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A length-based assessment model for the common squid 

 (Todarodes pacificus) population caught by multiple fisheries 

in Korean waters 

박 민 규 

부경대학교 대학원 해양생물학과 

요   약 

오랫동안 두족류의 자원평가는 독특한 생물학적인 특성 (e.g., 산란, 회유, 성장, 등)

과 자료 수집의 어려움에 의하여 어려운 과제였다 (Fries, 2010).  한국과 일본 해역에 

분포하는 살오징어 (Todarodes pacificus)는 상업적인 가치가 높은 두족류로서 

(Nakamura, 1993; Kidokoro et al., 2010), 한국해역에서 약 25개의 어업에서 어획이 되고 

있는 실정이다.  이러한 상황에서, 본 연구는 살오징어의 생물학적 특성, 자료 수집

의 어려움, 그리고 복수 어업 환경을 반영한 자원평가 모델의 필요성을 동기로써, 체

장조성자료 (length composition data)를 이용하는 Quinn et al. (1998)의 체장기반모델 

(length-based model)을 바탕으로 한국 해역에 분포하고 있는 살오징어 개체군에 특화

된 자원평가 모델을 개발하였고, 가상실험 (simulation-estimation experiment)을 수행하

여 모델의 추정 성능 (Estimability)을 확인하였다.   모델의 중점 개선사항은 다음과 

같다: (i) 복수어업을 고려하기 위해, 어업별 체장조성자료의 사용가능성에 따라 어업
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을 구분하였다; (ii) 살오징어의 체성장을 설명하기 위해, Gompertz 성장 모델을 사용하

였다; (iii) 순간 자연사망률을 개체의 체장에 대한 함수로서 나타냈다; (iv) 모든 코호

트는 암수로 구분되었으며, 암수 성별간 서로 다른 생식 (reproduction)에 의한 사망이 

가정되었다; (v) 체장별 포란수에 대한 정보를 사용하여, 산란-가입 관계식 (spawner-

recruitmnet relationship)을 적용하였다.  가상실험의 결과로서, 모델은 Gompertz 성장식

에 관여된 모수의 추정에는 문제가 발견되지 않았으나, 산란과 사망률에 관련된 모수

의 추정에 문제를 나타냈다.  본 연구에서는 모델의 핵심자료인 체장조성자료의 수집

과정에 대한 추가적인 조사를 수행하였다.  한국에서의 체장조성자료는 어획물이 체

급별로 분류되어 상자에 담기는 배열 (arrangement)이라는 과정을 거친 후 수집되는데, 

현행 표집 방법은 체급별로 분류된 상자수에 비례하여 체급별 표본을 추출하는 것이

다.  본 연구에서는 현행 표집 방법으로 얻어지는 체장조성자료가 총 어획물의 체장 

조성을 대표할 수 있는지를 확인하기 위해, 배열 과정과 현행 표집을 재현한 가상실

험을 수행하여 평가하였고, 체급별 어획물의 수에 비례하여 체급별로 표본을 수집할 

때, 총 어획물의 체장 조성을 대표할 수 있음을 밝혔다.  따라서, 본 논문은 체장기

반 살오징어 자원평가 모델에 대한 연구와 체장조성자료의 수집방법의 제안이라는 

두가지의 연구를 다루었으며, 각 연구는 두개의 장 (chapter)으로 구분되어 서술되었

다: I. A length-based assessment model for the common squid (Todarodes pacificus) population 

caught by multiple fisheries in Korean waters; II. How should we randomly sample marine fish 

landed at Korean ports to estimate the length frequency distribution of those fish?. 
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I. A length-based assessment model for 

the common squid (Todarodes pacificus) 

population caught by multiple fisheries 

in Korean waters 

1. Introduction 

Fishery stock assessments can be performed using any of a wide variety 

of assessment models.  The selection of a specific model for a stock 

assessment is tailored to the available data and, in general, a less detailed 

model is chosen when fewer data are available (NOAA, 2020).  Biomass 

dynamics models, such as the surplus production model, the most basic 

approach, are virtually the only method used in situations where the only 

data available are a time series of catches and some index of abundance 

(Punt 2003).  Age-structured models, such as statistical catch-at-age 

models, which are dominant in contemporary stock assessment, require an 

index of population size, such as a survey index or a measure of catch-per-

unit-effort, the total catch from fisheries, and composition data specific to 

individual age classes.  These models are able to assess the population 

dynamics more accurately than surplus production models, because they 

reconstruct population data and trace temporal changes in a cohort, using 
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information about the age composition of a population (Punt et al., 2013).  

However, the applicability of these models is limited by difficulties in 

collecting age composition data, arising from considerations of factors 

such as cost, expertise, and time required.  Considering these 

circumstances, size- (or length-) based models are adequate alternatives to 

age-structured models.  An advantage of length-based models over age-

structured models is that all processes can be size-based, and these 

processes can modify the size-at-age distribution (Punt et al., 2013). 

The length-based model has developed from that described by Cohen 

and Fishman (1980), Deriso and Parma (1988), and Quinn et al. (1998).  

Cohen and Fishman (1980) developed a stochastic growth model 

representing the body growth process of a cohort over time, incorporating 

stochastic error using a von Bertalanffy growth model.  Deriso and 

Parma (1988) utilized the stochastic growth model from Cohen and 

Fishman (1980), and included recruitment, growth, natural mortality, gear 

selectivity, and fishing mortality into a length-based model.  Quinn et al. 

(1998) converted the length distribution to a discrete distribution.  I 

developed a length-based assessment model based on that of Quinn et al. 

(1998), and applied the model to stock of the common squid (Todarodes 

pacificus) in Korean waters.  My extensions of their model are based on 

the biology of the common squid, and the specific characteristics of 
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fisheries in Korean waters. 

The common squid is a commercially important species in Korea, and 

is exploited by about 25 fisheries.  There are no fisheries whose yield 

comprises half of the total yield of the fisheries.  Common squid are 

short-lived, surviving for only about a year.  During its lifespan, the squid 

hatch and migrate northward from the spawning ground.  They feed and 

grow for seven to eight months, and then migrate southward to the 

spawning ground, where they reproduce (Sakurai et al., 2013; Kim et al., 

2011).  Spawning occurs throughout the year.  This stock is separated 

into three subpopulations according to peak spawning season: winter from 

January to April; summer from May to August; and autumn from 

September to December.  The subpopulations exhibit different biomass 

and body growth (Sakurai et al., 2013; Kim et al., 2011). 

My model incorporates five major new features.  First, according to 

the availability of the length composition data, I separated the 25 fisheries 

of common squid into jigger, large purse-seine, and others, to reflect the 

use of multiple technologies in fisheries in Korean waters.  Second, I 

applied the Gompertz growth model instead of the von Bertalanffy model 

of the body growth of the common squid, because the Gompertz growth 

model more accurately explains the body growth of the common squid, 

which exhibits low growth rates in early life (Sakurai et al., 2013; 
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Sugawara et al., 2013).  Third, I estimated the parameters of the 

allometric relationship of natural mortality to individual body size, using 

an approach modified from Lorenzen (1996), in which natural mortality 

varies according to individual body mass.  Fourth, recruitment in my 

model was linked to the spawners, using fecundity information as an 

alternative way of building a stock-recruitment model, such as the 

Beverton-Holt or Ricker models.  Fifth, all cohorts were divided into 

males and females, to enable modelling of the differences in the 

reproductive mortality between males and females, and to incorporate the 

female capacity for laying eggs. 

 In this chapter, I present two studies: (i) a length-based assessment 

model for the Korea common squid; and (ii) a simulation-estimation 

experiment to evaluate the model performance.
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2. Materials and Methods 

2.1. Data 

Five types of data were used in the model: (i) length-composition; (ii) 

catch-per-unit-effort (CPUE); (iii) commercial yield; (iv) length-weight; 

and (v) length-fecundity data. 

The length data, as measured by mantle length, of the common squid 

caught from jigger (JIG) and large purse-seine (PS) fisheries from May 

2016 to December 2018 were provided by the Korean National Institute 

of Fisheries Science (NIFS).  The length data were transformed into 

length-composition data by discretizing the data into 34 length classes.  

Each class is 1 cm wide, and is defined by the midpoint of the class.  For 

example, a class label of 0.5 cm therefore indicates membership of the 

class of squid whose mantle length is in the range [0cm, 1cm).  Because 

the length-composition data has many missing monthly values, the model 

takes two months to be one discrete time step.  Thus, length composition 

data were aggregated bimonthly.  

The monthly CPUE data from JIG and PS fisheries from May 2016 to 

December 2018 were provided by the NIFS.  Because two months 

comprised one time step, the CPUE data were modified by dividing the 

sample yield (MT) for two months by sample fishing effort (hooks for JIG; 
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hauls for PS) for two months. 

The bimonthly total yield for the common squid from JIG, PS, and the 

other (TO) fisheries were provided by Statistics Korea (KOSTAT).  The 

yield from PS fisheries in July and August 2018 was revised from 1100.23 

MT, representing the sum of frozen fish (687.266 MT) and fresh fish 

(412.964 MT) to 412.964 MT, including only fresh fish.  Since PS 

fisheries in Korea use a carrier transporting fresh fish to a port, frozen fish 

(687.266 MT) in July and August 2018 is unusual. 

The mantle length and body weight of 1,091 squid were measured by 

NIFS and myself.  Kim et al. (1997) demonstrated a length-fecundity 

relationship of female common squid by measuring the mantle length and 

the number of eggs laid by individuals (Kim et al., 1997).  These data are 

currently not available, so the length-fecundity data were obtained by 

scanning Figure 4 of the publication by Kim et al. (1997) using the 

‘Engauge Digitizer’ (Mark et al., 2020) software. 
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2.2. Length-based model 

All symbols used are summarized in Table 2.1.  The age of each cohort 

is assumed to be in increments of two months from recruiting age r =1 to 

the terminal age A =6+.  Age r was set to two months after birth, and age 

A was set to 6+, 12 months or more after birth, under the assumption that 

some individuals could survive more than 12 months.  In a recruited 

cohort (Nt,r), the abundance of recruiting age r at the beginning of time t 

is classified by sex by multiplying the sex ratio at recruitment: 

 

, , , ,y y

t r t r t rN N =                       (1) 

 

where superscript y   {♂, ♀} (male, female) and ,

y

t r   is the 

proportion of sex y at recruitment.  The lengths of recruitment for each 

sex (
y

rX  ) are discrete variables, which are normally distributed with 

mean r   and variance 
2

r   (i.e., 
2~ [ , ]y

r D r rX Normal    ).  The 

probability mass function (PMF) of 
y

rX   for the length class x at the 

beginning of time t can be denoted as: 
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, ( ) ,y r r
t r

xr r

x x
f x

 
 

 

   − −
=    

   
         (2) 

 

where function   is the probability density function (PDF) of a standard 

normal distribution.  Thus, the abundance of recruited males and females 

at each length class is ( ), , , ( )y y y

t r t r t rN x N f x=  . 

The dynamics of a cohort is assumed to be compounded of mortality 

and body growth processes over time, from age r to terminal age A.  

Following Deriso and Parma (1988), the process of mortality took place 

first, then body growth occurs. 

The total mortality rate, Zt (x), is obtained by summing the natural 

mortality rate and the mortality rate for each fishery, g, where 

 , ,g J P TO  (JIG, PS, TO): 

 

( ) ( ) ( )g

t t

g

Z x M x F x= + .  (3) 

 

Lorenzen (1996) modelled natural mortality rate as a power function of 

weight, accounting for the relationship between natural mortality and body 

weight for different aquaculture systems, as well as species and families, 
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1

0( )
b

M W b W
−

=   .  In my model, natural mortality rate is modified 

from Lorenzen (1996), varying by length class through the allometric 

length-weight relationship, ( )W x x=  : 

 

 0

1( ) ( )
b

M x b W x
−

=  .                (4) 

 

For each fishery, time- and size-specific fishing mortality rate ( )g

tF x  is 

the product of bimonthly fully-selected fishing mortality rate and size-

specific gear selectivity: 

 

( ) ( )g g g

t tF x F S x=  .  (5) 

 

The fully-selected fishing mortality rate for JIG and PS are assumed to be 

proportionate to fishing effort, while a time-series random walk model was 

assumed for TO: 
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 1 1

Effort for g =  or 

exp for g = 

g g

t

g

t

g

t t

q J P

F

F TO− −

 


= 
 

 ,        (6) 

 

for g = J or P, catchability 
gq  is assumed to be a time-invariant constant 

and Effort g

t  is calculated by dividing yield by the corresponding CPUE.  

For g = TO, 1t −  , the deviation term of log-scaled time-series fishing 

mortality rate is assumed to follow a normal distribution with mean 0 and 

variance 
2

   (i.e., 
2

1 ~ [0, ]t N  −  ).  The reason why 
TO

tF   was 

treated as time-series random walk model is that fishing effort data for TO 

are not available.  Size-specific gear selectivity for JIG and PS is based 

on a logistic form as a function of length class, while gear selectivity for 

TO is not assumed, due to the absence of length composition data: 

 

( )g g

50%

1
( )

for g =  or 
1 exp ( )

gS x
J P

x L

=

+ −  −

    (7) 

 

where 
g

50%L  is the length at which half of the stock encountered in 



11 

 

fisheries are captured, and 
g  is a shape parameter that determines the 

steepness of the selectivity curve. 

Based on the life history of the common squid (SeaLifeBase, 2020), it 

is assumed that each sex of the common squid undergoes an additional 

mortality process due to reproduction.  For males, it is assumed that 

mature individuals can participate in reproduction and then die.  For 

females, even if the individual matures, it is assumed that only a mature 

individual who arrives at the spawning ground can participate in 

reproduction and then die.  Thus, mature males and post-spawning 

females have died in this model. 

The age- and size-specific rate participation in reproduction is assumed 

to differ by sex: 

 

( ) for

( )

( ) for

a

y

a

Mat x y

x

Mat x y





 =


= 
 =

♀

♂

.           (8) 

 

For females, ( )a x♀   is the product of the size-specific maturation, 

Mat(x), and the age-specific arrival rate at the spawning ground, 
a  .  
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For males, ( )a x♂   is the age-independent, size-specific maturation.  

