy € U, there exists a

point (4 € U such that

where

o2) =+ > ni2),

Then we obtain from Lemma 2.1 that ¢ < h. Applying Lemma 2.2 with



to (2.8) again, it follows that p; < hforalli (¢ = 1,--- ,n), which implies g1, -+ , g, €
Ys(nya,c;h).

Next, we prove that

zZL(a, c)g;(z) #0 (z € U).

Since gy, -+, gn € Xs(n;a+1,c¢;h) and h is convex, we find that there exists a point

(o € U such that for any z5 € U,

20> 5=rBta+1,c)g;(20))’
D T 'Lldl = Fee)g; (29)

and hence r < h. Also, we note that

= h‘(CO)?

r(20) == =

ZLacgJ —Za+1/taZLa+1 c)g;(t)dt.

Thus, by applymg Theorem 1 of [10], we conclude that

zZLacgJ ) #0 (2 €0).

This evidently completes the proof of Proposition 2:1.

If we take h(z) = 1522 (=1 < B < A < 1) in Proposition 2.1, we have the

following.

Corollary 2.1. Letl+ A< (a+1)(1+B) (a>0; =1 <B< A<1). Then

the inclusion relation:

Ys(n;a+1,¢; A, B) C X4(n;a,c; A, B)

holds true.



Remark 2.1. If we let ¢ = 1 in Proposition 2.1, then we have the result of
Bharati and Rajagopal [2], which includes the results given by Padmanabhan and

Manjini [12] as a special case.

Proposition 2.2. Let > 0 and h € N with max,cyRe {h(2)} < p+1. If
gi,° ", 0n € ES(n;&a & h): then Fu(gl)7 o 7FN<gn) € Es(n;&7 & h)7 where FM is the

integral operator defined by

Fuo) = o)) = 7 [ Patdr (=0 (29)

Proof. Let

2 Miaoneiem )
BE)= — e - W N =120

From (2.9), we have

2(L(a, ) Fu(g:)(2))"= nl(a,)gi(z) — (p + V) Lfas e) Fu(g:)(2)- (2.10)

Then, by using (2.10), we get

n

%Z(L(cu ) Fu9;)(2))pi(2) = (1 + 1) Lla, ) Fu(9:) (2) = —plL(a, c)gi(2).  (2.11)

J=1

Differentiating the both sides of (2.11) with respect to z and simplifying, we have

. 0(2)  Leda())
P I G AT I, L(a A, ()

Then, by the same arguments as in the proof of Proposition 2.1, it follows that

Proposition 2.2 holds true as stated.



From Proposition 2.2, we have immediately the following.
Corollary 2.2. Let 1+ A< (u+1)(1+B) (u>0; - 1<B<A<LI1). If
g1, 9n € Xs(n;a,¢ A, B), then F,(g1), -+, Fu.(gn) € Es(n;a,c; A, B), where F),

is the integral operator defined by (2.9).

Remark 2.2. If we take n =a=c=1 and B — A in Corollary 2.2, then we
have the corresponding results of Goel and Sohi [5]. In particular, for n = a = ¢ =

p=1and B — A, Corollary 2.2 yields the result of Bajpai [1].

Now, we derive

Theorem 2.1. Let 0 <d<1landl+A<(a+1)(14B) (¢>0; -1<B<

A <1). If a function f € X is satisfies the-condition:

/
g (B 21N Y | 7
EZJ‘:1 L(a+ 170)93'(2) 2
where g1, -+, gn € Us(n;a +1yc; A, B), then
L /
O el 1) NI
ﬁ Zj:l L(a,c)gj(z) 2
where (0 < a < 1) is the solution of the equation :
2 ot
§=a+=tan ' | — a8 ah — (2.12)
™ 5 tat+1l+asingl
and
2 A-B
b= 2 , 2.1
N ) (213)
Proof.  Let



g AlegfE) s L - .
p(2) TS T ac)g(2) d q(z) n;%( ),

where

o z(L(a,c)gi(z))
i(2) %Z?:l L(a,c)g;(2)

Using (1.3), we have

(i=1,---,n).

n

% > (La,¢)g;(2))p(z) =(a+ DL(a,c)f(z) = —aLla+1,¢) f(2).

Jj=1

Differentiating (2.14) with respect to z and simplifying, we obtain

N z(L(a 41, ) f(2)) . zp/ (2)
2o bla +1,0)g5(2) —g(2) +a4 1’

Since g1, ,gn € Xs(n;a+1,¢ A, B), by Corollary 2.1, we know that g, - - -

Ys(nya,c; A, B)and so

¥ il
b L <1).
q(z)—<1+Bz (e eUSl< BP<'A < 1)
Hence we observe [13] that
1—-AB A-B
_ - <
M@ T | < 12 (z€U; —1<B< A<

Then, by using (2.15), we have

—q(2)+a+1= pei%,

where

(2.14)

y9n €

(2.15)



a+1—}i—g < p < a+1+f_;é
-t < ¢ < ty.

when ¢ is given by (2.13).
We note that p is analytic in U with p(0) = 1. Let h be the function which maps
onto the angular domain {w : |arg{w}| < §é} with h(0) = 1. Applying Lemma
2.2 for this h with w(z) = 1/(—q(z) + a + 1), we see that Re p(z) > 0 and hence
p(z) #0in U.

