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PSO 기반 Offshore 크레인의 강인한 제어계 설계

에 관한 연구 

 

이동훈 

 

부경대학교 대학원 기계시스템공학과 

 

 

요약 
 

심해저 개발 및 건설작업이 대두됨에 따라 해상크레인의 수요가 

지속적으로 증가하고 있다. 게다가 해상크레인 세계시장 가치는 연

평균 9%성장률로 증가할 것으로 내다보고 있음에 따라 관련 기술의 

필요성이 강조되고 있다. 해상크레인의 주된 목적은 부하를 해저 목

표지점에 안전하고 정확하게 위치시키는 것이다. 작업 종류에 따라

서 부하를 수십센티 미터 범위 이내에 위치시켜야 하는 정교한 작업

을 수행해야 한다. 

그러나 선박에 설치되어 운용되는 크레인은 항상 파랑외란 등 

해상환경의 영향을 받을 수 밖에 없으므로 정교한작업을 수행하기 

어렵다. 예를 들어, 파랑의 영향으로 발생하는 선박동요로 인해 크레
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인 팁의 불안정한 운동이 야기되고 부하이동작업을 어렵게 한다. 또

한 부하가 수중에 잠수된 상태에서는 유체력의 작용으로 인하여 부

하변동을 가중시키게 된다. 특히, 유체력에 의한 부하변동은 조류나 

부하의 형상에 의존하므로 상황에 따라 부하의 운동특성도 크게 달

라진다. 작업안정성을 개선하기 위하여 외적환경에 의한 영향을 정

확히 파악할 수 있으면 좋으나, 지속적으로 변하는 해상환경 등으로 

인해 그 영향을 파악하는 것은 사실상 불가능하다. 그러므로 해상에

서의 작업은 예측할 수 없는 해상조건과 시스템 파라미터 변동 등으

로 인하여 굉장히 까다롭고 위험하다. 따라서 이러한 작업환경에서

도 작업안정성과 정교한 작업성능을 보장할 수 있는 강인한 제어시

스템 구축이 반드시 필요하다. 

위와 같은 문제점을 고려하여, 본 논문에서는 파랑외란뿐만 아

니라 파라미터 변동과 같은 불확실성에도 우수한 성능을 확보할 수 

있는 제어계설계법을 제안한다. 구체적으로는 기 설계된 제어계에 

대하여 에너지기반 리아프노푸 함수를 도입하여 균일궁극유계

(uniformly ultimately bounded, UUB)조건을 만족시키는 제어입력을 설계

한다. 이로 인해 시스템 제어출력 및 상태가 궁극유계 이내에 존재

하도록 함으로써 제어성능 개선이 보장되게 된다.  

제안하는 제어계설계법을 구현하기 위하여, 입출력 선형화 제어

기(input-output linearization controller, IOLC)를 적용한 해상크레인 제어

시스템에 관한 사전연구결과를 이용하였다. IOLC 제어기는 제어대상

에 불확실성이 존재할 경우 선형화과정이 완벽이 이루어지지 않기 
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때문에 강인하지 않은 것으로 잘 알려져 있다. 그러므로 본 연구에

서 제어대상으로 하는 시스템과 같이 불확실성이 존재하는 경우 강

인성 확보가 더욱 요구된다. 이와 같은 사실을 고려하여, 제어성능 

개선을 위해 IOLC 가 적용된 제어계에 대하여 본 논문에서 제안하는 

제어기설계방법을 이용하여 IOLC 와 결합한 UUB 기반 제어기

(UUB+IOLC)를 설계하였다. 

설계한 제어기의 이득 최적화를 위하여 입자군집최적화(particle 

swarm optimization, PSO)기법을 사용하였다. 제어기 이득은 반복적인 

과정을 거쳐 적절한 값을 선정하는 것이 일반적이다. 그러나 이러한 

시행착오법의 경우 선정한 이득이 최상의 응답을 보장하지는 않는다. 

그러므로 본 논문에서는 최적화 기법을 이용하여 제어기 이득을 최

적화하여 제어계의 최적 성능 보장 및 제어기 이득 선정 어려움을 

해소하였다.  

본 논문에서 제안한 기법의 유효성은 시뮬레이션과 실험을 통해

 확인하였다. 시뮬레이션은 실제 작업환경과 유사한 환경을 모의하

였으며, 실험은 파일롯 해상크레인 모델을 이용하여 수행하였다. 특

히, 실제 작업환경을 고려하여 파라미터 변동이 존재하는 경우에 대

한 시뮬레이션과 실험을 각각 수행하였다. 각 결과를 통해 강인한 

제어계 설계의 필요성을 보여주었을 뿐만 아니라, 제안한 제어계 설

계법을 통해 불확실성에 대한 강인성 확보는 물론 제어성능까지 개

선할 수 있음을 확인하였다. 
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1 Introduction 

1.1 Background and Motivation 

The offshore installation of underwater structures for oil and gas 

production and wind turbines is becoming more important. At the same time, 

the demand for a high-performance offshore crane is increasing. Hence, the 

construction of underwater structures with high operability is required.  

However, various unpredictable disturbances and parameter variations 

are always impacting marine systems. The vessel moves away from the 

desired position both horizontally and rotationally under wave, wind, ocean 

current disturbance. This is the main issue of underwater installations and, in 

particular, crane systems since their operation is strongly affected by the 

vessel motion. The horizontal motion of the vessel is controlled by the vessel 

motion control systems, such as DPS(Dynamic Positioning System)[1]–[4]. 

However, the rotational motion of the vessel is completely ignored in DPS. 

For offshore lifting operation, the rotational motion of the vessel has a 

significant effect on the vertical motion of crane tip during underwater lifting 

operations.  

The other factor affecting the operability of offshore cranes is 

hydrodynamic forces that cannot be directly measured nor predicted. These 

forces can act as an added mass or drag force of the payload, leading to 

undesirable load tension variation.  
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Therefore, the wave-induced motion of the vessel and hydrodynamic 

force of payload lead to a critical tension of the rope. The tension must not 

exceed a safety limit; otherwise, it can lead to rope failure. For this reason, 

the operator will have many difficulties lifting and lowering the payload.  

All associates acknowledge the risk of harsh environments, and 

incorporated the safety measures in regulatory frameworks. There are also 

classification society standards that cover the design of an offshore structure, 

including marine cranes. For example, the standards of American Petroleum 

Institute(API), European Normalised Standards, International Organisation 

for Standardisation(ISO) are being adopted globally to enhance the 

operational safety of offshore structures used by the gas and oil industries.  

For starters, ISO 19900(general requirements for offshore structures) 

constitute common basis general requirements and recommendations for 

designing and assessing offshore structures, which encompass both 

‘structure type’ standards(ISO 19902, ISO 19905-1,2, ISO 19903, ISO 

“Structure type” standards

General requirements
• ISO 19900

Floating structures
• ISO 19904 Floating production unit
• ISO 19905-3 Floating MOUs

Bottom-founded structures
• ISO 19902 Fixed steel
• ISO 19905-1,2 Jack-up MOUs

Specific requirments
• ISO 19901-1 Metocean
• ISO 19901-2 Seismic
• ISO 19901-3 Topsides
• ISO 19901-4 Foundations
• ISO 19901-5 Weight control
• ISO 19901-6 Marine operations
• ISO 19901-7 Stationkeeping
• ISO 19901-8 Marine soil investigaions
• ISO 19901-9 Structural integrity management

General structures
• ISO 19903 Concrete
• ISO 19906 Arctic

Figure 1-1. Relationship of international Standars(ISO) on offshore 
structures 
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19906, ISO 19904 and ISO 19905-3) and specific requirements(ISO 19901) 

as shown in Figure 1-1.  

Especially, ISO 19901-6 specifies requirements and guidance of lifting 

operations such that safety factors, crane vessel, underwater, heave 

compensated lifts and lifts using dynamic positioning. 

Additionally, some standards are specifying the requirements and 

recommendation for marine cranes as follow 

ISO 

• ISO 19354 Marine cranes - General requirements 

• ISO 19355 Marine cranes - Structural requirements 

• ISO 19356 Marine cranes - Test specifications and procedures 

• ISO 19357 Marine cranes - Design requirements for low  

temperature operation 

• ISO 19359 Marine cranes - Design methods for drums 

• ISO 19360 Marine cranes - Technical requirements for rigging  

applications 

• ISO 21125 Marine cranes - Manufacturing requirements 

• ISO 21131 Marine cranes - Noise limits and measuring method 

• ISO 21132 Marine cranes - Operation and maintenance  

requirements 

API 

• API RP 2C Specification for offshore pedestal-mounted cranes 

• API RP 2D Recommended practice for operation and maintenance for 

offshore cranes 
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Operators should refer to the appropriate standards for cranes used in 

offshore. The referenced standards should provide proper information to 

ensure that the crane withstands under harsh environments. 

However, despite these efforts, accidents relate to offshore crane keep 

occurring in recent years. On 15 June 2020, Heerema’s Aegir lift vessel was 

piling the jacket foundation piles off Taiwan’s coast. During the pile driving 

work, the pile was dropped fall. Fortunately, there were no injuries from the 

incident. Only the piling frame and pin pile were damaged[5]. On 8 March 

2020, Larsen & Toubro’s LTS-3000 vessel was performing the installation 

of the jacket off India’s western coast. During the lifting work, the offshore 

jacket was dropped fall. Unfortunately, two staff have suffered injuries 

during the incident[6]. These incidents lead to increasing costs and lowering 

efficiency. Therefore, it is necessary that a more reliable system guarantees 

operation to reduce production downtimes. In this thesis, to deal with such 

installation works with performing safety and efficiency, a payload control 

system is studied. 

