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1. Introduction

  The use of composite sandwich shells continues to increase in many 

engineering applications. This is associated with their high strength and low 

weight, superior noise and energy absorption, and/or high thermal resistance 

under a variety of extreme environments. These structures consist of two 

stiff metallic or composite thin face sheets separated by a soft honeycomb 

or a thick foam core by utilizing mismatched constituent material and 

geometric properties to achieve the ever-increasing structural performance 

and stability requirements. Usually, the core of sandwich structures is 

modelled as a medium with low transverse shear modulli and therefore, 

transverse shear has an important role for most of sandwich theories. To 

estimate and predict unique mechanical behaviors of composite sandwich 

structures, research involving the accurate and general modeling has 

consistently remained as a very active field in the last several decades; see 

Sayyad and Ghugal [1] and Birman and Kardomateas [2]. Although a 

formulation based on three-dimensional elasticity can be used for direct 

modeling to study the detailed behavior of such structures and to accurately 

calculate their mechanical characteristics to any degree of generality, to do 

so is inordinately complex and constly. Even in the linear elasticity case, 

the number of relevant papers is very limited to Pagano [3, 4] and 

Brischetto [5]. Thus, a clear need exists for an alternative, less costly and 

more convenient approach than 3D elasticity.
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  From a dimensional reduction perspective, these structures can be 

effectively modeled as two-dimensional shells by taking advantage of the 

smallness of thickness to in-plane wavelength of deformations () and  

thickness to minimum curvature radius of the reference surface (). As a 

result, theoretical researchers have striven to construct accurate and general 

2D shell models under various ad hoc kinematic assumptions, which are 

convenient to eliminate the thickness coordinate from the independent 

mechanical variables of the governing partial differential equations. By 

referring to the existing literature by Carrera and Demasi [6], Carrera and 

Brischetto [7, 9] and Demasi and Yu [8], one can easily observe that there 

has been a tremendous amount of work done to construct plate/shell models 

extendable to sandwich plate/shell ones, most of which differ from each 

other only by how to introduce ad hoc kinematic assumptions into their 

models collectively or individually. In particular, these models are mainly 

based on two competing theories: equivalent single-layer (ESL) theories and 

layer-wise (LW) theories. In ESL theories, it is easy to affordably 

implement theoretical and computational procedures because ad hoc 

kinematic assumptions are only relied upon in the mid-surface of the shell, 

regardless of how many layers the shell is comprised of. However, as 

pointed out by Carrera and Brischetto [7, 9] and Demasi and Yu [8], most 

ESL models fail to predict accurate 3D displacement/stress fields for the 

sandwich plate/shell problems in high face-to-core-stiffness-ratio (FCSR), 

small length-to-thickness-ratio (LTR) and small radius-to-thickness-ratio 

(RTR) cases. On the other hand, since the sandwich structure in LW 
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theories is modeled as an assembly of three individual shells with 

interlaminar displacement and transverse stress continuity conditions, their 

own specific kinematic assumptions for each layer must be used to capture 

interlaminar discontinuity phenomena of the displacement and stress fields. 

However, attempts to utilize this directly will meet with the same difficulties 

as using a 3D elasticity approach. Therefore, such models based on these 

theories have always suffered from an unbalanced compromise between 

accuracy and efficiency, or between simplicity and generality, for predicting 

mechanical characteristics of composite sandwich shells.

  To resolve the above unbalanced compromise, a universal asymptotic 

theory as the synthesis of ESL and LW theories based on 3D elasticity 

formulation and the zeroth-order approximation was recently proposed by 

Berdichevsky [10] for sandwich plates and Berdichevsky [11] for hard-skin 

plates and shells. For simplicity, we will henceforth refer to these two 

papers as “Berdichevsky’s papers” or “Berdichevsky’s works”. At first, when 

all constituent material constants of a sandwich structure are assumed to 

have the same order, such structure can be described by an elastic 

plate/shell from the ESL perspective. And then, under the variational 

asymptotic method (VAM) introduced by Berdichevsky [12] an equivalent 

2D plate/shell model is formulated in a manner similar to that introduced 

for laminated composite plate/shell models by Yu [13, 14] and is based on 

an asymptotically correct energy functional capable of capturing the 

transverse deformations. On the other hand, when the sandwich structure can 

be regarded as the assembly of three individual layers with mismatched 
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constituent material and geometric properties, a new 2D plate/shell model 

different from the ESL theories is introduced. By considering the smallness 

of a new coupled parameter (), called “the ratio of effective 

extensional rigidities of the core and the skin”, and by performing kinematic 

identity procedures via the interlaminar continuity of the 3D displacement 

components, a universal theory from the LW perspective is asymptotically 

established for geometrically linear/nonlinear problem of sandwich 

plates/shells. Here   and  denote characteristic elastic moduli of the skin 

and the core, while   and  thickness of the skin and the core, 

respectively. Nevertheless, Berdichevsky’s papers are not only restricted to 

predict the mechanical characteristics of symmetric sandwich plates/shells 

made of isotropic materials, but two important shortcomings inherent in the 

theoretical derivation procedure are also found: (1) no clear mathematical 

and physical explanations to exclude the usage of interlaminar transverse 

stress continuity conditions, and (2) no a general procedure for 3D recovery 

relations (i.e., expressions for 3D displacement, strain and stress fields of the 

original 3D sandwich structures). Later, Berdichevsky’s works was 

theoretically extended by Lee et al. [15] to resolve these two deficiencies. 

In the intrinsic form suitable for composite structure analysis, it involves 

constructing the universal asymptotic theory of composite sandwich plates by 

utilizing both interlaminar displacement/transverse stress continuity conditions 

and recovering the 3D displacement, strain and in-plane stress fields by 

using the original 3D constitutive relations and the 3D transverse stress 

components by integration of the equilibrium equations from the 3D 
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elasticity theory through the plate thickness under the traction boundary 

conditions on top and bottom surfaces and the transverse stress continuity 

conditions at skin-core interfaces. However, from various validation examples 

performed by Lee et al. [15], one can observe that the universal asymptotic 

theory based on the zeroth-order approximation did not provide satisfactory 

results for a thick plate with very and extremely hard skin, even though it 

can do a good job in predicting the mechanical behaviors for thin and 

moderately thick structures for a wide range of face-to-core-stiffness-ratio 

(FCSR). And also the theory is just a special case of a shell. Therefore, 

this can be directly explained that a higher-order universal shell theory in 

the asymptotic sense should be required for such an extreme case and 

complex shell geometry.

  Usually, the faces of the sandwich structures are built of stiff and strong 

materials and they are much thinner than the light and relatively soft core. 

Therefore, due to the mismatch in the material properties between 

constituent materials, high transverse stresses can be created at the vicinity 

of the edges, which is known as boundary layer phenomena. It has been 

shown that this phenomena is not captured accurately by the zeroth-order 

approximation found in Lee et al. [15]. To capture boundary layer effect, 

we need to use a post processing step. As a post processing step, additional 

integration procedure for 3D stress recovery has been used widely in many 

cases and leads to accurate results. For example, from Pagano [4], 

interlaminar stresses calculated by integrating equilibrium equation over the 

plate thickness with the assumption of linear in-plane stresses. The 
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interlaminar stresses calculated agreed well with three-dimensional elasticity 

solution. And, as mentioned in Cho and Parmerter [16], integrating 

equilibrium equations of three-dimensional elasitcity produce better transverse 

shear stresses when comparing a way directly from the constitutive equation. 

In addition, crossply parabolic and hyperbolic caps subjected to uniform 

external pressure and a simply supported cylindrical shell subjected to an 

internal sinusoidal pressure were considered in the paper Ramalingeswara 

and Ganesan [17]. This paper also following conclusion were drawn: 

interlaminar stresses evaluated using material law directly are not corect. In 

recent years, many researchers have published papers using integrating 

equilibrium equations; see Shah and Batra [18],  Tornabene and Brischetto 

[19] and Sayyad and Naik [20]. In addition, as another processing step, 3D 

refined recovery relations introduced by Yu [13, 14] for derive the 

asymptotically correct energy functional capable of capturing the small LTR 

and RTR effects and based on the first-order approximation.

  For accurately predicting 3D displacement and stress components of 

composite sandwich shells for various FCSR, LTR and RTR cases, the main 

objective of this paper is to construct a universal shell model which is 

based on the energy functional and interlaminar displacement/transverse stress 

continuity conditions asymptotically correct up to the second order. At first, 

when all constituent material constants of the sandwich structure are 

assumed to be of the same order, the equivalent 2D shell theory from the 

ESL perspective is systematically formulated in an intrinsic form by Hodges 

et al. [21] suitable for composite structure analysis. And then, from the LW 
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perspective, both interlaminar displacement/transverse stress continuity 

conditions asymptotically correct to the first order are established and 

introduced into the present approach to construct the universal asymptotic 

theory of composite sandwich shells when the sandwich shell model can be 

regarded as the assembly of three individual shell models. 

  Morever, when constructing the refined theory denoting by PA(11EE), we 

follow the additional integration procedure for 3D recovery relations as a 

post processing step. On the other hand, for 3D refined recovery relations 

of PA(22CS) without additional integration procedure, 3D displacement, 

strain and stress fields can be directly recovered under refined interlaminar 

displacement/transverse stress continuity conditions valid to the same order 

as the energy formulation. As a preliminary validation, a set of bending 

problems for various FCSR, LTR and RTR cases illustrated by Carrera and 

Demasi [6], Carrera and Brischetto [7, 9], Demasi and Yu [8] and Lee et 

al. [15] are finally presented to demonstrate the capability and accuracy of 

this present approach together with critical comparisons of the 3D exact 

solutions found in Pagano [4] and Brischetto [5].
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2. Equivalent 2D shell model from the ESL 

perspective

  When all constituent material constant of a sandwich structure are 

assumed to be of the same order, such structure can be modeled as a shell 

from the ESL-based perspective. From the 3D elasticity problem under the 

variational asymptotic procedure, an equivalent 2D refined shell model for 

any LTRs and RTRs is derived in terms of the asymptotically correct 

energy functional taking account of transverse shear/normal deformations and 

incorporating the additional energy contributions due to the small ratios (, 

).

2.1 3D shell kinematics and 3D energy formulation

  In a three-dimensional shell, Consider the surface  and, at each point 

on the surface, erect a segment of length  directed along the normal to 

the surface; the centers of the segments are on . An arbitrarily curved 

shell can be considered as a solid medium geometrically defined by a 

surface  immersed in three-dimensional physical space and a constant 

thickness  of the medium around the surface 
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2.1.1 Shell kinematics

  

  Let  be called the reference surface of the 3-D body, bounded by a 

smooth closed curve  and mathematically represented by a set of 

arbitrary curvilinear coordinates, . However, without loss of generality, 

one may choose the lines of curvature to be the curvilinear coordinates to 

simplify the formulation. In addition, for representing the 3-D medium 

uniquely and following a very natural choice generally, the third coordinate 

is selected as the coordinate normal to the reference surface specified by . 

(Here and throughout the rest of the development, Greek indices assume 

values 1 and 2, while Latin indices assume values 1, 2, and 3. Repeated 

indices are summed over their range except where explicitly mentioned.) 

Note that a plate is a special case of a shell whose middle surface is 

planar. As sketched in Fig. 2.1, letting  denote the unit vector nor-

Fig. 1 Schematic of shell deformation
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mal to the reference surface, one can then describe the position of any 

material point in the stress-free, undeformed configuration by its position 

vector   relative to an inertially fixed point , such that

  (1)

where  is the position vector from  to the point located by  on the 

reference surface. Following Berdichevsky’s papers, the 2D position vector is 
naturally defined as

 

  

 (2)

When the reference surface of the undeformed shell is coincided with its 
middle surface  and the position vectors on the top and bottom surfaces 

(
 and 

) (See Fig. 2) are given by 


 and 


, respectively. Here 

∙  ∙   and ∙  ∙  denote the values prescribed at 

Fig. 2 Undeformed configuration for the shell
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the top and bottom thickness coordinates  ±, respectively, and will 

be used throughout this paper.
  Typically, let 2-D base vectors a associated with  be defined as:

a  (3)

From henceforth, for simplicity, we will avoid including the independent 

variables on which a function depends unless it is not obvious for the 

reader to determine what they are. From Eq. (3) one can define the 

so-called Lame parameters as:

aa (4)

Let us mention that in Eq. (4), the summation convention is not applied 
because  is not a dummy index. The same rule will apply to the rest of 
development without repeating the same statement. Then, for the 
computational procedures used later, the 2D unit base vectors  constitute 

an orthogonal triad system such that



a

  × a×a

a×a
(5)

Now by taking the partial derivatives of Eq. (1) with respect to , it is 

easy to see that the covariant 3D base vectors g associated with the chosen 

coordinate system are given by:



- 12 -

g a
g a
g  

(6)

From the differential geometry of the surface and with the help of Ref. [21, 
22] one can express the derivative of 2D unit base vectors  as follows:

 k× (7)

with

k   (8)

where k is the curvature vector measured in  in which   refers to 

out-of-plane curvatures. We note that    because the coordinates 

are defined to be the lines of curvatures. However, the geodesic curvatures 
 do not necessarily vanish for the chosen coordinate system, and they 

can be expressed in terms of Lame parameters as:

 


  

 (9)

As we are interested in the interior solution with geometrical and shear 
refinements for regular shells, we assume that the initial curvatures  and 

Lame parameters  are slowly varying or constant. This assumption will 

result in the neglect of all the derivatives of these quantities with respect to 
in-plane coordinates  in the formulation.