Since the common squid begins its spawning migration at seven to eight 

months after birth (Kim et al., 2011), the age-specific arrival rate at the 

spawning ground is assumed to start from age five (i.e., 10 months old): 

( )50,0,0,0, ,1a =  .  The size-specific maturation is based on a 

logistic form (Jo et al., 2019): 

 

 0 1

1
( )

1 exp
Mat x

x 
=

+ + 
.  (9) 

 

Given the PMF of the length distribution of both male and female at the 

beginning of time t at age a, the relative distribution of lengths at the end 

of time t after the mortality process is: 

 

( ) ( ) ( ) ( ), , , exp ( ) 1 ( )y y y

t a Z t a t ap x f x Z x x=  −  − .     (10) 

 

The process of body growth is based on the assumption that an 

individual of length class x will grow to length class l during one time step, 
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according to the stochastic Gompertz growth model.  The deterministic 

Gompertz growth model is: 

 

( )0exp exp ( )aL L G a a=  − −  −   , 

 

where L∞ is the asymptotic length, and G is the instantaneous growth rate 

at age a0, and a0 is the age at the inflection point of the curve (Tjørve et 

al., 2017). 

The formula for size La+1 at age a+1 was derived as a function of the 

previous size, La, at age a, with the multiplicative error term from the 

deterministic Gompertz growth model. 

 

( )2

1 ; ~ 0,Ga
G Ga

L
e NL L

L




 +


 
  
 

=  

 

where   = exp[-G] and the error term G   is assumed to be normally 

distributed with mean zero and variance 
2

G .  I also derived the expected 

lengths and variance at age a+1 for an individual of the length class x at 
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age a, using a method from Cohen and Fishman (1980) (Appendix 1):  

 

( )
2

exp
2

G
G

x
x L

L




 


   
=     

  
  (11) 

 

and 

 

( ) ( )( )

( ) ( )

2

1 1 1

1 1

exp 2 log log

exp 2 log log

a a a

a a

E L Var L

E L Var L

 + + +

+ +

 =  + 

−  +  

.   (12) 

 

The length of an individual at age a+1 originated from length class x at 

age a is a discrete random variable, which is normally distributed with 

mean ( )G x   and variance 
2

1a +  , 
2

1| ~ [ ( ), ]D G aL x Normal x  +  .  

Thus, the PMF for the length distribution at a+1 originated from length 

class x at age a is given by 

 

1,

1 1

( ) ( )
( ) .G G

a G

la a

l x l x
f l x

 
 

 
+

+ +

   − −
=    

   
      (13) 
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After mortality and growth over a bimonth, the relative distribution of 

lengths for each sex at age a+1 at the beginning of time t+1 is given by: 

 

( ) ( ) ( )1, 1 , , 1,

y y

t a t a Z a G

x

p l p x f l x+ + +=  . (14) 

 

For each sex, the number of individuals in length class l at age a+1 at the 

beginning of time t+1 and corresponding PMF of the length distribution 

are then 

 

( ) ( )1, 1 , 1, 1

y y y

t a t a t aN l N p l+ + + +=  , (15) 

 

and 

 

( ) ( ) ( )1, 1 1, 1 1, 1

y y y

t a t a t a

l

f l p l p l+ + + + + +=  . (16) 

 

The number of spawners in length class l at age a+1 at the beginning of 

time t+1 is obtained from equation (8) and (15): 
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1, 1 1, 1 1SSN ( ) ( ) ( )t a t a al N l l+ + + + += ♀ ♀
. (17) 

 

The recruitment at the beginning of time t+1 is assumed to be linked to 

the number of eggs at the beginning of time t through fecundity.  The 

number of eggs at time t is given by 

 

,Egg SSN ( ) ( )t t a

x a

x x=  , (18) 

 

where ( )x   is the size-specific fecundity, and is modelled as the 

allometric relationship to the individual size of mature females, 

0
1( )x x


 =  .  Then, the recruitment at the beginning of time t+1 is 

 

 1, =Egg exp (0.5cm)t r tN M+  − ,  (19) 

 

where M(0.5cm) is the natural mortality for the first length class (0.5 cm).  

The length of individuals at hatching is assumed to be in the range from 
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0.0 cm to 1.0 cm, based on a previous study indicating that paralarval 

mantle lengths of the common squid measured 0.95mm at hatching 

(Sakurai et al., 2013). 

For time t > initial time (tinit), the number of individuals at length class 

x of age a at the beginning of time t is given as: 

 

, ,

, 1, 1 ,

1, 1 , 1, ,

( ) for

( ) ( ) for

( ) ( ) for

y y

t a t a

y

y y

t a t a t a

y

y y y y

t a t a t a t A

y

N f x a r

N x N p x r a A

N p x N p x a A

− −

− − −

  =




=   

   +  = 








  (20) 

 

for a = A, 
1, , ( )y y

t a t A

y

N p x−  is the individuals of age A surviving at time 

t-1 (i.e., abundance at age A+1 at the time t), as described by Millar and 

Hyun (2018).  However, the number of individuals at length class x of 

age a at time tinit is given as: 

 

, , , ,( ) ( )
init init init init

y y

t a t a t a t a

y

N x N f x =   ,          (21) 
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where , ( )
init

y

t af x  and ,init

y

t a  are the PMF of the length distribution and 

the sex ratio of sex y at age a at time tinit, respectively.  The calculation 

of , ( )
init

y

t af x   and ,init

y

t a   follows the assumptions: (1) length of 

recruitment is normally distributed, with mean r  and variance 
2

r ; (2) 

sex ratio of sex y at age r is the same as at other times; (3) only 

reproduction is considered in the mortality process; (4) body growth is 

modelled according to a the stochastic Gompertz growth model.  Thus, 

, ( )
init

y

t af l  and ,init

y

t a  are given as  

 

,

,

,

( )
( )

( )

init

init

init

y

t ay

t a y

t a

l

p l
f l

p l
=


  (22) 

 

and 

 

,

,

,

( )

( )

init

init

init

y

t a
y l

t a y

t a

l y

p l

p l
 =




 , (23) 
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where , ( )
init

y

t ap l  is the relative length distribution of sex y at age a at time 

tinit and is the same concept as equation (14):  

 

,

, 1 1 ,

for

( ) .

( ) (1 ( )) ( | ) for 1
init

init

r r

lr r

y

t a

y y

t a a a G

x

l l

a r

p l

p x x f l x a A

 
 

 

− −

    − −
    

=   


= 
  −   







(24) 

 

To obtain the number of common squid caught at length class x by 

fishery g during time t, I used the continuous catch formulation, as 

proposed by Baranov (1945), which assumes that fishing mortality and 

natural mortality occur simultaneously during each time step (Branch. 

2009).  Fishing mortality and natural mortality are proportional to 

abundance and work simultaneously and uniformly throughout one time 

step.  Thus, the number of common squid caught of length class x by 

fishery g during the time t is given by 

 

( )( )

,

( )
( ) ( ) 1

( )
t

g
Z xg t

t t a

a t

F x
C x N x e

Z x

−
=   − .        (25) 
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The biomass and yield of each fishery were obtained from the size-

specific abundance and catch of each fishery by multiplying the allometric 

length-weight relationship, as follows: 

 

,

g g

( ) ( ) ( ),

( ) ( ) ( ).

t t a

a

t t

B x N x W x

Y x C x W x

= 

= 



  (26) 

 

The total biomass and yield of each fishery during the time t is given as: 

 

g g

( ),

( ).

t t

x

t t

x

B B x

Y Y x

=

=





  (27) 
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Table 2.1. List of symbols and their definitions used in the length-based 

assessment model. 

Symbol  Description 

a  Age 

A  Terminal age, age 6+ considered (i.e., 12 months). 

b0, b1  
Parameters in allometric length-fecundity relationship 

Bt  Total biomass of population at the beginning of time t 

Bt(x)  Biomass of population at the beginning of time t of 

length class x 

( )g

tC x   Individuals at length class x caught by fishery g during 

time t 

g

tCPUE  
 Catch-per-unit-effort data collected from fishery g in 

time t 

g

YCV  
 Coefficient of variance of lognormal distribution for 

yield of fishery g: 2CV exp[( ) ] 1g g

Y Y= −  

CV  
 Coefficient of variance of lognormal distribution for 

fishing mortality of the other fishery: CV =

2exp[ ] 1 −  

Effort g

t  
 Fishing effort of fishery g in time t: 

Effort g

t =
g

tY /
g

tCPUE  

Eggt  Number of eggs at the beginning of time t 
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( )1,a Gf l x+
  Conditional probability of individuals at the length class 

(l) after one growth increment for an individual at the 

length class (x) 

( ),

y

t af x   Probability of individuals at the length class x of a 

cohort, with sex y and age a at the beginning of time t 

g

tF  
 Instantaneous fishing mortality rate of fishery g at time 

t 

g  Fisheries 

G  Instantaneous growth rate 

  
Log-likelihood function 

L  A length class after one growth increment 

La  Length at age a 

50%

gL  
 Length of fish when the fish encountered the fishery g is 

caught with 50% probability 

L  
 

Asymptotic length 

g

tm  
 

The exploited length composition of fishery g at time t 

Mat(x)  Maturation at length class x 

M(x)  Instantaneous natural mortality rate at length class x 

g

tn  
 Number of samples of length composition data from 

fishery g in year t 

Nt,a(x)  Number of individuals at length class x of age a at the 

beginning of time t 
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( ),

y

t aN x   Number of individuals at length class x of sex y at age 

a+1 at the beginning of time t 

ˆ ( )g

to x   Predicted proportion of model catch at length class x 

during time t 

Obj  The objective function 

( )1, 1

y

t ap l+ +
  Relative distribution of lengths of a cohort at age a of 

sex y at the beginning of time t after the processes of 

mortality and growth 

( ), ,

y

t a Zp x   Relative distribution of lengths of a cohort at age a of 

sex y at the end of time t after the process of mortality 

qg  Catchability coefficient of fishery g 

r  Recruitment age, age r = 1 

Rt  Number of individuals of age r at the beginning of time 

t 

,SSN ( )t a x    Number of spawners at length class l of age a at the 

beginning of time t 

( )gS x  
 

Size-specific gear selectivity for fishery g 

t  Time, defined as a bimonth 

tinit  Time at the beginning of May and June 2016 

W(x)  Body weight of length class x 

( )W x  
 

Predicted body weight of length class x 

x  Length class before one growth increment 

Xr  Discrete random variable which measures length of 
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recruitment 

g

tY  
 

Yield from fishery g in time t 

ˆ g

tY  
 

Predicted yield from fishery g in time t 

Zt(x)  Total mortality rate at length class x in time t 

α, β  Parameters in allometric length-weight relationship 

β0, β1  Parameters in maturation 

g  
 

Shape parameter in gear selectivity of fishery g 

t  
 Deviation of log-scaled fishing mortality rate for the 

other fishery 

0 , 1  
 

Parameters in allometric length-fecundity relationship 

1 , 2  
 

Weighting terms for the length composition data 

3  
 

Weighting terms for the length-weight data 

r  
 

Mean length of a recruitment 

( )G x   Expected length after growth increment for an individual 

of the length class x 

   
exp(-G) 

5  
 

Arrival rate at spawning ground of a cohort of age 5 

2

1a +  
 

Variance of the length distribution at age a+1 after 
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growth for an individual of the length class x at age a 

2

  
 

Variance of normal distribution for t  

2

G  
 Variance of stochastic error term in the Gompertz 

growth equation 

2

r  
 

Variance of length distribution of a recruitment 

2

W  
 

Variance of W(x) 

g

Y  
 

Standard deviation of log g

tY  

( )x   
Fecundity at mantle length 

 (.)  Probability density function of standard normal 

distribution 

,

y

t a   
Sex ratio of sex y at age a at the beginning of time t 

( )y

a x  
 

Size- and age-specific reproductive rate for each sex 
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2.3. Parameter estimation 

I constructed six independent random vectors for extracting information 

about parameters from each data set using a likelihood principle.  The 

exploited length composition of JIG and PS at time t ( ,J P

t tm m  ) are 

assumed to be distributed as multinomial distribution: 

 

ˆ~ multinomial( , )g g g

t t tm n o . 

 

where 
g

tn  is the sample size of the length composition data at time t by 

fishery g, and ˆ ( )g

to x  is the predicted proportion of a length class x in my 

length-based model catch (equation (25)).  

 

ˆ ( )
ˆ ( )

ˆ ( )

g
g t
t g

t

x

C x
o x

C x
=


 

  

The yields of three fisheries during the time t are assumed to be 

lognormally distributed: 
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( )

( )

2

2

ˆ exp ; ~ 0,

ˆ~ lognormal ,

g g g g g

t t Y Y Y

g g g

t t Y

Y Y N

Y Y

  



  =      

 
  

. 

 

where ˆ g

tY   is model yield of fishery g at time t   (equation (27)), and 

( )
2

g

Y   is the variance of log g

tY  .  The weight at length (W(x)) is 

assumed to be distributed according to a normal distribution: 

 

2

2

( ) ( ) ; ~ 0,

( ) ~ ( ),

W W W

W

W x W x N

W x N W x

  



 = +  

 
 

. 

 

where ( )W x   is the predicted value for fitting length-weight data and 

2

W   is the variance of W(x).  I also included a lognormal penalty to 

control the degree of variability in the time series of 
TO

tF  estimates (Fu 

et al, 2000), 

 

  2

1 1 1

2

1

exp ; ~ 0,

~ lognormal ,

TO TO

t t t t

TO TO

t t

F F N

F F





  



− − −

−

 =   

  

. 
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Thus, I constructed objective function (Obj) composed of six log-

likelihood components and one penalized likelihood component: 

  

1 2

3

( | ) ( | ) ( | , ) ( | , )

( | , ) ( | ) ( | , )

J P J J P P

TO TO TO

Obj CV CV

CV CV

 



= −  −  − −

− −  −

θ m θ m θ Y θ Y

θ Y θ W θ F

  (28) 

 

where 1 , 2 , 3 , 
J

YCV , 
P

YCV , and 
TO

YCV are weighting terms and 

coefficients of variations (i.e., 
2exp[( ) ] 1g g

Y YCV = −  ) for 

corresponding likelihood functions, and are assigned to each data set.  

The last term ( | , )TOl CVθ F   is a penalized likelihood function, and 

CV  was assigned to control the variability of 
TO

tF estimates.  A large 

value of CV  makes the bimonthly fishing mortality of TO very small. 

The parameters were estimated using the TMB (Kristensen et al. 2016) 

package in R (R Core Team 2020) software.  The TMB script (code for 

length-based assessment model) is shown in the Appendix 2.  I used the 

“nlminb” function in R for parameter estimation via minimizing the 

objective function value.  The point estimates were obtained by 
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numerically differentiating Obj with respect to the free parameters, and 

the standard errors of the estimates were obtained by the delta method. 