1.2 Overview of Heave compensation 

It is essential to keep the payload position stable even under harsh sea 

conditions to improve crane operations efficiency. Decoupling the vertical 

payload motion from the vessel’s rotational motion requires compensation 

systems. By using these compensation systems, the operability of the 

underwater lifting system under harsh sea conditions can be improved.  
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The problem of efficient and safe underwater installations in harsh sea 

conditions has been investigated in several previous studies. Fundamentally, 

there are two different types of heave compensation. The first one is the 

passive heave compensation (PHC). Figure 1-2 shows an example of the 

operation with PHC for subsea manifold installation. This system consists of 

a pneumatic cylinder, gas chamber, and an accumulator used to compensate 

for dynamic forces generated by ship motion. In [7], a performance 

comparison was conducted between a cage-mounted and ship-mounted PHC. 

Then, in [8], using a numerical optimization technique, the compensator 

stiffness and damping coefficient were determined in order to minimize the 

response.  

The second one is the active heave compensation (AHC) that 

Figure 1-2. An example of the usage of the passive heave compensation 
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compensates for the heave motion actively. At first, the position and 

orientation of the vessel is measured via an inertial measurement unit(IMU) 

or motion reference unit(MRU). This signal is transferred to an AHC control 

system with proper signal processing such as prediction and trajectory 

generation. The AHC computes the depth of the payload according to the 

encoder of the winch, position and orientation of the vessel. If the payload’s 

depth does not match the target depth, the AHC sends a lowering or hoisting 

signal to the winch. As a result, AHC minimizes the heave motion of the 

suspended payload regardless of the vessel’s motion in offshore installation 

operations. Figure 1-3 shows an example of the general control structure of 

the AHC[9], [10]. 

For example, in [11]–[15], based on linear and nonlinear control 

techniques, several control systems were proposed to improve the AHC. In 

[11]–[14], focus on not only the AHC, but also on the wave synchronization 

during water entry of the payload. In [11], a two-phase controller is proposed. 

The first-phase controller is for heave compensation, whose objective is the 

keeping the tension to a constant value equal to the weight of the payload. In 

the second-phase controller, the relative speed of the payload and sea surface 

is controlled in order to minimize the slamming force during water entry of 

payload. In [12], the authors extended this two-phase controller by an 

adaptive observer of the external model. In [13], [14], the feedforward 

control technique for the wave synchronization during the water entry of the 

payload was combined with feedback linear control techniques for AHC. In 

[15], the authors present a constructive method to design a nonlinear 
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controller. The heave velocity and the force acting between AHC unit and 

the riser/drill string are estimated by a disturbance observer. 

However, in these papers, the rotational motion of the vessel was 

completely ignored. In a conventional offshore crane, the crane tip moves 

not only vertical motion but also rotational motions resulting from the roll 

and pitch motions of the host vessel. Hence, it is necessary to compensate for 

these rotational motions caused by the roll and pitch rotations of the vessel, 

thus enhancing the performance of the crane system. 

In recent years, numerous publications have been concentrating on 

studying the load position control problems of the crane system. Thus, many 

control algorithms have been proposed. These control methods are 

summarized and categorized into two approaches: the open-loop methods 

[16]–[19] and the closed-loop methods [9], [10], [20], [21]. It is an open-loop 

control method in which [16]–[19] proposed an input-shaping control 

technique to investigate the dynamic behavior of the crane based on a 

nonlinear model. Even though the open-loop controller has shown many 

advantages, it is a well-known fact that it may not reduce the influence of 

Trajectory tracking 
controller & active 

compensation

Offshore craneTrajectory 
generation

IMUx

Operator
command

Vertical motion prediction
& Trajectory generation

( , )x f t x

Figure 1-3 General structure of the offshore crane control system  
(active heave compensation) 
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disturbances generated by external sources. In contrast to the open-loop 

control method, the output feedback control theory [20], the nonlinear 

tracking control [22], and the input-output linearization control [9], [10] are 

examples of the closed-loop control methods. 

Nevertheless, the classical feedback linearization technique [23] has 

certain disadvantages regarding robustness. Since the system linearization is 

achieved by eliminating the nonlinear terms, the simplification of the 

nonlinear system equations can affect the robustness if the nonlinearity is 

uncertain [24]–[26]. Therefore, it is necessary to design a robust controller 

to cope with parametric variations. 

1.3 Objective of Study 

The main objective of this study is to suggest a control system design 

method for the offshore crane system to cope with disturbances and 

parametric variations. The main contributions of this study to achieve such 

an objective are summarized as follows. 

 

• 11-DOF and 4-DOF kinematic analysis are executed. Following these 

kinematic models, and by decoupling the dynamics, the offshore crane 

decoupled dynamic model is derived. 

• Lyapunov-like analysis method is used to design the proposed controller to 

improve the control performance and ensure the robustness of the existing 

control method. (see Figure 1-4) 
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• The proposed controller guarantees the uniformly ultimate bounded 

criterion for the proper definition of the system’s output and state. This 

approach is intended to improve the positioning performance and suppress 

the rope tension regardless of wave disturbances and parametric variations. 

(see Figure 1-4) 

• To evaluate the performance of proposed control systems, an additional 

robust controller is designed. 

• The particle swarm optimization technique is applied to obtain the optimal 

controller gain. 

• The control performance and the effectiveness of the proposed control 

systems are validated through simulation and experimental studies.  

1.4 Outline of Thesis 

The structure of this thesis is organized as follow 

Trajectory tracking 
controller & active 

compensation

Offshore craneTrajectory 
generation

IMUx

Operator
command




•Energy-based 
Lyapunov function

•Lyapunov like analysis
(Uniformly Ultimately 
Bounded)Proposed 

control input

( , )x f t x

Figure 1-4. Proposed control system design method for offshore crane 
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Chapter 1: Introduction 

 

In this chapter, the background and motivation of this study are 

discussed. The overview of the heave compensation in terms of mechanical 

structure and control system are presented. And the objective of this study is 

given. 

 

Chapter 2: Theoretical Background 

 

This chapter presents a theoretical background of uniformly ultimately 

bounded(UUB) and particle swarm optimization(PSO). In section 2.1, the 

definitions of uniformly bounded and uniformly ultimately bounded are 

presented. and the theorem for showing the boundedness with Lyapunov-like 

analysis is given. In section 2.2, the background and flow chart of PSO is 

presented. then, pseudo code for implementing the PSO is given. 

 

Chapter 3: System Description and Modeling 

 

In chapter 3, the mathematical model of the offshore crane is presented. 

Firstly, kinematic analysis with a full dynamic(11-DOF) offshore crane is 

executed. By considering the real worksite, 11-DOF is reduced to 4-DOF 

with assumptions that emphasize the important elements and neglect the 

minor ones of dynamic. Using the kinematic analysis of 4-DOF model, the 
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nonlinear motion equation is derived with Lagrange’s equation. Then, the 

decoupled linear model of the offshore crane is derived by decoupling the 

nonlinear motion equation with linearization.  

 

Chapter 4: Controller Design 

 

In chapter 4, three nonlinear controllers for the offshore crane is 

designed. Firstly, input-output linearization technique based controller, 

including disturbance decoupling term, is designed. Then, UUB based 

control system design method is proposed. In this method, a closed-loop 

model with input-output linearization technique based controller is used. 

Based on this closed-loop model, the energy-based Lyapunov function is 

introduced. Then, derive the controller that satisfies the UUB condition. To 

evaluate the performance of proposed control systems, an integral sliding 

mode controller is designed. The controller gain optimization procedure with 

PSO is introduced. 

 

Chapter 5: Simulation with Virtual Offshore Crane 

 

In chapter 5, the simulation with the virtual offshore crane is conducted. 

With the optimized controller gain, simulate with nominal model and 

uncertain model. Worse sea conditions than the nominal model case, and 

parametric variations are considered as an uncertain model. The simulation 

results are presented, and each controller’s characteristic is carefully 
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considered. 

 

Chapter 6: Experiment with the Pilot Model 

 

In chapter 6, with the pilot model of the offshore crane, the experiment 

is carefully performed. Experimental apparatus are presented in detail. The 

experiment is performed with nominal model and uncertain model. To 

configure the parametric variations, two different 3D printed models of the 

payload are introduced. Moreover, in every experiment, worse sea conditions 

are configured. The experiment results are presented and the effectiveness of 

the proposed control system design method is validated. 

 

Chapter 7: Conclusion and Future Study 

 

In chapter 7, conclusions for this thesis are presented, and some ideas 

for future work are shown. 
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2 Theoretical Background 

2.1 Boundedness and Ultimate Boundedness 

This section will introduce the boundedness and ultimate boundedness 

definitions and theorems as stated in [27]. In order to show the boundedness 

of the state equation’s solution, the Lyapunov analysis is used, even if the 

equilibrium point is not at the origin. Consider the system 

 

( , )x f t x             

   (2-1) 

 

where f  is piecewise continuous in t , and locally Lipschitz1. 

 

Definition 1 

 If there exists a constant 0c   , independent of 0 0t   , and for 

every (0, )a c , there is ( ) 0a   , independent of 0t , such 

that 

                                                           
1 Lipschitz condition[27]: If the Eq.(2-1) with . 0 0( )x t x . satisfies the 

inequality ( , ) ( , )f t a f t b L a b    for all 

( , )t a  and ( , )t b  in some neighborhood of 0 0( , )t x , 

the system is Lipschitz condition. 
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0 0( ) ( ) ,x t a x t t t          

    (2-2) 

 

then, the solutions of the system (2-1) are uniformly bounded.  

 If (2-2) holds for an arbitrarily large a , the solutions of the system 

(2-1) are globally uniformly bounded. 

