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Chapter 1

Introduction and Preliminaries

This paper is devoted to the functional analytic method for partial differential
equations. We intend to present the fundamentals of the theory of abstract
parabolic evolution equations and to show to apply to semilinear differential
equations and systems arising in science. This kind of evolution differential
equations arises in many practical mathematical models, such as, option
pricing, population dynamics, physical, biological and engineering problems,
etc. Main approach is known to the abstract parabolic evolution equations,
namely, the semigroup methods, the variational methods, and the methods
of using operational equations. The semigroup methods, which go back to
the invention of the analytic semigroups in the middle of the last century, are
characterized by precise formulas representing the solutions of the Cauchy
problem for evolution equations.

In Chapter 2, we deal with the theory of interpolation spaces between
initial Banach functional spaces and the domain of an elliptic differential
operator. Let Q be a bounded domain in R with smooth boundary 0€). Let
A(z, D,) be an elliptic differential operator of second order in L*(Q):

"9 0 - 0
Alw, Do) = = 3 oz (@) + ;bi(x) 5o, + @), (EO)

5,j=1




where (a;j(x) :i,j = 1,---,n) is a positive definite symmetric matrix for
each z € Q, a,; € C1(Q), b; € C(Q) and ¢ € L=(€). The operator

n

A@D2) == 3 G lans()go) = 3 g (b(a)) + o)

4,j=1

is the formal adjoint of A.
The object of Chapter 3 is to investigate the quality of reachable set of

the following semilinear retarded parabolic type equation

Dot = Aualt) 4 7(1), 1 (0.T) (CS)

where

0

ft) = Ajz(t —h) + / a(s)Axx(t + s)ds + f(t,x(t)) + Bou(t).

—h

Then the initial condition of system (CS) is given as follows:
2(0) =g", w(s)=g'(s), for—s€[-h,0] (IC)

The existence and uniqueness of solution of the above system are proved in
[19]. The condition for equivalence between the reachable set of the semi-
linear system and that of its corresponding linear system was established in
[19, 10] and recently, [25, 26]. This paper is dealt with another applicable
condition for controller of approximate control problem. Thus, the main re-
sult in this paper will show that the system (CS) with some conditions for

the operator Ag satisfies a sufficient condition for approximate controllability



obtained in [19].
In Chapter 4, we deal with control problem for semilinear parabolic type
equation in Hilbert space H as follows.

Aoty = Agx(t) + [°, a(s) A (t + s)ds

+f(tx(t)) + Poull), (PS)
z(0) = ¢° x(s)=g'(s), se€[-Nh0).

Let Z = H x L*(—h,0;V) be the state space of the equation (PS). Z is

a product Hilbert space with the norm

0
lgllz = (g2 + / Nl eIPat 9= ()€ 2

The operator A is defined as follows:
D(A)={9=1(¢"9"): ¢ € H, g' € L*(—h,0;V),
0
9'0) =% A’ ¥ [ als)idag! (s)ds € H),
—h
0

Ag = (Aog® +/ a(s)Asgt(s)ds, g').

i)
The equation (PS) can be transposed to an following general initial problem

C(1) = Ax(t) + (1, 2(0)) + Bu(t) (IP)

where & = (8of,0), F(t, 2(t)) = ((t2(1)),0)
we will show from the approximately controllable of the system (IP) in
space Z with the general assumption of nonlinear part. Moreover, we derive

the relations between the controllability of the system (PS) and one of (IP).

3



In the last Chapter is concerned with the optimal control problem of the
semilinear functional differential equation with delay in a Hilbert space. Ap-
plications of the optimal control problems for two types of cost functions are
given; one is the averaging observation control and the other is the observa-
tion of terminal value. The principal operator of given equations generates
an analytic semigroup and the nonlinear term is uniformly Lipschitz continu-
ous with respect to the second variable. Two applications of the main results
are given; one gives a uniqueness of the optimal control of the cost function
defined by distributed observation and the other gives a feedback control law
for the observation function of terminal value. Here, using techniques for the
linear control problems and the properties of solutions of semilinear system
as developed in [26, 12, 4], we obtain the existence of optimal controls for the
equation, where the nonlinear term is given by the convolution product and
give the maximal principle for given cost functions and present the necessary
conditions of optimality which are described by the adjoint state correspond-
ing to the linear retarded equation without a condition of differentiability of

nonlinear term.

Thus, we give the existence and uniqueness of the optimal control of the
cost function defined by distributed observation, and establish the maximal
principle represented by the necessary conditions of optimality which are
described by the adjoint state corresponding to the linear retarded equation
without a condition of differentiability of nonlinear term. Moreover, we give
a feedback control law for the observation function of terminal value, and
the existence of optimal controls for the equation, where the nonlinear term

is given by the convolution product.



Chapter 2
Intermediate spaces related to analytic

semigroups generated by elliptic operators

2.1 Introduction

Let © be a bounded domain in R™ with smooth boundary 0. Let A(z, D,)

be an elliptic differential operator of second order in L'(2):

a n
Z 3 67_xi) + Z bi(x) c(z), (EO)
i,j=1 i=1
where (a;;(x) 1,7 = 1,--- ,n) is a positive definite symmetric matrix for

each r € Q, a;; € C*(Q), b; € CL(Q) and ¢ € L>(Q2). The operator

) "0
Ate.D) =3 5 agw)g) Zaxz +elo)

1,7=1

is the formal adjoint of A.
For 1 < p < oo, we denote the realization of A in LP(2) under the
Dirichlet boundary condition by A,:
D(A,) = W (Q) N Wy (Q),

Ayju=Au for wue D(A,).



For p' = p/(p — 1), we can also define the realization A" in Lp/(Q) under

Dirichlet boundary condition by A;),:

D(A,) = W2 (Q) 0 WP (),

p

A;),u:A/u for uwe D(A)).

p/

It is known that —A, and —A;/ generate analytic semigroups in LP({2) and

v (2), respectively, and Aj = A;,.
For brevity, we assume that 0 € p(A,). From the result of Seeley [32] (see

also Triebel [9, p. 321]) we obtain that

[D(4,), LA (Q)]; = W (),

1
2

and hence, may consider that

D(4,) C WyP(Q) C LP(Q) € WHP(Q) C D(A)*.

pl
Let (A;,)/ be the adjoint of A;), considered as a bounded linear operator from

D(A,) to Lp/(Q). Let A be the restriction of (A;,)' to W, ?(Q). Then by

p/
the interpolation theory, the operator A is an isomorphism from I/VO1 P(Q)
to W='2(Q). Similarly, we consider that the restriction A" of (A,)" belong-
ing to B(L”I(Q),D(Ap)*) to W, ? (Q) is an isomorphism from W, 7 (Q) to

W*Lp/(Q). For g € (1,00), we set

Hyq= (Wol’p> W_Lp)l/q,q'



As seen in proposition 3.1 in Jeong [16], the operators —A and —A’ generate
an analytic semigroup in W~"?(Q) and W~ (Q), respectively. Furthermore,
—A also generates an analytic semigroup in H,,. The spaces H,, is (-
convex(as for the definition and fundamental results of a (-convex space, see

[11, 3]), and the inequality
[(A)™|| paw-1o@)) < Ce™l, —00 < s < 00

holds for some constants C'> 0 and v € (0,7/2). Let us consider

{d%(tt) +Au(t) = Bu(t), <07 (CP)

u(0) = upy

where the controller B is a bounded linear operator from some Banach space
U to L}(Q), and w € L9(0,T;U) for 1 < g < oo. Noting that if 1 < p <
n/(n—1) we may consider L*(Q) C W=12(Q), and so, we cannot express u(t)

using the solution semigroup since B is a mapping into W~=5P(Q) not into

H, ,. Therefore, based on the theory of the definition and basic properties

of Besob spaces, we will show that if 1% <1/n(1 —2/q") then
Hy € Co() € L¥(Q).
Thus, we may consider
Hyq=Hy o D Co(Q)" D LN Q)

and B is bounded mapping from U to H,,. Hence, it is possible to investigate

the control problem for (CP) in H,,. Consequently, in view of the maximal

7



regularity result by Dore and Venni [5], the initial value problem (CP) has
a unique solution u € L4(0,T; W2P(Q) N Wol’p(Q)) AWh(0,T; H,,) for any

uy € WyP(Q).

2.2 Notations

Let © be a region in an n-dimensional Euclidean space R” and closure .
C™(2) is the set of all m-times continuously differential functions on €.
C(Q) will denote the subspace of C™(€2) consisting of these functions
which have compact support in €.
Wm™P(Q2) is the set of all functions f = f(x) whose derivative D*f up to
degree m in distribution sense belong to LP(£2). As usual, the norm is then

given by

1
1 llmp0 = (D 1D fllB@)7, 1< p < oo,

a<m

1/ lmse.0 = max |[ D% |o 0,
am

where D°f = f. In particular, W%?(Q) = LP(Q) with the norm || - ||,

WP (Q) is the closure of C§°(Q2) in W™P(Q). For p = 2, we denote
Wm2(Q) = H™(2) and WgP(Q) = Hy'(Q).

