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I . Introduction

Climate change is until now thought to be a cause for concern for many scientists
around the world. Changes in the climate factors have resulted in considerable climate
variations for complex systems [1,2]. With the numerical and analytical weather
prediction of the world meteorological organization (WMO), the statistical quantities of
heat transfer, solar radiation, temperature, wind, humidity, surface hydrology, and land
subsidence [3] have been calculated within each grid cell of our earth, and these
interactions are presently proceeding to be calculated to shed light on the atmospheric
properties. Particularly, El Nifio-southern oscillation (ENSO) forecast models have been
categorized into three types: coupled physical models, statistical models, and hybrid
models [4,5]. Among these models, the statistical models introduced for the ENSO
forecasts have been the neural network (NN) model, multiple regression (MR) model, and
canonical correlation analysis [6,7]. Barnston et al. [8] have found that the statistical
models have reasonable accuracies in forecasting sea surface temperature (SST)
anomalies.

The Artificial intelligence (Al) has been applied in various fields and research is
being actively conducted. The field of deep neural network (DNN), which was once in a
recession, has been applied to all fields as the era of big data has entered the era and
applied to various industries and has established itself as a core technology. Machine
learning (ML), originated in the 17th century, is a branch of artificial intelligence. It has
used computers to simulate and analyze various models in scientific fields. The ML and
the DNN are sub-fields of Al, and the DNN is the number of hidden layers in the NN. The
ML improves its performance through learning, which includes supervised learning and
unsupervised learning. Supervised learning uses data with targets as input values, and
unsupervised learning uses input data without targets [9]. Supervised learning includes
regressions such as the linear regression, logistic regression, ridge regression, and Lasso
regression, and classifications such as the support vector machine (SVM) and the decision
tree (DT) [10,11]. For the unsupervised learning, there are techniques such as the
principle component analysis (PCA), K-means clustering, and density based spatial
clustering of applications with Noise (DBSCAN) [12-14]. The reinforcement learning (RL)
exists in addition to supervised and unsupervised learning. The RL is known as a learning
with actions and rewards. The AlphaGo has for example become famous for its against
humans [15,16].

About eight decades ago, the NN model have been proposed by McCulloch and
Pitts [17], and the first learning rules were proposed by Hebb [18]. In 1958, the
Perceptron model was proposed by Rosenblet [19]. However, it is proved by Minsky and
Papert in 1969 that Perceptron is a linear classifier that cannot solve the XOR problem
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[20]. In the field of NNs, Rumelhart proposed a multilayer perceptron that added a hidden
layer between the inputlayer and the output layer, and solved the XOR problem, and again
faced the moment of development [21]. Until now, many models have been proposed for
human memory as a collective property of NNs. The NN models introduced by Little [22]
and Hopfield [23] have been based on an Ising Hamiltonian extended by equilibrium
statistical mechanics. A detailed discussion of the equilibrium properties of the Hopfield
model was discussed in Amit et al. [24].

Furthermore, Werbos firstly proposed back-propagation (BP) for learning ANNs
in his doctoral thesis [25], which was developed by Rumelhartin 1986, The BP is a method
of learning a NN by calculating the error between the output value of the output layer
calculated in the forward direction and the actual value propagated the error in the
reverse direction. The BP is a delta rule and gradient descent method (GDM) to update
weights by performing learning in the direction of minimizing errors [26,27].

In 1990, Elman proposed a simple recurrent network using the output value of
the hidden layer as the input value of the next time considering time [28].In 1990, Werbos
proposed BP through time and proposed a learning method for recurrent neural network
(RNN) [29]. The Long Short-Term Memory (LSTM) model, a variant of RNN that controls
information flow by adding a gate to a node, was developed by Hochreiter and
Schmidhuber [30]. The LSTM-peephole connections (PC) and the LSTM-GRU were
developed from the LSTM [31,32]. In addition, the Convolution Neural Network (CNN)
used for high-level problems, including image recognition, object detection and language
processing is facing a new revival by LeCun. In 1998, the Convolution Neural Network,
LeNet-5, was developed [33]. Furthermore, Huang et al. proposed an extreme learning
machine (ELM) to improve the slow progression of gradient descent-based algorithms
due to iterative learning. The ELM is a single-hidden layer feedforward neural network
with one hidden layer, without training, and uses a matrix to obtain the output value [34].

Deep neural network (DNN) has various hyper-parameters such as the learning
rate, drop out, epochs, batch size, hidden nodes, activation function and so on. The
learning rate is not only a fixed value, but also a cyclic applied by changing the learning
rate. Methods such as learning rate and cosine annealing are applied. In the case of
weights, an initial weight value is set according to the number of nodes suggested by
Xavier et al. [35-38]. In addition to the stochastic gradient descent (SGD), optimizers for
the optimization such as the momentum, Nestrov, AdaGrad, RMSProp, Adam, and AdamW
have also been developed [39-41].

DNN technology, which has continued to develop, is applied to the fields of stock
market [42-50], transportation [51-58], weather [59-70], voice recognition [71-74], and
electricity [75-81]. Tao et al. [82] have studied a state-of-the-art DNN for precipitation
estimation using the satellite information, infrared (IR), and water vapor (WV) channels,
and they have particularly showed a two-stage framework for precipitation estimation
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from bispectral information. Although the stock market is a random and unpredictable
field, DNN techniques are applied to predict the stock market [83,84]. The prediction
accuracy was calculated by dividing the small, medium, large scale by applying deep
learning with autoencoder and restricted Boltzmann machine (RBM), neural network
with back-propagation algorithm, extreme learning machine (ELM), and radial basis
function neural network (RBF) [85]. Sermpinis et al. applied traditional statistical
prediction techniques and ANN, RNN, and psi-sigma neural network (PSN) for the
EUR/USD exchange rate. Their results showed that the RMSE was smaller when the
neural network model was used [86]. Vijh et al. predicted the closing price of US firms
using a single hidden layer neural network and a random forest model [87]. Wang et al.
applied the BPNN, Elman recurrent neural network (ERNN), stochastic time effective
neural network (STNN), and Stochastic Time Effective Function (STNN) for SSE, TWSE,
KOSPI, and Nikkei225. They have shown that artificial neural networks perform well in
predicting the stock market [88].

Moustra et al. have introduced an ANN model to predict the intensity of
earthquakes in Greece. They have used a multilayer perceptron (MLP) for both seismic
intensity time series data and seismic electric signals as input data [89]. Gonzalez et al.
[90] used the RNN and LSTM models to predict the earthquake intensity in Italy with
hourly-data. Kashiwao et al. predicted rain-autumn for the local regions in Japan. They
were applied the hybrid algorithm in the random optimization method [91].

Zhang and Dong have studied the CNN model to predict the temperature by using
the daily temperature data of China from 1952 to 2018 as learning data [92]. Bilgile et al.
has used the ANN model to predict the temperature and precipitation in Turkey, and they
have analyzed 32 nodes with one hidden layer. Their results have also showed a high
correlation between the predicted value and the actual value [93]. Mohammadi et al. have
collected weather data from Bandar Abass and Tabass with different weather conditions.
They have predicted and compared daily dew point temperature using the ELM, ANN, and
SVM [94]. Magsood et al. have predicted the temperature, windspeed, and humidity by
applying the MLP, RNN, radial based function (RBF), and Hopfield Model for four seasons
in Regina Airport's [95].

In this paper, we study and analyze Dynamical prediction of meteorological
factors (temperature and humidity) using the NN models. We predict the temperature
and the humidity for ten major cities in South Korea peninsula by applying five NN models,
that is, the ANN, DNN, LSTM, LSTM-PC, and ELM. We find the RMSE, MAPE, MAE, and
Theil-U from our calculated results. Data for calculations are given in Section 2. In Section
3, the basic formulas for the ANN, DNN, LSTM, LSTM-PC, and ELM are provided.
Corresponding calculations and the results for these models are presented in Section 4.
Concluding remarks are given in Section 5.



I[I. Data

As our data, we use the temperature and the humidity of ten major cities in Korea
extracted from the Korea Meteorological Administration (KMA). The ten cities we studied
and analyzed are Seoul, Incheon, Daejeon, Daegu, Busan, Pohang, Tongyeong, Gwangju,
Mokpo, and Jeonju. We used the data of the manned regional meteorological offices of the
KMA to ensure the reliability of data, and it is daily data for seven years from 2014 to
2020. In this study, we trained and tested the NN models for two meteorological factors
(temperature and humidity) during five years from 2010 to 2014.

The data used is from 2014 to 2020, and the four seasons are divided into the
spring (March, April, May), the summer (June, July, August), the autumn (September,
October, November), and the winter (December, January, February). In the case of the
winter, data for December of the year and January and February of the following year are
used as data for one year, so December 2014 to January and February 2015 are data for
the winter of 2014. In this paper, training was conducted with five-years data and verified
with one-year data. And, the temperature is converted into absolute temperature and
used.

Ill. Theoretical Background

In this section, we introduce the method and its technique for five NN models, that
is, the ANN, DNN, LSTM, LSTM-PC, and ELM.

1. Artificial Neural Network (ANN) and Deep Neural Network (DNN)

The ANN is a mathematical model that presents some features of brain functions
as a computer-simulation. That is, it is an artificially explored network, distinguished
from a biological neural network. The basic structure of the ANN has three layers: input,
hidden, and output. Each layer is determined by connection weight and its bias. In an
arbitrary layer of the neural network, each node constitutes as one neuron, and one link
between nodes means one connection weight of a synapse. The connection weight is
corrected as feedback via a training phase, and is designed to implement self-learning.
Fig. 1-1 is the ANN structure for one hidden layer with three nodes. The ANN structure
with two or more hidden layers is called a DNN. We show a DNN structure with two
hidden layers in Fig. 1-2.

The artificial neural network problem can be viewed as a problem of finding the
optimal value of a function. If the objective function is J(8), the gradient descent method
is the method to find the minimum value of this objective function for 6. Next, the
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gradient descent algorithm is defined as follows. That is,

Tt—l
HL,
Tt Teas
HL,
Hi—1 Hisq
HL,
H,
Input layer Hidden layer Output layer

Fig. 1-1: Artificial neural network (ANN) structure with one hidden layer. Each layer is connected
by weights.