With the data from common squid stock, the values 0.004, 0.005, 0.05, 

80 %, 53 %, and 112 % were assigned to the weight parameters 1 , 2 , 

3  , 
J

YCV  , 
P

YCV  , and 
TO

YCV  .  The value 30% was assigned to the 

lognormal coefficient of variation CV  .  While assigning the weight 

values, I considered two guiding principles proposed from Francis (2011): 

(i) do not let other data stop the model from fitting abundance data well; 

(ii) do not down-weight abundance data.  
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2.4. Model performance 

I performed a simulation-estimation experiment to evaluate model 

performance with respect to the robustness and estimability of parameters 

under different measurement error (ME) circumstance.  Values of 

parameters for constructing simulated data were taken from estimates of 

actual data (Table 2.2).  I also included uncertainties in the process of 

fishing mortality rate of TO (
TO

F ), to generate simulated data.  Thus, the 

TO
F   were generated by imposing a lognormal error with CV of 10% 

upon a random walk model.  

To evaluate the model according to the level of the ME, three scenarios 

were used for the ME in the yield data sets from each fishery.  In each 

scenario, the ME in the yield data were assigned as being the same type 

and level (i.e., lognormal errors with 
J P TO

Y Y YCV CV CV= =  ).  The 

levels of the ME in the three scenarios were 10, 30, and 50%.  Thus, the 

simulated yield data for each fishery were generated as lognormal random 

values by imposing a lognormal error with a CV for each scenario.  The 

simulated length composition data for JIG and PS were generated as 

multinomial random values, by imposing a multinomial error with an 

effective sample size of 1,000.  However, the length-weight data for each 

scenario were used as actual data. 
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For each scenario, simulated data corresponding to random fishing 

mortality of TO were generated and input into the length-based assessment 

model, which iterated 1,000 times.  Then, the estimates from each 

iteration were calculated in the form of relative difference (RD) to estimate 

the bias for each scenario (Miller and Hyun, 2018).  The RD of parameter 

estimate i  from the true value i  for i-th iterations is given as 

 

( )
| |

i i
i

i

RD
 




−
=  . 
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Table 2.2. Estimates of 35 free parameters and standard of error (SE) of 

the estimates in actual data sets. 

Parameters Estimates SE  Parameters Estimates SE 

2log r  -1.91 0.36  11&12.17log TOF  -1.93 0.75 

log G  -0.72 0.02  1&2.18log TOF  -1.96 0.77 

log G  -7.16 1.13  3&4.18log TOF  -5.39 0.90 

log Jq  -14.91 0.87  5&6.18log TOF  -5.36 0.90 

log Pq  -12.92 0.88  7&8.18log TOF  -0.97 0.90 

J  0.91 0.41  9&10.18log TOF  -0.96 0.88 

P  0.78 0.22  11&12.18log TOF  -0.98 0.90 

50%log JL  2.89 0.07  ,1log
inittN  23.24 0.66 

50%log JL  2.91 0.06  ,2log
inittN  19.37 1.35 

log
init

TO

tF  -5.93 1.18  ,3log
inittN  20.04 0.69 

7&8.16log TOF  -1.92 0.98  ,4log
inittN  21.06 0.79 
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9&10.16log TOF  -1.85 0.94  ,5log
inittN  16.05 9.10 

11&12.16log TOF  -1.80 0.89  ,6log
inittN  17.70 1.14 

1&2.17log TOF  -1.82 0.88  5log  -2.29 1.25 

3&4.17log TOF  -5.13 0.98  0log b  0.35 0.15 

5&6.17log TOF  -5.17 0.97  log  -2.77 0.46 

7&8.17log TOF  -1.98 0.76  log   0.99 0.05 

9&10.17log TOF  -1.97 0.73     
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3. Results 

3.1. Assessment for the common squid 

For the parameter estimation, some parameters were assumed to be 

known.  I assigned input values to some parameters based on previous 

studies (Table 2.3): (1) r  and L  (Sakurai et al., 2013); (2) 0  and 

1   (Jo et al., 2019); (3) b1 (Lorenzen, 1996).  The parameters in the 

length-fecundity relationship model, 0   and 1  , were assigned the 

point estimates obtained from the additional estimation with length-

fecundity data (Fig. 2.1).  Since there was no study on the sex ratio at age 

r (60 days old), a value of 0.5 was assigned to both male and female sex 

ratio over time: , , 0.5t r t r = =♂ ♀
.  Thus, the model was able to estimate 

a total of 35 free parameters, including body growth parameters, fishing 

and natural mortality rate, population size, reproduction rate, gear 

selectivity parameters, and length-weight relationship parameters.  The 

estimates of the free parameters and their standard errors are shown in 

Table 2.2. 

The yield data for each fishery were not fitted well with the fitted values, 

but the fitted yield values followed the temporal trend of observed data for 
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each fishery (Fig. 2.2).  The model fitted the length composition data for 

JIG and PS relatively poorly, but the modes of the fitted values moved 

along with the modes of the observed data over time (Fig. 2.3, Fig. 2.4).  

However, the model fit the length-weight data well (Fig. 2.5). 

By considering the stock-recruitment relationship, model was able to 

present not only the 16 predicted values from May and June 2016 to 

November and December 2018, but also one projected value for 

recruitment and biomass in January and February 2019.  The predicted 

recruitment was shown as seasonal trends in every year, with the highest 

recruitment in November and December and the lowest in March and 

April, and decreased compared to the predicted value one year ago (Fig. 

2.6).  In January and February 2019, recruitment was projected as 

3.45x109 No. and declined compared to the previous time step. 

The predicted biomass gradually decreased from May and June 2016 to 

November and December 2018, with fluctuations according to season (Fig. 

2.7). The predicted biomass peaked at the summer season, July and August, 

and was lowest in winter, from January and February, each year.  The 

highest and the lowest biomass was predicted as about 2.71 x 105 MT in 

July and August 2016, and 0.27 x 105 MT in November and December 

2018.  Biomass was projected as 0.17 x 105 MT in January and February 

2019.  A cohort was separated into males and females, using the sex ratio 
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at recruitment.  It was also assumed that each sex undergoes different 

death processes by reproduction.  Therefore, the biomass can be divided 

into the biomass of mature females and males.  At all times, the mature 

biomasses were higher in females then males, and the biomasses in mature 

males were highest in July and August each year.  The biomasses of 

mature females were highest in September and October every year.  The 

biomasses of spawners who arrives at the spawning ground and lays eggs 

among the mature females were highest in September and October every 

year. 

The size-specific natural mortality, M(x), was predicted by estimating 

the parameters of equation (4).  The predicted natural mortality was 5.88 

bimonth-1 (= 2.94 month-1) at first length class 0.5cm, which rapidly 

declined in the higher length classes up to 0.18 bimonth-1 (= 0.09 month-1), 

to the last length class, 33.5cm (Fig. 2.8). 

According to the fishing effort data, fishing mortality rates for JIG and 

PS were predicted by estimating the corresponding catchability, but 

fishing mortality rates for TO were estimated.  The fully-selected fishing 

mortality rates for each fishery were represented as similar temporal 

fluctuations and different intensities (Fig. 2.9).  The fishing mortality 

rate of JIG was predicted to be lowest at every March and April, but the 

fishing mortality rate of PS and TO were predicted to be lowest from 
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March and April to May and June every year.  For each fishery, the 

fishing mortality rates in average (May and June 2016 – November and 

December 2018) were 0.07 bimonth-1 for JIG, 0.003 bimonth-1 for PS, and 

0.15 bimonth-1 for TO.  These values accounted for 31%, 1%, and 68% 

of all the fishing mortality rates, respectively. 

The predicted mean lengths for each age differed by cohort.  These 

results originate from the different size-specific mortality over time.  The 

average of the mean lengths of all cohorts from age 1 to 6+ were 1.49 cm, 

5.09 cm, 10.68 cm, 16.68 cm, 21.71 cm, and 24.95 cm.  The PMF of 

length distribution also differed by sex, and as the age increased, the mode 

of length distribution of females was larger than that of males at the same 

age (Fig. 2.10). 
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Table 2.3. Parameter values assigned to the length-based assessment 

model for the common squid, including growth ( r  , L  ), length-

maturation ( 0 , 1 ), natural mortality ( 1b ), length-fecundity ( 0 , 1 ), 

and female ratio at recruitment ( ,t r♀  ) parameters.  r  , L  , 0  , 1  , 

and 1b   are taken from previous studies (Sakurai et al., 2013; Jo et al., 

2019; Lorenzen, 1996). 0   and 1   are taken from the additional 

estimation with length-fecundity data. 

Parameters  Input values 

r  (cm)  1.47 

L  (cm)  33.7 

0   11.537 

1  (cm-1)  -0.615 

1b   0.305 

0  (No. / cm4.86)  6.57·10-3 

1   4.86 

,t r♀   0.5 
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Fig. 2.1 Fitted fecundity at length ˆ( )x  from the length-fecundity data 

(Kim et al., 1997).  The points denote data, and the solid line denotes the 

fitted line (
3 4.86

0
1̂ˆ( ) 6.5 10x x x


  −=   = ).  The vertical axis denotes 

the number of eggs (x 105) and the horizontal axis denotes mantle length 

in cm. 
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Fig. 2.2. Bimonthly yield data, 
g

tY , of the common squid from the three fisheries in Korea and the predicted yield for 

each fishery ˆ g

tY  from the length-based model.  The solid line denotes the predicted yield from the model, and the 

points denote the observed yield data.  The vertical axis denotes yield in MT (x 104) and the horizontal axis denotes 

time (bimonth).  Panel (a), (b), and (c) are jigger, large purse-seine, and the others, respectively. 
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Fig. 2.3. Predicted length frequency of jigger fishery from length-based model and observed length composition data 

from May and June 2016 to November and December 2018.  The horizontal axis denotes length classes with width of 

1cm and the vertical axis denotes frequencies at each length class.  The histograms denote the observed data, and the 

solid lines denote predicted values. 
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Fig. 2.4. Predicted length frequency of large purse-seine fishery from length-based model and observed length 

composition data from May and June 2016 to November and December 2018.  The horizontal axis denotes length 

classes with a width of 1cm and the vertical axis denotes the frequencies of each length class.  The histograms denote 

the observed data, and the solid lines denote predicted values. 
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Fig. 2.5. Predicted weight at length ( )W x  from the length-based model.  

Gray points denote observed data (1,091 squid), and the solid line denotes 

the predicted value (
2.7ˆ

ˆ( ) 0.06W x x x
=  =  ).  The horizontal axis 

denotes mantle length in cm, and the vertical axis denotes body weight in 

grams. 
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Fig. 2.6. Predicted bimonthly recruitment from May and June 2016 to 

November and December 2018, and projected recruitment in January and 

February 2019 of the common squid stock.  The vertical axis denotes 

recruitment in number (x 1010) and the horizontal axis denotes time 

(bimonth). 
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Fig. 2.7. Predicted bimonthly biomass from May and June 2016 to 

November and December 2018 and projected biomass in January and 

February 2019 of the common squid stock.  Solid line denotes the 

predicted biomass of the common squid stock, the dotted line denotes the 

predicted biomass of mature males, dash-dotted line denotes the predicted 

biomass of mature females, and dashed line denotes the predicted biomass 

of spawners.  The vertical axis denotes biomass in MT (x 105) and the 

horizontal axis denotes time (bimonth). 
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Fig. 2.8. Predicted size-specific natural mortality rate M(x).  The vertical 

axis denotes instantaneous natural mortality rate (bimonth-1) and the 

horizontal axis denotes length class in cm. 
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Fig. 2.9. Predicted bimonthly instantaneous fishing mortality rates of (a) jigger, (b) large purse-seine, and (c) the other 

fisheries.  The vertical axis denotes instantaneous fishing mortality (bimonth-1) and the horizontal axis denotes time 

(bimonth). 
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Fig. 2.10. Predicted probability mass functions (PMF) of length 

distribution by age of the cohort recruited in May and June 2016.  Solid 

lines denote the predicted PMF of a cohort ( , ( )t af x ), dotted line denotes 

the predicted PMF of a cohort of males ( , ( )t af x♂
), and the dashed line 

denotes the predicted PMF of a cohort of females ( , ( )t af x♀
).  Panels are 

separated by time and age of the cohort: (a) t = May and June 2016, and a 

= 1; (a) t = July and August 2016, and a = 2; (a) t = September and October 

2016, and a = 3; (a) t = November and December 2016, and a = 4; (a) t = 

January and February 2017, a = 5; (a) t = March and April 2017, and a = 

6+. 
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3.2. Model performance 

I evaluated the performance of the length-based model for the common 

squid with respect to the number of convergences, the goodness-of-fit, and 

the relative differences of free parameters under different ME scenarios. 

To count the convergences of 1,000 iterations for each ME scenario, I 

set the criteria for convergence as follows: (1) indication for convergence 

using the ‘nlminb’ function in the R software; and (2) maximum gradient 

< 0.001.  In 1,000 iterations of three levels of ME scenarios, with log 

normal errors of CV of 10%, 30%, and 50%, convergences were 914, 740, 

and 570, respectively.  Thus, convergence decreased as the level of 

measurement errors increased.  The larger the level of measurement 

errors, the greater the uncertainty in simulated data sets, so this result 

seemed to be acceptable. 

To compare the goodness-of-fit for each scenario, I used the residual 

sum of squares (RSS) for each random vector, mJ, mP, YJ, YP, YTO, and 

W, which belongs to the likelihood components (Table 2.4).  Residuals 

were calculated by subtracting the simulated data f6rom the fitted values 

obtained from model estimation using simulated data.  The RSSs of each 

random vector in all ME scenarios were less than the RSSs from actual 

data sets, except for weight at length, W.  RSS for W was invariant 
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among all scenarios, and almost equal to a result from actual data sets.  

The RSS for two multinomial variables (mJ, mP) and three lognormal 

variables (YJ, YP, YTO) gradually increased as the MEs in yields of each 

fishery increased. 

My model includes various parameters to reflect the biological 

characteristics of the common squid.  Uncertain parameters, such as the 

variance of length distribution of a recruitment, a parameter in the natural 

mortality rate, and the spawning migratory rate were estimated.  Thus, I 

used the RD statistic to evaluate the estimability of parameters in my 

model.  The RD was calculated based on the maximum likelihood 

estimates of each parameter for the converged case of each scenario.  

