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Chapter 1

Introduction and Preliminaries

This paper is devoted to the functional analytic method for partial differential

equations. We intend to present the fundamentals of the theory of abstract

parabolic evolution equations and to show to apply to semilinear differential

equations and systems arising in science. This kind of evolution differential

equations arises in many practical mathematical models, such as, option

pricing, population dynamics, physical, biological and engineering problems,

etc. Main approach is known to the abstract parabolic evolution equations,

namely, the semigroup methods, the variational methods, and the methods

of using operational equations. The semigroup methods, which go back to

the invention of the analytic semigroups in the middle of the last century, are

characterized by precise formulas representing the solutions of the Cauchy

problem for evolution equations.

In Chapter 2, we deal with the theory of interpolation spaces between

initial Banach functional spaces and the domain of an elliptic differential

operator. Let Ω be a bounded domain in R
n with smooth boundary ∂Ω. Let

A(x,Dx) be an elliptic differential operator of second order in L1(Ω):

A(x,Dx) = −
n∑

i,j=1

∂

∂xj

(ai,j(x)
∂

∂xi

) +
n∑

i=1

bi(x)
∂

∂xi

+ c(x), (EO)
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where (ai,j(x) : i, j = 1, · · · , n) is a positive definite symmetric matrix for

each x ∈ Ω, ai,j ∈ C1(Ω), bi ∈ C1(Ω) and c ∈ L∞(Ω). The operator

A′
(x,Dx) = −

n∑
i,j=1

∂

∂xj

(ai,j(x)
∂

∂xi

)−
n∑

i=1

∂

∂xi

(bi(x)·) + c(x)

is the formal adjoint of A.

The object of Chapter 3 is to investigate the quality of reachable set of

the following semilinear retarded parabolic type equation

d

dt
x(t) = A0x(t) + f(t), t ∈ (0, T ], (CS)

where

f(t) = A1x(t− h) +

∫ 0

−h

a(s)A2x(t+ s)ds+ f(t, x(t)) + B0u(t).

Then the initial condition of system (CS) is given as follows:

x(0) = g0, x(s) = g1(s), for s ∈ [−h, 0]. (IC)

The existence and uniqueness of solution of the above system are proved in

[19]. The condition for equivalence between the reachable set of the semi-

linear system and that of its corresponding linear system was established in

[19, 10] and recently, [25, 26]. This paper is dealt with another applicable

condition for controller of approximate control problem. Thus, the main re-

sult in this paper will show that the system (CS) with some conditions for

the operator A0 satisfies a sufficient condition for approximate controllability

2



obtained in [19].

In Chapter 4, we deal with control problem for semilinear parabolic type

equation in Hilbert space H as follows.⎧⎪⎨
⎪⎩

d
dt
x(t) = A0x(t) +

∫ 0

−h
a(s)A1x(t+ s)ds

+f(t, x(t)) + Φ0u(t),

x(0) = g0, x(s) = g1(s), s ∈ [−h, 0).

(PS)

Let Z = H × L2(−h, 0;V ) be the state space of the equation (PS). Z is

a product Hilbert space with the norm

||g||Z = (|g0|2 +
∫ 0

−h

||g1(s)||2ds) 1
2 , g = (g0, g1) ∈ Z.

The operator A is defined as follows:

D(A) = {g = (g0, g1) : g0 ∈ H, g1 ∈ L2(−h, 0;V ),

g1(0) = g0, A0g
0 +

∫ 0

−h

a(s)A2g
1(s)ds ∈ H},

Ag = (A0g
0 +

∫ 0

−h

a(s)A2g
1(s)ds, ġ1).

The equation (PS) can be transposed to an following general initial problem

d

dt
z(t) = Az(t) + F (t, z(t)) + Φu(t), (IP)

where Φf = (Φ0f, 0), F (t, z(t)) = (f(t, x(t)), 0)

we will show from the approximately controllable of the system (IP) in

space Z with the general assumption of nonlinear part. Moreover, we derive

the relations between the controllability of the system (PS) and one of (IP).

3



In the last Chapter is concerned with the optimal control problem of the

semilinear functional differential equation with delay in a Hilbert space. Ap-

plications of the optimal control problems for two types of cost functions are

given; one is the averaging observation control and the other is the observa-

tion of terminal value. The principal operator of given equations generates

an analytic semigroup and the nonlinear term is uniformly Lipschitz continu-

ous with respect to the second variable. Two applications of the main results

are given; one gives a uniqueness of the optimal control of the cost function

defined by distributed observation and the other gives a feedback control law

for the observation function of terminal value. Here, using techniques for the

linear control problems and the properties of solutions of semilinear system

as developed in [26, 12, 4], we obtain the existence of optimal controls for the

equation, where the nonlinear term is given by the convolution product and

give the maximal principle for given cost functions and present the necessary

conditions of optimality which are described by the adjoint state correspond-

ing to the linear retarded equation without a condition of differentiability of

nonlinear term.

