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1. Introduction

1.1. Background

The satellite's sensor acquires information about the target on the
surface by measuring the radiance reflected from the ground surface. In
this process, atmospheric molecules and aerosols in the atmosphere layers
absorb, scatter, and reflect radiance. Because of these atmospheric
components, the at-sensor radiance has an error. This effect is called the
atmospheric effect, and the process of retrieving the surface reflectance by
removing the atmospheric effect is called atmospheric correction (Liang
et al., 2001). Therefore, to obtain precise information of the target on the
surface, a precise atmospheric correction method is essential in the pre-
processing of satellite images.

Previous studies performed atmospheric correction using physically
based Radiative Transfer Model (RTM) such as the Second Simulation of
a Satellite Signal in the Solar Spectrum vector (6SV) (Vermote et al.,
2006), MODerate resolution atmospheric TRANsmission (MODTRAN)
(Berk et al., 2006), and Library for Radiative transfer (LibRadtran) (Mayer
and Kylling, 2005). The RTM accounts for radiance in the atmosphere by

using the Spectral Response Function (SRF) of the sensor, angular



information (Solar Zenith Angle; SZA, Relative Azimuth Angle; RAA,
Viewing Zenith Angle; VZA, and other angular information), and
atmospheric components (Total Precipitable Water; TPW, Total Column
Ozone; TCO, Aerosol Optical Depth; AOD, and other atmospheric
components). In addition, the accuracy of RTM is high because it uses
data that have same characteristics as the spatial and temporal information
of satellite images.

However, the calculation process of RTM is time consuming. It is
difficult to apply it to the retrieval of real-time surface reflectance in
satellite images. To overcome for this limitation, studies related to
atmospheric correction used a Look-up table (LUT) that stores pre-
calculated output values of RTM to perform an array indexing operation.
This method improved the processing efficiency of surface reflectance
retrieval (Liang et al., 2001; Lyapustin et al., 2011). Nevertheless, since
the input parameters of the LUT are constructed with an interval, the
accuracy is low when retrieval of the surface reflectance for angular
information and atmospheric components existing within the interval (Qu
et al., 2013). In other words, discontinuity in surface reflectance occurs in
satellite images (Fig. 1, Fig. 2). To improve the accuracy of the surface
reflectance retrieved based on the LUT, previous studies improved the

LUT by applying interpolation methods (Staenz et al., 2002, Liang et al.,



2006). Although interpolation methods have improved the accuracy of the
surface reflectance, the error of the surface reflectance is still increasing
as SZA the higher (Lee et al., 2020). This is because the higher the SZA,
the longer the atmospheric path of radiance. In other words, radiance is
highly affected by atmospheric effects and the variability of the surface
reflectance increases (Vermote et al., 20006). It is difficult to improve this
variability with interpolation methods. In addition, since AOD, an
important input parameter in the atmospheric correction process, has a
large weight on the atmospheric effect, the surface reflectance is also
sensitive to AOD (Boehmler et al., 2018).

Atmospheric correction algorithms of Moderate Resolution Imaging
Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer
Suite (VIIRS) set the upper limit of AOD up to 5.0 and retrieve the surface
reflectance based on LUT (Vermote et al., 2011). However, there are
insufficient studies to retrieve and analyze LUT-based surface reflectance
by setting the upper limit of AOD to 5.0. Namely, it is necessary to
consider the influence of atmospheric effects that appear as the values of
the input parameters increase, and to improve the discontinuities that
appear in the process of retrieving the surface reflectance based on LUT.

In this study, we propose a Deep Neural Network (DNN) as a method

that can calculate real-time surface reflectance while improving the



discontinuity of LUT. The DNN consists of several layers hidden between
the input and output layers, allowing you to model complex nonlinear
relationships between input and output values (Schmidhuber, 2015). This
has the advantage of generating a model that produces an output with high
accuracy by training input data and has good computational efficiency
(Al-Jarrah et al., 2015). For this reason, recently, study on producing
satellite data-based outputs using DNN in the field of remote sensing has
been conducted. (Yeom et al., 2019; Ma et al., 2020). In this study, DNN
trained LUT constructed with RTM to improve discontinuities and
generated a model capable of calculating surface reflectance for various
angular information and atmospheric components.

The satellite image data used in the study is Korea Multi-Purpose
SATellite-3/3A (KOMPSAT-3/3A), which provides high-resolution
images with a spatial resolution of about 2m (visible and near infrared
bands). Unlike low and medium-resolution satellites such as Terra/Aqua
and Suomi National Polar-orbiting Partnership (Suomi-NPP) that provide
atmospheric correction outputs, high-resolution satellite imagery does not
provide atmospheric correction outputs. This is because high-resolution
satellite images have been widely used as visual data such as map making
(Vuetal., 2010). In general, when performing atmospheric corrections on

high-resolution images, a single pixel atmospheric component data was



applied to all pixels in the image. When a variety of atmospheric
components is observed in a high-resolution image, an error in surface
reflectance occurs in the conventional method (Fig. 3). Therefore, Not
applying a single atmospheric component data obtains precise surface
reflectance in high-resolution images.

