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Abstract

In recent times, big data is revolutionizing every aspect of human lives. It has attracted
more attention in academia and industry. To quickly obtain information, information
filtering systems are essential. In the e-commerce industry, the recommendation system
(RS) to predict the preferences of people has been prevalent over the few years.
Collaborative filtering (CF) is one of the most conventional algorithms of RS. However,
CF suffers from data sparsity and scalability issues. Thus, we propose Canopy—K-means
Clustering-based Combined Collaborative Filtering (CKComCF) to solve the challenge of
data sparsity and scalability. In particular, the prediction outcomes of user-based CF
(UbCF) and item-based CF (IbCF) are integrated using a weighting approach, which is
based on the root-mean-square error (RMSE) minimization. Experiment results based on
two real-life datasets of MovieLens and Netflix Prize demonstrate that the proposed
RMSE-minimization method outperforms the traditional CF methods, improving the
accuracy by 64.24% (UbCF with MovieLens) and 13.72% (IbCF with Netflix Prize). The
proposed CKComCF model outperforms the existing improved CF method, reducing the

calculation time by 41.84% (MovieLens) and 64.77% (Netflix Prize).



1. Introduction

Big data is of interest to researchers in academia and industry because of its enormous
importance in research and e-commerce. Big data involves making mathematical
predictions based on huge amounts of data to infer various probabilities [1]. In this big
data era, information filtering systems are widely used to retrieve information for
improving operational efficiency. The emergence of big data has effectively enabled
people to passively obtain all kinds of information. Recommendation system (RS) is an
information retrieval and decision support tool that can automatically recommend items
(e.g., music, restaurants, and books) to users by using historical records of their behavior
and potential personal data [2]. RS can provide useful references to help inexperienced

users select items [3].

Since the 1990s, personalized recommendation techniques have been divided into
content-based [4] and collaborative filtering (CF) approaches [5]. In generally, content-
based techniques include probability statistics and natural language processing to mine
features and information of items; afterward, recommendations are made for similar items.
CF is categorized into user-based (UbCF) and item-based (IbCF) approaches. According
to the preferences and historical behaviors of similar users, UbCF predicts a list of users'
favorite items. Similarly, based on the sales records of the items, IBCF predicts that similar
items will be pushed to users [3]. As the information about the interaction among neighbors

is merely required by CF, it has been one of the most successful and frequently used



personalized recommendation techniques [2]. However, the sparsity and scalability of data

are the most challenging issues of CF.

This study introduces a weighting approach that minimizes the root-mean-square error
(RMSE) to enhance UbCF and IbCF based on Canopy—K-means clustering. Experiments
using actual datasets (Movielens and Netflix Prize) exhibit higher accuracy compared with
the traditional CF. The remainder of this study is organized as follows: Section 2 reviews
traditional CF and similarity measures. Section 3 presents the mathematical formulation
of the proposed model in detail. Section 4 describes the experimental results and analysis.

Finally, Section 5 presents the conclusions of the study and the directions for future work.



2. Related works

In this section, first, we review the traditional CF and then present the existing approach
to improve the traditional CF, e.g., compositing with pre-cluster data and combining CF

with weighting.

2.1. Traditional Collaborative Filtering

The traditional CF relies on a user-item rating data matrix to calculate the similarities
of users or items to find users. The accuracy of recommendations is affected by the quality
of neighbors. Therefore, the key to UbCF and IbCF is the calculation of similarities among

users or items.

To establish a user-item rating matrix, suppose there is a list of m users U =
{uy, uy, -+, upyy and a set of nitems I = {iy, iy, -, i,,} and the user-item rating matrix R

as shown in (1).

"1 T2 = Tn
21 T2 0 Ton

=\ % N ) (D)
"Tm1 "m2 ° Tmn

where column vector U = {Tu,l: T2 Tu,n} denotes the ratings of user u, and row vector

U= {ryi, 19, T} denotes the ratings of item i.