Thus, we give the existence and uniqueness of the optimal control of the

cost function defined by distributed observation, and establish the maximal

principle represented by the necessary conditions of optimality which are

described by the adjoint state corresponding to the linear retarded equation

without a condition of differentiability of nonlinear term. Moreover, we give

a feedback control law for the observation function of terminal value, and

the existence of optimal controls for the equation, where the nonlinear term

is given by the convolution product.
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Chapter 2

Intermediate spaces related to analytic

semigroups generated by elliptic operators

2.1 Introduction

Let Ω be a bounded domain in R
n with smooth boundary ∂Ω. Let A(x,Dx)

be an elliptic differential operator of second order in L1(Ω):

A(x,Dx) = −
n∑

i,j=1

∂

∂xj

(ai,j(x)
∂

∂xi

) +
n∑

i=1

bi(x)
∂

∂xi

+ c(x), (EO)

where (ai,j(x) : i, j = 1, · · · , n) is a positive definite symmetric matrix for

each x ∈ Ω, ai,j ∈ C1(Ω), bi ∈ C1(Ω) and c ∈ L∞(Ω). The operator

A′
(x,Dx) = −

n∑
i,j=1

∂

∂xj

(ai,j(x)
∂

∂xi

)−
n∑

i=1

∂

∂xi

(bi(x)) + c(x)

is the formal adjoint of A.

For 1 < p < ∞, we denote the realization of A in Lp(Ω) under the

Dirichlet boundary condition by Ap:

D(Ap) = W 2,p(Ω) ∩W 1,p
0 (Ω),

Apu = Au for u ∈ D(Ap).

5



For p
′
= p/(p − 1), we can also define the realization A′

in Lp
′
(Ω) under

Dirichlet boundary condition by A
′
p′ :

D(A
′
p
′ ) = W 2,p

′
(Ω) ∩W 1,p

′

0 (Ω),

A
′
p′u = A′

u for u ∈ D(A
′
p′ ).

It is known that −Ap and −A
′
p
′ generate analytic semigroups in Lp(Ω) and

Lp
′
(Ω), respectively, and A∗

p = A
′
p′ .

For brevity, we assume that 0 ∈ ρ(Ap). From the result of Seeley [32] (see

also Triebel [9, p. 321]) we obtain that

[D(Ap), L
p(Ω)] 1

2
= W 1,p

0 (Ω),

and hence, may consider that

D(Ap) ⊂ W 1,p
0 (Ω) ⊂ Lp(Ω) ⊂ W−1,p(Ω) ⊂ D(A

′
p
′ )∗.

Let (A
′
p′ )

′
be the adjoint of A

′
p′ considered as a bounded linear operator from

D(A
′
p′ ) to Lp

′
(Ω). Let A be the restriction of (A

′
p′ )

′
to W 1,p

0 (Ω). Then by

the interpolation theory, the operator A is an isomorphism from W 1,p
0 (Ω)

to W−1,p(Ω). Similarly, we consider that the restriction A
′
of (Ap)

′
belong-

ing to B(Lp
′
(Ω), D(Ap)

∗) to W 1,p
′

0 (Ω) is an isomorphism from W 1,p
′

0 (Ω) to

W−1,p
′
(Ω). For q ∈ (1,∞), we set

Hp,q = (W 1,p
0 ,W−1,p)1/q,q.

6



As seen in proposition 3.1 in Jeong [16], the operators −A and −A
′
generate

an analytic semigroup inW−1,p(Ω) andW−1,p′(Ω), respectively. Furthermore,

−A also generates an analytic semigroup in Hp,q. The spaces Hp,q is ζ-

convex(as for the definition and fundamental results of a ζ-convex space, see

[11, 3]), and the inequality

||(A)is||B(W−1,p(Ω)) ≤ Ceγ|s|, −∞ < s < ∞

holds for some constants C > 0 and γ ∈ (0, π/2). Let us consider

{
du(t)
dt

+ Au(t) = Bw(t), t ∈ (0, T ],

u(0) = u0,
(CP)

where the controller B is a bounded linear operator from some Banach space

U to L1(Ω), and w ∈ Lq(0, T ;U) for 1 < q < ∞. Noting that if 1 < p <

n/(n−1) we may consider L1(Ω) ⊂ W−1,p(Ω), and so, we cannot express u(t)

using the solution semigroup since B is a mapping into W−1,p(Ω) not into

Hp,q. Therefore, based on the theory of the definition and basic properties

of Besob spaces, we will show that if 1
p
′ < 1/n(1− 2/q

′
) then

Hp′ ,q′ ⊂ C0(Ω) ⊂ L∞(Ω).

Thus, we may consider

Hp,q = H∗
p
′
.q

′ ⊃ C0(Ω)
∗ ⊃ L1(Ω)

and B is bounded mapping from U toHp,q. Hence, it is possible to investigate

the control problem for (CP) in Hp,q. Consequently, in view of the maximal

7



regularity result by Dore and Venni [5], the initial value problem (CP) has

a unique solution u ∈ Lq
(
0, T ;W 2,p(Ω)∩W 1,p

0 (Ω)
)⋂

W 1,q(0, T ;Hp,q) for any

u0 ∈ W 1,p
0 (Ω).