 If there exists a constant 0b    and 0c    independent of 

0 0t   , and for every (0, )a c  , there is a ( , ) 0T T a b   

independent of 0t , such that 

 

 0 0( ) ( ) ,x t a x t b t t T       (2-3) 

 

then, the solutions of the system (2-1) are uniformly ultimately 

bounded with b  as the ultimate bound. 

 If (2-3) holds for an arbitrarily large a , the solutions of the system 

(2-1) are globally uniformly ultimately bounded. 

 

In order to show how the Lyapunov-like analysis can be utilized for 

boundedness and ultimate boundedness, let us consider the positive definite 

function ( , )V t x  which is continuously differentiable.  
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Theorem 1 

Consider the continuously differentiable function ( , )V t x , such that 

 

    1 2( , )x V t x x    (2-4) 

 

 ( , ) ( ), 0, 0
V V

f t x M x x t
t x

 
       

 
 (2-5) 

 

where 1   and 2   are class  2  functions, and ( )M x   is a continuous 

positive definite function. We define 0  , such that 

 

 
1

2 1( ( ))    (2-6) 

 

Then, there exists a class L 3  function    satisfying 

1
0 2 1( ) ( ( ))x t r   , for every initial state 0( )x t  . We define a 0T   

such that the solution of the system (2-1) satisfies the following  

                                                           
2 Class kappa(Class  ): If continuous function   is strictly increasing 

: [0, ) [0, )a    and (0) 0  , it is class kappa.  
3 Class kappa-l(Class L ): For each fixed s , the function ( , )r s  belongs 

to class kappa 
For each fixed r , the function  ( , )r s  is 

decreasing with respect to s  and ( , ) 0r s   

for s. 
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 0 0 0 0( ) ( ( ) , ),x t x t t t t t t T       (2-7) 

 

 1
1 2 0( ) ( ( )),x t t t T       (2-8) 

 

Then, the inequalities (2-7) and (2-8) imply that ( )x t  is uniformly 

bounded for all 0t t . Moreover, it is uniformly ultimately bounded with 

the ultimate bound defined as 
1

1 2( ( ))   . 
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2.2 Particle Swarm Optimization 

Particle swarm optimization (PSO) is a population-based evolutionary 

optimization technique developed by Kennedy and Eberhart in 1995 [28], 

[29]. PSO is inspired by the social behavior of fish schooling or bird flocking 

as shown in Figure 2-1[30]. 

PSO is an evolutionary computation technique similar to a genetic 

algorithm (GA) in terms of initializing the system with a population of 

random solutions. However, PSO differs from GA in terms of assigning to 

each randomized velocity a potential solution. Furthermore, these potential 

solutions (particles) are flown through the problem space.  

The advantages of the PSO are its stable convergence performance and 

its relatively simple implementation. PSO is proved to be efficient and 

Figure 2-1. Flock of birds exhibiting swarm behavior 
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powerful in solving complex problems such as nonlinearity and non-

differentiability, as well as high dimensionality and multiple optima.  

In the problem space, the coordinates of each particle that keeps track 

are associated with the best solution. We define this value as ‘pbest’, which 

is the personal best position of the i th particle and ‘gbest’ is the position of 

the overall best particle. At each time step, the position ( )ix t  and velocity 

( )iv t   of particle i   are led toward its pbest and gbest locations. 

Mathematically, the particles are updated based on the following equations. 

 

 ( 1) ( ) ( 1)i i ix t x t v t      (2-9) 

 

 1 1 2 2( 1) ( ) ( ( )) ( ( ))
ii i pbest i gbest iv t Wv t C r x x t C r x x t       (2-10) 

 

where 1C   is the cognitive learning feature and which represents the 

attraction of a particle to its own success. 2C  is the social learning factor 

and it represents the attraction that a particle has toward the success of its 

neighbors. W is the inertia weight and controls the influence of the previous 

velocity on the current velocity. Using these mathematical equations, the 

process of implementing the PSO is as follow; 

 

Step 1 Initialize a population of particles ( n  dimension) and velocities with 

a random position in the problem space. The dimension is the same 
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as the size of the parameter to optimize. 

Step 2 For each particle, calculate the desired optimization performance 

index. 

Step 3 Compare the performance index of each particle with its pbest. Set 

the pbest value to the i th (current) value, if the i th value is better 

than pbest. And the pbest location becomes the i th location. 

Step 4 Compare the performance index results with the overall previous best. 

If the i th value is better than gbest, reset the gbest to the value of the 

i th particle. 

Step 5 Update the velocity and position of the particle along with Eq.(2-9) 

and Eq.(2-10). 

Step 6 Repeat step.2 to step.5 until a criterion is satisfied. 

 

Usually, the stopping criterion can be set as the maximum number of 

iterations, minimum gbest gradient of a performance index, desired gbest 

value, or others. 

The pseudo code of the procedure is as follows[31] 

 

For each particle  

    Initialize particle 

END 

 

Do 

    For each particle  
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        Calculate fitness value 

        If the fitness value is better than the best fitness value (pBest) in 

history 

            set current value as the new pBest 

    End 

 

    Choose the particle with the best fitness value of all the particles as the 

gBest 

    For each particle  

        Calculate particle velocity according equation (a) 

        Update particle position according equation (b) 

    End  

While maximum iterations or minimum error criteria is not attained    
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3 System Description and Modeling 

3.1 Coordinate Frame 

When describing marine craft motion, it is necessary to define the 

reference frame. In this study, two geographic reference frames are 

introduced as illustrated in Figure 3-1. 

 

North-East-Down (NED) coordinate frame 

The NED coordinate system (n-frame, { } ( , , , )n n n nn o x y z  ) is 

relative to the Earth’s reference. The n-frame is defined as the tangent of the 

Earth’s surface moving along with the marine crafts. The positive direction 

of nx  -axis points towards the ellipsoid North, ny  -axis points towards 

ellipsoid East, and the nz -axis points towards the center of the Earth. Using 

the concept of the flat-Earth model and assuming that the n-frame is an 

Figure 3-1. Notation of motion for marine crafts and reference frames 
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inertial reference frame for marine crafts, it allows for Newton's law to be 

applied.  

 

Body-Fixed reference frame 

The Body-Fixed reference frame (b-frame, { } ( , , , )b b b bb o x y z ) is a 

moving coordinate frame fixed to the marine craft. The origin bo  is usually 

chosen to coincide with the center of mass of the marine vessel. The positive 

direction of the bx -axis points towards the bow (longitudinal axis), the by

-axis points towards the starboard (transverse axis), and the bz -axis points 

downward (from top to bottom). While the angular and linear velocities of 

the marine craft should be defined in the b-frame, the position and orientation 

of the marine vessel are defined in the inertial reference frame (the n-frame). 

As shown in Figure 3-1, the marine craft is moving in 6-DOF. Thus, six 

independent coordinates are needed to describe the position and orientation 

of the marine vessel. The first three coordinates correspond to the 

translational displacement along the x  , y  , and z  axes. The last three 

coordinates are rotational motions and are used to define the orientation. For 

marine crafts, the six motion components are independent of each other, and 

they are defined by the SNAME (Society of Naval Architects & Marine 

Engineers, 1950) as shown in Table 3-1. 
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Table 3-1. The notation of SNAME for marine vessels 

DOF 
Linear and 

angular velocities 
Position and 
Euler angles 

1 motion in the x  direction (surge) u  x  

2 motion in the y direction (sway) v  y  

3 motion in the z direction (heave) w  z  

4 rotation about the x -axis (roll) p    

5 rotation about the y -axis (pitch) q    

6 rotation about the z -axis (yaw) r    

3.2 Dynamic Modeling 

As mentioned in chapter 1, in this study, the objective is to design a 

payload position control system for offshore cranes. An offshore crane, 

especially the boom crane system, has 11-DOF in total. That is, the crane has 

5-DOF itself, 2-D swing angle of the payload, luff/slew angle of the boom, 

and the cable length.  

In this study, a kinetic analysis with the 11-DOF dynamic system will 

be conducted. Subsequently, after careful consideration of the operating 

environment, the kinetic analysis will be conducted with a reduced-

dimension system. 

3.2.1  11-DOF Kinematic Analysis 

It is assumed that the position (n-frame) and the angular and linear 

velocities (b-frame) of the offshore crane are known and defined as in Figure 
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3-2. Additionally, it is assumed that the origin of the b-frame coincides with 

the center of mass of the offshore crane.  