To calculate the similarities, few classic and well-known similarity measures are

addressed based on CF [6], [7], e.g., Cosine similarity[8], Pearson correlation coefficient
3



(PCC)[9], and Jaccard[10] similarity measures. They can be measured either as a
correlation or distance. Among, PCC considers the mean rating that helps to seek the
neighbor more accurately [11]. Therefore, it is widely employed for CF similarity

calculation. The similarity between user a and b can be calculated as provided in (2):

Zceca,b(ra,c - Fa)(rb,c - 7:b)

ZCECa,b(T'a,C - fa)z \/Zcecarb(rb,c — fb)z

PCC(a, b) = (2)

where 1, . denotes the rating of user a for item c. C, 5, is the set of items that is rated by

both user a and b. 7, denotes the mean rating of user a. PCC can be also applied to

measure the similarities between item and item.

To predict the ratings, the traditional CF has involved the k-NN algorithm to obtain an
ordered nearest neighbor set of target users or target items; after that, it recommends
favorite items or mutual users of k numbers that are most similar neighbors from the target
user or target item. UbCF can predict the approximate value of the unrated item i of the
target user; the function is displayed in (3):

ZveNN(u) PCC(u' 17) X (rv,i - 77;) (3)
ZveNN(u)lPCC(u: v)|

U =
pu,i =T +

where p; denotes the predicted rating of user u for item i. NN(u) is a set of nearest
neighbor users of user u, who are the most Top-N similar users based on their ratings. 7, ;

denotes the actual rating of neighbor user v for item i. #;, denotes mean rating for all items

that user v has rated.

However, as the number of products or users on the site exponentially increases, the
variability of items will affect the similarity index and reduce the accuracy of

4



recommendations [12]. Compared with UbCF, IbCF can significantly improve the

scalability of CF and provide better quality [13]-[15], the function is displayed in (4):

Sjen PCC(LJ) % (ruy = T7) @)
2jenn)|PCC, )

I =
pu,i_rl

where p{M- denotes the predicted rating of item i from user u. NN (i) is a set of nearest
neighbor items of item i. r,, ; denotes the actual rating of neighbor item j for user . 7;

denotes the actual mean rating of user user u.

2.2. Improved Collaborative Filtering

Researchers proposed various methods to construct RS to address the shortcomings of
CF [16]. Owing to the huge matrix, the similarity and computational complexity of finding
N nearest neighbors are considerably high. The K-means algorithm applied to the CF can
effectively improve the calculation speed [15], [17]. K-Means algorithm is a classic
clustering algorithm [18]. It clusters similar users or at high convergence speed. While
calculating the similarity among sample data in the cluster, the initial division must be
provided; therefore, it is a challenge to find the optimal number of clusters in the training
process. The Canopy clustering approach can easily solve this problem [19]-[21]. First,
apply the Canopy clustering algorithm for initial user-item clusters; then, the number of

canopies is employed to initial K-means.

On the other hand, UbCF and IbCF have different benefits. For example, when the
timeliness is high, the items change more frequently against the interest of the users, and

the performance of UbCF is better. When the number of users is much larger than the
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number of items and the frequency of changing items is not high, the items are relatively
stable than the users, and the performance of IbCF is better. A method combining UbCF
and IbCF has been proposed [22]. This method first predicts the results of the user-item
rating matrix using UbCF and IbCF separately. Then, it combines the predicted results to
obtain the optimized prediction using a weighted-average approach based on mean
absolute percentage error (MAPE). The prediction results prove the usefulness of the
fusion method because of the benefits of combining UbCF and IbCF. However, when the

dataset is huge, this algorithm encounters high scalability pressure.



3. Proposed Model

The effectiveness of CF makes it usable in several cases. The benefits of combining the
predicted results are more satisfactory, but calculating UbCF and I1bCF separately will
increase the computational load and increase the scalability and sparsity shortcomings [22].
At the same time, dynamic weight is the key to obtain better prediction results. Few
researchers, pointed out that Canopy—K-means can effectively speed up the calculation
time [19]-[21]. Therefore, we propose CKComCF model to enhance the performance of

the transitional CF, reduce the data sparsity load, and improve the prediction accuracy.

