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요   약 

대기보정은 대기효과를 제거하여 지표반사도를 산출하는 방법이다. 식생지수 등 

위성 기반의 2 차 산출물들을 획득하기 위하여 정확한 대기보정 방법은 필수적이다. 

복사전달모델은 정확도는 높지만, 연산 과정에 많은 시간이 소요된다. 이를 해결하기 

위하여 조견표 기반 실시간 지표반사도를 산출하고 있다. 그러나, 조견표 구축에 

사용되는 입력 변수들의 간격으로 인해 지표반사도를 산출하는 과정에서 불연속면이 

발생한다. 즉, 지표반사도의 오차를 발생시켜 정확한 지표에 대한 정보를 획득하기가 

어렵다. 조견표의 간격을 해소하기 위하여 선행 연구들은 조견표에 보간법을 적용하고 

있다. 보간법을 통해 지표반사도의 정확도는 향상되었지만, 태양 천정각, 에어로졸 등 

지표반사도 산출 과정에 영향력이 큰 입력 변수들의 변동성을 해결하기에는 한계가 

있다. 이 한계점을 해결하기 위하여, Deep Neural Network (DNN) 기반 지표반사도 

산출 모델을 생성하였다. DNN 모델은 비선형 관계들을 모델링하여 예측 모델을 

생성하고, 연산에 대한 효율도 높게 나타나고 있다. 그리고, 기존의 고해상도 영상에 

대해 대기보정 수행 시 단일 대기 성분 자료를 입력하여 지표반사도를 산출하였다. 

이것은 고해상도 영상의 정밀한 지표반사도를 산출하는 방법에 적합하지 않다. 본 

연구는 고해상도 위성인 다목적실용위성-3/3A 호의 지표반사도를 산출하기 위하여 

연구를 수행하였다. DNN 모델의 성능을 평가하기 위하여 보간법 대비 정확도 및 산출 

속도에 대하여 분석하였다. DNN 모델은 보간법의 정확도 대비 복사전달모델과 유사한 

결과가 나타났고, 산출 속도도 조견표와 차이가 없는 결과가 나타났다. 본 연구를 통해 

다양한 기하 자료 및 대기 성분에 대해 높은 정확도로 지표반사도를 산출할 수 있다.

DNN을 활용한 6SV LUT 불연속면 개선 연구:  

KOMPSAT-3/3A 기반으로 

  

정 대 성 
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1. Introduction 

1.1. Background 

The satellite's sensor acquires information about the target on the 

surface by measuring the radiance reflected from the ground surface. In 

this process, atmospheric molecules and aerosols in the atmosphere layers 

absorb, scatter, and reflect radiance. Because of these atmospheric 

components, the at-sensor radiance has an error. This effect is called the 

atmospheric effect, and the process of retrieving the surface reflectance by 

removing the atmospheric effect is called atmospheric correction (Liang 

et al., 2001). Therefore, to obtain precise information of the target on the 

surface, a precise atmospheric correction method is essential in the pre-

processing of satellite images. 

Previous studies performed atmospheric correction using physically 

based Radiative Transfer Model (RTM) such as the Second Simulation of 

a Satellite Signal in the Solar Spectrum vector (6SV) (Vermote et al., 

2006), MODerate resolution atmospheric TRANsmission (MODTRAN) 

(Berk et al., 2006), and Library for Radiative transfer (LibRadtran) (Mayer 

and Kylling, 2005). The RTM accounts for radiance in the atmosphere by 

using the Spectral Response Function (SRF) of the sensor, angular 
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information (Solar Zenith Angle; SZA, Relative Azimuth Angle; RAA, 

Viewing Zenith Angle; VZA, and other angular information), and 

atmospheric components (Total Precipitable Water; TPW, Total Column 

Ozone; TCO, Aerosol Optical Depth; AOD, and other atmospheric 

components). In addition, the accuracy of RTM is high because it uses 

data that have same characteristics as the spatial and temporal information 

of satellite images. 

However, the calculation process of RTM is time consuming. It is 

difficult to apply it to the retrieval of real-time surface reflectance in 

satellite images. To overcome for this limitation, studies related to 

atmospheric correction used a Look-up table (LUT) that stores pre-

calculated output values of RTM to perform an array indexing operation. 

This method improved the processing efficiency of surface reflectance 

retrieval (Liang et al., 2001; Lyapustin et al., 2011). Nevertheless, since 

the input parameters of the LUT are constructed with an interval, the 

accuracy is low when retrieval of the surface reflectance for angular 

information and atmospheric components existing within the interval (Qu 

et al., 2013). In other words, discontinuity in surface reflectance occurs in 

satellite images (Fig. 1, Fig. 2). To improve the accuracy of the surface 

reflectance retrieved based on the LUT, previous studies improved the 

LUT by applying interpolation methods (Staenz et al., 2002, Liang et al., 
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2006). Although interpolation methods have improved the accuracy of the 

surface reflectance, the error of the surface reflectance is still increasing 

as SZA the higher (Lee et al., 2020). This is because the higher the SZA, 

the longer the atmospheric path of radiance. In other words, radiance is 

highly affected by atmospheric effects and the variability of the surface 

reflectance increases (Vermote et al., 2006). It is difficult to improve this 

variability with interpolation methods. In addition, since AOD, an 

important input parameter in the atmospheric correction process, has a 

large weight on the atmospheric effect, the surface reflectance is also 

sensitive to AOD (Boehmler et al., 2018). 

