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한국도시들에서 장단기기억 네트워크와 심층신경망을 사용한 기상요소들의 동역학 예측에 관한 연구 

 

신 기 홍 

 

부경대학교 대학원 물리학과 

 

요약 

 

 

본 논문에서는 한국의 10 개 광역시 (서울, 대전, 대구, 부산, 인천, 광주, 포항, 목포, 통영, 

전주)의 신경망을 이용하여 두 가지 기상 요인 (온도, 습도)의 동적 예측을 연구하고 분석한다. 기

상청에서 연도를 봄, 여름, 가을, 겨울로 구분 한 7 년 (2014 ~ 2020)의 평균 온도 및 평균 습도 

시계열 데이터를 추출했다. 우리는 인공 신경망 (ANN), 심층 신경망 (DNN), 최적 학습기계 (ELM), 

장단기 기억망 (LSTM), 장단기 기억-핍홀 연결망 (LSTM-PC)과 같은 다섯 가지 신경망 알고리즘을 

컴퓨터 시뮬레이션으로 다룬다. 인공 신경망, 심층 신경망, 장단기 기억망 및 장단기 기억-핍홀 연

결망은 2500, 5000, 7500번 학습한다. 비학습 모델인 최저 학습기계는 2500, 5000, 7500개의 예측 

모델에서 생성된 온도 및 습도 값을 평균하여 예측값을 얻는데 사용한다. 5개의 학습률 (0.1, 0.3, 

0.5, 0.7 및 0.9)은 인공 신경망 및 심층 신경망의 출력을 적용하는 데 사용되며, 다른 5개의 학습

률 (0.001, 0.003, 0.005, 0.007 및 0.009)은 장단기 기억망 및 장단기 기억-핍홀 연결망에 적용된다. 

컴퓨터 시뮬레이션은 4개의 경우에 대해 수행한다. 2일의 온도와 습도인 𝑇𝑡−1, 𝑇𝑡 , 𝐻𝑡−1, 𝐻𝑡를 입력

하여 다음날의 온도 (시험1)와 습도 (시험2)를 예측하고, 3일의 온도와 습도인 𝑇𝑡−2, 𝑇𝑡−1, 𝑇𝑡 , 𝐻𝑡−2, 

𝐻𝑡−1, 𝐻𝑡를 입력하여 다음날의 온도 (시험3)와 습도 (시험4)를 예측한다.  

5개의 인공 신경망 모델에서 예측 정확성을 위해 시뮬레이션을 통하여 평균 제곱근 오차 

(RMSE), 평균 절대비 오차 (MAPE), 평균 절대 오차 (MAE) 및 테일유 (Theil’s-U) 통계를 구한 후 

결과를 비교 고찰한다. 특히, 온도 예측을 위한 컴퓨터 시뮬레이션에서 봄은 통영에서 인공 신경

망이 시험3 (6개의 입력 노드가 있는 입력층에서 예측된 온도)의 5000번 학습에 대해, 여름은 통

영에서 장단기 기억망이 시험3의 5000번 학습에 대해, 가을은 부산에서 장단기 기억-핍홀 연결망
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이 시험1 (4개의 입력 노드가 있는 입력층에서 예측된 온도)의 5000번 학습에 대해, 겨울은 대구

에서 인공 신경망이 시험1의 2500번 학습에 대해 가장 작은 평균 제곱근 오차 값을 보여준다. 온

도 예측에서는 장단기 기억망 모델을 적용했을 때 통영의 여름에서 0.866으로 평균 제곱근 오차 

값이 가장 작았다. 습도 예측에 대해서는, 봄은 통영에서 장단기 기억-핍홀 연결망이 시험4 (6개의 

입력 노드가 있는 입력층에서 예측된 습도)의 7500번 학습에 대해, 여름은 목포에서 장단기 기억

망이 시험4의 2500번 학습에 대해, 가을은 목포에서 장단기 기억망이 시험2 (4개의 입력 노드가 

있는 입력층에서 예측된 습도)의 7500번 학습에 대해, 겨울은 목포에서 인공 신경망이 시험4의 

7500번 학습에 대해 가장 작은 평균 제곱근 오차 값을 보여준다. 습도 예측에서는 장단기 기억망 

모델을 적용했을 때 목포의 여름에서 5.732로 평균 제곱근 오차 값이 가장 작았다. 온도와 습도 

두 예측에서 모두 여름에서 장단기 기억망 모델이 가장 좋은 성능을 보였다.  
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Ⅰ. Introduction 
 

Climate change is until now thought to be a cause for concern for many scientists 

around the world. Changes in the climate factors have resulted in considerable climate 

variations for complex systems [1,2]. With the numerical and analytical weather 

prediction of the world meteorological organization (WMO), the statistical quantities of 

heat transfer, solar radiation, temperature, wind, humidity, surface hydrology, and land 

subsidence [3] have been calculated within each grid cell of our earth, and these 

interactions are presently proceeding to be calculated to shed light on the atmospheric 

properties. Particularly, El Nin o–southern oscillation (ENSO) forecast models have been 

categorized into three types: coupled physical models, statistical models, and hybrid 

models [4,5]. Among these models, the statistical models introduced for the ENSO 

forecasts have been the neural network (NN) model, multiple regression (MR) model, and 

canonical correlation analysis [6,7]. Barnston et al. [8] have found that the statistical 

models have reasonable accuracies in forecasting sea surface temperature (SST) 

anomalies.   

The Artificial intelligence (AI) has been applied in various fields and research is 

being actively conducted. The field of deep neural network (DNN), which was once in a 

recession, has been applied to all fields as the era of big data has entered the era and 

applied to various industries and has established itself as a core technology. Machine 

learning (ML), originated in the 17th century, is a branch of artificial intelligence. It has 

used computers to simulate and analyze various models in scientific fields. The ML and 

the DNN are sub-fields of AI, and the DNN is the number of hidden layers in the NN. The 

ML improves its performance through learning, which includes supervised learning and 

unsupervised learning. Supervised learning uses data with targets as input values, and 

unsupervised learning uses input data without targets [9]. Supervised learning includes 

regressions such as the linear regression, logistic regression, ridge regression, and Lasso 

regression, and classifications such as the support vector machine (SVM) and the decision 

tree (DT) [10,11]. For the unsupervised learning, there are techniques such as the 

principle component analysis (PCA), K-means clustering, and density based spatial 

clustering of applications with Noise (DBSCAN) [12-14]. The reinforcement learning (RL) 

exists in addition to supervised and unsupervised learning. The RL is known as a learning 

with actions and rewards. The AlphaGo has for example become famous for its against 

humans [15,16]. 
 About eight decades ago, the NN model have been proposed by McCulloch and 
Pitts [17], and the first learning rules were proposed by Hebb [18]. In 1958, the 
Perceptron model was proposed by Rosenblet [19]. However, it is proved by Minsky and 
Papert in 1969 that Perceptron is a linear classifier that cannot solve the XOR problem 
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[20]. In the field of NNs, Rumelhart proposed a multilayer perceptron that added a hidden 
layer between the input layer and the output layer, and solved the XOR problem, and again 
faced the moment of development [21]. Until now, many models have been proposed for 
human memory as a collective property of NNs. The NN models introduced by Little [22] 
and Hopfield [23] have been based on an Ising Hamiltonian extended by equilibrium 
statistical mechanics. A detailed discussion of the equilibrium properties of the Hopfield 
model was discussed in Amit et al. [24]. 

Furthermore, Werbos firstly proposed back-propagation (BP) for learning ANNs 

in his doctoral thesis [25], which was developed by Rumelhart in 1986, The BP is a method 

of learning a NN by calculating the error between the output value of the output layer 

calculated in the forward direction and the actual value propagated the error in the 

reverse direction. The BP is a delta rule and gradient descent method (GDM) to update 

weights by performing learning in the direction of minimizing errors [26,27].  

 In 1990, Elman proposed a simple recurrent network using the output value of 

the hidden layer as the input value of the next time considering time [28]. In 1990, Werbos 

proposed BP through time and proposed a learning method for recurrent neural network 

(RNN) [29]. The Long Short-Term Memory (LSTM) model, a variant of RNN that controls 

information flow by adding a gate to a node, was developed by Hochreiter and 

Schmidhuber [30]. The LSTM-peephole connections (PC) and the LSTM-GRU were 

developed from the LSTM [31,32]. In addition, the Convolution Neural Network (CNN) 

used for high-level problems, including image recognition, object detection and language 

processing is facing a new revival by LeCun. In 1998, the Convolution Neural Network, 

LeNet-5, was developed [33]. Furthermore, Huang et al. proposed an extreme learning 

machine (ELM) to improve the slow progression of gradient descent-based algorithms 

due to iterative learning. The ELM is a single-hidden layer feedforward neural network 

with one hidden layer, without training, and uses a matrix to obtain the output value [34]. 

 Deep neural network (DNN) has various hyper-parameters such as the learning 

rate, drop out, epochs, batch size, hidden nodes, activation function and so on. The 

learning rate is not only a fixed value, but also a cyclic applied by changing the learning 

rate. Methods such as learning rate and cosine annealing are applied. In the case of 

weights, an initial weight value is set according to the number of nodes suggested by 

Xavier et al. [35-38]. In addition to the stochastic gradient descent (SGD), optimizers for 

the optimization such as the momentum, Nestrov, AdaGrad, RMSProp, Adam, and AdamW 

have also been developed [39–41]. 

 DNN technology, which has continued to develop, is applied to the fields of stock 

market [42-50], transportation [51-58], weather [59-70], voice recognition [71-74], and 

electricity [75-81]. Tao et al. [82] have studied a state-of-the-art DNN for precipitation 

estimation using the satellite information, infrared (IR), and water vapor (WV) channels, 

and they have particularly showed a two-stage framework for precipitation estimation 
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from bispectral information. Although the stock market is a random and unpredictable 

field, DNN techniques are applied to predict the stock market [83,84]. The prediction 

accuracy was calculated by dividing the small, medium, large scale by applying deep 

learning with autoencoder and restricted Boltzmann machine (RBM), neural network 

with back-propagation algorithm, extreme learning machine (ELM), and radial basis 

function neural network (RBF) [85]. Sermpinis et al. applied traditional statistical 

prediction techniques and ANN, RNN, and psi-sigma neural network (PSN) for the 

EUR/USD exchange rate. Their results showed that the RMSE was smaller when the 

neural network model was used [86]. Vijh et al. predicted the closing price of US firms 

using a single hidden layer neural network and a random forest model [87]. Wang et al. 

applied the BPNN, Elman recurrent neural network (ERNN), stochastic time effective 

neural network (STNN), and Stochastic Time Effective Function (STNN) for SSE, TWSE, 

KOSPI, and Nikkei225. They have shown that artificial neural networks perform well in 

predicting the stock market [88]. 

 Moustra et al. have introduced an ANN model to predict the intensity of 

earthquakes in Greece. They have used a multilayer perceptron (MLP) for both seismic 

intensity time series data and seismic electric signals as input data [89]. Gonzalez et al. 

[90] used the RNN and LSTM models to predict the earthquake intensity in Italy with 

hourly-data. Kashiwao et al. predicted rain-autumn for the local regions in Japan. They 

were applied the hybrid algorithm in the random optimization method [91]. 

 Zhang and Dong have studied the CNN model to predict the temperature by using 

the daily temperature data of China from 1952 to 2018 as learning data [92]. Bilgile et al. 

has used the ANN model to predict the temperature and precipitation in Turkey, and they 

have analyzed 32 nodes with one hidden layer. Their results have also showed a high 

correlation between the predicted value and the actual value [93]. Mohammadi et al. have 

collected weather data from Bandar Abass and Tabass with different weather conditions. 

They have predicted and compared daily dew point temperature using the ELM, ANN, and 

SVM [94]. Maqsood et al. have predicted the temperature, windspeed, and humidity by 

applying the MLP, RNN, radial based function (RBF), and Hopfield Model for four seasons 

in Regina Airport's [95]. 

 In this paper, we study and analyze Dynamical prediction of meteorological 

factors (temperature and humidity) using the NN models. We predict the temperature 

and the humidity for ten major cities in South Korea peninsula by applying five NN models, 

that is, the ANN, DNN, LSTM, LSTM-PC, and ELM. We find the RMSE, MAPE, MAE, and 

Theil-U from our calculated results. Data for calculations are given in Section 2. In Section 

3, the basic formulas for the ANN, DNN, LSTM, LSTM-PC, and ELM are provided. 

Corresponding calculations and the results for these models are presented in Section 4. 

Concluding remarks are given in Section 5. 
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Ⅱ.  Data 
  

As our data, we use the temperature and the humidity of ten major cities in Korea 

extracted from the Korea Meteorological Administration (KMA). The ten cities we studied 

and analyzed are Seoul, Incheon, Daejeon, Daegu, Busan, Pohang, Tongyeong, Gwangju, 

Mokpo, and Jeonju. We used the data of the manned regional meteorological offices of the 

KMA to ensure the reliability of data, and it is daily data for seven years from 2014 to 

2020. In this study, we trained and tested the NN models for two meteorological factors 

(temperature and humidity) during five years from 2010 to 2014.  

     The data used is from 2014 to 2020, and the four seasons are divided into the 

spring (March, April, May), the summer (June, July, August), the autumn (September, 

October, November), and the winter (December, January, February). In the case of the 

winter, data for December of the year and January and February of the following year are 

used as data for one year, so December 2014 to January and February 2015 are data for 

the winter of 2014. In this paper, training was conducted with five-years data and verified 

with one-year data. And, the temperature is converted into absolute temperature and 

used. 

 

Ⅲ.  Theoretical Background  
 

In this section, we introduce the method and its technique for five NN models, that 

is, the ANN, DNN, LSTM, LSTM-PC, and ELM. 

 

1. Artificial Neural Network (ANN) and Deep Neural Network (DNN) 
The ANN is a mathematical model that presents some features of brain functions 

as a computer-simulation. That is, it is an artificially explored network, distinguished 
from a biological neural network. The basic structure of the ANN has three layers: input, 
hidden, and output. Each layer is determined by connection weight and its bias. In an 
arbitrary layer of the neural network, each node constitutes as one neuron, and one link 
between nodes means one connection weight of a synapse. The connection weight is 
corrected as feedback via a training phase, and is designed to implement self-learning. 
Fig. 1-1 is the ANN structure for one hidden layer with three nodes. The ANN structure 
with two or more hidden layers is called a DNN. We show a DNN structure with two 
hidden layers in Fig. 1-2. 

The artificial neural network problem can be viewed as a problem of finding the 

optimal value of a function. If the objective function is 𝐽(𝜃), the gradient descent method 

is the method to find the minimum value of this objective function for 𝜃 . Next, the 
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gradient descent algorithm is defined as follows. That is,  

 

 
Fig. 1-1: Artificial neural network (ANN) structure with one hidden layer. Each layer is connected 

by weights.  

 

 
 

Fig. 1-2: Deep Neural Network (DNN) with 2 hidden layers. In the hidden layer, the superscript 

indicates the order of the layers, and the subscript indicates the order of the nodes. 

 

𝜃 = 𝜃 −  𝜂𝛻𝜃𝐽(𝜃) ,                           (1) 

 

where ∇𝜃𝐽(𝜃) is the derivative value of the objective function with respect to θ, which is 
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called gradient and means 
∂𝐽(𝜃)

∂𝜃
. If the sign of ∇𝜃𝐽(𝜃) is negative, it means that the value 

of θ is adjusted in the opposite direction of the slope. The quantity 𝜂 is as learning rate, 

and this is a factor that determines how much gradient is reflected. That is, the change of 

𝜃  is determined by changing the η  value. The value of θ grows larger according to 

increase η as the big value, but there exists a possibility that the minimum value to be 

found will be exceeded. On the other hand, if the 𝜂 value is small, the change in 𝜃 will 

be small, but it may take a lot of learning time to find the minimum value. Among the 

gradient descent methods, stochastic gradient descent is a method of updating 𝜃  for 

each data set by  

 

𝜃 = 𝜃 − η∇𝜃𝐽(𝜃; 𝑥(𝑖); 𝑦(𝑖)) ,                        (2) 

 

where 𝑥(𝑖) is the 𝑖-th training data, and 𝑦(𝑖) is the label value of the 𝑖-th training data 

[41]. 

 Forward propagation (FP) is first performed to output a predicted value using an 

artificial neural network. Forward propagation refers to calculating in the order of input 

layer-hidden layer-output layer. When a predicted value is found through forward 

propagation, the error, which is the difference between the target value and the predicted 

value, is calculated and the error is propagated in the order of the output layer-hidden 

layer-input layer. This is called the error BP method. The FP of the ANN starts from the 

input layer and progresses as many as the number of hidden layers, and when it finally 

reaches the output layer, the FP is completed. Forward propagation is calculated by a 

simple method. After calculating the weighted sum by Eq. (3) for the layer and the layer, 

let us calculate the activation function with in Eq. (4) [96]. 