3.1. ComCF weighting

For target users and items that have not yet been evaluated, combined with the ratings
of neighboring users and neighboring items, the prediction results can be dynamically

predicted using uncertain weights. The function is displayed in (5):

Pui = W1 X Py + Wy X Py (®)
where p,, ; predicts the rating of user u for item i. It is the weighted and merged rating
value of two predicted ratings, UbCF rating p; ; and IbCF rating p;, ;. The weights, w; and

w,, are calculated in (6) and (7).



3.1.1 Comparison of CF PCC and library PCC

Similarity calculation has always been an important part of CF, and it has the ability to
affect the results of the entire recommendation. In the process of calculating the PCC of
CF and the PCC of other general libraries, there are calculation differences. Moreover, this
tiny loophole will be ignored accidentally and get very different results. When Spark uses
the PCC function, the missing values of the rating matrix will be filled with 0, so that the
average of the PCC calculation is incorrect. When using Pandas and excel, the missing
values of the rating matrix will ignore the entire column vector, which will also cause
calculation errors. The key factor is the common ratings of the column vector, which is not
cared about in these usual libraries, so it is necessary for the PCC of CF to be fine-tuned
or established artificially. The appendix A 1 shows the difference between the PCC
calculation required by CF and the calculation of PCC similarity using pandas, spark

libraries and excel.

3.2. RMSE-minimization for ComCF

RMSE is employed as the performance measure for the prediction generation of UbCF
and IbCF. RMSE measures the average absolute deviation between the real and predicted
ratings. Based on the error propagations, the weight between UbCF and IbCF can be
measured dynamically, thereby improving the system quality (6) and (7):

RMSE(RY)
RMSE(RV) + RMSE (R)

(6)

(1)1=



RMSE (R

_ @)
RMSE(RU) + RMSE(R)

Wy =

where w, and w- denote the weighted average as RMSE-minimization. RY and R’ denote

the sets of ratings for users and items, respectively.

When % =1, then w; = w, = 0.5, indicating that the recommendation based on the
2

user group and the recommendation based on the item group have the same weight and

have the same impact on the recommendation result.

When w; > w,, indicating that the recommendation based on the user group is more
important than the recommendation based on the item group, and the user group has a

greater influence on the recommendation result.

When w, < w,, indicating that the recommendation based on the item group is more
important than the recommendation based on the user group, and the item group has a

greater influence on the recommendation result.

w; and w, balance the influence of UbCF and IbCF on the final recommendation result,
avoid the excessive deviation of the two influencing factors and reduce the

recommendation quality of the algorithm.

3.2.1 RMSE vs MAPE

Generally, the mean absolute percentage error (MAPE) can reflect the average value of
the absolute difference between the actual value and the predicted value of the regression
model, expressed as a percentage of the actual value [22]. It normalizes the error of each

point to reduce the absolute error effect caused by a single outlier. However, RMSE (8)

9



can well reflect the degree of deviation between the predicted value of the regression model
and the true value [23]. If there are individual outliers with very large deviations, it can be
detected sensitively. For sudden changes in user interests or instantaneous changes in the

popularity of items, RMSE can capture them, resulting in a better training system.

3.3. Canopy-—K-means based Combined Collaborative Filtering

(CKComCF)

To overcome the aforementioned shortcomings, we employ the Canopy—K-means
algorithm before the traditional CF. Accordingly, CKComCF uses the Canopy algorithm
to enhance the robustness of the impact of k on the K-means algorithm. Further, clustered
data can decrease the computational complexity of the traditional CF and enhance the
instantaneity of RS. Moreover, the fusioned UDbCF and IbCF can increase the

recommendation accuracy.

First, we used the unsupervised pre-clustering to obtain the number of canopies for k in
K-means. It is efficient when the sample dataset is huge. According to the number of
canopies, K-means can provide the initial input to cluster users and items. In each cluster,
we calculate the PCC similarity distance between each sample. Once the user and item
similarity matrices are calculated, UbCF and IbCF can run separately. After that, the first
RMSE for the later error propagation can be calculated. Finally, using the proposed RMSE
weighted-average method generate the final prediction from CKComCF. The proposed

algorithm, CKComCF, is presented as pseudocode in Algorithm 1.