  Using Eqs. (7) and (8) one can rewrite the expression for the covariant 
3D base vectors from Eq. (6) as:
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g 
g 
g  

(10)

By the standard definition [21], the contravariant base vectors are given by

g g


g×g (11)

Where g detgg is the determinant of the metric tensor for the 

undeformed configuration, and  are the components of the permutation 

tensor in a Cartesian coordinate system. Thus, one can define the 

contravariant 3D base vectors g as

g g

g×g
g




g g

g×g
g




g g

g×g
 

(12)

  When the shell is deformed, the particle that had position vector  in the 

undeformed state now has the position vector R  in the deformed 
configuration. The latter can be uniquely determined by the deformation of 
the 3-D body. A new triad B unit vectors are just tools to enable one to 

express vectors and tensors in their component form during the derivation. 
They are not necessarily tangent to the coordinates of the deformed shell. 
The relation between B and  can be specified by an arbitrarily large 

rotation specified in terms of the matrix of direction cosines  , so 

that
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B 


 B
(13)

subject to the requirement that B is coincident with  when the structure 

is undeformed. Without loss of generality, the position vector R  can be 
defined as:

RRBB (14)

where R ru describes the position vector from the point  to the point 
on the reference surface of the deformed shell, u the 2D displacement 

vector from the undeformed configuration, and the unknown 3D functions  

represent the general warping displacement of an arbitrary point on the 
normal line of the deformed shell, consisting of both in- and out-of-plane 
components so that all possible deformations are considered. Here, six 

constraints are required to ensure a one-to-one mapping between R  and (R , 
B, ) in Eq. (14). At first, three redundancies can be removed by 

choosing appropriate definitions of B. One of them can be selected by 

taking B as the normal to the reference surface  of the deformed shell 

in such a way

BR  with ∙ ∙ (15)

It is pointed out that this choice is only for convenience in the derivation 
and has nothing to do with the Kirchhoff assumption. In addition, the 
second constraint introduced in most 2D shell models, can be specified by 
the rotation of B around B such that
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

BR


BR (16)

which can serve as another constraint to specify the global rotation of the 
triad B and make the formulation in (14) unique. For the last constraints, it 

can be obtained from a proper definition of R . Similar to the way r is 
defined in Eq. (2), R  can be defined as the average of two position vectors 

R


 and R


 on the top and bottom surfaces (
 and 

):

R 

 R R

 (17)

Therefore, if Eq. (14) is substituted into Eq. (17), then the warping 
functions must satisfy the following three constraints as the last constraints:


 

  (18)

It means that the warping functions do not contribute to the rigid-body 
displacement of the 2D shell model. So far, a total of six constraints have 
been introduced, and then Eq. (14) designates a unique point in the 2D 
shell model.
  Before closing this subsection, definitions of the 2-D generalized LK 
strain measures (  and ) can be first defined from the partial 

derivatives of R  and B with respect to  as follows:

R BB 

B BBB×B
(19)

where   are the 2D in-plane strains, and  are the curvatures of the 

deformed surface, which are the summation of curvatures of undeformed 
geometry  and curvatures introduced by the deformation . Here, using 
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Eq. (19), it can be shown that the second constraint, the one in Eq. (16), 
actually implies symmetry of 2D in-plane strains, such that  . 

Second, as pointed out in Berdichevsky’s papers, three additional degrees of 
freedom (DOFs) associated with transverse deformations should be 
introduced into Eq. (14) because shell models taking account of such 
deformations are required to accurate estimate and predict mechanical 
behaviors of hard-skin sandwich structures. For development of the universal 

asymptotic model introduced later, let us first replace 
 and 

  by 

 and , respectively, due to Eq. (18) and then 

implement the following change of variables into the original 3D warping 
functions:

  (20)

where  and  denote the rotations of a transverse normal about the  

and  axes, respectively, and  represents the elongation of a transverse 

normal along the  axis. Here to differentiate from the 2D generalized LK 

strain measures,  are referred to the 2D generalized transverse motion 

measures throughout the rest of the development. Therefore, instead of Eq. 
(18), the following six constraints are used to ensure a one-to-one mapping 
between  and (, ) in Eq. (20):


   

   (21)

Finally, substituting Eq. (21) into Eq. (14), we can redefine the deformed 
position vectors considering the transverse shear and normal effects, such 
that

RRB B
B

(22)
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2.1.2 Energy formulation in intrinsic form

  Based on the decomposition concept of rotation tensor introduced by 
Danielson and Hodges [23], the Jauman-Biot-Cauchy strain components for 
small local rotation are given by

  


 (23)

where  is the Kronecker symbol, and  the mixed-basis component of 

the deformation gradient tensor such that

 BGg
 (24)

Here G R denotes the 3D covariant basis vectors of the deformed 

configuration and g are the 3D contravariant base vectors of the 

undeformed configuration. In the plate case, it is obvious that g  .

  Until now, we have been trying to keep the analysis both general and 
simple. However, to make the problem more manageable, we have to make 
some inevitable approximations that published shell theories have almost 
universally used. There are several small parameters inherent in engineering 
structures, and the existence of small parameters brings about a great variety 
of possibilities for application of asymptotic methods. In the shell problem 

considered, three possible small parameters exist: the maximum strain , the 
physical parameter , and the geometric parameter , where  is the 
characteristic radius of curvature of the shell reference surface,  a 
characteristic length in the in-plane directions (determined by the loads 
applied for static behavior). Having made the above approximations, the 2D 
generalized LK strain and transverse motion measures are considered to be 
small compared to unity and the 3D warping functions are of the order of 
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those measures or smaller, and then we can safely neglect all the terms that 
are products of the 3D warping functions and both 2D generalized LK 
strain measures and 2D generalized transverse motion measures. With the 
help of Eqs. (19), (23) and (24), one can obtain the 3D strain field as:
















′


′


′

(25)

where ∙ ∙, ∙′∙.
  By definition, the 3D strain energy stored in the shell can be then 
expressed as:




〈 




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







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
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

〈 〉


U

(26)

where  ⌊  ⌋,  ⌊ ⌋,   and

a×a

g×gg


 (27)

Here   and  are called the mean and the Gaussian 
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curvatures of the surface, respectively. And angle-brackets 〈∙〉 represents 

the definite integral through the shell thickness, U  denotes the 3D strain 
energy density per unit area, and  is the 6×6 material matrix, which 

comes from the fourth-order elasticity tensor expressed in the  basis. This 

matrix is in general fully populated. However, if it is desired to model 
laminated composite shells in which each lamina exhibits a monoclinic 
symmetry about its own mid-surface (for which the material matrix is 
determined by 13 constraints instead of 21) and rotated about the local 
normal to be a layer in the composite laminated shell, then   and   

will always vanish no matter what the layup angle is. To make this 
problem tractable and procedure simpler, the nonzero components of the 
material matrix are also assumed to be constants along the shell thickness. 
Considering these, we can simplify the strain energy expression to the 
following form:

U 〈    〉
〈∥   ⊥   ⊥  〉 (28)

with ∥ ⊥  and ⊥ 
 .

  To deal with the 3D virtual work done by applied loads, we follow the 
similar methodology introduced by Yu et al. [24] and Yu [25]. When the 
3D virtual work done is developed, at first leaving the existence of a 
potential energy open, the 3D virtual work of the applied loads through a 
virtual displacement of the 3D shell structure can be generally represented 
as




〈P⋅R〉⋅R⋅R 


〈Q⋅R〉 (29)

where PB is the applied body force,  B and B are the 

applied surface tractions on the top and bottom surfaces, respectively, and 
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Q B denotes the applied traction on the lateral surfaces (i.e., the 

vertical surface on the boundaries). Taking the variation of Eq. (22)

R BBBB  B
BB

(30)

the 2D virtual displacement and rotation of the reference surface and 2D 
virtual transverse motions are given in the B system by

 u⋅B

B  
B
B
B×B

 ⋅B

(31)

However, unlike Yu et al. [24] and Yu [25]., it is possible to write the 2D 
virtual rotations in terms of the partial derivatives of the 2D virtual 
displacements with respect to  because B is taken as the normal to the 

reference surface of the deformed shell. This means that the present shell 
model can be determined in terms of six independent 2D shell quantities, 
not nine.
  In a manner similar to the procedure to obtain the 3D strain field under 
the small strain assumption, we can safely ignore products of the warping 
functions and the loading in the virtual rotation term. Then, the virtual work 
done by the applied loads is

  


 (32)

where
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 

 



〈〉〈〉〈〉 






〈〉


〈〉

(33)

with  denoted by the 3D permutation symbol and the generalized forces 

 and moments  defined as

 〈〉  〈〉  (34)

Here the second integral part of 

 in Eq. (33) accounts for the virtual 

work done through the warping functions along the lateral boundaries of the 
shell. This term is only necessary for the edge-zone problem, which is 
beyond the scope of the present paper. Therefore, we will drop this term 
hereafter.
  Now, the complete statement of the problem can be presented in terms of 
the principle of virtual work, such that



 (35)

In spite of the possibility of taking nonconservative forces into account in 
Eq. (35), the problem governed by the 3D unknown warping functions is 
conservative. Thus, one can pose the problem that governs the warping 
functions as a minimum total potential energy:

 (36)

so that
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 (36)

where  contains the load-related terms such that 




W  (38)

with

W 〈 〉 〈 〉 (39)

Here Eq. (21) is used the above. Up to this point, this is simply an 

alternative formulation of the original 3D elasticity problem. Attempts to 

solve this problem directly will meet with the same difficulties as solving 

any full 3D elasticity problem. Fortunately, as shown below, the VAM can 

be used to calculate the 3D unknown warping functions asymptotically up to 

the desired order.

2.2 Dimensional reduction under VAM

  To rigorously and efficiently reduce the original 3D problem to that of an 
equivalent 2D shell, the VAM will be first used to reproduce the 3D total 
potential energy functional stored in the structure into the intrinsic 
formulation in terms of 2D generalized LK strain and transverse motion 
measures. Then, asymptotically correct solutions will be estimated up to the 
desired order taking advantage of the small parameters inherent in the 
structure.
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2.2.1 Order analysis

  Following Sutyrin [26] and Berdichevsky [27], the quantities of interest 

assess and keep track of the following determined orders in the formulation:

∼
 ∼



∼∼∼
 ∼

∼∼∼
 ∼



∼∼∼
 ∼



(40)

where  is the order of the material constants (all of which are assumed to 
be of the same order). For most engineering structures,  is a small 

parameter in the order of ∼  and it is not necessary to keep terms 
in the order of  in comparison with unity. And also, in the shell problem, 
two more small parameters (, ) need to be considered. The existence 
of three small parameters brings about a great variety of asymptotics. 
Therefore, to compare the approximation theories, the approach denoting by 
00EE, 11EE deals with the case of ∼ while the approach denoting by 

22CS deals with the case of ∼ .

2.2.2 Zeroth-order approximation (00EE)

  Let us now construct a shell model up to the zeroth-order approximation 
under the VAM. Following the methodology introduced by Berdichevsky 
[12], the VAM requires one to find the leading terms of the energy 
functional according to the different orders. For the zeroth-order 
approximation, at first, the 3D virtual work per unit area in Eq. (38) can be 
negligible because the applied loads are of higher order according to the 
order analysis based on Eq. (40). On the other hand, the 3D strain energy 
per unit area in Eq. (28) can be systematically obtained by dropping the 
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derivatives with respective to  and the terms related to initial curvature, 

resulting in

U 〈∥′ ′′⊥  ′⊥ 〉 (41)

where    ,   ,∙  ∙ ∙ 
. 