 

net = ∑ weight ∗ input + bias                    (3) 

 

and                    output = σ(net) ,                                 (4) 

 

where 𝜎 is a sigmoid function, one of the nonlinear functions, and is called an activation 

function, and has the following Eq. (5). 

 

𝜎(𝑥) =
1

1+𝑒−𝑥
                                    (5) 

 

In addition, the differential form of the sigmoid function is shown as 

 
𝑑𝜎(𝑥)

𝑑𝑥
= 𝜎(𝑥)(1 − 𝜎(𝑥)) .                          (6) 
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Next, we show the functional form of the sigmoid function and its derivative form in Fig. 

2 (a) and (b), respectively. 

 

Fig. 2: Sigmoid function 𝜎(𝑥) and derivative of sigmoid function 
𝑑𝜎(𝑥)

𝑑𝑥
 .                                                

 

First of all, the FP between the input layer and the hidden layer is obtained as 

follows:  

 

𝑦𝑗 = 𝑤𝑗𝑖𝑥𝑖  +  𝑏𝑗                              (7) 

 

ℎ𝑗 = σ(𝑦𝑗)                                 (8) 

 

Here, 𝑥𝑖  is the 𝑖-th neuron of the input layer, 𝑤𝑗𝑖  is the weight of the 𝑗-th neuron of the 

first hidden layer and the 𝑖- th neuron of the input layer, and 𝑏𝑗  is the bias of the 𝑗-th 

neuron of the first hidden layer. ℎ𝑗  is an output value from the output layer. If the hidden 

layer consists of more than one layer, the above process can be repeated with ℎ𝑗  as the 

input value of the next layer. The FP of the hidden layer and the output layer is performed 

by  

 

𝑦𝑘 = 𝑤𝑘𝑗ℎ𝑗  +  𝑏𝑘                           (9) 

 

𝑜𝑘 = σ(𝑦𝑘) ,                               (10)  
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where 𝑤𝑘𝑗 is the weight between the hidden layer and the output layer, and 𝑏𝑘 is the 

bias of the output layer. When the FP calculation is completed for all training data, the 

training data is learned using a learning method called error back-propagation method. 

The purpose of the ANN is to find weights that minimize errors. The BP method is 

updating the weights between layers by sending the error between the target value and 

the predicted value to the hidden layer and the input layer.  

Firstly, the error between the target value and the predicted value of the output 

layer is calculated. As for the error, the MSE, which is specifically called the cost function, 

is calculated as  

𝐸 =
1

2
∑ (𝑡𝑘 −  𝑜𝑘)2𝑁

𝑘=1                            (11) 

 

In error back-propagation [21,96], the weight updated by the gradient descent method 

can be expressed as 

𝑤′ = 𝑤 − 𝜂
∂𝐸

∂w
 ,                               (12) 

 

where 𝑤′ represents the updated new weight, and 𝑤 is the weight connecting the layer 

before the update.  

Secondly, the weight between the output layer and the hidden layer is adjusted. 

When calculating the gradient of the cost function in Eq. (12), it is calculated by applying 

the chain rule as 

 
∂𝐸

∂𝑤𝑘𝑗
=

∂𝐸

∂𝑜𝑘

∂𝑜𝑘

∂𝑦𝑘

∂𝑦𝑘

∂𝑤𝑘𝑗
                                                                             

                                                  

= −(𝑡𝑘 −  𝑜𝑘)(𝑦𝑘)(1 −  𝜎(𝑦𝑘))ℎ𝑗                                             

      = 𝛿𝑘ℎ𝑗                                      (13) 

  

and 𝛿𝑘 is given by 

 

δk =
∂E

∂yk
                                                                                               

       = −(𝑡𝑘 − 𝑜𝑘)𝜎(𝑦𝑘)(1- 𝜎(𝑦𝑘)) .                 (14) 

 

Here, Eq. (14) is called the delta rule. The weight updated by output layer and hidden 

layer is finally shown as 

 

𝑤𝑘𝑗
′  = 𝑤𝑘𝑗  + 𝜂𝛿𝑘ℎ𝑗  .                            (15) 
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Lastly, the process updated the weights of the hidden layer and the input layer is 

as follows. In the output layer, the error between the target value and the predicted value 

can be calculated, but in the hidden layer, the error cannot be calculated because there is 

no target value of the hidden layer. After 𝛿𝑘 of the output layer is backpropagated and 

used as an error value in the hidden layer, the gradient for the weight of the hidden layer-

input layer is calculated as  

 

                 
𝜕𝐸

𝜕𝑤𝑗𝑖
 =

𝜕𝐸

𝜕ℎ𝑗

𝜕ℎ𝑗

𝜕𝑦𝑗

𝜕𝑦𝑗

𝜕𝑤𝑗𝑖
                                                 

 =
𝜕𝐸

𝜕𝑦𝑘

𝜕𝑦𝑘

𝜕ℎ𝑗

𝜕ℎ𝑗

𝜕𝑦𝑗

𝜕𝑦𝑗

𝜕𝑤𝑗𝑖
      

                            = (∑ 𝛿𝑘𝑤𝑘𝑗
𝑁
𝑘=1 )𝜎(𝑦𝑘)(1 −  𝜎(𝑦𝑘))𝑥𝑖   

= 𝛿𝑗𝑥𝑖                                       (16) 

 

The final update for the weights of hidden layer and input layer is obtained by 

 

𝑤𝑗𝑖
′  = 𝑤𝑗𝑖+𝜂δ𝑗𝑥𝑖  .                               (17) 

 

 

2. Long Short Term Memory (LSTM) 

 

 The LSTM is an artificial neural network model modified from RNN. Like the ANN 

model, a basic RNN consists of an input layer, a hidden layer, and an output layer. However, 

the difference from the existing ANN is that the output value from the hidden layer is used 

as the input value of the input layer. That is, the output value of the hidden layer at the 

current time 𝑡 is used as an input value together with the input value of the input layer 

at the next time step 𝑡 + 1. Fig. 3 shows the structure of the RNN with respect to time. In 

Fig. 3(a), the structure in which the output value of the hidden layer is again used as the 

input value of the input layer can be confirmed. Fig. 3(b) shows the unfolded structure 

Fig. 3(a). In this way, the RNN makes it possible to find more accurate predicted values by 

continuously remembering past information. However, the characteristic of remembering 

the past acts as a disadvantage as the time step deepens. Information from the past too 

far is difficult to reflect in the present time step, which is called gradient vanishing. The 

LSTM is a model that overcomes the gradient vanishing problem. 
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Fig. 3: RNN structure. In (a), it can be seen that the output value of the hidden layer goes back to 

the input value of the input layer, and (b) is a structure in which RNNs are expanded in 

chronological order. 

 

Fig. 4 is structure of the LSTM. The LSTM is a model that transforms the node of 

the hidden layer into a memory cell in the RNN. The memory cell has a forget gate, an 

input gate, an output gate, and a state that is the current state of the cell, so that past 

information can be controlled more efficiently. 

Forward and back-propagation of the LSTM [97] is achieved by the control of each 

gate in the LSTM memory cell. There are three types of the LSTM. Input weight connecting 

the input value and the gate. input weights : 𝑤𝑓 , 𝑤𝑖, 𝑤𝑜, 𝑤𝑧 ∈  𝑅𝑁×𝑀, connect the gate to 

the output of the previous layer, recurrent weights : 𝑢𝑓 , 𝑢𝑖 , 𝑢𝑜 , 𝑢𝑧 ∈  𝑅𝑁×𝑀, and there are 

bias weights : 𝑏𝑓 , 𝑏𝑖, 𝑏𝑜 , 𝑏𝑧 ∈  𝑅𝑁. Here, 𝑀 is the length of the input value 𝑥𝑡 at time 𝑡, 

and 𝑁 is the number of gate nodes. The input value input to the gate passes through the 

activation function layer of each gate and updates the current cell state.  

First of all, the forget gate is a gate that determines how much information from 

the past will be forgotten. In the forget gate, the output value ℎ𝑡−1 of 𝑡 − 1 and the input 

value 𝑥𝑡 at the current time 𝑡 are input and calculated as  

 

𝑓𝑡 =  𝑤𝑓𝑥𝑡 + 𝑢𝑓ℎ𝑡−1 + 𝑏𝑓 ,                   (18) 

𝑓𝑡 =  σ(𝑓𝑡) .                                 (19) 

 

where 𝑓𝑡  passes through the sigmoid function and has a value in the range of 0 to 1, and 

determines how many memories of the past will be remembered. The closer to 0, the less 

information is remembered, and the closer to 1, the more information from the past is 

remembered. 
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Fig. 4: LSTM memory cell structure. 

 

 

The input gate determines the new information of the current time step and how 

much the information is reflected in the current state. The input gate updates the current 

state of 𝑡  by passing through two activation functions, the 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑙𝑎𝑦𝑒𝑟  and the 

𝑡𝑎𝑛ℎ 𝑙𝑎𝑦𝑒𝑟 as in Eqs. (21) and (23).  

 

𝑖𝑡 =  𝑤𝑖𝑥𝑡  + 𝑢𝑖ℎ𝑡−1 + 𝑏𝑖                     (20) 

𝑖𝑡 = σ(𝑖𝑡)                                  (21) 

𝑧𝑡 =  𝑤𝑧𝑥𝑡 + 𝑢𝑧ℎ𝑡−1 + 𝑏𝑧                    (22) 

𝑧𝑡 = 𝑡𝑎𝑛ℎ(𝑧𝑡) .                              (23) 

 

𝑖𝑡  passes the sigmoid function and outputs a value between 0 and 1, which is a layer that 

determines how much information about the input value is reflected. 

𝑧𝑡  Has a value between -1 and 1 through tanh, and is a candidate vector of a new state to 

be reflected in state update. 

Let us update the past state  𝑐𝑡−1  using 𝑓𝑡  , 𝑖𝑡 , and 𝑧𝑡  in the forget gate and 

input gate. The new state 𝑐𝑡 can be obtained by the following Eq. (24). 
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𝑐𝑡 =  𝑖𝑡 ⊙ 𝑧𝑡 +  𝑐𝑡−1 ⊙ 𝑓𝑡                         (24) 

 

Here, ⊙ represents element-wise multiplication. In the first term of Eq. (24), the state 

update candidate 𝑧𝑡(range -1 to 1) is multiplied by the value of 𝑖𝑡(0 to 1) to determine 

how many state update candidates are reflected. The second term 𝑐𝑡−1 ⊙ 𝑓𝑡   is an 

element that determines how much 𝑐𝑡−1  is to be remembered. The updated 𝑐𝑡  is 

obtained by adding the past state 𝑐𝑡−1 and the present state candidates. 

The output gate is a gate that determines how much state of the current cell is to 

be exported, and gets a value between 0 and 1 through the sigmoid function, which acts 

as a factor that determines whether or not the current cell state is completely exported.  

 

𝑜𝑡 =  𝑤𝑜𝑥𝑡 + 𝑢𝑜ℎ𝑡−1 + 𝑏𝑜 ,                     (25) 

𝑜𝑡 = σ(𝑜𝑡) .                                   (26) 

 

The updated state 𝑐𝑡  is passed through 𝑡𝑎𝑛ℎ  to create a candidate for a new 

output value, and the final output value of the cell is calculated by Eq. (27). 

 

ℎ𝑡  = 𝑡𝑎𝑛ℎ(𝑐𝑡) ⊙ 𝑜𝑡                             (27) 

 

The output value by Eq. (27) is inputted as the input value of the next time step at the 

same time as the output value of the cell. 

 In the LSTM similar to ANN, the error BP method is used as a method for learning. 

In the LSTM, the Back-Propagation Through Time (BPTT) method, which is an error 

method dependent on time, is the same as the conventional error BP used in the ANN. We 

can simply calculate the error between the output value and the target value, if 

backpropagating the value after the gradient of the error is calculated. However, as it is 

backpropagated in consideration of time, we can calculate the gradient of the output value 

ℎ𝑡  as 

 

     𝛿ℎ𝑡 = Δ𝑡 + 𝑢𝑧
𝑇𝛿𝑧𝑡+1 + 𝑢𝑖

𝑇𝛿𝑖𝑡+1 + 𝑢𝑓
𝑇𝛿𝑓𝑡+1+𝑢𝑜

𝑇𝛿𝑜𝑡+1            (28) 

 

Next, let us calculate the gradient values of the forget gate, input gate, and output gate as 

shown in the following equations 

 

𝛿𝑓𝑡 = 𝛿𝑐𝑡 ⊙ 𝑐𝑡−1 ⊙ σ(𝑓𝑡)(1 − σ(𝑓𝑡))                      (29)  

𝛿𝑖𝑡 = 𝛿𝑐𝑡 ⊙ 𝑧𝑡 ⊙ σ(𝑖𝑡)(1 − σ(𝑖𝑡))                        (30)      

𝛿𝑜𝑡 = 𝛿ℎ𝑡 ⊙ 𝑡𝑎𝑛ℎ (𝑐𝑡) ⊙ σ(𝑜𝑡)(1 − σ(𝑜𝑡))                 (31)     

𝛿𝑧𝑡 = 𝛿𝑐𝑡 ⊙ 𝑖𝑡 ⊙ (1 − 𝑡𝑎𝑛ℎ2(𝑧𝑡)) .                       (32) 
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Finally, we calculate the gradient of the cell state as  

 

𝛿𝑐𝑡 = 𝛿ℎ𝑡 ⊙ 𝑜𝑡 ⊙ (1 − 𝑡𝑎𝑛ℎ2(𝑐𝑡)) + 𝛿𝑐𝑡+1 ⊙  𝛿𝑓𝑡+1         (33) 

 

We can calculate the updated quantities for the weights 𝑤 , 𝑢 , 𝑏  using the gradient 

obtained through Eqs. (29)- (32). The gradients of the weights for 𝑤 are calculated as  

 

𝛿𝑤𝑓 =  ∑ 𝛿𝑓𝑡 ×

𝑇

𝑡=0

𝑥𝑡                                                                  (34) 

𝛿𝑤𝑖 =  ∑ 𝛿𝑖𝑡 ×

𝑇

𝑡=0

𝑥𝑡                                                                   (35) 

𝛿𝑤𝑜 =  ∑ 𝛿𝑜𝑡 ×

𝑇

𝑡=0

𝑥𝑡                                                                  (36) 

𝛿𝑤𝑧 =  ∑ 𝛿𝑧𝑡 ×

𝑇

𝑡=0

𝑥𝑡  .                                                              (37) 

 

Next, the gradients of the weights for 𝑢 are calculated as in Eqs. (38) – (41). 

 

𝛿𝑢𝑓 =  ∑ 𝛿𝑓𝑡+1 ×

𝑇−1

𝑡=0

ℎ𝑡                                                             (38) 

𝛿𝑢𝑖 =  ∑ 𝛿𝑖𝑡+1 ×

𝑇−1

𝑡=0

ℎ𝑡                                                              (39) 

𝛿𝑢𝑜 =  ∑ 𝛿𝑜𝑡+1 ×

𝑇−1

𝑡=0

ℎ𝑡                                                             (40) 

𝛿𝑢𝑧 =  ∑ 𝛿𝑧𝑡+1 ×

𝑇−1

𝑡=0

ℎ𝑡  .                                                         (41) 

 

Finally, the gradients of the weights for 𝑏 are obtained as  

 

𝛿𝑏𝑓 =  ∑ 𝛿𝑓𝑡

𝑇

𝑡=0

                                                                         (42) 
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𝛿𝑏𝑖 =  ∑ 𝛿𝑖𝑡

𝑇

𝑡=0

                                                                         (43) 

𝛿𝑏𝑜 =  ∑ 𝛿𝑜𝑡

𝑇

𝑡=0

                                                                        (44) 

𝛿𝑏𝑧 =  ∑ 𝛿𝑧𝑡

𝑇

𝑡=0

  .                                                                     (45) 

 

 

 

 
Fig. 5: LSTM-PC structure. 