Because uncertainties in the process of fishing mortality of TO were 

incorporated into each simulated data set, the true values of time-series 

fishing mortality for TO varied in each iteration, except for 
init

TO

tF , which 

is estimated as a free parameter regardless of penalized likelihood.  Thus, 

I evaluated the distribution of the RD for 20 free parameters, excluding 15 

fishing mortality rates of TO from July and August 2016 to November and 

December 2018.  The distributions of RDs for the converged case of the 

scenario were displayed using box plots, and the different levels of ME in 

yields for each fishery were compared (Fig. 2.11).  For each scenario, the 
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distributions of RDs were shown to be quite precise overall, but the 

estimates of log
init

TO

tF   and 5log   were not precise compared to the 

other parameters.  The distributions of RD were more dispersed, with 

negative bias occurring in the higher levels of ME.  The RDs of estimates 

for parameters involved in body growth (
2log r , log G , and log G ), 

size-specific gear selectivity (
J , 

P , 50%log JL , 50%log PL ), and length-

weight relationship ( log  , log   ) were quite robust, even at high 

levels of ME.  The RDs of estimates for parameters involved in mortality 

( log Jq  , log Pq  , log
init

TO

tF  , 0log b  ) and reproduction ( 5log  ) were 

very sensitive to the level of ME.
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Table 2.4. Mean value of residual sum of squares (RSS) of six variables constituting the likelihood function under 

different levels of measurement error scenarios from 1,000 replicates.  In the scenarios, CV10%, CV30%, and CV50% 

indicate the measurement error in all data sets with 10%, 30%, and 50% levels of coefficient of variation.  Scenario 

‘Actual data’ refers to the actual data sets, and is shown for comparison with the simulation experiments. 

 

 

Scenarios J
m  

P
m  log J

Y  log P
Y  log TO

Y  W  

Actual data 261095.4 1424365.7 6.7 10.7 5.8 784160.6 

CV10% 14239.6 13314.7 0.1 0.1 0.4 786188.7 

CV30% 15926.5 14822.2 1.2 1.0 1.5 786221.0 

CV50% 18463.5 17444.0 3.1 2.6 3.4 786276.4 
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Fig. 2.11. Box plots of relative differences (RDs) of estimates for each 

level of measurement error.  Scenarios CV10%, CV30%, and CV50%, are the 

measurement errors in all yield data sets with 10%, 30%, and 50% levels 

of coefficient of variation.  Boxes represent the interquartile range (25th 

– 75th percentile).  Bold lines in the boxes indicate the median value of 

RDs, and lines outside the whiskers indicate the upper and lower fences. 
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4. Discussion 

Cephalopods exist in all marine habitats worldwide, and make up a 

large part of the total global biomass of all marine species.  These 

organisms are important biologically, commercially, and scientifically 

(Fries, 2011).  However, assessing the stock of cephalopods is an 

ongoing challenge, due to a lack of information about their migration, 

reproduction, body growth, and mortality, and their environmental 

sensitivity.  The common squid is one such species. Under these 

circumstances, I developed an assessment model for the common squid, 

using length composition data.  My model is based upon Quinn’s length-

based model, but includes the situation of multiple fisheries in Korean 

waters and biological properties of the common squid, resulting in 

outcomes that precursor model did not address. 

Parameter estimation was performed by minimizing the objective 

function value as the negative log-likelihood function, which found the 

best fit between a model and data.  In actual data example, the yield data 

and the length composition data for each fishery were not fitted well with 

the model values.  The model is designed to catch the squid for each 

fishery from a single population at the same time.  These results were 

considered that the model integrates the information from each fishery 
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data set.  In simulation studies, goodness of fit in the model for each data 

set were deteriorated as the ME increased.  Because I assumed that 

random vectors in the objective function are independent, It is therefore 

problematic that the goodness of fit for two multinomial variables (
J

m , 

P
m ) are affected by the measurement errors only for the yields of each 

fishery.  It is thought that this result originates from fishing mortality rate 

related with yield.  Because fishing mortality is product of size-specific 

gear selectivity and time-specific fishing intensity, even the fish with low 

selectivity will eventually be caught at high level of fishing intensity.  

The predicted catch composition will also differ from that obtained under 

different level of fishing intensity.  Thus, predicted catch composition 

obtained from Baranov catch equation depends highly on fishing intensity 

(Branch, 2009), which means that there is an interaction between the yield 

(lognormal variable) and catch composition (multinomial variable). 

I used the Gompertz growth model to account for the body growth of 

the common squid, and my model was able to estimate the parameters 

related to body growth: 
2

r  , G, and G  .  The estimation of these 

parameters was very precise and unbiased.  Therefore, the Gompertz 

growth model seems to be appropriate for explaining the body growth of 

the common squid, whose instantaneous growth rate changes as age 
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increases.  This length-based model can be applied to other fish species 

with differences in body growth rate between the larval and adult stages. 

Quinn et al. (1998) assumed that the first eight recruitments in the series 

are forced to have the same trend as the following year, so they used these 

eight recruits as derived parameters, but the other recruitments were set as 

free parameters.  However, I derived the recruitment parameters by using 

spawner-recruitment model.  The relationship between the parental fish 

and the resulting recruitment has been described in many studies as 

Beverton and Holt (1957) and Ricker (1954) model.  Beverton and Holt 

model assumed that recruitment approached toward asymptotic value at 

high spawning stock biomass.  Ricker model assumed that the peak level 

of recruitment occurred at an intermediate spawning stock biomass.  I 

also tried to estimate the free parameters using these two stock-recruitment 

models, but failed to estimate the parameters.  As an alternative, 

recruitments were linked to spawners at the previous time-step, using a 

length-fecundity relationship (Kim et al., 1997).  With this extension, my 

model was able to reduce the number of free parameters, and project the 

abundance of this stock in January and February 2019.  Given that I 

defined recruits as being 60 days old, predicted recruitment involved 

individuals born two months previously.  I separated recruitment by birth 

date and identified three cohorts according to different peak spawning 
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seasons: winter, from January to April; summer, from May to August; and 

autumn, from September to December (Kim et al., 2011; Kim and Kang, 

1995).  The autumn cohort was predicted to be the largest, winter was 

second, and summer was the smallest.  However, there was no evident 

gap between the winter and summer cohorts.  This result conflicts with 

previous research into common squid (Sakurai et al., 2013).  Sakurai 

(2013) stated that the autumn and winter cohorts are the largest.  This 

may be due to the migration route of the winter cohort.  The winter 

cohort is born in the East China Sea off Kyushu Island, south of Japan, 

then some of squid migrate to feed in the northern East Sea of Korea, 

where they might be caught by Korea fisheries, while the majority migrate 

in the waters off eastern Japan (Sakurai et al., 2013; Kidokoro et al., 2010). 

Because the natural mortality rate is confounded by other parameters, 

the estimation of the natural mortality rate is difficult (Fu et al., 2000).  

Thus, the natural mortality rate is assumed to be known, or to be a non-

time varying constant in many models.  In my model, the natural 

mortality rate was modelled as a power function of the body length, and 

can be estimated as a parameter, b0, in the natural mortality function.  In 

terms of RD, the estimation of b0 is relatively precise, but is negatively 

biased.  This result originates from the estimation of parameter   , 

which determines the magnitude of the natural mortality rate, along with 
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0b  .  Because the estimation of the two parameters    and    in the 

length-weight relationship was independently supported by length-weight 

data, these estimates were too precise and robust to make b0 biased.  

Millar and Hyun (2018) compared two approaches to natural mortality rate 

in the age-structured model as Lorenzen (1996) equation (= allometric 

relationship of natural mortality to body weight) and constant, which also 

showed worse performance in the case of Lorenzen equation.  

About 25 fisheries in Korea exploit the common squid, and the yield in 

each fishery is obtained from ‘one common squid population’. It is 

therefore necessary to consider yields in all fisheries to assess the 

population.  However, there are problem in parameter estimation, and 

data are not available for all 25 fisheries.  Thus, I separated all fisheries 

into three fleets, depending on the availability of length composition data.  

Due to the lack of length composition data, the fishing mortality rate for 

TO, unlike JIG and PS, is not specified for the length class.  So, it is 

reasonable to use the concept of pulled mean for lengths.  The fishing 

mortality rate of JIG was predicted to be lowest at every March and April, 

but the fishing mortality rate of PS and TO were predicted to be lowest 

from March and April to May and June every year.  Considering that the 

seasonal closure of the JIG is in April each year, and the seasonal closure 

of the other fisheries is from April to May each year in Korea, these results 
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were reasonable.  The fishing mortality rates for each fishery were 

predicted as being high from July to the winter season each year, which is 

consistent with the total allowable catch (TAC) for the common squid is 

allocated in July every year.  In the results of the simulation experiments, 

the estimation of 
init

TO

tF  was shown to be more biased than qJ and qP, which 

determine the corresponding fishing mortality rate, at high levels of ME.  

As the ME of the yield increased, the variability of the simulated yield 

increased, and the variability of the total fishing mortality rate also 

increased.  Here, the fishing mortality rates for JIG and PS, which 

constitute the total mortality rate, are relatively robust when estimated 

using fishing effort data, whereas the fishing mortality for TO is impacted 

by the variability of the total fishing mortality rate.  The estimation of 

init

TO

tF   also appeared to be less precise than that of other parameters, 

because uncertainties in the fishing mortality of TO was incorporated into 

each iteration.  For each fishery, the estimation of parameters related to 

the fishing mortality rate (qJ, qP, 
init

TO

tF ) were positively biased, which 

means that the fishing mortality rates of all fisheries were highly estimated.  

On the other hand, parameters ( 0b ,  ) that determines the magnitude of 

natural mortality rate were negatively biased, which means that the natural 

mortality rate was estimated to be low.  Consequently, the model appears 
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to be trying to keep the total mortality rate invariant as the ME of the yield 

increases. 

Quinn et al. (1998) were able to estimate the growth parameter, gear 

selectivity, and fishing mortality of each sex by classifying the dynamics 

of each sex using length composition data for each sex.  However, I 

separated the cohorts into male and female in the absence of length 

composition data for each sex.  There were two reasons for separating a 

cohort into males and females: (1) the common squid, as well as 

cephalopods, has distinctly different rates of death by reproduction 

between males and females; (2) spawner, females capable of laying eggs, 

must be defined as part of a recruitment.  Therefore, I was not able to 

distinguish between males and females in terms of body growth and 

fishing mortality, unlike Quinn et al. (1998), but I was able to discriminate 

the dynamics of each sex without any data on sex, using spawner-

recruitment relationship and mortality by reproduction.  However, the 

estimability of the arrival rate at spawning ground at age 5, 5 , appears 

to be problematic, as a result of model evaluation.  This problem also 

relates to the estimation of the abundance of age 5 at time tinit, ,5log
inittN .  

The estimation of the abundance of each age at time tinit, ,1log
inittN  -

,6log
inittN + , were negatively biased at high levels of ME, but estimation 
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of ,5log
inittN   was not biased and precise than that of the others.  

Kidokoro et al. (2010) showed that the spawning migration routes and the 

spawning ground changed after the regime shift in the late 1980s, based 

on tagging experiment.  It is thought that the spawning ground and the 

spawning migration routes of the common squid are closely connected 

with environmental changes.  Such changes in spawning are thought to 

play a key role in the changing stock size of the common squid (Sakurai 

et al., 2000), so it is considered that additional work is needed to connect 

the spawning and migration in my model with environmental factors. 
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II. How should we randomly sample 

marine fish landed at Korean ports to 

estimate the length frequency 

distribution of those fish? 

1. Introduction 

Fishery stock resources are being used and developed in various fields 

of human activities.  To facilitate continual conservation and use, the 

status of the resources must be understood through fishery stock 

assessment, and appropriate management must be carried out.  Fishery 

stock assessment can be performed using different models, depending on 

the available data.  The data are generally samples collected when it is 

impossible to examine the entire population, and should reflect the 

characteristics of the population.  Age-structured models, which are 

currently the preferred method for fishery stock assessment, require long-

term accumulated age data, which is difficult to collect because of time 

and cost.  An alternative method is a length-based model using body 

length composition data.  The length-based model can detect variations 

in population size by modelling the virtual age structure of the population, 

classifying the cohorts, detecting temporal changes in body length for each 
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individual, and tracking the growth and death of the cohorts.  Therefore, 

length composition data, which is easier to collect than age data, is 

important. 

In Korea, length composition data was collected after going through the 

‘arrangement process’ (BCFM, 2020; Fig. 3.1).  The fish sampled were 

collected from fresh and frozen fish, excluding live fish.  Frozen fish 

were sorted by species and body size by the crew, and then the fish sorted 

are placed into a box by a certain weight before entering the port.  Fresh 

fish are landed in a randomly mixed state by species and body size, and 

the sorting and filling processes are carried out at the port.  The whole 

process of sorting and filling is called an ‘arrangement process’.  After 

the arrangement process, all fish landed are contained in boxes by body 

size group and are then sampled. 

The current sampling method is to collect the samples from fish sorted 

by body size groups (e.g., very small, small, medium, large, very large) in 

proportion to the number of boxes in body size groups (Seong-woo Goo, 

Korea Fisheries Resources Agency, Busan, Republic of Korea, personal 

communication; NFRDI and PKNU, 2004).  This is a sampling method 

using prior information about the number of boxes in body size groups of 

the population of fish landed; a stratified random sampling method. 

Stratified random sampling is a method of separating a population into 
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several strata according to specific criteria, and collecting samples from 

each stratum.  The strata should be collectively exhaustive and mutually 

exclusive.  Even if the number of samples to be collected is small, 

stratified random sampling has the advantage of collecting samples 

representing the population (Lohr, 1998; Scheaffer et al., 1971).  

According to the definition of the stratified random sampling, fish landed 

are sorted into several body size groups with homogeneous body size.   

Thus, it is necessary to collect samples by body size groups proportional 

to the number of fish sorted by body size groups. 

In this chapter, I performed simulation experiments to evaluate whethe

r or not the length composition data sampled using the current sampling 

method can represent the length composition of the fish landed, and sugg

ested that an alternative sampling method using the sampling weights as 

the number of fish sorted by body size group should be applied.
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Fig. 3.1. Process of arranging fish landed. 
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2. Methods 

2.1. Simulated length composition data 

All symbols used in this chapter are summarized in Table 3.1.  To 

generate the simulated length composition data, the data sampling process 

was separated into landing, arrangement, and data collection, in time order. 

At landing time, all individuals landed (i) have their own body length 

( iX ) and body weight ( iW ).  The body weight of each fish landed was 

generated by the lognormal error of an allometric length-weight 

relationship, 

 

( ) 2exp[ ]; ~ (0, )i i i WiW X N


   =   . 