2.2 Notations

Let Ω be a region in an n-dimensional Euclidean space R
n and closure Ω.

Cm(Ω) is the set of all m-times continuously differential functions on Ω.

Cm
0 (Ω) will denote the subspace of Cm(Ω) consisting of these functions

which have compact support in Ω.

Wm,p(Ω) is the set of all functions f = f(x) whose derivative Dαf up to

degree m in distribution sense belong to Lp(Ω). As usual, the norm is then

given by

||f ||m,p,Ω = (
∑
α≤m

||Dαf ||pp,Ω)
1
p , 1 ≤ p < ∞,

||f ||m,∞,Ω = max
α≤m

||Dαu||∞,Ω,

where D0f = f . In particular, W 0,p(Ω) = Lp(Ω) with the norm || · ||p,Ω.
Wm,p

0 (Ω) is the closure of C∞
0 (Ω) in Wm,p(Ω). For p = 2, we denote

Wm,2(Ω) = Hm(Ω) and W 2,p
0 (Ω) = Hm

0 (Ω).

Let p
′
= p/(p − 1), 1 < p < ∞. W−1,p(Ω) stands for the dual space

W 1,p
′

0 (Ω)∗ of W 1,p
′

0 (Ω) whose norm is denoted by || · ||−1,p.

If X is a Banach space and 1 < p < ∞, Lp(0, T ;X) is the collection of all

strongly measurable functions from (0, T ) into X the p-th powers of norms

are integrable.

8



Cm([0, T ];X) will denote the set of allm-times continuously differentiable

functions from [0, T ] into X.

If X and Y are two Banach spaces, B(X, Y ) is the collection of all

bounded linear operators from X into Y , and B(X,X) is simply written

as B(X).

For an interpolation couple of Banach spaces X0 and X1, (X0, X1)θ,p for

any θ ∈ (0, 1) and 1 ≤ p ≤ ∞ and [X0, X1]θ denote the real and complex

interpolation spaces between X0 and X1, respectively(see [9]).

2.3 Relationship of Hp,q ⊂ L1(Ω) as a Besov space

Let A be the operator mentioned in Section 1. Then it was shown that

the operators −A generates an analytic semigroup in W−1,p(Ω) in seen [16].

Lemma 2.3.1. There exists a positive constant C such that for any t > 0

||(t+ A)−1||B(W−1,p(Ω),Lp(Ω)) ≤ Ct−
1
2 , (2.3.1)

and

||(t+ A)−1||B(Lp(Ω),W 1,p
0 (Ω)) ≤ Ct−

1
2 . (2.3.2)

Proof. Let Ap be the realization of (EO) in Lp(Ω) in the distribution sense

under the Dirichlet boundary condition. Then −Ap generates an analytic

semigroup in Lp(Ω), and Ap is the restriction of A to W 2,p(Ω) ∩ W 1,p
0 (Ω).

Hence, (2.3.2) follows from the moment inequality

||u||W 1,p(Ω) ≤ C||u||
1
2

W 2,p(Ω)||u||
1
2

Lp(Ω)

9



and the estimate

||(t+ A)−1||B(Lp(Ω)) ≤ Ct−1

proved in [16, Eq(3.5)]. Replacing p by p
′
we get

||(t+ A
′
)−1||

B(Lp
′
(Ω),W 1,p

′
0 (Ω))

≤ Ct−
1
2 ,

where A
′
is the realization in W−1,p

′
(Ω) under the Dirichlet boundary con-

dition. Taking the adjoint we obtain (2.3.1).

Let Y0 and Y1 be two Banach spaces contained in a locally convex linear

topological space Y such that the identity mapping of Yi (i = 0, 1) into Y
is continuous, and their norms will be denoted by || · ||i. The algebraic sum

Y0+Y1 of Y0 and Y1 is the space of all elements a ∈ Y of the form a = a0+a1,

a0 ∈ Y0 and a1 ∈ Y1. The intersection Y0∩Y1 and the sum Y0+Y1 are Banach

spaces with the norms

||a||Y0∩Y1 = max {||a||0, ||a||1}

and

||a||Y0+Y1 = inf
a

{||a0||0 + ||a1||1}, a = a0 + a1, ai ∈ Yi,

respectively.

Definition 2.3.1. [14] We say that an intermediate space Y of Y0 and Y1

belongs to

(i) the class Kθ(Y0, Y1), 0 < θ < 1, if for any a ∈ Y0 ∩ Y1,

||a||Y ≤ c||a||1−θ
0 ||a||θ1

10



where c is a constant;

(ii) the class Kθ(Y0, Y1), 0 < θ < 1, if for any a ∈ Y and t > 0 there

exist ai ∈ Yi (i = 1, 2) such that a = a0 + a1 and

||a0||0 ≤ ct−θ||a||Y , ||a1||1 ≤ ct1−θ||a||Y

where c is a constant;

(iii) the class Kθ(Y0, Y1), 0 < θ < 1, if the space Y belongs to both

Kθ(Y0, Y1) and Kθ(Y0, Y1).