Tt—l
HLY » HL?

Ti Tivq
HLL 1.3

Hy 4 Heyq
pIL, # HILZ

H,

Input layer Hidden layer1 Hidden layer2 Output layer

Fig. 1-2: Deep Neural Network (DNN) with 2 hidden layers. In the hidden layer, the superscript
indicates the order of the layers, and the subscript indicates the order of the nodes.

6=6-nVej(6) , (1)
where VgJ(60) isthe derivative value of the objective function with respect to 6, which is
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910)

20
of 0 is adjusted in the opposite direction of the slope. The quantity 7 is as learning rate,
and this is a factor that determines how much gradient is reflected. That is, the change of
6 is determined by changing the n value. The value of 6 grows larger according to
increase 1 as the big value, but there exists a possibility that the minimum value to be
found will be exceeded. On the other hand, if the n value is small, the change in 6 will
be small, but it may take a lot of learning time to find the minimum value. Among the
gradient descent methods, stochastic gradient descent is a method of updating 6 for
each data set by

called gradient and means If the sign of VyJ(6) is negative, it means that the value

0 =6—nVe/(6;xD;yD) (2)

where x® is the i-th training data, and y® is the label value of the i-th training data
[41].

Forward propagation (FP) is first performed to output a predicted value using an
artificial neural network. Forward propagation refers to calculating in the order of input
layer-hidden layer-output layer. When a predicted value is found through forward
propagation, the error, which is the difference between the target value and the predicted
value, is calculated and the error is propagated in the order of the output layer-hidden
layer-input layer. This is called the error BP method. The FP of the ANN starts from the
input layer and progresses as many as the number of hidden layers, and when it finally
reaches the output layer, the FP is completed. Forward propagation is calculated by a
simple method. After calculating the weighted sum by Eq. (3) for the layer and the layer,
let us calculate the activation function with in Eq. (4) [96].

net = ), weight * input + bias (3)
and output = o(net) , (4)

where o is a sigmoid function, one of the nonlinear functions, and is called an activation
function, and has the following Eq. (5).

1

o) = = 5)
In addition, the differential form of the sigmoid function is shown as
d
70 = 601 - 0(0) - (6)
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Next, we show the functional form of the sigmoid function and its derivative form in Fig.
2 (a) and (b), respectively.

do(x)

o(x dx

Fig. 2: Sigmoid function ¢(x) and derivative of sigmoid function djl—ix) .

First of all, the FP between the input layer and the hidden layer is obtained as
follows:

h; = o(y;) (8)

Here, x; isthe i-th neuron ofthe inputlayer, w;; isthe weightofthe j-th neuron ofthe
first hidden layer and the i-th neuron of the input layer, and b; is the bias of the j-th
neuron of the first hidden layer. h; isan output value from the output layer. If the hidden
layer consists of more than one layer, the above process can be repeated with h; as the
input value of the next layer. The FP of the hidden layer and the output layer is performed
by

Yk = Wijh; + by 9

o =0(Vi), (10)



where wy; is the weight between the hidden layer and the output layer, and by is the
bias of the output layer. When the FP calculation is completed for all training data, the
training data is learned using a learning method called error back-propagation method.
The purpose of the ANN is to find weights that minimize errors. The BP method is
updating the weights between layers by sending the error between the target value and
the predicted value to the hidden layer and the input layer.

Firstly, the error between the target value and the predicted value of the output
layer is calculated. As for the error, the MSE, which is specifically called the cost function,
is calculated as

1

E= Ezllgﬂ(tk — 0r)? (11)
In error back-propagation [21,96], the weight updated by the gradient descent method
can be expressed as

w’=w—na—w, (12)

where w' represents the updated new weight,and w is the weight connecting the layer
before the update.

Secondly, the weight between the output layer and the hidden layer is adjusted.
When calculating the gradient of the cost function in Eq. (12), it is calculated by applying
the chain rule as

0E A 0E aok ayk
aij i aok ayk aWk]

= —(tx — 0) (1 = a(¥i))hy

= Oy h; (13)
and ¢, is given by
5 = 0E
o 9y
= =(tx —ox)o (Vi) (1- o(¥i)) - (14)

Here, Eq. (14) is called the delta rule. The weight updated by output layer and hidden
layer is finally shown as

8



Lastly, the process updated the weights of the hidden layer and the input layer is
as follows. In the output layer, the error between the target value and the predicted value
can be calculated, but in the hidden layer, the error cannot be calculated because there is
no target value of the hidden layer. After §, of the output layer is backpropagated and
used as an error value in the hidden layer, the gradient for the weight of the hidden layer-
input layer is calculated as

0E _ OE Ohj 0y;
owji — 0n;ay;ow;
_ OE 0y, 0h; 0y;
dyy Oh; dy; dwy;
= (Bh=18wWi)o (i) (1 — a(vi))x;
= 6;x; (16)

The final update for the weights of hidden layer and input layer is obtained by

wi

ji = Wji+7’]8jxi ¥ (17)

2. Long Short Term Memory (LSTM)

The LSTM is an artificial neural network model modified from RNN. Like the ANN
model, a basic RNN consists of an input layer, a hidden layer, and an output layer. However,
the difference from the existing ANN is that the output value from the hidden layer is used
as the input value of the input layer. That is, the output value of the hidden layer at the
current time t is used as an input value together with the input value of the input layer
at the next time step t + 1. Fig. 3 shows the structure of the RNN with respect to time. In
Fig. 3(a), the structure in which the output value of the hidden layer is again used as the
input value of the input layer can be confirmed. Fig. 3(b) shows the unfolded structure
Fig. 3(a). In this way, the RNN makes it possible to find more accurate predicted values by
continuously remembering past information. However, the characteristic of remembering
the past acts as a disadvantage as the time step deepens. Information from the past too
far is difficult to reflect in the present time step, which is called gradient vanishing. The
LSTM is a model that overcomes the gradient vanishing problem.



a) b)

Output layer o] Op_q O¢ O¢4q

Hidden layer [ h ]

I
&
ih
&
>
]
=

Input layer X Xt—1 Xt Xt41

Fig. 3: RNN structure. In (a), it can be seen that the output value of the hidden layer goes back to
the input value of the input layer, and (b) is a structure in which RNNs are expanded in
chronological order.

Fig. 4 is structure of the LSTM. The LSTM is a model that transforms the node of
the hidden layer into a memory cell in the RNN. The memory cell has a forget gate, an
input gate, an output gate, and a state that is the current state of the cell, so that past
information can be controlled more efficiently.

Forward and back-propagation of the LSTM [97] is achieved by the control of each
gate in the LSTM memory cell. There are three types of the LSTM. Input weight connecting
the input value and the gate. input weights : wg, w;, w,, w, € RN*M connect the gate to

the output of the previous layer, recurrent weights : ws, u;, u,,u, € RN*M and there are
bias weights : bf, b;,b,, b, € RY. Here, M is the length of the input value x, attime ¢,

and N is the number of gate nodes. The input value input to the gate passes through the
activation function layer of each gate and updates the current cell state.

First of all, the forget gate is a gate that determines how much information from
the past will be forgotten. In the forget gate, the outputvalue h,_; of t —1 and theinput
value x; atthe currenttime t are input and calculated as

]Tt = Wsxy + ushiq + by, (18)
fo= o(fe) . (19)
where f; passes through the sigmoid function and has a value in the range of 0 to 1, and
determines how many memories of the past will be remembered. The closer to 0, the less

information is remembered, and the closer to 1, the more information from the past is
remembered.
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/ LSTM Memory Cell

Forget gate Input gate Output gate
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Ct—1 X + > Ct
\ 4
T tanh

— X

c tanh n
he_q > hy

Fig. 4: LSTM memory cell structure.

The input gate determines the new information of the current time step and how
much the information is reflected in the current state. The input gate updates the current
state of t by passing through two activation functions, the sigmoid layer and the
tanh layer asin Egs. (21) and (23).

ip = wixe + uhe_q + b (20)
ir = 0(iy) (21)
Z; = WyX; + uzhi—; + b, (22)
z; = tanh(z;) . (23)

[; passes the sigmoid function and outputs a value between 0 and 1, which is a layer that
determines how much information about the input value is reflected.
z; Has avalue between -1 and 1 through tanh, and is a candidate vector of a new state to
be reflected in state update.

Let us update the past state c¢;_; using f;, i;, and z; in the forget gate and
input gate. The new state c¢; can be obtained by the following Eq. (24).

11



=1 0Oz+ .1 Oft (24)

Here, O represents element-wise multiplication. In the first term of Eq. (24), the state
update candidate z.(range -1 to 1) is multiplied by the value of i;(0 to 1) to determine
how many state update candidates are reflected. The second term c;_; © f; is an
element that determines how much c¢;_; is to be remembered. The updated c; is
obtained by adding the past state c,_; and the present state candidates.

The output gate is a gate that determines how much state of the current cell is to
be exported, and gets a value between 0 and 1 through the sigmoid function, which acts
as a factor that determines whether or not the current cell state is completely exported.

0 = WoXp + Uohi_q + b, (25)
0; =0(0) - (26)

The updated state c; is passed through tanh to create a candidate for a new
output value, and the final output value of the cell is calculated by Eq. (27).

h: = tanh(c;) © o, (27)

The output value by Eq. (27) is inputted as the input value of the next time step at the
same time as the output value of the cell.