The purpose of this study is to calculate an accurate surface reflectance
by improving the discontinuity of the LUT using DNN. We constructed
the LUT of KOMPSAT-3/3A using 6SV RTM, which is currently open
source, and the LUT is provided as training data to generate an
atmospheric correction model that automatically calculates surface
reflectance by DNN. Then, the performance of the DNN-based model was
analyzed by comparing the DNN-based surface reflectance with the

interpolated surface reflectance.
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2. Study area and Data

2.1. Study area

The study area is land included in 20°N-50°N, 100°E-130°E (Fig. 4).
This area has a variety of surface land types and climate types (Corlett,
2014). In addition, it is an area where the variability of aerosols

concentration is large due to the yellow dust occurring in the desert (Wang

et al., 2008).

Fig. 4. The study area and location of satellite images.



2.2. Satellite data

2.2.1. KOMPSAT-3/3A data

KOMPSAT-3 and KOMPSAT-3A were launched for the purpose of
Earth observation on May 18, 2012 and March 25, 2015, respectively.
KOMPSAT-3/3A are polar orbit satellites that are operated by Korea
Aerospace Research Institute (KARI) and provide sub-meter resolution
(Panchromatic band). KOMPSAT-3A is the sister of KOMPSAT-3,
except for the Near-Infrared (NIR) band that KOMPSAT-3A has, their
spectral bands are the same. That is, the visible and NIR bands of
KOMPSAT-3/3A have the same SRF (Fig. 5). Table 1 shows the
specification of KOMPSAT-3/3A.

Table 2 shows information about KOMPSAT-3/3A images (Scene 1—
9) shown in Fig. 4, and these information describe the date, time, and area
when the images were observed. KOMPSAT-3/3A images used in this
study are Level 1G products to which radiemetric correction, sensor
correction and geometric distortions correction are applied. These images
were cloud-free, and blue, green, red, and NIR bands were used in the

study.



Table

1. Specifications of KOMPSAT-3/3A

Parameter KOMPSAT-3 KOMPSAT-3A
Altitude 685 km 528 km
Pan: 0.45-0.90 um
Pan: 0.45-0.90 um
Blue: 0.45-0.52 um
Blue: 0.45-0.52 um
Green: 0.52-0.60 um
Wavelength Green: 0.52-0.60 um
Red: 0.63-0.69 um
Red: 0.63-0.69 um
NIR: 0.76-0.90 um
NIR: 0.76-0.90 um
IR: 3.3-5.2 um
-y Pan: 0.55 m
: an: 0.7 m
Spatial MS: 2.2 m
resolution MS: 2.8 m
IR: 5.5m
Swath width 15 km (at nadir) 12 km (at nadir)

Pan: Panchromatic, MS: Multispectral (MS1: Blue, MS2: Green, MS3: Red, MS4: NIR)

1.0
—— Blue band
c —— Green band
'g 0.8 —— Red band
e —— NIR band
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Fig. 5. SRF for Blue, Green, Red, NIR bands of KOMPSAT-3/3A.
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Table 2. Information on images of KOMPSAT-3/3A used in the study

Satellite Scene number Date Time (UTC) Center latitude Center longitude
KOMPSAT-3 Scene 1 2015-09-06 04:28:51 43.05°N 124.43°E
Scene 2 2016-04-05 04:54:00 42.22°N 123.08°E
Scene 3 2016-12-02 05:00:27 46.99°N 123.75°E
Scene 4 2018-02-21 05:01:16 42.73°N 120.17°E
Scene 5 2018-03-14 06:00:46 40.57°N 105.81°E
KOMPSAT-3A
Scene 6 2018-04-07 06:26:32 34.77°N 101.05°E
Scene 7 2018-08-20 04:42:39 47.01°N 123.68°E
Scene 8 2018-10-05 05:56:01 24.36°N 109.58°E
Scene 9 2019-05-20 05:26:31 40.02°N 116.37°E

11



2.2.2. MODIS data

We used atmospheric component data from MODIS operating in
Terra/Aqua satellites. This is because KOMPSAT-3/3A does not retrieve
atmospheric component data. We used MODIS Atmospheric Profiles
(MODIS/Terra Temperature and Water Vapor Profiles 5-Min L2 Swath 5
km; MODO07, MODIS/Aqua Temperature and Water Vapor Profiles 5-
Min L2 Swath 5 km; MYDO07) and MODIS Aerosol Product
(MODIS/Terra Aerosol 5-Min L2 Swath 3 km; MODO04 3K,
MODIS/Aqua Aerosol 5-Min L2 Swath 3 km; MYDO04 3K) among
MODIS level-2 products as data for atmospheric correction.