Atmospheric correction algorithms of Moderate Resolution Imaging 

Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer 

Suite (VIIRS) set the upper limit of AOD up to 5.0 and retrieve the surface 

reflectance based on LUT (Vermote et al., 2011). However, there are 

insufficient studies to retrieve and analyze LUT-based surface reflectance 

by setting the upper limit of AOD to 5.0. Namely, it is necessary to 

consider the influence of atmospheric effects that appear as the values of 

the input parameters increase, and to improve the discontinuities that 

appear in the process of retrieving the surface reflectance based on LUT. 

In this study, we propose a Deep Neural Network (DNN) as a method 

that can calculate real-time surface reflectance while improving the 
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discontinuity of LUT. The DNN consists of several layers hidden between 

the input and output layers, allowing you to model complex nonlinear 

relationships between input and output values (Schmidhuber, 2015). This 

has the advantage of generating a model that produces an output with high 

accuracy by training input data and has good computational efficiency 

(Al-Jarrah et al., 2015). For this reason, recently, study on producing 

satellite data-based outputs using DNN in the field of remote sensing has 

been conducted. (Yeom et al., 2019; Ma et al., 2020). In this study, DNN 

trained LUT constructed with RTM to improve discontinuities and 

generated a model capable of calculating surface reflectance for various 

angular information and atmospheric components.  

The satellite image data used in the study is Korea Multi-Purpose 

SATellite-3/3A (KOMPSAT-3/3A), which provides high-resolution 

images with a spatial resolution of about 2m (visible and near infrared 

bands). Unlike low and medium-resolution satellites such as Terra/Aqua 

and Suomi National Polar-orbiting Partnership (Suomi-NPP) that provide 

atmospheric correction outputs, high-resolution satellite imagery does not 

provide atmospheric correction outputs. This is because high-resolution 

satellite images have been widely used as visual data such as map making 

(Vu et al., 2010). In general, when performing atmospheric corrections on 

high-resolution images, a single pixel atmospheric component data was 
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applied to all pixels in the image. When a variety of atmospheric 

components is observed in a high-resolution image, an error in surface 

reflectance occurs in the conventional method (Fig. 3). Therefore, Not 

applying a single atmospheric component data obtains precise surface 

reflectance in high-resolution images. 

The purpose of this study is to calculate an accurate surface reflectance 

by improving the discontinuity of the LUT using DNN. We constructed 

the LUT of KOMPSAT-3/3A using 6SV RTM, which is currently open 

source, and the LUT is provided as training data to generate an 

atmospheric correction model that automatically calculates surface 

reflectance by DNN. Then, the performance of the DNN-based model was 

analyzed by comparing the DNN-based surface reflectance with the 

interpolated surface reflectance. 
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Fig. 1. Example of discontinuity in LUT-based surface reflectance. 

 
 

 

Fig. 2. LUT-based surface reflectance in satellite imagery (Figure 
from Lee et al., 2020).
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Fig. 3. Examples of surface reflectance of high-resolution images. (a) The surface reflectance calculated based 
on a single atmospheric component data, (b) the surface reflectance calculated based on not a single 

atmospheric component data, (c) Surface reflectance calculated as the absolute error between (a) and (b). 
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2. Study area and Data 

2.1. Study area 

The study area is land included in 20°N-50°N, 100°E-130°E (Fig. 4). 

This area has a variety of surface land types and climate types (Corlett, 

2014). In addition, it is an area where the variability of aerosols 

concentration is large due to the yellow dust occurring in the desert (Wang 

et al., 2008). 

 

 

Fig. 4. The study area and location of satellite images. 
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2.2. Satellite data 

2.2.1. KOMPSAT-3/3A data 

KOMPSAT-3 and KOMPSAT-3A were launched for the purpose of 

Earth observation on May 18, 2012 and March 25, 2015, respectively. 

KOMPSAT-3/3A are polar orbit satellites that are operated by Korea 

Aerospace Research Institute (KARI) and provide sub-meter resolution 

(Panchromatic band). KOMPSAT-3A is the sister of KOMPSAT-3, 

except for the Near-Infrared (NIR) band that KOMPSAT-3A has, their 

spectral bands are the same. That is, the visible and NIR bands of 

KOMPSAT-3/3A have the same SRF (Fig. 5). Table 1 shows the 

specification of KOMPSAT-3/3A.  

Table 2 shows information about KOMPSAT-3/3A images (Scene 1–

9) shown in Fig. 4, and these information describe the date, time, and area 

when the images were observed. KOMPSAT-3/3A images used in this 

study are Level 1G products to which radiometric correction, sensor 

correction and geometric distortions correction are applied. These images 

were cloud-free, and blue, green, red, and NIR bands were used in the 

study.  
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Table  1. Specifications of KOMPSAT-3/3A 

Pan: Panchromatic, MS: Multispectral (MS1: Blue, MS2: Green, MS3: Red, MS4: NIR)  

 

Fig. 5. SRF for Blue, Green, Red, NIR bands of KOMPSAT-3/3A.