 

At the arrangement time, the fish landed goes through the sorting 

process, classifying the fish into several body size groups according to the 

body length section of each group, where length sections do not overlap 

between groups.  When the sorting process is completed, the number of 

fish sorted in body size group h ( hC ) is obtained, and the filling process 

is carried out.  In the filling process, each box is filled with fish according 
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to a certain weight, WBox, which is set differently for each fish species.  

When the filling process is complete, the number of boxes in body size 

group h ( hBox ) can be obtained. 

The sampling weights for the ‘current’ and ‘proposal’ sampling method 

(
Current

hw  , 
Proposal

hw  ) are proportional to the number of boxes and fish 

sorted in body size groups ( hBox , hC ), respectively:  

 

Current

Proposal

,

.

h
h

h

h

h
h

h

h

Box
w

Box

C
w

C

=

=





 

 

For each sampling method (m), the sample size taken from body size 

group h (
m

hS  ) is obtained by multiplying total sample size (S) and 

corresponding sampling weight: 

 

 ; Current Proposalm m

h hS S w m=  = ; . 
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The simulated length data are collected from each body size group by 

corresponding sample size (
m

hS  ), and discretized into k length classes, 

resulting in simulated length composition data (Lm): 

 

1 2( , , ..., ),m m m m

kL o o o=  

 

where 
m

lo   is the number of samples collected in the l-th length class 

obtained by sampling method m.  

  



75 

 

2.2. Inference of parameters 

For each sampling method, simulated data was used to estimate the k 

length composition rates of fish landed, by assuming that length 

composition data followed a multinomial distribution: 

 

1 2

~ multinomial( , )

( , , ... , )

m

k

L S

  =

π

π

 , 

 

where π   is k length composition rates.  Thus, I constructed an 

objective function (Objm) as the negative log-likelihood function of a 

multinomial distribution ( ): 

 

( | )m mObj L= − π . 

 

The point estimates of k length composition rates and their uncertainty 

were estimated by numerical optimization using the TMB package in R.  

Using TMB, it was possible to calculate the standard error of the estimate 

for the last length composition rate, k , which is difficult to calculate 

using an analytical method. 
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Table 3.1. List of symbols.  Values used in the simulation are under “Setting values”. 

Symbols Definition Setting values 

i Index for individual  

C Number of fish landed. 0.1 and 1 million 

X Lengths (cm) of all fish landed.  

W weights (gram) of all fish landed.  

 ,   
Parameters in the allometric length (in cm)-weight (in gram) 

relationship. 
  = 0.003, 

  = 3.425 

2

W  Variance of error term in allometric relationship. 0.01 g2 

h One of the five size groups.  
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hC  Number of fish landed which belong to size group h.  

BoxW  Body weight of fish landed in a box. 18 kg 

hBox  Number of boxes, which belong to size group h.  

m Index for sampling method.  

m

hw  Weight of size group h of sampling method m.  

S Sample size. 100, 200, …, 1000 

m

hS  Sample size of size group h of sampling method m.  

k Number of length classes. 40 

mL  Length composition data obtained by sampling method m.  
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m

lo  Samples at l - th length class, collected by sampling method m.  

π  Length composition rates of the total fish landed.  

  Mean of body length of fish landed. 10, 30, 50 cm 

  Standard deviation of body length of fish landed. 20 cm 

min Minimum body length of fish landed. 10 cm 

max Maximum body length of fish landed. 50 cm 

S1~S4 Scenarios for length distribution of total fish landed.  

 



79 

 

2.3. Simulation experiments 

I performed simulation experiments comparing the sampling methods 

(‘current’, ‘proposal’) to suggest a sampling method representing for the 

length composition rates of total fish landed.  The simulation was 

conducted by imitating the actual sampling process.  To imitate the actual 

sampling process, the sampling process was separated into landing, 

arrangement, and data collection steps in chronological order, and 

situations were assigned to each time step. 

At landing time, I established four scenarios for the body length 

distribution of the total fish landed (Table 3.2).  Three situations (S1~S3) 

assumed a truncated normal distribution, and one situation (S4) assumed 

a uniform distribution.  The truncated normal distribution was used to 

limit the minimum and maximum values of the body length range of the 

fish landed.  The number of individuals landed (C) involved two cases: 

1 and 0.1 million for each length distribution scenario.  For each scenario, 

each body length was generated with a constraint, where the minimum 

length was 10 cm and the maximum length was 50 cm, using the 

“truncnorm” package (Mersmann et al., 2018) and “seq” function in R.  

Each body weight of fish landed was generated with three parameters of a 

stochastic length-weight relationship.     and    were set as 0.003 
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g/cm3.425 and 3.425 respectively.  These values were taken from a study 

into chub mackerel (Gim, 2019). W  was set at 0.01 g. 

At the arrangement time, it was assumed that all individuals landed 

were sorted into five body size groups according to the body length section 

of each size group, where length sections do not overlap between groups, 

and the width of the length section of all groups was 8 cm.  Thus, five 

size groups were defined as follows: VSG: very small size group, (10cm, 

18cm]; SG: small size group, (18cm, 26cm]; MG: medium size group, 

(26cm, 34cm]; LG: large size group, (34cm, 42cm]; VLG: very large size 

group, (42cm, 50cm].  Fish sorted by body size groups were placed into 

the boxes for each body size group with a weight of 18 kg, which is the 

weight of the fish in one box of chub mackerel (Scomber japonicus), as 

determined by the Busan Cooperative Fish Market in Korea. 

At the data collection time, the simulated length data was collected by 

two sampling methods (‘current’, ‘proposal’) with sample sizes from 100 

to 1,000 with an increment of 100.  The simulated length composition 

data was obtained by discretizing with 40 length classes.  The length 

classes were defined as follows: the width of each length class is 1cm, and 

the value of each length class is the midpoint value of the class: e.g., 

10.5cm is the midpoint value of first length class, (10cm, 11cm]. 
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For each sampling method, the simulation experiment was 

independently iterated 1,000 times, and each sampling method was 

evaluated using the estimates of length composition rates and their 

standard errors. 

The estimates of the length composition rates obtained from 1,000 

iterations of each sampling method were used to assess accuracy, by 

comparison with the true length composition rates.  I also calculated the 

95% coverage probability as the frequency at which the 95% confidence 

intervals of estimates of length composition rate contained the true length 

composition rates (Hyun et al., 2011).  To calculate the 95% confidence 

intervals of estimates, I assumed that estimates followed the standard 

normal distribution.  For example, the estimated 95% confidence interval 

for the l-th length composition rate from i-th iteration was equal to 

( ) ( )

0.025
ˆ ˆ| | ( )i i

l lz SE    , where 0.025z   is the 0.025th quantile of the 

standard normal variable (i.e., 0.025 1.96z  −  ) and 
( )ˆ( )i

lSE    is 

standard error for the estimate 
( )ˆ i

l .  The 95% coverage probabilities of 

estimates of length compositions from the 1,000 iterations were displayed 

using boxplots, and then graphically compared between ‘current’ and 

‘proposal’ sampling methods.  
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Table 3.2. Simulation scenarios of the length distribution of a population 

(i.e., a total of fish landed).  Length distributions of all fish landed were 

generated under four scenarios with the assumption that the total of all fish 

landed was 0.1 and 1 million, respectively.    and   are the mean 

and the standard deviation of a truncated normal distribution.  The shape 

of a length distribution differs by scenario: (1) S1: skewed to the right; (2) 

S2: symmetrical; (3) S3: skewed to the left; (4) S4: uniform. 

Scenarios Length distribution of Total fish landed 

S1 Normal ( 10, 20, min 10, max 50 = = = = ) 

S2 Normal ( 30, 20, min 10, max 50 = = = = ) 

S3 Normal ( 50, 20, min 10, max 50 = = = = ) 

S4 Uniform ( min 10, max 50= = ) 
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3. Results 

In all body length distribution scenarios after the arrangement process, 

the ratios of boxes (=
Current

hw ) and fish sorted (=
Proposal

hw ) for each body 

size group were different (Table 3.3, Table 3.4).  This result indicated that 

the number of samples for each body size group using the ‘current’ 

sampling method are not proportionate to the number of fish sorted for 

each body size group. 

The estimates of the length composition rates obtained from the length 

composition data collected by the ‘current’ sampling method were clearly 

discriminated according to the length section of the five body size groups, 

and underestimated (negatively biased) for smaller length class values, but 

overestimated (positively biased) for larger length class values (second 

row of Fig. 3.2, and Fig. 3.3).  The estimates in the ‘proposal’ sampling 

method accurately reflected the true value (third row of Fig. 3.2, and Fig. 

3.3). 

The 95% coverage probabilities of estimates of length compositions in 

the ‘current’ sampling method decreased as the sample size increased 

(gray colored boxplots in Fig. 3.4), while in the ‘proposal’ sampling 

method, the 95% coverage probabilities converged to 95% as the sample 

size increased in all body length classes (white colored boxplots in Fig. 
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3.4).  However, in the S4 scenario, in which the body length distribution 

of fish landed was assumed to be uniform, the 95% coverage probabilities 

of 200 samples were reduced compared to 100 samples.
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Table 3.3. Sampling weights used by the current practice ( Current

hw ) versus those used by the alternative practice ( Proposal

hw ) 

set under each scenario when a total of all fish landed (C) was assumed to be 0.1 million.  Five size groups are divided 

as follows: VSG: very small size group, (10cm, 18cm]; SG: small size group, (18cm, 26cm]; MG: medium size group, 

(26cm, 34cm]; LG: large size group, (34cm, 42cm]; VLG: very large group, (42cm, 50cm]. 

Scenarios  
Body size groups (h) 

Sum 
VSG SG MG LG VLG 

S1 

hBox  50 175 635 990 717 1,660 

Current

hw  0.03 0.11 0.23 0.31 0.31 1 

hC  32,443 28,008 20,230 12,564 6755 100,000 

Proposal

hw  0.32 0.28 0.2 0.13 0.07 1 
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S2 

hBox  18 175 635 990 717 2,535 

Current

hw  0.007 0.07 0.25 0.39 0.28 1 

hC  9,807 23,983 32,672 24,011 9,527 100,000 

Proposal

hw  0.1 0.24 0.33 0.24 0.1 1 

S3 

hBox  12 91 405 1,201 2,633 4,342 

Current

hw  0.003 0.02 0.09 0.28 0.6 1 

hC  6,970 12,471 20,270 27,686 32,603 100,000 

Proposal

hw  0.07 0.12 0.2 0.28 0.33 1 
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S4 

hBox  31 138 389 856 1,605 3,019 

Current

hw  0.01 0.05 0.13 0.28 0.53 1 

hC  20,000 20,000 20,000 20,000 20,000 100,000 

Proposal

hw  0.2 0.2 0.2 0.2 0.2 1 
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Table 3.4. Sampling weights used by the current practice (
Current

hw ) versus those used by the alternative practice (
Proposal

hw ) 

set under each scenario when a total of all fish landed (C) was assumed to be 1 million.  Five size groups are divided 

as follows: VSG: very small size group, (10cm, 18cm]; SG: small size group, (18cm, 26cm]; MG: medium size group, 

(26cm, 34cm]; LG: large size group, (34cm, 42cm]; VLG: very large group, (42cm, 50cm]. 

Scenarios  
Body size groups (h) 

Sum 
VSG SG MG LG VLG 

S1 

hBox  504 1,877 3,824 5,224 5,278 16,707 

Current

hw  0.03 0.11 0.23 0.31 0.32 1 

hC  325,324 278,086 202,467 126,125 67,998 1,000,000 

Proposal

hw  0.33 0.28 0.20 0.13 0.07 1 
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S2 

hBox  180 1,768 6,335 9,907 7,300 25,490 

Current

hw  0.01 0.07 0.25 0.39 0.29 1 

hC  96,559 241,031 325,745 240,188 96,477 1,000,000 

Proposal

hw  0.10 0.24 0.33 0.24 0.01 1 

S3 

hBox  118 928 4,042 12,015 26,320 43,423 

Current

hw  0.003 0.02 0.09 0.28 0.61 1 

hC  67,812 127,281 201,799 276,917 326,191 1,000,000 

Proposal

hw  0.07 0.13 0.20 0.28 0.33 1 
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S4 

hBox  313 1,382 3,893 8,562 16,063 30,213 

Current

hw  0.01 0.05 0.13 0.28 0.53 1 

hC  200,000 200,000 200,000 200,000 200,000 1,000,000 

Proposal

hw  0.2 0.2 0.2 0.2 0.2 1 
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Fig. 3.2. Comparison in estimates ( π̂ ) of composition between the current and alternative practices with a sample size 

of 200 under four scenarios when a total of all fish landed (C) was 0.1 million individuals.  The first row shows the 

length frequency of fish landed set under each scenario.  The second and third rows are the results of current and 

alternative practices, respectively.  Open circles are true compositions and points (-) are the mean values of estimates 

by length class and the vertical bars are the standard deviations of estimates from 1,000 replicates. 
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Fig. 3.3. Comparison in estimates ( π̂ ) of composition between the current and alternative practices with a sample size 

of 200 under four scenarios when a total of all fish landed (C) was 1 million individuals.  The first row shows the length 

frequency of fish landed set under each scenario.  The second and third rows are results from current and alternative 

practices, respectively.  Open circles are true compositions and points (-) are the mean values of estimates by length 

class and the vertical bars are the standard deviations of estimates from 1,000 replicates. 
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Fig. 3.4. Boxplots of 95% coverage probabilities of estimates of length 

compositions (i.e., 40 π̂ ’s in the multinomial likelihood) by sample size 

considered.  Simulation was performed for each of 10 cases of sample 

size (100, 200, …, 1,000) under four scenarios by two cases of a total of 

fish landed (C = 0.1 million individuals under the left column; C = 1 

million individuals under the right column).  Gray boxes denote the 

current sampling practice while blank boxes represent the alternative 

sampling practice. 
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4. Discussion 

The length composition data of fish sampled using the current method 

did not represent the length composition of the fish landed using 

simulation experiments.  The estimates of length composition rates from 

the length composition data collected by the ‘current’ sampling method 

were clearly distinguished according to the body length section of body 

size groups, and smaller length classes were underestimated, but larger 

length class values were overestimated.  This problem may arise because 

the compositions of the number of boxes are different from the 

composition of the number of fish sorted of body size groups.  Since the 

‘current’ sampling method uses sampling weights proportional to the 

number of boxes of body size groups, a large number of fish sorted are 

contained into one box in a small size group, but a small number of fish 

sorted are contained into one box in a large size group. 