In the LSTM similar to ANN, the error BP method is used as a method for learning.
In the LSTM, the Back-Propagation Through Time (BPTT) method, which is an error
method dependent on time, is the same as the conventional error BP used in the ANN. We
can simply calculate the error between the output value and the target value, if
backpropagating the value after the gradient of the error is calculated. However, as it is
backpropagated in consideration of time, we can calculate the gradient of the output value
h; as

She = Ay +uf 82y 1 + Ui Sipyq + Ul 8fp 1 +UG 8014 (28)

Next, let us calculate the gradient values of the forget gate, input gate, and output gate as
shown in the following equations

8fy =8¢ © ce—1 © a(f)(1 = o(f)) (29)
8ip =8¢, Oz, O (i) (1 —o(iy)) (30)
o, = &h; O tanh (¢;) © 0(0)(1 — 0(0r)) B1)
5z, =8¢, © i, © (1 — tanh?(zy)). (32)

12



Finally, we calculate the gradient of the cell state as

8¢ =6h © 0, O (1 —tanh?(c)) + 81 O Sfan (33)

We can calculate the updated quantities for the weights w, u, b using the gradient
obtained through Egs. (29)- (32). The gradients of the weights for w are calculated as

T
Swy = Z 5, X x; (34)
t=0
T
Bw; = Z Siy X x; (35)
t=0
T
ow, = z 60; X x; (36)
t=0
T
ow, = Z 0Zy X X¢ . (37)
t=0

Next, the gradients of the weights for u are calculated as in Egs. (38) - (41).
Oup = Ofis1 X he (38)
Suu; = z Siyyy X hy (39)
du, = Z 60pp1 X hy (40)
du, = 0Ziy1 X Dy . (41)

Finally, the gradients of the weights for b are obtained as

Sby = Z 5f, (42)
t=0

13
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Forget gate

LSTM Memory Cell

Input gate

QOutput gate

X

ft

4
tanh

0, >

> Cp

Fig. 5: LSTM-PC structure.

3. LSTM-peephole Connection (LSTM-PC)

(43)

(44)

(45)

The LSTM-PC is a transformed model of the LSTM, and Fig. 5 shows the structure

14

of the LSTM-PC. It is a model that uses more information for learning by putting ¢, the
long-term state of the LSTM cell, into the forget gate, input gate, and output gate as an
input value. Forward and back-propagation of the LSTM-PC proceeds [97] in the same
way as the LSTM. However, the difference from the existing the LSTM is that c¢;_;, which
is the state value of the previous time step, is entered as an input value. First, the Forget



gate is calculated as
E: fot + ufht—l + pf@ct—l + bf ) (46)

fe=o(f)- (47)
Next, the input gate is described by

g = wixe + whey + P Qcg + by, (48)

ip =o(i). (49)
The z; value is showed in the same way as Eq. (23). The output gate is calculated as

0 = WoXy + Ughyy + Po O ¢t + by (50)

0 = 0(0g) . (51)

Here, pr,pi,po € R is the peephole weights. the state value ¢, and the output value
h; of the cell are simulated in the same manner as the Egs. (24) and (27) in the LSTM.

The LSTM-PC learning is also applied to the BPTT method used in the LSTM. It is
the same as the BPTT method of the LSTM, On the other hand, the PC is added at §¢;, and
the gradients of the weights value of the peephole weight is additionally calculated. Eq.
(33) for 6c; istransformed into an equation with peephole weight added as

8¢ =8hy © 0p © (1 —tanh?(c)) + 6¢1q O Sfpsn
Do O 80r + p; O bigr + Py O 6fiiq (52)

Then, the gradients of the weights of the peephole weight are calculated as.

T-1

opi= ) € O bin (53)

t=0
T-1

ovp = ) € ©bfin (54

t=0

15



T
5p, = z ¢, O 6o, . (55)

t=0
In the case of w, u, and b, itis the same variables as Egs. (34) - (45).

4. Extreme Learning Machine (ELM)

The ELM is an artificial neural network model with one hidden layer, as shown in
Fig. 1. In other words, it is the same as the ANN model with one hidden layer, but the ELM
is characterized in that it does not learn differently from the existing ANN model.

If N training datasets are (x;,t;), then x; = [xj1, X2 ..., X;n]T € R"and t; =
[ti1, tiz s tim]T € R™. w; = [Wi1, Wip ..., w;]T the weight vector of which the i-th
hidden layer node and the input nodes are connected. The quantity £; = [Bi1, Biz - Bin]”
is a weight vector in which the i-th hidden layer node and output nodes are connected.
The quantity b; is the bias value of the i-th hidden layer node. Then, the output value o;

can be obtained as follows [34] :
0j = Z’ivzlﬁl- al-(xj) = Z’ivzlﬁi al-(wl- - Xgt bl-), j=12,..,N. (56)
If Eq. (56) is expressed in the matrix form, it is shown as Eq. (57) below. That is,
HE =T, (57)

where T is the target value, and H is the output matrix of the hidden layer. These forms
are shown as

HWy, ..., Wg, by, ..., by, X1, o, X§) =

o(w;-x;+ by) - o(wg-xq+ by)
: : (58)
o(wy-xy+ by) - owg-xy+ bl &
T 1T
B=[gr—BL" (59)
T = [t] = ty]Nsm (60)

where T is transpose of matrix. The solution of the linear system of Eq. (57) is to find
B that satisfies

||H(w1, wi, Wi, by, ..., b, X4, ...,x,v)ﬁ - T||
16



= mﬁ;nIIH(Wl, e, Wi, by, o, b, X4, o xg)B =TI . (61)

The solution of Eq. (57) can be obtained as
g = H'T, (62)

where H' is moore-penrose generalized inverse of H.

The weight is an element connecting each layer in the artificial neural network
model. When training a neural network model, it is a common method to randomly set
the weight in the range of -1 to 1 or 0 to 1. However, the setting of these weights can act
as a factor that hinders proper learning of the model. Therefore, Xavier proposed [38] a
method for setting initial weights for effective model learning. In the uniform distribution
between [-1, 1], if the node n;, of the previous layer and the node of the next layer are
Noyye, the initial weight can be set as shown in the following Eq. (63).

6 6
WS U( _\/nin"'nout’ +\/nin+nout ) (63)

The Xavier weight initialization is also a suitable method when the activation function is
a sigmoid function.

In this paper, four evaluation scales RMSE, MAPE, MAE and Theil's U were
calculated to evaluate the performance of the artificial neural network model as the
following Egs. (64) - (67). Here, A and P are represented as an actual value and a predicted
value, respectively:

N
1
RMSE = NZ(AL- _ py? (64)
i=1
N
1< 14, — P,
MAPE = —Z | | x 100% (65)
N ¢ A;
=1
1 N
i=1

and

17



JlZN_lm - 9
i1y +\/ T 97

Theil's U = (67)

. . X—Xmi
where we normalize and convert the input dataas y = b

Xmax—Xmin
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4-1. Testings 1 and 2

IV. Numerical results

Learning rate
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Fig. 6: Values of the RMSE as a function of the learning rate in the ANN (red circle), DNN (purple
circle), LSTM (blue circle), and LSTM-PC (black circle) in all seasons of Seoul in testing 1. Here,
(a)-(d), (e)-(h), and (i)-(1) are, respectively, the results for training 2500, 5000, and 7500 epochs
in the spring, summer, autumn, winter.
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Fig. 7: Values of the MAPE as a function of the learning rate in the ANN (red circle), DNN (purple
circle), LSTM (blue circle), and LSTM-PC (black circle) in all seasons of Tongyeong in testing 2.
Here, (a)-(d), (e)-(h), and (i)-(1) are, respectively, the results for training 2500, 5000, and 7500
epochs in the spring, summer, autumn, winter.
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Table. 1: Learning rate

Leraning rate ANN, DNN LSTM, LSTM-PC
M1 0.1 0.001
7, 0.3 0.003
73 0.5 0.005
un 0.7 0.007
s 0.9 0.009

RMSE

Seoul Daejeon  Daegu Busan Incheon Gwangju Pohang Mokpo Tongyeong Jeonju
City

Fig. 8: The RMSE of ELM for 7500 epochs in spring (light green bar), summer (blue bar), autumn
(red bar), winter (purple bar) of testing 1.
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Table. 2: The RMSE of ELM for 7500 epochs for spring, summer, autumn, and winter in 10 cities
in testing 1, where the numbers in parentheses indicate the learning rate.

Seoul Daejeon Daegu Busan Incheon Gwangju Pohang Mokpo Tongyeong Jeonju
Spring 3.072 2.958 3.149 2.548 2.662 2.81 3417 2407 2122 2.992
Summer 1631 1.58 1.875 1.304 1.52 15 1.852 1.153 1.203 1.493
Autumn  3.028 3.081 2.642 2415 3.126 2.827 2.564 2.73 2428 3.127
Winter  3.456 3.032 2412 2.722 3318 2.952 2.607 2.638 2.449 3.162
3
2
w
]
=
o
1
0

Seoul

Daejeon

Daegu

Busan Incheon  Gwangju

City

Pohang Mokpo Tongyeong Jeonju

Fig. 9: The Lowest RMSE of five NN models for all three kinds of epochs in spring (light green bar),
summer (blue bar), autumn (red bar). winter (purple bar) in testing 1.
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20

MAPE

10

Seoul  Daejeon  Daegu Busan  Incheon Gwangju Pohang  Mokpo Tongyeong Jeonju

City
Fig. 10: The Lowest MAPE of five NN models for all three kinds of epochs in spring (light green
bar), summer (blue), autumn (red). winter (purple) in testing 2.

10

MAE

Seoul Daejeon  Daegu Busan Incheon Gwangju Pohang Mokpo Tongyeong Jeonju

City
Fig. 11: The Lowest MAE of five NN models for all three kinds of epochs in spring (light green
bar), summer (blue bar), autumn (red bar). winter (purple bar) in testing 2.
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0.006

0.004

Theil's-U

0.002

0.000 Seoul

Fig. 12: The Lowest Theil’s-U of five NN models for all three kinds of epochs in spring (light green
bar), summer (blue bar), autumn (red bar). winter (purple bar) in testing 1.

Daejeon

Table. 3: RMSE, MAPE, MAE and Theil’s-U of testing 1.