Let p = p/(p—1), 1 < p < co. WP(Q) stands for the dual space
Wol’p,(Q)* of Wol’p/(Q) whose norm is denoted by || - ||-1,-

If X is a Banach space and 1 < p < oo, LP(0,T; X) is the collection of all

strongly measurable functions from (0,7") into X the p-th powers of norms

are integrable.



C™([0,T7; X) will denote the set of all m-times continuously differentiable
functions from [0, 7] into X.

If X and Y are two Banach spaces, B(X,Y) is the collection of all
bounded linear operators from X into Y, and B(X, X) is simply written
as B(X).

For an interpolation couple of Banach spaces Xy and X7, (Xo, X1)g,, for
any 0 € (0,1) and 1 < p < oo and [Xp, X1y denote the real and complex

interpolation spaces between X, and X, respectively(see [9]).

2.3 Relationship of H,, ¢ L'(Q2) as a Besov space

Let A be the operator mentioned in Section 1. Then it was shown that
the operators —A generates an analytic semigroup in W~1P(2) in seen [16].

Lemma 2.3.1. There exists a positive constant C' such that for anyt > 0

— .
||(t e A) 1HB(W71,1)(Q)7L})(Q)) < €18, (231)

and

- _1
(¢ + A) 1||B(LP(Q),WOLP(Q)) <Cte. (2.3.2)

Proof. Let A, be the realization of (EQO) in LP(Q2) in the distribution sense

under the Dirichlet boundary condition. Then —A, generates an analytic
semigroup in LP(2), and A, is the restriction of A to W2?(Q) N Wy ().

Hence, (2.3.2) follows from the moment inequality

1 1
allwi@) < CllullZamoy el 2n

9



and the estimate

||(t + A)_1||B(Lp(g)) < Ct 1

proved in [16, Eq(3.5)]. Replacing p by p' we get

<Ot s,

N—1
1+ Ay <

where A’ is the realization in W‘Lp/(Q) under the Dirichlet boundary con-

dition. Taking the adjoint we obtain (2.3.1). ]

Let Yy and Y7 be two Banach spaces contained in a locally convex linear
topological space ) such that the identity mapping of Y; (z = 0, 1) into )
is continuous, and their norms will be denoted by || - ||;. The algebraic sum
Yo +Y: of Yy and Y] is the space of all elements a € Y of the form a = ag+aq,
ap € Yy and a; € Y;. The intersection YoNY; and the sum Y, +Y; are Banach

spaces with the norms

lallvory, = max {[[allo, [lall+}

and

lallyory, = ilgf {laollo + [ar[1}, a=ao+ a1, a; €Y,

respectively.

Definition 2.3.1. [14] We say that an intermediate space Y of Yy and Y,

belongs to
i LA 05 ) ) . ’
(i) the class Ky(Yo, Y1), 0 <8 <1, if for anya € YoNY;

llally < cllallg™"llall3

10



where ¢ is a constant,

(ii) the class K¢(Y,Y1), 0 < 0 < 1, if for any a € Y and t > 0 there

exist a; € Y; (i =1, 2) such that a = ag + a1 and
llaollo < ct™’llally, [las|l < et'~?[lally

where ¢ is a constant;

(iii) the class Ky(Yo,Y1), 0 < 0 < 1, if the space Y belongs to both
K@(}/Ou }/1) and FQ(YED Yi)
Here, we note that by replacing ¢ with ¢! the condition in (ii) is rewritten

as follows:

laollo < ct’llally, llarll < et llally-
The following result is due to Lions-Peetre [14, Theorem 2.3].

Proposition 2.3.1. For 0 < 6y < 0 < 0, < 1, if the spaces Xo and X
belong to the class Kg,(Yo, Y1) and the class Ky, (Yo, Y1), respectively, then

(X0, X1) 0-60 - = (Y0, Y1)o,p-

01—6p "
The following corollary is verified following the proof of Proposition 2.3.1.

Corollary 2.3.1. If the space Xy is of the class Ky, (Yy, Y1) and 0 < 0 <
0, < 1, then
(}/baXl)%,p = (1/07}/1>9,p'

If the space Xy is of the class Ky,(Yo,Y1) and 0 < 6y < 6 < 1, then

<X07Yi> = <Yb7}/1)9,p'

0—0g
=0, P

11



Proposition 2.3.2. For 1 < p < oo, L?(Q) is of the class K, o(Wy?(Q), W=12(Q)).
Proof. For any v € W,?(Q) and ¢ > 0, from Lemma 2.3.1 and
u=At+A) u+tlt+ A u=(t+A) T Au+t(t+ A) M,
it follows
lullpe <[+ A) | sw-10@). @) [ Aull-1 50
+t]](t +A) " sw-re@.e@llull-1p0

1
<Ct=2|[ullip0 + Ct7{ul|21p0-

By choosing t > 0 such that =1/2||ul|1 5.0 = t*/2||ul| = tY2||u||_1 .0,

B ()
we obtain

1 1
lullpa < Cllullf,allullZ, 0

Therefore, LP(€2) belongs to the class KI/Q(WOLP(Q), WP (Q)). Put ug =

t(t+A)"tu and uy = A(t+ A)~u for any u € LP(Q). Then u = ug +uy, and

we obtain that

_ 1
luoll1p0 <t + A) " ull g ooy w2yl < Ct2llullpo

_ _1
lurll-1p.0 < Cll(E+ A)ullipe < C72||ull,0.

Therefore, LP(Q) belongs to the class K, j(Wy™?(Q), W=12(Q)), and hence,

it is of the class Ky (W, (Q), W=17(Q)). O

12



Theorem 2.3.1. Letl <p<oo, 1 <g<ooand0 <0 <1. If1-20—1/p #
0 and 20 —2+1/p # 0 then

(W (52), W 2(2))g g = {

where E;EQQ(Q) = {u e B! *(Q) : ulpn = 0}. In particular, we obtain that

(Wo ™ (Q), W=12(Q))1 4 = B, ().

Proof. Let 0 < 6 < 1/2. Then from Corollary 2.3.1, we obtain that
(Wo (), W 2(2))aq = (Wo” (), L7 () 20,4

= (LP(), Wy (2))1-204:

Therefore, in view of the result of Grisvard [30] (see also Triebel [9][6; p.
321]),

B 2(Q) 1-20>
SRS 1520 <

(Wo P (), W= (D)o = {

SRS

Let 1/2 < 6 < 1. Then from Corollary 2.3.1, it follows

(W™ (), WH2(Q))g,q = (LP(2), W H2(9))20-1,4
= (L7 (), Wy ™ (2))ag_1.4)"
In view of Grisvard’s theorem, if 20 —1 — 1/ p # 0 then

p, w é}ff’;}(@) 20—1> %,
(L (Q), Wo (Q))Qé—l,q/ = B;é;/l(Q) 20 —1 < 1%

13



From Theorem 4.8.2 in Triebel [9, p. 332], we obtain that
(BY-1(@)" = BL(Q) and (BY-/(Q)" = BL2(©Q)
according as 20 — 1 —1/p = 0. Since 20 —1 —1/p #0if 1/2 < # < 1 and
20— 2+ 1/p # 0, we get
(Wo (), WH(Q)), = B, " (),

Consequently, we obtain that

Wy W ( Qe g Rl 1N\ OAHY

24

and

(W32, W7 @), = BQ) i 0<b<14 L

Hence, if 0 < 0 < min{1/p,1 — 1/p}, then

(W (Q), W 2(Q))

= (Wy"(Q), WP (Q)) e o (Wo " (), W () g0 )1,
= (By4(), B, ()1, = B, ().

The last equality is obtained from Theorem 1 of section 4.3.1 in Triebel [9].

Hence the proof is complete. ]

14



Theorem 2.3.2. Let 1 < p, q < oo.

(i) If 2/q—2+1/p # 0 then

. &
S Q

Qv v
~—~ ~—~
o 2
N~— SN—
— —
—-

Q= Q=

(ii) If n/p < 1—2/q then
Hy o C Co(Q) C L®().

Proof. The relation (i) follows directly from Theorem 2.3.1. Let 1/p <
1/n(1 — 2/q") which implies 2/¢' —2 +1/p < —1 — (n —1)/p’ < 0 and
1/¢ < 1/2(1 =n/p) < 1/2(1 —1/p). Then from (i) and the imbedding
theorem ([2; Theorem 4.6.1 in p. 327-328]), we obtain

4, 555.¥ (Q) € Co(N2)
Hence, the first inclusion in (ii) follows. O

Example 2.3.1. Let U be a Banach space, and let w € L%(0,T;U) for

1 < q < oo. Consider the following control problem:

{di—?) + Au(t) = Buw(t), te (0,T], (2.3.3)

u(0) = ug,

15



where the controller B is a bounded linear operator from U to L*(S)). Here, A
is an elliptic differential operator of second order in L*(Q) as seen in Section

1. By virtue of Theorem 2.5.2, we may consider
Hyy=HY D Co(Q)* D LYQ),

where 1% < 1/n(1 —2/q). Since B is a bounded mapping into H,,, we be

At Furthermore,

able to express u(t) using the solution semigroup S(t) = e
it is possible to investigate the control problem for (2.3.3) in H,,. Conse-
quently, in view of the mazximal regularity result by dore and venni [5], the
initial value problem (CP) has a unique solution u € L(0,T; W>P(2) N
WoP(Q)) VW0, T; Hyy) for any uy € WoP(Q2). As for the mazimal reg-
ularity problem of (2.3.3) in Hilbert spaces, We refer to [4, 29]. Moreover,
The observability of (2.5.3) is defines as

B*S*(t)f =0 amplies f=0

in a usual sense of [11-14] .