The position and attitude of the offshore crane expressed in the n-frame 

are defined as   

 

  Tn x y zp ,  T     (3-1) 

 

The linear and angular velocities of the offshore crane expressed in the b-

frame are defined as 

 

  Tb
o u v wν ,  Tb

o p q rω  (3-2) 

 

Figure 3-2. Reference frames and vector notation of offshore cranes 
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Using a vector from the origin bo  to the crane base expressed in the b-

frame ( )b
baser  and a vector from the crane base to the crane tip expressed in 

the b-frame ( )b
boomr , the resultant vector from the origin to the crane tip ( )b

tipr  

can be determined as follows  

 

 
Tb b b b b b

tip base boom tip tip tipx y z     r r r  (3-3) 

 

In order to calculate the position, velocity, and acceleration of the crane 

tip in the n-frame, the rotation matrix should be introduced. The rotation 

matrix ( )n
b R   from the b-frame to the n-frame is defined as 

, , ,( )n
b z y x   R R R R  with each matrix is given as 

 

 

,

c s 0

s c 0

0 0 1
z 

 
 

 
   
  

R

, 

,

c 0 s

0 1 0

s 0 c
y 

 

 

 
   
  

R

,  

 ,

1 0 0

0 c s

0 s c
x   

 

 
   
  

R  (3-4) 

 

where cos( )c    and sin( )s   . Then, the rotation matrix becomes,  
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c c s c c s s s s c c s

( ) s c c c s s s c s s s c

s c s c c

n
b

           
           
    

   
      
  

R  (3-5) 

 

The vector from the origin no  to the crane tip expressed in the n-frame 

( )n
tipr  is described as 

 

 n n b
tip b tip r R r  (3-6) 

 

where 
Tn n n n

tip tip tip tipx y z   r  . Then, the position of the crane tip 

expressed in the n-frame can be described as  

 

 b

b

n n n b
tip o b tip

n n
o tip

 

 

p r R r

r r
 (3-7) 

 

where 
b b b b

Tn n n n
o o o ox y z   r  . Assuming knowledge of the linear and 

angular velocity of the offshore crane expressed in the b-frame, the velocity 

of the crane tip expressed in the n-frame is described as 

 

 n n b
tip b tipp R v  (3-8) 
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where b
tipv  is described by the cross product of b b

nb tipω r , which results in 

 

 
( )

b

b

b b b b
tip o nb tip

b b b
o nb tipS

  

 

v v ω r

v ω r
 (3-9) 

 

where ( )S   is the cross-product operator, ( )b
nbS ω  is thus defined as 

 

 

0

( ) 0

0

b
nb

r q

S r p

q p

 
   
  

ω  (3-10) 

 

Moreover, the time derivative of the rotation matrix ( )n
bR  is given by [32] 

 

 ( )n n b
b b nbS R R ω  (3-11) 

 

The same procedure is used to derive the acceleration of the crane tip 

expressed in the n-frame. Differentiating the Eq.(3-9) and using Eq.(3-11), 

the acceleration of the crane tip express in the n-frame is obtained as the 

following 
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2

( )( ( ) ) ( ( ) ( ) )

{( ( ) ( )) ( )( ) }

b b

b b

n n b n b
tip b tip b tip

n n b n b b b n b n b
b nb o nb tip nb o nb tip nb tip

n n n b n b b b
b nb nb tip nb o tip o

S S S S

S S S

 

    

    

P R v R v

R ω v ω r R v ω r ω r

R ω ω r ω v r v

  

 

  

(3-12) 

3.2.2  4-DOF Kinematic Analysis 

As discussed in the previous chapter, the 11-DOF full dynamic system 

is too complex to describe the motion equation and design the controller. 

Therefore, it is necessary to simplify the system dynamics. Simplifying 

assumptions are introduced to emphasize the important elements and neglect 

the minor ones. 

The reduced dimension offshore crane is modeled with the following 

assumptions. 

 

• The surge, sway motion, and the yaw angle can be neglected since their 

amplitudes are too small due to the DPS (Dynamic Positioning System).  

• The luff and slew angles are not controlled in the payload positioning task, 

and their values are considered constant and known. 

• The crane base and the tip are aligned with the y (or x ) axis of the b-frame.  

 

As a result of the second and third assumptions, the swing motion of the 

payload is considered a 1-D motion. In other words, the dominant excitation 
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of payload motion is the rotational movement around the x -axis (or y -

axis) of the offshore crane. 

Then, we move on to determine the movement of the offshore crane in 

the  xz -plane (or yz -plane). The heave and roll (or pitch) motions of the 

offshore crane, as well as the cable length, are parameters taken into 

consideration. The schematic drawing of the offshore crane system used in 

this study is illustrated in Figure 3-3. 

Following the same procedure as in section 3.2.1, we can derive the 

crane tip motion equation. Additionally, the payload motion equation will 

also be derived to further analyze the dynamics of the system. 

Along with Eq.(3-3), the vector from the origin to the crane tip 

expressed in the b-frame is 0
Tb b b

tip tip tipy z   r . As shown in Figure 3-3, 

since the only rotational motion considered is the one around x  -axis 

(rolling), the rotational matrix from the b-frame to the n-frame becomes 

,( )n
b x R Θ R . Along with this result and Eq.(3-7), the position of the crane 
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Figure 3-3. Schematic drawing of offshore crane system 
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tip expressed in the n-frame is given by 
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where  0 0
b

Tn
o heaveZr . Besides, the vector from the crane tip to the 

payload position is defined as  

 

  0 ( ) s ( )c
Tn

load w wl l      r  (3-14) 

 

where (0)w w wl l r     is the rope length and    is the rope length 

variation. Then, the payload position expressed in the n-frame is given as 
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 (3-15) 

 

In a similar approach, Eqs.(3-8)~(3-15) are used to derive the velocity 

and acceleration of the payload. The resulting velocity and acceleration 
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expressions of the crane tip and the payload are given as 

 

 

0

s c

s c

n b b
tip tip tip

b b
tip tip heave

y z

y z Z

 
 

 
    
   

p  
 

 (3-16) 

 

0

s ( ) c c ( ) s

c ( ) c s s ( )

n b b
load w tip w tip

b b
w tip tip w heave

l z l y

l y z l Z

        
        

 
        
       

p    
   

 (3-17) 
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3.2.3  Kinetic Analysis 

In this section, Lagrange’s equation [33] is employed to derive the 

dynamical model of the 4-DOF offshore crane system based on the results 

mentioned above.  

As shown in Figure 3-3, the offshore crane under consideration consists 

of a winch and rope suspended the payload. The following simplifying 

assumptions are made to render the system modeling more tractable. 

 

• The offshore crane structure is considered a rigid body [9], [10], [34].  

• The payload is considered a point mass [35], [36]. 

• The mass of the suspension rope of the offshore crane is massless, which 

implies that the cable does not bend following the crane motion [35]. 

 

The rope can be approximated by a mass-spring-damper system with 

the payload mass m , spring constant rk , damping constant rc  , and the 

rope length variation  . However, since the dominant damping force acting 

on the submerged payload is the hydrodynamic force. The rope damping 

force is neglected. 

Based on Eqs.(3-13)~(3-17), the kinetic energy ( )T   and potential 

energy ( )U   of the crane tip and payload, respectively, are obtained as 

follows [37], [38] 
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  1

2
n T n n T n

tip tip tip load loadT m m p p p p     (3-20) 

 

   21

2
n n

tip tip load rU g m m k    p p  (3-21) 

 

Defining the state    1 2

T T
q q   q   as the generalized 

coordinates corresponding to the generalized forces if . These generalized 

forces are given as  

 

 1 , ,cos ( )sin ( )cosn n
B h load y h load zf f f p f p      (3-22) 

 

 2 , ,sin ( ) cos ( )sinn n
B h load y h load zf f f p f p      (3-23) 

 

where Eq.(3-22) and (3-23) are the hydrodynamic forces affecting the 

payload in the fluid. Bf  is the buoyancy force and hf  is the added mass 



 
 

-34- 
 

and damping force as a function of the velocity and acceleration. The 

schematic diagram of the payload rotating about the crane tip is shown in 

Figure 3-4[39]. Detailed hydrodynamics are introduced in the next section. 

Therefore, the dynamic equation of motion can be derived from Lagrange’s 

equation as the following 

 

 , ( 1, 2)i
i i i

d T T U
f i

dt q q q

   
       

 (3-24) 

 

The resulting motion equation of the payload is derived as follows 
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(3-26) 

3.2.4  Dynamic Decoupling with Linearization 

As above-mentioned, the objective of this study is the payload 

positioning control problem of offshore cranes as in subsea cranes and ROV 

launch systems. Considering this issue, the suppression of the payload’s 

swing motion is not a significant concern in a practical case. Therefore, 

decoupling the vertical motion dynamic from the swing motion dynamic is 

possible. In order to achieve this decoupling, various techniques were used 

to approach this issue. In [40], a decoupler matrix is used to cancel the input 

couplings. While in [41], a pseudo linear composite system is used to 

decouple the nonlinear coupled system into a number of independent pseudo 

linear SISO systems online. In this study, the small angle approximation 

method will be used for a more convenient design of the control system and 

to get more insight into the dynamics of the system. 

If we consider that the payload is perturbed around the target position, 

the rope length is assumed to be (0)w wl l , then w wl r    and w wl r   . 

And using the small-angle approximation, we can get a decoupled model 

from the coupled nonlinear model in Eq.(3-25) and (3-26) as follow 
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 ,( )b n
r w heave tip B h load zk m l m Z m gm my f f p            (3-27) 

 

 2
,(0) (0) (0) ( )b n

w w w tip h load yml gl m l mz f p      (3-28) 

 

where Bf  and hf  are defined as [11], [14], [34], [42] 

 

 B w pf gV   (3-29) 

 

 
1

( )
2h w p a w D pf X V X m X C A X X          (3-30) 

 

where w  is the density of water, am  is the added mass of the load as a 

function of submergence, DC  is the drag coefficient, pA  is the payload’s 

nominal cross-section in the vertical direction. The added mass can be 

defined as a w p am V C  , where aC   is the coefficient of the added mass 

and depends on the shape of the payload. 

Using the obtained coupled nonlinear and decoupled models, simulating 

each dynamical system, and analyzing the simulation’s result helps to 

evaluate the usefulness of the decoupled model. Thus, the usefulness of the 

decoupled model is effectively verified through simulation and result 

evaluation; the reader is referred to [43]. Hence, in this study, the vertical 
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dynamics of the decoupled model Eq.(3-27) of the offshore crane model is 

used to design the control system. Combining Eq.(3-27), (3-29) and (3-30), 

the offshore crane model is given as 
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 (3-31) 

 

where p a w pm m m V   , gF gm , b w pF gV . The velocity of the 

payload about nz -axis is ,
n b
load z w tip heavep r y Z        . In [44], the rope 

parameter depends on the rope length as shown in the following equation 

 

 r
w

EA
k

l
   (3-32) 

 

where E  is the modulus of elasticity, A  is the cross-section area of the 

rope. 