If there exist a point 2y € U such that the conditions (2.1) and (2.2) are satisfied,
then (by Lemma 2.3) we obtain (2.3) under the restrictions (2.4), (2.5) and (2.6).

At first, we suppose that

Q=

|

ia (a>0).

{p(20)}

Then we obtain

DN S S

g(zo)-+a +k

T : S

:§a+arg <1+zak(pe 7) )
aksin Z(1 — ¢)

p+akcos T(1 — @)

T o cos 2t
> —a+tan! 2
) ((H—g—i—a—{—l)—i-asin%tl)
T

=5
2 9

m -1
> EQ + tan

where § and ¢, are given by (2.12) and (2.13), respectively. This evidently contradicts
the assumption of Theorem 2.1.

Next, we suppose that

10



{p(z0)}+

—ia (a>0).

Then we have

zop'(%0) )

are (p(zo) * —q(z0) +a+1

T _1 Q¢ COS gtl
< —ga—tan 1+A P
2 (H—B+a+1)+asm§t1

where § and t; are given by (2.12) and (2.13), respectively. This also is a contra-
diction to the assumption of Theorem 2.1. Therefore we complete the proof of our
theorem.

From Theorem 2.1, we obtain immediately the following.

Corollary 2.3. Letl1+A<(a+1)(1+B) (a>0; -1 <B<A<1). Then

the inclusion relation:

Ye(nja+ 1eyA, Bra) € 35e(n; a, ¢; A, By a)

holds true.

Next, we prove the following theorem.

Theorem 2.2. Let0<d<landl+A<(u+1)(1+B)(g>0; -1<B<

A <1). If a function f € ¥ is satisfies the condition:

g (L@ f )
I3 Lla gy (2)

where g1, -+, gn € 3s(n;a,c; A, B), then

T
< =0
27

11



s
< 50&,

g [ L@ AE() ()
IS L, ) Ful9)(2)

where F), is the integral operator defined by (2.9) and (0 < o < 1) is the solution

of the equation (2.12) with a = p.

Proof.  Let

L@ORNEYE) 1
S TR = AP P

where

o 2@ e ()
’ S L(a,6) Ful9,)(2)

Using the equation (2.7), we obtain

WS e N, n).

> (L, g ()@) = (1t DE@AF, () = ~pLa)e)f (). (216)

Differentiating (2.16) with-respect to z and simplifying, we obtain

z(L(a, c)f(2)) 2p'(z
- (”(L)( ) — o (2) .
2251 Lla, 0)g;(2) —q(z) + p+
Since g1, -+, gn € Xs(n;a,c¢; A, B), by Proposition 2.2, we know that g1, , g, €

Ys(n;a,c; A, B) Hence, we find that

1+ Az

q(2) = 14+ Bz

(z€U; -1<B<AL1).

The remaining part of the proof is similar to that in the proof of Theorem 2.1 and

so we omit the details involved.

From Theorem 2.2, we obtain the following.

12



Corollary 2.4. Let 1+ A< (u+1)(1+B) (u>0;, -1<B<ALZI1). If
f € Znja,c; A, B;a), then F,(f) € Lc(n;a,c; A, Bya), where F), is the integral
operator defined by (2.6).

Remark 2.3. From Theorem 2.2 or Corollary 2.4, we see that every function
in ¥.(n;a,c; A, B;a) preserves the angles under the integral operator defined by
(2.6). If weputn=a=c=a=1and B — A in Corollary 2.4, we obtain the

result given earlier by Goel and Sohi [5].

Finally, we state Theorem 2.3 below. The proof is much akin to that of Theorem

2.1 and so the details may be omitted.

Theorem 2.3. Let0<d6<1,v>0andl+A<(a+1)(1+B) (a>0; —1<

B < A<1). If a function f € X satisfies the condition:

T
< =0
27

e | 2(L(a+ 1,¢)f(2)) 5 2(L(a, o) f(2))
: ( [7%23;1 La+ Deg@) T Ix ., La c)gj<z>]>

where g1, -+, gn € Bg(nra+1,c; A, B), then

20 ) |
% Z?Zl L(a,c)g;(2) 2
where o (0 < o < 1) is the solution of the equation :
2 vy cos Sty
§=a+ =tan! 2 -
T ((H—g+a+1)+asm%t1

when ty is given by (2.13).

13
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