10



3.3.1 Canopy and K-means Clustering process

Canopy steps: initial dataset and Threshold T1, T2. T1is 0.3 and 0.2 is applied. Since
the score is between 0-5, in the process of calculating Canopy, Euclidean distance will be
used to calculate the distance between vectors, thereby obtaining clusters. In order to
obtain more accurate clustering, we also tried to use the effects of 0.1, 0.4, 0.7, etc., none
of which is as good as this combination. The Threshold between the five-point score matrix

is around 0.2, 0.3.

The huge sparse scorle matrix, when dealing with K-means clustering, will encounter
a big problem. There are several methods can be used to analyze the data with the missing
values for K-means [24]. For instance, use the global constant to fill in the missing value,
disregard the tuple, manually fill in the missing value; using the average attribute to fill in
the missing value; for all samples belonging to the same class as the tuple given, use the

average attribute; use the most likely value to fill in the missed value [25].

3.4 Other method to improve CF

Using different kinds of factors form users or items profile. Such as time factor, social
network information, location, item's tag, hot item penalty or etc. Depends on different
structure of exist datasets, some of factor is require but the dataset does not provide.
However, Canopy-K-means method can only use the basic rating matrix to predict

effectively. Appendix A 2 shows a survey about GroupLens® Datasets.

L https://grouplens.org/
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Algorithm 1 Canopy—K-means based Combined Collaborative Filtering

input R (User-item actual rating matrix)

input ty < 0.3 (Threshold T1 in Canopy clustering)
input 3 ¢ 0.2 (Threshold T2 in Canopy clustering)
input x < 5 (Number of Top-N neighbors in CF)
output P (User-item predicted rating matrix)

: procedure CKCoMCF(R, ty, )
U+R

I« RT

k! + Canopy(l, t1, ta)

{MU, MY, ... ,Mﬁ[} +— KMeans(LI, k)

1
2;
3
4:
5: kY « Canopy(U, ti, 2)
6
7
8
9 {M{,Mﬁ,...,M"(} + KMeans(I, k")

11: PY  {}
12: forc + 1tok" do
13: S+ {}
14: foru + Min(MY) to Max(M") do
15: i + MY get(u)
16: for v + Min(MY) to Max(M") do
17: 7+ MY get(v)
18: sy — PCC(il, )
19: S.insert(s, ;)
20: end for
21: end for
22: pui + UbCEMY, 8, x)
23: Pu.j.n:ert(p,,.r)
24: end for
25: et «— RMSE(PY)
26:
27 Ple{}
28 forc+ ltok! do
29: S+ {}
30: fori + Min(M!) to Max(M!) do
31 i+ MLget(i)
32 for j « Min(M~) to Max(M!) do
33 7 MLget(j)
34: sy + PCC(i, )
35: S.insert(s; ;)
36: end for
37 end for
38: Pu; < IbCFML, S, x)
39: Plinsert(py ;)
40: end for
41; ¢ « RMSE(P))
42: o
43: wi i 1-
e +¢
44: T
45: wy — 1— EULW
46:
47: P wy x PY+w, x P!
48: return P

49: end procedure

& Canopy clustering

& K-means clustering

© User-based Collaborative Filtering (UbCF)

= PCC for UbCF

1= Calculate the UbCF

> Calculate the RMSE of UbCF

> ltem-based Collaborative Filtering (IbCF)

& PCC for IbCF

i Calculate the IbCF

1 Calculate the RMSE of IbCF

t= Calculate the ComCF weight using RMSE

© Calculate the Combined Collaborative Filtering
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4. Experiment

In this section, we detail our experiments and results. First, experimental datasets and
evaluation metrics are introduced. The results and experimental analysis are discussed at

the end.