Therefore, the 3D total potential functional in Eq. (35) can be simply 
expressed as:

  with U  (42)

along with the constraints in Eq. (21).
  By applying the usual procedure of the calculus of variations, this 
variational principle has the following Euler-Lagrange equations for ∥ and 

:

 ′′
 ′⊥ ′ (43)

with the associated in-plane and normal constraints in Eq. (21), respectively, 
Solving the equations in Eq. (43) along with Eq. (21), one obtains the 
following warping functions:

     

 



 

 



⊥

  (44)

  By substituting Eq. (44) back into Eq. (41), the asymptotically correct 
energy functional capable of capturing the transverse shear/normal 
deformations and based on the zeroth-order approximation can be finally 
obtained as:
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  Ɛ Ɛ  where   












   



 
  

  
 


   



(45)

with Ɛ      and

 
  

  
 





  

  
  

 

(46)

It is obvious that the total potential energy functional of this approximation 
coincides with 2D shell model, which is the same as that restricted by the 
shell composed of an isotropic material found in the Berdichevsky’s works.

2.2.3 First-order approximation (11EE and 22CS)

  As pointed out in Berdichevsky [12, 27], refined theories taking advantage 
of small parameters  and  are required for both moderately thick and 
thick shells to give a better prediction of global deformation, in-plane 
quantities and especially out-of-plane stresses and strains, even though the 
classical shell theory based on the zeroth-order approximation can do a good 
job in predicting the global deformation and in-plane quantities for thin 
structures. Therefore, to accurate obtain the energy contributions for shells, 
another more approximation under the VAM is carried out in the asymptotic 
sense.
  Before proceeding to the derivation of the refined shell model, let us 
check that if all terms containing  can be neglected as higher-order 

terms according to the 2D compatibility equation or not. As pointed out in 
Yu and Hodges [28], from the B components of the equality R R, 
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the difference between  and  can be obtained as

 




















(47)

The difference is clearly 
  or 

 , and one can show that it 

contributes terms that are 



  or 



 . Therefore, as mentioned 

in Yu and Hodges [28],  is neglected as higher-order terms in the 

first-order approximation for the case ∼ . However, if ∼, such 
terms should be considered. Hence, in the approach 11EE,  is 

included in the 3-D strain field, where the difference will be used as a 
result obtained from the compatibility equation instead of using it directly.
  At first, let us consider the case of ∼. Having made the 
approximation (∼), one can express the 3-D strain field including the 

terms of order , ,  and , such as

 







′



 ′

(48)

with
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  










 
 
 

 










 
 
 

 


 



 



 



 















 



 


 

 

 











  



 

  

 












  





 





  


 



 


 

 

 



 


 

 
 











  

 
 





  

(49)

Then the zeroth-order result is perturbed to find the 3D refined warping 
fields of order , , resulting in the following form:

    and    with    

 



 

 



⊥

  (50)

  In a manner similar to the procedure used to obtain the warping functions 
for the zeroth-order approximation, one obtains the following warping 
functions. For :

    

 



 

 



 


 (51)

where  
 


⊥

 ,  
 

 and  
 




, and for :

    
 



 

 






 (52)

where  
 

⊥
 ⊥

 ,  
 

⊥
   

and  
 


⊥

 .
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  Now, all the information needed to obtain a total energy functional that is 

asymptotically correct up to the order of 

 and 


 has been 

found, viz.,

   Ɛ 
 

 ƐƐƐ ƐƐ 
ƐƐ (53)

Where

  












   

  
 


  

   


 












   

 
  



  
 

 
  




 












   



 
  

  
 


   




 











 

  


  



   

 
  

  
 












   



 
  

  
 


   




 











 

 

   


   



 
 

(54)

with

 

 




 


 
 


⊥

 
 




 
 





 




 



 




 
 


 

  
 


 




 
 


 

 





 
 


 


 




 



⊥

  ⊥
  

  
 
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
 



 

 
 




 
 

 
  

 


 




 
 


 

 


⊥

 


 


  

 

 
 

  


 

 




 


 
 




 

  
 


 

 






 


  
⊥


  

⊥








 




   
  

 


 




 


 

 




 


 


 
 







 

 




 


 
 









 


 




 


 


 


 

 










 








 




 


   (55)

  If ∼ , we are only interested in obtaining an energy functional 
asymptotically correct up to the order of , it is unnecessary to calculate 
the refined warping functions with respect to  because they make no 
contribution to the energy up to the order of . Therefore, one needs 
only to find the 3D refined warping fields of the order of  and simply 
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perturb the zeroth-order result. Then, the 3D refined warping field can be 
constructed by discarding all the terms of initial curvatures, which leads to

    

 



 

 



 




  

 



 

 





(56)

All the information needed to obtain a total energy functional that is 

asymptotically correct up to the order of 

 and 


 has been 

found, viz.,

    Ɛ 
 ƐƐƐƐ ƐƐ (57)

Before closing this subsection, it is noted that in order to obtain the 
asymptotically correct energy functional, integration of parts with respect to  
was naturally introduced into Yu [13, 14] for no apparent reason. However, 
according to Lee and Hodges [29] and Lee [30], one can observe that it 
causes a violation of the positive definiteness of derived stiffness 
coefficients, so it was not applied in Eqs. (53) and (57).
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3. Universal 2D shell model from the LW 

perspective 

  Carrera and Brischetto [9] and Demasi and Yu [8] provided an excellent 
review of various ESL- and LW-based shell models that had been applied 
to the analysis of multilayered and sandwich structures by comparing 3D 
exact solutions as well as the results from these models. In particular, they 
have shown that since most of ESL-based models have significant problems 
to accurate predict mechanical characteristics of sandwich shells with very 
high FCSRs, LW-based shell ones should be used instead. Moreover, as 
pointed out the Berdichevsky’s works, to accurate predict the mechanical 
behaviors of the sandwich shell, the 2D generalized transverse motion 
measures, “in the worst case scenario”, is chosen to be on the order of 

 due to mismatch between constituent materials.
  For this reason, from the LW-based perspective, let us first regard the 
sandwich shell as an assembly of three individual layers with mismatched 
constituent material and geometric properties and describe each layer of 
which as an equivalent 2D shell model composed of material and geometry 
having different orders.

3.1 PA(00EE)

  The energy functional storing in the composite sandwich shell and based 
on asymptotically correct through the zeroth-order can be obtained by 
utilizing Eq. (45) for two skin-layers and one core-layer, resulting in
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  Ɛ  ƐƐ Ɛ (58)

where the superscripts   and  identify the quantities at the 
“top-skin”, “bottom-skin” and “core” layers of the composite sandwich shell, 
respectively. However, because the numbers of required DOF of Eq. (58) 
are much higher than ones of Eq. (45), attempt to utilize this directly will 
meet with the same difficulties as the 3D elasticity-based approach. 
Therefore, to maximize the simplicity and enhance the efficiency of the 
present approach, another expression of the energy functional for composite 
sandwich shells is inevitably required.
  Similar to the analytic framework proposed by the Berdichevsky’s works, 
twelve continuity conditions at each skin-core interfaces are first introduced 
into Eq. (58) to reduce the numbers of DOF up to six and then to develop 
the energy functional in terms of the only core-layer’s 2D generalized LK 
strain, transverse motion measures and initial curvatures of undeformed 

geometry. (, , 
 and 

 ). First of all, eight of them can be specified 

by defining the interlaminar 3D displacement continuity conditions with 

URr  such that

 U

 

U   U   U
  (59)

Alternatively, by substituting the following kinematic identities with 


  

  


 r  r

b
 


b
 r  r


b
 


b
 (60)

into Eq. (59), it is straightforward to be replaced with the continuity 
conditions of undeformed and deformed position vectors at the interfaces 
between the core-layer and two skin-layers, such as
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 rt

 

rc   rb   r
c  (61)

and

 Rt

 

Rc   Rb   R
c  (62)

Although the universal model developed by the Berdichevsky’s works 
satisfies the interlaminar displacement continuity, it does not mention about 
the aspects related to transverse stress continuity as other six constraints. By 
definition, the interlaminar continuity conditions of the transverse shear and 
normal stress fields can be obtained by

 
  

   
  

  

   

  
   

 
(63)

where

   


 
 ⊥

 
(64)

  Before imposing Eqs. (62) and (63) on Eq. (58) to reduce the numbers of 
DOF up to six, the continuity conditions of undeformed position vectors can 

be first mentioned. Firstly, let us try to establish the relationship between  
  

for the top skin-layer and  
  for the core-layer. By differentiating both side 

of Eq. (61) with respect to  and then introducing Eqs. (3) and (4) into 

the obtained result, the relationships between Lame parameters for the upper 
skin-layer and Lame parameters for the core are given by

 
 


 (65)
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with 
 

 





 


  and 

 

 





 


 .

And then, to find the relationship between initial curvatures, differentiate 

both side of the following kinematic identity  
   

  with respect to . 

Initial curvatures of top-skin layer can be specified in terms of the initial 
curvatures of core-layer, such as

 
 
 

 (66)

Analogously, one can also obtain the relationship between 
  and 

  such 

as

 

 

 (67)

with 


 





 


  and 



 





 


 .

  And, let us try to establish the relationship between B
  and B

 for two 

skin-layers and B
 for the core-layer. By differentiating both sides of the 

first equation of Eq. (62) with respect to  and then introducing Eqs. (19) 

and (44) into the obtained results, the first-order derivative of R  on the 
interface is given by




 



 



 



 

 B
t 

 



 



 B

t





 



 

 B
t  


 



 



 



 

 B
c


 



 



 B

c

hc

c 

hc
k
c 

cB
c  (68)

and
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


 



 



 B

 
 



 



 



 

 B






 



 

 B
  


 



 



 B




 



 



 



 

 B
 



 



 

 B
  (69)

Similar to the kinematic identity suggested by Yu [13] under the small 
strain assumption, the relationship between these two sets of basis vectors 
can be specified by a direction cosine matrix which will be expressed in 

terms of the partial derivatives of 
  with respect to 

 











B


B


B


BB











B


B


B















 

 



 

 



 

 












B


B


B


(70)

Multiplying both sides of Eqs. (68) and (69) by B
 , one obtains




 



 



 



 

 B
 

 



 



 B







 



 

 B
 B

 



 



 






 



 



 B

 
 



 



 



 

 B






 



 

 B
 B

 



 



 



(71)

Considering the fact that we assume the strains to be small, one can easily 

inspect that

 
 



 

 
  

 



 

 
  (72)

When the following identity for the third row of the direction cosine matrix 
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in Eq. (71) is also restricted

 
 

 
   (73)

one can deduce that 
 . Having known the third row of the direction 

cosine matrix, one can obtain all the other components in this matrix 
according to Hodges [23]. Using the fact that the direction cosine matrices 

BB and BB are transposed and inverted of each other, one can finally 

obtain the following relationship between B
 and B

:

   
B
 B

 



 

 
 B

 B
 



 

 
 B

 B
 (74)

Analogously, one can also obtain the relationship between B
 and B

 such 

as

   
B
 B

 



 

 
 B

 B
 



 

 
 B

 B
 (75)

From Eqs. (62) with Eqs. (74) and (75), we can then derive the following 
kinematic identities of the generalized LK strain and transverse motion 
measures of two skin-layers in terms of the corresponding ones of the 
core-layer,

   
 




 ⊥
 

 


 ⊥
 

 (76)

where    and

   



 





 


 

 


 ⊥

 






 


 ⊥

 





(77)
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  Similar to Lee et al. [1], plugging Eq. (64) into Eq. (63) with Eqs. (74) 

and (75) we obtain   and  in terms of  and  ,   and 

   

 





 

⊥


 


(78)

where

   

 

 



 

 
⊥

  ⊥
  

 
 

 ⊥
 

(79)

By using Eqs. (76) and (78), the kinematic identities of the generalized LK 

strain and transverse motion measures (Ɛ  and Ɛ) of two skin-layers for 

PA(00EE) can be derived in terms of the corresponding ones (Ɛ) and their 

partial derivatives (Ɛ ) of the core-layer through the zeroth-order 

approximation. viz.,

   Ɛ  ƐƐƐ (80)

Where the associated operators used in Eq. (80) are also defined as

   

 












 

  

 
  

  
 


 

  



 











   



   
   

   



 











  

 

   
   

  
 

(81)

with
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
 

 ∆ 
 

 
 

 
 

 
 





 ⊥

 
 ⊥

 ⊥
 

 
⊥

 ⊥
 ⊥




 


 

 
 

 


 


(82)

Here ∆ denotes the × identity matrix.

