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1. Introduction

Let Σ denote the class of functions of the form

f(z) =
1

z
+
∞∑
k=0

akz
k

which are analytic in the punctured open unit disk D = {z ∈ C : 0 < |z| < 1}. For

analytic functions g and h with g(0) = h(0), g is said to be subordinate to h if there

exists an analytic function w such that w(0) = 0, |w(z)| < 1 in U = D ∪ {0}, and

f(z) = g(w(z)). We denote this sunordination by g ≺ h or g(z) ≺ h(z) (z ∈ U). In

particular, if the function h is univalent in U, the above subordination is equivalent

to g(0) = h(0) and g(U) ⊂ h(U) (see, e.g., Miller and Mocanu [9]).

Now we define the function φ(a, c; z) by

φ(a, c; z) :=
1

z
+
∞∑
k=0

(a)k+1

(c)k+1

zk (a > 0; c 6= 0,−1,−2, · · · ; z ∈ D), (1.1)

where (λ)k is the Pochhammer symbol (or the shifted factorial) defined by

(λ)k :=

 1 if k = 0

λ(λ+ 1) · · · (λ+ k − 1) if k ∈ N = {1, 2, · · · }.

Corresponding to the function φ(a, c; z), we introduce a linear operator L(a, c)

which is defined by means of the following Hadamard product (or convolution):

L(a, c)f(z) = φ(a, c; z) ∗ f(z) (f ∈ Σ), (1.2)

It is easily verified from (1.1) and (1.2) that

z(L(a, c)f(z))′ = aL(a+ 1, c)f(z)− (a+ 1)L(a, c)f(z). (1.3)
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The operator L(a, c) was introduced and studied by Liu and Srivastava [7] re-

cently. This operator L(a, c) was motivated essentially by the familiar Carson-

Shaffer operator L(a, c) which has been used widely on the space of analytic and

univalent functions in U(see, for details [3]; see also [15]).

Let N be the class of analytic functions h with h(0) = 1, which are convex and

univalent in U and Re{h(z)} > 0 (z ∈ U).

Making use of the principle of subordination between analytic functions, we

introduce the following new subclasses Σs(n; a, c;h) and Σc(n; a, c;A,B;α) of the

class Σ.

Let the functions g1, · · · , gn be in the class Σ. Then we say that the functions

g1, · · · , gn are in the class Σs(n; a, c;h) if they satisfy the condition:

− z(L(a, c)gi(z))′

1
n

∑n
j=1 L(a, c)gj(z)

≺ h(z) (z ∈ U; i = 1, · · · , n; h ∈ N ), (1.4)

where z
∑n

j=1 L(a, c)gj(z) 6= 0 in U.

In particular, we set

Σs

(
n; a, c;

1 + Az

1 +Bz

)
:= Σs(n; a, c;A,B) (−1 < B < A ≤ 1; z ∈ U).

For n = a = c = 1, the class Σs(n; a, c;h) is the well-known class of meromorphic

starlike functions in U. Furthermore, we note that the classes Σs(n; a, 1;h) and

Σs(1; a, 1;h) have been studied by Bharati and Rajagopal [2], and Padmanabhan

and Manjini [12], respectively.

Let Σc(n; a, c;A,B;α) be the class of functions f ∈ Σ satisfying the argument

inequality:

∣∣∣∣∣arg

(
− z(L(a, c)f(z))′

1
n

∑n
j=1 L(a, c)gj(z)

)∣∣∣∣∣ < π

2
α (1.5)
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(z ∈ U; 0 < α ≤ 1; gj ∈ Σs(n; a, c;A,B); j = 1, · · · , n).

If we take n = a = c = α = 1 in (1.5), Σc(n; a, c;A,B;α) is the familiar subclass

of meromorphic close-to-convex functions in U introduced by Libera and Robertson

[6](also, see [14]).