The 95% coverage probability was shown to be independent of the total 

number of fish landed, and to vary depending on the sample size and the 

shape of the length distribution of the fish landed.  It was confirmed that 

the true composition rates were not included within the 95% confidence 

interval of the estimates from ‘current’ sampling method.  The ‘proposal’ 

sampling method can represent the length composition of the fish landed. 
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But in the S4 situation, in which the body length distribution of the fish 

landed is assumed to be uniform, the 95% coverage probability for 200 

samples were decreased compared to that for 100 samples. This may be 

because the standard error of the estimates of length composition rates for 

the sample size of 100 is larger than that of the sample size of 200, so that 

the width of the 95% confidence interval where the sample size is 100 is 

wider than that of the sample size of 200. 

In Korea, a process called arrangement is carried out before data are 

collected from fish landed, so there is a condition for performing stratified 

random sampling, in which sample data are collected for each body size 

group. However, manuals on sampling method or previous studies 

presenting representativeness of samples collected by the ‘current’ 

sampling method are insufficient. I performed simulation experiments to 

develop a sampling method. The ‘current’ sampling method using 

information on the number of boxes cannot represent the length 

composition of the fish landed, and as an alternative, it is suggested to use 

information on the number of fish landed. Thus, it is necessary to pay 

attention to the arrangement process of the catch before data is collected, 

and it is suggested to investigate the number of fish sorted by body size 

group. 
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Conclusions 

In this study, I developed a length-based assessment model for the 

common squid in multiple fisheries, and applied the model to actual data 

sets.  However, I found that length composition data, which are the key 

data of my model, did not represent the length composition of fish landed.  

Assessment results using actual data sets therefore cannot be presented as 

representative of the common squid population.  As an alternative, I 

evaluated the model by performing simulation experiments.  The model 

was able to provide the parameter estimates including body growth 

parameters, fishing and natural mortality, population size, reproduction 

rate, gear selectivity parameters, and length-weight relationship 

parameters, but my model still confronted problems of estimation for a 

parameter related to migration, and the assumption of independence 

between length compositions (multinomial variables) and yields 

(lognormal variable).  Therefore, further studies on migration of the 

common squid and correlation between length compositions and yields 

should be performed. 
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Appendix 1. Derivation of expected length and 

variance of aged individual. 

Consider the deterministic Gompertz growth model as 

 

( )0exp exp ( )aL L G a a=  − −  −     (1) 

 

From equation (1), length at age a+1 can be transformed by length at age 

a: 

 

( )

( ) ( )

1 0

0

exp exp ( 1 )

exp exp exp ( )

aL L G a a

L G G a a

+ 



=  − −  + −  

=  − −  −  −  

.    (2) 

 

Taking the natural logarithm of both sides of equation (2):  

 

( ) ( )

( )

1 0log log exp exp ( )

log exp log

a

a

L L G G a a

L
L G

L

+ 




= − −  −  −

 = − −   
 

 .     (3) 

 

Exponentiate both sides of equation (3) and then La+1 is function of La 

(i.e., the length of an aged individual is explained by previous length).  
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Then, assume a multiplicative error model: 
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Expected value of equation (5) is 
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From equation (5) and an assumption that length at age r (= age 1) is 

normally distributed with mean r  and variance 
2

r , length at age a+1 

is modified as: 
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Taking the natural logarithm of both sides of equation leads to 

 

1 1 1log (1 ) log loga a

a aL L L V +  += −  +  + ,     (8) 

 

where 

 

1 2

1

1
a

a a i

i

iV  + + −

=

−=  . 

 

Here Va+1 has normal distribution with mean zero and variance 
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Thus, logLa+1 is normally distributed with mean  
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and variance 
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Here, E[logL1] and Var[logL1] are obtained approximately by using the 

delta method.  Then, the variance of La+1 is given as  

 

 ( )    1 1 1Var log 2 log Var log
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aL e e+ + + +
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Appendix 2. TMB code for the length-based 

assessment model for the common squid. 

CPP file 

#include <TMB.hpp> 

 

// pass missing values 

template<class Type> 

bool isNA(Type x){ 

  return R_IsNA(asDouble(x)); 

} 

 

// square 

template<class Type> 

Type square(Type i) { 

  return i*i;  

} 

 

//objective function 

template<class Type> 

Type objective_function<Type>::operator() () { 

   

  // DATA SECTION; 

  DATA_INTEGER(Plus_switch); // Switch for the last age class 

(0: Maximum age, "A"; 1: Terminal age, "A+"); 

  DATA_INTEGER(JIG_Sel_switch); // Switch for the size-specific 

gear selectivity of jigger fishery (0: logistic; 1: Gamma; 2: 

lognormal); 

  DATA_INTEGER(nages); // nages: number of age classes by 

TWO-month; 

  DATA_INTEGER(nlengths); // nlengths: number of length 

classes; 0.5, 11.5, ... , 33.5 (cm); 

  DATA_INTEGER(nmos); // nmos: number of TWO-months for 
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the fishery catch data: 2016. 05&06 ~ 2018. 11&12; 

   

  // Input parameters; 

  DATA_SCALAR(mu_r); // the mean (cm) of the lengths at the 

recruit stage: i.e., age 1 = 1 two-months.   mu_r = 1.47 cm 

(Sugawara et al., 2013); 

  DATA_SCALAR(Linf); // Linf: asymptotic length = 33.7 cm  

(Sugawara et al., 2013); 

  DATA_SCALAR(b1); // b1: a parameter in weight-natural 

mortality (Lorenzen, 1996); 

  DATA_SCALAR(Sex_r_female); // Sex_r_female: sex ratio at 

the recruit stage,  Sex_r_female = (1-Sex_r_male) = 0.5; 

  // beta_0 & beta_1: parameters in mantle length (cm)-maturation 

(Jo et al., 2019); 

  DATA_SCALAR(beta_0); 

  DATA_SCALAR(beta_1); 

   

  // Actual data; 

  DATA_VECTOR(Year); // 2016 ~ 2018;    

  DATA_VECTOR(MONTH); // 5&6.2016 ~ 11&12.2018; 

  DATA_VECTOR(JIG_CPUE); // CPUE (MT/hook) from jigger 

fisheries;           

  DATA_VECTOR(JIG_yield); // Yield (MT) from jigger fisheries; 

  DATA_VECTOR(PS_CPUE); // CPUE (MT/haul) from large 

purse-seine fisheries;          

  DATA_VECTOR(PS_yield); // Yield (MT) from large purse-seine 

fisheries; 

  DATA_VECTOR(Total_yield); // Yield (MT) from all fisheries; 

  DATA_VECTOR(x); // 34 length classes: 0.5cm, 1.5cm, ..., 33.5 

cm; 

  DATA_VECTOR(Wighting_para); // Wighting_para: weighting 

term for each likelihood component; 

  DATA_VECTOR(lengthAL); // Mantle lengths (cm) in length-

weight data; 

  DATA_VECTOR(weightAL); // Body weight (g) in length-weight 

data; 
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  DATA_VECTOR(lengthFC); // Mantle lengths (cm) in length-

weight data; 

  DATA_VECTOR(EggFC); // Mantle lengths (cm) in length-

weight data; 

   

  DATA_MATRIX(JIG_length_compo); // Length compostion data  

from jigger fisheries; 

  DATA_MATRIX(PS_length_compo); // Length compostion data  

from large purse-seine fisheries; 

   

  // std::cout << " !! DATA FINISH !! "<< std::endl; 

   

  // PAPAMETER SECTION;   

  PARAMETER(log_sig2_r); // Log-scaled variance (log (cm^2)) 

of the lengths at the recruit stage; 

  PARAMETER(log_G); // Log-scaled instantaneous growth rate 

in Gompertz growth model; 

  PARAMETER(log_sigma_G); // Log-scaled variance (cm^2) in 

stochastic Gompertz growth model; 

  PARAMETER(JIG_log_q); // Log-scaled catchability of jigger 

fisheries; 

  PARAMETER(PS_log_q); // Log-scaled catchability of large 

purse-seine fisheries; 

  PARAMETER(JIG_gamma); // Catchability of jigger fisheries; 

  PARAMETER(PS_gamma); // Catchability of large purse-seine 

fisheries;            

  PARAMETER(JIG_log_L50); // Log-scaled length of fish when 

the fish encountered the jigger fisheryis caught with 50% 

probability;        

  PARAMETER(PS_log_L50); // Log-scaled length of fish when 

the fish encountered the large purse-seine fisheryis caught with 50% 

probability; 

  PARAMETER(log_TO_F_init); // Log-scaled instantaneous 

fishing mortality rate of the others at initial time (5&6. 2016); 

  PARAMETER_VECTOR(log_F_TO); // Log-scaled 

instantaneous fishing mortality rate of the others at time '2' (5&6. 
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2016) ~ '16' (11&12. 2018); 

  PARAMETER_VECTOR(log_N_init); // Log-scaled the number 

of individuals of age '1' ~ '6+' at initial time;   

  PARAMETER(log_Pi_5); // Log-scaled arrival rate at spawning 

ground of a cohort of age 5; 

  PARAMETER(log_b0); // Log-scaled parameter in weight-

natural mortality (Lorenzen, 1996); 

  // log_aWL & log_bWL: log-scaled parameters in mantle length 

(cm)-body weight (g); 

  PARAMETER(log_aWL); 

  PARAMETER(log_bWL); 

  // log_aFC & log_bFC: log-scaled parameters in mantle length 

(cm)-Eggs (No.); 

  PARAMETER(log_aFC); // Fixed by using mapped in 

MakeADFun; 

  PARAMETER(log_bFC); // Fixed by using mapped in 

MakeADFun; 

   

  // std::cout << " !! PARAMETERS FINISH !! "<< std::endl; 

   

  // PRELIMINARY SECTION; 

   

  //Derived quantities; 

  int ncohorts = nmos;  

  int nAL = lengthAL.size(); 

  int nFC = EggFC.size(); 

   

  vector<Type> TO_yield = Total_yield-(JIG_yield+PS_yield); // 

Yield (MT) of the others; 

  vector<Type> JIG_effort = JIG_yield/JIG_CPUE; // Effort (hooks) 

of jigger fisheries; 

  vector<Type> PS_effort = PS_yield/PS_CPUE; // Effort (hauls) 

of large purse-seine fisheries; 

  vector<Type> L = x; // The length classes after one growth 

increment; 
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  // Exponentiate the free parameters; 

  Type Pi_5 = exp(log_Pi_5); 

  Type sig2_r = exp(log_sig2_r); 

  Type JIG_q = exp(JIG_log_q); 

  Type PS_q = exp(PS_log_q); 

  Type JIG_L50 = exp(JIG_log_L50); 

  Type PS_L50 = exp(PS_log_L50); 

  Type b0 = exp(log_b0); 

  Type G = exp(log_G); 

  Type Rho = exp(-Type(1.0)*G); 

  Type sigma_G = exp(log_sigma_G); 

  Type aWL = exp(log_aWL); 

  Type bWL = exp(log_bWL); 

  Type aFC = exp(log_aFC); 

  Type bFC = exp(log_bFC); 

  vector<Type> N_init = exp(log_N_init); 

   

  // Length class (cm) - body weight (kg); 

  vector<Type> Wt(nlengths); 

  Wt.setZero(); 

  Wt = aWL*pow(x,bWL)/Type(1000); // !! "/Type(1000)" makes 

dimension (g) convert to dimension (kg); 

   

  // Length class (cm) - Eggs (No.); 

  vector<Type> fecundity(nlengths); 

  fecundity.setZero(); 

  fecundity = aFC*pow(x,bFC); 

   

  // Instantaneous fishing mortality rates for each fishery; 

  vector<Type> JIG_F(nmos); 

  vector<Type> PS_F(nmos); 

  vector<Type> TO_F(nmos); 

  // Size- and time- specific fishing mortality rates for each fishery; 

  matrix<Type> JIG_F_tx(nmos,nlengths); 

  matrix<Type> PS_F_tx(nmos,nlengths); 

  matrix<Type> TO_F_tx(nmos,nlengths); 
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  matrix<Type> Z(nmos,nlengths); // Total mortality rate; 

  matrix<Type> ExpZ(nmos,nlengths); // Survival rate; 

   

  // Body growth; 

  matrix<Type> f(nages,nlengths); // Probability mass function of 

length distribution at each age; 

  vector<Type> Mu(nlengths); // Expected length after growth 

increment for an individual of the length class 'x'; 

  vector<Type> SS(nages); // Variance of the length distribution at 

age 'a+1' after growth for an individual of the length class 'x' at age 

'a'; 

  vector<Type> Mean_logN_L(nages); // Expected value of length 

at age 'a+1'; 

  vector<Type> Var_logN_L(nages); // Variance of length at age 

'a+1'; 

  array<Type> pp(nlengths,nlengths,nages); // Conditional 

probability of individuals at the length class 'l' after one growth 

increment for an individual at the length class 'x'; 

   

  // Abundance; 

  vector<Type> p(nlengths); // Relative distribution of lengths of a 

cohort at age 'a' at the beginning of time 't' after the processes of 

mortality and growth; 

  vector<Type> N_plus(nmos+1); // Survived individuals from 

terminal age after mortality; 

  matrix<Type> N(nages,nmos+2); // Number of individuals at the 

beginning of time 't'; 

  matrix<Type> Nx(nmos+1,nlengths); // Number of individuals at 

length class 'x'; 

  array<Type> NL(ncohorts+1,nlengths,nages); // Number of 

individuals at length class 'x' of age 'a' at the beginning of time 't'; 

   

  // Females; 

  vector<Type> F_p(nlengths); // Relative distribution of lengths of 

a female cohort at age 'a' at the beginning of time 't' after the 
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processes of mortality and growth; 

  vector<Type> F_p_plus(nlengths); // Relative distribution of 

lengths of a female cohort of terminal age at the beginning of time 

't' after the processes of mortality and growth; 

  matrix<Type> F_N(nages,nmos+1); 

  matrix<Type> F_f(nages,nlengths); // Probability of female 

individuals at the length class 'x' of a cohort, with age 'a' at the 

beginning of time 't'; 

  matrix<Type> F_f_init(nages,nlengths); // Probability of female 

individuals at the length class 'x' of a cohort, with age 'a' at the 

beginning of initial time; 

  array<Type> F_NL(ncohorts+1,nlengths,nages); 

   