 

 

3. LSTM-peephole Connection (LSTM-PC)  

The LSTM-PC is a transformed model of the LSTM, and Fig. 5 shows the structure 

of the LSTM-PC. It is a model that uses more information for learning by putting 𝑐𝑡, the 

long-term state of the LSTM cell, into the forget gate, input gate, and output gate as an 

input value. Forward and back-propagation of the LSTM-PC proceeds [97] in the same 

way as the LSTM. However, the difference from the existing the LSTM is that 𝑐𝑡−1, which 

is the state value of the previous time step, is entered as an input value. First, the Forget 
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gate is calculated as  

 

𝑓𝑡 =  𝑤𝑓𝑥𝑡 + 𝑢𝑓ℎ𝑡−1 + 𝑝𝑓 ⊙ 𝑐𝑡−1 + 𝑏𝑓 ,               (46) 

 

 𝑓𝑡 = σ(𝑓𝑡) .                                         (47) 

 

Next, the input gate is described by  

 

𝑖𝑡 =  𝑤𝑖𝑥𝑡  + 𝑢𝑖ℎ𝑡−1 + 𝑝𝑖 ⊙ 𝑐𝑡−1 + 𝑏𝑖  ,                (48) 

 

𝑖𝑡 = σ(𝑖𝑡) .                                         (49) 

 

The 𝑧𝑡 value is showed in the same way as Eq. (23). The output gate is calculated as 

 

𝑜𝑡 =  𝑤𝑜𝑥𝑡 + 𝑢𝑜ℎ𝑡−1 + 𝑝𝑜 ⊙ 𝑐𝑡 + 𝑏𝑜 ,                (50) 

 

𝑜𝑡 = σ(𝑜𝑡) .                                        (51) 

 

Here, 𝑝𝑓 , 𝑝𝑖, 𝑝𝑜 ∈  𝑅𝑁 is the peephole weights. the state value 𝑐𝑡 and the output value 

ℎ𝑡  of the cell are simulated in the same manner as the Eqs. (24) and (27) in the LSTM. 

The LSTM-PC learning is also applied to the BPTT method used in the LSTM. It is 

the same as the BPTT method of the LSTM, On the other hand, the PC is added at 𝛿𝑐𝑡, and 

the gradients of the weights value of the peephole weight is additionally calculated. Eq. 

(33) for 𝛿𝑐𝑡 is transformed into an equation with peephole weight added as  

 

𝛿𝑐𝑡 = 𝛿ℎ𝑡 ⊙ 𝑜𝑡 ⊙ (1 − 𝑡𝑎𝑛ℎ2(𝑐𝑡)) + 𝛿𝑐𝑡+1 ⊙  𝛿𝑓𝑡+1  
               +𝑝𝑜 ⊙ 𝛿𝑜𝑡 + 𝑝𝑖 ⊙ 𝛿𝑖𝑡+1 + 𝑝𝑓 ⊙  𝛿𝑓𝑡+1                 (52) 

 

Then, the gradients of the weights of the peephole weight are calculated as. 

 

𝛿𝑝𝑖 =  ∑ 𝑐𝑡 ⊙ 𝛿𝑖𝑡+1

𝑇−1

𝑡=0

                                                                   (53) 

𝛿𝑝𝑓 =  ∑ 𝑐𝑡 ⊙ 𝛿𝑓𝑡+1

𝑇−1

𝑡=0

                                                                   (54) 
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𝛿𝑝𝑜 =  ∑ 𝑐𝑡 ⊙ 𝛿𝑜𝑡

𝑇

𝑡=0

 .                                                                     (55) 

In the case of 𝑤, 𝑢, and 𝑏, it is the same variables as Eqs. (34) - (45). 

 

4. Extreme Learning Machine (ELM) 

 The ELM is an artificial neural network model with one hidden layer, as shown in 

Fig. 1. In other words, it is the same as the ANN model with one hidden layer, but the ELM 

is characterized in that it does not learn differently from the existing ANN model.  

If 𝑁  training datasets are (𝑥𝑖 , 𝑡𝑖 ), then 𝑥𝑖 = [𝑥𝑖1, 𝑥𝑖2 … , 𝑥𝑖𝑛]𝑇 ∈  𝑅𝑛 and 𝑡𝑖 =

[𝑡𝑖1, 𝑡𝑖2 … , 𝑡𝑖𝑚]𝑇 ∈  𝑅𝑚 . 𝑤𝑖 = [𝑤𝑖1, 𝑤𝑖2 … , 𝑤𝑖𝑛]𝑇  the weight vector of which the 𝑖 -th 

hidden layer node and the input nodes are connected. The quantity 𝛽𝑖 = [𝛽𝑖1, 𝛽𝑖2 … , 𝛽𝑖𝑛]𝑇 

is a weight vector in which the 𝑖-th hidden layer node and output nodes are connected. 

The quantity 𝑏𝑖 is the bias value of the 𝑖-th hidden layer node. Then, the output value 𝑜𝑗  

can be obtained as follows [34] : 

 

𝑜𝑗 =  ∑ 𝛽𝑖
�̃�
𝑖=1 𝜎𝑖(𝑥𝑗) =  ∑ 𝛽𝑖

�̃�
𝑖=1 𝜎𝑖(𝑤𝑖 ⋅ 𝑥𝑗 + 𝑏𝑖), 𝑗 = 1,2, … , 𝑁.     (56) 

 

If Eq. (56) is expressed in the matrix form, it is shown as Eq. (57) below. That is, 

 

𝐻𝛽 = 𝑇,                               (57) 

 

where 𝑇 is the target value, and H is the output matrix of the hidden layer. These forms 

are shown as  

 

𝐻(𝒘1, … , 𝒘�̃� , 𝑏1, … , 𝑏�̃� , 𝒙1, … , 𝒙�̃�) =                                                                    

            [ 
𝜎(𝒘1 ⋅ 𝒙1 +  𝑏1) ⋯ 𝜎(𝒘�̃� ⋅ 𝒙1 +  𝑏�̃�)

⋮ ⋯ ⋮
𝜎(𝒘1 ⋅ 𝒙𝑁 +  𝑏1) ⋯ 𝜎(𝒘�̃� ⋅ 𝒙𝑁 +  𝑏�̃�)

]

𝑁×�̃�

                  (58)   

 

𝛽 =  [𝛽1
𝑇 ⋯ 𝛽�̃�

𝑇]
�̃�×𝑚

T
                                            (59) 

 

        𝑇 =  [𝑡1
𝑇 ⋯ 𝑡𝑁

𝑇 ]𝑁×𝑚
T                                                (60)    

 

where T is transpose of matrix. The solution of the linear system of Eq. (57) is to find 

�̂� that satisfies  

 

‖𝐻(𝒘1, … , 𝒘�̃� , 𝑏1, … , 𝑏�̃� , 𝒙1, … , 𝒙�̃�)�̂� − 𝑇‖ 
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=  min
𝛽

‖𝐻(𝒘1, … , 𝒘�̃� , 𝑏1, … , 𝑏�̃� , 𝒙1, … , 𝒙�̃�)𝛽 − 𝑇‖ .   (61) 

 

The solution of Eq. (57) can be obtained as 

 

�̂� = 𝐻†𝑇,                              (62) 

 

where 𝐻† is moore-penrose generalized inverse of 𝐻. 

 The weight is an element connecting each layer in the artificial neural network 

model. When training a neural network model, it is a common method to randomly set 

the weight in the range of -1 to 1 or 0 to 1. However, the setting of these weights can act 

as a factor that hinders proper learning of the model. Therefore, Xavier proposed [38] a 

method for setting initial weights for effective model learning. In the uniform distribution 

between [-1, 1], if the node 𝑛𝑖𝑛 of the previous layer and the node of the next layer are 

𝑛𝑜𝑢𝑡, the initial weight can be set as shown in the following Eq. (63). 

 

𝑊 ~ 𝑈( −√
6

𝑛𝑖𝑛+𝑛𝑜𝑢𝑡
, +√

6

𝑛𝑖𝑛+𝑛𝑜𝑢𝑡
 )                    (63) 

 

The Xavier weight initialization is also a suitable method when the activation function is 

a sigmoid function. 

In this paper, four evaluation scales RMSE , MAPE , MAE  and Theil′s U  were 

calculated to evaluate the performance of the artificial neural network model as the 

following Eqs. (64) – (67). Here, A and P are represented as an actual value and a predicted 

value, respectively: 

RMSE = √
1

𝑁
∑(𝐴𝑖 − 𝑃𝑖

𝑁

𝑖=1

)2                                                           (64) 

 

MAPE =  
1

𝑁
∑ |

𝐴𝑖 − 𝑃𝑖

𝐴𝑖
|

𝑁

𝑖=1

× 100%                                                (65) 

 

MAE =  
1

𝑁
∑|𝐴𝑖 − 𝑃𝑖|

𝑁

𝑖=1

                                                                   (66) 

and 
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Theil′s U =
√1

𝑁
∑ (𝑦𝑡 −  �̂�𝑡

𝑁
𝑡=1 )2

√1
𝑁

∑ 𝑦𝑖
2𝑁

𝑡=1 + √1
𝑁

∑ �̂�𝑖
2𝑁

𝑡=1

  .                                                (67) 

 

where we normalize and convert the input data as 𝑦 =  
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛 
 . 
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Ⅳ. Numerical results 

4-1. Testings 1 and 2 

 

 

Fig. 6: Values of the RMSE as a function of the learning rate in the ANN (red circle), DNN (purple 

circle), LSTM (blue circle), and LSTM-PC (black circle) in all seasons of Seoul in testing 1. Here, 

(a)-(d) , (e)-(h), and (i)-(l) are, respectively, the results for  training 2500, 5000, and 7500 epochs 

in the spring, summer, autumn, winter.  
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Fig. 7: Values of the MAPE as a function of the learning rate in the ANN (red circle), DNN (purple 

circle), LSTM (blue circle), and LSTM-PC (black circle) in all seasons of Tongyeong in testing 2. 

Here, (a)-(d), (e)-(h), and (i)-(l) are, respectively, the results for training 2500, 5000, and 7500 

epochs in the spring, summer, autumn, winter. 
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Table. 1: Learning rate 

 

Leraning rate ANN, DNN LSTM, LSTM-PC 
𝜂1 0.1 0.001 
𝜂2 0.3 0.003 
𝜂3 0.5 0.005 
𝜂4 0.7 0.007 
𝜂5 0.9 0.009 

 

 

 

 

Fig. 8: The RMSE of ELM for 7500 epochs in spring (light green bar), summer (blue bar), autumn 

(red bar), winter (purple bar) of testing 1.  
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Table. 2: The RMSE of ELM for 7500 epochs for spring, summer, autumn, and winter in 10 cities 

in testing 1, where the numbers in parentheses indicate the learning rate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9: The Lowest RMSE of five NN models for all three kinds of epochs in spring (light green bar), 

summer (blue bar), autumn (red bar). winter (purple bar) in testing 1.  

 

 

 Seoul Daejeon Daegu Busan Incheon Gwangju Pohang Mokpo Tongyeong Jeonju 

Spring 3.072 2.958 3.149 2.548 2.662 2.81 3.417 2.407 2.122 2.992 

Summer 1.631 1.58 1.875 1.304 1.52 1.5 1.852 1.153 1.203 1.493 

Autumn 3.028 3.081 2.642 2.415 3.126 2.827 2.564 2.73 2.428 3.127 

Winter 3.456 3.032 2.412 2.722 3.318 2.952 2.607 2.638 2.449 3.162 
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Fig. 10: The Lowest MAPE of five NN models for all three kinds of epochs in spring (light green 

bar), summer (blue), autumn (red). winter (purple) in testing 2.  

 

 

 
Fig. 11: The Lowest MAE of five NN models for all three kinds of epochs in spring (light green 

bar), summer (blue bar), autumn (red bar). winter (purple bar) in testing 2.  
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Fig. 12: The Lowest Theil’s-U of five NN models for all three kinds of epochs in spring (light green 

bar), summer (blue bar), autumn (red bar). winter (purple bar) in testing 1. 

 

Table. 3: RMSE, MAPE, MAE and Theil’s-U of testing 1. 

City Season RMSE MAPE MAE 
Theil’s-U 
(× 𝟏𝟎−𝟑) 

Seoul 

Spring 
2.187 
(LSTM 

𝜂 = 0.001) 

0.61 
(DNN 

𝜂 = 0.1) 

1.747 
(DNN 

𝜂 = 0.1) 

3.823 
(LSTM 

𝜂 = 0.001) 

Summer 
1.469 
(LSTM 

𝜂 = 0.001) 

0.392 
(LSTM 

𝜂 = 0.001) 

1.169 
(LSTM 

𝜂 = 0.001), 

2.462 
(LSTM 

𝜂 = 0.001) 

Autumn 
2.126 

(LSTM-PC 
𝜂 = 0.005) 

0.392 
(LSTM-PC 
𝜂 = 0.009) 

1.575 
(LSTM-PC 
𝜂 = 0.005) 

3.686 
(LSTM-PC 
𝜂 = 0.005) 

Winter 
2.832 
(ANN 

𝜂 = 0.5) 

0.552 
(LSTM-PC 
𝜂 = 0.005) 

2.046 
(DNN 

𝜂 = 0.3) 

5.153 
(ANN 

𝜂 = 0.5) 

Daejeon 

Spring 
2.17 
(ANN 

𝜂 = 0.1) 

0.591 
(DNN 

𝜂 = 0.1) 

1.694 
(DNN 

𝜂 = 0.1) 

3.785 
(ANN 

𝜂 = 0.1) 

Summer 
1.339 
(LSTM 

𝜂 = 0.001) 

0.333 
(LSTM 

𝜂 = 0.007) 

0.992 
(LSTM 

𝜂 = 0.007) 

2.244 
(LSTM 

𝜂 = 0.001) 

Autumn 
2.227 

(LSTM-PC 
𝜂 = 0.007) 

0.58 
(LSTM-PC 
𝜂 = 0.007) 

1.66 
(LSTM-PC 
𝜂 = 0.007) 

3.855 
(LSTM-PC 
𝜂 = 0.007) 

Winter 
2.465 
(ANN 

0.692 
(ANN 

1.909 
(ANN 

4.469 
(ANN 
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𝜂 = 0.5) 𝜂 = 0.5) 𝜂 = 0.5) 𝜂 = 0.5) 

Daegu 

Spring 
2.491 

(LSTM-PC 
𝜂 = 0.007) 

0.677 
(LSTM-PC 
𝜂 = 0.009) 

1.947 
(LSTM-PC 
𝜂 = 0.009) 

4.328 
(LSTM-PC 
𝜂 = 0.007) 

Summer 
1.58 
(LSTM 

𝜂 = 0.001) 

0.407 
(LSTM 

𝜂 = 0.001) 

1.209 
(LSTM 

𝜂 = 0.001) 

2.646 
(LSTM 

𝜂 = 0.001) 

Autumn 
1.852 
(LSTM 

𝜂 = 0.009) 

0.491 
(LSTM-PC 
𝜂 = 0.007) 

1.412 
(LSTM-PC 
𝜂 = 0.007) 

3.202 
(LSTM 

𝜂 = 0.009) 

Winter 
2.046 
(ANN 

𝜂 = 0.3) 

0.545 
(ANN 

𝜂 = 0.3) 

1.509 
(ANN 

𝜂 = 0.3) 

3.694 
(ANN 

𝜂 = 0.3) 

Busan 

Spring 
1.936 
(DNN 

𝜂 = 0.1) 

0.522 
(ANN 

𝜂 = 0.3) 

1.499 
(ANN 

𝜂 = 0.3) 

3.366 
(DNN 

𝜂 = 0.1) 

Summer 
1.003 
(LSTM 

𝜂 = 0.001) 

0.266 
(LSTM 

𝜂 = 0.001) 

0.789 
(LSTM 

𝜂 = 0.001) 

1.686 
(LSTM 

𝜂 = 0.001) 

Autumn 
1.72 

(LSTM-PC 
𝜂 = 0.005) 

0.448 
(LSTM-PC 
𝜂 = 0.005) 

1.298 
(LSTM 

𝜂 = 0.005) 

2.955 
(LSTM-PC 
𝜂 = 0.005) 

Winter 
2.375 
(DNN 

𝜂 = 0.3) 

0.64 
(DNN 

𝜂 = 0.1) 

1.793 
(DNN 

𝜂 = 0.1) 

4.241 
(DNN 

𝜂 = 0.3) 

Incheon 

Spring 
1.795 
(ANN 

𝜂 = 0.1) 

0.493 
(DNN 

𝜂 = 0.001)) 

1.405 
(NN 

𝜂 = 0.1)) 

3.149 
(ANN 

𝜂 = 0.1) 

Summer 
1.294 
(LSTM 

𝜂 = 0.009) 

0.334 
(LSTM 

𝜂 = 0.009) 

0.997 
(LSTM 

𝜂 = 0.009) 

2.173 
(LSTM 

𝜂 = 0.009) 

Autumn 
2.163 
(LSTM 

𝜂 = 0.00 

0.569 
(ANN 

𝜂 = 0.3) 

1.628 
(ANN 

𝜂 = 0.3) 

3.746 
(ANN 

𝜂 = 0.3) 

Winter 
2.612 

(LSTM-PC 
𝜂 = 0.005) 

0.726 
(DNN 

𝜂 = 0.005) 

1.991 
(DNN 

𝜂 = 0.5) 

4.751 
(LSTM-PC 
𝜂 = 0.005) 

Gwangju 

Spring 
2.108 

(LSTM-PC 
𝜂 = 0.007) 

0.565 
(ANN 

𝜂 = 0.1) 

1.617 
(ANN 

𝜂 = 0.1) 

3.674 
(LSTM-PC 
𝜂 = 0.007) 

Summer 
1.227 

(LSTM-PC 
𝜂 = 0.001) 

0.314 
(LSTM-PC 
𝜂 = 0.001) 

0.934 
(LSTM-PC 
𝜂 = 0.1) 

2.058 
(LSTM-PC 
𝜂 = 0.001) 

Autumn 
2.086 
(LSTM 

𝜂 = 0.005) 

0.518 
(LSTM-PC 
𝜂 = 0.007) 

1.487 
(LSTM-PC 
𝜂 = 0.007) 

3.599 
(LSTM 

𝜂 = 0.005) 

Winter 
2.418 

(LSTM-PC 
𝜂 = 0.001) 

0.633 
(ANN 

𝜂 = 0.3) 

1.762 
(ANN 

𝜂 = 0.3) 

4.354 
(LSTM-PC 
𝜂 = 0.001) 

Pohang 
Spring 

2.754 
(LSTM 

𝜂 = 0.001) 

0.745 
(LSTM 

𝜂 = 0.009) 

2.147 
(LSTM 

𝜂 = 0.009) 

4.783 
(LSTM 

𝜂 = 0.001) 

Summer 
1.554 
(LSTM 

0.436 
(LSTM 

1.299 
(LSTM 

2.606 
(LSTM 
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Table. 4: RMSE, MAPE, MAE and Theil’s-U of testing 2. 
 