Daegu

Busan Incheon

Gwangju

City

Pohang

Mokpo Tongyeong Jeonju

. Theil’s-U
City Season RMSE MAPE MAE (x 10-3)
2.187 0.61 1.747 3.823
Spring (LSTM (DNN (DNN (LSTM
n = 0.001) n=0.1) n =0.1) n = 0.001)
1.469 0.392 1.169 2.462
Summer (LSTM (LSTM (LSTM (LSTM
Seoul n = 0.001) n=0.001) 7=0.001), 1n=0.001)
2.126 0.392 1.575 3.686
Autumn (LSTM-PC (LSTM-PC (LSTM-PC (LSTM-PC
n = 0.005) n = 0.009) n = 0.005) n = 0.005)
2.832 0.552 2.046 5.153
Winter (ANN (LSTM-PC (DNN (ANN
n=0.5) n = 0.005) n =0.3) n =0.5)
2.17 0.591 1.694 3.785
Spring (ANN (DNN (DNN (ANN
n=20.1) n =0.1) n =0.1) n =0.1)
1.339 0.333 0.992 2.244
Summer (LSTM (LSTM (LSTM (LSTM
Daejeon n = 0.001) n = 0.007) n = 0.007) n = 0.001)
2.227 0.58 1.66 3.855
Autumn (LSTM-PC (LSTM-PC (LSTM-PC (LSTM-PC
n = 0.007) n = 0.007) n = 0.007) n = 0.007)
Winter 2.465 0.692 1.909 4.469
(ANN (ANN (ANN (ANN

2 4




n = 0.5) n =0.5) n = 0.5) n = 0.5)
2.491 0.677 1.947 4328
Spring (LSTM-PC (LSTM-PC ~ (LSTM-PC  (LSTM-PC
n=0007) 7=0009) 71=0009) 7n=0.007)
1.58 0.407 1.209 2.646
Summer (LSTM (LSTM (LSTM (LSTM
n=0001) 7=0001) 7=0001) 7n=0.001)
Daegu 1.852 0.491 1412 3.202
Autumn (LSTM (LSTM-PC  (LSTM-PC (LSTM
n=0009) 7=0007) 71=0007) 7 =0.009)
2.046 0.545 1.509 3.694
Winter (ANN (ANN (ANN (ANN
n =0.3) n =20.3) n =10.3) n =10.3)
1.936 0.522 1.499 3.366
Spring (DNN (ANN (ANN (DNN
n=20.1) n =10.3) n =10.3) n=20.1)
1.003 0.266 0.789 1.686
Summer (LSTM (LSTM (LSTM (LSTM
n=0001) 7=0001) 75=0001) n=0.001)
Busan 1.72 0.448 1.298 2.955
Autumn (LSTM-PC (LSTM-PC (LSTM (LSTM-PC
n=0.05) 5=0005 75=0005 7n=0.005)
2378 0.64 1.793 4241
Winter (DNN (DNN (DNN (DNN
n=0.3) n=20.1) n=0.1) n=0.3)
1.795 0.493 1.405 3.149
Spring (ANN (DNN (NN (ANN
n=0.1) n = 0.001)) n =0.1)) n=0.1)
1.294 0.334 0.997 2173
Summer (LSTM (LSTM (LSTM (LSTM
n=0009) 15=0009) 75=0009) 75=0.009)
Incheon 2.163 0.569 1.628 3.746
Autumn (LSTM (ANN (ANN (ANN
n = 0.00 n =0.3) n=0.3) n=0.3)
2.612 0.726 1.991 4751
Winter (LSTM-PC (DNN (DNN (LSTM-PC
n=0.05) 7 =0.005) 17 =0.5) 1 = 0.005)
2.108 0.565 1.617 3.674
Spring (LSTM-PC (ANN (ANN (LSTM-PC
1 = 0.007) n=0.1) n=0.1) n = 0.007)
1.227 0.314 0.934 2.058
Summer (LSTM-PC (LSTM-PC  (LSTM-PC  (LSTM-PC
. n=0001) 75 =0.001) n=0.1) n = 0.001)
Gwangju 2.086 0.518 1.487 3.599
Autumn (LSTM (LSTM-PC  (LSTM-PC (LSTM
n=0.005) 15=0007) 15=0007) 75=0.005)
2418 0.633 1.762 4.354
Winter (LSTM-PC (ANN (ANN (LSTM-PC
n = 0.001) n =0.3) n=0.3) n = 0.001)
2.754 0.745 2.147 4.783
Spring (LSTM (LSTM (LSTM (LSTM
Pohang n = 0.001) n = 0.009) n = 0.009) n = 0.001)
Summer 1.554 0.436 1.299 2.606
(LSTM (LSTM (LSTM (LSTM
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n=0005 7n=0001 1n=0.001) 7n=0.005)
1.801 0.482 1.393 3.101
Autumn (ANN (LSTM-PC (LSTM-PC (ANN
n=0.1) n=0.007) 1 =0.007) n=0.1)
2.249 0.598 1.666 4.041
Winter (DNN (DNN (DNN (DNN
n=20.1) n=20.1) n=20.1) n=20.1)
1.81 0.511 1.458 3.163
Spring (LSTM (LSTM (LSTM (LSTM
n=0.001) 1n=0001) 7n=0.001) 7n=0.001)
0.916 0.243 0.722 1.539
Summer (LSTM-PC (LSTM-PC (LSTM-PC (LSTM-PC
n=0.007) 1n=0.007) 1n=0.007) 7n=0.007)
Mokpo 1.98 0.492 1.413 3.416
Autumn (ANN (LSTM-PC (LSTM-PC (ANN
n=20.1) n = 0.005) n = 0.005) n=20.1)
2.31 0.611 1.695 4.166
Winter (ANN (ANN (ANN (ANN
n = 0.005) n =0.5) n =0.5) n =0.5)
1.583 0.439 1.26 2.758
Spring (ANN (LSTM (LSTM (ANN
n=0.1) n = 0.005) n = 0.005) n=0.1)
0.878 0.226 0.671 1.478
Summer (LSTM-PC (LSTM-PC (LSTM-PC (LSTM-PC
7 =0.003) 17=0003) 75=0.003) 75=0.003)
Tongyeong 1.783 0.463 1.336 3.063
Autumn (LSTM-PC (LSTM-PC (LSTM-PC (LSTM-PC
7 =0.005) 5 =0.005) 75=0.005 75=0.005)
2.144 0.585 1.635 3.840
Winter (ANN (ANN (ANN (ANN
n=0.3) n = 0.3) n =0.3) n=0.3)
2.281 0.622 1.779 3.983
Spring (LSTM-PC (DNN (DNN (LSTM-PC
n = 0.005) n=0.1) n=0.1) n = 0.005)
1.246 0.324 0.961 2.090
Summer (LSTM-PC (LSTM-PC (LSTM-PC (LSTM-PC
. 7=0.001) 5=0003) 5=0003) 75=0.001)
Jeonju 2.22 0.584 1.675 3.837
Autumn (LSTM (LSTM-PC (LSTM-PC (LSTM
7=0.009) 1n=0007) 75=0007) 75=0.009)
2.601 0.716 1.984 4.699
Winter (ANN (ANN (ANN (ANN
n=0.3) n =10.3) n=0.3) n=0.3)
Table. 4: RMSE, MAPE, MAE and Theil’s-U of testing 2.
City Season RMSE MAPE MAE Theil’s-U
13.302 22.944 10.7 0.126
Seoul Spring (LSTM-PC (LSTM-PC (LSTM-PC (LSTM-PC
n = 0.001) n = 0.009) n = 0.009) n = 0.001)
Summer 9.399 11.087 7.226 0.071
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(LSTM-PC (LSTM-PC (LSTM (LSTM-PC
n = 0.003) n = 0.007) n = 0.009) 7 = 0.003)
11.313 14 8.055 0.091
Autumn |  (LSTM-PC (LSTM (LSTM (LSTM-PC
n = 0.001) n = 0.007) n = 0.007) n = 0.001)
11.054 14.915 8.531 0.095
Winter (LSTM-PC (LSTM-PC (LSTM-PC (LSTM-PC
n = 0.001) n = 0.001) n = 0.001) 7 = 0.009)
11.468 17.095 9.64 0.094
Spring (LSTM-PC (LSTM-PC (LSTM-PC (LSTM-PC
n = 0.001) n = 0.001) n = 0.001) n = 0.001)
7.46 7.433 5.737 0.048
Summer (ANN (LSTM (ann (ANN
. n=0.1) n = 0.009) n=0.1) n=20.1)
Daejeon 7.827 7.99 5.809 0.051
Autumn |  (LSTM-PC (LSTM-PC (LSTM-PC (LSTM-PC
n = 0.001) n = 0.005) n = 0.001) n = 0.001)
10.403 11.352 7.862 0.074
Winter (LSTM (LSTM-PC (LSTM-PC (LSTM-PC
n = 0.001) n = 0.001) n = 0.001) n = 0.007)
12.798 21.951 10.176 0.121
Spring (LSTM (LSTM-PC (LSTM-PC (LSTM
n = 0.001) 1 = 0.003) n = 0.003) n = 0.001)
9.307 9.392 6.996 0.064
Summer (ANN (LSTM-PC (LSTM-PC (ANN
n=0.1) n = 0.007) 1n = 0.007) n=0.1)
Daegu 9.614 10.853 7.504 0.067
Autumn | (LSTM-PC (LSTM-PC (LSTM (LSTM
n = 0.003) n = 0.003) n = 0.001) n = 0.001)
13.404 16.484 9.594 0.114
Winter (LSTM (LSTM-PC (LSTM-PC (LSTM-PC
n = 0.001) n = 0.001) 7 = 0.001) 1 = 0.005)
12.085 19.212 9.893 0.101
Spring (LSTM (LSTM (LSTM (LSTM-PC
n = 0.001) n = 0.001) n = 0.001) n = 0.003)
7.166 7.147 5.708 0.045
Summer (ANN (ANN (ann (ANN
n=0.1) n=0.1) n=0.1) n=0.1)
Busan 10.032 12.081 7.744 0.072
Autumn | (LSTM-PC (LSTM (LSTM (LSTM
1 = 0.009) 1 = 0.007) n = 0.007) 1 = 0.005)
14.173 18.804 10.081 0.131
Winter (LSTM-PC (LSTM-PC (LSTM-PC (ANN
n = 0.001) n = 0.003) n = 0.001) 1 = 0.007)
12.629 17.822 9.989 0.097
Spring (ANN (ANN (ANN (ANN
n=0.5) n=0.3) n =10.3) n =0.5)
8.864 9.755 6.969 0.057
Incheon | Summer | (LSTM-PC (LSTM-PC (LSTM-PC (LSTM-PC
7 = 0.005) n = 0.005) 7 = 0.005) 7 = 0.005)
10.941 14.308 8.64 0.083
Autumn |  (LSTM-PC (LSTM-PC (LSTM-PC (LSTM-PC
7 = 0.005) n = 0.005) 7 = 0.005) 7 = 0.005)
Winter 9.832 11.892 7.585 0.078
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(LSTM-PC (LSTM-PC (LSTM-PC (LSTM-PC
1 = 0.009) 1 = 0.003) 1 = 0.003) 1 = 0.009)
13.862 19.23 11.248 0.109
Spring (LSTM (LSTM (LSTM (LSTM
7 = 0.001) 1 = 0.001) 1 = 0.001) 1 = 0.001)
7.093 6.659 5.53 0.044
Summer (ANN (LSTM-PC (LSTM-PC (ANN
. n=0.7) 1 = 0.007) 1 = 0.007) n=0.7)
Gwangju 8.895 10391 6.945 0.059
Autumn (LSTM (LSTM (LSTM (LSTM
7 = 0.003) 1 = 0.003) 1 = 0.003) 1 = 0.003)
12.703 15.463 10.008 0.096
Winter (LSTM-PC (ANN (LSTM-PC (LSTM-PC
1 = 0.005) 1 =0.5) 1 = 0.005) 1 = 0.009)
14.322 24.717 11.793 0.123
Spring (LSTM (LSTM-PC (LSTM (LSTM
1 = 0.001) 1 = 0.003) 1 = 0.001) 1 = 0.001)
7.99 8.122 6.326 0.051
Summer (ANN (LSTM (LSTM (ANN
n=0.7) 1 = 0.001) 1 = 0.001) 1=09)
Pohang 9.408 11.043 7.598 0.065
Autumn (ANN (ANN (ANN (ANN
n=10.3) n=0.3) n =10.3) n=0.3)
12.832 17.431 9.866 0.109
Winter (ANN (LSTM (ANN (ANN
n=0.5) n = 0.007) n =0.5) n =0.5)
11.435 15.024 9.502 0.082
Spring (ANN (ANN (LSTM-PC (ANN
n=0.7) n=0.7) n = 0.007) n=0.7)
5.839 5.525 4451 0.036
Summer (ANN (LSTM (LSTM (ANN
n=0.1) n = 0.007) n = 0.007) n=0.1)
Mokpo 6.891 7.702 5.494 0.046
Autumn (LSTM (ANN (ANN (LSTM
1 = 0.005) n=0.3) n=0.1) 1 = 0.003)
8.16 9.248 6.54 0.058
Winter (ANN (ANN (ANN (ANN
n=0.1) n=0.1) n=0.1) n=0.1)
10.479 13.926 8.613 0.076
Spring (LSTM (LSTM-PC (LSTM-PC (LSTM
1 = 0.001) 1 = 0.003) 1 = 0.003) 1 = 0.001)
6.549 6.166 5.002 0.039
Summer (LSTM (LSTM (LSTM (LSTM
1 = 0.009) 1 = 0.009) 1 = 0.009) 1 = 0.005)
Tongyeong 8.63 9.729 6.747 0.059
Autumn (ANN (LSTM (LSTM-PC (ANN
n=0.1) n = 0.007) n = 0.003) n=0.1)
12.371 14.826 9.15 0.101
Winter (LSTM (LSTM-PC (LSTM-PC (ANN
1 = 0.001) 1 = 0.003) 1 = 0.001) 1=0.7)
12.011 14.698 9.658 0.088
. Spring (LSTM-PC (LSTM (LSTM (LSTM-PC
Jeonju n = 0.003) n = 0.001) n = 0.001) n = 0.003)
Summer 7.027 6.351 5412 0.041
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(ANN (LSTM (LSTM-PC (ANN
n =0.9) n = 0.007) n = 0.005) n=0.9)