16



Chapter 3
Sufficient conditions for approximate

controllability of semilinear control systems

3.1 Introduction

Let H and V' be complex Hilbert spaces such that the imbedding V' C H is
compact. The inner product and norm in H are denoted by (-,-) and | - |,
and those in V' are by ((-,+)) and || - ||, respectively. Let —Ag be the operator
associated with a bounded sesquilinear form a(u,v) defined in V' x V' and

satisfying Garding inequality
Rea(u,v) > col|ul|* — ci|ul?, co >0, ¢ >0 (3.1.1)

for any u € V. It is known that A, generates an analytic semigroup in both
of H and V* where V* stands for the dual space of V. The object of this
paper is to investigate the quality of reachable set of the following semilinear

retarded parabolic type equation

%x(t) = Aoz (t) + f(t), t€(0,T], (CS)

where
f(t) = Awz(t —h) + / a(s)Asz(t + s)ds + f(t,z(t)) + Bou(t).

—h

17



Then the initial condition of system (CS) is given as follows:
2(0) = ¢, 2(s) = g'(s), for s€[—h0). (1c)

The existence and uniqueness of solution of the above system are proved in
[19]. The condition for equivalence between the reachable set of the semi-
linear system and that of its corresponding linear system was established in
[19, 10] and recently, [25, 26]. This paper is dealt with another applicable
condition for controller of approximate control problem. Thus the main re-
sult in this paper will show that the system (CS) with some conditions for
the operator A satisfies a sufficient condition for approximate controllability

obtained in [19].

3.2 Main results

Let Ay be the self adjoint operator associated with a sesquilinear form defined

on V x V such that
(Agu, v)= —a(u,v), “u v €V

where a(-,-) is bounded sesquilinear form satisfying Garding inequality. It
is known that Ay generates an analytic semigroup in both H and V*. Let
us assume that A;, i = 1, 2, are bounded linear operators from V to V*
and A; A" are also bounded in H. The real valued function a(s) is assumed
to be Holder continuous in [—h, 0] where h is a fixed positive number. The
controller By is a bounded linear operator from a subspace U of H to H.

Let f be a nonlinear mapping from R x V into H. Hence, we assume more

18



general Lipschitz condition: for any 1, x5 € V there exists a constant L > 0

such that

(3.2.1)

[F(t,20) = [t x2)| < Ly — ],
f(t,0) =0.

Then as is seen in [4, 16] we can obtain the following result.

Proposition 3.2.1. Under the assumtions (3.2.1), there ezists a unique so-

lution of (CS) and (IC) such that
x € L0, T; V)N W20, T, V*).c C([0;T); H)

for any g = (¢°,¢') € Z = H x L*(=h,0;V). Moreover, there exists a
constant C' such that

]| 20, z90wr 20w < CUG° N+ Mg z2-nony + llullz2omo)),
where
|| : ||L2(O,T,V)0W1’2(0,T;V*) = max{|| ) ||L2(0,T;V)v || ; HWLQ(O,T;V*)}-

Let g € Z and x(T; g, f,u) be a solution of the system (CS) and (IC) as-
sociated with nonlinear term f and control u at time 7. We define reachable
sets for the system (CS) and (IC) as follows:

Lr(g) = {2(T;9,0,u) : u € L*(0,T; U)},

Ry(g) = {x(Tsg, f,u) :u € L*(0,T;U)}.

In virtue of the Riesz-Schauder theorem, if the imbedding V' C H is compact

then the operator Ay has discrete spectrum

o(Ag) ={pn:n=1,2 ..}
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which has no point of accumulation except possibly u = co. Let u,, be a pole
of the resolvent of Ag of order k, and P, the spectral projection associated
with g,

1
Py=o— | (n—A) du,

271 T,

where I, is a small circle centered at p, such that it surrounds no point of
o(Ap) except p,. Then the generalized eigenspace corresponding to , is
given by

Th, SWOAH SN PR H),

and we have that from P? = P, and H,, C V it follows that
Y =Py G

Let us set

@n b\ (1 — ) (r — Ao) .

- 27TZ T,
Then we remark that dim H,, < oo and

. 1 .
o o 7 _ A —1 )
Qn =15 Fn(u fn)" (1t — Ag) ™ dp

It is also well known that Q% = 0 (nilpotent) and (Ay — )Py = Q. (see
33, 6, 24]).

Definition 3.2.1. The system of the generized eigenspaces of Ag is complete
in H if Cl{span{H,, : n =1, 2, ... }} = H where Cl denotes the closure in
H.
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Let G(t) be an analytic semigroup generated by A;. We now define the
fundamental solution W(t) of (CS) and (IC) by

z(t;(¢°,0),0,0), ¢>0
W(t):{o t<0

According to the above definition W (¢) is a unique solotion of

0

W) = G + / Gt — ) { AW (s — h) + / a(7) AsTV (s + 7)dr Yds

—h

for t > 0 (cf. Nakagiri [35, 7]). We denote the bounded linear operator W
from L?(0,T; H) to H by

Wp = /0 W(T — s)p(s)ds

for p € L*(0,T; H).

Definition 3.2.2. The system (CS) and (IC) is approximately controllable
on [0,T) if Rr(g) = H, that is, for any e > 0 and x € H there exists a control
w e L*0,T;U) such that |z — W(T)g° — ff)h Ur(s)g'(s)ds — W f(-, x4(-)) —
W Bou| < € where Up(s) = W(T — s — h)A; + 5, W(T — s — o)a(o)Asdo
and xu(-) = x(5; 9, f,u).

We need the following hypotheses:

(A) The system of the generalized eigenspaces of Ag is complete.
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(B1) For any € > 0 and p € L*(0,T; H) there exists a u € L*(0,T;U) such
that
t t
| / G(t — s)p(s)ds — / G(t — s)Bou(s)ds| <e, 0<t<T.
0 0
(B2) ByP,H C P,H forn=1, 2, ... .

Remark 3.2.1. We know that the condition (B2) is equivalent to the fact
that P,ByP, = ByP,, thus by the definition of @, it is also held that if
f € P,H then QnBOf = BOan

Proposition 3.2.2. Under the assumption (B1), we have Ly(0) = H.

Theorem 3.2.1. Let us assume the hypotheses (A), (B1) and (B2). Then

we have Rr(g) = Lr(g) for any g € H x L*(—=h,0; V).

In virtue of Proposition 3.2.2 and Theorem 3.2.1 we have known that the

system (CS) and (IC) is approximately controllable in conclusion.

Remark 3.2.2. For the semilinear equation without delay terms in case
where Ay = Ay = 0 we may assume the condition (B1) at only time T, that

is, we can rewite the condition (B1) as follows.

For any € > 0 and p € L*(0,T; H) there exists a u € L*(0,T;U) such
that
T T
|/ G(t — s)p(s)ds —/ G(t — s)Bou(s)ds| < e.
0 0
Remark 3.2.3. In Naito [22] he proved Theorem 2.2.2 under assumptions
(B1) and compact operator G(t) and also Zhou in [10] showed it under as-

sumtion (B1) and another condition of range of controller.
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3.3 Proof of main results

First of all, for the meaning of assumption (B1) we need to show the exis-
tence of controller satisfying C1{ Bou : v € L*(0,T;U)}#£L?(0,T; H). In fact,
Consider about the controler By defined by

Bou(t) =Y un(t),

where

<t
<t

IA A

T
T.

SR @

0,
=
PLu(t),

Hence we see that uy(t) = 0 and u,(t) € ImP,. By completion of
generalized eigenspaces of Ay we may write that f(¢t) = > o~ P,f(t) for
f €L*(0,T; H). Let us choose f €L?(0,T; H) satisfying

T
/0 [Py f (1) Pdt > 0.

Then since

/0 1/(t) = Byu(t)]%dt = / SOIPF(E) — Bou(t))| [t

T

> / 1PUF () — Bou(t)|Pdt = / 1P| Pdt > 0,

the statement mentioned above is reasonable.
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Proof of Proposition 3.2.2. Let zy € D(Ap), Then putting f(s) =
(o + sApxp)/t it follows that

To = /OtG(t — 8)f(s)ds.