The MODIS Atmospheric Profiles (MOD07, MYDO7) provides
several parameters, including TCO, TPW, moisture profile. This product
generated day and night when at least nine field of views are cloud-free
and provide a daily atmospheric profile at 5 km spatial resolution. The
MODIS Aerosol Product (MOD04 3K, MYDO04 3K) provides AOD,
aerosol size distribution, and other parameters. This product is produced
based on the Dark Target aerosol algorithm and is generated daily at 3 km
spatial resolution to evaluate air quality in the high-scale area. We used
TPW and TCO of MODIS Atmospheric Profiles (MOD07, MYDO07) and
AOD of MODIS Aerosol Product (MOD04 3K, MYDO04 3K) in the

process of performing atmospheric correction of KOMPSAST-3/3A data.

12



The MODIS data has the closest time to the time when the image was
acquired by KOMPSAT-3/3A. Also, match-up was performed due to the
difference in spatial resolution between KOMPSAT-3/3A data and

MODIS data.

2.2.3. ECMWEF data

The European Center for Medium-Range Weather Forecasts
(ECMWEF) is conducting numerical weather prediction studies to produce
accurate climate data and medium-range forecasts. ECMWF operates The
Copernicus Atmosphere Monitoring Service (CAMS) service under the
European Union's Copernicus Earth observation programme. The CAMS
provides information on the composition and variability of atmospheric
components based on models and observation data from sources such as
satellites and in-situ sensors. The CAMS Near-real time (NRT) provides
daily analysis and prediction of atmospheric composition and aerosol
concentrations related to climate change. This assimilation system is based
on the Integrated Prediction System and has a 4D variation analysis. This
system was generated by the Monitoring Atmospheric Composition and
Climate (MACC) study (Koffi and Bergamaschi, 2018). So, The MACC
reanalysis is a data of atmospheric composition provided by CAMS, and

the data are from 2003 to 2012.

13



In this study, there are cases where it is impossible to perform
atmospheric correction due to the missing value of MODIS data. To
prevent this case, climate values (TPW, TCO, AOD) were generated based
on data of CAMS NRT and MACC reanalysis (not missing value).
Considering the operating period of KOMPSAT-3/3A and the minimum
synthetic period recommended for constructing a climate dataset, the data
period was set as from 2010 to 2019. In the case of CAMS, data are
provided from July 2012, so the data for 2010-2012 considered the MACC.
To confirm the difference between the two data, the daily average value
(0.125° of spatial resolution, respectively) from July to December 2012,
which is the common period between the two data, was compared and
analyzed. Here, the analysis area was set as 15°N-55°N, 70°E-145°E
considering the study area (Fig. 4). The comparative analysis result of
CAMS and MACC data confirmed that there was little difference between
the data (Root Mean Square Error; RMSE = 0.0125 g/cm?” and bias = -
0.0074 g/cm? for TPW, and RMSE = 0.0061 ¢cm-atm and bias = -0.006
cm-atm for TCO, and RMSE = 0.0295 and bias =-0.0197 for AOD). This
result was judged to have little influence on the method of generating
climate values and calculating surface reflectance in this study. The
monthly average climate value was constructed based on MACC and

CAMS data.

14



3. Methodology

3.1. Synthesis methodology

Fig. 6 shows the synthesis methodology process of this paper. First, a
6SV-based LUT was constructed to make training data to be provided to
DNN. After that, the DNN trained the LUT to generate a model for
retrieving the surface reflectance, and the generated DNN model estimated
the intermediate values of the LUT. Based on the predicted results, the
interval of the LUT, which shows a high error, was finely reconstructed,
and the intermediate value of the LUT was again estimated. To evaluate
the performance of the reconstructed LUT-based DNN model, the
interpolation methods used in previous studies were compared and
analyzed based on three criteria (accuracy, discontinuity, retrieval speed).

In this analysis, 6SV was used as verification data.