The actuator of the offshore crane is an electric (or hydraulic) winch. A 

second-order differential equation is chosen to express the system dynamics 

of the winch. 

 

 w w w w wJ C K T u       (3-33) 
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where wJ  is the inertia moment, wC  is the damping constant, wK  is the 

stiffness constant, wT  is the torque constant, wu  is the control input. 
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4 Controller Design 

4.1 Control Strategy 

The objective of this section is to design a control system for payload 

position keeping under wave disturbances and parametric variations. 

Therefore, the primary control objective is to devise a controller such that 

the position of the payload ,
n

load zP   converges to its desired position n
refP  , 

generated by the operator, regardless of the motion of the vessel and the 

variations of the wire rope. In this case, the winch should compensate for the 

movement of the vessel and variations of the rope and track the n
refP   to 

achieve the aforementioned control objective. 

4.2 Input-Output Linearization Technique based 
Controller Design 

In order to design the controller with the input-output linearization 

technique, the dynamic model of the system Eq.(3-27) should be represented 

as a state space model. The linearized payload position from Eq.(3-15) and 

the state are given as 

 

 , (0)n b b
load z w w tip tip heavep l r z y Z         (4-1) 
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where the b
heave tipZ y    is the displacement along the nz -axis of the 

crane tip created by the vessel motion. Along with Eq.(3-31) and (3-33), the 

dynamic model of the offshore crane is given by 
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wu u  

 

 0 1 0 0 0 1
T p  

 

where the motion of the vessel is considered as a disturbance 

b
heave tipd Z y    . The output function is defined as 1 3( )h x rx  x   , 

which is composed of the sum of the states 1( )x    and 3( )x   . To 

achieve the predefined control objective, the output ( )h x  should track the 

reference signal regardless of the disturbances. Therefore, using disturbance 

decoupling, we can derive a decoupled disturbance from the output if the 

system’s relative degree is greater than or equal to the disturbance’s relative 

degree and the disturbance is measurable [23]. 

In the case of a noncanonical nonlinear systems such as Eq.(4-3), its 

relative degree is not explicitly known [45]. Therefore, to design a control 

system, it is necessary to determine the relative degree of the system. The 

relative degree sr  of the system is defined in Eq.(4-4) [23]. 
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Also, the relative degree pr  of the disturbance is defined as follows 
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where ( )i
aL b x   is a scalar function that represents the i  th-order Lie 

derivative of ( )b x  with respect to ( )a x . 

 

The relative degree of the output 

The first-order derivative of the output with Lie derivative is given as 
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where 
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g f g

x
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x
  

 

Since 1 ( ) 0L h u g x , the first-order derivative is 
1 ( )y L h f x . Hence, y  is 

independent of control input u . The second-order derivative of the output is 

given by 
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Since 1 1 ( ) 0L L h u g f x , we can conclude that the relative degree of the output 

is 2sr  . 

 

The relative degree of the disturbance 

Similarly, the same procedure described in Eq.(4-6) and (4-7) is followed 
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to derive the relative degree of the disturbance. The resulting expression is 

as follows 

 

 1 1 ( ) 0w

w

T
L L h u r

J
 p f x  (4-8) 

 

where 
 

 1
2 4

( )
( ) ( )

h
L h x rx


   

f

x
x f x

x
  

 』 

Hence, the relative degree of disturbance is 2pr   . Therefore, the 

disturbance decoupling is possible. The control law based on the input-output 

linearization method, including the disturbance decoupling, is derived as 

follow[23],  
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where v   is the artificial input defined with the error state 

( )dq r      , 

 

 1 2dv r k q k q      (4-10) 
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The linearization of the controller in Eq.(4-9) results in a simple linear 

relation y v . Along with Eq.(4-10), we obtain 

 

 1 2 0q k q k q       (4-11) 

 

where 1k   and 2k   are the state space feedback controller gains, which 

should be designed such that the roots of the polynomial Eq.(4-11) are strictly 

in the left-half plane. Then, the control law described in Eq.(4-9) yields a 

locally asymptotically stable compensator for the closed-loop system. To 

design these gains, the LQR (linear quadratic regulator) control technique is 

used with the controllable canonical form given as  
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      

 
   

 

 
 



 (4-12) 

 

Defining the state as 1

T
q q   z   , the performance index is given as 

follows 

 

 2
1 10

( )T
qJ Ru dt


  z Qz , (4-13) 
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where 1 2diag( , )q qQ   is a positive definite matrix and R

 is a positive constant. Figure 4-1 shows a detailed illustration of the contro

l structure.  

4.3 Uniformly Ultimate Boundedness Control Design 

As mentioned in the introduction, the classical feedback linearization 

technique is not robust if the nonlinearity is uncertain. Therefore, in this study, 

we introduce the control design method to cope with parametric variations 

based on uniformly ultimate boundedness (UUB) theory. The system model 

is redesigned, this time by integrating Eq.(4-3) with the input-output 

linearization controller. The energy-based Lyapunov function is then used to 

design the control law that should satisfy the UUB. 

The control objective of this controller is tracking the desired position 

of the payload while regulating the wire rope variations. In other words, the 

state q  and the rope variation   should satisfy the following definition of 

UUB control theory  

Trajectory 
generation

Offshore crane
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Operator
command

Disturbance 
decoupling
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Linearization





( , )x f t x

Figure 4-1. Control structure of the offshore crane with a input-output linearization 
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     

 
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

 (4-14) 

 

To perform this control objective, an energy-based compensation 

control law is introduced. The proposed control law is defined by a 

summation of the input-output linearization controller 1wu  and the energy-

based compensation 2wu , that is   

 

 1 2w w wu u u   (4-15) 

 

For the sake of notational simplicity, Eq.(4-9) is represented as follow 

 

 
1

2 1

1
1

1

( ) ( )
:

( )w

L h L L h d v F D v
u

L L h G

     
 f p f

g f

x x

x
 (4-16) 

 

Taking into consideration the total control law in Eq.(4-15), and 

substituting Eq.(4-16) into the second-order derivative of the output equation, 

the dynamic model without disturbance can be rewritten as follow 
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 1 2 1 2

2 2 1 2 2

w

w w

q q
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


 (4-17) 

 

where 1 2 /w w wG r T J  , 2 /w w wG r T J    and 2F   represents the 

remainder term except the control input term of Eq.(3-31). 

In order to design the controller 2wu , we propose the following energy-

based Lyapunov function such as 

 

 1 11 1 2 22 2

1
( )

2 2
T TV

    z A z z A z  (4-18) 

 

where 1

T
q q   z    , 2

T
    z    and 11A  , 22A   are symmetic 

matrices such as 

 

 2 1 3 2
11 22

1 2

,
1 1

k c k c

c c

   
    
   

A A  (4-19) 

 

where   , 1c  , 2c  , 3k   are positive constants. ( )    is a function to be 

defined according to the requirements to guarantee the uniform boundedness 

of the trajectories. In order to ensure that Eq.(4-18) is positive definite, 
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( )  , the design function must satisfy the following conditions 

 

 2 2
3

1
( ) , (0) 0

2 2
k

         (4-20) 

 

For all r  , with a   being a positive constant. Under these conditions, 

the function V  satisfies the lower bound criterion 
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 (4-21) 

 

with the restrictions on 1 2c k  and 2c  , the function V  is now 

positive definite and radially unbounded. The time derivative of V  along 

the trajectories of the closed-loop system in Eq.(4-17) is as follows 
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 (4-22) 

 

We noted that Eq.(4-22) is not expressed in quadratic form by state   
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and  . Hence, it is necessary to introduce some quadratic terms for state 

   into the time derivative of V  to guarantee the uniformly ultimately 

bounded of the nonlinear system Eq.(4-17). Thus, we propose the energy-

based compensation control law 2wu  given as 

 

 2 2 2 2 1 1 1 3 2 4 2( )wu c G G c G q G q k G k G                 (4-23) 

 

where    and 4k   are positive constants. Substituting the Eq.(4-23) into 

(4-22), the time derivative of V  is obtained as follow 

 

 

1 2 1 1

1 1 1 1

2
2 2 2 1 1 1

2
2 2 2 1 1 1 3 2

2 2 2 1 1 1 4 2

2
2 3 2 2 1 2

1

2
1

2

( )

( )

( )

( )( ) ( )

T

w

c k c kq q
V

q q
c k k c

c G G G c q G q

c G G G c q G q k G

c G G G c q G q k G

c k F G u c



    

    

    

      

 
    

      
      

   

   

   

     

 
  

  
  
   

   

 (4-24) 

 

then, Eq.(4-24) can be rewritten by joining common terms as follow 

 



 
 

-51- 
 

 

1 2 1 1

1 1 1 1

2
2 2 2 1 1 1

3 1 1 2 3 1 2

1 4 1 2 4 1 2

2 2
2 3 2 2 4 2

2 2
2 4 2 4 2 2

1

2
1

2

( )

1

2
1

2

T

T

T

c k c kq q
V

q q
c k k c

c G G G c q G q

k c G G k G G q

c k G G k G G q

c k G c k G

c k G k G c



    

 
 




 
    

      
      

   

    
     
    


 

  
   



 
  

  


 



2
3 2 3 2 2 1 2( )( ) ( )wk G k F G u c




      


  
  
 

 
     



   

 (4-25) 

 

As a results, the first to fourth lines of Eq.(4-25) can be expressed in 

quadratic form. However, undesired cross terms depending on    are 

introduced by control input 2wu . In order to eliminate such cross terms, we 

propose the function ( )   as follow 

 

 
2

3 2 3( ) ( )k G k      (4-26) 

 

by integrating Eq.(4-26), we can easily compute the explicit function ( )   

as follow 
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The function in Eq.(4-27) should satisfy the conditions of Eq.(4-20). 