Thus by the condition (B1) there exists u € L?(0,T; U) such that

t
||x0—/ G(t — ) Byu(s)ds|| < e.
0

Therefore, the density of the domain D(Ay) in H implies approximate con-
trollablity of (CS) and (IC), the proof of Proposition 3.2.2 is complete. O

From now on we go to proof of the Theorem 3.2.1. In what follows in
this section, let us assume that the system of the generalized eigenspaces of
Ay is complete. Then we will prove that the assumptions (B1) and (B2) are
a sufficient condition for the following statement (H) in Theorem 1, 2 as in
[35]:

(H) For any € > 0 and p € L*(0,T; H) there exists a w € L*(0,T;U) such
that

t
0

t
| / G(t — s)p(s)ds — / G(t — s)Bou(s)ds| <e, 0<t<T,
0
[ Bou|z20,r:m) < alIpl|z20,m:m)

where G(t) is an analytic semigroup with infinitesimal generator Ay and ¢ is

a constant independent of p.
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If u, € o(Ap) then we have the Laurent expansion for R(u — Ag) =
(u— Ag)~" at g = p,, whose principal part ( the part consisting of all the

negative power of (u — p,) ) is a finite series:

kn—1

+ E + Ro(p),
Z P

R(p— Ao) =

where Ry(p) is a holomorphic part of R(p — Ag) at u = juy.

Since the system of generalized eigenspaces of Ay is complete, it holds

that for any € > 0
— €
f(s) — ;Pnf(s)l < AT (3.3.1)

for f € L*(0,T; H), where M is a constant such that |G ()| < M for the sake

of simplicity. Here, in what follows we put u,, = P, Byu.

Since A, is compact we note that there exists an arc C, which joints y,
and some 2o with Re zg < inf{Re p,, : pn € 0(Ag)} and C,, — {u,} C p(Ao)

where p(Ap) is the resolvent set of Aj.

Lemma 3.3.1. Let G(t) be the semigroup generated by Ay. Then we give an

expression of the semigroup that
kol
G(t)f = et Z @’ f. t>0

i=1

for any f € P,H.
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Proof. From the well known fact that

1
A()Pn = Ao— (,u A()) 1du

271
_ 1 ( A )fld
= om Fnﬂ M 0 H
we have
1
Gt)P, = — Py — Ag) .
() o rne (1 0) du

If f € P,H then f = P,f and hence
1
GO = G(OPaf = 5 [ (= A0) " fd
i Jr,

I
n

= W{Z i1 / (= pn) (1 = Ao)” L)}

k=l i
=gt > QLS.

1=0

Hear, we used the nilpotent property of the operator (),, in the last equality.

The proof of Lemma is complete. O]

Remark 3.3.1. Let f € P,H. Then in virtue of Lemma 3.3.1 it holds that
G(t)f = G(t)Byf for everyt > 0.

Let f € L*(0,t; H). Then by the assumption (B1) for any ¢ > 0 there

exists a control v € L?(0,t;U) such that

|/OtG(t ) f(s)ds — /OtG(t ~9)Bu(s)ds| < 5, 0<1<T,  (332)
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and

_ ;Pﬂv(s)l < —2M||BO||\/T. (3.3.3)

Let us define h € H by

h = Z/o G(t — s)P,v(s)ds
5

Here, we put h, = fot G(t — s)P,v(s)ds. Since P,u(s) € P,H, in terms of

Lemma 3.3.1 we have that

hn, = /t G(t — s)P,v(s)ds (3.34)

kn—1

—Z/ﬂn“s S G pasyas

Define
(o) knfl i
_ _ i —1_—pn(t—s) kn—lh
U(S) - Zun(s)a un(8> - ( (Z + 1)]) € Qn mn:
n=1 =1 ’
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Then u,(s) € P,H and from remark 3.2.1 it follows
t ot
/ G(t — s)Bou(s)ds = Z/ G(t — s)Boun(s)ds
0 = Jo

k:nl

—Z/ etn(t=9) Z Q‘ Bouy,(s)ds

Thus from (3.3.2), (3.3.3) it follows that

|/ (t — s)Bou( )ds—/ G(t —s)f(s)ds|
& | /t G(t — s)Bou(s)ds — Boh|+
| Boh — /t G(t — s)Bov(s)ds|+

| /0 G(t — s)Byv(s)ds — /0 G(t —s)f(s)ds|

<€—|—6<
573 &

Moreover, by Holder inequality we also have

t [ee]
Buallisosan < [ 15 Bow(s) s
0 p=1

kn—1 tz +1

<[ |Z O ) e s

t 00
c/ 1> Boh,|*ds,
0 n=1
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where ¢ is a constant. From remark 3.3.1 we also note that

t
Boh,, = BO/ G(t — s)P,v(s)ds
0

= /t G(t — s)BoP,v(s)ds,

and, hence from (3.3.2) and (3.3.3) it holds
]Zthn\ = ]Z/ G(t — s)BoP,v(s)ds|
n=1 n=1"0
<] /t G(t — s)By ipnv(s)ds — /t G(t — s)Bov(s)ds|+
0 o= 0
G(t—s)B ds— | G(t—s)B d
|| Gt = 9Bt = [ Gle=s)Bus(s)isl
[ G —sa
< §+§+|/0 G(t — 5)f(s)ds]

< 4|l fllr2pm) +e

where ¢ is a constant. Thus, from the above equality we can conclude that

1 Boull L2040y < allf 2206y + €.

Here, we note the constant ¢ is independent of f. Since € is arbitrary we
have proof that the assumption of Theorem 3.2.1 implies the condition (H).

In virtue of Theorem 4.2 of [19] the proof of Theorem 3.2.1 is complete. O
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3.4 Examples of controller

Example 1. Define the controller By by

where

Then as is seen in section 3 we define h, u by

h = Zh”’ u(s) = Zun(s)

where hy,(s) is defined by as (3.3.4),

00 kn—1

1T .
u(s) = 3 unfs): unl8h= 3 (T <o) ATIQ " h,

n=1 =1

respectively. Then u,(s) € P,H and fOT G(T — s)Bou(s)ds = >~ hy, and
this controller is satisfied the conditions in Thereom 3.2.1.

Example 2. We consider the heat control system studied by Zhou [14,
Example 1] and Naito [17, Example 1]. Let H = L*(0,7) and Ay = —d?*/dz?
H = L*0,7) and Ay = —d?/dz* with

D(Ay) ={y € H : d*y/da* € H and y(0) = y(r) = 0}.
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Then {e, = (2/7)?sinnz : 0 <o <7, n =1, ... } is orthonomal base for

H. Define an infinite dimensional space U by

(o] oo
U= {Zunen : Zui < o0}
n=2 n=2

with norm defined by ||u|ly = (302, u2)Y2. Define a continuous linear

operator By from U to H as follows:

Bou = 2uqeq + i Umer—Ior 1 = i Upen € U.
n=2 T
It is directly seen that the above controller By satisfies the conditions (B1)
and (B2). We can also check breifly by using the assumption (H). In fact,
let f € L*0,T;H) and f = > .>°, fu(s)en,. Then we choose a function
u € L?(0,t;U) for 0 < t < T such that uy = %fl + fo and w, = f, for
n =2, 3, .... Hence, choosing a constant in condition (H) such that ¢ > %,

not only the system (CS) and (IC) with the operator A, mentioned above

but also the general semilinear case is approximate controllable.
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Chapter 4
Controllability for semilinear systems of

parabolic type with delays

4.1 Introduction

In this paper, we deal with control problem for semilinear parabolic type

equation in Hilbert space H as follows.

42 (t) 28 Apz(t) + fi)h a(s)Ax(t + s)ds
+1(t,z(t)) + Pou(t), (PS)
z(0) =" ¢°% x(s)=g%(s), se€[-h0).

Let Ay be the operator associated with a sesquilinear form defined on V' x V'

satisfying Garding inequality:
(Au,v) = —al(u,v), u, veV

where V' is a Hilbert space such that V. C H C V*. Then it is known that Ay
generates an analytic semigroup in both H and V*. Let Z = Hx L*(—h,0; V)
be the state space of the equation (PS) . Z is a product Hilbert space with

the norm
02 0 1 2 L 0 .1
lallz = (5F + [ llg'G)IFast, g = (69 € 2
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The operator A is defined as follows:
D(A)={g=1(4"¢"): ¢"€ H, g' € L*(=h,0;V),
0
g9'(0) = ¢°, Aog" +/ a(s)Asgt(s)ds € H},
—h
0

Ag = (Agg® +/ a(s)Asg*(s)ds, g').

~h
The equation (PS) can be transposed to an following general initial problem

%z(t) = Ax(t) + F(t, 2(t) + Du(t), (TP)

where @f = (9o f,0), F(t,2(t)) = (f(t, z(t)),0) Recently, Approximate con-
trollability for semilinear control systems can be founded in [17, 26] with a
range condition of the control action operator. In [22, 23], Naito showed
approximately controllability of the system (PS) by using the assumption
that the semigroup generated by A is compact operator, also Nakagiri and
Yamamoto [36] showed it in case where the operator A generator an analytic
semigroup. We note that in our case the semigoup generated by A is not com-
pact operator but only Cy-semigroup. So, we show from the approximately
controllable of the system (IP) in space Z with the general assumption of
nonlinear part. Moreover, we derive the relations between the controllability

of the system (PS) and one of (IP).
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4.2 Preliminaries
Let V and H be Hilbert spaces forming a Gelfand triple V. C H C V* with

pivot space H. and the operator A, is the operater mention in section 3.1.