  Finally, for any FCSR, LTR and RTR cases, we have all the information 
needed to obtain the zeroth-order approximation of the asymptotically 
universal shell model with the following energy functional:

   
 Ɛ ef fƐƐef fƐ Ɛ ef fƐ  (83)

where

   
 ef f     


 

 


ef f   


 




ef f 

 


(84)

3.2 PA(11EE)

  An energy functional of 2D laminated shell model derived by the VAM 

found in Yu and Hodges [28] asymptotically correct up to the order of 

,  it is unnecessary to calculate the refined warping functions with 

respect to . However, as a validation to demonstrate the capability and 

accuracy of the present approach, the cases of numerical examples ∼ 

should also be included. Therefore, in the present approach denoting by 

11EE, we calculated the refined warping function with respect to  as 
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well as  (See Sect. 2.2.3).

  The energy functional storing in the composite sandwich shell, 

asymptotically correct up to the second order, can be simply obtained by 

utilizing Eq. (53) for two skin-layers and one core-layer, resulting in

 Ɛ  


Ɛ Ɛ Ɛ Ɛ Ɛ 

Ɛ 


 ƐƐ Ɛ Ɛ Ɛ 
   Ɛ Ɛ Ɛ Ɛ  (85)

  In the same way, as in Sect. 3.1., we can then derive the following 

kinematic identities of the generalized LK strain and transverse motion 

measures of two skin-layers in terms of the corresponding ones of the 

core-layer,

   
 




 ⊥
 

 


 ⊥
 

 ⊥
 




 

 


⊥
 

 ⊥
 

 
 


 


 

(86)

where

   
⊥
 






 

 













 





 


 

 

 





 




(87)

  From Eq. (86) with Eqs. (74) and (75), we obtain 
 and 

 in terms of 


, 

 , Ɛ and Ɛ
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






 


 ⊥

 
 

 
 ⊥

 






 

⊥
 

 
 


 

⊥
 






⊥


 


 


 
 


 

⊥
 

 ⊥
 

 
 

 
 ⊥

 
⊥

 


 


(88)

where










 
 

    
 




 

⊥
 




 


  
 




 




⊥
 




  
 




 


 
 


  

 



 


 
 ⊥

  
 




 


 


 




 
  

  
 







⊥
  

 



 

 




 


 ⊥
 


 




 ⊥
  

 




 


 ⊥
 

 


 







 ⊥
 

 




 ⊥
 

 

⊥
 




 

 

 ⊥
 

 

⊥
  

 





⊥
 

 
 

  
 






⊥
 




 




 ⊥
 

  ⊥
 



 

 ⊥
 



⊥
  

 


⊥
 

 
 

  
 



⊥
 


(89)

  By using Eq. (86) and (88), the kinematic identities of the generalized 
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LK strain and transverse motion measures of two skin-layers for PA(11EE) 

can be derived in terms of the corresponding ones and their partial 

derivatives of the core-layer through the first-order approximation. viz.,

   Ɛ    Ɛ Ɛ  Ɛ (90)

Here the associated operators used in Eq. (90) are also defined as

   














  

 

   


 

  


  
 


 











   



   


  
 

   



 












 

  


 
  

  
 


 

  



 











   



   

  
 

  
 

     
 











  

 

  
 

   


  
 

(91)

with

   

 

 
 ⊥

 


  
 

 
 ⊥

 
 




 ⊥

 ⊥
 ⊥

 
 


 


 


 




 ⊥

 
 ⊥

 ⊥
 ⊥

 
 





 

 


 
⊥

 






 

 



 

⊥
 


 

 ⊥
 ⊥

 ⊥



 

⊥
 


  

  
⊥

 


 
 




 

 
 

 
 




 
 

⊥
 ⊥

 



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
  




 


 
⊥
 ⊥

 




 

⊥
 ⊥

 
⊥
 ⊥

 ⊥



 

⊥
 ⊥

 ⊥
⊥

 
⊥
 ⊥

 ⊥



 

 
 

 
 


 




  




 ⊥
 ⊥

 ⊥
⊥

 ⊥
 ⊥




⊥
 ⊥

 
⊥
 ⊥

 ⊥



 

 
 

 


 
 ⊥

 



 



⊥
 


 




 







  

 ⊥
 

⊥
 ⊥

 ⊥
⊥

 ⊥
 ⊥

 ⊥


⊥
 ⊥

 ⊥


 ⊥
 ⊥

 ⊥



  


 

 
 

 



 

 
 





 

 


 



⊥
 ⊥

 






 

 


(92)

  Finally, we have all the information needed to obtain the universal 

asymptotic model with the following energy functional asymptotically correct 

up to the order of 

 and 



   
 Ɛ ef fƐƐ ef fƐ ef fƐ 

ef fƐ 
Ɛef fƐ Ɛ ef fƐ Ɛ ef fƐ 
Ɛ ef fƐ Ɛ 

ef fƐ 
(93)

where

   
 ef f 

 
  

 
 

 


 
 

 


 
 

 


  
 


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
ef f 

 
  


 

 



 




 


  




 
 


 

 

 



 

 
 


 

 


 


 

 


 
 

 



ef f 

 
  

 
 


 


 

 





 


 
 


 




 
 


 

 


 


 

 



ef f 




  



 


 


 

 


 


ef f 


 


ef f 


  


 

 



 

 


 


 


 

 


 
 




 


 


 

 



 

 


 
 




ef f 


  

 
 


 

 



 


 




 


 
 


 

 


   
 


 


 


 

 



 


ef f 




 
 


 

 
 


 


ef f 

  
 

 


 
 






 



 

(94)

3.3 PA(22CS)

  An energy functional of the approximation theory denoting by 22CS is 

similar to the energy functional derived by the VAM found in Yu and 

Hodges [28]. Therefore, the energy functional storing in the composite 

sandwich shell, asymptotically correct up to the second order, can be simply 
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obtained by utilizing Eq. (57) for two skin-layers and one core-layer, 

resulting in

 Ɛ  
Ɛ Ɛ Ɛ Ɛ Ɛ Ɛ 

Ɛ 
 ƐƐ Ɛ Ɛ Ɛ Ɛ 

(95)

  In the same way, as in Sect. 3.1., we can then derive the following 

kinematic identities of the generalized LK strain and transverse motion 

measures of two skin-layers in terms of the corresponding ones of the 

core-layer,

   
  




 ⊥
 

 


 ⊥
 

 ⊥
 

 (96)

From Eq. (86) with Eqs. (74) and (75), we obtain 
 and 

 in terms of 


, 

 , Ɛ and Ɛ
   

       






 


 ⊥

 
 

 
 ⊥

 










       


⊥


 


 


 


⊥


 ⊥
 



(97)

with

   






 

   







⊥
 




 
⊥

 
   ⊥

 


⊥

 
     

(98)

By using Eq. (96) and (97), the kinematic identities of the generalized LK 
strain and transverse motion measures of two skin-layers for PA(22CS) can 
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be derived in terms of the corresponding ones and their partial derivatives 
of the core-layer through the first-order approximation. viz.,

   Ɛ   Ɛ Ɛ  Ɛ (99)

Here the associated operators used in Eq. (99) are also defined as

   


 











   



   

  
 

   


with 
 







 

⊥
 ⊥

 
⊥
 ⊥

 ⊥


(100)

Finally, we have all the information needed to obtain the universal 
asymptotic model with the following energy functional asymptotically correct 

up to the order of 

 and 



   
 Ɛ ef fƐƐ ef fƐ ef fƐ 

ef fƐ 
Ɛef fƐ Ɛ ef fƐ Ɛ ef fƐ 
Ɛ ef fƐ Ɛ 

ef fƐ 
(101)

where

   
 ef f 

 
 


 




ef f 

 
  


 

 





 



ef f 

 
 


 

 


 








 







ef f  


 


 


ef f  


 
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
ef f 

  
 

 


 
 




 






ef f 

  
 

 


 
 

 

 


 





ef f 




 
 


  


 


ef f 

  
 

 


 
 




 


  (102)
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4. Recovery relations from 2D to 3D 

  Now one can use the stiffness coefficients as input for the 2D shell 

theory to accurately calculate the 2D displacement field, generalized strains 

and stress resultants of the composite sandwich shells. However, in many 

engineering applications this is not sufficient. Recovery relations, (i.e., 

expressions for 3D displacement, strain, and stress fields in terms of 2D 

shell variables, their partial derivatives and ) are necessary ingredients for 

such theories. Indeed, one of the ways fidelity of the sandwich shell model 

can be evaluated is how well it predicts the 3D fields for the original 3D 

structure. Hence, comparison of results obtained for 3D field variables from 

the recovery relations versus those from a fully 3D model should be a 

significant part of validation for any composite sandwich shell theory.

4.1 Second-order approximation (22CS)

  Before deriving 3D recovery relations from the 2D shell model (22CS), 

let us recall that the universal asymptotic model that has been constructed 

only ensures a good fit with the asymptotically correct 3D strain fields (thus 

the 3D stress fields) and interlaminar 3D displacement/transverse stress 

continuity conditions through the first order in  and , while the 

energy functional is approximated to the second order in . Thus, in order 
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to obtain asymptotically correct recovery relations that are valid to the same 

order as the energy formulation, the VAM iteration need to be applied one 

more time. Using a procedure similar to that of the first-order approximation 

from the ESL perspective, the 3D warping function of the second order in 

 can be simply expressed as

   
   and    (103)

  Substituting Eq. (103) back into Eq. (28) then into (37) and by 

considering the warping constraint in Eq. (21), one obtains the following 

warping functions: for 

   
  

 



 

 



⊥

     (104)

And for 

   
 

 



 

 





 
  

 

  
 












 





 
⊥

  
 

 
  

(105)

  From the LW perspective, let us now consider the interlaminar 

displacement and transverse stress continuity conditions up to the second 

order. In a manner similar to the procedure used to obtain the kinematic 

identities of the generalized LK strain and transverse motion measures for 

the first-order approximation, one can obtain the following kinematic 
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identities of the generalized LK strain and transverse motion measures of 

two skin-layers in terms of the corresponding ones and their partial 

derivatives of the core-layer for the second-order approximation. viz.,

   
Ɛ   Ɛ Ɛ  Ɛ 

 Ɛ (106)

Here the associated operators used in Eq. (106) are also defined as

   
















 

  


 
  

  
 


 

  


  
 











  

 

  
 

   


  
 
















 


 



   


  





 


 



  













  




   

   


  




(107)

with


 




 
⊥
 ⊥

 


 


  




 



⊥
 ⊥

 



  


 

 





 
 ⊥

 



 



⊥
 


 


 

  

 ⊥
 

 ⊥
 ⊥

 ⊥
⊥

 ⊥
 ⊥

 ⊥


⊥
 ⊥

 ⊥


⊥
 ⊥

 ⊥



  


 

 






 


 

 


 



 

 


⊥
 ⊥

 






 

 






 

 
 ⊥

 


 





 

 
 ⊥

 


 
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



 

 ⊥
 




 
⊥

 
⊥

 
 

 






 


 

 
 

 ⊥
 


 

⊥
 


 







 


 

 
 

 ⊥
 

 
⊥

 


 





⊥
 

⊥
 


 

 ⊥
 ⊥

 ⊥
⊥

 ⊥






 

 
⊥

 
 


 

⊥
 




 ⊥

 
 

 





⊥
 

 ⊥
 

⊥
 

 ⊥
 




⊥
 

 
 ⊥

 ⊥
 ⊥

⊥
 ⊥

 ⊥
 ⊥






 

 

 
 

 ⊥
 




 
⊥

 


⊥
 

 
 

⊥
 

⊥
 


 


 



⊥
 

 

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with








⊥

 



 

 



 

⊥
 

 
 



⊥
 







⊥

 
 

 




 
 ⊥

  
 

 

⊥
 

 

  

 




 
 ⊥

  
 

 


 







 
 





 




 




 ⊥ 

 



 ⊥

 





⊥
 

 


 
 

 


 


 

 

 

 



(109)
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4.2 3D Refined Recovery Relations (22CS)

  By subtracting Eq. (1) from Eq. (22) for one layer of the composite 

sandwich shell, 3D displacement fields can be first recovered with Eqs. (44), 

(56), (109) and (105) through the second-order as:

 











 











(110)

where  are 3D displacement measures in the  basis,  are the 2D 

displacements in the  basis, and  is the direction-cosine matrix relating 

B and , given in Eq. (13). In addition, to recover the 3D displacement 

fields for the composite sandwich shell, the following continuity conditions 
are established from Eqs. (62), (74) and (75): for the top skin-layer and the 
core-layer,

  
 

 

 
 




 





 
















 


 

 

 
 




 





 
















 

(111)

and for the bottom skin-layer and the core-layer,

  
 

 


 




 





 



















 

 


 




 





 


















(112)

  From Eq. (25) through the second order, one can also recover the 3D 
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strain fields for the individually layer of the composite sandwich shell as

    
 ′′
 ′′′

(113)

Finally, the 3D stress fields can be also recovered in a straightforward 

manner using the original 3D constitutive relations:

     
   

 


(114)

Finally, one obtains the 3D strain/stress fields for the composite sandwich 
shell (22CS) by introducing Eq. (106) into Eqs. (113) and (114).