Here, we note that by replacing t with t−1 the condition in (ii) is rewritten

as follows:

||a0||0 ≤ ctθ||a||Y , ||a1||1 ≤ ctθ−1||a||Y .

The following result is due to Lions-Peetre [14, Theorem 2.3].

Proposition 2.3.1. For 0 < θ0 < θ < θ1 < 1, if the spaces X0 and X1

belong to the class Kθ0(Y0, Y1) and the class Kθ1(Y0, Y1), respectively, then

(X0, X1) θ−θ0
θ1−θ0

,p
= (Y0, Y1)θ,p.

The following corollary is verified following the proof of Proposition 2.3.1.

Corollary 2.3.1. If the space X1 is of the class Kθ1(Y0, Y1) and 0 < θ <

θ1 < 1, then

(Y0, X1) θ
θ1

,p = (Y0, Y1)θ,p.

If the space X0 is of the class Kθ0(Y0, Y1) and 0 < θ0 < θ < 1, then

(X0, Y1) θ−θ0
1−θ0

,p
= (Y0, Y1)θ,p.

11



Proposition 2.3.2. For 1 < p < ∞, Lp(Ω) is of the classK1/2(W
1,p
0 (Ω),W−1,p(Ω)).

Proof. For any u ∈ W 1,p
0 (Ω) and t > 0, from Lemma 2.3.1 and

u = A(t+ A)−1u+ t(t+ A)−1u = (t+ A)−1Au+ t(t+ A)−1u,

it follows

||u||p,Ω ≤||(t+ A)−1||B(W−1,p(Ω),Lp(Ω))||Au||−1,p,Ω

+ t||(t+ A)−1||B(W−1,p(Ω),Lp(Ω))||u||−1,p,Ω

≤Ct−
1
2 ||u||1,p,Ω + Ct

1
2 ||u||−1,p,Ω.

By choosing t > 0 such that t−1/2||u||1,p,Ω = t1/2||u||
B(W 1,p

′
0 (Ω))∗

= t1/2||u||−1,p,Ω,

we obtain

||u||p,Ω ≤ C||u||
1
2
1,p,Ω||u||

1
2
−1,p,Ω.

Therefore, Lp(Ω) belongs to the class K1/2(W
1,p
0 (Ω),W−1,p(Ω)). Put u0 =

t(t+A)−1u and u1 = A(t+A)−1u for any u ∈ Lp(Ω). Then u = u0+u1, and

we obtain that

||u0||1,p,Ω ≤ t||(t+ A)−1u||B(Lp(Ω),W 1,p
0 (Ω))||u||p,Ω ≤ Ct

1
2 ||u||p,Ω

||u1||−1,p,Ω ≤ C||(t+ A)−1u||1,p,Ω ≤ Ct−
1
2 ||u||p,Ω.

Therefore, Lp(Ω) belongs to the class K1/2(W
1,p
0 (Ω),W−1,p(Ω)), and hence,

it is of the class K1/2(W
1,p
0 (Ω),W−1,p(Ω)).

12



Theorem 2.3.1. Let 1 < p < ∞, 1 < q < ∞ and 0 < θ < 1. If 1−2θ−1/p �=
0 and 2θ − 2 + 1/p �= 0 then

(W 1,p
0 (Ω),W−1,p(Ω))θ,q =

{
B̊1−2θ

p,q (Ω) θ < 1
2
(1− 1

p
),

B1−2θ
p,q (Ω) θ > 1

2
(1− 1

p
),

where B̊1−2θ
p,q (Ω) = {u ∈ B1−2θ

p,q (Ω) : u|∂Ω = 0}. In particular, we obtain that

(W 1,p
0 (Ω),W−1,p(Ω)) 1

2
,q = B0

p,q(Ω).

Proof. Let 0 < θ < 1/2. Then from Corollary 2.3.1, we obtain that

(W 1,p
0 (Ω),W−1,p(Ω))θ,q = (W 1,p

0 (Ω), Lp(Ω))2θ,q

= (Lp(Ω),W 1,p
0 (Ω))1−2θ,q.

Therefore, in view of the result of Grisvard [30] (see also Triebel [9][6; p.

321]),

(W 1,p
0 (Ω),W−1,p(Ω))θ,q =

{
B̊1−2θ

p,q (Ω) 1− 2θ > 1
p
,

B1−2θ
p,q (Ω) 1− 2θ < 1

p
.

Let 1/2 < θ < 1. Then from Corollary 2.3.1, it follows

(W 1,p
0 (Ω),W−1,p(Ω))θ,q = (Lp(Ω),W−1,p(Ω))2θ−1,q

= ((Lp
′
(Ω),W−1,p

′

0 (Ω))2θ−1,q′ )
∗.