Moreover, there exists a constant C'; such that

1/2
[[ul] < Cullull s, lul"?, (4.2.1)

for every u € D(A), where
ullbag = (|1 Aoul® + [uf?)/2
is the graph norm of D(A). Thus we have the following sequence
D(Ag) cV CHCV*C D(A),

where each space is dense in the next one and continuous injection.

Lemma 4.2.1. With the notations (4.2.1), we have

(V,V*)122 = H,

(D(Ao), H)1j22 =V,

where (V,V*)1 /22 denotes the real interpolation space between V' and V* ([29],Section
1.3.3 of [9)).

The operators A; and A, in the system (PS) are bounded linear operators
from V' to V* such that they map D(Ag) into H. The function a(-) is assume
to be a real valued Holder continous in [—h, 0] and the controller operator @
is a bounded linear operator from a Banach space U to H, where U is called

a control set.
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Let f be a nonlinear mapping from R x V into H. We assume that for

any xi, o € V there exists a constant L > 0 such that

{ [f(t.@) = f(f,22)] < Lz — |

5.0 20 (4.2.2)

Assume that (3.1.1) holds for ¢; = 0. Noting that Ay + ¢; is an isomorphism
from V to V* if ¢; # 0. Corresponding the linear system [4, 14, 32], we have

the following result of semilinear equation (PS) as is seen in [16, 20].

Proposition 4.2.1. Under the assumption (4.2.2), then there exists a unique
solution x of (PS) such that

z e L*0,T5 V)N W20, T; V*) c C([0,T); H).

for any g = (¢° ¢g*) € Z = H x L*(—h; V). Moreover, there exists a constant
C such that

H$|’L?(O,T;V)mWL?(O,T;V*) < C(|90’ + HQIHLQ(—h,O;V) W HUHL2(0,T;U))~

4.3 Controllability

Let Z = H x L*(—h,0;V) be the state space of the equation (PS). Z is a

product Hilbert space with the norm

0
lgll = (|9°|2+/h||91(8)||2vd8)2, 9=1(9"9)€Z

Let g € Z and z(t; g, f, Pou) be a solution of the equation (PS) associated

with nonlinear term f and control @yu at time ¢. In view of the result of
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Proposition 4.2.1 considered as an equation in V*, we can define the solution

semigroup for the problem (PS) as follows:

S(t)g = (2(t;9.0,0),24(; 9,0,0)) (4.3.1)

where g = (¢°,¢*) € Z, x(t;4,0,0) is the solution of (PS) and (IP) with
f(t,x) =0 and &y = 0 and z4(s;¢,0,0) = z(t + s;9,0,0) defined in [—h,0].
It is known that the operator S(t) is a Cy-semigroup on Z (see [35] ). and

the infinitesimal generator A of S(t) is characterized by

D(A)= {g=(9%9"):9"€H, ¢' GLQ( h, 0; V)
9'(0) =¢°, Aog® + Arg'(—h) + f s)Asgt(s)ds € H,
Ag = (Aog® + Arg'(— +f A29 )d&g )-

Note that a(-) need not be Hélder continuous for the above results to hold.

It has only to belong to L?(—h,0).

For the sake of simplicity, we assume that S(t) is uniformly bounded,

that is, there exists a constant M > 1 such that
1S(@)]]z < M. (4.3.2)

as is seen in [36], the equation (PS) can be transformed into an abstract

equation

where z(t) = (z(t), 2;(+)) belongs to the Hilbert space Z and g = (¢°, g') € Z.

The operator A is the infinitesimal generator of Cy-semigroup S(t), F\(z(t)) =
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(f(t,x(t)),0) and Bu = (Byu,0). The mild solution of initial problem (4.3.3)

is the following form:

z(t; g, f, Bu) = S(t)g + /Ot S(t—s)F(2(s))ds + /0 S(t — s)Bu(s)ds.

For T >0, g€ Z and u € L*(0,T;U) we set
Lr(g9) = {2(T; 9,0, Bu) : u € L*(0,T;U)},

Rr(g) = {z(Tsg, f,Bu) : u € L*(0,T;U)},

L(g)= |J L1(9), R(9) = | Rrl9),

T>0 T>0
L?(Q) ={2(T; 9,0, Bu) : ||U||L2(0,T;U) < K},

Rllf(g) — {Z(T, 9, f7 Bu) : ||UHL2(O,T;U) < K}

Definition 4.3.1. The system (4.3.3) is said to be approximately controllable
on [0,T] if R(T) = Z. If L(T) = Z, the linear system (4.3.3) is said to be
approzimately controllable on [0, T].

Here, we remark that if the system (4.3.3) is said to be approximately

controllable on [0, 7] if R(T) = Z, so is the system (PS). In view of H. Tan-
abe[11; Lemma 7.4.1] Ly (0) is independent of time 7.

We need the following hypothesis:

(H) |f(t.2)| < M, = € H(t>0).
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Theorem 4.3.1. Let us assume the hypothesis (H) and LX (g) have interior

points. Then we have that for any g € Z there exists a constant ¢ such that

Rf (9) C cLt(g)-

Proof. Since LE(g) = S(T)g + L7(0) and LE(0) is a balanced closed sub-

space, there exists a 2y € Z such that
inf{||zo — S(T)g — z|| : z € Lp(0)} > 2M||g||» + M>T.

Then zy ¢ Rr(g). In fact, from (4.3.4) we obtain that

| 2(t0, f,Bu) — 2+ S(T)gllz
>\|f0 (t — s)Bu(s)ds — z||z — 2||S(T QHZ_Hfo (t —'s)F
> 0.

Hence there exists a constant a ¢ such that

Rf(g) C cLi(g)-

We also assume that

(H1) z(t; g, f,0) € L;(0) and z(t; g,0,0) € L(0) (t > 0).

(4.3.4)

(2(s))ds||z

With the aid of the hypothesis (H1) it holds that L;(0) = L.(g) for every

gez.

Theorem 4.3.2. Under the hypotheses (H) and (H1), we have that

Lr(g) C Rr(g).
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Proof. Let € > 0 and zy € Ly(g) and let 6 < %EMQ. Put 2y(s) = z(s;9, f,0)
and z; = z(T — 454, f,0), where 2(T — 0;g, f,0) = S(T — d)g + fOTfé S(T —
d — s)F(20(s))ds. Consider the following problem:
{ 4y (t) = Ay(t) + Bu(t), T—-05<s<T,
y(T'—6) = 2.
Then since the form of a solution of above equation is v, (7)) = S(0)z +
[y S(T — s)Du(s)ds.

and L;(0) is independent of time ¢, we have y,(T") € LT(0). Here, we used

the fact that S(t)L,(0) C L,,,(0). From the hypothesis (H1) there exists

uy € L*(T — 6, T;U) such that

€
14, (T) = 20l < 5 (4.3.5)

where y,, (T) = S(6)z + fTT_6 S(T — s)Buy(s)ds. Now we set

0 if 0<s<T -0,
v(s) = .
Toks) N iftd =5-<ds.<T.

Then v € L*(0,T;U) and from (4.3.5) we obtain that
T

|2(T g, f, Bv) — Z0llz < |[S(6)z1 + / S(T' = s)Bua(s)ds — z|z
T—6

T

+ [ ST = s)F(zu(s))ds|z
T—6

€ 2
< 5 + M*) <e.
Hence the proof is complete. ]
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Corollary 4.3.1. Let us assume the hypotheses (H) and (H1). Then Li(g) =

Z if and only if Ri(g) = Z. therefore, if the linear system (4.3.3) is said to

be approximately controllable on [0,T], so is semilinear system (4.3.3)

The proof of this Corollary holds from Theorems 4.3.1 and 4.3.2.
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Chapter 5
Optimal Control Problems for Semilinear

Retarded Functional Differential Equations

5.1 Introduction

This paper is concerned with the optimal control problem of the semilinear
functional differential equation with delay in a Hilbert space. Applications of
the optimal control problems for two types of cost functions are given; one is
the averaging observation control and the other is the observation of terminal
value. The principal operator of given equations generates an analytic semi-
group and the nonlinear term is uniformly Lipschitz continuous with respect
to the second variable. This is the semilinear case of the nonlinear part of
quasilinear equations considered by Yong and Pan [21].

The optimal control problems of linear systems have been so extensively
studied by [13, 37, 8] and the references cited there. In [37], Nakagiri ob-
tained some standard optimal control problems, namely, the fixed time inte-
gral convex cost problem and the time optimal control problem for general
linear retarded systems in reflexive Banach spaces. In [27], Papageorgiou

established the existence of the optimal control for a broad class of nonlinear
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evolution control systems and in [28], the author obtained necessary condi-
tions for optimality using the penalty method first introduced in Balakrish-
nan [2|. Actually, the work of [2] is to introduce a computational procedure
for optimal nonlinear control problems with condition of the Gateaux differ-
entiability of the nonmonotone terms. Indeed, the optimal control problems
on semilinear partial differential equations with delay terms are not so many.