All the experiments are carried out with the Dask.distributed framework
(https://distributed.dask.org) and run on a workstation equipped with 2 x 8-cores Intel
Xeon E5-2620v4@2.10GHz CPU, 128GB DDR4-2666 ECC/REG memory, and Samsung

960 EVO PCle 250GB SSD.

4.1. Dataset

The experiments have been conducted on two widely used and well-known datasets, i.e.,
Movielens (https://grouplens.org/datasets/movielens) and Netflix Prize
(https://www.kaggle.com/netflix-inc/netflix-prize-data). The MoveieLens dataset contains
100,836 ratings (0.5-5 scales with 0.5 increments) from 610 users on 9,742 movies, in
which each user has rated at least 20 items at a density rate of 1.69%. The Netflix Prize
dataset contains 100,480,507 ratings (1-5 scales with 1 increment) from 480,189 users on
17,770 movies, in which each user has rated at least 1 item at a density rate of 1.17%.
Moreover, we randomly sampled the data based on the Gaussian distribution as 30 users
on 100 items, in which each user has rated at least 1 item at density rates of 8.63% and
7.47%. The specifications of these datasets are listed in Table 1.

13
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4.2. Evaluation

In order to evaluate the recommended accuracy of the proposed algorithm, RMSE is
employed to measure our performance prediction algorithm. RMSE can be obtained by
calculating the standard deviation between the actual rating and the predicted rating for
each user. The smaller the value of RMSE, the higher the accuracy of the recommendation

algorithm. The formula of RMSE is as (8):

1 2
e S 8
RMSE(P) \/ = E 1N, (TuiER)(pu,l Tui) (8)

where P denotes the predicted rating matrix, while R is the actual rating matrix. p,, ;
denotes user u’s predicted rating for item i, while r,,; denotes user u’s actual rating for

item i respectively.

4.3. Result

The neighbors of CF users or items that have similar preferences based on
recommendations, which are denoted as NN (1) and NN (i) in (3) and (4). Top-N or other
kinds of pre-filtering methods can be used to determine these neighbors. In our
experiments, k-NN is employed, which requires the parameter x. Choosing the proper x is
required as it affects the accuracy. Figure 1 - Figure 4 are showing that RMSE significantly

changes depending on x.

15



We derived the proper x value, which is the smallest RMSE obtained from traditional
CF—UDCF and IbCF for calculating the proposed RMSE-based ComCF by testing the x
range [1, 30] of UbCF and the x range [1, 100] of IbCF. Moreover, the MAPE-based

CF[22] was compared in the whole analysis.

We performed two experiments to show the effectiveness of RMSE-minimization for

ComCF and the effectiveness of CKComCF in MovieLens and Netflix Prize datasets.

4.3.1. Effectiveness of RMSE-minimization for ComCF

For the MovieLens dataset, x obtained values of 12 from UbCF and 31 from IbCF for
the smallest RMSE and obtained 12 from UbCF and 8 from IbCF for the smallest MAPE
(Figure 1). For RMSE-based ComCF based on (6) and (7), the accuracy of RMSE was

0.2326 and for MAPE-based ComCF based on [22], the accuracy of RMSE was 0.2838.

For the Netflix Prize dataset, x obtained a value of 7 from UbCF and IbCF for the
smallest RMSE and obtained 7 from UbCF and 6 from IbCF for the smallest MAPE
(Figure 2). For RMSE-based ComCF by our proposed equations, the accuracy of RMSE
was 0.1609, and for MAPE-based ComCF based on [22], , the accuracy of RMSE was

0.1699. The results are listed in Table 2.

The results of the proposed RMSE-minimization approach are listed in Table 3. For the
Movielens dataset, the proposed approach has improved accuracy by 54.37%, 14.45%,
18.04% compared with UbCF, IbCF, and MAPE-based ComCF, respectively. For Netflix
Prize dataset, the proposed approach has improved accuracy by 48.95%, 29.21%, 5.30%

compared with UbCF, IbCF, and MAPE-based ComCF, respectively. Therefore, the

16



proposed RMSE-based ComCF is much better than the traditional CF and more accurate

than the MAPE-based ComCF.