Parameter KOMPSAT-3 KOMPSAT-3A 

Altitude 685 km 528 km 

Wavelength 

Pan: 0.45-0.90   

Blue: 0.45-0.52   

Green: 0.52-0.60     

Red: 0.63-0.69   

NIR: 0.76-0.90   

Pan: 0.45-0.90   

Blue: 0.45-0.52   

Green: 0.52-0.60     

Red: 0.63-0.69   

NIR: 0.76-0.90    

IR: 3.3-5.2   

Spatial 
resolution 

Pan: 0.7 m 

MS: 2.8 m 

Pan: 0.55 m  

MS: 2.2 m 

IR: 5.5 m  

Swath width 15 km (at nadir) 12 km (at nadir) 
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Table 2. Information on images of KOMPSAT-3/3A used in the study 

Satellite Scene number Date Time (UTC) Center latitude Center longitude 

KOMPSAT-3 Scene 1 2015-09-06 04:28:51 43.05°N 124.43°E 

KOMPSAT-3A 

Scene 2 2016-04-05 04:54:00 42.22°N 123.08°E 

Scene 3 2016-12-02 05:00:27 46.99°N 123.75°E 

Scene 4 2018-02-21 05:01:16 42.73°N 120.17°E 

Scene 5 2018-03-14 06:00:46 40.57°N 105.81°E 

Scene 6 2018-04-07 06:26:32 34.77°N 101.05°E 

Scene 7 2018-08-20 04:42:39 47.01°N 123.68°E 

Scene 8 2018-10-05 05:56:01 24.36°N 109.58°E 

Scene 9 2019-05-20 05:26:31 40.02°N 116.37°E 
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2.2.2. MODIS data 

We used atmospheric component data from MODIS operating in 

Terra/Aqua satellites. This is because KOMPSAT-3/3A does not retrieve 

atmospheric component data. We used MODIS Atmospheric Profiles 

(MODIS/Terra Temperature and Water Vapor Profiles 5-Min L2 Swath 5 

km; MOD07, MODIS/Aqua Temperature and Water Vapor Profiles 5-

Min L2 Swath 5 km; MYD07) and MODIS Aerosol Product 

(MODIS/Terra Aerosol 5-Min L2 Swath 3 km; MOD04_3K, 

MODIS/Aqua Aerosol 5-Min L2 Swath 3 km; MYD04_3K) among 

MODIS level-2 products as data for atmospheric correction.  

The MODIS Atmospheric Profiles (MOD07, MYD07) provides 

several parameters, including TCO, TPW, moisture profile. This product 

generated day and night when at least nine field of views are cloud-free 

and provide a daily atmospheric profile at 5 km spatial resolution. The 

MODIS Aerosol Product (MOD04_3K, MYD04_3K) provides AOD, 

aerosol size distribution, and other parameters. This product is produced 

based on the Dark Target aerosol algorithm and is generated daily at 3 km 

spatial resolution to evaluate air quality in the high-scale area. We used 

TPW and TCO of MODIS Atmospheric Profiles (MOD07, MYD07) and 

AOD of MODIS Aerosol Product (MOD04_3K, MYD04_3K) in the 

process of performing atmospheric correction of KOMPSAST-3/3A data. 
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The MODIS data has the closest time to the time when the image was 

acquired by KOMPSAT-3/3A. Also, match-up was performed due to the 

difference in spatial resolution between KOMPSAT-3/3A data and 

MODIS data. 

 

2.2.3. ECMWF data 

The European Center for Medium-Range Weather Forecasts 

(ECMWF) is conducting numerical weather prediction studies to produce 

accurate climate data and medium-range forecasts. ECMWF operates The 

Copernicus Atmosphere Monitoring Service (CAMS) service under the 

European Union's Copernicus Earth observation programme. The CAMS 

provides information on the composition and variability of atmospheric 

components based on models and observation data from sources such as 

satellites and in-situ sensors. The CAMS Near-real time (NRT) provides 

daily analysis and prediction of atmospheric composition and aerosol 

concentrations related to climate change. This assimilation system is based 

on the Integrated Prediction System and has a 4D variation analysis. This 

system was generated by the Monitoring Atmospheric Composition and 

Climate (MACC) study (Koffi and Bergamaschi, 2018). So, The MACC 

reanalysis is a data of atmospheric composition provided by CAMS, and 

the data are from 2003 to 2012. 
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In this study, there are cases where it is impossible to perform 

atmospheric correction due to the missing value of MODIS data. To 

prevent this case, climate values (TPW, TCO, AOD) were generated based 

on data of CAMS NRT and MACC reanalysis (not missing value). 

Considering the operating period of KOMPSAT-3/3A and the minimum 

synthetic period recommended for constructing a climate dataset, the data 

period was set as from 2010 to 2019. In the case of CAMS, data are 

provided from July 2012, so the data for 2010-2012 considered the MACC. 

To confirm the difference between the two data, the daily average value 

(0.125° of spatial resolution, respectively) from July to December 2012, 

which is the common period between the two data, was compared and 

analyzed. Here, the analysis area was set as 15°N-55°N, 70°E-145°E 

considering the study area (Fig. 4). The comparative analysis result of 

CAMS and MACC data confirmed that there was little difference between 

the data (Root Mean Square Error; RMSE = 0.0125 g/cm2 and bias = -

0.0074 g/cm2 for TPW, and RMSE = 0.0061 cm-atm and bias = -0.006 

cm-atm for TCO, and RMSE = 0.0295 and bias = -0.0197 for AOD). This 

result was judged to have little influence on the method of generating 

climate values and calculating surface reflectance in this study. The 

monthly average climate value was constructed based on MACC and 

CAMS data. 
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3. Methodology 

3.1. Synthesis methodology 

Fig. 6 shows the synthesis methodology process of this paper. First, a 

6SV-based LUT was constructed to make training data to be provided to 

DNN. After that, the DNN trained the LUT to generate a model for 

retrieving the surface reflectance, and the generated DNN model estimated 

the intermediate values of the LUT. Based on the predicted results, the 

interval of the LUT, which shows a high error, was finely reconstructed, 

and the intermediate value of the LUT was again estimated. To evaluate 

the performance of the reconstructed LUT-based DNN model, the 

interpolation methods used in previous studies were compared and 

analyzed based on three criteria (accuracy, discontinuity, retrieval speed). 