4.3 3D Recovery relations with stress recovery (00EE&11EE)

  By subtracting Eq. (1) from Eq. (22) for one layer of the composite 
sandwich shell, 3D displacement fields can be first recovered with Eqs. (44) 
and (56) as:

  
   





 









(115)

The underlined terms are additive higher-order term which will affect only 
11EE approach and can be simply dropped for 00EE approach. To recover 
the 3D displacement fields for the composite sandwich shell, the following 
continuity conditions are established from Eqs. (62), (74) and (75): for the 
top skin-layer and the core-layer,
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    
 

 

 
 




 





 
















 


 

 

 
 




 





 
















 

(116)

and for the bottom skin-layer and the core-layer,

  
  

 
 


 




 





 



















 

 


 




 





 


















(117)

From Eq. (25) through the second-order, one can also recover the 3D strain 
fields for the individually layer of the composite sandwich shell as
















′






 

′′

(118)

Finally, for the present approaches(00EE, 11EE), the 3D transverse stress 
fields can be alternatively recovered from integration of the equilibrium 
equations of the 3D elasticity through the shell thickness, similar to the 
approaches found in Tornabene and Brischetto [19] and Sayyad and Naik 
[20]. The following elasticity equilibrium equation neglecting the body forces 
is first used to derive the expression for the 3D transverse shear and normal 
stress fields
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 

 

 
 

 
 

(119)

with

 




 





 

 


  


  


(120)

Where  representing mean radius of curvature evaluated in  directions. 

Here, to estimate  above, the associated boundary conditions at the top 

and bottom faces of the shell are also provided such as

   
  

 
 



  
 

 


(121)

In a manner similar to obtain the 3D displacement and strain/stress fields 

for the composite sandwich shell, imposing Eqs. (119) and (121) into Eqs. 

(63) we obtain the following transverse shear and normal stresses fields:
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
  


 







  


 







  


 






(122)

where


∆





 






 











∆


 






 


 



 







∆


 






 


 



 






(123)

with   

±


∓


∓,   


∓


∓


±,   


∓ 



±


∓,∆ 


 





 



,∙±  ∙∙  and 

∙∓  ∙∙ .
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5. Validation Examples 

  As a preliminary validation to demonstrate the capability and accuracy of 

the present approach, a set of numerical examples will be performed for 

various FCSR, LTR and RTR cases. Although a plate is just a special case 

of a shell and the plate model should be able to be reduced from the shell 

model given in this paper by specifying the initial curvatures to be zero, we 

study plate examples as well as shell examples, to validate the capability 

and accuracy for various LTR and RTR cases separately. In particular, for 

sandwich structures (plates and shells) in which each layer is made of an 

isotropic or composite material, a geometrically linear, static analysis is 

carried out to compare analytical results generated in this study with 3D 

exact solutions available in the literature. Together with 3D exact solutions 

provided by Pagano [4] and Brischetto [5], several types of associated 

plate/shell theories will be compared with the present approach in all tables 

and graphics to be presented in this section,

EDN: Nth-order ESL- and displacement-based theory

EDZN: Nth-order ESL- and displacement-based theory including Murakami’s 

Zig-Zag function

LDN: Nth-order LW- and displacement-based theory

EMCN: Nth-order ESL- and displacement-based mixed theory

EMZCN: Nth-order EDZ- and displacement-based mixed theory

LMN: Nth-order LD- and displacement-based mixed theory
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VAPAS: Second-orderESL-andstrain-basedtheory

It is noteworthy to point out that the present approach used 6 DOFs for its 
zeroth-order (PA(00EE)) and second-order (PA(11EE) and PA(22CS)) 
approximations. Here, from Demasi [31], ED types are indicated as a sort 
of Advanced Higher-order Shear Deformation Theories (AHSDT), and EDZ 
is named as Advanced Higher-order Shear Deformation Theories with 
Zig-Zag effects included (AHSDTZ). In addition, LD theories are indicated 
as Advanced Layer-wise Theories (ALWT), and from Yu [13, 14], VAPAS 
denotes the second-order approximation of Variational Asymptotic Plate and 
Shell Analysis (VAPAS) and has the same potential energy functional of the 
2D generalized Reissner-like model. And the character M included in the 
types means mixed models based on Reissner’s mixed variational theorem. 
In this section, the six proposed examples are taken to be simply supported 
along all four edges and are subjected to the following harmonic transverse 
normal loads at the top of the whole structure

   
    sin


sin


 (124)

where  is the amplitude of transverse applied pressure,  and  are the 

half-wave numbers. And  representing length evaluated in  directions. 

Moreover, for the purpose of presenting the results graphically, the three 
kinds of non-dimensional quantities are adopted in the following forms:

   
 




   




   



 




  

  


(124)

,
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 




   




   



 
 

 

(126)

and

   
 




   



 




  

  


(127)

As the relative error Err%, number in parentheses on the right of results 
calculated from different plate and shell theories are also defined as follows:

   
    

       
× (128)

  This section is organized as follows: in Sect.5.1., we investigate the effect 
of the order transition of 2D generalized transverse motion measures due to 
mismatch of material constants between constituent materials in developing a 
universal model. Referring to the published literature, one can easily observe 
that several benchmarks with various FCSRs, LTRs and RTRs have been 
critically performed to assess the capability and accuracy of different 
higher-order sandwich plate/shell theories. Therefore, in Sect.5.2. and 
Sect.5.3., for the purpose of a detailed comparison with 3D exact solutions 
found in Pagano [4] and Brischetto [5], let us especially consider bending 
problems of composite sandwich plates/shells suggested by Pagano [4], 
Carrera and Demasi [6], Carrera and Brischetto [7,9], Demasi and Yu [8].
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5.1 Effect of different orders of 2D generalized transverse   

   motion measures into two universal theories

Fig. 3 Antisymmetric sandwich plate configuration of the bending problem

   As depicted in Fig. 3 from Demasi and Yu [8], an antisymmetric 

rectangular sandwich plate made of isotropic materials is considered with 

width   and the total thickness   along  direction. In 

particular, each thickness of top and bottom skin-layers has   and 

 , while the core-layer has  . It is also a thick ( ) 

with three FCSR cases (     ). As far as 

Poisson’s ratio is concerned, the same values are used as    .

  To present the results graphically, we used the normalization scheme of 

Eq. (125). Together with the exact 3D solution found in Brischetto [6], the 

through-thickness distributions of , , 

,  are predicted by two different refined 

universal theories: in developing a refined universal model, we take the 
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present approach with ∼ (PA(22CS)) and the present approach with 

∼
  (PA(22CSO)).

  Here it is noted that a somewhat different asymptotic approach for 

composite sandwich plates was independently introduced by Rao et al. [32]. 

Rather than following Berdichevsky’s works, an analytical framework similar 

to that used by Yu [13, 14] was used. It involves adopting a deformed plate 

triad, B, that takes into account transverse shear deformations and assuming 

the order associated with the transverse shear strains to be  throughout the 

development. Although we cannot make a direct comparison with their 

asymptotic models, PA(22CSO) will be alternatively used and examined 

because of following the same order analysis used by Rao et al. [32] when 

the corresponding asymptotically correct energy functional up through the 

second order has been constructed.

  First, let us take the isotropic and thick sandwich plate with not hard-skin 

(FCSR=). From the plotted results in Fig. 6, one can observe that results 

obtained from PA(22CS) and PA(22CSO) are almost identical to 3D exact 

solutions because the effect of transverse shear deformation is not significant 

for this case.

  Next, other sandwich plates with different FCSRs are investigated to 

demonstrate the dominant effect of the order transition of  in developing 

a refined universal model for thick composite sandwich plates. From the 

plots in Figs. 7 and 8 for hard-skin (FCSR=) and very hard-skin 

(FCSR=), respectively, one can easily observe that the difference 
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dramatically increases with increasing FCSR. Unlike results calculated by 

PA(22CSO), those from PA(22CS) for both hard-skin and very hard-skin 

cases has all excellent agreement with 3D exact solutions because as pointed 

out by Berdichevsky’s papers, the 2D generalized transverse motion 

measures are chosen to be of the order of  when the thick sandwich 

plate with the hard-skin FCSR is investigated as the worst scenario case. 

Therefore, this clearly proves that to model the sandwich plates confidently 

and obtain accurate results over a wide range of FCSRs, it is very 

important to capture the order transition of 2D generalized transverse motion 

measures caused by mismatch of material properties between constituent 

materials as the essential consideration when the refined universal theory is 

asymptotically constructed.

5.2 Bending analysis of composite sandwich plates/shells

   related to different values of LTR and RTR for a fixed  

   FCSR

  In section 5.2.1., as depicted in Fig. 4, a symmetric square sandwich plate 

is considered with identical width  along  and total thickness . 

And both skin layers have equal thickness    and the core layer 

thickness is  , where the total thickness of the plate is  . 

In addition, the material properties of both skin layers are   

, ,  ,   and   , 



- 62 -

Fig. 4 Symmetric sandwich plate and spherical sandwich shell configuration  
      of the bending problem

where the two subs-cripts  and  signify the parallel and transverse 

directions to the fibers, respectively. On the other hand, the core material is 

transversely isotropic with respect to  and has   , 

 ,   ,   and  

 . Thus, the FCSR is  , which represents the not 

hard-skin case. The pressure is sinusoidally distributed over the top surface 

(). The corresponding boundary conditions for the sandwich plate 

are the same as those used in the previous section. In section 5.2.2., a 

spherical sandwich shell is considered with same properties of the symmetric 

square sandwich plate and, in addition, geometric data for shell  

representing mean radius of curvature evaluated in  directions. And the 

results have been proposed in Sect. 5.2. in terms of non-dimensional form 

of Eq. (125).
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5.2.1 Symmetric sandwich plate proposed by Pagano [4]    

     and Carrera and Demasi [6]

  Firstly, to assess the accuracy of the present approach for moderately 

thick and thick plates, the symmetric sandwich plate proposed by Pagano [4] 

and Carrera and Demasi [6] are carried out and compared with the 3D 

exact solution obtained from Pagano [4] for a fixed FCSR and various 

LTRs. The different values of LTR that are used are {2,4,10}, where 

LTR=2 represents a very thick sandwich plate, LTR=4 a thick one and 

LTR=10 a moderately thick one. Here to present the results graphically we 

used the same normalization scheme as one introduced by the previous 

subsection.

  In Tables 1-3, results obtained from the present approaches have been 

compared with ones from 3D elasticity theory (3D Exact) and various ESL- 

and LW-plate theories for moderately to very thick cases; the percentage 

relative error is also placed in parenthesis. As shown in Table 1 for 

maximum transverse deflection and 2 for maximum in-plane normal stress, 

respectively, the our refined approach has very similar predictions as LD2 

and LD3 for all LTR cases. However, from the table, one can easily 

determine that our refined approach is generally better than PA(00EE) and 

VAPAS for thick to very thick plates because our refined approach is the 

universal theory based on the asymptotically correct energy functional, taking 

into account the higher-order mechanical deformations of sandwich structures. 
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Moreover, from the Table 3 for maximum transverse shear stress, it is 

possible to see that the present approach(22CS) has an accuracy comparable 

or superior to all other higher-order theories listed in the table for all LTR 

cases, except the only one case of EDZ3 for the LTR=2. However, from 

the results in Tables 1 and 2, the present approach(22CS) presents a great 

compromise between accuracy and efficiency because the present approaches 

requires only 6 DOFs for predicting mechanical characteristics of composite 

sandwich plates with various LTRs.