From Eq.(4-20) and Eq.(4-27), the resulting inequality is as follows 

 

 
2

3 2k G  , 2 2 3c G k  (4-28) 

 

therefore, the positive definiteness of V   is guaranteed by inequality 

Eq.(4-28).  

By substituting the function ( )    into Eq.(4-25), the expression of 

time derivative of V can be rewritten as follow 
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We note from Eq.(4-29) that undesired cross terms are eliminated, and 

then V  is written in a quadratic form through proper definition of the 2wu  

and ( )  . The next step is to show the uniformly ultimately boundedness 

of the state q   and the rope variation    with the proposed controller 

Eq.(4-15). Figure 4-2 shows a detailed illustration of the control structure. 
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Figure 4-2. Control structure of the offshore crane with UUB controller 
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Closed Loop System Analysis  

Along with Eq.(4-29), the expression of V  can be rewritten in matrix 

form as follow 
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Defining the state 
T

q q     z    , then the 2U  can be rewritten as 

 

 
2 T T T

c cU  z U U z z Dz  (4-31) 

  

Along with aforementioned matrix expression of V , we can determine the 

upper bound of V as follows 
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where the ( )   represents the eigenvalues of a matrix and 
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


  
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A B
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B C
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with max   is a positive constant satisfying max    . By assuming the 

existence of the conditions that ensure min min( ) ( ) 0  H D  , it is 

possible to establish the upper bound of V  as 
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   2 2

min min max( ) ( )V          H D z z  (4-34) 

 

where min min0 ( ) ( )    H D . Then, 

 

   2 max
min min( ) ( ) , :V   




       H D z z  (4-35) 

 

which proves that the inequality conditions of the uniformly ultimate 

boundedness are satisfied. Additionally, the ultimate bound of the state 

0,b t t T   z  can be derived using the functions 1  and 2 . 

 

    1 2V  z z  (4-36) 

 

After carefully analyzing the upper and lower bounds of V , we can 

derive their final expressions as follows 
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where 
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3 2

1
( 1)

2
k G    (4-39) 

 

According to Eq.(4-36), Eq.(4-37) can be rewritten as 
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Thus, the ultimate bound b  is calculated as follows 
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4.4 Integral Sliding Mode Controller Design 

Consider a couple of sliding surfaces augmented by an integral action 

with a nonzero initial state term as the following  

 

 1 2S s s    (4-42) 
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where 
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1 5, ,g g   are real positive constants and de     , where d   is the 

desired value of   . The sliding surface in Eq.(4-42) always satisfies 

( ) 0S t    at 0t    based on the initial states of 1(0)s   and 2 (0)s  . 

Therefore, from the start the controlled system can slide along the surface 

without a reaching phase. To design the control law, the conventional 

Lyapunov function 2(1/ 2)V S  is employed. Then the time derivatives of 

the V  is calculated as follows 
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S g e g e g e g g    
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 (4-44) 

 

Based on Eq.(4-44), the control input which yields 0V   is derived as 

the following 
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  2 3 4 5
1

sgn( )w w w
w

w w w

C K J
u g e g e g g K S

T T T g            

 (4-45) 

 

where, 1 max( )dK g     , and   is a strictly positive constant. The 

second derivative of the V   is derived in Eq.(4-46), then the uniform 

continuity of V  can be shown easily. 

 

 21 1
( )

S
V K S KSS K K S K

S S S
          (4-46) 

 

Therefore, based on Barbalat’s lemma, we can show that 0V   as 

t   . In other words, V   approaches a finite value, such that 

( (0),0)tV V S  . As a result, the sliding surface S  converges to zero. 

However, the convergence of the state e  and   cannot be achieved 

simultaneously since the sliding surface in Eq.(4-42) is coupled. Furthermore, 

with the presence of parametric variations, especially parameters of the 

submerged system (the added mass of the payload and the hydrodynamic 

coefficient), undesired perturbed motions can appear in the state e  and  . 

To overcome this problem, authors in [46]–[48] proposed a robust stability 

analysis method for nonlinear systems.  

In this section, and based on this method, the robust stability of the 
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offshore crane system is conducted. Assuming that the system remains on the 

sliding surface 0S   and 0S  , with the state 
T

e e      ν  , 

then the closed-loop system is described as 

 

 ( )ν f ν   (4-47) 

 

where 
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where * ( ) / /b
heave tip g b p h pF Z y F F m f m        . Considering the 

behavior around the equilibrium points, we can assume that the rk   is 

constant. Then the linearized model of the nonlinear system Eq.(4-47) can 

be obtained as 

 

 ν Aν   (4-48) 
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According to Lyapunov’s linearization method [49], if the linearized 

system is strictly stable, the equilibrium point is asymptotically stable. 

Therefore, we can focus on finding a sufficient condition that the 

characteristic equation of the linear system in Eq.(4-48) satisfies the Hurwitz 

stability criterion. As a result, we can obtain the following inequality 

conditions 

 

 
1 2 3 4 5

2 4 3 5

, , , , 0g g g g g

g g g g




  (4-49) 

 

As a result, the closed-loop system with the control law described in 

Eq.(4-45) and the condition Eq.(4-49), all the controlled variables 

asymptotically converge to their desired values regardless of the parametric 

variations. 

4.5 Controller Gain Optimization 

 
In this section, the optimization method of the designed controller gain 

is introduced. Generally, a trial and error process that helps to select the 
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controller gains is performed. However, it does not guarantee an optimal 

value that guarantees the best performance. Therefore, a modern 

optimization algorithm is required to define optimal gains in an auto-manner. 

Hence, in this study, the PSO technique is applied to reach the optimal 

controller gains. 

To evaluate the cost of each particle, the performance index (objective 

function) is used. Integral of absolute error (IAE), the integral of squared 

error (ISE), or integral of time-weighted-squared-error (ITSE) are examples 

of these indices. After careful analysis of the advantages and disadvantages 

of performance indices, the adopted optimization problem is described as 

follows 

 

 
0

min ( )pJ e t


   (4-50) 

 

where ,
n n

p ref load ze P p   . However, it is necessary to satisfy the stability 

conditions of the closed-loop system as well as the optimization problem. In 

other words, the selected controller gains need to satisfy the stability 

conditions. Therefore, the optimization problem can be rewritten by the 

addition of a penalty term ( )TI ΣI  as such 

 

 
0

min ( ) T
pJ e t


  I ΣI  (4-51) 
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where  1 1 1
T

n I   and 1diag( ,..., )n Σ . In the matrix Σ , the 

stability conditions are satisfied. For the input-output linearization controller, 

the diagonal terms are as follows 

 

 1 2
1

0, if , , 0

, else

q q R
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for the UUB controller, 
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And finally, in the case of the integral sliding mode controller, the diagonal 

terms are calculated as the following 
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 (4-54) 

 

We note that if the stability conditions are not satisfied, the value of the 

performance index is infinite, thus it will be excluded from the future swarm. 

According to the considerations above-mentioned, the flow chart of the 

optimization algorithm implementation is illustrated in Figure 4-3. 
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Running simulation for each particle 

Update the gBest and pBest values

Update the position and velocity of the particles

Satisfy the 
stopping criterion

Particle, gBest and pBest initialization

Stop

Calculate performance index

Satisfy the sufficient 
condition for each particle to 
guarantee the system stability

No

Yes

Yes

No

Figure 4-3. Controller gain optimization flow chart using PSO 
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5 Simulation with Virtual Offshore Crane 

5.1 Simulation Setup 

To show the usefulness of the offshore crane control system with 

simulation tests, the dynamic model derived in chapter 3 is used. The ship 

motions are generated by a wave obtained from Marine System Simulator 

toolbox (MSS) supported by MATLAB/Simulink, which was developed by 

researchers affiliated to Thor I. Fossen’s team.  

The type of ship used is a supply vessel, and the wave is generated with 

the JONSWAP spectrum [32]. All the detailed specifications are listed in 

Table 5-1, which were selected after careful analysis of the vessel’s response. 

Figure 5-1 represents the definition of wave encounter angle. The vessel 

motion is analyzed with motion RAO (Response Amplitude Operator) in the 

MSS toolbox.  

Table 5-1 Parameters of vessel and wave used in simulation 

Item Description Value 

Vessel 

Draft (m) 6 
Breadth (m) 19.2 
Length between perpendiculars (m) 82.8 
Mass (ton) 6,362 

Wave 
Encounter angle (deg) 90 
Peak frequency (rad/s) 0.6 
Height amplitude (m) 3 
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Figure 5-2. Heave motion RAO of vessel 

Figure 5-3. Roll motion RAO of vessel 

Figure 5-1. Definition of wave encounter’s angle 
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Figure 5-2 and Figure 5-3 represent the results of motion RAO with the 

vessel and the wave above-mentioned. As shown in the result of motion RAO, 

the roll motion and heave motion are greatest when the wave encounter angle 

is 90deg with a velocity of 0.6~0.9rad/s. Hence, the 90deg and 0.6rad are 

selected to be used in the simulation. 

The desired position of the payload n
refp   is set to alternate a 2[m] 

descending motion for 15 seconds and a 2[m] ascending motion after 45 

seconds with max| | 0.9d  rad/s2. In order to guarantee that the movement 

of the payload is sufficiently smooth, a third-order Hermite interpolation is 

used by using MATLAB. The resulting desired position of the payload is 

illustrated in Figure 5-4.  

The offshore crane system nominal parameters used in the simulation 

are listed in Table 5-2. The wave disturbance, given as b
tip heavey Z    is 

represented in Figure 5-5. 