𝜂 = 0.005) 𝜂 = 0.001 𝜂 = 0.001) 𝜂 = 0.005) 

Autumn 
1.801 
(ANN 

𝜂 = 0.1) 

0.482 
(LSTM-PC 
𝜂 = 0.007) 

1.393 
(LSTM-PC 
𝜂 = 0.007) 

3.101 
(ANN 

𝜂 = 0.1) 

Winter 
2.249 
(DNN 

𝜂 = 0.1) 

0.598 
(DNN 

𝜂 = 0.1) 

1.666 
(DNN 

𝜂 = 0.1) 

4.041 
(DNN 

𝜂 = 0.1) 

Mokpo 

Spring 
1.81 
(LSTM 

𝜂 = 0.001) 

0.511 
(LSTM 

𝜂 = 0.001) 

1.458 
(LSTM 

𝜂 = 0.001) 

3.163 
(LSTM 

𝜂 = 0.001) 

Summer 
0.916 

(LSTM-PC 
𝜂 = 0.007) 

0.243 
(LSTM-PC 
𝜂 = 0.007) 

0.722 
(LSTM-PC 
𝜂 = 0.007) 

1.539 
(LSTM-PC 
𝜂 = 0.007) 

Autumn 
1.98 
(ANN 

𝜂 = 0.1) 

0.492 
(LSTM-PC 
𝜂 = 0.005) 

1.413 
(LSTM-PC 
𝜂 = 0.005) 

3.416 
(ANN 

𝜂 = 0.1) 

Winter 
2.31 
(ANN 

𝜂 = 0.005) 

0.611 
(ANN 

𝜂 = 0.5) 

1.695 
(ANN 

𝜂 = 0.5) 

4.166 
(ANN 

𝜂 = 0.5) 

Tongyeong 

Spring 
1.583 
(ANN 

𝜂 = 0.1) 

0.439 
(LSTM 

𝜂 = 0.005) 

1.26 
(LSTM 

𝜂 = 0.005) 

2.758 
(ANN 

𝜂 = 0.1) 

Summer 
0.878 

(LSTM-PC 
𝜂 = 0.003) 

0.226 
(LSTM-PC 
𝜂 = 0.003) 

0.671 
(LSTM-PC 
𝜂 = 0.003) 

1.478 
(LSTM-PC 
𝜂 = 0.003) 

Autumn 
1.783 

(LSTM-PC 
𝜂 = 0.005) 

0.463 
(LSTM-PC 
𝜂 = 0.005) 

1.336 
(LSTM-PC 
𝜂 = 0.005) 

3.063 
(LSTM-PC 
𝜂 = 0.005) 

Winter 
2.144 
(ANN 

𝜂 = 0.3) 

0.585 
(ANN 

𝜂 = 0.3) 

1.635 
(ANN 

𝜂 = 0.3) 

3.840 
(ANN 

𝜂 = 0.3) 

Jeonju 

Spring 
2.281 

(LSTM-PC 
𝜂 = 0.005) 

0.622 
(DNN 

𝜂 = 0.1) 

1.779 
(DNN 

𝜂 = 0.1) 

3.983 
(LSTM-PC 
𝜂 = 0.005) 

Summer 
1.246 

(LSTM-PC 
𝜂 = 0.001) 

0.324 
(LSTM-PC 
𝜂 = 0.003) 

0.961 
(LSTM-PC 
𝜂 = 0.003) 

2.090 
(LSTM-PC 
𝜂 = 0.001) 

Autumn 
2.22 
(LSTM 

𝜂 = 0.009) 

0.584 
(LSTM-PC 
𝜂 = 0.007) 

1.675 
(LSTM-PC 
𝜂 = 0.007) 

3.837 
(LSTM 

𝜂 = 0.009) 

Winter 
2.601 
(ANN 

𝜂 = 0.3) 

0.716 
(ANN 

𝜂 = 0.3) 

1.984 
(ANN 

𝜂 = 0.3) 

4.699 
(ANN 

𝜂 = 0.3) 

City Season RMSE MAPE MAE Theil’s-U 

Seoul 
Spring 

13.302 
(LSTM-PC 
𝜂 = 0.001) 

22.944 
(LSTM-PC 
𝜂 = 0.009) 

10.7 
(LSTM-PC 
𝜂 = 0.009) 

0.126 
(LSTM-PC 
𝜂 = 0.001) 

Summer 9.399 11.087 7.226 0.071 
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(LSTM-PC 
𝜂 = 0.003) 

(LSTM-PC 
𝜂 = 0.007) 

(LSTM 
𝜂 = 0.009) 

(LSTM-PC 
𝜂 = 0.003) 

Autumn 
11.313 

(LSTM-PC 
𝜂 = 0.001) 

14 
(LSTM 

𝜂 = 0.007) 

8.055 
(LSTM 

𝜂 = 0.007) 

0.091 
(LSTM-PC 
𝜂 = 0.001) 

Winter 
11.054 

(LSTM-PC 
𝜂 = 0.001) 

14.915 
(LSTM-PC 
𝜂 = 0.001) 

8.531 
(LSTM-PC 
𝜂 = 0.001) 

0.095 
(LSTM-PC 
𝜂 = 0.009) 

Daejeon 

Spring 
11.468 

(LSTM-PC 
𝜂 = 0.001) 

17.095 
(LSTM-PC 
𝜂 = 0.001) 

9.64 
(LSTM-PC 
𝜂 = 0.001) 

0.094 
(LSTM-PC 
𝜂 = 0.001) 

Summer 
7.46 
(ANN 

𝜂 = 0.1) 

7.433 
(LSTM 

𝜂 = 0.009) 

5.737 
(ann 

𝜂 = 0.1) 

0.048 
(ANN 

𝜂 = 0.1) 

Autumn 
7.827 

(LSTM-PC 
𝜂 = 0.001) 

7.99 
(LSTM-PC 
𝜂 = 0.005) 

5.809 
(LSTM-PC 
𝜂 = 0.001) 

0.051 
(LSTM-PC 
𝜂 = 0.001) 

Winter 
10.403 
(LSTM 

𝜂 = 0.001) 

11.352 
(LSTM-PC 
𝜂 = 0.001) 

7.862 
(LSTM-PC 
𝜂 = 0.001) 

0.074 
(LSTM-PC 
𝜂 = 0.007) 

Daegu 

Spring 
12.798 
(LSTM 

𝜂 = 0.001) 

21.951 
(LSTM-PC 
𝜂 = 0.003) 

10.176 
(LSTM-PC 
𝜂 = 0.003) 

0.121 
(LSTM 

𝜂 = 0.001) 

Summer 
9.307 
(ANN 

𝜂 = 0.1) 

9.392 
(LSTM-PC 
𝜂 = 0.007) 

6.996 
(LSTM-PC 
𝜂 = 0.007) 

0.064 
(ANN 

𝜂 = 0.1) 

Autumn 
9.614 

(LSTM-PC 
𝜂 = 0.003) 

10.853 
(LSTM-PC 
𝜂 = 0.003) 

7.504 
(LSTM 

𝜂 = 0.001) 

0.067 
(LSTM 

𝜂 = 0.001) 

Winter 
13.404 
(LSTM 

𝜂 = 0.001) 

16.484 
(LSTM-PC 
𝜂 = 0.001) 

9.594 
(LSTM-PC 
𝜂 = 0.001) 

0.114 
(LSTM-PC 
𝜂 = 0.005) 

Busan 

Spring 
12.085 
(LSTM 

𝜂 = 0.001) 

19.212 
(LSTM 

𝜂 = 0.001) 

9.893 
(LSTM 

𝜂 = 0.001) 

0.101 
(LSTM-PC 
𝜂 = 0.003) 

Summer 
7.166 
(ANN 

𝜂 = 0.1) 

7.147 
(ANN 

𝜂 = 0.1) 

5.708 
(ann 

𝜂 = 0.1) 

0.045 
(ANN 

𝜂 = 0.1) 

Autumn 
10.032 

(LSTM-PC 
𝜂 = 0.009) 

12.081 
(LSTM 

𝜂 = 0.007) 

7.744 
(LSTM 

𝜂 = 0.007) 

0.072 
(LSTM 

𝜂 = 0.005) 

Winter 
14.173 

(LSTM-PC 
𝜂 = 0.001) 

18.804 
(LSTM-PC 
𝜂 = 0.003) 

10.081 
(LSTM-PC 
𝜂 = 0.001) 

0.131 
(ANN 

𝜂 = 0.007) 

Incheon 

Spring 
12.629 
(ANN 

𝜂 = 0.5) 

17.822 
(ANN 

𝜂 = 0.3) 

9.989 
(ANN 

𝜂 = 0.3) 

0.097 
(ANN 

𝜂 = 0.5) 

Summer 
8.864 

(LSTM-PC 
𝜂 = 0.005) 

9.755 
(LSTM-PC 
𝜂 = 0.005) 

6.969 
(LSTM-PC 
𝜂 = 0.005) 

0.057 
(LSTM-PC 
𝜂 = 0.005) 

Autumn 
10.941 

(LSTM-PC 
𝜂 = 0.005) 

14.308 
(LSTM-PC 
𝜂 = 0.005) 

8.64 
(LSTM-PC 
𝜂 = 0.005) 

0.083 
(LSTM-PC 
𝜂 = 0.005) 

Winter 9.832 11.892 7.585 0.078 
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(LSTM-PC 
𝜂 = 0.009) 

(LSTM-PC 
𝜂 = 0.003) 

(LSTM-PC 
𝜂 = 0.003) 

(LSTM-PC 
𝜂 = 0.009) 

Gwangju 

Spring 
13.862 
(LSTM 

𝜂 = 0.001) 

19.23 
(LSTM 

𝜂 = 0.001) 

11.248 
(LSTM 

𝜂 = 0.001) 

0.109 
(LSTM 

𝜂 = 0.001) 

Summer 
7.093 
(ANN 

𝜂 = 0.7) 

6.659 
(LSTM-PC 
𝜂 = 0.007) 

5.53 
(LSTM-PC 
𝜂 = 0.007) 

0.044 
(ANN 

𝜂 = 0.7) 

Autumn 
8.895 
(LSTM 

𝜂 = 0.003) 

10.391 
(LSTM 

𝜂 = 0.003) 

6.945 
(LSTM 

𝜂 = 0.003) 

0.059 
(LSTM 

𝜂 = 0.003) 

Winter 
12.703 

(LSTM-PC 
𝜂 = 0.005) 

15.463 
(ANN 

𝜂 = 0.5) 

10.008 
(LSTM-PC 
𝜂 = 0.005) 

0.096 
(LSTM-PC 
𝜂 = 0.009) 

Pohang 

Spring 
14.322 
(LSTM 

𝜂 = 0.001) 

24.717 
(LSTM-PC 
𝜂 = 0.003) 

11.793 
(LSTM 

𝜂 = 0.001) 

0.123 
(LSTM 

𝜂 = 0.001) 

Summer 
7.99 
(ANN 

𝜂 = 0.7) 

8.122 
(LSTM 

𝜂 = 0.001) 

6.326 
(LSTM 

𝜂 = 0.001) 

0.051 
(ANN 

𝜂 = 0.9) 

Autumn 
9.408 
(ANN 

𝜂 = 0.3) 

11.043 
(ANN 

𝜂 = 0.3) 

7.598 
(ANN 

𝜂 = 0.3) 

0.065 
(ANN 

𝜂 = 0.3) 

Winter 
12.832 
(ANN 

𝜂 = 0.5) 

17.431 
(LSTM 

𝜂 = 0.007) 

9.866 
(ANN 

𝜂 = 0.5) 

0.109 
(ANN 

𝜂 = 0.5) 

Mokpo 

Spring 
11.435 
(ANN 

𝜂 = 0.7) 

15.024 
(ANN 

𝜂 = 0.7) 

9.502 
(LSTM-PC 
𝜂 = 0.007) 

0.082 
(ANN 

𝜂 = 0.7) 

Summer 
5.839 
(ANN 

𝜂 = 0.1) 

5.525 
(LSTM 

𝜂 = 0.007) 

4.451 
(LSTM 

𝜂 = 0.007) 

0.036 
(ANN 

𝜂 = 0.1) 

Autumn 
6.891 
(LSTM 

𝜂 = 0.005) 

7.702 
(ANN 

𝜂 = 0.3) 

5.494 
(ANN 

𝜂 = 0.1) 

0.046 
(LSTM 

𝜂 = 0.003) 

Winter 
8.16 
(ANN 

𝜂 = 0.1) 

9.248 
(ANN 

𝜂 = 0.1) 

6.54 
(ANN 

𝜂 = 0.1) 

0.058 
(ANN 

𝜂 = 0.1) 

Tongyeong 

Spring 
10.479 
(LSTM 

𝜂 = 0.001) 

13.926 
(LSTM-PC 
𝜂 = 0.003) 

8.613 
(LSTM-PC 
𝜂 = 0.003) 

0.076 
(LSTM 

𝜂 = 0.001) 

Summer 
6.549 
(LSTM 

𝜂 = 0.009) 

6.166 
(LSTM 

𝜂 = 0.009) 

5.002 
(LSTM 

𝜂 = 0.009) 

0.039 
(LSTM 

𝜂 = 0.005) 

Autumn 
8.63 
(ANN 

𝜂 = 0.1) 

9.729 
(LSTM 

𝜂 = 0.007) 

6.747 
(LSTM-PC 
𝜂 = 0.003) 

0.059 
(ANN 

𝜂 = 0.1) 

Winter 
12.371 
(LSTM 

𝜂 = 0.001) 

14.826 
(LSTM-PC 
𝜂 = 0.003) 

9.15 
(LSTM-PC 
𝜂 = 0.001) 

0.101 
(ANN 

𝜂 = 0.7) 

Jeonju 
Spring 

12.011 
(LSTM-PC 
𝜂 = 0.003) 

14.698 
(LSTM 

𝜂 = 0.001) 

9.658 
(LSTM 

𝜂 = 0.001) 

0.088 
(LSTM-PC 
𝜂 = 0.003) 

Summer 7.027 6.351 5.412 0.041 
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In this section, the computer-simulation is performed for two testings as follows: 

testing 1 has the four nodes 𝑇𝑡−1 , 𝑇𝑡 , 𝐻𝑡−1 , 𝐻𝑡 , in the input layer and the one output 

node 𝑇𝑡+1in output layer, and testing 2 has also the four input nodes 𝑇𝑡−1, 𝑇𝑡, 𝐻𝑡−1, 𝐻𝑡, 

and the one output node 𝐻𝑡+1. We set the five learning rates 0.1, 0.2, 0.3, 0.4, 0.5 for the 

ANN and the DNN, while the learning rates for LSTM and LSTM-PC are set as 0.001, 0.003, 

0.005, 0.007, 0.009, for different train set sizes over three runs, 2500, 5000, 7500 epochs. 

The predicted values of the ELM are obtained by averaging the results over 2500, 5000, 

and 7500 epochs. A prediction model is created and the average of the prediction values 

is obtained through the prediction model was used as the final prediction value. The ANN 

and the DNN can be trained in the range of 0.1 - 0.9, while we can train the LSTM and the 

LSTM-PC in the range of 0.001 - 0.009, as summarize in Table 1. 