  For the purpose of confirming the above results graphically, the transverse 

displacement and transverse stress distributions of the thick sandwich plate 

are predicted by three different approaches (3D Exact, PA(00EE), VAPAS) 

and plotted versus the normalized thickness coordinates in Fig. 9, where Fig. 

9(a) depicts the transverse displacement distribution , Fig. 9(b) the 

in-plane normal stress distribution  and Fig. 9(c) and (d) the transverse 

shear/normal stress distributions  and , respectively. Unlike results 

obtained from the present approaches, those from VAPAS differ from the 

3D exact solutions for the transverse displacement and shear stress, although 

PA(00EE) agrees well for the transverse shear stress. Therefore, one can 

easily observe that PA(22CS) has excellent agreement with the 3D exact 

solution (Pagano [4]) for all displacement and stress components investigated 

in the thick case.
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5.2.2 Bending analysis of sandwich spherical shells

  The sandwich spherical shell is considered to assess the accuracy of the 

present approaches and compared with the 3D exact solution obtained from 

Brischetto [5] for a fixed FCSR and various RTRs. The different values of 

RTR that are used are {10, 100}. Here to present the results graphically we 

used the same normalization scheme as one introduced by the previous 

subsection.

  Together with the exact 3D solution found in Brischetto [5], the 

through-thickness distributions of     are predicted mainly by 

two different refined universal theories: in developing a refined universal 

model, we take the approach with ∼ (PA(11EE)) and the approach with 

∼  (PA(22CS)).

  To investigate the effect of the order of the curvature radius of the 

reference surface specifically, all parameters are fixed except for RTR. In 

Fig. 10 and 11 show the through-the-thickness distributions of    

passing through the centroid of the shell and  passing through the point 

(). In Fig. 10(d) and 11(d), different shell theories are markedly 

distinguished, observing that PA(00EE) and PA(11EE) with a stress recovery 

in which equilibrium equations are integrated along the thickness direction as 

an extra post processing step describe the transverse normal stress more 

accurately than PA(22CS) and VAPAS with a refined recovery relations in 

which second-order warpings are included additionally. And Fig. 10(a)-(c) 
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for ∼ , one can observe that results obtained from PA(11EE) and 

PA(22CS) are almost identical to 3D exact solutions. From the Fig. 11(a) 

and (b) for ∼, both approach PA(11EE) and PA(22CS) have similar 

error rates, however, in the Fig. 11(c), the trend of the solutions of 

PA(11EE) is similar with 3D exact solutions, unlike results calculated by 

PA(22CS). Therefore, to obtain accurate results over a wide range of RTRs, 

the order ∼ is better than the order ∼  when the refined 

universal theory is asymptotically constructed.

5.3 Bending analysis of composite sandwich plates/shells

   related to different values of LTR, RTR and FCSR

  In order to explore how the various values of LTR, RTR and FCSR can 

affect the response of sandwich plates/shells, the sandwich plate problems 

conducted by Carrera and Brischetto [7], Demasi and Yu [8], and the 

sandwich shell problems conducted by Carrera and Brischetto [9] will be 

considered. The plate problem is similar to the geometric configuration used 

in the Sect.5.1. And, a curved shell panel denoted as Ren shell and a 

cylindrical shell well-known as Varadan-Baskar shell will be considered, 

respectively; see Fig.5. And, in this section 5.3., a metallic material of two 

top skin-layers is ,  and   , while a Nomex 

material of the core-layer is transversely isotropic with respect to  and is 

  ,    and   . Stiffer 

skins and softer cores have been obtained by multiplying the Nomex 
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material properties by various factors. Thus, three different cases of FCSRL= 

 
  and FCSRz=  

  were analyzed; this range of FCSRL is ×

{,} and this range of FCSRz is ×{,}.

5.3.1 Symmetric sandwich plate proposed by Carrera and    

     Brischetto [7] and Demasi and Yu [8]

  To assess the accuracy of the present approaches for various FCSRs and 

LTRs, the plate case consists of the validation problems conducted by 

Carrera and Brischetto [7] and Demasi and Yu [8]. Similar to the geometric 

configuration used in Sect. 5.1., different values of the thickness parameter 

are treated; this range of LTRs is {2,4,10}. Both skin-layers have equal 

thickness    and the core layer has  , respectively. 

Moreover, for the purpose of presenting the results graphically, as another 

kind of non-dimensional quantities Eq. (126) is adopted.

  Table 4 compares different higher-order approaches with 3D exact 

solutions found in Brischetto [5]. Maximum transverse displacements in 

correspondence to the middle surface are given for different values of the 

LTR and FCSR (FCSRL and FCSRz). From the table, one can observe that 

our refined approaches has excellent agreement with the 3D exact solution 

for all FCSR and LTR case investigated but results obtained from VAPAS 

are highly inaccurate for all sandwich plates with very hard and extremely 

hard FCSRs in any LTRs investigated. This can be indirectly explained that 

LW-based plate theories are required to predict accurate maximum transverse 
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displacements for the sandwich plate problems in high FCSR and small LTR 

cases.

  Next, significant stress comparisons with 3D exact solutions for different 

plate theories are given in Table 5 for maximum in-plane normal stress and 

6 for maximum transverse shear stress. As shown in these table, similar 

observations to those made earlier can be made. Therefore, for 3D stress 

predictions of composite sandwich plates, the present approach (22CS) has a 

very good accuracy, generally better than all other theories listed in the 

tables. Moreover, from Table 6, it seems that PA(11EE) cannot describe 

accurately the distributions of transverse shear stress for high value FCSR 

and thick plate due to PA(11EE) results of transverse shear stress with 

unsatisfied accuracy.

  To confirm the above results graphically, Figs. 12-14 show the 

through-the-thickness distributions of 3D displacement and stress distributions 

of the thick sandwich plates with three different FCSR cases: (a) hard skin 

FCSR (FCSRL×
 and FCSRz), (b) very hard skin FCSR 

(FCSRL×
 and FCSRz×

), (c) extremely hard skin FCSR 

(FCSRL×
 and FCSRz×

), where Figs. 12(a), 13(a) and 

14(a) depicts the transverse displacement distributions , and Figs. 12(b), 

13(b) and 14(b) the in-plane stress distributions , Figs. 12(c), 13(c) and 

14(c) the transverse shear stress distributions  and Figs. 12(d), 13(d) and 

14(d) the transverse normal stresses , respectively.

  In the first FCSR case, one can easily observe that our refined 
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approaches have excellent agreement with 3D exact solutions for all 

displacement and stress components investigated, even though PA(00EE) and 

VAPAS differ slightly from the 3D exact solution for the transverse shear 

stress. Moreover, for thick plates with the very and extremely hard skin 

FCSR case one can easily observe that the results obtained from PA(22CS), 

PA(11EE) and PA(00EE) still agree excellent, but VAPAS is not meaningful 

with those from 3D exact solutions. However, from the plots for thick 

plates with extremely hard skin (largest values of FCSR), VAPAS results 

were not presented because they are not meaningful. In particular, the 

transverse displacement distribution for PA(00EE) on Fig. 14(a) shows that 

the difference dramatically increases with increasing FCSR in the thick case, 

while PA(22CS) and PA(11EE) have excellent agreement with the 3D exact 

solution over the whole plate thickness. Moreover, from Fig. 14(c), our 

refined approaches demonstrate the unsymmetric distribution of the transverse 

shear stress  throughout the plate thickness in the thick and extremely 

hard skin FCSR case, while such asymmetry of  cannot be described by 

PA(00EE). On the other hand, similar to Shah and Batra [18], the transverse 

normal stress obtained from the 3D constitutive relation for PA(22CS) on 

Fig. 14(d) does not accurately capture the boundary layer phenomenon near 

the top and the bottom surfaces of the composite sandwich plate. However, 

the refined approach PA(11EE) of PA(00EE), using integration of 

equilibrium equations of the 3D elasticity theory capture accurately, because 

PA(22CS) does not directly utilize the traction boundary conditions on top 

and bottom surfaces of the sandwich plate. As a result, PA(11EE) does not 
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have a satisfied accuracy of transverse shear stress passing through the point 

() compared to PA(22CS), but PA(11EE) has the strength to capture 

boundary layer effect well.

5.3.2 Single curved shells proposed by Carrera and         

     Brischetto [9]

Fig. 5 Geometry of Ren(left) and Varadan and Baskar(right) shells

  The first proposed problem of single curvature shells is a three-layered 

curved shell panel, as a Ren shell, undergoing cylindrical bending 

( ). Details on the geometrical data of Ren shell are:  , 

 ,  ,  ∞. And as a second problem of single curvature 

shells, we investigate a three-layered composite cross-ply () 

cylindrical shell which is called a Varadan-Baskar shell. Details on the 

geometrical data of Varadan-Baskar shell are:  ,  ,  , 

 ∞.  , pressure acts on the top surface. Both skin-layers 
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have equal thickness    and the core layer has  , 

respectively. To assess the accuracy of the present approaches for various 

FCSRs and RTRs, the two problems consist of the validation problems 

conducted by Carrera and Brischetto [9]. To compare the present approaches 

with the results from the Carrera and Brischetto [5], Figs. 15-20 and Tables 

7-12 show the through-the-thickness distributions of 3D displacement and 

stress distributions of the composite sandwich shells with three different 

FCSR cases. As we mentioned in the above, the case of hard skin FCSR, 

very hard skin FCSR and extremely hard skin FCSR will be used with 

different values of RTR; this range of RTRs is {4,10,100}. Moreover, for 

the purpose of presenting the results graphically, as another kind of 

non-dimensional quantities Eq. (127) is adopted.

  Table 7 compares different higher-order mixed theories with 3D exact 

solutions for Ren shell. Maximum transverse displacement in correspondence 

to the middle surface are given for different values of the RTR and FCSR. 

From the table, the present approaches show better accuracy in thick and 

soft-core shell case compared ESL mixed theories and VAPAS. And LW 

mixed theories have relatively high accuracy compared other theories. In 

Table 10 maximum transverse displacement results for Varadan-Baskar shell 

are reported. As shown in Table 7, similar observations can be made. 

Moreover, from Tables 8 and 10 for maximum in-plane normal stress of 

Ren shell and Varadan-Baskar shell, respectively, PA(11EE) excellent 

agreement with the 3D exact solution for all FCSR and RTR case but 

ressults obtained from VAPAS are highly inaccurate as discussed in the 
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previous section. As mentioned in Sect. 5.3.1., maximum transverse normal 

stress results in Tables 9 and 12 show that PA(11EE) cannot describe 

accurately the distributions of transverse shear stress for high value FCSR 

and thick shell.

  The results in Figs. 15 and 18 for the case of hard skin FCSR are 

similar to those in Fig. 11. Moreover, in Figs. 16 and 19 for very hard 

skin FCSR, PA(11EE) and PA(00EE) using integration of the equilibrium 

equations from the 3D elasticity theory capture boundary layer effect 

accurately, but PA(22CS), which takes second-order warpings into account 

additionally without integration of the equilibrium equations, cannot describe 

boundary layer effect accurately. And also VAPAS is not meaningful with 

those from 3D exact solutions. However, from the plots for thick shells 

with very hard and extremely hard skin, VAPAS results were not shown for 

the reason mentioned above. In particular, one can observe the strength of 

PA(11EE) dramatically in Figs. 17 and 20. For the case of extremely hard 

skin, to catch the boundary layer effect, the displacement-based theories have 

to expand the displacement field up to any desired degree and another 

theories, such as PA(22CS) and VAPAS, need to more unknown warpings. 

However, due to the complexity and computational cost, just adding the 

degree of freedom or unknown warpings should be avoided. Therefore, this 

difficulties can be partially supplemented by using integration of equilibrium 

equations as used in PA(11EE).