In this analysis, 6SV was used as verification data. 
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Fig. 6. Flowchart of this study



17 

 

3.2. 6SV RTM 

The 6SV RTM was used to construct a LUT for KOMPSAT-3/3A. 

The 6SV is a vector version with improved accuracy in 6S (scalar version) 

(Vermote et al., 1997). Whereas the 6SV accounts for the polarization 

effect, the previous version 6S ignored the polarization effect. In addition, 

the number of scattering angles used to set the scattering phase function 

in 6SV has increased, and conditions of the vertical aerosol profile can be 

finely set. 6SV has higher simulation accuracy than other RTMs such as 

MODTRAN and SHARM (Kotchenova et al., 2006). Therefore, many 

studies have used 6SV to correct atmospheric effects in studies such as 

radiometric calibration (Yeom et al., 2018) and retrieval of aerosol 

(Ignatov et al., 2002), as well as studies on retrieving surface reflectance. 

The 6SV calculates atmosphere components, angular information, and 

SRF of the sensor to retrieve atmospheric correction coefficients ( ,  ,  , and  ) . Among these coefficients,   is used to 

calculate the surface reflectance based on the Top of the atmosphere (TOA) 

reflectance of satellite data. However, the TOA radiance from satellite 

data is used to retrieve the surface reflectance in this study. Therefore, 

coefficients ( , , and ) were used excluding the coefficient   

in the process of this study. 
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And, the SRF of the band is calculated by dividing the band width of 

the sensor by 2.5nm by 6SV. The equation (1), (2), and (3) describe the 

atmospheric correction coefficients, respectively.   means the inverse 

of transmittance,  is the gaseous transmission of H2O, CO2, O2, O3 

for radiance. ,   are the SZA, VZA, respectively. ↓() is the total 

transmission of the atmosphere in the path between the sun and the surface. ↑() is the atmospheric transmittance occurring in the radiance path 

between the satellite sensor and the surface.   represents the scattering 

term of the atmosphere, and   is the reflectance of molecule and 

aerosol in the atmospheric layer.   (=  ) represents the reflectance of 

the atmosphere for isotropic light (spherical albedo).   =  (,)↓()↑()       (1) 
  =  ↓()↑()                                      (2)   =                                                (3) 
The surface reflectance is retrieved by applying the atmospheric 

correction coefficients to the radiance as shown in the following equation 

(4).   is the measured TOA radiance and   in the surface 

reflectance corrected for the atmospheric effect.   =  ×       × ( ×   )                              (4) 
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3.3. Construction of 6SV LUT 

Table 3 shows information on input parameters used in 6SV 

simulation for LUT generation in this study. The input parameters to be 

used for LUT construction and the range and interval of input parameters 

were determined by referring to previous studies (Liang et al., 2010; Lee 

et al., 2020). The atmospheric correction algorithm of MODIS, VIIRS, 

and Landsat satellites designed an upper limit of 75° for SZA (Vermote et 

al., 2011), but this study set an upper limit of 80° for SZA to analyze LUT 

sensitivity and performance of DNN models. In addition, since many 

errors occur largely in SZA>70° (Lee et al., 2020), it was constructed with 

5° intervals in the SZA 0°-70° range, and 2° intervals in the SZA 70°-80° 

range. Unlike other parameters with regular intervals, AOD has 16 values 

with irregular intervals. In addition, an aerosol type was used as 

continental to correct the atmosphere on land, and the surface type was 

assumed to be a vegetation type with homogeneous Lambertian 

reflectance. We calculated the atmospheric correction coefficients by 

using 6SV for all combinations shown in table 3. The calculated 

atmospheric correction coefficients were stored as the output of the LUT 

with a six-dimensional structure. Four LUTs were generated for each band. 

In Fig. 5, since the SRFs of KOMPSAT-3 and 3A are identical to each 
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other, it is possible to calculate the surface reflectance of KOMPSAT-3 

and 3A using one LUT. 

 

Table 3. Range and interval of input parameters used for LUT 

construction 

 

  

Parameter Min Max Interval 

Solar Zenith Angle (°) 0 80 
5 (0-70) / 

2 (70-80) 

Relative Azimuth Angle (°) 0 180 10 

Viewing Zenith Angle (°) 0 30 5 

Total Precipitable Water 
(g/cm2) 0 3 0.5 

Total Column Ozone 

(atm-cm) 
0.25 0.35 0.05 

Aerosol Optical Depth 0.01, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 
1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 5.0 
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3.4. Optimization of LUT 

Atmospheric components have different sensitivity according to 

wavelength (Kaufman et al., 1997; Mayer et al., 2016). Among them, 

because AOD reacts more sensitively as the wavelength of the band 

becomes shorter, it greatly increases the error of the surface reflectance 

(Vermote et al., 2011). Fig. 7 Shows the change of atmospheric correction 

coefficients according to the change of SZA and AOD in the LUT 

constructed in section 3.3 (RAA: 90°; VZA: 15°; TPW: 1.5 g/cm2; TCO: 

0.3 atm-cm). The value of coefficient   for each band increases 

significantly at SZA>70° and shows rapid variability as the AOD 

increases and the wavelength shortens (Fig. 7(a), Fig. 7(b), Fig. 7(c), Fig. 