15



-

Step1. Construction an optimized LUT

Input paramters
SRF of
KOMPSAT-3/3A

Angular
information

o - g

65V RTM
Pl

.-l__;lmulatlon

Atmospheric
components

optimization
making the LUT
nterval fine

Intermediate

values of LUT

LUT construction by simulating 6SV RTM

atmospheric

Step2. DNN model generation and performance evaluation

Generating an optimized LUT-based DNN model
Optimized Intermediate

Storage Of value of LUT

correction
DNN-based atmospheric

correction model

6SV RTM

and

Interpolation methods

Comparative analysis of

‘based on DNN model performance

Fig. 6. Flowchart of this study

— ) — ! — o o (o T Vo o o \o— ) o T (o oo o "l



3.2. 6SVRTM

The 6SV RTM was used to construct a LUT for KOMPSAT-3/3A.
The 6SV is a vector version with improved accuracy in 6S (scalar version)
(Vermote et al., 1997). Whereas the 6SV accounts for the polarization
effect, the previous version 6S ignored the polarization effect. In addition,
the number of scattering angles used to set the scattering phase function
in 6SV has increased, and conditions of the vertical aerosol profile can be
finely set. 6SV has higher simulation accuracy than other RTMs such as
MODTRAN and SHARM (Kotchenova et al., 2006). Therefore, many
studies have used 6SV to correct atmospheric effects in studies such as
radiometric calibration (Yeom et al.,, 2018) and retrieval of aerosol
(Ignatov et al., 2002), as well as studies on retrieving surface reflectance.

The 6SV calculates atmosphere components, angular information, and
SRF of the sensor to retrieve atmospheric correction coefficients
(xa,xap ,xb,and xc) . Among these coefficients, xap is used to
calculate the surface reflectance based on the Top of the atmosphere (TOA)
reflectance of satellite data. However, the TOA radiance from satellite
data is used to retrieve the surface reflectance in this study. Therefore,
coefficients (xa, xb, and xc) were used excluding the coefficient xap

in the process of this study.
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And, the SRF of the band is calculated by dividing the band width of
the sensor by 2.5nm by 6SV. The equation (1), (2), and (3) describe the
atmospheric correction coefficients, respectively. xa means the inverse

of transmittance, Ty is the gaseous transmission of H20, CO2, 02, O3

for radiance. 6, 6, are the SZA, VZA, respectively. T*(6,) is the total
transmission of the atmosphere in the path between the sun and the surface.
T'(8,) is the atmospheric transmittance occurring in the radiance path
between the satellite sensor and the surface. xb represents the scattering
term of the atmosphere, and pg, 4 is the reflectance of molecule and
aerosol in the atmospheric layer. xc (= S) represents the reflectance of

the atmosphere for isotropic light (spherical albedo).

1

M= (65 8,)T 8T (6, 1)
- PR+A

D= @y (2)

x =S 3)

The surface reflectance is retrieved by applying the atmospheric
correction coefficients to the radiance as shown in the following equation
(4). L is the measured TOA radiance and pgrgc in the surface

reflectance corrected for the atmospheric effect.

xa X L —xb

Proc = (4)

1+ xc X (xaxL—xb)
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3.3. Construction of 6SV LUT

Table 3 shows information on input parameters used in 6SV
simulation for LUT generation in this study. The input parameters to be
used for LUT construction and the range and interval of input parameters
were determined by referring to previous studies (Liang et al., 2010; Lee
et al., 2020). The atmospheric correction algorithm of MODIS, VIIRS,
and Landsat satellites designed an upper limit of 75° for SZA (Vermote et
al., 2011), but this study set an upper limit of 80° for SZA to analyze LUT
sensitivity and performance of DNN models. In addition, since many
errors occur largely in SZA>70° (Lee et al., 2020), it was constructed with
5° intervals in the SZA 0°-70° range, and 2° intervals in the SZA 70°-80°
range. Unlike other parameters with regular intervals, AOD has 16 values
with irregular intervals. In addition, an aerosol type was used as
continental to correct the atmosphere on land, and the surface type was
assumed to be a vegetation type with homogeneous Lambertian
reflectance. We calculated the atmospheric correction coefficients by
using 6SV for all combinations shown in table 3. The calculated
atmospheric correction coefficients were stored as the output of the LUT
with a six-dimensional structure. Four LUTs were generated for each band.

In Fig. 5, since the SRFs of KOMPSAT-3 and 3A are identical to each
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other, it is possible to calculate the surface reflectance of KOMPSAT-3

and 3A using one LUT.