  From all the above plate problem in this section, PA(22CS) and 

PA(11EE) present a great compromise between efficiency and accuracy for 
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predicting 3D displacement and stress components of composite sandwich 

plates for all cases considered for FCSR and LTR. However, in the case of 

extremely hard skin, PA(11EE) can capture boundary layer effect well, 

whereas PA(22CS) is not satisfied with transverse normal stress distributions. 

In addition, from the shell problems, PA(11EE) taken the order ∼ has a 

great tendency similar to 3D exact solutions even in the very extremely 

high skin and thick case, although high error rate is seen in the results of 

the transverse stress of the middle surface. Therefore, PA(11EE) with a 

stress recovery as an extra post processing step is capable of characterizing 

the boundary layer effect resulting from the mismatch in the material 

properties between constituent materials.
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6. Conclusions

  The construction of a universal asymptotic model is systematically 

implemented to estimate and predict compound mechanical behaviors of 

composite sandwich shells for various FCSR, LTR and RTR cases. Unlike 

the companion paper [1] for plates, a universal asymptotic shell model that 

the geometric parameter () should consider additionally has a great 

variety of possibilities for application of asymptotic methods. Therefore, we 

take the approach with ∼ (PA(11EE)) and the approach with ∼  

(PA(22CS)) to compare the effect of the order of the curvature radius of 

the reference surface. When each layer of a sandwich structure can be 

modeled as an elastic shell and all constituent material constants of such 

shells are assumed to be of the same order, an equivalent 2D refined shell 

model is first derived in terms of the asymptotically correct energy 

functional taking account of transverse shear/normal deformation and 

incorporating the additional energy contributions. Unlike the previous 

derivation procedure from the ESL perspective, a new predominant order 

relative to FCSR for any LTR and RTR cases should be then taken into 

account during the refined derivation procedure from the LW perspective 

when the sandwich shell can be regarded as the assembly of three-layered 

structures with mismatched constituent material and geometric properties. 

With the help of the interlaminar displacement/transverse stress continuity 

conditions through the first-order approximation, the present approaches 



- 75 -

derived the refined model for composite sandwich shells with various 

FCSRs, LTRs, and RTRs having an asymptotically correct energy functional 

in terms of the only core-layer’s 2D generalized LK strain and transverse 

shear motion measures and their partial derivatives. At that time, the order 

of 2D generalized transverse motion measures can be transited into  

due to mismatch of material properties between constituent materials in 

developing a universal model. Furthermore, to evaluate the accuracy and 

capability of the present approach (22CS) valid to the same order as the 

energy formulation, 3D refined recovery relations are directly established by 

introducing refined continuity conditions of interlaminar and transverse 

stresses into the 3D displacement/strain/stress fields for each layer without 

integrating the 3D elastic equilibrium over the thickness. In addition, in the 

present approaches (00EE, 11EE), 3D recovery relations are explicitly 

provided through conditions of interlaminar 3D displacement continuity and 

integrations of the 3D elastic equilibrium equations. Finally, together with 

critical comparisons of the present approaches versus 3D elasticity and 

different higher-order ESL- and LW-approaches, the capability and accuracy 

of the refined model introduced by the present approaches to predict the 

mechanical behavior of composite sandwich shells with various FCSRs, 

LTRs and RTRs has been illustrated using several examples available in the 

literature.
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Table 1. Comparison of  from different plate theories

LTR 2 4 10
3D Exact 22.074 7.5845 2.1972
PA(11EE) 22.48 (1.85) 7.6711 (1.14) 2.2144 (0.78)
PA(22CS) 22.482 (1.85) 7.6711 (1.14) 2.2144 (0.78)
PA(00EE) 19.199 (13.02) 7.2128 (4.90) 2.1666 (1.39)

ED3 21.960 (0.52) 7.3560 (3.01) 2.1132 (3.82)
EDZ3 23.305 (5.58) 7.8710 (3.78) 2.2338 (1.67)
LD2 22.071 (0.01) 7.5931 (0.11) 2.2001 (0.13)
LD3 22.103 (0.13) 7.5948 (0.14) 2.2001 (0.13)

VAPAS 29.825 (35.11) 8.6399 (13.92) 2.2453 (2.19)

Table 2. Comparison of  from different plate theories

LTR 2 4 10
3D Exact 3.2812 1.5538 1.1511
PA(11EE) 3.6117 (10.07) 1.5837 (1.92) 1.1531 (0.17)
PA(22CS) 3.3906 (3.33) 1.6628 (7.02) 1.1745 (2.03)
PA(00EE) 2.7536 (16.08) 1.5114 (2.73) 1.1504 (0.06)

ED3 3.0752 (6.28) NA 1.1452 (0.51)
EDZ3 3.1623 (3.62) NA 1.1484 (0.23)
LD2 3.2259 (1.69) NA 1.1322 (1.64)
LD3 3.2426 (1.18) NA 1.1324 (1.62)

VAPAS 2.5066 (23.61) 1.6983 (9.30) 1.1781 (2.35)

Table 3. Comparison of  from different plate theories

LTR 2 4 10
3D Exact 0.1845 0.2384 0.2995
PA(11EE) 0.2498 (35.39) 0.2617 (9.77) 0.3041 (1.54)
PA(22CS) 0.1878 (1.76) 0.2388 (0.16) 0.2993 (0.06)
PA(00EE) 0.1992 (7.95) 0.2422 (1.59) 0.3003 (0.25)

ED3 NA NA NA
EDZ3 0.1830 (0.82) 0.2375 (0.36) 0.2991 (0.15)
LD2 0.1783 (3.35) 0.2278 (4.44) 0.2802 (6.45)
LD3 0.1785 (3.25) 0.2278 (4.44) 0.2802 (6.45)

VAPAS 0.2642 (43.17) 0.2746 (15.19) 0.3064 (2.29)
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Table 4. Comparison of  from different plate theories

LTR 2 4 10
FCSRL×

 and FCSRz 
3D Exact 45.6527 15.4839 7.0362
PA(11EE) 46.5644 (2.00) 15.59 (0.69) 7.0501 (0.20)
PA(22CS) 46.5644 (2.00) 15.59 (0.69) 7.0501 (0.20)
PA(00EE) 36.4298 (20.20) 14.4284 (6.82) 6.9350 (1.44)

ED3 NA NA NA
EDZ3 NA NA NA
LD2 45.6580 (0.01) 15.4824 (0.01) 7.0357 (0.01)
LD3 NA NA NA

VAPAS 45.6515 (0.00) 15.2521 (1.50) 6.9878 (0.69)
FCSRL×

 and FCSRz×
 

3D Exact 1089.98 590.547 149.696
PA(11EE) 1090.06 (0.01) 590.516 (0.01) 149.695 (0.00)
PA(22CS) 1090.06 (0.01) 590.516 (0.01) 149.695 (0.00)
PA(00EE) 971.351 (10.88) 566.633 (4.05) 148.38 (0.88)

ED3 NA 100.85 (82.92) 22.059 (85.26)
EDZ3 NA 507.40 (14.08) 144.20 (3.67)
LD2 1089.20 (0.07) 590.45 (0.02) 149.70 (0.00)
LD3 NA 590.54 (0.00) 149.70 (0.00)

VAPAS 3962.61 (263.46) 971.591 (64.52) 159.08 (6.27)
FCSRL×

 and FCSRz×
 

3D Exact 1469.77 1370.66 1260.32
PA(11EE) 1466.48 (0.22) 1370.47 (0.01) 1260.3 (0.00)
PA(22CS) 1466.48 (0.22) 1370.47 (0.01) 1260.3 (0.00)
PA(00EE) 1359.12 (7.53) 1343.6 (1.97) 1255.8 (0.35)

ED3 NA 111.42 (91.87) 24.045 (98.09)
EDZ3 NA 996.59 (27.29) 944.52 (25.06)
LD2 NA 1370.1 (0.04) 1260.2 (0.01)
LD3 NA 1370.6 (0.00) 1260.3 (0.00)

VAPAS 395540 (26811) 96589.7 (6947) 15352.8 (1118)
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Table 5. Comparison of  from different plate theories

LTR 2 4 10
FCSRL×

 and FCSRz 
3D Exact 2.6161 7.7334 41.888
PA(11EE) 2.6628 (1.79) 7.7881 (0.71) 41.943 (0.13)
PA(22CS) 2.7199 (3.97) 7.8643 (1.69) 42.026 (0.33)
PA(00EE) 2.2747 (13.05) 7.2498 (6.25) 41.367 (1.24)
VAPAS 1.5986 (38.89) 7.4419 (3.77) 41.796 (0.22)

FCSRL×
 and FCSRz×

 
3D Exact -6.3489 67.955 144.538
PA(11EE) -10.851 (70.91) 67.9765 (0.03) 144.592 (0.04)
PA(22CS) -9.0864 (43.12) 67.8398 (0.17) 144.604 (0.05)
PA(00EE) 29.3525 (562.32) 71.1029 (4.63) 144.253 (0.20)
VAPAS -67.5344 (963.71) 33.4484 (50.78) 95.367 (34.02)

FCSRL×
 and FCSRz×

 
3D Exact 82.5078 408.17 859.639
PA(11EE) 80.5114 (2.42) 402.14 (1.48) 859.557 (0.01)
PA(22CS) 77.8032 (5.70) 398.24 (2.43) 859.208 (0.05)
PA(00EE) 40.5716 (50.83) 160.74 (60.62) 941.799 (9.56)
VAPAS -6987.02 (8568.31) 2614.13 (540.45) 5336.1 (520.74)
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Table 6. Comparison of  from different plate theories

LTR 2 4 10
FCSRL×

 and FCSRz 
3D Exact 0.3449 0.7102 1.7919
PA(11EE) 0.3541 (2.67) 0.7173 (1.00) 1.7950 (0.17)
PA(22CS) 0.3499 (1.45) 0.7120 (0.26) 1.7925 (0.03)
PA(00EE) 0.3895 (12.94) 0.7358 (3.61) 1.8026 (0.59)

ED3 NA NA NA
EDZ3 NA NA NA
LD2 NA NA NA
LD3 NA NA NA

VAPAS 0.3963 (14.91) 0.7367 (3.74) 1.8026 (0.60)
FCSRL×

 and FCSRz×
 

3D Exact 0.0913 0.4053 1.5740
PA(11EE) 0.0640 (29.90) 0.4006 (1.16) 1.5758 (0.11)
PA(22CS) 0.0911 (0.22) 0.4052 (0.02) 1.5738 (0.01)
PA(00EE) 0.1140 (24.87) 0.4273 (5.42) 1.5849 (0.70)

ED3 NA 0.6393 (57.74) NA
EDZ3 NA 0.3499 (13.67) NA
LD2 NA 0.4052 (0.02) NA
LD3 NA 0.4053 (0.00) NA

VAPAS 0.3887 (325.79) 0.7228 (78.34) 1.7688 (12.38)
FCSRL×

 and FCSRz×
 

3D Exact 0.0012 0.0095 0.1370
PA(11EE) -0.0379 (3176.9) -0.0103 (208.42) 0.1298 (5.26)
PA(22CS) 0.0012 (0.00) 0.0095 (0.00) 0.1370 (0.00)
PA(00EE) 0.0016 (29.55) 0.010 (7.37) 0.1387 (1.24)

ED3 NA 0.6328 (6561.05) NA
EDZ3 NA 0.0069 (27.37) NA
LD2 NA 0.0094 (1.05) NA
LD3 NA 0.0094 (1.05) NA

VAPAS 0.3887 (31434.7) 0.7227 (7507.37) 1.7684 (1190.8)
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Table 7. Ren shell. Comparison of  from different shell     

        theories

RTR 4 10 100
FCSRL×

 and FCSRz 
3D Exact 6.8695 4.0202 3.4193
PA(11EE) 6.1837 (9.98) 3.8412 (4.45) 3.4025 (0.49)
PA(22CS) 6.2386 (9.18) 3.8482 (4.28) 3.4026 (0.49)
PA(00EE) 6.2183 (9.48) 3.8515 (4.20) 3.4026 (0.49)

EMC4 NA NA NA
EMZC3 NA NA NA

LM1 NA NA NA
LM2 NA NA NA

VAPAS 6.1458 (10.53) 3.4056 (15.29) 3.4025 (0.49)
FCSRL×

 and FCSRz×
 

3D Exact 234.88 47.587 3.8563
PA(11EE) 210.73 (10.28) 45.367 (4.67) 3.8372 (0.50)
PA(22CS) 213.60 (9.06) 45.388 (4.62) 3.8373 (0.49)
PA(00EE) 212.01 (9.74) 45.802 (3.75) 3.8448 (0.30)