In the present paper, we give some argument properties of meromorphic func-

tions belonging to Σ which contain the basic inclusion relationship among the classes

Σs(n; a, c;h) and Σc(n; a, c;A,B;α). The integral preserving properties in connec-

tion with the operator L(a, c) defined by (1.2) are also considered. Furthermore, we

obtain the previous results of Bajpai [1], Bharati and Rajagopal [2], Goel and Sohi

[5], Padmanabhan and Manjini [12] as special cases.

2. Main Results

The following results will be required in our investigation.

Lemma 2.1 [4]. Let h be convex univalent in U with h(0) = 1 and Re (λh(z)+

ν) > 0(λ, ν ∈ C). If q is analytic in U with q(0) = 1, then

q(z) +
zq′(z)

λq(z) + ν
≺ h(z) (z ∈ U)

implies

q(z) ≺ h(z) (z ∈ U).

Lemma 2.2 [8]. Let h be convex univalent in U and ω be analytic in U with

Re ω(z) ≥ 0. If q is analytic in U and q(0) = h(0), then

q(z) + ω(z)zq′(z) ≺ h(z) (z ∈ U)

3



implies

q(z) ≺ h(z) (z ∈ U).

Lemma 2.3 [11]. Let q be analytic in U, q(0) = 1, and q(z) 6= 0 in U. Suppose

that there exists a point z0 ∈ U such that

|arg {q(z)}| <
π

2
α for |z| < |z0| (2.1)

and

|arg {q(z0)}| =
π

2
α (α > 0). (2.2)

Then

z0q
′(z0)

q(z0)
= ikα, (2.3)

where

k ≥ 1

2

(
b+

1

b

)
when arg {q(z0)} =

π

2
α, (2.4)

k ≤ −1

2

(
b+

1

b

)
when arg {q(z0)} = −π

2
α, (2.5)

and

{q(z0)}
1
α = ±ib (b > 0). (2.6)

First of all, with the help of Lemma 2.1 and Lemma 2.2, we obtain the following.
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Proposition 2.1. Let a > 0 and h ∈ N with maxz∈U Re {h(z)} < a + 1. If

g1, · · · , gn ∈ Σs(n; a+ 1, c;h), then g1, · · · , gn ∈ Σs(n; a, c;h).

Proof. Let

pi(z) = − z(L(a, c)gi(z))′

1
n

∑n
j=1 L(a, c)gj(z)

(i = 1, · · · , n).

By using the equation (1.3), we get

1

n

n∑
j=1

(L(a, c)gj(z))pi(z)− (a+ 1)L(a, c)gi(z) = −aL(a+ 1, c)gi(z). (2.7)

By differentiating both sides of (2.7) with respect to z, and simplifying, we have

pi(z) +
zp′i(z)

− 1
n

∑n
i=1 pi(z) + a+ 1

= − z(L(a+ 1, c)gi(z))′

1
n

∑n
j=1 L(a+ 1, c)gj(z)

≺ h(z). (2.8)

(z ∈ U; i = 1, · · · , n),

since g1, · · · , gn ∈ Σs(n; a+ 1, c;h). Since h is convex, for any z0 ∈ U, there exists a

point ζ0 ∈ U such that

q(z0) +
z0q
′(z0)

−q(z0) + a+ 1
= h(ζ0),

where

q(z) =
1

n

n∑
i=1

pi(z).

Then we obtain from Lemma 2.1 that q ≺ h. Applying Lemma 2.2 with

ω(z) =
1

−q(z) + a+ 1
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to (2.8) again, it follows that pi ≺ h for all i (i = 1, · · · , n), which implies g1, · · · , gn ∈

Σs(n; a, c;h).

Next, we prove that

z
n∑
j=1

L(a, c)gj(z) 6= 0 (z ∈ U).

Since g1, · · · , gn ∈ Σs(n; a+1, c;h) and h is convex, we find that there exists a point

ζ0 ∈ U such that for any z0 ∈ U,

r(z0) := −
z0(
∑n

j=1 L(a+ 1, c)gj(z0))
′∑n

j=1 L(a+ 1, c)gj(z0)
= h(ζ0),

and hence r ≺ h. Also, we note that

n∑
j=1

L(a, c)gj(z) =
a

za+1

∫ z

0

ta
n∑
j=1

L(a+ 1, c)gj(t)dt.