Table 3. Range and interval of input parameters used for LUT

construction
Parameter Min Max Interval
5(0-70)/
Solar Zenith Angle (°) 0 80
2 (70-80)
Relative Azimuth Angle (°) 0 180 10
Viewing Zenith Angle (°) 0 30 5
Total Prec1p1tazble Water 0 3 05
(g/cm?)
Total Column Ozone
0.25 0.35 0.05
(atm-cm)
Aerosol Optical Depth 0.01, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8,

1.0,1.5,2.0,2.5,3.0,4.0,5.0
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3.4. Optimization of LUT

Atmospheric components have different sensitivity according to
wavelength (Kaufman et al., 1997; Mayer et al., 2016). Among them,
because AOD reacts more sensitively as the wavelength of the band
becomes shorter, it greatly increases the error of the surface reflectance
(Vermote et al., 2011). Fig. 7 Shows the change of atmospheric correction
coefficients according to the change of SZA and AOD in the LUT
constructed in section 3.3 (RAA: 90°; VZA: 15°; TPW: 1.5 g/cm?* TCO:
0.3 atm-cm). The value of coefficient xa for each band increases
significantly at SZA>70° and shows rapid variability as the AOD
increases and the wavelength shortens (Fig. 7(a), Fig. 7(b), Fig. 7(c), Fig.
7(d)). We found that SZA was fixed at 80°, and when the AOD value
changed from 4.0 to 5.0, the rate of change in coefficient xa was about
63.2% in Fig. 7(d) and 123.2% in Fig. 7(a). The change in coefficient xb
is also shown similarly to the change in coefficient xa (Fig. 7(e), Fig.
7(f), Fig. 7(g), Fig. 7(h)). SZA was fixed at 80°, and when the AOD value
was changed from 4.0 to 5.0, the rate of change of the coefficient xb was

about 68.5% in Fig. 7(h) and 137.4% in Fig. 7(e). This shows that LUT
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construction for each band should not be performed with the same
atmospheric components and angular information. And it is expected that
the change of coefficients according to the interval of these input
parameters will cause an error when using the DNN model. To solve this
error, we analyzed the rate of change and sensitivity of the coefficients
stored in the LUT and performed the work to make the rate of change of
the coefficient constant. And, coefficient xc is only affected by AOD
among input parameters (Lee et al., 2015). Since it does not have a
relationship with other input variables, a DNN model that predicts the
coefficient xc was generated, but it was used only when calculating the

surface reflectance.
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3.5. DNN model generation

The DNN is a type of neural network modeled with an algorithm that
automatically extracts and learns high-dimensional features using a
hidden layer (Thomas et al., 2017). DNN uses a feed forward network and
error back propagation to adjust the weight and bias of each node in the
hidden layers. In this study, the activation function was used a rectified
linear unit in the process of making a DNN-based model. The activation
function calculates how much input data will be reflected to the next layer.
And, rectified linear unit is simple to compute and operate like a linear
function, making it easy to optimize the model (Krizhevsky et al., 2017).
Since sparse expression is possible, it is efficient in the model learning
process. L1 regularization and L2 regularization were used to prevent
model overfitting and to improve generalization performance. L1
normalization makes weights close to zero to 0, and L2 regularization is
designed to make weights close to zero overall (Cook, 2016). The batch
size is the size of the training data used to estimate the error before the
model weights are updated. In general, the smaller the batch size, the better
the performance of generalization.

In this study, to generate a DNN-based surface reflectance retrieval

model, the LUT generated through the optimization process in Section 4.1
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was used as training data for DNN. The atmospheric components (TPW,
TCO, AOD) and angular information (SZA, RAA, VZA) configured in
the optimized LUT were used as input values, and each coefficient was
used as an output value. Validation data is required while the DNN is
training the optimized LUT. The combinations shown in Table 5 are
simulated with 6SV to calculate the coefficients. After that, the
atmospheric components and angular information shown in Table 5 and
the coefficients calculated by 6SV were used as verification data. In
addition, atmospheric components and angular information used when
generating a DNN-based model are normalized to 0-1 because the units of

values are different.

Table 4. Hyper parameters of the model used to generate an optimal

model
Parameter Value
Node 100, 200, 300
Layer 3,4,5
L1 regularization 0,1x107° 1x10°
L2 regularization 0,1x1075,1x107°
Batch size 64, 128, 256,512, 1024
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Table 5. Validation data used when training a DNN-based model

Parameter Min Max Interval
5(2.5-67.5)/
Solar Zenith Angle (°) 2.5 79
2 (71-79)
Relative Azimuth Angle (°) 5 175 10
Viewing Zenith Angle (°) 2.5 27.5 5
Total Preclpltazble Water 025 275 05
(g/em)
Total Column Ozone
0.275 0.325 0.05
(atm-cm)
Aerosol Optical Depth 0.03, 0.075, 0.125, 0.175, 0.25, 0.35, 0.5,