7.386 8.178 5.98 0.047
Autumn (LSTM-PC (LSTM-PC (LSTM-PC (LSTM-PC
n = 0.001) n = 0.001) n = 0.001) n=0.1)

8.899 11.033 6.992 0.066

Winter (ANN (ANN (ANN (ANN
n=0.1) n =20.1) n=20.1) n=20.1)

In this section, the computer-simulation is performed for two testings as follows:
testing 1 has the four nodes T;_4, T, H;_1, H;, in the input layer and the one output
node T;,,in output layer, and testing 2 has also the four input nodes T;_4, T¢, H¢_1, Hg,
and the one output node H,,;. We set the five learning rates 0.1, 0.2, 0.3, 0.4, 0.5 for the
ANN and the DNN, while the learning rates for LSTM and LSTM-PC are set as 0.001, 0.003,
0.005, 0.007, 0.009, for different train set sizes over three runs, 2500, 5000, 7500 epochs.
The predicted values of the ELM are obtained by averaging the results over 2500, 5000,
and 7500 epochs. A prediction model is created and the average of the prediction values
is obtained through the prediction model was used as the final prediction value. The ANN
and the DNN can be trained in the range of 0.1 - 0.9, while we can train the LSTM and the
LSTM-PC in the range of 0.001 - 0.009, as summarize in Table 1.

Fig. 6 shows the predicted values of the RMSE as a function of the learning rate 7n
in the ANN, DNN, LSTM, and LSTM-PC in all seasons of Seoul in testing 1. Here, Figs. 6(a)-
6(d), 6(e)-6(h), and 6(i)-6(1) are, respectively, the results for training 2500, 5000, and
7500 epochs in the spring, summer, autumn, winter.

From Fig. 6(a) for 2500 epochs in spring in Seoul, the ANN and the DNN show a
tendency to increase the RMSE as each learning rate increases from 7; to 1s. The RMSE
value of ANN is 2.192 at 74, and has a high value of 3.892 at 75. The RMSE value of DNN
is 2.212 (4.33) at 1 (ns5). Then, the RMSE value gradually increases as each learning rate
increases from 7n; to 7s. In Fig. 6(e) for 5000 epochs in summer in Seoul, the ANN and
the DNN show a tendency to increase the RMSE as the learning rate increases from 7n; to
ns. The ANN RMSE value is 2.193 at 7, and has a high value of 3.538 at 7s. The DNN
RMSE value is 2.207 (2.963) at 1, (ns). The RMSE of LSTM and LSTM-PC RMSEs do not
show a clear trend. However, the ANN exhibits a higher RMSE value at ns compared to
other learning rates. The RMSE of LSTM has significantly a value of 3.234 (2.187) for
training 2500 (5000) epochs at 74.In Fig. 6(i) for 7500 epochs, the ANN and DNN shows
a tendency to increase RMSE as the learning rate increases from 7, to ns. The RMSE
value of ANN (DNN) is 2.214 (2.226) at 14, and has a highest value of 3.535 (2.993) at 7s.
The RMSE value (3.476) of LSTM-PC at 71, islarger than other learning rates. The RMSE
of LSTM has a lower (higher) value of 2.259 (2.442) at n, (15).

In Fig. 6(b), the RMSE of ANN and DNN has larger values than those of LSTM and
LSTM-PC for 2500 epochs in summer in Seoul. The RMSE of ANN (DNN) value is 1.89
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(1.785) at 7ng, and the RMSE of LSTM (LSTM-PC) has a lower value of 1.507 (1.498) at 7s.
In addition, as the learning rate increases, the RMSE value of ANN tends to increase. The
RMSE of ANN had a lowest (highest) value of 1.545 (1.89) at n; (ns). In Fig. 6(f) for
training 5000 epochs, the RMSE of DNN has a lowest value of 1.548 at 14, but the RMSEs
of ANN, LSTM, and LSTM-PC do not show a distinct trend. In Fig. 6(j) for 7500epochs, the
RMSE of ANN shows very similar result with 1.554 (1.555) at n, (n3). the LSTM-PC
showed a higher RMSE value at 73, compared to other learning rates.

Fig. 6(c) for 2500 epochs in autumn in Seoul, the RMSE of DNN tends to increase
as the learning rate increases. The RMSE value of DNN has a lowest (highest) value of
2.195 (3.75) at 71 (ns). In the LSTM-PC, the RMSE decreased and then increased again
based on 753. In Fig. 6(g) for 5000 epochs, the RMSEs of DNN, LSTM, and LSTM-PC had
highest values of 3.39, 2.956, and 4.04 at 73, respectively. The RMSE of ANN had a lowest
(highest) value of 2.205 (3.273) at n; (ns). In Fig. 6(k) for 7500 epochs, the RMSE values
of LSTM and LSTM-PC are 2.171 and 2.153 at 73, respectively. and it was confirmed that
learning was better than the result of Fig. 6(g). The RMSE of ANN has a lowest (highest)
value of 2.278 (3.431) at n; (ns). Hence, the learning rate gradually increases, the RMSE
shows a tendency to increase.

Figs. 6(d), 6(h), and 6(1) are the results of learning 2500, 5000, and 7500 epochs
for winter temperature. In Fig. 6(d), the RMSE of ANN and the DNN shows a tendency to
increase from 1n; to 7ns. while that of LSTM-PC shows a tendency to decrease from 7,
to 7n5. The RMSE of LSTM do not show clearly a trend. In Fig. 6(h), the RMSE value of LSTM
shows higher than that of other NN models at 7s, and the RMSE value of LSTM-PC shows
higher at 7, compared to other learning rates for each model. In Fig. 6(1), the RMSE of
LSTM-PC shows a very higher value of 2.88, compared with those at 7, in Fig. 6(d)-6(h).
On the other hand, at 7,, the RMSE of LSTM-PC shows better performance than those of
Figs. 6(d) and 6(h).