  // Males; 

  vector<Type> M_p(nlengths); // Relative distribution of lengths 

of a male cohort at age 'a' at the beginning of time 't' after the 

processes of mortality and growth; 

  vector<Type> M_p_plus(nlengths); // Relative distribution of 

lengths of a male cohort of terminal age at the beginning of time 't' 

after the processes of mortality and growth; 

  matrix<Type> M_N(nages,nmos+1); 

  matrix<Type> M_f(nages,nlengths); // Probability of male 

individuals at the length class 'x' of a cohort, with age 'a' at the 

beginning of time 't'; 

  matrix<Type> M_f_init(nages,nlengths); // Probability of male 

individuals at the length class 'x' of a cohort, with age 'a' at the 

beginning of initial time; 

  array<Type> M_NL(ncohorts+1,nlengths,nages); 

   

  // Spawning; 

  vector<Type> ARRIVE(nages); // Arrival rates at age 'a'; 

  vector<Type> Eggs(nmos+1); // Number of eggs at time 't'; 

  vector<Type> Sex_A_init(nages); // Female ratio of age 'a' at the 

beginning of initial time; 

  vector<Type> maturation(nlengths); // Length class (cm)-

maturation; 
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  maturation = Type(1.0)/(Type(1.0)+exp(beta_0+beta_1*x)); 

  matrix<Type> Sex_A(nages,nmos+1); // Female ratio of age 'a' 

at the beginning of time 't'; 

  matrix<Type> Spawners(nages,nmos+1); // Number of 

spawners of age 'a' at the beginning of time 't'; 

  array<Type> SpawnersL(ncohorts+1,nlengths,nages); // 

Number of spawners at length class 'l' of age 'a' at the beginning 

of time 't'; 

   

  // Catch & Yield & Biomass; 

  matrix<Type> JIG_Catch(nmos,nlengths); 

  matrix<Type> PS_Catch(nmos,nlengths);  

  matrix<Type> TO_Catch(nmos,nlengths); 

  vector<Type> JIG_Yieldhat(nmos); 

  vector<Type> PS_Yieldhat(nmos); 

  vector<Type> TO_Yieldhat(nmos); 

  vector<Type> B(nmos+1); 

  vector<Type> Pop(nmos+1); 

  matrix<Type> JIG_LF(nmos,nlengths); 

  matrix<Type> PS_LF(nmos,nlengths); 

  vector<Type> JIG_SamSize(nmos); 

  vector<Type> PS_SamSize(nmos); 

   

  // Objective function; 

  vector<Type> nll(8); // Likelihood component (Negative Log-

Likelihood); 

  vector<Type> RSS(7); // RSS: Residual Sum of Squares; 

   

  // std::cout << " !! PRELIMINARY CALCULATION FINISH !! "<< 

std::endl; 

   

  // PROCEDURE SECTION; 

   

  // Mortality process; 

  // Selectivity for each fishery; 

  // jigger fishery; 
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  vector<Type> JIG_Sel(nlengths); 

  if(JIG_Sel_switch == 0) { // logistic; 

    JIG_Sel = Type(1.0)/(Type(1.0)+exp(Type(-

1.0)*JIG_gamma*(x-JIG_L50))); 

  } else if(JIG_Sel_switch == 1) { // Gamma; 

    Type shape = 1/(JIG_gamma*JIG_gamma); // 

JIG_gamma=CV; 

    Type rate = (shape-1)/JIG_L50; // JIG_L50=mode; 

    for(int i=0;i<nlengths;i++) { 

      JIG_Sel(i) = 

(pow(rate,shape))*(1/exp(lgamma(shape)))*(pow(x(i),(shape-

1)))*(exp(-rate*x(i))); 

    }; 

    JIG_Sel /= max(JIG_Sel); 

  } else if(JIG_Sel_switch == 2){ // lognormal; 

    Type log_sd = sqrt(log(JIG_gamma*JIG_gamma+1)); 

    Type log_mean = log(JIG_L50)+log_sd*log_sd; 

    for(int i=0;i<nlengths;i++) { 

      JIG_Sel(i) = (1/(x(i)*log_sd*sqrt(2*PI)))*exp(-(log(x(i))-

log_mean)*(log(x(i))-log_mean)/(2*log_sd*log_sd)); 

    }; 

    JIG_Sel /= max(JIG_Sel); 

  }; 

  // large purse-seine fishery; 

  vector<Type> PS_Sel = Type(1.0)/(Type(1.0)+exp(Type(-

1.0)*PS_gamma*(x-PS_L50))); // logistic; 

  // the others; 

  vector<Type> TO_Sel(nlengths); // not assumed; 

  for(int xind=0;xind<nlengths;xind++) { 

    TO_Sel(xind) = Type(1.0); 

  }; 

   

  // Instantaneous fishing Mortality; 

  JIG_F.setZero(); 

  PS_F.setZero(); 

  TO_F.setZero(); 
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  for(int t=0;t<nmos;t++) { 

    JIG_F(t) = JIG_q*JIG_effort(t); // F = q*Effort; 

    PS_F(t) = PS_q*PS_effort(t); // F = q*Effort; 

    if(t == 0) { 

      TO_F(t) = exp(log_TO_F_init); // random-walk model; 

    } else if(t > 0) { 

      TO_F(t) = exp(log_F_TO(t-1));  //TO_F(t-

1)*exp(TO_dev(t-1)); 

    }; 

  }; 

   

  // Natural Mortality (modified from Lorenzen (1996)); 

  vector<Type> M = b0*pow(aWL,Type(-1.0)*b1)*pow(x,Type(-

1.0)*b1*bWL); 

   

  // Total Mortality & Survival rate; 

  JIG_F_tx.setZero(); 

  PS_F_tx.setZero(); 

  TO_F_tx.setZero(); 

  Z.setZero(); 

  ExpZ.setZero(); 

  for(int t=0;t<nmos;t++)  

    for(int xind=0;xind<nlengths;xind++) {  

      JIG_F_tx(t,xind) = JIG_F(t)*JIG_Sel(xind);  

      PS_F_tx(t,xind) = PS_F(t)*PS_Sel(xind); 

      TO_F_tx(t,xind) = TO_F(t)*TO_Sel(xind); 

       

      Z(t,xind) = 

M(xind)+JIG_F_tx(t,xind)+PS_F_tx(t,xind)+TO_F_tx(t,xind); 

      ExpZ(t,xind) = exp(Type(-1.0)*Z(t,xind)); 

    }; 

  //std::cout << " !! MORTALITY PROCESS FINISH !! "<< std::endl; 

   

  // Growth process (Gompertz); 

  Type kkk = Type(0.0); 

  SS(0) = sig2_r; 
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  f.row(0) = 

dnorm(x,mu_r,sqrt(SS(0)))/sum(dnorm(x,mu_r,sqrt(SS(0)))); 

   

  Mu = Linf*(pow((x/Linf),Rho))*exp(sigma_G/Type(2.0)); 

   

  for(int a=1;a<nages;a++) { 

    Mean_logN_L(a) = (Type(1.0)-

pow(Rho,a))*log(Linf)+pow(Rho,a)*(log(mu_r)-

Type(0.5)*(sig2_r/pow(mu_r,Type(2.0)))); 

    Var_logN_L(a) = 

pow(Rho,Type(2.0)*(a))*(sig2_r/pow(mu_r,Type(2.0)))+sigma_G*

((Type(1.0)-pow(Rho,(Type(2.0)*(a))))/(Type(1.0)-

pow(Rho,Type(2.0)))); 

  }; 

  for(int a=1;a<nages;a++) { 

    SS(a) = exp(Type(2.0)*(Mean_logN_L(a)+Var_logN_L(a)))-

exp(Type(2.0)*Mean_logN_L(a)+Var_logN_L(a)); 

  }; 

   

   

  for(int a=1;a<nages;a++) { 

    for(int xind=0;xind<nlengths;xind++)  { 

      kkk = Type(0.0); // normalizing constant; 

      for(int Lind=0;Lind<nlengths;Lind++)  { 

        pp(Lind,xind,a) = Type(0.0); 

        if(Lind >= xind) { 

          pp(Lind,xind,a) = dnorm(L(Lind),Mu(xind),sqrt(SS(a))); 

           

          kkk += pp(Lind,xind,a); 

        }; 

      }; 

      for(int Lind=0;Lind<nlengths;Lind++) 

        pp(Lind,xind,a) /= kkk; 

    }; 

  }; 
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  //std::cout << " !! GROWTH PROCESS FINISH !! "<< std::endl; 

   

  // Abundance; 

  N.setZero(); 

  NL.setZero(); 

  Nx.setZero(); 

  N_plus.setZero(); 

  F_N.setZero(); 

  F_NL.setZero(); 

  M_N.setZero(); 

  M_NL.setZero(); 

  Spawners.setZero(); 

  SpawnersL.setZero(); 

  Sex_A.setZero(); 

  ARRIVE.setZero(); 

  Eggs.setZero(); 

  F_f.setZero(); 

  M_f.setZero(); 

  F_f_init.setZero(); 

  M_f_init.setZero(); 

   

  ARRIVE(nages-2) = Pi_5; 

  ARRIVE(nages-1) = Type(1.0); 

   

  // Initial time, length frequency; 

  F_f_init.row(0) = f.row(0); 

  M_f_init.row(0) = f.row(0); 

  Sex_A_init(0) = Sex_r_female; 

   

  for(int a=1; a<nages; a++) { 

    for(int Lind=0; Lind<nlengths; Lind++) 

      for(int xind=0; xind<nlengths; xind++) { 

        F_f_init(a,Lind) += F_f_init(a-1,xind)*(Type(1.0)-

ARRIVE(a-1)*maturation(xind))*pp(Lind,xind,a); 

        M_f_init(a,Lind) += M_f_init(a-1,xind)*(Type(1.0)-

maturation(xind))*pp(Lind,xind,a); 
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      }; 

    Sex_A_init(a) = 

F_f_init.row(a).sum()/(F_f_init.row(a).sum()+M_f_init.row(a).sum(

)); 

  }; 

  for(int a=0; a<nages; a++) { 

    F_f_init.row(a) = F_f_init.row(a)/(F_f_init.row(a).sum()); 

    M_f_init.row(a) = M_f_init.row(a)/(M_f_init.row(a).sum()); 

  }; 

   

  // Imaginary age structure; 

  int a; 

  for(int m=0; m<=nmos; m++) { 

    if(m == 0) { 

      for(int a=0; a<nages; a++) { 

        for(int xind=0; xind<nlengths; xind++) { 

          F_NL(m,xind,a) = 

N_init(a)*F_f_init(a,xind)*Sex_A_init(a); 

          M_NL(m,xind,a) = 

N_init(a)*M_f_init(a,xind)*(Type(1.0)-Sex_A_init(a)); 

           

          NL(m,xind,a) = F_NL(m,xind,a)+M_NL(m,xind,a); 

          SpawnersL(m,xind,a) = 

F_NL(m,xind,a)*ARRIVE(a)*maturation(xind); 

          Spawners(a,m) += SpawnersL(m,xind,a); 

           

          F_N(a,m) += F_NL(m,xind,a); 

          M_N(a,m) += M_NL(m,xind,a); 

          N(a,m) += NL(m,xind,a); 

          Nx(m,xind) += NL(m,xind,a); 

        }; 

      }; 

    } else if(m > 0) { 

      a=0; 

      for(int xind=0;xind<nlengths;xind++)  

        for(int aa=0;aa<nages;aa++) 
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          Eggs(m-1) += SpawnersL(m-

1,xind,aa)*fecundity(xind); 

       

      N(a,m) = Eggs(m-1)*exp(-Type(1.0)*M(0)); //Eggs; 

      for(int xind=0;xind<nlengths;xind++) { 

        F_NL(m,xind,a) = N(a,m)*Sex_r_female*f(a,xind); 

        M_NL(m,xind,a) = N(a,m)*(Type(1.0)-

Sex_r_female)*f(a,xind); 

        NL(m,xind,a) = N(a,m)*f(a,xind); 

         

        F_N(a,m) += F_NL(m,xind,a); 

        M_N(a,m) += M_NL(m,xind,a); 

        Nx(m,xind) += NL(m,xind,a); 

      }; 

      Sex_A(a,m) = F_N(a,m)/N(a,m); 

      for(int a=1;a<nages;a++) { 

        for(int Lind=0;Lind<nlengths;Lind++)  { 

          F_p(Lind) = Type(0.0); 

          M_p(Lind) = Type(0.0); 

          for(int xind=0;xind<nlengths;xind++) { 

            F_p(Lind) += F_f(a-1,xind)*(Type(1.0)-ARRIVE(a-

1)*maturation(xind))*ExpZ(m-1,xind)*pp(Lind,xind,a); 

            M_p(Lind) += M_f(a-1,xind)*(Type(1.0)-

maturation(xind))*ExpZ(m-1,xind)*pp(Lind,xind,a); 

          }; 

        }; 

        if(a!=nages-1)  { 

          for(int Lind=0;Lind<nlengths;Lind++)  { 

            NL(m,Lind,a) = Type(0.0); 

            F_NL(m,Lind,a) = Type(0.0); 

            M_NL(m,Lind,a) = Type(0.0); 

             

            F_NL(m,Lind,a) = F_N(a-1,m-1)*F_p(Lind);  

            M_NL(m,Lind,a) = M_N(a-1,m-1)*M_p(Lind); 

            NL(m,Lind,a) = F_NL(m,Lind,a)+M_NL(m,Lind,a); 
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            N(a,m) += NL(m,Lind,a); 

            F_N(a,m) += F_NL(m,Lind,a); 

            M_N(a,m) += M_NL(m,Lind,a); 

            Nx(m,Lind) += NL(m,Lind,a); 

          }; 

          Sex_A(a,m) = F_N(a,m)/N(a,m); 

        } else if(a == nages-1) { 

          Spawners(a-1,m) = Type(0.0); 

          for(int Lind=0;Lind<nlengths;Lind++) { 

            SpawnersL(m,Lind,a-1) = Type(0.0); 

            SpawnersL(m,Lind,a-1) = F_NL(m,Lind,a-

1)*ARRIVE(a-1)*maturation(Lind); 

             

            Spawners(a-1,m) += SpawnersL(m,Lind,a-1); 

          }; 

          for(int xind=0;xind<nlengths;xind++) { 

            F_f(a,xind) = Type(0.0); 

            M_f(a,xind) = Type(0.0); 

            f(a,xind) = Type(0.0); 

          }; 

          for(int xind=0;xind<nlengths;xind++) { 

            F_f(a,xind) = F_f(a-1,xind)*ExpZ(m-

1,xind)*(Type(1.0)-ARRIVE(a-1)*maturation(xind)); // Note that!! 

f(a,xind) in left term is length distribution of age (a-1==nages-1) at 

the 'end' of time (m-1); 