0.7,0.9, 1.25, 1.75, 2.25, 2.75, 3.5, 4.5
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3.6. Performance comparison analysis with

interpolation methods

The performance of the optimized LUT-based DNN model was
evaluated using the Minimum Curvature Surface (MCS) interpolation
method and Six-Dimensional linear interpolation (6D) used in previous
studies. The MCS produces smooth surface from irregularly scatted data
(Rabah and Kaloop, 2013). That is, the minimum curvature interpolates
the given data and generates a smooth surface while preserving the
irregularly distributed data as much as possible. Lee et al. (2020)
interpolated SZA and VZA using MCS with 0.5° intervals in order to
improve the accuracy of LUT-based surface reflectance in Himawari-
8/Advanced Himawari Imager data. In this study, the optimized LUT was
interpolated using MCS. The higher the VZA, the greater the error in
surface reflectance occurs (Vermote et al., 2011; Lee et al., 2020).
However, since the VZA of KOMPSAT-3/3A has a range at a low angle,
here the surface reflectance is not significantly influenced by VZA. The
AOD was interpolated instead of VZA. Here, the SZA was interpolated
with an interval of 0.5°, and AOD was interpolated with 0.05 interval.

The 6D is a method of interpolating by expanding bilinear

interpolation into a six-dimensional space (Guanter et al., 2009). Each
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value near the interpolation point is weighted by a hyper area expanding
the interpolation point to the opposite grid point. The 6D is different from
LUT and MCS, which index the output suitable for the input condition
while the output of the RTM is stored in advance. The 6D is to extend the
linear interpolation processing to six dimensions in an optimized LUT
whenever a value of an input parameter is given. Therefore, the accuracy
is high, but the interpolation process takes a lot of time. This method is
not suitable for the purpose of calculating real-time surface reflectance,
but we used 6D to evaluate the accuracy of the optimized LUT-based
DNN model.

To evaluate the performance of LUT, MCS, 6D, and DNN, the
reference data was used as 6SV. 6SV generated a total of 160,000
reference data by simulating various random angular information and
atmospheric components (Fig. 8). In Fig. 8, it is shown that the SZA of the
reference data is distributed with 5° intervals from 0° to 80°. One SZA
interval has a total of 10,000 data, and the angular information (RAA,
VZA) and atmospheric components (TPW, TCO, AOD) are uniformly
distributed within this interval. The three performances (accuracy,
processing efficiency, discontinuity) of each surface reflectance
calculation method were compared and analyzed. In the accuracy

comparison analysis, two quantitative analysis methods (RMSE, Relative
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Root Mean Square Error; RRMSE) were used to quantitatively evaluate
the atmospheric correction coefficients and surface reflectance calculated.
At the same time, the calculation speed was checked for the same input
data and the efficiency of calculating the surface reflectance was
compared. In the discontinuity analysis, the degree to which each method
eliminated the discontinuity caused by the interval of the existing LUT

was analyzed.
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4. Results

4.1. Generation of an optimized LUT

Fig. 9 shows the DNN based on Table 3 estimated for Table 5, and the
result is calculated as the average of RMSE. It was found that the
estimation performance of the DNN model was relatively low in the MS1.
Overall, the average of RMSE between models differed significantly due
to the difference in the variability of the coefficients. In addition, it was
confirmed that all models appeared to be higher than the average of RMSE
of each model in the AOD (1.25-4.5) range. To solve this average of
RMSE, we optimized the AOD (1.0-5.0) range in Table 3 to be fine.

Fig. 10 shows the rate of change of the coefficients xa and xb for
each band in the AOD (1.0-5.0) range of Table 3. Here, the coefficient xa
of the NIR band (MS4) showed the lowest rate of change (about 27%) in
the AOD (2.5-3.0) interval (Fig. 10(a)). In consideration of this rate of
change, the AOD interval in Table 3 was optimized that the coefficients
xa and xb for each band can show a rate of change of about 15% within
the AOD (1.0-5.0) range. As a result, these LUTs for each band have
different AOD intervals (Total number of AODs in MS1: 34, MS2: 32,

MS3: 28, MS4: 27). In addition, the DNN model based on Table 3 tended
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to be estimated as one value when the change in the input data is small and
the change in the output value is small during the training process (Fig. 11
(a)). This optimized LUT-based DNN model solves this problem (Fig.
11(b)). A DNN model was generated based on this optimized LUT, and

an interpolation method was applied to this optimized LUT.
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4.2. Evaluation of the DNN model

To evaluate the estimation accuracy of the optimized LUT-based DNN
model, LUT and interpolated LUT (MCS, 6D) were used. Reference data
for comparative analysis are the coefficients xa and xb of 6SV
calculated by simulating the condition of Table 5. Fig. 12, Fig. 13, Fig. 14,
and Fig. 15 show the accuracy of DNN, LUT, MCS and 6D calculated for
the coefficient xa of 6SV, respectively. Fig. 15, Fig. 16, Fig. 17, and Fig.
18 shows the accuracy for the coefficient xb. Because of the interval of
the input parameters, the error of the LUT increases as the coefficient
value to be calculated increases. In MCS, SZA and AOD were interpolated,
so the error caused by the interval was relatively reduced compared to the
LUT. However, since there are input parameters that have not been
interpolated, the error increases as the coefficient value to be calculated
increases. 6D showed higher accuracy than LUT and MCS because linear
interpolation was applied to all input parameters. DNN showed lower
RMSE and RRMSE than 6D in all bands. The accuracy of each method

calculated by RMSE and RRMSE is shown in Table 6 and Table 7.
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Fig. 17. Scatter plot of LUT xb and 6SV xb for each band.
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Table 6. DNN, LUT, MCS, and 6D accuracy evaluation for coefficients of each band.