In view of Grisvard’s theorem, if 2θ − 1− 1/p
′ �= 0 then

(Lp
′
(Ω),W 1,p

′

0 (Ω))2θ−1,q′ =

{
B̊2θ−1

p
′
,q

′ (Ω) 2θ − 1 > 1
p
′ ,

B2θ−1

p
′
,q

′ (Ω) 2θ − 1 < 1
p
′ .
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From Theorem 4.8.2 in Triebel [9, p. 332], we obtain that

(B̊2θ−1

p′ ,q′ (Ω))
∗ = B1−2θ

p,q (Ω) and (B2θ−1

p′ ,q′ (Ω))
∗ = B1−2θ

p,q (Ω)

according as 2θ − 1 − 1/p
′ ≷ 0. Since 2θ − 1 − 1/p

′ �= 0 if 1/2 < θ < 1 and

2θ − 2 + 1/p �= 0, we get

(W 1,p
0 (Ω),W−1,p(Ω))θ,q = B1−2θ

p,q (Ω).

Consequently, we obtain that

(W 1,p
0 (Ω),W−1,p(Ω)) 1−θ

2
,q = Bθ

p,q(Ω), if 0 < θ <
1

p

and

(W 1,p
0 (Ω),W−1,p(Ω)) 1+θ

2
,q = B−θ

p,q (Ω) if 0 < θ < 1− 1

p
.

Hence, if 0 < θ < min{1/p, 1− 1/p}, then
(W 1,p

0 (Ω),W−1,p(Ω)) 1
2
,q

= ((W 1,p
0 (Ω),W−1,p(Ω)) 1−θ

2
,q, (W

1,p
0 (Ω),W−1,p(Ω)) 1+θ

2
,q) 1

2
,q

= (Bθ
p,q(Ω), B

−θ
p,q (Ω)) 1

2
,q = B0

p,q(Ω).

The last equality is obtained from Theorem 1 of section 4.3.1 in Triebel [9].

Hence the proof is complete.
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Theorem 2.3.2. Let 1 < p, q < ∞.

(i) If 2/q − 2 + 1/p �= 0 then

Hp,q =

⎧⎨
⎩B̊

1− 2
q

p,q (Ω) if 1
q
< 1

2
(1− 1

p
),

B
1− 2

q
p,q (Ω) if 1

q
> 1

2
(1− 1

p
).

(ii) If n/p
′
< 1− 2/q

′
then

Hp′ ,q′ ⊂ C0(Ω) ⊂ L∞(Ω).

Proof. The relation (i) follows directly from Theorem 2.3.1. Let 1/p
′
<

1/n(1 − 2/q
′
) which implies 2/q

′ − 2 + 1/p
′
< −1 − (n − 1)/p

′
< 0 and

1/q
′
< 1/2(1 − n/p

′
) < 1/2(1 − 1/p

′
). Then from (i) and the imbedding

theorem ([2; Theorem 4.6.1 in p. 327-328]), we obtain

Hp′ ,q′ = B̊
1− 2

q
′

p′ ,q′ (Ω) ⊂ C0(Ω)

Hence, the first inclusion in (ii) follows.

Example 2.3.1. Let U be a Banach space, and let w ∈ Lq(0, T ;U) for

1 < q < ∞. Consider the following control problem:

{
du(t)
dt

+ Au(t) = Bw(t), t ∈ (0, T ],

u(0) = u0,
(2.3.3)
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where the controller B is a bounded linear operator from U to L1(Ω). Here, A

is an elliptic differential operator of second order in L1(Ω) as seen in Section

1. By virtue of Theorem 2.3.2, we may consider

Hp,q = H∗
p′ .q′ ⊃ C0(Ω)

∗ ⊃ L1(Ω),

where 1
p
′ < 1/n(1 − 2/q

′
). Since B is a bounded mapping into Hp,q, we be

able to express u(t) using the solution semigroup S(t) = eAt. Furthermore,

it is possible to investigate the control problem for (2.3.3) in Hp,q. Conse-

quently, in view of the maximal regularity result by dore and venni [5], the

initial value problem (CP) has a unique solution u ∈ Lq
(
0, T ;W 2,p(Ω) ∩

W 1,p
0 (Ω)

)⋂
W 1,q(0, T ;Hp,q) for any u0 ∈ W 1,p

0 (Ω). As for the maximal reg-

ularity problem of (2.3.3) in Hilbert spaces, We refer to [4, 29]. Moreover,

The observability of (2.3.3) is defines as

B∗S∗(t)f ≡ 0 implies f = 0

in a usual sense of [11-14] .
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Chapter 3

Sufficient conditions for approximate

controllability of semilinear control systems

3.1 Introduction

Let H and V be complex Hilbert spaces such that the imbedding V ⊂ H is

compact. The inner product and norm in H are denoted by (·, ·) and | · |,
and those in V are by ((·, ·)) and || · ||, respectively. Let −A0 be the operator

associated with a bounded sesquilinear form a(u, v) defined in V × V and

satisfying G̊arding inequality

Re a(u, v) ≥ c0||u||2 − c1|u|2, c0 > 0, c1 ≥ 0 (3.1.1)

for any u ∈ V . It is known that A0 generates an analytic semigroup in both

of H and V ∗ where V ∗ stands for the dual space of V . The object of this

paper is to investigate the quality of reachable set of the following semilinear

retarded parabolic type equation

d

dt
x(t) = A0x(t) + f(t), t ∈ (0, T ], (CS)

where

f(t) = A1x(t− h) +

∫ 0

−h

a(s)A2x(t+ s)ds+ f(t, x(t)) + B0u(t).