Fig. 6 shows the predicted values of the RMSE as a function of the learning rate 𝜂 

in the ANN, DNN, LSTM, and LSTM-PC in all seasons of Seoul in testing 1. Here, Figs. 6(a)-

6(d), 6(e)-6(h), and 6(i)-6(l) are, respectively, the results for training 2500, 5000, and 

7500 epochs in the spring, summer, autumn, winter.  

From Fig. 6(a) for 2500 epochs in spring in Seoul, the ANN and the DNN show a 

tendency to increase the RMSE as each learning rate increases from 𝜂1 to 𝜂5. The RMSE 

value of ANN is 2.192 at 𝜂1, and has a high value of 3.892 at 𝜂5. The RMSE value of DNN 

is 2.212 (4.33) at 𝜂1 (𝜂5). Then, the RMSE value gradually increases as each learning rate 

increases from 𝜂1 to 𝜂5. In Fig. 6(e) for 5000 epochs in summer in Seoul, the ANN and 

the DNN show a tendency to increase the RMSE as the learning rate increases from 𝜂1 to 

𝜂5. The ANN RMSE value is 2.193 at 𝜂1, and has a high value of 3.538 at 𝜂5. The DNN 

RMSE value is 2.207 (2.963) at 𝜂1 (𝜂5). The RMSE of LSTM and LSTM-PC RMSEs do not 

show a clear trend. However, the ANN exhibits a higher RMSE value at 𝜂5 compared to 

other learning rates. The RMSE of LSTM has significantly a value of 3.234 (2.187) for 

training 2500 (5000) epochs at 𝜂1. In Fig. 6(i) for 7500 epochs, the ANN and DNN shows 

a tendency to increase RMSE as the learning rate increases from 𝜂1  to 𝜂5 . The RMSE 

value of ANN (DNN) is 2.214 (2.226) at 𝜂1, and has a highest value of 3.535 (2.993) at 𝜂5. 

The RMSE value (3.476) of LSTM-PC at 𝜂2 is larger than other learning rates. The RMSE 

of LSTM has a lower (higher) value of 2.259 (2.442) at 𝜂2 (𝜂5). 

In Fig. 6(b), the RMSE of ANN and DNN has larger values than those of LSTM and 

LSTM-PC for 2500 epochs in summer in Seoul. The RMSE of ANN (DNN) value is 1.89 

(ANN 
𝜂 = 0.9) 

(LSTM 
𝜂 = 0.007) 

(LSTM-PC 
𝜂 = 0.005) 

(ANN 
𝜂 = 0.9) 

Autumn 
7.386 

(LSTM-PC 
𝜂 = 0.001) 

8.178 
(LSTM-PC 
𝜂 = 0.001) 

5.98 
(LSTM-PC 
𝜂 = 0.001) 

0.047 
(LSTM-PC 
𝜂 = 0.1) 

Winter 
8.899 
(ANN 

𝜂 = 0.1) 

11.033 
(ANN 

𝜂 = 0.1) 

6.992 
(ANN 

𝜂 = 0.1) 

0.066 
(ANN 

𝜂 = 0.1) 



 ３０  

 

(1.785) at 𝜂5, and the RMSE of LSTM (LSTM-PC) has a lower value of 1.507 (1.498) at 𝜂5. 

In addition, as the learning rate increases, the RMSE value of ANN tends to increase. The 

RMSE of ANN had a lowest (highest) value of 1.545 (1.89) at 𝜂1  (𝜂5).  In Fig. 6(f) for 

training 5000 epochs, the RMSE of DNN has a lowest value of 1.548 at 𝜂1, but the RMSEs 

of ANN, LSTM, and LSTM-PC do not show a distinct trend. In Fig. 6(j) for 7500epochs, the 

RMSE of ANN shows very similar result with 1.554 (1.555) at 𝜂2  (𝜂3 ). the LSTM-PC 

showed a higher RMSE value at 𝜂3, compared to other learning rates.  

Fig. 6(c) for 2500 epochs in autumn in Seoul, the RMSE of DNN tends to increase 

as the learning rate increases. The RMSE value of DNN has a lowest (highest) value of 

2.195 (3.75) at 𝜂1 (𝜂5). In the LSTM-PC, the RMSE decreased and then increased again 

based on 𝜂3. In Fig. 6(g) for 5000 epochs, the RMSEs of DNN, LSTM, and LSTM-PC had 

highest values of 3.39, 2.956, and 4.04 at 𝜂3, respectively. The RMSE of ANN had a lowest 

(highest) value of 2.205 (3.273) at 𝜂1 (𝜂5). In Fig. 6(k) for 7500 epochs, the RMSE values 

of LSTM and LSTM-PC are 2.171 and 2.153 at 𝜂3, respectively. and it was confirmed that 

learning was better than the result of Fig. 6(g). The RMSE of ANN has a lowest (highest) 

value of 2.278 (3.431) at 𝜂1 (𝜂5). Hence, the learning rate gradually increases, the RMSE 

shows a tendency to increase. 

Figs. 6(d), 6(h), and 6(l) are the results of learning 2500, 5000, and 7500 epochs 

for winter temperature. In Fig. 6(d), the RMSE of ANN and the DNN shows a tendency to 

increase from 𝜂1 to 𝜂5., while that of LSTM-PC shows a tendency to decrease from 𝜂2 

to 𝜂5. The RMSE of LSTM do not show clearly a trend. In Fig. 6(h), the RMSE value of LSTM 

shows higher than that of other NN models at 𝜂5, and the RMSE value of LSTM-PC shows 

higher at 𝜂2 compared to other learning rates for each model. In Fig. 6(l), the RMSE of 

LSTM-PC shows a very higher value of 2.88, compared with those at 𝜂1 in Fig. 6(d)-6(h). 

On the other hand, at 𝜂2, the RMSE of LSTM-PC shows better performance than those of 

Figs. 6(d) and 6(h). 

In Fig. 7, we obtain the predicted values of the MAPE as a function of the learning 

rate in the ANN, DNN, LSTM, and LSTM-PC in all seasons of Tongyeong in testing 2. Here, 

Figs. 7(a)-7(d), 7(e)-7(h), and 7(i)-7(l) are, respectively, the results for training 2500, 

5000, and 7500 epochs in the spring, summer, autumn, winter. Fig. 8 shows the RMSE of 

ELM for 7500 epochs in spring, summer, autumn, winter in testing 1, and Table 2 also 

illustrates the comparison of the RMSE of ELM for 7500 epochs for spring, summer, 

autumn, and winter in ten cities in testing.  

Figs. 9-12 plot the lowest RMSE, MAPE, MAP, and Theil’s-U of ten cities for all 

three training (2500, 5000, 7500) epochs in spring, summer, autumn, winter in testings 

1 and 2, respectively. Tables 3 and 4 is illustrated the comparison of the RMSE, MAPE, 

MAE and Theil’s-U statistics in four seasons of ten cities in testings 1 and 2, respectively. 

       From testing 1 of Table 3, the RMSE (MAPE) of ANN (LSTM) has a lowest value 
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of 1.583 (0.439) at 𝜂 = 0.1 (𝜂 = 0.005) in spring in Tongyeong. The RMSE (MAE) of 

LSTM-PC has a lowest value of 0.878 (0.671) at 𝜂 = 0.003 (𝜂 = 0.003) in summer in 

Tongyeong. In autumn of Busan, the RMSE (MAE) value of LSTM-PC is a lowest value 1.72 

(1.298) at 𝜂 = 0.005. In winter of Daegue, the MAPE (Theil’s-U) of ANN has a value of 

0.545 (3.694ⅹ10−3) at 𝜂 = 0.3 lowest than that of other cities. 

       From testing 2 of Table 4, in spring of Tongyeong, the RMSE (MAPE) of LSTM 

(LSTM-PC) has a lowest value of 10.479 (13.926) at 𝜂 = 0.001 (𝜂 = 0.003). The RMSE 

(MAE) of ANN (LSTM) has a lowest value of 5.839 (4.451) at learning rate 𝜂 = 0.1 (𝜂 =

0.007) in Summer in Mokpo. In autumn of Mokpo, the RMSE (MAE) value of LSTM (ANN) 

is a lowest value 6.891 (5.494) at 𝜂 = 0.005  ( 𝜂 = 0.1 ). It is not good accuracy 

characteristically in autumn of testing 2, but in autumn, the RMSE value of DNN is 8.076 at 

𝜂 = 0.1 in Jeonju, while that of ELM is 8.196 in Mokpo for 5000 epochs. In winter of Mokpo, 

the MAPE (Theil’s-U) of ANN has a value of 9.248 (0.058) at 𝜂 = 0.1 lowest than that of 

other cities. 

 

4-2. Testings 3 and 4 

 

 

 
Fig. 13: The lowest RMSE of five NN models for all three kinds of epochs in spring (light green 

bar), summer (blue bar), autumn (red bar), winter (purple bar) of testing 4.  
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Fig. 14: The lowest MAPE of five NN models for all three kinds of epochs in spring (light green 

bar), summer (blue bar), autumn (red bar), winter (purple bar) of testing 4. 

 

 
 
Fig. 15: The lowest MAE of five NN models for all three kinds of epochs in spring (light green bar), 

summer (blue bar), autumn (red bar), winter (purple bar) of testing 3. 
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Fig. 16: The lowest Theil’s-U of five NN models for all three kinds of epochs in spring (light green 

bar), summer (blue bar), autumn (red bar), winter (purple bar) of testing 3. 

 
Table. 5: RMSE, MAPE, MAE and Theil’s-U values of testing 3. 

 

City Season RMSE MAPE MAE 
Theils’-U (×

10−3) 

Seoul 

Spring 
2.19 
(DNN 

𝜂 = 0.1) 

0.595 
(DNN 

𝜂 = 0.1) 

1.703 
(DNN 

𝜂 = 0.1) 

3.826 
(DNN 

𝜂 = 0.1) 

Summer 
1.468 
(ANN 

𝜂 = 0.3) 

0.389 
(ANN 

𝜂 = 0.3) 

1.16 
(ANN 

𝜂 = 0.3) 

2.46 
(ANN 

𝜂 = 0.3) 

Autumn 
2.195 
(LSTM 

𝜂 = 0.005) 

0.555 
(LSTM 

𝜂 = 0.003) 

1.583 
(LSTM 

𝜂 = 0.003) 

3.807 
(LSTM 

𝜂 = 0.005) 

Winter 
2.901 
(DNN 

𝜂 = 0.3) 

0.761 
(DNN 

𝜂 = 0.3) 

2.087 
(DNN 

𝜂 = 0.3) 

5.278 
(DNN 

𝜂 = 0.3) 

Daejeon 

Spring 
2.207 
(ANN 

𝜂 = 0.1) 

0.604 
(ANN 

𝜂 = 0.1) 

1.732 
(ANN 

𝜂 = 0.1) 

3.85 
(ANN 

𝜂 = 0.1) 

Summer 
1.322 

(LSTM-PC 
𝜂 = 0.001) 

0.333 
(LSTM 

𝜂 = 0.003) 

0.99 
(LSTM 

𝜂 = 0.003) 

2.216 
(LSTM-PC 
𝜂 = 0.001) 

Autumn 
2.268 
(LSTM 

𝜂 = 0.005) 

0.607 
(LSTM 

𝜂 = 0.005) 

1.74 
(LSTM 

𝜂 = 0.001, 𝜂 =
0.005) 

3.93 
(LSTM 

𝜂 = 0.005) 

Winter 2.492 0.699 1.932 4.519 
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(ANN 
𝜂 = 0.3) 

(DNN 
𝜂 = 0.3) 

(DNN 
𝜂 = 0.3) 

(ANN 
𝜂 = 0.3) 

Daegu 

Spring 
2.509 
(ANN 

𝜂 = 0.1) 

0.666 
(ANN 

𝜂 = 0.1) 

1.916 
(ANN 

𝜂 = 0.1) 

4.361 
(ANN 

𝜂 = 0.1) 

Summer 
1.605 
(LSTM 

𝜂 = 0.003) 

0.408 
(ANN 

𝜂 = 0.3) 

1.215 
(ANN 

𝜂 = 0.3) 

2.688 
(LSTM 

𝜂 = 0.003) 

Autumn 
1.832 
(LSTM 

𝜂 = 0.005) 

0.508 
(LSTM 

𝜂 = 0.001) 

1.461 
(LSTM 

𝜂 = 0.001) 

3.168 
(LSTM 

𝜂 = 0.005) 

Winter 
2.081 

(LSTM-PC 
𝜂 = 0.009) 

0.559 
(DNN 

𝜂 = 0.1) 

1.547 
(DNN 

𝜂 = 0.1) 

3.756 
(LSTM-PC 
𝜂 = 0.009) 

Busan 

Spring 
1.904 
(DNN 

𝜂 = 0.1) 

0.521 
(DNN 

𝜂 = 0.1) 

1.498 
(DNN 

𝜂 = 0.1) 

3.31 
(DNN 

𝜂 = 0.1) 

Summer 
1.023 

(LSTM-PC 
𝜂 = 0.003) 

0.264 
(ANN 

𝜂 = 0.1) 

0.782 
(ANN 

𝜂 = 0.1) 

1.72 
(LSTM-PC 
𝜂 = 0.003) 

Autumn 
1.832 

(LSTM-PC 
𝜂 = 0.001) 

0.472 
(LSTM-PC 
𝜂 = 0.001) 

1.365 
(LSTM-PC 
𝜂 = 0.001) 

3.145 
(LSTM-PC 
𝜂 = 0.1) 

Winter 
2.396 
(ANN 

𝜂 = 0.3) 

0.652 
(ANN 

𝜂 = 0.3) 

1.824 
(ANN 

𝜂 = 0.3) 

4.279 
(ANN 

𝜂 = 0.3) 

Incheon 

Spring 
1.814 
(ANN 

𝜂 = 0.1) 

0.504 
(ANN 

𝜂 = 0.1) 

1.437 
(ANN 

𝜂 = 0.1) 

3.182 
(DNN 

𝜂 = 0.1) 

Summer 
1.288 

(LSTM-PC 
𝜂 = 0.009) 

0.33 
(ANN 

𝜂 = 0.1, 
DNN 

𝜂 = 0.1)) 

0.983 
(ANN 

𝜂 = 0.1) 

2.163 
(LSTM-PC 
𝜂 = 0.009) 

Autumn 
2.268 
(ANN 

𝜂 = 0.3) 

0.581 
(LSTM-PC 
𝜂 = 0.001) 

1.655 
(LSTM-PC 
𝜂 = 0.001) 

3.926 
(ANN 

𝜂 = 0.3) 

Winter 
2.604 
(DNN 

𝜂 = 0.3) 

0.715 
(DNN 

𝜂 = 0.3) 

1.963 
(DNN 

𝜂 = 0.3) 

4.734 
(DNN 

𝜂 = 0.3) 

Gwangju 

Spring 
2.127 
(LSTM 

𝜂 = 0.003) 

0.586 
(LSTM 

𝜂 = 0.005) 

1.676 
(LSTM 

𝜂 = 0.005) 

3.705 
(LSTM 

𝜂 = 0.003) 

Summer 
1.267 

(LSTM-PC 
𝜂 = 0.001) 

0.325 
(LSTM 

𝜂 = 0.001) 

0.965 
(LSTM 

𝜂 = 0.001) 

2.126 
(LSTM-PC 
𝜂 = 0.001) 

Autumn 
2.069 
(LSTM 

𝜂 = 0.001) 

0.529 
(LSTM-PC 
𝜂 = 0.5) 

1.518 
(LSTM-PC 
𝜂 = 0.005) 

3.569 
(LSTM 

𝜂 = 0.001) 

Winter 
2.412 
(LSTM 

𝜂 = 0.003) 

0.629 
(DNN 

𝜂 = 0.3) 

1.75 
(DNN 

𝜂 = 0.3) 

4.343 
(ANN 

𝜂 = 0.3) 

Pohang Spring 
2.737 
(LSTM 

𝜂 = 0.001) 

0.753 
(LSTM 

𝜂 = 0.001) 

2.171 
(LSTM 

𝜂 = 0.001) 

4.752 
(LSTM 

𝜂 = 0.001) 
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Table. 6: RMSE, MAPE, MAE and Theil’s-U values of testing 4. 
 