Thus, by applying Theorem 1 of [10], we conclude that

z
n∑
j=1

L(a, c)gj(z) 6= 0 (z ∈ U).

This evidently completes the proof of Proposition 2.1.

If we take h(z) = 1+Az
1+Bz

(−1 < B < A ≤ 1) in Proposition 2.1, we have the

following.

Corollary 2.1. Let 1 + A < (a+ 1)(1 + B) (a > 0; −1 < B < A ≤ 1). Then

the inclusion relation:

Σs(n; a+ 1, c;A,B) ⊂ Σs(n; a, c;A,B)

holds true.
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Remark 2.1. If we let c = 1 in Proposition 2.1, then we have the result of

Bharati and Rajagopal [2], which includes the results given by Padmanabhan and

Manjini [12] as a special case.

Proposition 2.2. Let µ > 0 and h ∈ N with maxz∈U Re {h(z)} < µ + 1. If

g1, · · · , gn ∈ Σs(n; a, c;h), then Fµ(g1), · · · , Fµ(gn) ∈ Σs(n; a, c;h), where Fµ is the

integral operator defined by

Fµ(gi) := Fµ(gi)(z) =
µ

zµ+1

∫ z

0

tµgi(t)dt ((1, · · · , n; µ ≥ 0). (2.9)

Proof. Let

pi(z) = − z(L(a, c)Fµ(gi)(z))′

1
n

∑n
j=1 L(a, c)Fµ(gj)(z)

(i = 1, · · · , n).

From (2.9), we have

z(L(a, c)Fµ(gi)(z))′ = µL(a, c)gi(z)− (µ+ 1)L(a, c)Fµ(gi)(z). (2.10)

Then, by using (2.10), we get

1

n

n∑
j=1

(L(a, c)Fµ(gj)(z))pi(z)− (µ+ 1)L(a, c)Fµ(gi)(z) = −µL(a, c)gi(z). (2.11)

Differentiating the both sides of (2.11) with respect to z and simplifying, we have

pi(z) +
zp′i(z)

− 1
n

∑n
j=1 pi(z) + µ+ 1

= − z(L(a, c)gi(z))′

− 1
n

∑n
j=1 L(a, c)gj(z)

.

Then, by the same arguments as in the proof of Proposition 2.1, it follows that

Proposition 2.2 holds true as stated.
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From Proposition 2.2, we have immediately the following.

Corollary 2.2. Let 1 + A < (µ + 1)(1 + B) (µ > 0; −1 < B < A ≤ 1). If

g1, · · · , gn ∈ Σs(n; a, c;A,B), then Fµ(g1), · · · , Fµ(gn) ∈ Σs(n; a, c;A,B), where Fµ

is the integral operator defined by (2.9).

Remark 2.2. If we take n = a = c = 1 and B → A in Corollary 2.2, then we

have the corresponding results of Goel and Sohi [5]. In particular, for n = a = c =

µ = 1 and B → A, Corollary 2.2 yields the result of Bajpai [1].

Now, we derive

Theorem 2.1. Let 0 < δ ≤ 1 and 1 + A < (a+ 1)(1 + B) (a > 0; −1 < B <

A ≤ 1). If a function f ∈ Σ is satisfies the condition:

∣∣∣∣∣arg

(
− z(L(a+ 1, c)f(z))′

1
n

∑n
j=1 L(a+ 1, c)gj(z)

) ∣∣∣∣∣ < π

2
δ,

where g1, · · · , gn ∈ Σs(n; a+ 1, c;A,B), then

∣∣∣∣∣arg

(
− z(L(a, c)f(z))′

1
n

∑n
j=1 L(a, c)gj(z)

) ∣∣∣∣∣ < π

2
α,

where α(0 < α ≤ 1) is the solution of the equation :

δ = α +
2

π
tan−1

(
α cos π

2
t1

A−1
1−B + a+ 1 + α sin π

2
t1

)
(2.12)

and

t1 =
2

π
sin−1

(
A−B

(a+ 1)(1−B2)− (1− AB)

)
. (2.13)

Proof. Let
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p(z) = − z(L(a, c)f(z))′

1
n

∑n
j=1 L(a, c)gj(z)

and q(z) =
1

n

n∑
i=1

qi(z),

where

qi(z) = − z(L(a, c)gi(z))′

1
n

∑n
j=1 L(a, c)gj(z)

(i = 1, · · · , n).