In Fig. 7, we obtain the predicted values of the MAPE as a function of the learning
rate in the ANN, DNN, LSTM, and LSTM-PC in all seasons of Tongyeong in testing 2. Here,
Figs. 7(a)-7(d), 7(e)-7(h), and 7(i)-7(l) are, respectively, the results for training 2500,
5000, and 7500 epochs in the spring, summer, autumn, winter. Fig. 8 shows the RMSE of
ELM for 7500 epochs in spring, summer, autumn, winter in testing 1, and Table 2 also
illustrates the comparison of the RMSE of ELM for 7500 epochs for spring, summer,
autumn, and winter in ten cities in testing.

Figs. 9-12 plot the lowest RMSE, MAPE, MAP, and Theil’s-U of ten cities for all
three training (2500, 5000, 7500) epochs in spring, summer, autumn, winter in testings
1 and 2, respectively. Tables 3 and 4 is illustrated the comparison of the RMSE, MAPE,
MAE and Theil’s-U statistics in four seasons of ten cities in testings 1 and 2, respectively.

From testing 1 of Table 3, the RMSE (MAPE) of ANN (LSTM) has a lowest value
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of 1.583 (0.439) at n = 0.1 (n = 0.005) in spring in Tongyeong. The RMSE (MAE) of
LSTM-PC has a lowest value of 0.878 (0.671) at n = 0.003 (n = 0.003) in summer in
Tongyeong. In autumn of Busan, the RMSE (MAE) value of LSTM-PC is a lowest value 1.72
(1.298) at n = 0.005. In winter of Daegue, the MAPE (Theil’s-U) of ANN has a value of
0.545 (3.694 x 1073) at n = 0.3 lowest than that of other cities.

From testing 2 of Table 4, in spring of Tongyeong, the RMSE (MAPE) of LSTM
(LSTM-PC) has a lowest value of 10.479 (13.926) at n = 0.001 (n = 0.003). The RMSE
(MAE) of ANN (LSTM) has a lowest value of 5.839 (4.451) at learning rate n = 0.1 (n =
0.007) in Summer in Mokpo. In autumn of Mokpo, the RMSE (MAE) value of LSTM (ANN)
is a lowest value 6.891 (5.494) at n =0.005 (n =0.1). It is not good accuracy
characteristically in autumn of testing 2, but in autumn, the RMSE value of DNN is 8.076 at
n = 0.1 inJeonju, while that of ELM is 8.196 in Mokpo for 5000 epochs. In winter of Mokpo,
the MAPE (Theil’s-U) of ANN has a value of 9.248 (0.058) at n = 0.1 lowest than that of
other cities.

4-2. Testings 3 and 4

15

RMSE

0

Daegu Busan Incheon Gwangju Pohang Mokpo Tongyeong Jeonju

City
Fig. 13: The lowest RMSE of five NN models for all three kinds of epochs in spring (light green
bar), summer (blue bar), autumn (red bar), winter (purple bar) of testing 4.

Seoul Daejeon
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Seoul Daejeon  Daegu Busan  Incheon Gwangju Pohang Mokpo Tongyeong Jeonju

City
Fig. 14: The lowest MAPE of five NN models for all three kinds of epochs in spring (light green
bar), summer (blue bar), autumn (red bar), winter (purple bar) of testing 4.
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MAE
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0.0 Seoul Daejeon  Daegu Busan Incheon Gwangju Pohang Mokpo Tongyeong Jeonju

City

Fig. 15: The lowest MAE of five NN models for all three kinds of epochs in spring (light green bar),
summer (blue bar), autumn (red bar), winter (purple bar) of testing 3.
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Fig. 16: The lowest Theil’s-U of five NN models for all three kinds of epochs in spring (light green
bar), summer (blue bar), autumn (red bar), winter (purple bar) of testing 3.

Table. 5: RMSE, MAPE, MAE and Theil’s-U values of testing 3.

City Season RMSE MAPE MAE Thellhs_;[; (x
2.19 0.595 1.703 3.826
Spring (DNN (DNN (DNN (DNN
n=0.1) n=0.1) n=0.1) n=0.1)
1.468 0.389 1.16 2.46
Summer (ANN (ANN (ANN (ANN
n.=10.3) 1n=10.3) n=0.3) n =10.3)
Seoul 2195 0.555 1.583 3.807
Autumn (LSTM (LSTM (LSTM (LSTM
n = 0.005) n = 0.003) n = 0.003) n = 0.005)
2901 0.761 2.087 5.278
Winter (DNN (DNN (DNN (DNN
n=0.3) n =10.3) n=0.3) n =10.3)
2.207 0.604 1.732 3.85
Spring (ANN (ANN (ANN (ANN
n=0.1) n=0.1) n=0.1) n=0.1)
1.322 0.333 0.99 2.216
Summer | (LSTM-PC (LSTM (LSTM (LSTM-PC
Daejeon n = 0.001) n = 0.003) n = 0.003) n = 0.001)
2.268 0.607 (ES?T‘:\A 3.93
Autumn (LSTM (LSTM n=0.001,n = (LSTM
n = 0.005) n = 0.005) 0.005) n = 0.005)
Winter 2.492 0.699 1.932 4.519
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(ANN (DNN (DNN (ANN
n =0.3) n =20.3) n =0.3) n =10.3)
2.509 0.666 1916 4.361
Spring (ANN (ANN (ANN (ANN
n=20.1) n=20.1) n =0.1) n=20.1)
1.605 0.408 1.215 2.688
Summer (LSTM (ANN (ANN (LSTM
n = 0.003) n=0.3) n=03) 7 = 0.003)
Daegu 1.832 0.508 1461 3.168
Autumn (LSTM (LSTM (LSTM (LSTM
n = 0.005) n = 0.001) n = 0.001) 7 = 0.005)
2.081 0.559 1.547 3.756
Winter (LSTM-PC (DNN (DNN (LSTM-PC
n = 0.009) n=0.1) n=0.1) 7 = 0.009)
1.904 0.521 1.498 3.31
Spring (DNN (DNN (DNN (DNN
n=0.1) n=0.1) n=0.1) n=0.1)
1.023 0.264 0.782 1.72
Summer (LSTM-PC (ANN (ANN (LSTM-PC
n = 0.003) n=0.1) n=0.1) n = 0.003)
Busan 1.832 0.472 1365 3.145
Autumn | (LSTM-PC (LSTM-PC (LSTM-PC (LSTM-PC
n =0.001) 1n = 0.001) 7 = 0.001) n =0.1)
2.396 0.652 1.824 4.279
Winter (ANN (ANN (ANN (ANN
n=0.3) n =10.3) n=0.3) n=0.3)
1.814 0.504 1.437 3.182
Spring (ANN (ANN (ANN (DNN
n=01) n=0.1) n=0.1) n=0.1)
0.33
1.288 (ANN 0.983 2.163
Summer (LSTM-PC n=0.1, (ANN (LSTM-PC
Incheon n = 0.009) DNN n=0.1) n = 0.009)
n =0.1))
2.268 0.581 1.655 3.926
Autumn (ANN (LSTM-PC (LSTM-PC (ANN
n=0.3) n = 0.001) 17 =0.001) n =0.3)
2.604 0.715 1.963 4734
Winter (DNN (DNN (DNN (DNN
n = 0.3) n=10.3) n=0.3) n=0.3)
2.127 0.586 1.676 3.705
Spring (LSTM (LSTM (LSTM (LSTM
n = 0.003) 1 = 0.005) 1 = 0.005) n = 0.003)
1.267 0.325 0.965 2.126
Summer | (LSTM-PC (LSTM (LSTM (LSTM-PC
. n = 0.001) n = 0.001) n = 0.001) n = 0.001)
Gwangju 2.069 0.529 1518 3.569
Autumn (LSTM (LSTM-PC (LSTM-PC (LSTM
n = 0.001) n = 0.5) 7 = 0.005) n = 0.001)
2.412 0.629 1.75 4.343
Winter (LSTM (DNN (DNN (ANN
n = 0.003) n=20.3) n =0.3) n =0.3)
2.737 0.753 2171 4.752
Pohang Spring (LSTM (LSTM (LSTM (LSTM
n = 0.001) n = 0.001) 7 = 0.001) n = 0.001)
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1.582 0.439 1.306 2.654
Summer (DNN (LSTM (LSTM (DNN
n =0.1) n = 0.001) n =0.001) n=0.1)
1.806 0.459 1.321 3.107
Autumn | (LSTM-PC (LSTM-PC (LSTM-PC (LSTM-PC
n = 0.001) n = 0.001) n =0.001) n = 0.001)
2.27 0.607 1.688 4.073
Winter (ANN (LSTM (LSTM (ANN
n =0.3) n = 0.009) n = 0.009) n =0.3)
1.785 0.243 1.426 3.12
Spring (LSTM (LSTM (LSTM (LSTM
n = 0.003) n = 0.003) n = 0.003) n = 0.003)
0.243
0.896 (ANN 0.721 1.506
Summer (DNN n=0.1, (ANN (DNN
n=0.1) DNN n=0.1) n=0.1)
Mokpo 7= 0.1))
2.025 0.485 1.389 3.496
Autumn |  (LSTM-PC (LSTM-PC (LSTM-PC (LSTM-PC
n = 0.005) n =0.001) n = 0.001) n = 0.005)
2.294 0.609 1.689 4.14
Winter (DNN (ANN (ANN (DNN
n=0.1) 1n =10.3) n=0.3) n=0.1)
1.547 0.438 1.256 2.695
Spring (ANN (LSTM (LSTM (ANN
n=0.1) n = 0.007) 1n = 0.007) n=0.1)
0.866 0.218 0.647 1.457
Summer (LSTM (LSTM (LSTM (LSTM
n =0.005) n = 0.005) n = 0.005) n = 0.005)
Tongyeong 1832 0.477 1.38 3.15
Autumn |  (LSTM-PC (LSTM-PC (LSTM-PC (LSTM-PC
n =0.001) n =0.001) n = 0.001) n =0.001)
2.118 0.581 1.624 3.791
Winter (ANN (DNN (DNN (ANN
n=0.3) n=0.1) n=0.1) n=0.3)
2.272 0.616 1.762 3.968
Spring (ANN (ANN (ANN (ANN
n=0.1) n=0.1) n=0.1) n=0.1)
1.25 0.325 0.967 2.097
Summer (ANN (ANN (ANN (ANN
. n=0.1) 1n=20.1) n=0.1) n=0.1)
Jeonju 2.296 0.6 1.722 3.971
Autumn (ANN (LSTM (LSTM (ANN
n=0.1) n = 0.005) n = 0.005) n=0.1)
2.579 0.712 1.972 4.658
Winter (ANN (ANN (ANN (ANN
n=0.3) n =10.3) n=0.3) n=0.3)

Table. 6: RMSE, MAPE, MAE and Theil’s-U values of testing 4.