17



Then the initial condition of system (CS) is given as follows:

x(0) = g0, x(s) = g1(s), for s ∈ [−h, 0]. (IC)

The existence and uniqueness of solution of the above system are proved in

[19]. The condition for equivalence between the reachable set of the semi-

linear system and that of its corresponding linear system was established in

[19, 10] and recently, [25, 26]. This paper is dealt with another applicable

condition for controller of approximate control problem. Thus the main re-

sult in this paper will show that the system (CS) with some conditions for

the operator A0 satisfies a sufficient condition for approximate controllability

obtained in [19].

3.2 Main results

Let A0 be the self adjoint operator associated with a sesquilinear form defined

on V × V such that

(A0u, v) = −a(u, v), u, v ∈ V

where a(·, ·) is bounded sesquilinear form satisfying G̊arding inequality. It

is known that A0 generates an analytic semigroup in both H and V ∗. Let

us assume that Ai, i = 1, 2, are bounded linear operators from V to V ∗

and AiA
−1
0 are also bounded in H. The real valued function a(s) is assumed

to be Hölder continuous in [−h, 0] where h is a fixed positive number. The

controller B0 is a bounded linear operator from a subspace U of H to H.

Let f be a nonlinear mapping from R× V into H. Hence, we assume more

18



general Lipschitz condition: for any x1, x2 ∈ V there exists a constant L > 0

such that {
|f(t, x1)− f(t, x2)| ≤ L||x1 − x2||,
f(t, 0) = 0.

(3.2.1)

Then as is seen in [4, 16] we can obtain the following result.

Proposition 3.2.1. Under the assumtions (3.2.1), there exists a unique so-

lution of (CS) and (IC) such that

x ∈ L2(0, T ;V ) ∩W 1,2(0, T ;V ∗) ⊂ C([0, T ];H)

for any g = (g0, g1) ∈ Z ≡ H × L2(−h, 0;V ). Moreover, there exists a

constant C such that

||x||L2(0,T ;V )∩W 1,2(0,T ;V ∗) ≤ C(|g0|+ ||g1||L2(−h,0;V ) + ||u||L2(0,T ;U)),

where

|| · ||L2(0,T,V )∩W 1,2(0,T ;V ∗) = max{|| · ||L2(0,T ;V ), || · ||W 1,2(0,T ;V ∗)}.

Let g ∈ Z and x(T ; g, f, u) be a solution of the system (CS) and (IC) as-

sociated with nonlinear term f and control u at time T . We define reachable

sets for the system (CS) and (IC) as follows:

LT (g) = {x(T ; g, 0, u) : u ∈ L2(0, T ;U)},

RT (g) = {x(T ; g, f, u) : u ∈ L2(0, T ;U)}.

In virtue of the Riesz-Schauder theorem, if the imbedding V ⊂ H is compact

then the operator A0 has discrete spectrum

σ(A0) = {μn : n = 1, 2, ... }
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which has no point of accumulation except possibly μ = ∞. Let μn be a pole

of the resolvent of A0 of order kn and Pn the spectral projection associated

with μn

Pn =
1

2πi

∫
Γn

(μ− A0)
−1dμ,

where Γn is a small circle centered at μn such that it surrounds no point of

σ(A0) except μn. Then the generalized eigenspace corresponding to μn is

given by

Hn = PnH = {Pnu : u ∈ H},

and we have that from P 2
n = Pn and Hn ⊂ V it follows that

PnV = {Pnu : u ∈ V } = Hn.

Let us set

Qn =
1

2πi

∫
Γn

(μ− μn)(μ− A0)
−1dμ.

Then we remark that dimHn < ∞ and

Qi
n =

1

2πi

∫
Γn

(μ− μn)
i(μ− A0)

−1dμ.

It is also well known that Qkn
n = 0 (nilpotent) and (A0 − μn)Pn = Qn (see

[33, 6, 24]).

Definition 3.2.1. The system of the generized eigenspaces of A0 is complete

in H if Cl{span{Hn : n = 1, 2, ... }} = H where Cl denotes the closure in

H.
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Let G(t) be an analytic semigroup generated by A0. We now define the

fundamental solution W (t) of (CS) and (IC) by

W (t) =

{
x(t; (g0, 0), 0, 0), t ≥ 0

0, t < 0.

According to the above definition W (t) is a unique solotion of

W (t) = G(t) +

∫ t

0

G(t− s){A1W (s− h) +

∫ 0

−h

a(τ)A2W (s+ τ)dτ}ds

for t ≥ 0 (cf. Nakagiri [35, 7]). We denote the bounded linear operator Ŵ

from L2(0, T ;H) to H by

Ŵp =

∫ T

0

W (T − s)p(s)ds

for p ∈ L2(0, T ;H).