Using (1.3), we have

1

n

n∑
j=1

(L(a, c)gj(z))p(z)− (a+ 1)L(a, c)f(z) = −aL(a+ 1, c)f(z). (2.14)

Differentiating (2.14) with respect to z and simplifying, we obtain

− z(L(a+ 1, c)f(z))′

1
n

∑n
j=1 L(a+ 1, c)gj(z)

= p(z) +
zp′(z)

−q(z) + a+ 1
.

Since g1, · · · , gn ∈ Σs(n; a+ 1, c;A,B), by Corollary 2.1, we know that g1, · · · , gn ∈

Σs(n; a, c;A,B) and so

q(z) ≺ 1 + Az

1 +Bz
(z ∈ U; −1 ≤ B < A ≤ 1).

Hence we observe [13] that

∣∣∣∣q(z)− 1− AB
1−B2

∣∣∣∣ < A−B
1−B2

(z ∈ U; −1 < B < A ≤ 1) (2.15)

Then, by using (2.15), we have

−q(z) + a+ 1 = ρei
πφ
2 ,

where

9



 a+ 1− 1+A
1+B

< ρ < a+ 1 + A−1
1−B

−t1 < φ < t1.

when t1 is given by (2.13).

We note that p is analytic in U with p(0) = 1. Let h be the function which maps

onto the angular domain {w : | arg{w}| < π
2
δ} with h(0) = 1. Applying Lemma

2.2 for this h with ω(z) = 1/(−q(z) + a+ 1), we see that Re p(z) > 0 and hence

p(z) 6= 0 in U.

If there exist a point z0 ∈ U such that the conditions (2.1) and (2.2) are satisfied,

then (by Lemma 2.3) we obtain (2.3) under the restrictions (2.4), (2.5) and (2.6).

At first, we suppose that

{p(z0)}
1
α = ia (a > 0).

Then we obtain

arg

(
p(z0) +

z0p
′(z0)

−q(z0) + a+ 1

)
=
π

2
α + arg

(
1 + iαk(ρei

πφ
2 )−1

)
≥ π

2
α + tan−1

(
αk sin π

2
(1− φ)

ρ+ αk cos π
2
(1− φ)

)
≥ π

2
α + tan−1

(
α cos π

2
t1(

1+A
1+B

+ a+ 1
)

+ α sin π
2
t1

)
=
π

2
δ,

where δ and t1 are given by (2.12) and (2.13), respectively. This evidently contradicts

the assumption of Theorem 2.1.

Next, we suppose that
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{p(z0)}
1
α = −ia (a > 0).

Then we have

arg

(
p(z0) +

z0p
′(z0)

−q(z0) + a+ 1

)
≤ −π

2
α− tan−1

(
α cos π

2
t1(

1+A
1+B

+ a+ 1
)

+ α sin π
2
t1

)
= −π

2
δ,

where δ and t1 are given by (2.12) and (2.13), respectively. This also is a contra-

diction to the assumption of Theorem 2.1. Therefore we complete the proof of our

theorem.

From Theorem 2.1, we obtain immediately the following.

Corollary 2.3. Let 1 + A < (a+ 1)(1 + B) (a > 0; −1 < B < A ≤ 1). Then

the inclusion relation:

Σc(n; a+ 1, c;A,B;α) ⊂ Σc(n; a, c;A,B;α)

holds true.

Next, we prove the following theorem.