City Season RMSE MAPE MAE Theils’-U
Seoul Sorin 13.398 22.798 10.6 0.127833
pring (LSTM (LSTM-PC  (LSTM-PC (LSTM
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n=0.001) 75=0003) 75=0003) 7n=0001)
9.575 11.136 7.17 0.071154
Summer (LSTM-PC (LSTM (LSTM (LSTM
n=0.009) 75=0.007) 75=0007) n=0001)
11.266 14.082 8.01 0.09058
Autumn (LSTM (LSTM (LSTM (LSTM
n=0.001) 7=0.005 75=0001) 7n=0001)
11.232 14.262 8.377 0.100045
Winter (ANN (ANN (ANN (LSTM-PC
n=20.1) n=20.1) n =20.1) n = 0.003)
11.497 16.577 9.536 0.095455
Spring (LSTM-PC  (LSTM-PC  (LSTM-PC (LSTM-PC
n=0.003) 7=0.003) 75=0003) 7n=0003)
7.554 7.267 5.696 0.049259
Summer (LSTM (LSTM (LSTM (LSTM
. 7=0.009 7=0007) 75=0007) n=0.009)
bacjeon 7.657 7.898 5.742 0.050439
Autumn (ANN (ANN (ANN (ANN
n = 0.001) n=0.1) n=0.1) n=0.1)
. 10.32 11.379 7.914 0.075578
Winter (ELM) (LSTM (LSTM (ELM)
7 =0.001) n=0.001)
12.969 18.761 9.748 0.123016
Spring (LSTM-PC  (LSTM-PC  (LSTM-PC (LSTM-PC
7 =0.001) 15=0007) 1n=0007) 75=0.001)
9.354 9.275 6.977 0.064614
Summer (LSTM (LSTM-PC  (LSTM-PC (LSTM
Dacgu 7=0.009) 7=0003 n=0003 75=0.009)
9.602 10.922 7.506 0.067986
Autumn (LSTM-PC  (LSTM-PC (LSTM (LSTM-PC
n=0.003) 7=0003) »n=0001) 75=0.003)
13.274 16.955 9.534 0.111212
Winter (LSTM-PC (ANN (LSTM-PC (LSTM-PC
n=0003) 7=01) n=0003) 75=0.003)
12.227 19.691 10.047 0.101468
Spring (LSTM (LSTM (LSTM (LSTM
n=0.001) 7=0001) n=0001) 75=0.001)
7.139 6.928 5.556 0.044902
Summer (ANN (ANN (ANN (ANN
n=0.1) n =0.1) n=0.1) n=0.1)
Busan 10.029 12.362 7.705 0.07212
Autumn (LSTM-PC  (LSTM-PC  (LSTM-PC (LSTM-PC
n=0001) 7=01) n=0001) 75=0.001)
14.565 19.332 10.424 0.132957
Winter (ANN (LSTM (LSTM (ANN
n=03) n=0005 n=0.001) n = 0.5)
12.714 17.671 9.974 0.097865
Spring (ANN (ANN (ANN (ANN
n=20.3) n=0.1) n=0.1) n = 0.5)
Incheon 9.067 9.902 7.132 0.059158
Summer (LSTM-PC  (LSTM-PC  (LSTM-PC (LSTM-PC
n=0.003) 15=0007) n=0003) 75=0.003)
Autumn 10.798 14.206 8.463 0.080832
(LSTM (LSTM-PC (LSTM (LSTM
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n=0.001) 75=0009) 75=0001) 7n=0001)
9.66 11.946 7.572 0.076879
Winter (LSTM-PC (LSTM-PC (LSTM-PC (LSTM-PC
n=0.001) 7=0.001) 75=0001) 7n=0001)
14.076 19.601 11.404 0.110535
Spring (LSTM (LSTM (LSTM (LSTM
n=0.001) 7=0.001) 75=0001) 7n=0003)
7.193 6.401 5.333 0.044155
Summer (ANN (ANN (ANN (ANN
. n=0.1) n=0.1) n=0.1) n=20.1)
Gwangju 9.013 10.56 7.045 0.060579
Autumn (LSTM (LSTM (LSTM (LSTM
n=0.003) 7=0.003) 75=0003) 7n=0003)
12.555 14.88 9.785 0.095765
Winter (LSTM-PC (ANN (ANN (LSTM-PC
n = 0.001) n=0.3) n=03) n = 0.001)
14.421 24.822 12.089 0.123603
Spring (LSTM (LSTM-PC (LSTM (LSTM
n=0.001) 5n=0.003) 75n=0.001) n = 0.001)
7.81 8.028 6.365 0.049416
Summer (ANN (ANN (LSTM (ANN
n=10.7) 1n=0.1) n = 0.007) n=0.7)
Pohang 9.349 11.208 7.621 0.065148
Autumn (ANN (ANN (ANN (ANN
n=10.3) n =10.3) n=10.3) n=0.3)
12.935 17.59 9.808 0.111622
Winter (ANN (ANN (ANN (ANN
n =0.3) n =0.3) n=0.3) n=0.3)
11.454 15.142 9.526 0.082099
Spring (ANN (ANN (ANN (ANN
n =0.5) n =0.5) n=0.5) n=0.5)
5.732 5.263 4.296 0.035826
Summer (LSTM (LSTM (LSTM (LSTM
Mokpo 7 =0.005) n=0.005) n=0.005) n = 0.005)
6.951 7.647 5.393 0.046935
Autumn (ANN (ANN (ANN (ANN
n=0.1) n=0.1) n=0.1) n=0.1)
8.109 8.971 6.391 0.057606
Winter (ANN (ANN (ANN (ANN
n=0.1) n =0.1) n=0.1) n=0.1)
10.427 14.22 8.55 0.076959
Spring (LSTM-PC  (LSTM-PC  (LSTM-PC (LSTM-PC
n=20.003) n=0.003) n=0.003) n = 0.003)
6.557 6.227 5.085 0.039583
Summer (ANN (LSTM-PC (LSTM-PC (ANN
n=0.1) n=0.003) n=0.003) n=0.1)
Tongyeong 8.572 9.732 6.729 0.058932
Autumn (ANN (LSTM (LSTM (ANN
n=0.1) n = 0.005) n = 0.005) n=20.1)
12.672 15.113 9.415 0.10209
Winter (ANN (ANN (ANN (ANN
n=0.1) n=0.1) n=0.1) n = 0.5)
Jeonju Spring 12.046 14.774 9.768 0.088428
(LSTM (LSTM-PC (LSTM (LSTM

37



n = 0.003) n = 0.009) n = 0.003) n = 0.003)
6.751 6.225 5.308 0.038613
Summer (ANN (LSTM (ANN (ANN
n =10.9) n = 0.009) n =0.9) n =0.9)
7.58 8.365 6.101 0.048543
Autumn (LSTM (LSTM (LSTM (LSTM
n = 0.001) n = 0.001) n = 0.001) n = 0.001)
8.965 11.145 7.015 0.066511
Winter (ANN (ANN (ANN (ANN
n=20.1) n=20.1) n=20.1) n=20.1)

In this subsection, we perform the computer-simulation for two testings as
follows: testing 3 has the six input nodes T;_,, T¢_1, T¢, Hi_p, Hi_1, H; days in the
input layer and the one output node T;,; in the output layer, and testing 4 has also the
six input nodes T;_,, Ty_4, T¢, Hi—», Hi_4, H; days in the input layer and the one
output node H;,; in the output layer. We here test the predicted accuracies for
temperature T;,; and humidity H,,, at time lag t+1. For testings 3 and 4, we set the
five learning rates 0.1, 0.2, 0.3, 0.4, 0.5 for the ANN and the DNN, while the learning rates
for LSTM and LSTM-PC are set as 0.001, 0.003, 0.005, 0.007, 0.009, for different train set
sizes over three runs (2500, 5000, and 7500 epochs). The predicted values of the ELM are
obtained by averaging the results over 2500, 5000, and 7500 epochs. A prediction model
is created and the average of the prediction values is obtained through the prediction
model was used as the final prediction value.

Figs. 13-16 shows the lowest predicted values of RMSE, MAPE, MAE, and Theil’s-
U statics of ten cities including all five NN models (the ANN, DNN, LSTM, and LSTM-PC)
for all three kinds of epochs in four seasons of ten cities in testings 3 and 4, respectively.
Tables 5 and 6 is illustrated the comparison of the RMSE, MAPE, MAE and Theil’s-U
statistics in four seasons of ten cities in testings 3 and 4, respectively.

From Fig. 13 and Table 6 of testing 4, the RMSE of LSTM has a lowest value of
5.732 in summer in Mokpo (rank1), rather than 6.557 in summer in Tongyeong (rank 2)
and 6.751 in summer in Jeonju (rank 3). The lowest MAPE value of LSTM is 5.263 in
summer in Mokpo (rank1), lower than 6.225 in summer in Jeonju (rank 2) and 6.227 in
summer in Tongyeong (rank 3), as shown in Fig. 14 of testing 4.