7(d)). We found that SZA was fixed at 80°, and when the AOD value 

changed from 4.0 to 5.0, the rate of change in coefficient   was about 

63.2% in Fig. 7(d) and 123.2% in Fig. 7(a). The change in coefficient  

is also shown similarly to the change in coefficient   (Fig. 7(e), Fig. 

7(f), Fig. 7(g), Fig. 7(h)). SZA was fixed at 80°, and when the AOD value 

was changed from 4.0 to 5.0, the rate of change of the coefficient  was 

about 68.5% in Fig. 7(h) and 137.4% in Fig. 7(e). This shows that LUT 
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construction for each band should not be performed with the same 

atmospheric components and angular information. And it is expected that 

the change of coefficients according to the interval of these input 

parameters will cause an error when using the DNN model. To solve this 

error, we analyzed the rate of change and sensitivity of the coefficients 

stored in the LUT and performed the work to make the rate of change of 

the coefficient constant. And, coefficient  is only affected by AOD 

among input parameters (Lee et al., 2015). Since it does not have a 

relationship with other input variables, a DNN model that predicts the 

coefficient  was generated, but it was used only when calculating the 

surface reflectance.
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Fig. 7. Changes in atmospheric correction coefficients according to SZA and AOD conditions for Blue ((a), (e), 
(i)), Green((b), (f), (j)), Red ((c), (g), (k)), NIR((d), (h), (l)) bands. The first, second, and third rows represent the 

coefficients , , and , respectively.
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3.5. DNN model generation 

The DNN is a type of neural network modeled with an algorithm that 

automatically extracts and learns high-dimensional features using a 

hidden layer (Thomas et al., 2017). DNN uses a feed forward network and 

error back propagation to adjust the weight and bias of each node in the 

hidden layers. In this study, the activation function was used a rectified 

linear unit in the process of making a DNN-based model. The activation 

function calculates how much input data will be reflected to the next layer. 

And, rectified linear unit is simple to compute and operate like a linear 

function, making it easy to optimize the model (Krizhevsky et al., 2017). 

Since sparse expression is possible, it is efficient in the model learning 

process. L1 regularization and L2 regularization were used to prevent 

model overfitting and to improve generalization performance. L1 

normalization makes weights close to zero to 0, and L2 regularization is 

designed to make weights close to zero overall (Cook, 2016). The batch 

size is the size of the training data used to estimate the error before the 

model weights are updated. In general, the smaller the batch size, the better 

the performance of generalization.  

In this study, to generate a DNN-based surface reflectance retrieval 

model, the LUT generated through the optimization process in Section 4.1 
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was used as training data for DNN. The atmospheric components (TPW, 

TCO, AOD) and angular information (SZA, RAA, VZA) configured in 

the optimized LUT were used as input values, and each coefficient was 

used as an output value. Validation data is required while the DNN is 

training the optimized LUT. The combinations shown in Table 5 are 

simulated with 6SV to calculate the coefficients. After that, the 

atmospheric components and angular information shown in Table 5 and 

the coefficients calculated by 6SV were used as verification data. In 

addition, atmospheric components and angular information used when 

generating a DNN-based model are normalized to 0-1 because the units of 

values are different. 

 

Table 4. Hyper parameters of the model used to generate an optimal 

model 

 

Parameter Value 

Node 100, 200, 300 

Layer 3, 4, 5 

L1 regularization 0, 1 × 10−5, 1 × 10−6 

L2 regularization 0, 1 × 10−5, 1 × 10−6 

Batch size 64, 128, 256, 512, 1024 
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Table 5. Validation data used when training a DNN-based model 

 

  

Parameter Min Max Interval 

Solar Zenith Angle (°) 2.5 79 
5 (2.5-67.5)/ 

2 (71-79) 

Relative Azimuth Angle (°) 5 175 10 

Viewing Zenith Angle (°) 2.5 27.5 5 

Total Precipitable Water 
(g/cm2) 0.25 2.75 0.5 

Total Column Ozone 

(atm-cm) 
0.275 0.325 0.05 

Aerosol Optical Depth 0.03, 0.075, 0.125, 0.175, 0.25, 0.35, 0.5, 
0.7, 0.9, 1.25, 1.75, 2.25, 2.75, 3.5, 4.5  
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3.6. Performance comparison analysis with 

interpolation methods 

The performance of the optimized LUT-based DNN model was 

evaluated using the Minimum Curvature Surface (MCS) interpolation 

method and Six-Dimensional linear interpolation (6D) used in previous 

studies. The MCS produces smooth surface from irregularly scatted data 

(Rabah and Kaloop, 2013). That is, the minimum curvature interpolates 

the given data and generates a smooth surface while preserving the 

irregularly distributed data as much as possible. Lee et al. (2020) 

interpolated SZA and VZA using MCS with 0.5° intervals in order to 

improve the accuracy of LUT-based surface reflectance in Himawari-

8/Advanced Himawari Imager data. In this study, the optimized LUT was 

interpolated using MCS. The higher the VZA, the greater the error in 

surface reflectance occurs (Vermote et al., 2011; Lee et al., 2020). 