Theorem 2.2. Let 0 < δ ≤ 1 and 1 + A < (µ+ 1)(1 +B) (µ > 0; −1 < B <

A ≤ 1). If a function f ∈ Σ is satisfies the condition:

∣∣∣∣∣arg

(
− z(L(a, c)f(z))′

1
n

∑n
j=1 L(a, c)gj(z)

) ∣∣∣∣∣ < π

2
δ,

where g1, · · · , gn ∈ Σs(n; a, c;A,B), then

11



∣∣∣∣∣arg

(
− z(L(a, c)Fµ(f)(z))′

1
n

∑n
j=1 L(a, c)Fµ(gj)(z)

) ∣∣∣∣∣ < π

2
α,

where Fµ is the integral operator defined by (2.9) and α(0 < α ≤ 1) is the solution

of the equation (2.12) with a = µ.

Proof. Let

p(z) = − z(L(a, c)Fc(f)(z))′(z)
1
n

∑n
j=1 L(a, c)Fc(gj)(z)

and q(z) =
1

n

n∑
i=1

qi(z),

where

qi(z) = − z(L(a, c)Fc(gi))
′(z)

1
n

∑n
j=1 L(a, c)Fc(gj)(z)

(i = 1, · · · , n).

Using the equation (2.7), we obtain

1

n

n∑
j=1

(L(a, c)Fµgj(z))p(z)− (µ+ 1)L(a, c)Fµf(z) = −µL(a, c)f(z). (2.16)

Differentiating (2.16) with respect to z and simplifying, we obtain

− z(L(a, c)f(z))′

1
n

∑n
j=1 L(a, c)gj(z)

= p(z) +
zp′(z)

−q(z) + µ+ 1
.

Since g1, · · · , gn ∈ Σs(n; a, c;A,B), by Proposition 2.2, we know that g1, · · · , gn ∈

Σs(n; a, c;A,B) Hence, we find that

q(z) ≺ 1 + Az

1 +Bz
(z ∈ U; −1 ≤ B < A ≤ 1).

The remaining part of the proof is similar to that in the proof of Theorem 2.1 and

so we omit the details involved.

From Theorem 2.2, we obtain the following.
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Corollary 2.4. Let 1 + A < (µ + 1)(1 + B) (µ > 0; −1 < B < A ≤ 1). If

f ∈ Σc(n; a, c;A,B;α), then Fµ(f) ∈ Σc(n; a, c;A,B;α), where Fµ is the integral

operator defined by (2.6).

Remark 2.3. From Theorem 2.2 or Corollary 2.4, we see that every function

in Σc(n; a, c;A,B;α) preserves the angles under the integral operator defined by

(2.6). If we put n = a = c = α = 1 and B → A in Corollary 2.4, we obtain the

result given earlier by Goel and Sohi [5].

Finally, we state Theorem 2.3 below. The proof is much akin to that of Theorem

2.1 and so the details may be omitted.

Theorem 2.3. Let 0 < δ ≤ 1, γ ≥ 0 and 1 +A < (a+ 1)(1 +B) (a > 0; −1 <

B < A ≤ 1). If a function f ∈ Σ satisfies the condition:

∣∣∣∣∣arg

(
−

[
γ

z(L(a+ 1, c)f(z))′

1
n

∑n
j=1 L(a+ 1, c)gj(z)

+ (1− γ)
z(L(a, c)f(z))′

1
n

∑n
j=1 L(a, c)gj(z)

])∣∣∣∣∣ < π

2
δ,

where g1, · · · , gn ∈ Σs(n; a+ 1, c;A,B), then

∣∣∣∣∣arg

(
− z(L(a, c)f(z))′

1
n

∑n
j=1 L(a, c)gj(z)

)∣∣∣∣∣ < π

2
α,

where α (0 < α ≤ 1) is the solution of the equation :

δ = α +
2

π
tan−1

(
αγ cos π

2
t1(

1+A
1+B

+ a+ 1
)

+ α sin π
2
t1

)
when t1 is given by (2.13).
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