Figure 5-4. Desired position of the payload 
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The controller’s gain optimization step is conducted by using 

MATLAB/Simulink. The optimization and simulation results are listed in 

Table 5-3. Where IOLC is the input-output linearization controller, UUB-

Table 5-2. Parameter of offshore crane system used in simulation 

Parameter Value Parameter Value 

m  Mass of payload(kg) 43,200 w  Density of water(kg/m3) 1,000 

pC  
Added mass coefficient 

of payload(-) 
1.5 

b
tipy  

y directional crane tip 

position in b-frame(m) 
5 

pV  Volume of payload(m3) 4 wJ  Inertia moment(kg.m2) 15,700 

rEA  
Elasticity modulus

cross section of cable(N) 
4.55 107 wC  Damping coefficient(Pa.s) 7,000 

DC  Drag coefficient(-) 1 wK  Spring coefficient(N/m) 2,000 

pA  
Cross-section in the 
vertical direction of  

payload(m2) 
5 wT  Torque constant(-) 2,500 

(0)wl  Initial length of rope(m) 100 wr  Radius of winch drum(m) 1 

 

Figure 5-5. Wave disturbance displacement  
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IOLC is the UUB based controller integrated with IOLC, ISMC is the 

integral sliding mode controller.  

As depicted in the results, the performance index J   in the case of 

ISMC is the smallest and IOLC is the largest. In the next section, we evaluate 

the simulation results with the nominal model and uncertain model. 

5.2 Simulation Results 

5.2.1 Simulation with Nominal Model 

Simulation results with the nominal model are presented in Figure 

5-6~Figure 5-11. Figure 5-6 represents the payload position response without 

compensation controller. In this case, a simple feedforward controller is 

applied to track the resulting desired position of payload. Therefore, the 

Table 5-3. Optimized controller gain and the results of performance index 

Controller Gain 
0

( )pJ e t


   

IOLC 
1 223.6403, 635.4978, 1.3705q q R    

→ 1 221.7257, 4.1532k k   
11.4412 

UUB-IOLC 

1 2

4

3 4

1 2

21.7257, 4.1532

2.2649 10 , 83.0236, 12.6669,

0.0397, 0.3088, 18.6023

k k

k k

c c







 

   

  

 5.2364 

ISMC 
1 2 3

4 5

45.7788, 35.5351, 0.0926,

0.0541, 6.8193, 0.9356( 42.1366)

g g g

g g K

  

   
3.2119 
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impact of disturbances is not suppressed in the payload’s positioning 

response as well as the rope tension response shown in Figure 5-11. Figure 

5-6~Figure 5-8 represent, respectively, the payload position response of the 

IOLC, UUB+IOLC, ISMC control systems.  

It is clear that the payload’s position follows the desired signal 

well. However, as shown in Figure 5-7, residual vibrations continuously 

appear in the payload position as well as the rope tension responses. 

Figure 5-6. Payload position response without compensation controller 

Figure 5-7. Payload position response with IOLC 
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Analyzing the errors obtained from these two responses, we can conclude 

that the ISMC and UUB-IOLC control systems damped out the 

residual vibration rapidly. More specifically, the ISMC control system 

works more effectively compared to UUB-IOLC control system. 

 

Figure 5-8. Payload position response with ISMC 
 

Figure 5-9. Payload position response with UUB+IOLC 
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5.2.2  Simulation with Uncertain Model 

In reality, the system parameters cannot be precisely measured. 

Therefore, the controllers should be designed to be sufficiently robust under 

parametric variations. Then, it is reasonable to conduct a simulation to 

evaluate the robustness of the control system in an uncertain condition. In 

this section, the simulation with an uncertain model is conducted to evaluate 

Figure 5-10. Payload position error 

Figure 5-11. Rope tension reponse 
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the robustness of the designed control system. The system parameters are 

given in Table 5-4. 26 sets of parameters are considered, these sets represent 

the endpoints [min-max] of the rectangular grid in a 6-dimension space.  

The uncertain model simulation is conducted in MATLAB/Simulink. 

The performance index results of the simulation tests are listed in Table 5-5. 

In the IOLC controller case with the uncertain model, we note that the control 

Table 5-5. Performance index of each controller 

0
( )pJ e t


   Uncontrolled IOLC UUB+IOLC ISMC 

Maximun 276.5302 384.1713 15.5990 17.0170 

Mean 268.9762 73.5736 8.7656 13.3797 

Standard deviation 4.7334 94.6173 4.1439 2.0712 

 

Table 5-4. Parameter variation range 

Parameter Nominal Value 
   Variation range 

[min  max] % 

m  43,200 [30240  56160] 30 

pC  1.5 [1.05  1.95] 40 

pV  4 [2.8  5.2] 30 

rEA  4.55 107 [4.095  5.005] 107 10 

DC  1 [0.6  1.4] 40 

pA  5 [3.5  6.5] 30 

Wave height 3 6 100 
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system is not robust. Unlike the simulation results with the nominal model, 

the overall performance index value of the UUB+IOLC controller is smaller 

than that of the ISMC. Note that only the result of the ‘Maximum’ value in 

Table 5-5 will be introduced in the future. 

Figure 5-12~Figure 5-17 present the simulation results with the 

uncertain model. Figure 5-12 represents the payload position response 

without a compensation controller. We note that the amplitude of the 

Figure 5-12. Payload position response without compensation controller  
for uncertain model 

Figure 5-13. Payload position response with IOLC for uncertain model 
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response is larger than the nominal model case since the wave height has 

been increased. Figure 5-13~Figure 5-15 represent the control system’s 

payload position response with IOLC, UUB+IOLC, and ISMC, respectively.  

The control system with the IOLC was unable to drive the payload to 

the desired position. Moreover, the payload behavior compared to the 

uncontrolled case has deteriorated. However, as shown in Table 5-5, the 

IOLC control system can cope with wave disturbances but not as well as the 

Figure 5-14. Payload position response with UUB+IOLC for uncertain model 

Figure 5-15. Payload position response with ISMC for uncertain model 
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other control systems. Hence, this control system turned out to be non-robust 

facing parametric variations.  

In Figure 5-14~Figure 5-17, it is clear that both cases can actively cope 

with parametric variations. However, in the ISMC case, the controller cannot 

cope with the disturbance when its amplitude changes rapidly (refer to Figure 

5-12 and Figure 5-15 at 67sec and 197sec). The reason of this outcome can 

be explained as follows. Since UUB-IOLC control system includes the 

disturbance decoupling term; it works more effectively than the ISMC facing 

strong disturbances. 

Figure 5-16. Uncertain model payload position error 

Figure 5-17. Rope tension response for uncertain model 
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6 Experiment with the Pilot Model 

6.1 Experimental Setup 

The hardware platform used as an offshore crane model is shown in 

Figure 6-1. The suspended payload is lifted and lowered by a winch system, 

which consists of a DC motor, an encoder, and motor driver. The encoder 

measures the rope length, the load cellsuspended in the air with the 

ropemeasures the rope tension, and the Euler angles are measured with a 

gyro sensor. The specifications of the experimental apparatus are given in 

Table 6-1. The control system is implemented on the computer installed NI 

LabVIEW software and the PCI-6259 data acquisition board. The hardware 

configuration diagram for control system is illustrated in Figure 6-2. 

Figure 6-1. Pilot offshore crane model and wave basin for experiment 



 
 

-79- 
 

The unknown parameters of the pilot model are identified through 

experiments and simulations.  

Table 6-1. Experimental apparatus specification of the offshore crane model 

Item Parameter Value Item Parameter Value 

Winch 
System 

Motor: Maxon (334067) 
Driver: ESCON 50/5 

Load cell 

CAS(CSBA-1LS) 

Rated voltage 24[V] Capacity 1[kgf] 

Rated power 90[W] Rated output 1.0±0.2[mV/V] 

Rated torque 0.105[N.m] 

Load cell 
transducer 
amplifier 

CAS(LCT-II) 
Rated speed 7750[rpm] 

Gear ratio 28:1 Output 0~5[V] 

Resolution 500[ppr] Accuracy ±0.02% 

Drum radius 0.025[m] Linearity ±0.02% 

DAQ 

National Instrument 
(PCI-6259) 

Gyro 

NTRex(MW-AHRS) 

ADC 
resolution 

16[bits] Euler angle’s 
resolution 

0.01[deg] 

Sample rate 
(single chan.) 

1.25[MS/s] Response 
time 

<1[ms] 

Inserted 
spring 
(1EA) 

Mass 0.004[kg] Offshore 
crane 

b
tipy  0.913[m] 

Spring 
constant 

130.8[N/m] 
Nominal 
payload 
(1EA) 

Mass 0.2[kg] 

 

Figure 6-2. The hardware configuration diagram of the control system 
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Firstly, in order to identify the model of actuator consisted of motor 

driver and motor, input the chirp signal with 0.1[Hz] to 2[Hz] and the 

amplitude of 1[V], 2[V] and 3[V] into the actuator. Input signal[V] and 

angular position[deg] is measured and recorded. Using every data set of the 

input signal and the motor’s angular position, we estimated the actuator’s 

model by using the MATLAB identification toolbox. We choose the model 

with the best fitness rate. Figure 6-3 shows the correlation between 

experimental response and simulation response of the selected actuator 

model. The model equation of the actuator is given as 

 

 102.8 0.1444 26371 wu       (4-55) 

 

The wave generator is positioned at the aft of the pilot vessel to focus 

on the movement along one axis; the wave encounter angle is 0deg. Hence, 

the pitch angle of the vessel caused by the wave may become the dominant 

motion. In order to configure the wave disturbance, the output of the 

95.55%

98.29%

98.58%

Figure 6-3. Comparison result between experiment and simulation result of actuator 
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generated wave is successively 20%, 40%, 60%, and 80% of the total 

capacity. The reciprocating displacement of the wave generator’s piston is at 

0.1[m]. The frequency and height of the produced wave disturbance are listed 

in Table 6-2. 