Summer 
1.582 
(DNN 

𝜂 = 0.1) 

0.439 
(LSTM 

𝜂 = 0.001) 

1.306 
(LSTM 

𝜂 = 0.001) 

2.654 
(DNN 

𝜂 = 0.1) 

Autumn 
1.806 

(LSTM-PC 
𝜂 = 0.001) 

0.459 
(LSTM-PC 
𝜂 = 0.001) 

1.321 
(LSTM-PC 
𝜂 = 0.001) 

3.107 
(LSTM-PC 
𝜂 = 0.001) 

Winter 
2.27 
(ANN 

𝜂 = 0.3) 

0.607 
(LSTM 

𝜂 = 0.009) 

1.688 
(LSTM 

𝜂 = 0.009) 

4.073 
(ANN 

𝜂 = 0.3) 

Mokpo 

Spring 
1.785 
(LSTM 

𝜂 = 0.003) 

0.243 
(LSTM 

𝜂 = 0.003) 

1.426 
(LSTM 

𝜂 = 0.003) 

3.12 
(LSTM 

𝜂 = 0.003) 

Summer 
0.896 
(DNN 

𝜂 = 0.1) 

0.243 
(ANN 

𝜂 = 0.1, 
DNN 

𝜂 = 0.1)) 

0.721 
(ANN 

𝜂 = 0.1) 

1.506 
(DNN 

𝜂 = 0.1) 

Autumn 
2.025 

(LSTM-PC 
𝜂 = 0.005) 

0.485 
(LSTM-PC 
𝜂 = 0.001) 

1.389 
(LSTM-PC 
𝜂 = 0.001) 

3.496 
(LSTM-PC 
𝜂 = 0.005) 

Winter 
2.294 
(DNN 

𝜂 = 0.1) 

0.609 
(ANN 

𝜂 = 0.3) 

1.689 
(ANN 

𝜂 = 0.3) 

4.14 
(DNN 

𝜂 = 0.1) 

Tongyeong 

Spring 
1.547 
(ANN 

𝜂 = 0.1) 

0.438 
(LSTM 

𝜂 = 0.007) 

1.256 
(LSTM 

𝜂 = 0.007) 

2.695 
(ANN 

𝜂 = 0.1) 

Summer 
0.866 
(LSTM 

𝜂 = 0.005) 

0.218 
(LSTM 

𝜂 = 0.005) 

0.647 
(LSTM 

𝜂 = 0.005) 

1.457 
(LSTM 

𝜂 = 0.005) 

Autumn 
1.832 

(LSTM-PC 
𝜂 = 0.001) 

0.477 
(LSTM-PC 
𝜂 = 0.001) 

1.38 
(LSTM-PC 
𝜂 = 0.001) 

3.15 
(LSTM-PC 
𝜂 = 0.001) 

Winter 
2.118 
(ANN 

𝜂 = 0.3) 

0.581 
(DNN 

𝜂 = 0.1) 

1.624 
(DNN 

𝜂 = 0.1) 

3.791 
(ANN 

𝜂 = 0.3) 

Jeonju 

Spring 
2.272 
(ANN 

𝜂 = 0.1) 

0.616 
(ANN 

𝜂 = 0.1) 

1.762 
(ANN 

𝜂 = 0.1) 

3.968 
(ANN 

𝜂 = 0.1) 

Summer 
1.25 
(ANN 

𝜂 = 0.1) 

0.325 
(ANN 

𝜂 = 0.1) 

0.967 
(ANN 

𝜂 = 0.1) 

2.097 
(ANN 

𝜂 = 0.1) 

Autumn 
2.296 
(ANN 

𝜂 = 0.1) 

0.6 
(LSTM 

𝜂 = 0.005) 

1.722 
(LSTM 

𝜂 = 0.005) 

3.971 
(ANN 

𝜂 = 0.1) 

Winter 
2.579 
(ANN 

𝜂 = 0.3) 

0.712 
(ANN 

𝜂 = 0.3) 

1.972 
(ANN 

𝜂 = 0.3) 

4.658 
(ANN 

𝜂 = 0.3) 

City Season RMSE MAPE MAE Theils’-U 

Seoul Spring 
13.398 
(LSTM 

22.798 
(LSTM-PC 

10.6 
(LSTM-PC 

0.127833 
(LSTM 
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𝜂 = 0.001) 𝜂 = 0.003) 𝜂 = 0.003) 𝜂 = 0.001) 

Summer 
9.575 

(LSTM-PC 
𝜂 = 0.009) 

11.136 
(LSTM 

𝜂 = 0.007) 

7.17 
(LSTM 

𝜂 = 0.007) 

0.071154 
(LSTM 

𝜂 = 0.001) 

Autumn 
11.266 
(LSTM 

𝜂 = 0.001) 

14.082 
(LSTM 

𝜂 = 0.005) 

8.01 
(LSTM 

𝜂 = 0.001) 

0.09058 
(LSTM 

𝜂 = 0.001) 

Winter 
11.232 
(ANN 

𝜂 = 0.1) 

14.262 
(ANN 

𝜂 = 0.1) 

8.377 
(ANN 

𝜂 = 0.1) 

0.100045 
(LSTM-PC 
𝜂 = 0.003) 

Daejeon 

Spring 
11.497 

(LSTM-PC 
𝜂 = 0.003) 

16.577 
(LSTM-PC 
𝜂 = 0.003) 

9.536 
(LSTM-PC 
𝜂 = 0.003) 

0.095455 
(LSTM-PC 
𝜂 = 0.003) 

Summer 
7.554 
(LSTM 

𝜂 = 0.009) 

7.267 
(LSTM 

𝜂 = 0.007) 

5.696 
(LSTM 

𝜂 = 0.007) 

0.049259 
(LSTM 

𝜂 = 0.009) 

Autumn 
7.657 
(ANN 

𝜂 = 0.001) 

7.898 
(ANN 

𝜂 = 0.1) 

5.742 
(ANN 

𝜂 = 0.1) 

0.050439 
(ANN 

𝜂 = 0.1) 

Winter 
10.32 
(ELM) 

11.379 
(LSTM 

𝜂 = 0.001) 

7.914 
(LSTM 

𝜂 = 0.001) 

0.075578 
(ELM) 

Daegu 

Spring 
12.969 

(LSTM-PC 
𝜂 = 0.001) 

18.761 
(LSTM-PC 
𝜂 = 0.007) 

9.748 
(LSTM-PC 
𝜂 = 0.007) 

0.123016 
(LSTM-PC 
𝜂 = 0.001) 

Summer 
9.354 
(LSTM 

𝜂 = 0.009) 

9.275 
(LSTM-PC 
𝜂 = 0.003) 

6.977 
(LSTM-PC 
𝜂 = 0.003) 

0.064614 
(LSTM 

𝜂 = 0.009) 

Autumn 
9.602 

(LSTM-PC 
𝜂 = 0.003) 

10.922 
(LSTM-PC 
𝜂 = 0.003) 

7.506 
(LSTM 

𝜂 = 0.001) 

0.067986 
(LSTM-PC 
𝜂 = 0.003) 

Winter 
13.274 

(LSTM-PC 
𝜂 = 0.003) 

16.955 
(ANN 

𝜂 = 0.1) 

9.534 
(LSTM-PC 
𝜂 = 0.003) 

0.111212 
(LSTM-PC 
𝜂 = 0.003) 

Busan 

Spring 
12.227 
(LSTM 

𝜂 = 0.001) 

19.691 
(LSTM 

𝜂 = 0.001) 

10.047 
(LSTM 

𝜂 = 0.001) 

0.101468 
(LSTM 

𝜂 = 0.001) 

Summer 
7.139 
(ANN 

𝜂 = 0.1) 

6.928 
(ANN 

𝜂 = 0.1) 

5.556 
(ANN 

𝜂 = 0.1) 

0.044902 
(ANN 

𝜂 = 0.1) 

Autumn 
10.029 

(LSTM-PC 
𝜂 = 0.001) 

12.362 
(LSTM-PC 
𝜂 = 0.1) 

7.705 
(LSTM-PC 
𝜂 = 0.001) 

0.07212 
(LSTM-PC 
𝜂 = 0.001) 

Winter 
14.565 
(ANN 

𝜂 = 0.3) 

19.332 
(LSTM 

𝜂 = 0.005) 

10.424 
(LSTM 

𝜂 = 0.001) 

0.132957 
(ANN 

𝜂 = 0.5) 

Incheon 

Spring 
12.714 
(ANN 

𝜂 = 0.3) 

17.671 
(ANN 

𝜂 = 0.1) 

9.974 
(ANN 

𝜂 = 0.1) 

0.097865 
(ANN 

𝜂 = 0.5) 

Summer 
9.067 

(LSTM-PC 
𝜂 = 0.003) 

9.902 
(LSTM-PC 
𝜂 = 0.007) 

7.132 
(LSTM-PC 
𝜂 = 0.003) 

0.059158 
(LSTM-PC 
𝜂 = 0.003) 

Autumn 
10.798 
(LSTM 

14.206 
(LSTM-PC 

8.463 
(LSTM 

0.080832 
(LSTM 
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𝜂 = 0.001) 𝜂 = 0.009) 𝜂 = 0.001) 𝜂 = 0.001) 

Winter 
9.66 

(LSTM-PC 
𝜂 = 0.001) 

11.946 
(LSTM-PC 
𝜂 = 0.001) 

7.572 
(LSTM-PC 
𝜂 = 0.001) 

0.076879 
(LSTM-PC 
𝜂 = 0.001) 

Gwangju 

Spring 
14.076 
(LSTM 

𝜂 = 0.001) 

19.601 
(LSTM 

𝜂 = 0.001) 

11.404 
(LSTM 

𝜂 = 0.001) 

0.110535 
(LSTM 

𝜂 = 0.003) 

Summer 
7.193 
(ANN 

𝜂 = 0.1) 

6.401 
(ANN 

𝜂 = 0.1) 

5.333 
(ANN 

𝜂 = 0.1) 

0.044155 
(ANN 

𝜂 = 0.1) 

Autumn 
9.013 
(LSTM 

𝜂 = 0.003) 

10.56 
(LSTM 

𝜂 = 0.003) 

7.045 
(LSTM 

𝜂 = 0.003) 

0.060579 
(LSTM 

𝜂 = 0.003) 

Winter 
12.555 

(LSTM-PC 
𝜂 = 0.001) 

14.88 
(ANN 

𝜂 = 0.3) 

9.785 
(ANN 

𝜂 = 0.3) 

0.095765 
(LSTM-PC 
𝜂 = 0.001) 

Pohang 

Spring 
14.421 
(LSTM 

𝜂 = 0.001) 

24.822 
(LSTM-PC 
𝜂 = 0.003) 

12.089 
(LSTM 

𝜂 = 0.001) 

0.123603 
(LSTM 

𝜂 = 0.001) 

Summer 
7.81 
(ANN 

𝜂 = 0.7) 

8.028 
(ANN 

𝜂 = 0.1) 

6.365 
(LSTM 

𝜂 = 0.007) 

0.049416 
(ANN 

𝜂 = 0.7) 

Autumn 
9.349 
(ANN 

𝜂 = 0.3) 

11.208 
(ANN 

𝜂 = 0.3) 

7.621 
(ANN 

𝜂 = 0.3) 

0.065148 
(ANN 

𝜂 = 0.3) 

Winter 
12.935 
(ANN 

𝜂 = 0.3) 

17.59 
(ANN 

𝜂 = 0.3) 

9.808 
(ANN 

𝜂 = 0.3) 

0.111622 
(ANN 

𝜂 = 0.3) 

Mokpo 

Spring 
11.454 
(ANN 

𝜂 = 0.5) 

15.142 
(ANN 

𝜂 = 0.5) 

9.526 
(ANN 

𝜂 = 0.5) 

0.082099 
(ANN 

𝜂 = 0.5) 

Summer 
5.732 
(LSTM 

𝜂 = 0.005) 

5.263 
(LSTM 

𝜂 = 0.005) 

4.296 
(LSTM 

𝜂 = 0.005) 

0.035826 
(LSTM 

𝜂 = 0.005) 

Autumn 
6.951 
(ANN 

𝜂 = 0.1) 

7.647 
(ANN 

𝜂 = 0.1) 

5.393 
(ANN 

𝜂 = 0.1) 

0.046935 
(ANN 

𝜂 = 0.1) 

Winter 
8.109 
(ANN 

𝜂 = 0.1) 

8.971 
(ANN 

𝜂 = 0.1) 

6.391 
(ANN 

𝜂 = 0.1) 

0.057606 
(ANN 

𝜂 = 0.1) 

Tongyeong 

Spring 
10.427 

(LSTM-PC 
𝜂 = 0.003) 

14.22 
(LSTM-PC 
𝜂 = 0.003) 

8.55 
(LSTM-PC 
𝜂 = 0.003) 

0.076959 
(LSTM-PC 
𝜂 = 0.003) 

Summer 
6.557 
(ANN 

𝜂 = 0.1) 

6.227 
(LSTM-PC 
𝜂 = 0.003) 

5.085 
(LSTM-PC 
𝜂 = 0.003) 

0.039583 
(ANN 

𝜂 = 0.1) 

Autumn 
8.572 
(ANN 

𝜂 = 0.1) 

9.732 
(LSTM 

𝜂 = 0.005) 

6.729 
(LSTM 

𝜂 = 0.005) 

0.058932 
(ANN 

𝜂 = 0.1) 

Winter 
12.672 
(ANN 

𝜂 = 0.1) 

15.113 
(ANN 

𝜂 = 0.1) 

9.415 
(ANN 

𝜂 = 0.1) 

0.10209 
(ANN 

𝜂 = 0.5) 

Jeonju Spring 
12.046 
(LSTM 

14.774 
(LSTM-PC 

9.768 
(LSTM 

0.088428 
(LSTM 
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In this subsection, we perform the computer-simulation for two testings as 

follows: testing 3 has the six input nodes 𝑇𝑡−2 , 𝑇𝑡−1 , 𝑇𝑡 , 𝐻𝑡−2 , 𝐻𝑡−1 , 𝐻𝑡  days in the 

input layer and the one output node 𝑇𝑡+1 in the output layer, and testing 4 has also the 

six input nodes 𝑇𝑡−2 , 𝑇𝑡−1 , 𝑇𝑡 , 𝐻𝑡−2 , 𝐻𝑡−1 , 𝐻𝑡  days in the input layer and the one 

output node 𝐻𝑡+1  in the output layer. We here test the predicted accuracies for 

temperature 𝑇𝑡+1 and humidity 𝐻𝑡+1 at time lag t+1. For testings 3 and 4, we set the 

five learning rates 0.1, 0.2, 0.3, 0.4, 0.5 for the ANN and the DNN, while the learning rates 

for LSTM and LSTM-PC are set as 0.001, 0.003, 0.005, 0.007, 0.009, for different train set 

sizes over three runs (2500, 5000, and 7500 epochs). The predicted values of the ELM are 

obtained by averaging the results over 2500, 5000, and 7500 epochs. A prediction model 

is created and the average of the prediction values is obtained through the prediction 

model was used as the final prediction value. 

Figs. 13-16 shows the lowest predicted values of RMSE, MAPE, MAE, and Theil’s-

U statics of ten cities including all five NN models (the ANN, DNN, LSTM, and LSTM-PC) 

for all three kinds of epochs in four seasons of ten cities in testings 3 and 4, respectively. 

Tables 5 and 6 is illustrated the comparison of the RMSE, MAPE, MAE and Theil’s-U 

statistics in four seasons of ten cities in testings 3 and 4, respectively. 

From Fig. 13 and Table 6 of testing 4, the RMSE of LSTM has a lowest value of 

5.732 in summer in Mokpo (rank1), rather than 6.557 in summer in Tongyeong (rank 2) 

and 6.751 in summer in Jeonju (rank 3). The lowest MAPE value of LSTM is 5.263 in 

summer in Mokpo (rank1), lower than 6.225 in summer in Jeonju (rank 2) and 6.227 in 

summer in Tongyeong (rank 3), as shown in Fig. 14 of testing 4. 

From Fig. 15 and Table 5 of testing 3, the MAE of LSTM has a lowest value of 0.647 

in summer in Tongyeong (rank1), rather than 0.721 in summer in Mokpo (rank 2) and 

0.967 in summer in Jeonju (rank 3). The lowest Theil’s-U value of LSTM is 1.457 in 

summer in Tongyeong (rank1), lower than 1.506 in summer in Mokpo (rank 2) and 2.097 

in summer in Jeonju (rank 3), as shown in Fig. 16 of testing 3.     

Hence, we find that the RMSE of LSTM in humidity prediction has a lowest value 

of 5.732 at 𝜂=0.005 in summer in Mokpo, while the lowest MAE value of LSTM is 0.647 

at 𝜂=0.01 in summer in Tongyeong in temperature prediction. 

𝜂 = 0.003) 𝜂 = 0.009) 𝜂 = 0.003) 𝜂 = 0.003) 

Summer 
6.751 
(ANN 

𝜂 = 0.9) 

6.225 
(LSTM 

𝜂 = 0.009) 

5.308 
(ANN 

𝜂 = 0.9) 

0.038613 
(ANN 

𝜂 = 0.9) 

Autumn 
7.58 
(LSTM 

𝜂 = 0.001) 

8.365 
(LSTM 

𝜂 = 0.001) 

6.101 
(LSTM 

𝜂 = 0.001) 

0.048543 
(LSTM 

𝜂 = 0.001) 

Winter 
8.965 
(ANN 

𝜂 = 0.1) 

11.145 
(ANN 

𝜂 = 0.1) 

7.015 
(ANN 

𝜂 = 0.1) 

0.066511 
(ANN 

𝜂 = 0.1) 
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4-3 Lowest values of temperature and humidity prediction 

 

Fig. 17: The lowest RMSE of temperature prediction of ten cities for five NN models in four 

seasons in testings 1 and 3. 