However, since the VZA of KOMPSAT-3/3A has a range at a low angle, 

here the surface reflectance is not significantly influenced by VZA. The 

AOD was interpolated instead of VZA. Here, the SZA was interpolated 

with an interval of 0.5°, and AOD was interpolated with 0.05 interval.  

The 6D is a method of interpolating by expanding bilinear 

interpolation into a six-dimensional space (Guanter et al., 2009). Each 
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value near the interpolation point is weighted by a hyper area expanding 

the interpolation point to the opposite grid point. The 6D is different from 

LUT and MCS, which index the output suitable for the input condition 

while the output of the RTM is stored in advance. The 6D is to extend the 

linear interpolation processing to six dimensions in an optimized LUT 

whenever a value of an input parameter is given. Therefore, the accuracy 

is high, but the interpolation process takes a lot of time. This method is 

not suitable for the purpose of calculating real-time surface reflectance, 

but we used 6D to evaluate the accuracy of the optimized LUT-based 

DNN model.  

To evaluate the performance of LUT, MCS, 6D, and DNN, the 

reference data was used as 6SV. 6SV generated a total of 160,000 

reference data by simulating various random angular information and 

atmospheric components (Fig. 8). In Fig. 8, it is shown that the SZA of the 

reference data is distributed with 5° intervals from 0° to 80°. One SZA 

interval has a total of 10,000 data, and the angular information (RAA, 

VZA) and atmospheric components (TPW, TCO, AOD) are uniformly 

distributed within this interval. The three performances (accuracy, 

processing efficiency, discontinuity) of each surface reflectance 

calculation method were compared and analyzed. In the accuracy 

comparison analysis, two quantitative analysis methods (RMSE, Relative 
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Root Mean Square Error; RRMSE) were used to quantitatively evaluate 

the atmospheric correction coefficients and surface reflectance calculated. 

At the same time, the calculation speed was checked for the same input 

data and the efficiency of calculating the surface reflectance was 

compared. In the discontinuity analysis, the degree to which each method 

eliminated the discontinuity caused by the interval of the existing LUT 

was analyzed.
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Fig. 8. Distribution of random atmospheric components and angular information for performance evaluation. 
(a) SZA, (b) RAA, (c) VZA, (d) TPW, (e) TCO, (f) AOD
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4. Results 

4.1. Generation of an optimized LUT 

Fig. 9 shows the DNN based on Table 3 estimated for Table 5, and the 

result is calculated as the average of RMSE. It was found that the 

estimation performance of the DNN model was relatively low in the MS1. 

Overall, the average of RMSE between models differed significantly due 

to the difference in the variability of the coefficients. In addition, it was 

confirmed that all models appeared to be higher than the average of RMSE 

of each model in the AOD (1.25-4.5) range. To solve this average of 

RMSE, we optimized the AOD (1.0-5.0) range in Table 3 to be fine.  

Fig. 10 shows the rate of change of the coefficients   and  for 

each band in the AOD (1.0-5.0) range of Table 3. Here, the coefficient   

of the NIR band (MS4) showed the lowest rate of change (about 27%) in 

the AOD (2.5-3.0) interval (Fig. 10(a)). In consideration of this rate of 

change, the AOD interval in Table 3 was optimized that the coefficients   and  for each band can show a rate of change of about 15% within 

the AOD (1.0-5.0) range. As a result, these LUTs for each band have 

different AOD intervals (Total number of AODs in MS1: 34, MS2: 32, 

MS3: 28, MS4: 27). In addition, the DNN model based on Table 3 tended 
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to be estimated as one value when the change in the input data is small and 

the change in the output value is small during the training process (Fig. 11 

(a)). This optimized LUT-based DNN model solves this problem (Fig. 

11(b)). A DNN model was generated based on this optimized LUT, and 

an interpolation method was applied to this optimized LUT.
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Fig. 9. The average of RMSE for coefficients  ,  of each band based on DNN. MS1 ((a), (e)), MS2 ((b), (f)), 
MS3 ((c), (g)), MS4 ((d), (h)) bands. The first and second rows represent the coefficients   and , 

respectively. 
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Fig. 10. The rate of change of coefficients   and  for each band in 
the AOD (1.0-5.0) range in Table 3. (a) The rate of change of 

coefficients  , (b) the rate of change of coefficients  
 

 

Fig. 11. (a) Table 3 based DNN model estimation results, (b) 
optimized LUT based DNN model estimation results 
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4.2. Evaluation of the DNN model  

To evaluate the estimation accuracy of the optimized LUT-based DNN 

model, LUT and interpolated LUT (MCS, 6D) were used. Reference data 

for comparative analysis are the coefficients   and   of 6SV 

calculated by simulating the condition of Table 5. Fig. 12, Fig. 13, Fig. 14, 

and Fig. 15 show the accuracy of DNN, LUT, MCS and 6D calculated for 

the coefficient   of 6SV, respectively. Fig. 15, Fig. 16, Fig. 17, and Fig. 