From Fig. 15 and Table 5 of testing 3, the MAE of LSTM has a lowest value of 0.647
in summer in Tongyeong (rank1), rather than 0.721 in summer in Mokpo (rank 2) and
0.967 in summer in Jeonju (rank 3). The lowest Theil’s-U value of LSTM is 1.457 in
summer in Tongyeong (rank1), lower than 1.506 in summer in Mokpo (rank 2) and 2.097
in summer in Jeonju (rank 3), as shown in Fig. 16 of testing 3.

Hence, we find that the RMSE of LSTM in humidity prediction has a lowest value
of 5.732 at n=0.005 in summer in Mokpo, while the lowest MAE value of LSTM is 0.647
at 1=0.01 in summer in Tongyeong in temperature prediction.
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4-3 Lowest values of temperature and humidity prediction
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Fig. 17: The lowest RMSE of temperature prediction of ten cities for five NN models in four
seasons in testings 1 and 3.
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Fig. 18: The lowest RMSE of humidity prediction of ten cities for five NN models in four seasons
in testings 2 and 4.
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Table. 7: The lowest RMSE values of temperature prediction

City Season Model RMSE testing
Seoul Summer (nAzN(I;IS) 1.468 3
Incheon Summer (;fl(\)/lblz)%) 1.288 3
Daejeon Summer (;fl(\)/lblz)cl) 1.322 3
Daegu Summer o isg_lglm) 1.58 1
Busan Summer M isg_lglm) 1.003 1
Pohang Summer o isg_lglos) 1.554 1
Tongyeong Summer m isg_lglos) 0.866 3
Gwangju Summer (;S:lg[o%cl) 1.227 1
Jeonju Summer (;S:lglolz)cl) 1.246 1
Mokpo Summer (nDzN(l;I_l) 0.896 3
Table. 8: Lowest RMSE values of humidity prediction
City Season Model RMSE testing

Seoul Summer (;fl(\]d;)lz)cg) 9.399 2
Incheon Summer (;fl(\]d;)%%) 8.864 2
Daejeon Summer (nA=N(l;I.1) 7.46 2
Daegu Summer (nAzN(I;IJ) 9.307 2
Busan Summer (nA=N(l;I_1) 7.139 4
Pohang Summer (nAZN(l;Ij) 7.81 4
Tongyeong Summer o ng-l(\)/IOg) 6.549 2
Gwangju Summer (nAZNg7) 7.093 2
Jeonju Summer (nAzNoN.g) 6.751 4
Mokpo Summer o isg.l(\)d%) 5.732 4

40



Fig. 17 and Fig. 18 shows the lowest RMSE of temperature prediction and humidity
prediction of ten cities for the ANN, DNN, LSTM, LSTM-PC, and ELM in four seasons in
testings 1-4, respectively.

From Fig. 17 and Table 7, in temperature prediction, the RMSE of LSTM has a
lowest value of 0.866 in summer in Tongyeong (rank1), rather than 0.896 in summer in
Mokpo (rank 2) and 1.003 in summer in Busan (rank 3).

From Fig. 18 and Table 8, in humidity prediction, the RMSE of LSTM has a lowest
value of 5.732 in summer in Mokpo (rank1), rather than 6.549 in summer in Tongyeong
(rank 2) and 6.751 in summer in Jeonju (rank 3).

Hence, we find that the RMSE of LSTM in temperature prediction has a lowest
value of 0.866 at learning rate 7=0.005 in summer in Tongyeong, while the lowest RMSE
value of LSTM in humidity prediction is 5.732 at learning rate 7=0.005 in summer in
Tongyeong.

V. Conclusion

In this paper, the daily average temperature and relative humidity of 10 major
cities (Seoul, Daejeon, Daegu, Busan, Incheon, Gwangju, Pohang, Mokpo, Tongyeong, and
Jeonju) in Korea are predicted using the NN models. We have simulated using the ANN
with one hidden layer, DNN with two hidden layers, LSTM, LSTM-PC, and ELM. We
simulate four testings: that is, input four nodes T;_;, T;, H;_;, H; days of temperature
(testing 1) and humidity (testing 2), and input six nodes T;_,, Ty_q, T¢, Hy_,, Hi_q, H;.
Tyy1 and Hy,, days of temperature (testing 3) and humidity (testing 4). The five
learning rates for the ANN and the DNN are set to 0.1, 0.3, 0.5, 0.7, and 0.9, while those for
LSTM and LSTM-PC are set to 0.001, 0.003, 0.005, 0.007, 0.009, for 2500, 5000, 7500
epochs. The predicted values of the ELM are obtained by averaging the results trained
2500, 5000, and 7500 epochs. From the result of outputs, the root mean squared error
(RMSE), mean absolute percentage error (MAPE), mean absolute error (MAE), Theil-U
statistics are simulated for performance evaluation, and we compare each other after the
manipulation of five NN models.

We simulate and analyze the testings 1-4 as follows: ( i ) In testing 1, the RMSE
value is 1.583 for the 7500 training epochs of the ANN (learning n = 0.1) in spring in
Tongyeong. The RMSE value of the LSTM-PC (n = 0.003) in summer in Tongyeong is 0.878
for 2500 training epochs, while that for the LSTM-PC (n = 0.005) is 1.72 for the LSTM-PC
(n = 0.005) for 5000 training epochs in autumn in Busan. The RMSE value of the ANN

41



(n = 0.3) is 2.046 for 2500 training epochs in winter in Daegu. Among the four seasons,
the LSTM-PC shows good performance in two seasons (summer, autumn). Particularly,
when the LSTM (n = 0.003) is trained 2500 training epochs in summer in Tongyeong, the
RMSE has the smallest value with 0.878. (i1) In testing 2, In spring, the RMSE value of the
LSTM (n = 0.001) is 10.479 for the 5000 training epochs in spring in Tongyeong. The
RMSE value of the ANN (n = 0.1) is 5.839 for 2500 training epochs in summer in Mokpo.
The RMSE of the LSTM (n = 0.005) was 6.891 for 7500 training epochs in autumn in
Mokpo, The RMSE value is 8.16 for 2500 training epochs of the ANN (n = 0.1) in winter
in Mokpo. When the ANN (n = 0.1) is trained 2500 training epochs in the summer in
Mokpo, the RMSE has the smallest value with 5.839. (iii) In testing 3, the RMSE value is
1.547 for 5000 training epochs of the ANN (n = 0.1) in spring in Tongyeong, and the LSTM
(n = 0.005) has an RMSE of 0.866 for 5000 training epochs in summer in Tongyeong.
The RMSE value is 1.806 for 5000 training epochs of the LSTM-PC (n = 0.001) in autumn
in Pohang, while thatis 2.081 for the 7500 training epoch of The LSTM-PC (n = 0.009) in
winter in Daegu. The LSTM in summer and the LSTM-PC in autumn and winter show good
performances, and as in testing 1, the LSTM series also show good performances. (iv) In
testing 4, the RMSE value is 10.427 for the 7500 training epochs of the LSTM-PC (n =
0.003) in spring in Tongyeong. The RMSE value of LSTM (n = 0.005) is 5.732 for 2500
training epochs in summer in Mokpo. The RMSE value is 6.951 for 2500 training epochs
of the ANN (n = 0.1) in autumn in Mokpo, while that (n = 0.1) is 8.109 for 7500 training
epochs in winter. In this case, The LSTM value outperforms any values of other models in
summer in Mokpo.

Particularly, from the computer-simulation in order to predict the temperature in
spring, the RMSE of the ANN in Tongyeong shows the smallest value for 5000 training
epochs in testing 3 (the temperature predicted in the input layer with six input nodes). In
summer, The RMSE of the LSTM in testing 3 has the smallest value in Tongyeong for 5000
training epochs. In the autumn, The LSTM-PC in testing 1 (the temperature predicted in
the input layer with four input nodes) has the smallest value in Busan for 5000 training
epoch. In winter, the ANN in testing 1 shows the smallest error in 2500 training epoch of
Daegu. In the temperature prediction, when using the LSTM model in testing 3 in
Tongyeong in the summer among the four seasons, we find that the smallest value of
RMSE is 0.866. In the simulation to predict the humidity in spring, the LSTM-PC in
Tongyeong for 7500 training epochs has the smallest RMSE in testing 4 (the humidity
predicted in the input layer with six input nodes). The LSTM in testing 4 has the smallest
value in 2500 training epochs of Mokpo in the summer, while the RMSE of the LSTM in
testing 2 (the humidity predicted in the input layer with four input nodes) in the autumn
has the smallest value for 7500 training epochs in Mokpo. In winter, the RMSE of the ANN
has smallest value in testing 4 trained 7500 epochs in Mokpo. In the humidity prediction,
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when using in the summer in Mokpo, the RMSE of LSTM model is shown the smallest
value with 5.732. In both the temperature and humidity predictions, the RMSEs are the
smallest in summer.

From calculated results, the difference between the actual value and the predicted
value of humidity is greater than the temperature, and the reason for this is that the actual
value of humidity is more chaotic than that of temperature as shown in the previous paper
[98]. The reason why land cities are given less error than coastal cities is that the data of
land cities are inherently more chaotic, non-linear, and non-stationary time series.

Our result provides the evidence that the LSTM is an effective method of
predicting one meteorological factor (temperature) rather than the DNN. Prediction
value of temperature among our result is consistent to the result of Chen et al. [85], and
they found this value via deep learning network from Chinese stock data. We will conduct
a study to further improve the accuracy of the meteorological element prediction model
by applying a learning method that applies optimization algorithms such as genetic
algorithm and particle swarm optimization to other types of neural network models such
as and back-propagation algorithms [99,100]. There exists complicatedly and
rebelliously correlated relation between several meteorological factors (temperature,
wind velocity, humidity, surface hydrology, heat transfer, solar radiation, surface
hydrology, land subsidence, and so on), the research in future can treat and apply
complex network theory to input variables of the meteorological data, and the LSTM and
LSTM-PC models can promote and develop the predictive performance.
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