 

 

Fig. 18: The lowest RMSE of humidity prediction of ten cities for five NN models in four seasons 

in testings 2 and 4. 
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Table. 7: The lowest RMSE values of temperature prediction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table. 8: Lowest RMSE values of humidity prediction 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

City Season Model RMSE testing 

Seoul Summer 
ANN 

(𝜂 = 0.3) 
1.468 3 

Incheon Summer 
LSTM-PC 

(𝜂 = 0.009) 
1.288 3 

Daejeon Summer 
LSTM-PC 

(𝜂 = 0.001) 
1.322 3 

Daegu Summer 
LSTM 

(𝜂 = 0.001) 
1.58 1 

Busan Summer 
LSTM 

(𝜂 = 0.001) 
1.003 1 

Pohang Summer 
LSTM 

(𝜂 = 0.005) 
1.554 1 

Tongyeong Summer 
LSTM 

(𝜂 = 0.005) 
0.866 3 

Gwangju Summer 
LSTM-PC 

(𝜂 = 0.001) 
1.227 1 

Jeonju Summer 
LSTM-PC 

(𝜂 = 0.001) 
1.246 1 

Mokpo Summer 
DNN 

(𝜂 = 0.1) 
0.896 3 

City Season Model RMSE testing 

Seoul Summer 
LSTM-PC 

(𝜂 = 0.003) 
9.399 2 

Incheon Summer 
LSTM-PC 

(𝜂 = 0.005) 
8.864 2 

Daejeon Summer 
ANN 

(𝜂 = 0.1) 
7.46 2 

Daegu Summer 
ANN 

(𝜂 = 0.1) 
9.307 2 

Busan Summer 
ANN 

(𝜂 = 0.1) 
7.139 4 

Pohang Summer 
ANN 

(𝜂 = 0.7) 
7.81 4 

Tongyeong Summer 
LSTM 

(𝜂 = 0.009) 
6.549 2 

Gwangju Summer 
ANN 

(𝜂 = 0.7) 
7.093 2 

Jeonju Summer 
ANN 

(𝜂 = 0.9) 
6.751 4 

Mokpo Summer 
LSTM 

(𝜂 = 0.005) 
5.732 4 
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Fig. 17 and Fig. 18 shows the lowest RMSE of temperature prediction and humidity 

prediction of ten cities for the ANN, DNN, LSTM, LSTM-PC, and ELM in four seasons in 

testings 1-4, respectively. 

From Fig. 17 and Table 7, in temperature prediction, the RMSE of LSTM has a 

lowest value of 0.866 in summer in Tongyeong (rank1), rather than 0.896 in summer in 

Mokpo (rank 2) and 1.003 in summer in Busan (rank 3). 

From Fig. 18 and Table 8, in humidity prediction, the RMSE of LSTM has a lowest 

value of 5.732 in summer in Mokpo (rank1), rather than 6.549 in summer in Tongyeong 

(rank 2) and 6.751 in summer in Jeonju (rank 3).  

Hence, we find that the RMSE of LSTM in temperature prediction has a lowest 

value of 0.866 at learning rate 𝜂=0.005 in summer in Tongyeong, while the lowest RMSE 

value of LSTM in humidity prediction is 5.732 at learning rate 𝜂 =0.005 in summer in 

Tongyeong. 

 

 

 

Ⅴ. Conclusion 

 

 In this paper, the daily average temperature and relative humidity of 10 major 

cities (Seoul, Daejeon, Daegu, Busan, Incheon, Gwangju, Pohang, Mokpo, Tongyeong, and 

Jeonju) in Korea are predicted using the NN models. We have simulated using the ANN 

with one hidden layer, DNN with two hidden layers, LSTM, LSTM-PC, and ELM. We 

simulate four testings: that is, input four nodes 𝑇𝑡−1, 𝑇𝑡, 𝐻𝑡−1, 𝐻𝑡 days of temperature 

(testing 1) and humidity (testing 2), and input six nodes 𝑇𝑡−2, 𝑇𝑡−1, 𝑇𝑡, 𝐻𝑡−2, 𝐻𝑡−1, 𝐻𝑡. 

𝑇𝑡+1  and 𝐻𝑡+1  days of temperature (testing 3) and humidity (testing 4). The five 

learning rates for the ANN and the DNN are set to 0.1, 0.3, 0.5, 0.7, and 0.9, while those for 

LSTM and LSTM-PC are set to 0.001, 0.003, 0.005, 0.007, 0.009, for 2500, 5000, 7500 

epochs. The predicted values of the ELM are obtained by averaging the results trained 

2500, 5000, and 7500 epochs. From the result of outputs, the root mean squared error 

(RMSE), mean absolute percentage error (MAPE), mean absolute error (MAE), Theil-U 

statistics are simulated for performance evaluation, and we compare each other after the 

manipulation of five NN models. 

We simulate and analyze the testings 1-4 as follows: (ⅰ) In testing 1, the RMSE 

value is 1.583 for the 7500 training epochs of the ANN (learning 𝜂 = 0.1) in spring in 

Tongyeong. The RMSE value of the LSTM-PC (𝜂 = 0.003) in summer in Tongyeong is 0.878 

for 2500 training epochs, while that for the LSTM-PC (𝜂 = 0.005) is 1.72 for the LSTM-PC 

(𝜂 = 0.005) for 5000 training epochs in autumn in Busan. The RMSE value of the ANN 
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(𝜂 = 0.3) is 2.046 for 2500 training epochs in winter in Daegu. Among the four seasons, 

the LSTM-PC shows good performance in two seasons (summer, autumn). Particularly, 

when the LSTM (𝜂 = 0.003) is trained 2500 training epochs in summer in Tongyeong, the 

RMSE has the smallest value with 0.878. (ⅱ) In testing 2, In spring, the RMSE value of the 

LSTM (𝜂 = 0.001 ) is 10.479 for the 5000 training epochs in spring in Tongyeong. The 

RMSE value of the ANN (𝜂 = 0.1) is 5.839 for 2500 training epochs in summer in Mokpo. 

The RMSE of the LSTM (𝜂 = 0.005)  was 6.891 for 7500 training epochs in autumn in 

Mokpo, The RMSE value is 8.16 for 2500 training epochs of the ANN (𝜂 = 0.1) in winter 

in Mokpo. When the ANN (𝜂 = 0.1 ) is trained 2500 training epochs in the summer in 

Mokpo, the RMSE has the smallest value with 5.839. (ⅲ) In testing 3, the RMSE value is 

1.547 for 5000 training epochs of the ANN (𝜂 = 0.1) in spring in Tongyeong, and the LSTM 

(𝜂 = 0.005) has an RMSE of 0.866 for 5000 training epochs in summer in Tongyeong. 

The RMSE value is 1.806 for 5000 training epochs of the LSTM-PC (𝜂 = 0.001) in autumn 

in Pohang, while that is 2.081 for the 7500 training epoch of The LSTM-PC (𝜂 = 0.009) in 

winter in Daegu. The LSTM in summer and the LSTM-PC in autumn and winter show good 

performances, and as in testing 1, the LSTM series also show good performances. (ⅳ) In 

testing 4, the RMSE value is 10.427 for the 7500 training epochs of the LSTM-PC (𝜂 =

0.003) in spring in Tongyeong. The RMSE value of LSTM (𝜂 = 0.005) is 5.732 for 2500 

training epochs in summer in Mokpo. The RMSE value is 6.951 for 2500 training epochs 

of the ANN (𝜂 = 0.1) in autumn in Mokpo, while that (𝜂 = 0.1) is 8.109 for 7500 training 

epochs in winter. In this case, The LSTM value outperforms any values of other models in 

summer in Mokpo. 

Particularly, from the computer-simulation in order to predict the temperature in 

spring, the RMSE of the ANN in Tongyeong shows the smallest value for 5000 training 

epochs in testing 3 (the temperature predicted in the input layer with six input nodes). In 

summer, The RMSE of the LSTM in testing 3 has the smallest value in Tongyeong for 5000 

training epochs. In the autumn, The LSTM-PC in testing 1 (the temperature predicted in 

the input layer with four input nodes) has the smallest value in Busan for 5000 training 

epoch. In winter, the ANN in testing 1 shows the smallest error in 2500 training epoch of 

Daegu. In the temperature prediction, when using the LSTM model in testing 3 in 

Tongyeong in the summer among the four seasons, we find that the smallest value of 

RMSE is 0.866. In the simulation to predict the humidity in spring, the LSTM-PC in 

Tongyeong for 7500 training epochs has the smallest RMSE in testing 4 (the humidity 

predicted in the input layer with six input nodes). The LSTM in testing 4 has the smallest 

value in 2500 training epochs of Mokpo in the summer, while the RMSE of the LSTM in 

testing 2 (the humidity predicted in the input layer with four input nodes) in the autumn 

has the smallest value for 7500 training epochs in Mokpo. In winter, the RMSE of the ANN 

has smallest value in testing 4 trained 7500 epochs in Mokpo. In the humidity prediction, 
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when using in the summer in Mokpo, the RMSE of LSTM model is shown the smallest 

value with 5.732. In both the temperature and humidity predictions, the RMSEs are the 

smallest in summer. 

From calculated results, the difference between the actual value and the predicted 

value of humidity is greater than the temperature, and the reason for this is that the actual 

value of humidity is more chaotic than that of temperature as shown in the previous paper 

[98]. The reason why land cities are given less error than coastal cities is that the data of 

land cities are inherently more chaotic, non-linear, and non-stationary time series. 

Our result provides the evidence that the LSTM is an effective method of 

predicting one meteorological factor (temperature) rather than the DNN. Prediction 

value of temperature among our result is consistent to the result of Chen et al. [85], and 

they found this value via deep learning network from Chinese stock data. We will conduct 

a study to further improve the accuracy of the meteorological element prediction model 

by applying a learning method that applies optimization algorithms such as genetic 

algorithm and particle swarm optimization to other types of neural network models such 

as and back-propagation algorithms [99,100]. There exists complicatedly and 

rebelliously correlated relation between several meteorological factors (temperature, 

wind velocity, humidity, surface hydrology, heat transfer, solar radiation, surface 

hydrology, land subsidence, and so on), the research in future can treat and apply 

complex network theory to input variables of the meteorological data, and the LSTM and 

LSTM-PC models can promote and develop the predictive performance. 

 

 

Ⅵ. References 
 

[1] P.D. Jones, T.J. Osborn, K.R. Briffa, The Evolution of Climate Over the Last Millennium, 

Science 292 (2001) 662-667.  

[2] P. Lynch, The origins of computer weather prediction and climate modeling, J. Comput. 

Phys. 227 (2008) 3431-3444.  
[3] Chen B, Gong H, Chen Y, Li. X, Zhou. C, Lei. K, Zhu. L, Duan. L, Zhao. X, Land subsidence 
and its relation with groundwater aquifers in Beijing Plain of China, Science of Total 
Environment 735 (2020) 139111.  
[4] J.M. Wallace, E.M. Rasmusson, T.P. Mitchell, V.E. Kousky, E.S. Sarachik, H. von Storch, On 

the structure and evolution of enso-related climate variability in the tropical pacific: 

lessons from toga, J. Geophys. Res. 103 (C7) (1998) 14241-14259.  

[5] M. Latif, D. Anderson, T.P. Barnett, M.A. Cane, R. Kleeman, A. Leetmaa, A review of the 

predictability and prediction of ENSO, J Geophys. Res. 103 (1998) 14375-14393.  



 ４４  

 

[6] A.G. Barnston, C.F. Ropelewski, Prediction of enso episodes using canonical correlation 

analysis, J. Clim 5 (1992) 1316-1345 .  

[7] A. Wu, W.W. Hsieh, B. Tang, Neural network forecasts of the tropical pacific sea surface 

temperatures, Neural Netw. 19 (2006) 145-154.  

[8] A.G. Barnston, H.M. van den Dool, S.E. Zebiak, T.P. Barnett, M. Ji, D.R. Rodenhuis, 

Longlead seasonal forecasts - where do we stand, Bull. Am. Meteor. Soc. 75 (1994) 2097-

2114. 

[9] N.K. Chauhan, K. Singh, A Review on Conventional Machine Learning vs Deep Learning, 

2018 International Conference on Computing, Power and Communication Technologies 

(GUCON) (2018) 347–352. 

[10] S.B. Kotsiantis, Supervised machine learning: A review of classification techniques, 

Informatica 31 (2007) 249-268. 

[11] R. Muthukrishnan, R. Rohini, LASSO: A Feature Selection Technique In Predictive 

Modeling For Machine Learning, IEEE International Conference on Advances in Computer 

Applications (ICACA) (2016) 18-20. 

[12] W. Lai. M. Zhou. M, F. Hu, K. Bian, Q. Song, A new DBSCAN parameters determination 

method based on improved MVO, IEEE Access 7 (2019) 104085-104095. 

[13] C. Ding, X. He, K-means Clustering via Principal Component Analysis, Proceedings of 

the 21st International Conference on Machine Learning (2004) 29-36. 

[14] Khan. K., Rehman. S. U, Aziz. K, Fong. S, Sarasvady. S, DBSCAN: Past, Present and 

Future, In Applications of Digital Information and Web Technologies (ICADIWT), IEEE 

(2014) 232-238. 

[15] Glasera. J. I, Benjamin. A. S, Farhoodi. R, Kording. K. P, The roles of supervised machine 

learning in systems neuroscience, Progress in Neurobiology 175 (2019) 126-137. 

[16] Silver. D, Huang. A, Maddison. C. J, Guez. A, Sifre. L, Driessche. G, Schrittwieser. J, 

Antonoglou. I, Panneershelvam. V, Lanctot. M, Dieleman. S, Grewe. D, Nham. J, 

Kalchbrenner. N, Sutskever. I, Lillicrap. T, Leach. M, Kavukcuoglu. K, Graepel. T, Hassabis. 

D, Mastering the game of Go with deep neural networks and tree search, Nature 529 (2016) 

484-489. 

[17] W.S. Mcculloch, Pitts. W, A logical calculus of the ideas immanent in nervous activity, 

Bulletin of Mothemnticnl Biology 52 (1990) 99-115. 

[18] Hebb. D. O, The Organization of Behavior, McGill Univentgli (1949). 

[19] Rosenblatt. F, The perceptron: a probabilistic model for information storage and 

organization in the brain, Psych. Rev. 65 (1958) 386-408. 

[20] Minsky. M, Papert. S. A, Perceptrons: An Introduction to Computational Geometry, MIT 

Press (1969). 

[21] Rumelhart. D. E, Hinton. G. E, Williams. R. J, Learning Internal Representations by 

Error Propagation, MIT Press, Cambridge, (1986) 318-362. 



 ４５  

 

[22] W.A. Little, The existence of persistent states in the brain, Math. Biosci. 19 (1974) 

101-120; W.A.Little, Q.L. Shaw, A statistical theory of short and long term memory, Behav. 

Biol. 14 (1975) 115-133. 

[23] J.J. Hopfield, Neural networks and physical systems with emergent collective 

computational abilities, Proc. Natl. Acad. Sci. USA 79 (1982) 2554-2558; Neurons with 

graded response have collective computational properties like those of two-state neurons, 

Proc. Natl. Acad. Sci. USA 81 (1984) 3088-3092. 

[24] D.J. Amit, H. Gutfreund, H. Sompolinsky, Spin-glass models of neural networks, Phys. 

Rev. A, 32 (1985) 1007-1018; Storing Infinite Numbers of Patterns in a Spin-Glass Model 

of Neural Networks, Phys. Rev. Lett. 55 (1985) 1530-1533. 

[25] Werbos. P. J, BEYOND REGRESSION: NEW TOOLS FOR PREDICTION AND ANALYSIS 

IN THE BEHAVIORAL SCIENCES, Ph. D thesis of Harvard University (1974). 

[26] Rumelhart. D. E, Hinton. G. E, Williams. R. J, Learning representations by back-

propagating errors, Nature 323 (1986) 533-536. 

[27] Bishop. C.M, Neural networks and their applications, Review of Scientific 

Instruments 65 (1994) 1803-1832. 

[28] Elman. J. L, Finding structure in time, Cong. Sci. 14 (1990) 179-211. 

[29] Werbos. P. J, Backpropagation through time: what it does and how to do it, 

Proceedings of the IEEE 78 (1990) 1550-1560. 