18 shows the accuracy for the coefficient . Because of the interval of 

the input parameters, the error of the LUT increases as the coefficient 

value to be calculated increases. In MCS, SZA and AOD were interpolated, 

so the error caused by the interval was relatively reduced compared to the 

LUT. However, since there are input parameters that have not been 

interpolated, the error increases as the coefficient value to be calculated 

increases. 6D showed higher accuracy than LUT and MCS because linear 

interpolation was applied to all input parameters. DNN showed lower 

RMSE and RRMSE than 6D in all bands. The accuracy of each method 

calculated by RMSE and RRMSE is shown in Table 6 and Table 7.
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Fig. 12. Scatter plot of DNN   and 6SV   for each band. 

 
Fig. 13. Scatter plot of LUT   and 6SV   for each band. 
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Fig. 14. Scatter plot of MCS   and 6SV   for each band. 

 

Fig. 15. Scatter plot of 6D   and 6SV   for each band. 
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Fig. 16. Scatter plot of DNN  and 6SV  for each band. 

 

Fig. 17. Scatter plot of LUT  and 6SV  for each band. 
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Fig. 18. Scatter plot of MCS  and 6SV  for each band. 

 
Fig. 19. Scatter plot of 6D  and 6SV  for each band
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Table 6. DNN, LUT, MCS, and 6D accuracy evaluation for coefficients of each band. 

 

Table 7. DNN, LUT, MCS, and 6D accuracy evaluation for coefficients of each band. 

RMSE 
MS1 MS2 MS3 MS4             

DNN 0.0003 0.0121 0.0004 0.0064 0.0002 0.0054 0.0003 0.0036 

LUT 0.0073 0.2150 0.0075 0.1784 0.0051 0.0803 0.0058 0.0514 

MCS 0.0014 0.1373 0.0014 0.0902 0.0009 0.0543 0.0013 0.0341 

6D 0.0008 0.0199 0.0009 0.0178 0.0006 0.0066 0.0006 0.0038 

DNN 1.0 0.8 1.5 0.6 1.1 0.9 1.1 1.0 

LUT 27.4 13.7 31.3 17.5 25.1 13.4 23.9 14.7 

MCS 5.2 8.8 5.7 8.9 4.4 9.1 5.3 9.8 

6D 2.9 1.3 3.6 1.8 2.7 1.1 2.3 1.1 

RRMSE (%) 
MS1 MS2 MS3 MS4             
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4.3. Evaluation of surface reflectance 

4.3.1. Accuracy comparison 

Table 8 shows the average of the RMSE for the surface reflectance of 

DNN, LUT, MCS, and 6D compared to the 6SV surface reflectance for 

Fig. 8. The RMSE of the LUT ranged from 0.051-0.209, showing the 

highest RMSE among the four surface reflectance calculation methods. 

Next, the RMSE of the MCS interpolated for SZA and AOD was in the 

range of 0.018-0.068. 6D shows the highest accuracy in all channels. 

However, the difference between the RMSE of DNN and the RMSE of 

6D appears in the range of 0.001-0.005, which is a very small difference. 

In addition, RMSE was evaluated based on the input parameters (SZA, 

AOD) that have a great influence on the calculation of surface reflectance. 

Fig. 20 shows the RMSE of the surface reflectance according to the 

SZA interval for each channel. The RMSE of the surface reflectivity 

calculated from the LUT is increasing significantly in the range of SZA 

(60°-80°). The ranges of RMSE appearing at SZA> 60° for each channel 

were 0.27-0.52 (Blue), 0.18-0.33 (Green), 0.10-0.18 (Red), and 0.07-0.11 

(NIR). In the range of SZA (70°-74°), since the LUT was constructed at 

intervals of 2°, it decreased from the RMSE shown in the range of SZA 

(65°-70°) but increased again due to the large change in the range of SZA 
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(74°-80°). In the case of MCS, the interval of SZA was interpolated with 

0.5° intervals, resulting in less RMSE than LUT (Bule: 0.12-0.19, Green: 

0.08-0.13, Red: 0.05-0.08, NIR: 0.03-0.05; range of SZA from 70°-80°). 

However, like LUT, RMSE increases as SZA increases. DNN (Bule: 

0.038-0.074, Green: 0.027-0.032, Red: 0.018-0.029, NIR: 0.009-0.017) 

and 6D (Bule: 0.019-0.041, Green: 0.016-0.035, Red: 0.015-0.026, NIR: 

0.006-0.013) show low RMSE in the range of SZA (70°-80°). 6D showed 

less RMSE than DNN, but there was no significant difference. And, 6D 

increased RMSE in the SZA (65°-70°) range. This is judged because of 

the linear interpolation not reflecting the change of the coefficients that 

change in the form of an exponential function. 

Fig. 21 shows the RMSE of the surface reflectance according to the 

AOD interval for each channel. It appears like the change shown in Fig. 

22. The LUT has a significant increase in RMSE (Bule: 0.17-0.42, Green: 

0.12-0.26, Red: 0.08-0.14, NIR: 0.06-0.08) in the AOD range (3.0-5.0). 