The purpose of this paper is to extend the optimal control theory for
the general linear results as in [37, 17, 15] to practical semilinear retarded
systems using the construction of the fundamental solution in case where
the principal operators are unbounded operators. Two applications of the
main results are given; one gives a uniqueness of the optimal control of the
cost function defined by distributed observation and the other gives a feed-
back control law for the observation function of terminal value. Here, using
techniques for the linear control problems and the properties of solutions
of semilinear system as developed in [26, 12, 4], we obtain the existence of
optimal controls for the equation, where the nonlinear term is given by the
convolution product and give the maximal principle for given cost functions
and present the necessary conditions of optimality which are described by
the adjoint state corresponding to the linear retarded equation without a

condition of differentiability of nonlinear term.
5.2  Preliminaries and Local Solutions

Let V and H be Hilbert spaces forming a Gelfand triple V. C H C V* with

pivot space H. and the operator Aj is the operater mention in section 3.1.
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The control space will be modeled by a Banach space Y. Let the controller
B is a bounded linear operator from Y to H.

We denote by W™P(0,T; V*) the sobolev space of V*-valued functions on
[0, 7] whose distributional derivatives up to m belong to LF(0,7T; V™).

First, we introduce the following linear retarded functional differential

equation:

{ 2/ (t) = Aox(t) f s)Arx(t + s)ds + q(t), (RE)

z(0) = ¢°, ()—¢1( YA =h< 5 <0,

The operator Ay is a bounded linear operator from V to V* such that its
restriction to D(Ap) is a bounded linear operator from D(Ay) to H. The
function a(-) is assumed to be real valued and Hoélder continuous in the
interval [—h, 0]:
la(s) — a(7)| < K(s = 7)° (5.2.1)
for constants K and 0 < p < 1.
Let W(-) be the fundamental solution of the linear equation associated

with (RE) which is the operator valued function satisfying

{W(t) = 5(t) + fy S(t = s) [°, a(r) iW (s + 7)drds, ¢ >0, (5.2.2)

W) =I, W(s)=0, —h<s<0,

where S(-) is the semigroup generated by A,. Then

z(t) = W(t)e® + / ds—l—/Wt—s s)ds,
_ / 1W(t—5+0)a(U)A1da.
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Recalling the formulation of mild solutions, we know that the mild solution

of (RE) is represented by

o(t) = { S(t)¢° + [ S(t — s){[°, alr)Ava(s + T)dr + q(s)}ds,
o'(s), —h<s<0.

From Proposition 4.2 in [4] it follows the following results.

Proposition 5.2.1. The fundamental solution W (t) to (RE) exists uniquely.

For any natural number n_and ¢ = 0,1, there exists a constant C,, such that

WO < Cu, (5.2.3)
AW (@] <.Cn/t, (5.2.4)
|AW () A7 < Cn (5.2.5)
on [0,nh] and
t/
||/ AW (r)dr|| < C,, 0<t<t <nh. (5.2.6)
t
Here, || - || stands for the operator norm simply.

Considering as an equation in V* we also obtain the same norm estimates
of (5.2.3)-(5.2.6) in the space L£(V*) which is the collection of all bounded

linear operators from V* to itself.

Proposition 5.2.2. There exists a constant C' such that the following in-
equalities hold for all t > 0 and every x € H or V*:
W (t)z| < Ct=V2|zl., (5.2.7)

W (t)z|| < Ct~V2z| (5.2.8)
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Proof. Asin Lemma 3.6.2 of [8], if {S(¢)} represents the semigroup generated
by Ag, then there exists a constant C' such that

[S(t)a] < Ot Jall,  [IS(#)all < Ct Y2l (5.2.9)

for t > 0 and x € H or V*. With the aid of the change of the variable and

noting W (t) = 0 for t < 0, we get
t s
W(t)x = S(t)x + / S(t — s)/ a(t — s) AW (7)xdrds
0 0
on [0, k| and
t s
W(t)x = S(t)x +/ S(t— s)/ a(t — s) AW (7T)zdrds
0 /1)
on [h,oo]. We write the second term of the representation W (t) in [h, oo| as
t s
/ S(t —s) / a(t — s) AW (7)zdrds
0 s—h
t s
= / St —s) / (a(T —s) —al=s)) AW (T)xdrds
0 s=h

t s
+/ S(t—s)a(—s)/ AW (T)xdrds
0 s—h
=I+11.

Combining (5.2.1), (5.2.7)( or (5.2.8)), and (5.2.9), we get

t s
WHS/CW—@*N/ KC, 77 a|drds
0 s—h
L
<2CC,Kp B(ﬁ,p+1)|x|,
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where B(-,-) is the Beta function. From (5.2.6), it follows that I is also
bounded. We can also obtain the similar inequalities in [0, h]. Thus, the

proof is easily obtained from (5.2.9) and using the representation (5.2.2) of
W(t). O

By virtue of Theorem 3.3 of [4] we have the following result on the linear

equation (RE).

Proposition 5.2.3. 1) Let F = (D(Ay), H)%,Q, where (D(Ag), H)1/2,2 denote

the real interpolation space between D(Ag) and H. Let
(¢°, ") € F x L*(—h,0;D(A)) textand ¢ € L*(0,T; H),T > 0.
Then there exists a unique solution x of (RE) belonging to
Wo(T) = L*(—h,T; D(Ao)) NW*2(0,T; H) C C([0,T); F)
and satisfying
llzllwoery < CLlI@%Nr + 1! |2 (-n0:00a0)) + llal L2, (5.2.10)

where C} is a constant depending on T.
2) Let (¢°,¢") € H x L*(—h,0;V) and q € L*(0,T;V*), T > 0. Then there

exists a unique solution = of (RE) belonging to
WL(T) = L*(—h, T; V)N W20, T; V*) ¢ C([0,T); H)
and satisfying

lzllwiry < CLUS° + 10| 2-nowy + [lall2ov))- (5.2.11)
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In what follows we assume that W (t) is uniformly bounded: There is a

constant M > 0 such that

Wl <M, t>0 (5.2.12)

for the sake of simplicity. Let g : [0, 7] xV — H be a nonlinear mapping. We
assume that there exists a constant L > 0 such that ¢ — ¢(t, z) is measurable

and

lg(t, ) — g(t,y)| < Lilz —=y|l, ¢(t0)=0 (5.2.13)

for all z1, 29 € V.

For z € L*(0,T;V) and k € L*(0,T) we set

F({) & /0 k(t — s)g(s,z(s))ds. (5.2.14)

Now, we consider the following semilinear retarded functional differential

equation

2(0) = ¢°, x(s) =¢'(s), —=h<s<0. (5.2.15)

{x’(t) = Ao (t) + f2, () Ape(t+ 8)dso £t 2(5) + a(2).
Lemma 5.2.1. Let x € L*(0,T;V), T > 0. Then f(-,x) € L*(0,T; H). and

F G2 e2omsm < LUK 200 VT 2] 2 0m0)-

Moreover, if xy, x5 € L*(0,T;V), then

1F o) = o m)llzoma < LIE| 200 V|21 — 2ol |20.00)-
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Proof. From (5.2.13) and using the Holder inequality it is easily seen that

T t
|anawﬂsA|AkaM@mmwmt

T ot
<l | [ PlletolPdsat
0o Jo
< TL2||]€||%2(O,T)H$||i2(0,T;V)'
The proof of the second paragraph is similar. O

In virtue of Lemma 5.2.1, using the maximal regularity for more gen-
eral retarded parabolic system from Theorem 3.1 in [31], we establish the

following result on the solvability of (5.2.15).

Proposition 5.2.4. Suppose that the assumptions (5.2.13) is satisfied. Then

for any
(¢°,¢") € H x L*(=h,0;V) and q € L*(0,T;V*), T >0,
the solution x of (5.2.15) emists and is unique in L*(—h, T; VNW12(0,T; V*),
and there exists a constant CYy depending on T such that
|2l 2wz mys < Co(L+ 100 + 10 |2 -nov) + [l |20,zv+))-
(5.2.16)

Let I = [0,7], T" > 0 be a finite interval. We introduce the transposed
system which is exactly the same as in Nakagiri [37]. Let ¢} € H, ¢ €
LYI; H). The retarded transposed system in H is defined by

{ G M)+ D al) Azt - 9)ds —gi() =0 ae t €, )

2(T)=4q, =z(s)=0ae. s€T,T+h|
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Let W*(t) denote the adjoint of W (¢). Then the mild solution of (5.2.17) is

defined as follows:
T
A =W =0+ [ W= a0
¢

for t € I in the weak sense. The transposed system will be used to describe

a formulation of the optimality conditions for optimization problems.

5.3 Optimal Control for the Distributed Observation

In this section we assume that the embedding D(A,) C V is compact. Choose
a bounded subset U of Y and call it a control set. Suppose that an admissible
control u € L*(0,T;Y) is a strongly measurable function satisfying u(t) € U
for almost all ¢, and let x(¢; f, u) be a solution of (5.2.15) associated with the
nonlinear term f and a control u at time ¢. The solution z(¢; f, u) of (5.2.15)
for each admissible control u is called a trajectory corresponding to wu.