Definition 3.2.2. The system (CS) and (IC) is approximately controllable

on [0, T ] if RT (g) = H, that is, for any ε > 0 and x ∈ H there exists a control

u ∈ L2(0, T ;U) such that |x −W (T )g0 − ∫ 0

−h
UT (s)g

1(s)ds − Ŵf(·, xu(·)) −

ŴB0u| < ε where UT (s) = W (T − s − h)A1 +
∫ s

−h
W (T − s − σ)a(σ)A2dσ

and xu(·) = x(·; g, f, u).

We need the following hypotheses:

(A) The system of the generalized eigenspaces of A0 is complete.
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(B1) For any ε > 0 and p ∈ L2(0, T ;H) there exists a u ∈ L2(0, T ;U) such

that

|
∫ t

0

G(t− s)p(s)ds−
∫ t

0

G(t− s)B0u(s)ds| < ε, 0 ≤ t ≤ T.

(B2) B0PnH ⊂ PnH for n = 1, 2, ... .

Remark 3.2.1. We know that the condition (B2) is equivalent to the fact

that PnB0Pn = B0Pn, thus by the definition of Qn it is also held that if

f ∈ PnH then QnB0f = B0Qnf .

Proposition 3.2.2. Under the assumption (B1), we have LT (0) = H.

Theorem 3.2.1. Let us assume the hypotheses (A), (B1) and (B2). Then

we have RT (g) = LT (g) for any g ∈ H × L2(−h, 0;V ).

In virtue of Proposition 3.2.2 and Theorem 3.2.1 we have known that the

system (CS) and (IC) is approximately controllable in conclusion.

Remark 3.2.2. For the semilinear equation without delay terms in case

where A1 = A2 = 0 we may assume the condition (B1) at only time T , that

is, we can rewite the condition (B1) as follows.

For any ε > 0 and p ∈ L2(0, T ;H) there exists a u ∈ L2(0, T ;U) such

that

|
∫ T

0

G(t− s)p(s)ds−
∫ T

0

G(t− s)B0u(s)ds| < ε.

Remark 3.2.3. In Naito [22] he proved Theorem 2.2.2 under assumptions

(B1) and compact operator G(t) and also Zhou in [10] showed it under as-

sumtion (B1) and another condition of range of controller.
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3.3 Proof of main results

First of all, for the meaning of assumption (B1) we need to show the exis-

tence of controller satisfying Cl{B0u : u ∈ L2(0, T ;U)}�=L2(0, T ;H). In fact,

Consider about the controler B0 defined by

B0u(t) =
∞∑
n=1

un(t),

where

un =

{
0, 0 ≤ t ≤ T

n

Pnu(t),
T
n
< t ≤ T.

Hence we see that u1(t) ≡ 0 and un(t) ∈ ImPn. By completion of

generalized eigenspaces of A0 we may write that f(t) =
∑∞

n=1 Pnf(t) for

f ∈L2(0, T ;H). Let us choose f ∈L2(0, T ;H) satisfying

∫ T

0

||P1f(t)||2dt > 0.

Then since

∫ T

0

||f(t)− B0u(t)||2dt =
∫ T

0

∞∑
n=1

||Pn(f(t)− B0u(t))||2dt

≥
∫ T

0

||P1(f(t)− B0u(t))||2dt =
∫ T

0

||P1f(t)||2dt > 0,

the statement mentioned above is reasonable.
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Proof of Proposition 3.2.2. Let x0 ∈ D(A0), Then putting f(s) =

(x0 + sA0x0)/t it follows that

x0 =

∫ t

0

G(t− s)f(s)ds.

Thus by the condition (B1) there exists u ∈ L2(0, T ;U) such that

||x0 −
∫ t

0

G(t− s)B0u(s)ds|| < ε.

Therefore, the density of the domain D(A0) in H implies approximate con-

trollablity of (CS) and (IC), the proof of Proposition 3.2.2 is complete. �

From now on we go to proof of the Theorem 3.2.1. In what follows in

this section, let us assume that the system of the generalized eigenspaces of

A0 is complete. Then we will prove that the assumptions (B1) and (B2) are

a sufficient condition for the following statement (H) in Theorem 1, 2 as in

[35]:

(H) For any ε > 0 and p ∈ L2(0, T ;H) there exists a u ∈ L2(0, T ;U) such

that

|
∫ t

0

G(t− s)p(s)ds−
∫ t

0

G(t− s)B0u(s)ds| < ε, 0 ≤ t ≤ T,

||B0u||L2(0,T ;H) ≤ q||p||L2(0,T ;H)

where G(t) is an analytic semigroup with infinitesimal generator A0 and q is

a constant independent of p.

24



If μn ∈ σ(A0) then we have the Laurent expansion for R(μ − A0) ≡
(μ − A0)

−1 at μ = μn whose principal part ( the part consisting of all the

negative power of (μ− μn) ) is a finite series:

R(μ− A0) =
Pn

μ− μn

+
kn−1∑
i=1

Qi
n

(μ− μn)
i+1 +R0(μ),

where R0(μ) is a holomorphic part of R(μ− A0) at μ = μn.