MS1 MS2 MS3 MS4
RMSE
xa xb xa xb xa xb xa xb
DNN 0.0003 0.0121 0.0004 0.0064 0.0002 0.0054 0.0003 0.0036
LUT 0.0073 0.2150 0.0075 0.1784 0.0051 0.0803 0.0058 0.0514
MCS 0.0014 0.1373 0.0014 0.0902 0.0009 0.0543 0.0013 0.0341
6D 0.0008 0.0199 0.0009 0.0178 0.0006 0.0066 0.0006 0.0038
Table 7. DNN, LUT, MCS, and 6D accuracy evaluation for coefficients of each band.
Vo vs1 @ MS2 ' ‘MS3 MS4
RRMSE (%) -~ o rF —
xa xb xa xb xa xb xa xb
DNN 1.0 0.8 1.5 0.6 1.1 0.9 1.1 1.0
LUT 27.4 13.7 31.3 17.5 25.1 13.4 239 14.7
MCS 5.2 8.8 5.7 8.9 44 9.1 53 9.8
6D 2.9 1.3 3.6 1.8 2.7 1.1 2.3 1.1
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4.3. Evaluation of surface reflectance

4.3.1. Accuracy comparison

Table 8 shows the average of the RMSE for the surface reflectance of
DNN, LUT, MCS, and 6D compared to the 6SV surface reflectance for
Fig. 8. The RMSE of the LUT ranged from 0.051-0.209, showing the
highest RMSE among the four surface reflectance calculation methods.
Next, the RMSE of the MCS interpolated for SZA and AOD was in the
range of 0.018-0.068. 6D shows the highest accuracy in all channels.
However, the difference between the RMSE of DNN and the RMSE of
6D appears in the range of 0.001-0.005, which is a very small difference.
In addition, RMSE was evaluated based on the input parameters (SZA,
AOD) that have a great influence on the calculation of surface reflectance.

Fig. 20 shows the RMSE of the surface reflectance according to the
SZA interval for each channel. The RMSE of the surface reflectivity
calculated from the LUT is increasing significantly in the range of SZA
(60°-80°). The ranges of RMSE appearing at SZA> 60° for each channel
were 0.27-0.52 (Blue), 0.18-0.33 (Green), 0.10-0.18 (Red), and 0.07-0.11
(NIR). In the range of SZA (70°-74°), since the LUT was constructed at
intervals of 2°, it decreased from the RMSE shown in the range of SZA

(65°-70°) but increased again due to the large change in the range of SZA
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(74°-80°). In the case of MCS, the interval of SZA was interpolated with
0.5° intervals, resulting in less RMSE than LUT (Bule: 0.12-0.19, Green:
0.08-0.13, Red: 0.05-0.08, NIR: 0.03-0.05; range of SZA from 70°-80°).
However, like LUT, RMSE increases as SZA increases. DNN (Bule:
0.038-0.074, Green: 0.027-0.032, Red: 0.018-0.029, NIR: 0.009-0.017)
and 6D (Bule: 0.019-0.041, Green: 0.016-0.035, Red: 0.015-0.026, NIR:
0.006-0.013) show low RMSE in the range of SZA (70°-80°). 6D showed
less RMSE than DNN, but there was no significant difference. And, 6D
increased RMSE in the SZA (65°-70°) range. This is judged because of
the linear interpolation not reflecting the change of the coefficients that
change in the form of an exponential function.

Fig. 21 shows the RMSE of the surface reflectance according to the
AOD interval for each channel. It appears like the change shown in Fig.
22. The LUT has a significant increase in RMSE (Bule: 0.17-0.42, Green:
0.12-0.26, Red: 0.08-0.14, NIR: 0.06-0.08) in the AOD range (3.0-5.0).
On the other hand, On the other hand, MCS was found to be significantly
reduced than RMSE in LUT because AOD was interpolated at 0.05
intervals (Bule: 0.06-0.14, Green: 0.04-0.09, Red: 0.03-0.05, NIR: 0.02-
0.03; range of AOD from 3.0-5.0). DNN (Bule: 0.030-0.062, Green:
0.028-0.042, Red: 0.019-0.023, NIR: 0.009-0.014) and 6D (Bule: 0.025-

0.053, Green: 0.020-0.038, Red: 0.014-0.026, NIR: 0.008-0.013) RMSE
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did not appear significantly, and there was no significant difference from

each other in the range of AOD (3.0-5.0).