            M_f(a,xind) = M_f(a-1,xind)*ExpZ(m-

1,xind)*(Type(1.0)-maturation(xind)); // Note that!! f(a,xind) in left 

term is length distribution of age (a-1==nages-1) at the 'end' of time 

(m-1); 

          }; 

          for(int Lind=0;Lind<nlengths;Lind++) { 

            F_p(Lind) = Type(0.0); 

            M_p(Lind) = Type(0.0); 

            for(int xind=0;xind<nlengths;xind++) { 

              F_p(Lind) += F_f(a,xind)*pp(Lind,xind,a);  // Note 

that!! f(a,xind) in right term is length distribution of age (a-
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1==nages-1) at the 'end' of time (m-1); 

              M_p(Lind) += M_f(a,xind)*pp(Lind,xind,a);  // 

Note that!! f(a,xind) in right term is length distribution of age (a-

1==nages-1) at the 'end' of time (m-1); 

            }; 

          }; 

          F_N(a,m) = Type(0.0); 

          M_N(a,m) = Type(0.0); 

          Sex_A(a,m) = Type(0.0); 

          Spawners(a,m) = Type(0.0); 

          for(int Lind=0;Lind<nlengths;Lind++) { 

            NL(m,Lind,a) = Type(0.0); 

            F_NL(m,Lind,a) = Type(0.0); 

            M_NL(m,Lind,a) = Type(0.0); 

            SpawnersL(m,Lind,a) = Type(0.0); 

            F_NL(m,Lind,a) = F_N(a-1,m-1)*F_p(Lind);  

            M_NL(m,Lind,a) = M_N(a-1,m-1)*M_p(Lind); 

             

            NL(m,Lind,a) = F_NL(m,Lind,a)+M_NL(m,Lind,a); 

             

            if(Plus_switch == 1) { 

              for(int xind=0;xind<nlengths;xind++) { 

                F_NL(m,Lind,a) += F_NL(m-1,Lind,a)*ExpZ(m-

1,xind)*(Type(1.0)-ARRIVE(a)*maturation(xind))*pp(Lind,xind,a); 

                M_NL(m,Lind,a) += M_NL(m-

1,Lind,a)*ExpZ(m-1,xind)*(Type(1.0)-

maturation(xind))*pp(Lind,xind,a); 

                NL(m,Lind,a) += (F_NL(m-1,Lind,a)*(Type(1.0)-

ARRIVE(a)*maturation(xind))+M_NL(m-1,Lind,a)*(Type(1.0)-

maturation(xind)))*ExpZ(m-1,xind)*pp(Lind,xind,a); 

                N_plus(m) += (F_NL(m-1,Lind,a)*(Type(1.0)-

ARRIVE(a)*maturation(xind))+M_NL(m-1,Lind,a)*(Type(1.0)-

maturation(xind)))*ExpZ(m-1,xind)*pp(Lind,xind,a); 

              }; 

            }; 

            F_N(a,m) += F_NL(m,Lind,a); 
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            M_N(a,m) += M_NL(m,Lind,a); 

            N(a,m) += NL(m,Lind,a); 

            Nx(m,Lind) += NL(m,Lind,a); 

            SpawnersL(m,Lind,a) = 

F_NL(m,Lind,a)*ARRIVE(a)*maturation(Lind); 

             

            Spawners(a,m) += SpawnersL(m,Lind,a); 

          }; 

        }; 

      }; 

    };  

    for(int a=0;a<nages;a++) { 

      for(int xind=0;xind<nlengths;xind++) { 

        f(a,xind) = NL(m,xind,a)/N(a,m); 

        F_f(a,xind) = F_NL(m,xind,a)/F_N(a,m); 

        M_f(a,xind) = M_NL(m,xind,a)/M_N(a,m); 

      }; 

      Sex_A(a,m) = F_N(a,m)/N(a,m); 

    }; 

  }; 

   

  // Projection; 

  Eggs(nmos) = Type(0.0); 

  for(int Lind=0;Lind<nlengths;Lind++) { 

    for(int a=0;a<nages;a++) { 

      Eggs(nmos) += SpawnersL(nmos,Lind,a)*fecundity(Lind); 

    }; 

  }; 

   

  N(0,nmos+1) = Eggs(nmos)*exp(-1.0*M(0)); 

   

  //std::cout << " !! IMAGINARY AGE STRUCTURE FINISH !! "<< 

std::endl; 

   

  // Catch & Yield & Biomass; 

  Pop.setZero(); 
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  B.setZero(); 

  JIG_Catch.setZero(); 

  JIG_Yieldhat.setZero(); 

  PS_Catch.setZero(); 

  PS_Yieldhat.setZero(); 

  TO_Catch.setZero(); 

  TO_Yieldhat.setZero(); 

   

  for(int m=0;m<nmos;m++) 

    for(int xind=0;xind<nlengths;xind++) { 

      JIG_Catch(m,xind) = 

Nx(m,xind)*(JIG_F_tx(m,xind)/Z(m,xind))*(Type(1.0)-

ExpZ(m,xind)); 

      PS_Catch(m,xind) = 

Nx(m,xind)*(PS_F_tx(m,xind)/Z(m,xind))*(Type(1.0)-

ExpZ(m,xind)); 

      TO_Catch(m,xind) = 

Nx(m,xind)*(TO_F_tx(m,xind)/Z(m,xind))*(Type(1.0)-

ExpZ(m,xind)); 

       

      JIG_Yieldhat(m) += JIG_Catch(m,xind)*Wt(xind); 

      PS_Yieldhat(m) += PS_Catch(m,xind)*Wt(xind); 

      TO_Yieldhat(m) += TO_Catch(m,xind)*Wt(xind); 

       

      if(m < nmos-1) { 

        B(m) += Nx(m,xind)*Wt(xind); 

        Pop(m) += Nx(m,xind); 

      } else if(m == nmos-1) { 

        B(m) += Nx(m,xind)*Wt(xind); 

        Pop(m) += Nx(m,xind); 

         

        B(nmos) += Nx(nmos,xind)*Wt(xind); 

        Pop(nmos) += Nx(nmos,xind); 

      }; 

    }; 
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  JIG_SamSize.setZero(); 

  PS_SamSize.setZero(); 

  for(int m=0;m<nmos;m++)  

    for(int xind=0;xind<nlengths;xind++) { 

      JIG_SamSize(m) += JIG_length_compo(m,xind); 

      PS_SamSize(m) += PS_length_compo(m,xind); 

    }; 

   

  for(int m=0;m<nmos;m++) { 

    for(int xind=0;xind<nlengths;xind++) {     

      JIG_LF(m,xind) = 

(JIG_Catch(m,xind)/JIG_Catch.row(m).sum())*JIG_SamSize(m); 

      if(PS_effort(m) != Type(0.0)) { 

        PS_LF(m,xind) = 

(PS_Catch(m,xind)/PS_Catch.row(m).sum())*PS_SamSize(m); 

      } else { 

        PS_LF(m,xind) = Type(1.0); 

      }; 

    }; 

  }; 

  //std::cout << " !! CATCH FINISH !! "<< std::endl; 

   

  // Objective function; 

  nll.setZero();  

  RSS.setZero(); 

   

  // part1.  Length composition ~ multinomial; 

  for(int m=0;m<nmos;m++) { 

    vector<Type> Data_length_JIG = JIG_length_compo.row(m); 

    vector<Type> Prob_length_JIG = 

JIG_Catch.row(m)/JIG_Catch.row(m).sum(); 

     

    nll(0) -= Wighting_para(0)*dmultinom(Data_length_JIG, 

Prob_length_JIG, true); 

     

    if(PS_effort(m) != Type(0.0)) { 
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      vector<Type> Data_length_PS = 

PS_length_compo.row(m); 

      vector<Type> Prob_length_PS = 

PS_Catch.row(m)/PS_Catch.row(m).sum(); 

       

      nll(1) -= Wighting_para(1)*dmultinom(Data_length_PS, 

Prob_length_PS, true); 

    }; 

  }; 

   

  for(int m=0;m<nmos;m++) { 

    for(int xind=0;xind<nlengths;xind++) { 

      RSS(0) += square(JIG_length_compo(m,xind) - 

JIG_LF(m,xind)); 

      RSS(1) += square(PS_length_compo(m,xind) - 

PS_LF(m,xind)); 

    }; 

  }; 

   

  // part2.  Yield ~ lognormal; 

  vector<Type> elem_obj_JIG(nmos); 

  vector<Type> elem_obj_PS(nmos); 

  vector<Type> elem_obj_TO(nmos); 

  Type sig2_JIG_Y = Type(0.0); 

  Type sig2_PS_Y = Type(0.0); 

  Type sig2_TO_Y = Type(0.0); 

  elem_obj_JIG.setZero(); 

  elem_obj_PS.setZero(); 

  elem_obj_TO.setZero(); 

   

  for(int m=0;m<nmos;m++) { 

    elem_obj_JIG(m) = log(JIG_yield(m))-

log(JIG_Yieldhat(m)/Type(1000)); 

    if(PS_effort(m) != Type(0.0)) { 

      elem_obj_PS(m) = log(PS_yield(m))-

log(PS_Yieldhat(m)/Type(1000)); 
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    }; 

    elem_obj_TO(m) = log(TO_yield(m))-

log(TO_Yieldhat(m)/Type(1000)); 

  }; 

  for(int m=0;m<nmos;m++) { 

    sig2_JIG_Y += elem_obj_JIG(m)*elem_obj_JIG(m); 

    sig2_PS_Y += elem_obj_PS(m)*elem_obj_PS(m); 

    sig2_TO_Y += elem_obj_TO(m)*elem_obj_TO(m); 

  }; 

   

  RSS(2) = sig2_JIG_Y; 

  RSS(3) = sig2_PS_Y; 

  RSS(4) = sig2_TO_Y; 

  sig2_JIG_Y /= nmos; 

  sig2_PS_Y /= (nmos-1); 

  sig2_TO_Y /= nmos; 

   

  for(int m=0;m<nmos;m++){ 

    nll(2) -= 

dnorm(log(JIG_yield(m)),log(JIG_Yieldhat(m)/Type(1000)),sqrt(lo

g(Type(1.0)+Wighting_para(2)*Wighting_para(2))), true); 

    if(PS_effort(m) != Type(0.0)) { 

      nll(3) -= 

dnorm(log(PS_yield(m)),log(PS_Yieldhat(m)/Type(1000)),sqrt(log

(Type(1.0)+Wighting_para(3)*Wighting_para(3))), true); 

    }; 

    nll(4) -= 

dnorm(log(TO_yield(m)),log(TO_Yieldhat(m)/Type(1000)),sqrt(log

(Type(1.0)+Wighting_para(4)*Wighting_para(4))), true); 

  }; 

   

  // part3.  Weight ~ normal; 

  vector<Type> E_W = aWL*pow(lengthAL,bWL); 

  Type sig2AL = ((weightAL-E_W)*(weightAL-E_W)).sum()/nAL; 

  for(int i=0;i<nAL;i++){ 

    nll(5) -= 
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Wighting_para(5)*dnorm(weightAL(i),aWL*pow(lengthAL(i),bWL),

sqrt(sig2AL),true); 

  };  

  RSS(5) = ((weightAL-E_W)*(weightAL-E_W)).sum(); 

   

  // part4.  Fecundity ~ lognormal: Not Used; 

  vector<Type> E_log_FC = log(aFC)+bFC*log(lengthFC); 

  vector<Type> E_FC = aFC*pow(lengthFC,bFC); 

  for(int i=0;i<nFC;i++) { 

    if( Wighting_para(6) != 0) { 

      nll(6) -= 

Type(0.0)*dnorm(log(EggFC(i)),E_log_FC(i),sqrt(log(Type(1.0)+

Wighting_para(6)*Wighting_para(6))),true); 

    }; 

  }; 

  RSS(6) = Type(0.0)*((log(EggFC)-E_log_FC)*(log(EggFC)-

E_log_FC)).sum(); 

   

  // part 7. penalty term; 

  for(int i=0;i<(nmos-1);i++) { 

    if(Wighting_para(7) != 0) { // if Likelihood_weight(7) is equals 

to '0', penalized likelihood is not used; 

      if(i == 0) { 

        nll(7) -= dnorm(log_F_TO(i),  log_TO_F_init,  

sqrt(log(Type(1.0)+Wighting_para(7)*Wighting_para(7))));  

      } else { 

        nll(7) -= dnorm(log_F_TO(i),  log_F_TO(i-1),  

sqrt(log(Type(1.0)+Wighting_para(7)*Wighting_para(7))));  

      }; 

    }; 

  }; 

   

  Type jnll=nll.sum(); // jnll: Joint Negative Log-Likelihood; 

   

  // REPORT SECTION; 

  REPORT(nll); 
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  REPORT(ExpZ); 

  REPORT(Z); 

  REPORT(E_W); 

  REPORT(E_FC); 

  REPORT(JIG_Yieldhat); 

  REPORT(JIG_Catch); 

  REPORT(PS_Yieldhat); 

  REPORT(PS_Catch); 

  REPORT(TO_Yieldhat); 

  REPORT(TO_Catch); 

  REPORT(JIG_LF); 

  REPORT(PS_LF); 

  REPORT(JIG_length_compo); 

  REPORT(PS_length_compo); 

  REPORT(N); 

  REPORT(F_N); 

  REPORT(M_N); 

  REPORT(NL); 

  REPORT(F_NL); 

  REPORT(M_NL); 

  REPORT(maturation); 

  REPORT(Nx); 

  REPORT(M); 

  REPORT(B); 

  REPORT(JIG_F); 

  REPORT(PS_F); 

  REPORT(TO_F); 

  REPORT(JIG_F_tx); 

  REPORT(PS_F_tx); 

  REPORT(TO_F_tx); 

  REPORT(Sex_A); 

  REPORT(JIG_SamSize); 

  REPORT(PS_SamSize); 

  REPORT(SpawnersL); 

  REPORT(Spawners); 

  REPORT(Eggs); 
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  REPORT(nlengths); 

  REPORT(Wighting_para); 

  REPORT(JIG_Sel); 

  REPORT(PS_Sel); 

  REPORT(TO_Sel); 

  REPORT(pp); 

  REPORT(f); 

  REPORT(F_f); 

  REPORT(M_f); 

  REPORT(SS); 

  REPORT(Mu); 

  REPORT(N_plus); 

  REPORT(jnll); 

  REPORT(sig2_JIG_Y); 

  REPORT(sig2_PS_Y); 

  REPORT(sig2_TO_Y); 

  REPORT(RSS); 

   

  return jnll; 

} 
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