On the other hand, On the other hand, MCS was found to be significantly 

reduced than RMSE in LUT because AOD was interpolated at 0.05 

intervals (Bule: 0.06-0.14, Green: 0.04-0.09, Red: 0.03-0.05, NIR: 0.02-

0.03; range of AOD from 3.0-5.0). DNN (Bule: 0.030-0.062, Green: 

0.028-0.042, Red: 0.019-0.023, NIR: 0.009-0.014) and 6D (Bule: 0.025-

0.053, Green: 0.020-0.038, Red: 0.014-0.026, NIR: 0.008-0.013) RMSE 
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did not appear significantly, and there was no significant difference from 

each other in the range of AOD (3.0-5.0). 

 
Table 8. Average of RMSE for surface reflectance of each channel 

based on DNN, LUT, MCS, 6D 

RMSE MS1 MS2 MS3 MS4 

DNN 0.033 0.025 0.015 0.009 

LUT 0.209 0.131 0.074 0.051 

MCS 0.068 0.047 0.029 0.018 

6D 0.027 0.020 0.014 0.008 
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Fig. 20. Average of RMSE for surface reflectance of DNN, LUT, MCS, 6D according to SZA interval. (a) Blue, 
(b) Green, (c) Red, (d) NIR bands.  
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Fig. 21. Average of RMSE for surface reflectance of DNN, LUT, MCS, 6D according to AOD interval. (a) Blue, 

(b) Green, (c) Red, (d) NIR bands.  
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4.3.2. Calculation speed comparison 

The calculation speed of each method was analyzed by checking the 

time required to calculate the surface reflectance for each SZA interval. 

These are the times measured when calculating for the random conditions 

shown in Fig. 8. The calculation environment is the same for 6SV, LUT, 

MCS, 6D (Intel (R) Xeon (R) CPU E5-2697 v3 @ 2.60GHz) excluding 

DNN (Tesla V100-SXM2, 16GB). The calculation of 6SV becomes more 

complex as SZA increases, so it takes a lot of time to calculate the surface 

reflectance (from 3206 second to 14400 second). On the other hand, DNN 

(0.3 second), LUT (0.018 second), MCS (0.13 second), and 6D (18 second) 

showed a constant calculation speed even when the SZA increased.  

In addition, the time required to calculate the surface reflectance for 

one band from KOMPSAT-3/3A satellite images by each method was 

analyzed (Table 9). Here, the atmospheric components, angular 

information for each pixel is given. The surface reflectance was quickly 

calculated in the order of LUT, MCS, DNN, 6D, and 6SV. 6D and 6SV 

are not methods that can calculate the surface reflectance of satellite 

images in real time. Compared to DNN (8.4 second), it was found that the 

calculation speed of LUT (5.4 second) and MCS (7.1 second) was faster, 

but this difference does not seem to have a great influence on calculating 

surface reflectance in real time. 
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Table 9. Time it takes to calculate surface reflectance from one 
satellite imagery of 6SV, DNN, LUT, MCS, 6D 

 

 

4.3.3. Analysis of discontinuities 

Fig. 22 shows the continuity of coefficients  ,  , and surface 

reflectance for each band according to SZA (RAA: 90°; VZA: 15°; TPW: 

1.5 g/cm2; TCO: 0.3 atm-cm; AOD: 1.0). It was confirmed that all methods 

except for the LUT were similar to 6SV by removing the discontinuity 

caused by the LUT interval. In the LUT, in the SZA (0°-60°) range, the 

effect due to the interval was small, so the discontinuity was not large. In 

the SZA (60°-80°) range, the discontinuity of the LUT coefficients   

and   increased, which influenced the occurrence of discontinuity in 

the surface reflectance. In addition, the SZA (70°-80°) range is 

constructed with 2° interval, unlike the SZA (60°-70°) range, which is 

constructed with 5° interval. This has been shown to reduce the size of the 

discontinuities. However, since this is ineffective for LUT construction 

and use, it is effective to apply a method that can reflect the variability of 

coefficients according to the LUT interval.

Method 6SV DNN LUT MCS 6D 

Calculation time 
(second) 139E+5 8.4 5.4 7.1 84,600 
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Fig. 22. Analysis of discontinuity of  , , and surface reflectance for each channel according to SZA. 
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5. Summary and Conclusions 

Atmospheric correction is an important process to calculate surface 

reflectance by removing atmospheric effects. To remove the discontinuity, 

which is the limitation of the existing LUT, a model that calculates the 

surface reflectance using DNN was generated and evaluated. The LUT 

was optimized through the sensitivity analysis of the LUT, and the 

performance of the DNN model was improved based on this optimized 

LUT. After that, comparative analysis with the LUT interpolation methods 

used in previous studies was performed. As a result of comparing with 

6SV, DNN showed better performance than other interpolation methods. 

The RMSE was found to be 0.009-0.033 without significant error for 

various atmospheric components and angular information. In addition, 

DNN has been shown to calculate the variability of surface reflectance 

with high accuracy compared to LUT and MCS, which have not been able 

to resolve the variability of surface reflectance as SZA and AOD increase. 

And, to calculate the real-time surface reflectance of the satellite image, 

the calculation speed of each method was compared. The time to calculate 

the surface reflectance for satellite images did not differ significantly from 

that of LUT and MCS. DNN differed from LUT and MCS by 1-3 seconds 
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in calculation speed. That is, the DNN-based atmospheric correction 

model calculates the surface reflectivity that is not significantly different 

from 6SV and is a model capable of calculating the real-time surface 

reflectance from satellite images. In addition, when performing 

atmospheric correction of high-resolution images, it is possible to 

calculate precise surface reflectivity based on DNN. 
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