EMC4 NA 9.2064 (80.65) 3.4718 (9.97)
EMZC3 NA 46.873 (1.50) 3.8577 (0.04)

LM1 233.41 (0.63) NA 3.8562 (0.00)
LM2 234.88 (0.00) NA 3.8562 (0.00)

VAPAS 270.19 (15.03) 45.977 (3.38) 3.8236 (0.86)
FCSRL×

 and FCSRz×
 

3D Exact 447.93 730.81 45.340
PA(11EE) 535.08 (19.46) 698.34 (4.44) 45.117 (0.49)
PA(22CS) 763.31 (70.41) 703.82 (3.69) 45.117 (0.49)
PA(00EE) 805.44 (79.81) 703.82 (4.17) 45.796 (1.01)

EMC4 NA 9.9477 (98.64) 3.4773 (92.33)
EMZC3 NA 557.33 (23.74) 44.644 (1.54)

LM1 530.79 (18.50) NA 45.342 (0.00)
LM2 447.93 (0.00) NA 45.342 (0.00)

VAPAS 26674 (5854.95) 4259.9 (482.90) 45.943 (1.33)
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Table 8. Ren shell. Comparison of  from different shell  

        theories

RTR 4 10 100
FCSRL×

 and FCSRz 
3D Exact 1.6197 1.5516 1.5371
PA(11EE) 1.5753 (2.74) 1.5350 (1.07) 1.5352 (0.12)
PA(22CS) 1.2545 (22.55) 1.3987 (9.85) 1.5210 (1.05)
PA(00EE) 1.5085 (6.87) 1.4952 (3.63) 1.5309 (0.40)
VAPAS 1.0146 (37.36) 1.3701 (11.70) 1.5195 (1.15)

FCSRL×
 and FCSRz×

 
3D Exact 9.3821 3.2816 1.5560
PA(11EE) 8.2054 (12.54) 3.1742 (3.27) 1.5539 (0.13)
PA(22CS) 7.0058 (25.33) 2.9673 (9.58) 1.5397 (1.05)
PA(00EE) 10.468 (11.57) 3.2119 (2.12) 1.5501 (0.38)
VAPAS -14.810 (257.85) 0.98742 (69.91) 1.5279 (1.81)

FCSRL×
 and FCSRz×

 
3D Exact -23.147 29.986 3.3463
PA(11EE) -22.665 (2.08) 28.519 (4.89) 3.3357 (0.32)
PA(22CS) 221.31 (1056.11) 26.959 (10.09) 3.3146 (0.95)
PA(00EE) 36.310 (256.87) 31.829 (6.15) 3.3772 (0.92)
VAPAS -1597.3 (6800.68) -37.274 (224.30) 2.3612 (29.44)
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Table 9. Ren shell. Comparison of  from different shell       

        theories

RTR 4 10 100
FCSRL×

 and FCSRz 
3D Exact 0.4593 0.4346 0.4170
PA(11EE) 0.4011 (12.67) 0.4129 (4.99) 0.4149 (0.50)
PA(22CS) 0.4136 (9.95) 0.4147 (4.58) 0.4150 (0.48)
PA(00EE) 0.3981 (13.32) 0.4122 (5.15) 0.4149 (0.50)

EMC4 NA NA NA
EMZC3 NA NA NA

LM1 NA NA NA
LM2 NA NA NA

VAPAS 0.4193 (8.71) 0.4157 (4.35) 0.4150 (0.48)
FCSRL×

 and FCSRz×
 

3D Exact 0.3380 0.4125 0.4168
PA(11EE) 0.2892 (14.44) 0.3917 (5.04) 0.4147 (0.50)
PA(22CS) 0.3102 (8.22) 0.3939 (4.51) 0.4147 (0.50)
PA(00EE) 0.2986 (11.66) 0.3913 (5.14) 0.4147 (0.50)

EMC4 NA 0.0679 (83.54) 0.0654 (84.31)
EMZC3 NA 0.4069 (1.36) 0.4169 (0.02)

LM1 NA 0.4131 (0.15) 0.4168 (0.00)
LM2 NA 0.4130 (0.12) 0.4168 (0.00)

VAPAS 0.4193 (24.05) 0.4157 (0.78) 0.4150 (0.43)
FCSRL×

 and FCSRz×
 

3D Exact -0.0104 0.0655 0.3959
PA(11EE) -0.1202 (1055.77) 0.0584 (10.84) 0.3940 (0.48)
PA(22CS) 0.0437 (520.19) 0.0634 (3.21) 0.3940 (0.48)
PA(00EE) 0.0115 (210.58) 0.0643 (1.83) 0.3936 (0.58)

EMC4 NA 7.7E-4 (98.82) 7.5E-4 (99.81)
EMZC3 NA 0.0464 (29.19) 0.2236 (43.52)

LM1 NA 0.0655 (0.00) 0.3960 (0.03)
LM2 NA 0.0655 (0.00) 0.3960 (0.03)

VAPAS 0.4193 (4131.73) 0.4157 (534.66) 0.4150 (4.82)
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Table 10. Varadan-Baskar shell. Comparison of  from 

         different shell theories

RTR 4 10 100
FCSRL×

 and FCSRz 
3D Exact 2.5060 1.1557 0.7167
PA(11EE) 2.2515 (10.16) 1.1045 (4.43) 0.7132 (0.49)
PA(22CS) 2.2756 (9.19) 1.1081 (4.12) 0.7140 (0.38)
PA(00EE) 2.2321 (10.93) 1.1060 (4.30) 0.7140 (0.38)
VAPAS 2.2230 (11.29) 1.1005 (4.78) 0.7135 (0.45)

FCSRL×
 and FCSRz×

 
3D Exact 90.171 20.465 0.8539
PA(11EE) 81.178 (9.97) 19.513 (4.65) 0.8497 (0.49)
PA(22CS) 83.159 (7.78) 19.549 (4.48) 0.8506 (0.39)
PA(00EE) 81.184 (9.97) 19.539 (4.52) 0.8516 (0.27)
VAPAS 123.95 (37.46) 20.397 (0.33) 0.8451 (1.03)

FCSRL×
 and FCSRz×

 
3D Exact 378.97 134.26 3.0995
PA(11EE) 299.87 (20.87) 128.36 (4.39) 3.0842 (0.49)
PA(22CS) 197.51 (47.88) 129.59 (3.48) 3.0848 (0.47)
PA(00EE) 197.51 (48.17) 128.33 (4.42) 3.0865 (0.42)
VAPAS 1995.8 (426.64) 310.45 (131.23) 3.1064 (0.22)
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Table 11. Varadan-Baskar shell. Comparison of  from 

         different shell theories

RTR 4 10 100
FCSRL×

 and FCSRz 
3D Exact 0.8476 0.7787 0.6218
PA(11EE) 0.8158 (3.75) 0.7702 (1.09) 0.6211 (0.11)
PA(22CS) 0.6620 (21.9) 0.7042 (9.57) 0.6161 (0.92)
PA(00EE) 0.7946 (6.25) 0.7504 (3.63) 0.6196 (0.35)
VAPAS 0.4542 (46.41) 0.6848 (12.06) 0.6152 (1.06)

FCSRL×
 and FCSRz×

 
3D Exact 6.3199 2.2280 0.6141
PA(11EE) 5.4643 (13.54) 2.1430 (3.82) 0.6133 (0.13)
PA(22CS) 4.6327 (26.70) 2.0226 (9.22) 0.6085 (0.91)
PA(00EE) 7.3512 (16.32) 2.2705 (1.91) 0.6118 (0.37)
VAPAS -10.890 (272.31) 0.5653 (76.63) 0.6022 (1.94)

FCSRL×
 and FCSRz×

 
3D Exact 61.990 9.8685 0.4016
PA(11EE) 58.931 (4.93) 9.3234 (5.52) 0.4001 (0.37)
PA(22CS) 35.971 (41.97) 8.3698 (15.19) 0.3990 (0.65)
PA(00EE) 16.919 (72.71) 11.230 (13.80) 0.4014 (0.05)
VAPAS 5013.5 (7987.59) 340.13 (3346.62) 0.6186 (54.03)



- 85 -

Table 12. Varadan-Baskar shell. Comparison of  from 

         different shell theories

RTR 4 10 100
FCSRL×

 and FCSRz 
3D Exact 0.3130 0.2961 0.2277
PA(11EE) 0.2735 (12.62) 0.2815 (4.93) 0.2266 (0.48)
PA(22CS) 0.2821 (9.87) 0.2828 (4.49) 0.2267 (0.44)
PA(00EE) 0.2712 (13.35) 0.2810 (5.10) 0.2267 (0.44)
VAPAS 0.2896 (7.48) 0.2838 (4.15) 0.2265 (0.53)

FCSRL×
 and FCSRz×

 
3D Exact 0.1803 0.2556 0.2182
PA(11EE) 0.1524 (15.47) 0.2435 (4.73) 0.2171 (0.50)
PA(22CS) 0.1676 (7.04) 0.2443 (4.42) 0.2172 (0.46)
PA(00EE) 0.1626 (9.82) 0.2428 (5.01) 0.2171 (0.50)
VAPAS 0.2743 (52.14) 0.2688 (5.16) 0.2177 (0.23)

FCSRL×
 and FCSRz×

 
3D Exact 0.0134 0.0153 0.0389
PA(11EE) 0.1228 (816.42) 0.0167 (9.15) 0.0388 (0.26)
PA(22CS) 0.0062 (53.73) 0.0148 (3.27) 0.0387 (0.51)
PA(00EE) 0.0039 (70.90) 0.0148 (8.50) 0.0386 (0.77)
VAPAS 0.0481 (258.96) 0.0432 (182.35) 0.0408 (4.88)
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(a) (b)

(c) (d)

Fig. 6 Distribution of ((a), (b), (c), (d)) vs. 

the through-thickness coordinate for FCSR=
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(a) (b)

(c) (d)

Fig. 7 Distribution of ((a), (b), (c), (d)) vs. 

the through-thickness coordinate for FCSR=
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(a) (b)

(c) (d)

Fig. 8 Distribution of ((a), (b), (c), (d)) vs. 

the through-thickness coordinate for FCSR=
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(a) (b)

(c) (d)

Fig. 9 Distribution of ((a), (b), (c), (d)) vs. 

the through-thickness coordinate
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(a) (b)

(c) (d)

Fig. 10 Distribution of ((a), (b), (c), (d)) vs. 

the through-thickness coordinate for  
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(a) (b)

(c) (d)

Fig. 11 Distribution of ((a), (b), (c), (d)) vs. 

the through-thickness coordinate for  
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(a) (b)

(c) (d)

Fig. 12 Distribution of ((a), (b), (c), (d)) vs. 

the through-thickness coordinate for FCSRL=× and FCSRz=
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(a) (b)

(c) (d)

Fig. 13 Distribution of ((a), (b), (c), (d)) vs. 

the through-thickness coordinate for FCSRL=× and FCSRz= ×
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(a) (b)

(c) (d)

Fig. 14 Distribution of ((a), (b), (c), (d)) vs. 

the through-thickness coordinate for FCSRL=× and FCSRz= ×
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(a) (b)

(c) (d)

Fig. 15 Ren shell. Distribution of ((a), (b), (c), (d)) vs. 

the through-thickness coordinate for FCSRL=× and FCSRz=
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(a) (b)

(c) (d)

Fig. 16 Ren shell. Distribution of ((a), (b), (c), (d)) vs. 

the through-thickness coordinate for FCSRL=× and FCSRz= ×
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(a) (b)

(c) (d)

Fig. 17 Ren shell. Distribution of ((a), (b), (c), (d)) vs. 

the through-thickness coordinate for FCSRL=× and FCSRz= ×
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(a) (b)

(c) (d)

Fig. 18 Varadan-Baskar shell. Distribution of ((a), (b), (c), (d)) 

vs. the through-thickness coordinate for FCSRL=× and FCSRz=
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(a) (b)

(c) (d)

Fig. 19 Varadan-Baskar shell. Distribution of ((a), (b), (c), (d)) 

vs. the through-thickness coordinate for FCSRL=× and FCSRz= ×
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(a) (b)

(c) (d)

Fig. 20 Varadan-Baskar shell. Distribution of ((a), (b), (c), (d)) 

vs. the through-thickness coordinate for FCSRL=× and FCSRz= ×
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