Let F and B be the Nemitsky operators corresponding to the map f and
B, which are defined by

(Fu)(-) = f(-zu(-)) and  (Bu)(-) = Bu(),
respectively. Then,

ot o) = 2(t:0) + [ Wt = )1 (s,0(5) + Bus)}ds

= x(t;¢) + /o W(t —s)((F + B)u)(s)ds,
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where
0

z(t; ¢) :W(t)¢0+/ Ui(s)¢'(s)ds.

—h

Let Z be a real Hilbert space and let C'(¢) be bounded from H to Z
for each ¢ and be continuous in ¢ € [0,7]. Let y € L*(0,T;Z). Suppose
that there exists no admissible control which satisfies C'(t)x(t; f,u) = y(t)

for almost all ¢. Then, we consider a cost function given by

ﬂw:—lymeJw%w@ﬁw (5.3.1)

Let w € L'(0,T;Y). Then it is well known that

h
anJ/\m@+@—u@mﬂw:o (5.3.2)
h—0 0

for almost all points of ¢ € [0, T].

Definition 5.3.1. The point t, which permits (5.3.2) to hold, is called a

Lebesque point of u.

Lemma 5.3.1. Let x,, be the solution of (5.2.15) corresponding to w. Then

the mapping u — x, is compact from L*(0,T;Y) to L*(0,T;V).
Proof. We define the solution mapping S from L?(0,T;Y) to L*(0,T;V) by

(Su)(t) = zu(t), w€ L*0,T;Y).
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In virtue of (5.2.10), (5.2.16), and Lemma 5.2.1

[[1Sul|L2(0,1:DA0 )W 20.150r) = |[TullL2(0,7:D(A0) W12 (0,750

< C1([18°1 7 + 10" 22 (-nop (o)) + [|(F + B)ul|20.:01)

< CL(18°lr + 119 22(—n.0:0(40))
+ L[kl 200 VT |2l 20,00y + 1Bl ul|20,7:3))

< CH{II e + 116" z2(-n0:Da0)) + LIlEl 200,y VT (CH(1 + 6]
+ 16 2oy A 1Bl 20.0)) + 1Bl 2003 }-

Hence if u is bounded in L*(0,7;Y), then so is w, in L*(0,T; D(4g)) N
W20, T; H). Noting that D(Ap) is compactly embedded in V by assump-
tion, the embedding

L*(0,T; D(Ao)) nW"*(0,T; H) € L*(0,T;V))

is also compact in view of Theorem 2 of J. P. Aubin [18]. Hence, the mapping

u — Su = x, is compact from L?(0,T;Y) to L*(0,T; V). O

Theorem 5.3.1. Let U be a bounded closed convex subset of Y. Then, there

exists an optimal control for the cost function (5.3.1).
Proof. Let {u,} be a minimizing sequence of .J such that

inf J(u) = lim J(u,).

uelU n—o0

Since U is bounded and weakly closed, there exist a subsequence, which we

write again by {u,}, of {u,} and a @ € U such that
u, — 4 weakly in L*(0,T;Y).
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Now we show that @ is admissible as follows. Since U is a closed convex set

of Y, by Mazur’s theorem as an important consequence of the Hahn-Banach
theorem, there exists an fy € Y* and ¢ € [—o0,00] be such that fo(u) < ¢

for all u € U. Let s be a Lebesgue point of . and put

for each € > 0 and n. Then, fy(w.,) < ¢ and we have

1 s+e€
Wedr gl = —/ u(t)dt weakly as n — oo.
E S

By letting € — 0, it holds that w. — u(s) and fo(a) < ¢, so that a(s) € U.
Noting that

o (t) = x(t; ) + /0 W(t — s)((F + B)uy,)(s)ds, (5.3.3)

where

£(t; 6) = WD)+ / Ui(s)6! (s)ds,

—h

it follows from Proposition 5.2.4 that {z,(¢)} is bounded and hence weakly
sequentially compact. From (5.2.13) and Lemma 5.3.1, we see that F is a
compact operator from L*(0,7;Y) to L*(0,T; H) and hence, it holds Fu,, —
Fug strongly in L*(0,T; H). Hence, since B and W () are strongly continuous

on [0,7T], we have

xn(t) — x(t; f,4) weakly in H,
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where
x(t; f,0) = x(t; ) + /Ot W(t — s){(F + B)u(s)}(s)ds.
Therefore, we have
inf J(u) < J(u) < liminf J(u,) = inf J(u).
Thus, this @ is an optimal control. ]
The maximum principle is derived from the optimal condition as follows.

Theorem 5.3.2. Let (5.2.13) be satisfied and let @ be an optimal control.
Then the equality
max(v, B*z(s)) = (u(s), B*z(s))

vel

holds, where

T
A9) = [ W= )OO0 ~ Cjas i)t
Here, z(s) satisfies the following transposed system:

2'(t) + Afz(t) fi)h a(s)Aiz(t — s)ds — C*(t)(y(t) — C(t)x(t; f,u)) =0 a.e. t €1,
=0, z2(s)=0 ae se[T,T+h].

(5.3.4)

i the weak sense.
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Proof. Let @ be an optimal control and #(t) = x(t; f,4). For € > 0, choose
v e L*(0,T;U) so that ||4 — v||r20r0) < €. Let o be a Lebesgue point of

u,v. For tg <ty +e <T, put

if ¢ t<t
u(t)_{ o Bhsi=tore (5.3.5)

B u(t), otherwise.
Then w is an admissible control. Let z(t) = z(¢; f,u). Then z(¢) — z(t) =0
for 0 <t <ty and

z(t)—z(t) = 0 EV[/(t—s){f(s,x(s))—f(s,fc(s))—I—B(v—ﬁ(s))}ds, (5.3.6)

to

forto+e <t <T.Ifty <t <ty+ e then

x(t) —z(t) = /t W(t—s){f(s,z(s)) = f(s,2(s)) + B(v—u(s))}ds. (5.3.7)

Let tg + € <t < T and let us put

w(t) = t . W(t—s)B(v—u(s))ds.

Noting that v — @ is admissible and ¢, is a Lebesgue point of v — @ and

for0<ax<1

log(1 +¢) / d </ S R L
O €) = —_ = — € — —,
: 1 Z/y_ 1 ylfay « S a
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we have that from (5.2.8) of proposition 5.2.2 and Hélder inequality, it follows

to+e
[lw(t)]] < C/ (t— s)‘1/2|B(v —u(s))|ds (5.3.8)
to
t—to 1.
< CI|B||{log ;———}}|lit = vll 2009
< a M2e(———)*2C||B)|.
t— to — €

From (5.3.6) and (5.3.8), it follows that
[l(t) = 2(1)]] (5.3.9)
to+e

<[l Wt — s){f(s,a(s)) = f(s:d(s)) }ds|| + [[w(D)]|

to

<c / T VR (5,2(5)) — £(58(8)|ds + ()]

to

to+e€
<cr [ =9 llale) = a(llds+ o7 e C) il
o=

to
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Therefore, if we put X (¢) = ||z(t) — (¢)||, then

to+e€
X(t) < CL/ (t —s)"V2X (s)ds + a—1/2€(;)a/20||3”
to+e€ s
< CL/ (t — s)_l/Q{C'L/ (s — 1) Y2X (7)dr
to 0
~1/2 € o211 B|Vd ~1/2 € /21| B
+ e 2C1 B s + o~ Al ———)""2C B

— (L) / RTSREY: / (="YX (r)drds

to 0
1/2 € 2 o 1/2
+a el elB| [ (- 5) s

€

+ a2 )eC| B

— (CLY /:ﬁ / (¢ = $)7V2(5 = )M dsX (r)dr

1 ~1/2 3/2 € /2 —-1/2 €

- __©  yerg|p / /20| B
+ 30 VRO )R\ Bl + 0 el B

LBy [T X(e)dr 4 Lo Cyergy g
= = = 7)dT + =a= %€

22 )., 5 P a—
—1/2 € o201 B

+a )| B,

where B(+,-) is the Beta function. Gronwal’s inequality implies

\ﬂﬂ—i@ﬂSHﬂﬂ—iWHSQd;;%j;W” (5.3.10)
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for some constant co > 0. It holds the inequality (5.3.10) in case where

0 <t < ty+ e naturally. Since @ is optimal, we have

(J(u) — J(@)) (5.3.11)

:_/’@wxﬂw_@@xc@ﬂw—y@wt

€ Jo
I g
+oo [ 1C@)((t) - 2(6) [t
€Jo
=1+ H
From (5.3.10) it follows that

lim 71 = 0. (5.3.12)
el0

The first term of (5.3.11) can be represented as

1 T 1 to+e 1 T
I= —/ (C)(z(t) — £(t)), C([)2(t) = y(t))dt = —/ +—/ =1 +1I.
€ Jiy € Jto € Jig+e
On account of (5.3.10), it holds that
lim [; = 0. (5.3.13)

€l0
Noting
U@w@»—ﬂaﬂ@nSLMmmwwAWuﬂ—@uwmvﬂ

< ecy VTL||K|| 2 0.1,
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we have that

to+e€

| W(t—s)(f(s,x(s))— f(s,2(s)))ds| < EQCQﬁCLHkHL2(O7T). (5.3.14)

to

Hence, we obtain

lim l(ac(t) —z(t))

el0 €
ZEg%toEW@—@U@#@»—f@ﬁBD+B@—®@H%

=Wt — to)B(v — 0)(to).
Thus, as in (5.3.11), we have

lim [y = / (CEW(E — to)B(u— @) ko), C()2(t) — y(t))dt,

el0 td

that is, from (5.3.11)-(5.3.14) it follows

T
/ (CHOW(t - s)B(v —@)(s), C(&)&(t) = y(t))di = 0
holds for every v € U and for all Lebesgue points s of u. Hence, we have
(v —1a(s), B z(s))dt <0,
where
T
A9 = [ W= Wl - COa)

Here, z(s) is a solution in a weak sense of the equation (5.3.4). O
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The optimality condition J is often used to derive the uniqueness of opti-
mal control. To give such an application we need the following lemma, which

is well known for the fundamental solution W (#)[[37], Lemma 5.1].