4.3.2. Effectiveness of CKComCF

For Canopy clustering, hyperparameters, T1 and T2 are set as 0.3 and 0.2, respectively.
The pseudocode of the proposed approach is displayed as Algorithm 1. For the MovieLens
dataset, the results of Canopy clustering are 3 and 4 for kV and k', respectively, and x has
obtained values of 9 and 12 for UbCF and IbCF, respectively (Figure 3). For the Netflix
Prize dataset, the results of Canopy clustering are 3 and 4 for kY and k', respectively, and
x came out 5 and 9 for UbCF and IbCF, respectively (Figure 4). The results are listed in
Table 4. Furthermore, the calculation time of each algorithm for different datasets is listed

in Table 5.

The results of the proposed CKComCF result are listed in Table 6. As per the
comparative analysis, our approach did not improve the accuracy, but significantly reduced
the calculation time by 41.84% and 64.77% for MovieLens and Netflix Prize datasets,
respectively. On the other hand, in comparison with the traditional CF—UbCF and IbCF-
—our approach did not always improve the accuracy but consistently maintained it. In
comparison with the UbCF, our approach has improved the accuracy by 48.72% and
22.08% for MovieLens and Netflix Prize datasets, respectively. In comparison with the
IbCF, our approach has improved accuracy by 48.72% for the MovielLens dataset and

53.18% for the Netflix Prize dataset.
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5. Conclusion

In this thesis, we introduced a weighted RMSE minimized model for ComCF. Our
proposed model, CKComCF solved the scalability problem and retained the accuracy rate
productively. Finally, we conducted experiments on real-world datasets with our approach
and other algorithms for performance evaluation. The results indicated that the proposed
RMSE minimized method was effective. Although Canopy—K-means did not guarantee
the accuracy of predictions as the clusters were not optimal, the combination approach
alleviated it. Canopy—K-means and ComCF well complemented each other. In the future,
we will optimize the clustering function for the model as well as consider changes in the

preference changes in the of users and the long-tail effect of items on the system.
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Appendix

A 1 Four methods to calculate PCC
(CF customized PCC, Excel, Pandas, Spark libraries PCC func.)

Users Movies Paw Patrol Moon and Me PeppaPig  Frozen My Little Pony
Audrey 1 5 2 5 5
Quenby 2 3 5 4
Methods Results
CF required PCC func. 0.921790586
Excel PCC func. 0.939336437
Pandas PCC func. 0.939336437
Spark PCC func. 0.173348743

A 1 shows the ratings of each movie by users Audrey and Quenby. The results were
calculated by using different methods — CF required PCC, Excel, Pandas, Spark libraries
PCC function. The outcomes of PCC functions of Excel, Pandas and Spark are different

with the CF required PCC calculation.
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A 3 Flow chart for Canopy—K-means based
Combined Collaborative Filtering

| Raw data |
¥
| Rating matrix |
|
v v
| Canopy clustering for user rating | | Canopy clustering for item rating |
¥
—pl K-means clustering for user | | K-means clustering for itam lq—
no ‘ no
ves
User =PCCin each cluster Item - PCC in each cluster
¥ ¥
Top N neighbor Top N neighbor
v v
CF (mean center) CF (mean center)
v v
| RMSE (RY) calculation | | RMSE (R") calculation ‘

| |
'

| @ and w., caleulation |
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A 4 Notations

Variable Description
ty, t, Threshold T1 and T2 in Canopy clustering
kY, k! k in K-means clustering for UbCF or IbCF
N Number of Top-N neighbors in CF (which is k in k-
Nearest Neighbors)
m Number of users
n Number of items
Tui Actual rating of user u for item i
R User-item Actual rating matrix
uviJ Actual rating vector (of user u or v, or item i or j)
U, I Actual rating matrix for UbCF or IbCF
Py, Predicted rating of user u for item i
P User-item Predicted rating matrix
pY, p! Predicted rating matrix from UbCF or IbCF
c Cluster 1D
MY, M! c-th clustered rating matrix for UbCF or IbCF
Sab Similarity between a and b
S Similarity matrix
el, e RMSE of UbCF or IbCF predicted rating matrix
w1, Wy Weight of UbCF or IbCF for ComCF
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