Table 8. Average of RMSE for surface reflectance of each channel
based on DNN, LUT, MCS, 6D

RMSE MS1 MS2 MS3 MS4
DNN 0.033 0.025 0.015 0.009
LUT 0.209 0.131 0.074 0.051
MCS 0.068 0.047 0.029 0.018

6D 0.027 0.020 0.014 0.008
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4.3.2. Calculation speed comparison

The calculation speed of each method was analyzed by checking the
time required to calculate the surface reflectance for each SZA interval.
These are the times measured when calculating for the random conditions
shown in Fig. 8. The calculation environment is the same for 6SV, LUT,
MCS, 6D (Intel (R) Xeon (R) CPU E5-2697 v3 @ 2.60GHz) excluding
DNN (Tesla V100-SXM2, 16GB). The calculation of 6SV becomes more
complex as SZA increases, so it takes a lot of time to calculate the surface
reflectance (from 3206 second to 14400 second). On the other hand, DNN
(0.3 second), LUT (0.018 second), MCS (0.13 second), and 6D (18 second)
showed a constant calculation speed even when the SZA increased.

In addition, the time required to calculate the surface reflectance for
one band from KOMPSAT-3/3A satellite images by each method was
analyzed (Table 9). Here, the atmospheric components, angular
information for each pixel is given. The surface reflectance was quickly
calculated in the order of LUT, MCS, DNN, 6D, and 6SV. 6D and 6SV
are not methods that can calculate the surface reflectance of satellite
images in real time. Compared to DNN (8.4 second), it was found that the
calculation speed of LUT (5.4 second) and MCS (7.1 second) was faster,
but this difference does not seem to have a great influence on calculating

surface reflectance in real time.
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Table 9. Time it takes to calculate surface reflectance from one
satellite imagery of 6SV, DNN, LUT, MCS, 6D

Method 6SV DNN LUT MCS 6D

Calculation time

139E+5 8.4 5.4 7.1 84,600
(second)

4.3.3. Analysis of discontinuities

Fig. 22 shows the continuity of coefficients xa, xb, and surface
reflectance for each band according to SZA (RAA: 90°; VZA: 15°;, TPW:
1.5 g/cm?; TCO: 0.3 atm-cm; AOD: 1.0). It was confirmed that all methods
except for the LUT were similar to 6SV by removing the discontinuity
caused by the LUT interval. In the LUT, in the SZA (0°-60°) range, the
effect due to the interval was small, so the discontinuity was not large. In
the SZA (60°-80°) range, the discontinuity of the LUT coefficients xa
and xb increased, which influenced the occurrence of discontinuity in
the surface reflectance. In addition, the SZA (70°-80°) range is
constructed with 2° interval, unlike the SZA (60°-70°) range, which is
constructed with 5° interval. This has been shown to reduce the size of the
discontinuities. However, since this is ineffective for LUT construction
and use, it is effective to apply a method that can reflect the variability of

coefficients according to the LUT interval.
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5. Summary and Conclusions

Atmospheric correction is an important process to calculate surface
reflectance by removing atmospheric effects. To remove the discontinuity,
which is the limitation of the existing LUT, a model that calculates the
surface reflectance using DNN was generated and evaluated. The LUT
was optimized through the sensitivity analysis of the LUT, and the
performance of the DNN model was improved based on this optimized
LUT. After that, comparative analysis with the LUT interpolation methods
used in previous studies was performed. As a result of comparing with
6SV, DNN showed better performance than other interpolation methods.
The RMSE was found to be 0.009-0.033 without significant error for
various atmospheric components and angular information. In addition,
DNN has been shown to calculate the variability of surface reflectance
with high accuracy compared to LUT and MCS, which have not been able
to resolve the variability of surface reflectance as SZA and AOD increase.
And, to calculate the real-time surface reflectance of the satellite image,
the calculation speed of each method was compared. The time to calculate
the surface reflectance for satellite images did not differ significantly from

that of LUT and MCS. DNN differed from LUT and MCS by 1-3 seconds
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in calculation speed. That is, the DNN-based atmospheric correction
model calculates the surface reflectivity that is not significantly different
from 6SV and is a model capable of calculating the real-time surface
reflectance from satellite images. In addition, when performing
atmospheric correction of high-resolution images, it is possible to

calculate precise surface reflectivity based on DNN.
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