[30] Hochreiter. S, Schmidhuber. J, Long short-term memory, Neural Comput 9 (1997) 

1735-1780. 

[31] Gers. F. A, Schmidbuber. J, Recurrent Nets that Time and Count, Proceedings of the 

IEEE-INNS-ENNS International Joint Conference on Neural Networks, IJCNN 2000. Neural 

Computing: New Challenges and Perspectives for the New Millennium 3 (2000) 189-194. 

[32] Cho. K, Van Merrie nboer. B, Gulcehre. C, Bahdanau. D, Bougares. F, Schwenk. H, Bengio. 

Y, Learning phrase representations using RNN encoder-decoder for statistical machine 

translation, Proceedings of the 2014 Conference on Empirical Methods in Natural 

Language Processing (EMNLP) (2014) 1724-1734. 

[33] LeCun. Y, Bottou. L, Bengio. Y, Haffner. P, Gradient-based learning applied to 

document recognition, PROC OF THE IEEE 86 (1998) 2278-2324. 

[34] Huang. G. -B, Zhu. Q. -Y, Siew. C. -K, Extreme learning machine: theory and 

applications, Neurocomputing 70 (2006) 489-501. 

[35] Koutsoukas. A, Monaghan. K. J, Li. X, Huan. J, Deep-learning: investigating deep neural 

networks hyper-parameters and comparison of performance to shallow methods for 

modeling bioactivity data, J. Cheminform 9 (2017) 42. 

[36] Smith. L. N, Cyclical learning rates for training neural networks, In 2017 IEEE Winter 

Conference on Applications of Computer Vision (WACV) (2017) 464-472. 

[37] Loshchilov. I, Hutter. F, SGDR: Stochastic gradient descent with warm restarts, arXiv 



 ４６  

 

preprint arXiv:1608.03983 (2016). 

[38] Glorot. X, Bengio. Y, Understanding the difficulty of training deep feedforward neural 

networks, In Proceedings of the thirteenth international conference on artificial 

intelligence and statistics (2010) 249-256. 

[39] Duchi. J, Hazan. E, Singer. Y, Adaptive subgradient methods for online learning and 

stochastic optimization, Journal of machine learning research 12 (2011) 2121-2159.  

[40] Kingma. D. P, Ba. J. L, Adam: A method for stochastic optimization, arXiv preprint 

arXiv:1412.6980 (2014). 

[41] Ruder. S, An overview of gradient descent optimization algorithms, arXiv preprint 

arXiv:1609.04747 (2016). 

[42] Jarrah. M, Salim. N, A recurrent neural network and a discrete wavelet transform to 

predict the Saudi stock price trends, Int. J. Adv. Comput. Sci. Appl 10 (2019) 155-162. 

[43] Vargas. M. R, dos Anjos. C. E. M, Bichara. G. L. G, Evsukoff. A. G, Deep leaming for stock 

market prediction using technical indicators and financial news articles, In 2018 

International Joint Conference on Neural Networks (IJCNN), IEEE (2018) pp. 1-8. 

[44] Wang. J, Wang. J, Forecasting stock market indexes using principle component 

analysis and stochastic time effective neural networks, Neurocomputing 156 (2015) 68-

78. 

[45] Khare. K, Darekar. O, Gupta. P, Attar, V. Z, Short term stock price prediction using deep 

learning, In 2017 2nd IEEE International Conference on Recent Trends in Electronics, 

Information & Communication Technology (RTEICT), IEEE (2017) pp. 482-486. 

[46] Zhang. K, Zhong. G, Dong. J, Wang. S, Wang. Y, Stock market prediction based on 

generative adversarial network, Procedia computer science 147 (2019) 400-406. 

[47] Pawar. K, Jalem. R. S, Tiwari. V, Stock market price prediction using LSTM RNN, 

Emerging Trends in Expert Applications and Security, Springer, Singapore, (2019) 493-503. 

[48] Mehtab. S, Sen. J, Dutta. A, Stock price prediction using machine learning and LSTM-

based deep learning models, arXiv preprint arXiv:2009.10819 (2020). 

[49] Hiransha. M, Gopalakrishnan. E. A, Menon. V. K, Soman. K. P, NSE stock market 

prediction using deep-learning models, Procedia computer science 132 (1018) 1351-

1362. 

[50] Selvin. S, Vinayakumar. R, Gopalakrishnan. E. A, Menon. V. K, Soman. K. P, Stock price 

prediction using LSTM, RNN and CNN-sliding window model, In 2017 international 

conference on advances in computing, communications and informatics (icacci), IEEE  

(2017) 1643-1647. 

[51] Wu. Y, Tan. H, Qin. L, Ran. B, Jiang. Z, A hybrid deep learning based traffic flow 

prediction method and its understanding, Transportation Research Part C: Emerging 

Technologies 90 (2018) 166-180. 

[52] Zhang. D, Kabuka. M. R, Combining weather condition data to predict traffic flow: a 



 ４７  

 

GRU-based deep learning approach, IET Intelligent Transport Systems 12 (2018) 578-585. 

[53] Arif. M, Wang. G, Chen. S, Deep learning with non-parametric regression model for 

traffic flow prediction, In 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure 

Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big 

Data Intelligence and Computing and Cyber Science and Technology Congress 

(DASC/PiCom/DataCom/CyberSciTech), IEEE (2018) 681-688. 

[54] Dai. X, Fu. R, Lin. Y, Li. L, Wang. F. -Y, DeepTrend: A deep hierarchical neural network 

for traffic flow prediction, arXiv preprint arXiv:1707.03213, (2017). 

[55] Xiao. Y, Yin. Y, Hybrid LSTM neural network for short-term traffic flow prediction, 

Information 10 (2019) 105. 

[56] Yang. H. -F, Dillon. T. S, Chen. Y. P. -P, Optimized structure of the traffic flow forecasting 

model with a deep learning approach, IEEE transactions on neural networks and learning 

systems 28 (2016) 2371-2381. 

[57] Yu. L, Zhao. J, Gao. Y, Lin. W, Short-Term Traffic Flow Prediction Based On Deep 

Learning Network, In 2019 International Conference on Robots & Intelligent System 

(ICRIS), IEEE (2019) 466-469. 

[58] Yu. H, Wu. Z, Wang. S, Wang. Y, Ma. X, Spatiotemporal recurrent convolutional 

networks for traffic prediction in transportation networks, Sensors 17 (2017) 1501. 

[59] Cifuentes. J, Marulanda. G, Bello. A, Reneses. J, Air temperature forecasting using 

machine learning techniques: a review, Energies 13 (2020) 4215.  

[60] Zhu. S, Heddam. S, Wu. S, Dai. J, Jia. B, Extreme learning machine-based prediction of 

daily water temperature for rivers, Environmental Earth Sciences 78 (2019) 202. 

[61] Mendes. D, Marengo. J. A, Temporal downscaling: a comparison between artificial 

neural network and autocorrelation techniques over the Amazon Basin in present and 

future climate change scenarios, Theoretical and Applied Climatology 100 (2010) 413-

421. 

[62] Yen. M. -H, Liu. D. -W, Hsin. Y. -C, Lin. C. -E, Chen. C. -C, Application of the deep learning 

for the prediction of rainfall in Southern Taiwan, Sci, Rep. 9 (2019) 1-9. 

[63] Ise. T, Oba. Y, Forecasting climatic trends using neural networks: An experimental 

study using global historical data, Frontiers in Robotics and AI 6 (2019) 32. 

[64] Guo. Y, Cao. X, Liu. B, Peng. K, El Nin o Index Prediction Using Deep Learning with 

Ensemble Empirical Mode Decomposition, Symmetry 12 (2020) 893. 

[65] Zhang. Y, Zhang. C, Zhao. Y, Gao. S, Wind speed prediction with RBF neural network 

based on PCA and ICA, Journal of Electrical Engineering 69 (2018) 148-155. 

[66] Salman. A. G, Heryadi. Y, Abdurahman. E, Suparta. W, Single layer & multi-layer long 

short-term memory (LSTM) model with intermediate variables for weather forecasting, 

Procedia Computer Science 135 (2018) 89-98. 

[67] Elhoseiny. M, Huang. S, Elgammal. A, Weather classification with deep convolutional 



 ４８  

 

neural networks, In 2015 IEEE International Conference on Image Processing (ICIP), IEEE 

(2015) 3349-3353. 

[68] Poornima. S, Pushpalatha. M, Prediction of rainfall using intensified LSTM based 

recurrent neural network with weighted linear Units, Atmosphere 10 (2019) 668. 

[69] Ramí rez. M. C. V, Ferreira. N. J, Velho. H. F. C, Linear and nonlinear statistical 

downscaling for rainfall forecasting over southeastern Brazil, Weather and forecasting 21 

(2006) 969-989. 

[70] Zhang. Z, Pan. X, Jiang. T, Sui. B, Liu. C, Sun. W, Monthly and Quarterly Sea Surface 

Temperature Prediction Based on Gated Recurrent Unit Neural Network, J. Mar. Sci. Eng. 8 

(2006) 249. 

[71] Deng. L, Deep learning: from speech recognition to language and multimodal 

processing, APSIPA Transactions on Signal and Information Processing 5 (2016) 1-15. 

[72] Lim. C. P, Woo. S. C, Loh. A. S, Osman. R, Speech recognition using artificial neural 

networks, In Proceedings of the First International Conference on Web Information 

Systems Engineering 1, IEEE (2000) 419-423. 

[73] Venayagamoorthy. G. K, Moonasar. V, Sandrasegaran. K, Voice recognition using 

neural networks, In Proceedings of the 1998 South African Symposium on 

Communications and Signal Processing-COMSIG'98 (Cat. No. 98EX214), IEEE (1998) 29-

32. 

[74] Nichie. A, Mills. G. A, Voice Recognition Using Artificial Neural Networks And 

Gaussian Mixture Models, International Journal of Engineering Science and Technology 5 

(2013) 1120. 

[75] Tian. C, Ma. J, Zhang. C, Zhan. P, A deep neural network model for short-term load 

forecast based on long short-term memory network and convolutional neural network, 

Energies 11 (2018) 3493. 

[76] Hamedmoghadam. H, Joorabloo. N, Jalili, M, Australia's long-term electricity demand 

forecasting using deep neural networks. arXiv preprint arXiv:1801.02148, (2018). 

[77] Lalis. J. T, Maravillas. E, Dynamic forecasting of electric load consumption using 

adaptive multilayer perceptron (AMLP), In 2014 International Conference on Humanoid, 

Nanotechnology, Information Technology, Communication and Control, Environment and 

Management (HNICEM), IEEE (2014) 1-7. 

[78] Zheng. J, Xu. C, Zhang. Z, Li. X, Electric Load Forecasting in Smart Grids Using Long-

Short-Term-Memory based Recurrent Neural Network, In 2017 51st Annual Conference 

on Information Sciences and Systems (CISS). IEEE (2017) 1-6. 

[79] Park. D. C, El-Sharkawi. M. A, Marks II. R. J, Atlas. L. E, Damborg. M. J, Electric load 

forecasting using an artificial neural network, IEEE transactions on Power Systems 6 

(1991) 442-449. 

[80] Azadeh. A, Ghaderi. S. F, Tarverdian. S, Saberi. M, Integration of artificial neural 



 ４９  

 

networks and genetic algorithm to predict electrical energy consumption, Applied 

Mathematics and Computation 186 (2007) 1731-1741. 

[81] Yokoyama. R, Wakui. T, Satake, R, Prediction of energy demands using neural network 

with model identification by global optimization, Energy Conversion and Management 50 

(2009) 319-327. 

[82] Y. Tao, K. Hsu, A. Ihler, X. Gao, S. Sorooshian, A Two-Stage Deep Neural Network 

Framework for Precipitation Estimation from Bispectral Satellite Information, J. 

Hydrometeor. 19 (2018) 393-408.  

[83] Nabipour. M, Nayyeri. P, Jabani. H, Mosavi. A, Salwana. E, S. Shahab, Deep Learning for 

Stock Market Prediction, Entropy 22 (2020) 840. 

[84] Yudong. Z, Learn. W, Stock market prediction of S&P 500 via combination of 

improved BCO approach and BP neural network, Expert systems with applications 36 

(2009) 8849-8854. 

[85] Chen. L, Qiao. Z, Wang. M, Wang. C, Du. R, Stanley. H. E, Which artificial intelligence 

algorithm better predicts the Chinese stock market?, IEEE Access 6 (2008) 48625-48633. 

[86] Sermpinis. G, Dunis. C, Laws. J, Stasinakis. C, Forecasting and trading the EUR/USD 

exchange rate with stochastic Neural Network combination and time-varying leverage, 

Decision Support Systems 54 (2012) 316-329. 

[87] Vijh. M, Chandola. D, Tikkiwal. V. A, Kumar. A, Stock Closing Price Prediction using 

Machine Learning Techniques, Procedia Computer Science 167 (2020) 599-606. 

[88] Wang. J, Wang. J, Fang. W, Niu. H, Financial time series prediction using elman 

recurrent random neural networks, Computational intelligence and neuroscience, 2016. 

[89] Moustra. M, Avraamides. M, Christodoulou. C, Artificial neural networks for 

earthquake prediction using time series magnitude data or seismic electric signals, 

Expert systems with applications 38 (2011) 15032-15039. 

[90] Gonza lez. J, Yu. W, Telesca. L, Earthquake Magnitude Prediction Using Recurrent 

Neural Networks, Multidisciplinary Digital Publishing Institute Proceedings 24 (2019) 22. 

[91] Kashiwao. T, Nakayama. K, Ando. S, Ikeda. K, Lee. M, Bahadori. A, A neural network-

based local rainfall prediction system using meteorological data on the Internet: A case 

study using data from the Japan Meteorological Agency, Applied Soft Computing 56, (2017) 

317-330. 

[92] Zhang. Z, Dong. Y, Temperature Forecasting via Convolutional Recurrent Neural 

Networks Based on Time-Series Data, Complexity (2020). 

[93] Bilgili. M, Sahin. B, Prediction of long-term monthly temperature and rainfall in 

Turkey, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 32 (2009) 

60-71. 

[94] Mohammadi. K, Shamshirband. S, Motamedi. S, Petkovic . D, Hashim. R, Gocic. M, 

Extreme learning machine based prediction of daily dew point temperature, Computers 



 ５０  

 

and Electronics in Agriculture 117 (2015) 214-225. 

[95] Maqsood, I, Khan. M. R, Abraham. A, Weather forecasting models using ensembles of 

neural networks, Intelligent Systems Design and Applications, Springer, Berlin, Heidelberg, 

(2003) 33-42. 

[96] Buscema. M, Back propagation neural networks, Substance use & misuse 33 (1998) 

233-270. 

[97] Greff. K, Srivastava. R. K, Koutní k. J, Steunebrink. B. R, Schmidhuber. J, LSTM: A search 

space odyssey, IEEE transactions on neural networks and learning systems 28 (2016) 

2222-2232. 
[98] K.-H. Shin, W. Baek, K. Kim, C.-H. You, K.-H. Chang, D.-I. Lee, S. S. Yum, Physica A 523 

(2019) 778–796. 

[99] Chen. N, Xiong. C, Du. W, Wang. C, Lin. X, Chen. Z, An Improved Genetic Algorithm 

Coupling a Back-Propagation Neural Network Model (IGA-BPNN) for Water-Level 

Predictions, Water 11 (2019) 1795. 

[100] Du. J, Liu. Y, Yu. Y, Yan. W, A prediction of precipitation data based on support vector 

machine and particle swarm optimization (PSO-SVM) algorithms, Algorithms 10 (2017) 

57. 

 


	Ⅰ. Introduction
	Ⅱ. Data
	Ⅲ. Theoretical Background
	1. Artificial Neural Network (ANN) and Deep Neural Network (DNN)
	2. Long Short Term Memory (LSTM)
	3. LSTM-peephole Connection (LSTM-PC)
	4. Extreme Learning Machine (ELM)

	Ⅳ. Numerical results
	4-1. Testings 1 and 2
	4-2. Testings 3 and 4
	4-3. Lowest values of temperature and humidity prediction
	Ⅴ. Conclusion
	Ⅵ. References


<startpage>9
Ⅰ. Introduction １
Ⅱ. Data ４
Ⅲ. Theoretical Background ４
 1. Artificial Neural Network (ANN) and Deep Neural Network (DNN) ４
 2. Long Short Term Memory (LSTM) ９
 3. LSTM-peephole Connection (LSTM-PC) １４
 4. Extreme Learning Machine (ELM) １６
Ⅳ. Numerical results １９
4-1. Testings 1 and 2 １９
4-2. Testings 3 and 4 ３１
4-3. Lowest values of temperature and humidity prediction ３９
Ⅴ. Conclusion ４１
Ⅵ. References ４３
</body>