Lemma 5.3.2. Given an interval I C R and a Banach space X, let [ €
LP(I; X) for 1 <p<oo. If

/tW(t— s)f(s)ds =0, for all tel,
0

then f(t) =0 almost everywhere t € I.

Now, we give the conditions for the uniqueness of optimal control as

follows.

Theorem 5.3.3. Let F + B and C(t)(t > 0) be one to one mappings. Then,

the optimal control for the cost function (5.3.1) is unique.

Proof. Let u be an admissible control defined by (5.3.5) and let ¢, be a
Lebesgue point of 4,v and F(v — u). Putting that z(t) = x(¢; f,4) and
x(t) = z(t; f,u), we obtain the estimate of z(t) — #(¢) in H by using simple
calculations and known results, which is also obtained from (5.3.10) directly.

Using the Holder inequality it is easily seen that
) to+e S )
1) = £ oy sy < / | / k(s — 7)(g(r, 2(r)) — g(r, &(r)))dr[*ds
to
2 fote B 2 2
< 1o / / 12|[a(r) — (r)|[Pdrds
to

< 6L2Hk|‘%2(0,T)||x - i||?:2(tg,t0+e;V)
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and hence, with the aid of Holder inequality

[ W= s)(Fs,a(s)) — £s,(s))ds (53.15)

to

< GMLHkHL2(0,T)Hm - ‘%HLz(toioJre;V)

for to + € <t < T. Since the control set U is bounded, noting that v — u is
admissible and ¢, is Lebesgue point of v — 4, there exists a constant ¢; > 0

such that
|B(v=14(t))| € 1,  for 0.<¢<L T

Thus, we obtain

to+e

|z(t) — 2(t)| < | W (t— s){f(s,z(s)) = f(s,2(s)) + Bv — i(s)) }ds|
to
< eML||k|[z20m) |z — Zllz2geo to+erv) + €c1M.
Hence, in virtue of Proposition 5.2.4, there exists a constant c3 such that

j(t) — 2(1)] < cze (5.3.16)

holds for any 0 < ¢ < T In case where 0 <t < tg + ¢, it also holds (5.3.16).

Let us consider the optimal relation (5.3.11), it follows from (5.3.16) that

lim 77 = 0. (5.3.17)
el0

On account of (5.3.16), as in (5.3.13), it holds that

lim 7, = 0. (5.3.18)
el0
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Let t >ty and € | 0. Then, we obtain

to+e€

= leiﬂgl <) W(t—s)(F+B)(v—1u)(s)ds
=W (t —to)(F + B)(v — ) (to).

Hence,

lim Iy — lim ~ /t (C)(@(t) = £(t)), C(O)2(t) = y(t))dt (5.3.19)

€l0 el0 € A oy

= / (COW(E = to)(F + B)(v =) (to), C(1)2(t) — y(t))dl.

to

By (5.3.17)-(5.3.19), the inequality

T
/ (COW(t = s)(F+B) (v —a)(s), C(t)&(t) — y(t))di = 0
holds for every v € U and for all Lebesgue points s of 4. Let us denote two

optimal controls by u; and uy and their corresponding by x; and xs. Then,

by the similar procedure mentioned above, the inequalities
/ST(C(t>W(t — ) (F + B)(ug — w)(s), C(t)a1(t) — y(t))dt > 0
and
/S-T(C<t)W(t — ) (F + B) (w1 — uz)(s), C(t)ia(t) — y(t)dt > 0
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hold. Add both inequalities and integrate the resultant inequality from 0 to

T with respect to s. Then, since

xo(t) — x1(t) = /o Wt — s)(F + B)(u1 — uz)(s)ds,

it holds

/0 GO (a(t) — (B < 0.

Since C(t) is one to one, we have that zs(t) — 21(t) = 0. Hence, by Lemma
5.3.2, it holds that (F + B)(u1 — u2)(t) = 0 almost everywhere. From that

F + B is one to one, ui(t) = uy(t) holds for almost all ¢. O

5.4 Observation of Terminal Value

Let y be an element of H and suppose there exists no admissible control

which satisfies

(T f,u) =y.

We assume a cost function given by
1
Jp = i\x(T; fiu) =yl (5.4.1)

Theorem 5.4.1. Let U be a bounded closed convex subset of Y and let
(5.2.13) be satisfied. Then, there exists an optimal control for the cost func-
tion (5.4.1). Moreover, if @ is an optimal control for (5.4.1) then

max (v, B*z(t)) = (u(t), B*z(t)) (5.4.2)

vel
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almost everywhere in 0 < t < T, where z(t) = W*(T — t)(z(T; f,u) — y)

satisfies the terminal value problem

{z’(t) + Afz(t) + f?h a(s)Aiz(t — s)ds = 0,
Z<T) = $<T) fvu) -y

in the weak sense.

Proof. Let v € U. Let u be an admissible control defined by (5.3.5) and ¢
be a Lebesgue point of u,v € U. Put z(t) = z(t; f,u) and z(t) = z(t; f,0),
then

to+e

2(T) = #(T) = [ W(T —s){f(s,(s)) — (s, 2(s)) + Blv — a(s))}ds.

to

Since « is an optimal control, we have

0 < (Al A@)?) (5.4.3)

(@(T) — &(T), &(T) ~ y) + 5-|a(T) — #(T)I*

1
€
=1+11.

From (5.3.10) or (5.3.15), we have IT | 0 as € | 0. From (5.3.14) it follows

that
F[W = st - S 0
thus,
1= W = (00060 — 5, 3460) + Bl — )(s)}ds H(T) ~ )



Therefore, from (5.4.3) we have
0 < ((v—a)(to), BFW(T — to)(&(T) — v)),
which implies that (5.4.2) holds at each Lebesgue point 4. O

Definition 5.4.1. Let z(t) = W(T —t)*zo be a solution of the equation

2 (t) + Agz(t) + /0 a(s)Ajz(t —s)ds =0, 2z(T) = 2. (5.4.4)

—h

We say the adjoint system (5.4.4) is weakly regular if zo = 0 follows from
the ezistence of a set E C [0,T] such that the measure of E is positive and
2(t) =W(T —1)*20 =0 for allt € E.

The examples for which the system (5.5.4) is weakly regular are given in

[[1], p. 41] or Section 7.3 of [37].

Theorem 5.4.2. Let the cost Jy be given in (5.4.1). Assume that the adjoint
system (5.4.4) is weakly reqular and B* is one to one, then the optimal control

u(t) is the bang-bang control, i.e., u(t) satisfies
u(t) € OU  for almost everywhere t € [0,T], (5.4.5)
Proof. For the cost function .J;, the maximal principle is written by

max(v, B*z(t)) = (u(t), B 2(t)) ae. t €[0,7],

vel

where z(t) = W(T — t)*zp. It is sufficient to show (5.4.5) that B*z(t) # 0
a.e. t € [0,T]. Suppose the contrary that there exists a set E such that the
measure of F is positive and B*z(t) = 0t € E. Since B* is one to one and

(5.4.4) is weakly regular, we have that zy = 0, which is a contraction. O
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The unique problem of the optimal control for the terminal value cost
function J; is an open problem. One of the difficulties is that we do not

obtain the convexity property of nonlinear term.

5.5 Conclusions

The purpose of this paper is to extend the optimal control theory for the
general linear results to practical semilinear retarded systems using the con-
struction of the fundamental solution in case where the principal operators
are unbounded operators. We give the existence and uniqueness of the op-
timal control of the cost function defined by distributed observation, and
establish the maximal principle represented by the necessary conditions of
optimality which are described by the adjoint state corresponding to the
linear retarded equation without a condition of differentiability of nonlinear
term. Moreover, we give a feedback control law for the observation function
of terminal value, and the existence of optimal controls for the equation,
where the nonlinear term is given by the convolution product.

The unique problem of the optimal control for the observation function of
terminal value cost function .J; is an open problem. One of the difficulties is
that we do not obtain the convexity property of nonlinear term. Further, we
intend to show how to apply control problems and optimal control to various

nonlinear differential equations and systems arising in science.
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