The FFT results of the vessel’s roll and pitch motion for each output are 

shown in Figure 6-4 and Figure 6-5. In this figure, the pitch angle amplitude 

appears the largest when the output is at 40%. However, when the output is 

at 80%, the pitch angle is so small as to be negligible; therefore, it is excluded 

from the experimental procedure. Furthermore, the roll motion can be 

neglected since its amplitude is too small. 

Table 6-2. Wave disturbance used in the experiment 

Output 20% 40% 60% 80% 

Wave frequency[Hz] 0.4778 0.8897 1.1494 1.5244 

Wave height amplitude[m] 0.05 

 

Figure 6-4. FFT results of the roll motion 
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Figure 6-5. FFT results of the pitch motion 
(angle, angular velocity and acceleration) 
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In the experiment of the nominal model, three weights and three springs 

are attached to the crane system, as shown in Figure 6-6.  

The total payload is 0.6kg and the equivalent spring constant is 43.6N/m. 

After careful analysis, the hydrodynamic coefficients are identified as the 

following 0.4aC  , 1DC  .  

Following the same procedure as the simulation study, the payload’s 

desired position n
refp   is set to alternate a 0.2[m] ascending motion for 3 

seconds and 0.2[m] descending motion after 20 seconds with max| | 6d 

rad/s2. Note that when the wave generator’s output is at 40%, the desired 

position is set to only be 0.1[m] due to limitations of the experimental basin’s 

depth. Therefore, using the third-order Hermite interpolation, the resulting 

desired position of the payload is illustrated in Figure 6-7. 

Using this experimental configuration, the controller gains for the 

experiment are obtained and listed in Table 6-3.  

Figure 6-6. Payload used in experiments 
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Figure 6-7. Desired position of the payload used in experiment 
 

Table 6-3. Controller gain used in experiment 
Controller Gain 

IOLC 
1 27000, 300, 0.02q q R    

→ 1 2127.213, 591.608k k   

UUB-IOLC 

1 2

3 4

1 2

127.213, 591.608

, 0.1, 0.001,

6.49158, 2.083, 0.0005

0.0005

k k

k k

c c





 

  

  

 

ISMC 
1 2 3

4 5

0.01, 1, 40,

700, 50, 0.44( 0.5)

g g g

g g K

  

   
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6.2 Experimental Results 

6.2.1 Experiment with the Nominal Model 

 

Using measured data from experiment results, the performance index 

0
( )pJ e t


   is calculated and the results are listed in Table 6-4. Note that 

only the results of the 40% of the output case will be introduced in details 

following the same procedure as the simulation study.  

Experiment results with the nominal model are presented in Figure 

6-8~Figure 6-12. Figure 6-8~Figure 6-11 show the payload position response. 

In these figures, during the first 15 seconds of the experiment, the controller 

is switched off. Thereafter, the controller is activated to drive the payload to 

its desired position. Figure 6-13 shows the position error of the payload, and 

Figure 6-12 shows the rope tension response.  

Table 6-4. Performance index of each wave conditions 

Output of wave 
generator 

0
( )pJ e t


   

20% 40% 60% 

Uncontrolled 160.1272 452.0344 355.5983 

IOLC 102.4312 326.7183 137.3719 

UUB+IOLC 55.023 190.8782 85.2664 

ISMC 64.5909 250.9576 98.21 
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Figure 6-9. Payload position response from the experiment with IOLC 

Figure 6-10. Payload position response from the experiment with UUB+IOLC 
 

Figure 6-8. Payload position response from the experiment without 
compensation controller 
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As mentioned earlier, Figure 6-8 depicts the payload position response 

without the compensation controller. In this figure, the payload position is of 

the same amplitude all until the end of the experiment. However, in the 

controlled cases, shown in Figure 6-9~Figure 6-12, the payload position, as 

well as the rope tension amplitude, are swiftly suppressed. From Figure 

6-9~Figure 6-12, one can conclude the performance of the UUB+IOLC is 

superior to that of the other controllers. 

Figure 6-11. Payload position response from the experiment with ISMC 
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 Figure 6-13. Payload position error from experiment 

Figure 6-12. Rope tension response from the experiment 
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6.2.2 Experiment with the Uncertain Model 

In this section, the robust analysis previously stated is tested through 

experiments. To configure the parametric variations, two different 3D printed 

models of the payload are introduced, as shown in Figure 6-14 and Figure 

6-15, and 3D drawing is depicted in Figure 6-16 and Figure 6-17. The weight 

could be suspended in the center of the 3D printed model. The 3D printed 

models are inspired by the subsea installation, drilling, and pipe laying 

structures. The real systems are shown in Figure 6-18[50], [51]. Additionally, 

the number of weights and springs has been reduced, respectively, by two. 

That is, the inserted weight is 0.4kg, and the equivalent spring constant is 

65.4N/m. 

Figure 6-14. Suction pile: 3D printed model for the configuration of parametric variation 

Figure 6-15. Manifold: 3D printed model for the configuration of parametric variation 
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Figure 6-16. 3D drawing of suction pile 

Figure 6-17. 3D drawing of manifold 
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Using the obtained controller gains and the system configuration as in 

the experiments with the nominal model, The same procedure as the previous 

section has been adopted in the new set of experimental tests. The 

performance index is calculated using the measured data from the 

experiment, the results are shown in Table 6-5. 

Figure 6-18. Example of the actual subsea installation system  
(left: suction pile, right: manifold) 

 

Table 6-5. Performace index of each wave condition and payload shape  

Output of wave generator 0
( )pJ e t


   

20% 40% 60% 

Suction 
pile 

Uncontrolled 83.7806 438.7291 137.7685 

IOLC 40.5978 214.4034 84.1417 

UUB+IOLC 38.0967 133.635 56.6176 

ISMC 32.0787 169.8621 64.0237 

Manifold 

Uncontrolled 67.5714 382.9903 187.334 

IOLC 62.0795 237.8163 134.8257 

UUB+IOLC 44.4611 159.489 104.9172 

ISMC 44.2838 187.1458 112.669 
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As shown in this table, if the wave disturbance is not strong—when the 

output is at 20%—the performance of the ISMC is superior to all other 

controllers. Otherwise, the UUB+IOLC works more effectively better than 

all the designed control systems. Note that only the results of the 40% case 

with the suction pile will be introduced since it represents the worst case. 

The experiment results with the uncertain model are presented in Figure 

Figure 6-19. Payload position response from the uncertain model experiment  
without compensation controller 

Figure 6-20. Payload position response from the uncertain model experiment  
with IOLC 
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6-19~Figure 6-24. Figure 6-19~Figure 6-22 show the payload position 

response. Figure 6-23 and Figure 6-24 show, respectively, the position error 

of the payload and the rope tension response. 

The experimental results with the uncertain model emphasize the 

findings of the previous section. In Figure 6-24, the rope tension variation 

range while the controller is switched off is massive in comparison with the 

Figure 6-21. Payload position response from the uncertain model experiment  
with UUB+IOLC 

Figure 6-22. Payload position response from the uncertain model experiment  
with ISMC 
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nominal model case. Nevertheless, after the controller is switched on, the 

tension variation is suppressed effectively. However, as shown in Figure 6-23 

and Figure 6-24, the IOLC control system could not damp down the position 

error and rope tension. On the other hand, the UUB+IOLC and ISMC control 

systems gradually decrease the amplitude of the rope tension and the payload 

position error.  

 

  

Figure 6-23. Payload position error from the uncertain model experiment 

Figure 6-24. Rope tension response from the uncertain model experiment 
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7 Conclusion and Future Study 

7.1 Conclusion 

The main purpose of the study is to suggest a control system design for 

the offshore crane system to cope with disturbances and parametric 

variations.  

The modeling of the offshore crane system was approached in chapter 

3. Three control systems were introduced in chapter 4. The performance of 

the designed control system was evaluated through simulation and 

experimental results in chapters 5 and 6, respectively.  

In chapter 3, input-output linearization controller(IOLC), uniformly 

ultimate boundedness controller (UUB+IOLC) and integral sliding mode 

controller(ISMC) are introduced. The input-output linearization controller 

for active heave compensation has been previously studied in [9], [10]. As 

mentioned before, this control technique cannot be robust if the nonlinearity 

is uncertain.  

For this reason, the uniformly ultimate boundedness controller is 

proposed to improve the control performance and ensure robustness. 

Therefore, the proposed control system consists of two components. One is 

the control law of IOLC, and the other control law is derived from an energy-

based Lyapunov function. The design procedure of the controller is achieved 

following the proper definition of the system’s output and state. Closed-loop 
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system analysis is given, showing that the proposed control law can satisfy 

uniformly ultimate boundedness of the output function and the rope 

variations. 

Additionally, an integral sliding mode controller was also designed for 

the offshore system in order to compare the characteristics and performance 

of the proposed control system. 

Using the designed control systems, simulations and experiments were 

conducted with a nominal model and an uncertain model.  

In comparison with other control systems, the simulation and 

experimental results both validate the effectiveness of the uniformly ultimate 

unboundedness controller in suppressing the rope variations and in 

improving the payload positioning performance. 

7.2 Future Study 

As for this thesis, future works are listed as follow, 

 

Control system  

• Control system design in combination with real-time prediction 

technique such as Kalman filter and model predictive control to 

overcome the delay caused by sensor and signal processing.  

 

• Control system design with gain real-time optimization technique to 

improve and ensure the control performance regardless of 



 
 

-97- 
 

uncertainties(disturbance, parametric variation, etc.).  

 

Mechanism 

• Design the full(multi) dimensional compensation structure for the 

offshore crane to achieve accurate load positioning.   
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