Since the system of generalized eigenspaces of A0 is complete, it holds

that for any ε > 0

|f(s)−
∞∑
n=1

Pnf(s)| < ε

2M
√
T

(3.3.1)

for f ∈ L2(0, T ;H), where M is a constant such that |G(t)| ≤ M for the sake

of simplicity. Here, in what follows we put un = PnB0u.

Since A−1
0 is compact we note that there exists an arc Cn which joints μn

and some z0 with Re z0 < inf{Reμn : μn ∈ σ(A0)} and Cn − {μn} ⊂ ρ(A0)

where ρ(A0) is the resolvent set of A0.

Lemma 3.3.1. Let G(t) be the semigroup generated by A0. Then we give an

expression of the semigroup that

G(t)f = eμnt

kn−1∑
i=1

ti

i!
Qi

nf, t ≥ 0

for any f ∈ PnH.
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Proof. From the well known fact that

A0Pn = A0
1

2πi

∫
Γn

(μ− A0)
−1dμ

=
1

2πi

∫
Γn

μ(μ− A0)
−1dμ

we have

G(t)Pn =
1

2πi

∫
Γn

eμt(μ− A0)
−1dμ.

If f ∈ PnH then f = Pnf and hence

G(t)f = G(t)Pnf =
1

2πi

∫
Γn

eμt(μ− A0)
−1fdμ

= eμnt
1

2πi

∫
Γn

e(μ−μn)t(μ− A0)
−1fdμ

= eμnt{
∞∑
i=0

ti

i!
(
1

2πi

∫
Γn

(μ− μn)
i(μ− A0)

−1fdμ)}

= eμnt

kn−1∑
i=0

ti

i!
Qi

nf.

Hear, we used the nilpotent property of the operator Qn in the last equality.

The proof of Lemma is complete.

Remark 3.3.1. Let f ∈ PnH. Then in virtue of Lemma 3.3.1 it holds that

B0G(t)f = G(t)B0f for every t ≥ 0.

Let f ∈ L2(0, t;H). Then by the assumption (B1) for any ε > 0 there

exists a control v ∈ L2(0, t;U) such that

|
∫ t

0

G(t− s)f(s)ds−
∫ t

0

G(t− s)B0v(s)ds| < ε

2
, 0 ≤ t ≤ T, (3.3.2)
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and

|v(s)−
∞∑
n=1

Pnv(s)| < ε

2M ||B0||
√
T
. (3.3.3)

Let us define h ∈ H by

h =
∞∑
n=1

∫ t

0

G(t− s)Pnv(s)ds

=
∞∑
n=1

hn.

Here, we put hn =
∫ t

0
G(t − s)Pnv(s)ds. Since Pnv(s) ∈ PnH, in terms of

Lemma 3.3.1 we have that

hn =

∫ t

0

G(t− s)Pnv(s)ds (3.3.4)

=
kn−1∑
i=1

∫ t

0

eμn(t−s) (t− s)i

i!
Qi

nPnv(s)ds.

Define

u(s) =
∞∑
n=1

un(s), un(s) = (
kn−1∑
i=1

ti+1

(i+ 1)!
)−1e−μn(t−s)Qkn−1

n hn.
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Then un(s) ∈ PnH and from remark 3.2.1 it follows∫ t

0

G(t− s)B0u(s)ds =
∞∑
n=1

∫ t

0

G(t− s)B0un(s)ds

=
∞∑
n=1

∫ t

0

eμn(t−s)

kn−1∑
i=1

(t− s)i

i!
Qi

nB0un(s)ds

= B0

∞∑
n=1

hn = B0h.

Thus from (3.3.2), (3.3.3) it follows that

|
∫ t

0

G(t− s)B0u(s)ds−
∫ t

0

G(t− s)f(s)ds|

≤ |
∫ t

0

G(t− s)B0u(s)ds− B0h|+

|B0h−
∫ t

0

G(t− s)B0v(s)ds|+

|
∫ t

0

G(t− s)B0v(s)ds−
∫ t

0

G(t− s)f(s)ds|

<
ε

2
+

ε

2
< ε.

Moreover, by Hölder inequality we also have

||B0u||L2(0,t;H) ≤
∫ t

0

|
∞∑
n=1

B0un(s)|2ds

≤
∫ t

0

|
∞∑
n=1

B0(
kn−1∑
i=1

ti+1

(i+ 1)!
)−1e−μn(t−s)Qkn−1

n hn|2ds

≤ c

∫ t

0

|
∞∑
n=1

B0hn|2ds,
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where c is a constant. From remark 3.3.1 we also note that

B0hn = B0

∫ t

0

G(t− s)Pnv(s)ds

=

∫ t

0

G(t− s)B0Pnv(s)ds,

and, hence from (3.3.2) and (3.3.3) it holds

|
∞∑
n=1

B0hn| = |
∞∑
n=1

∫ t

0

G(t− s)B0Pnv(s)ds|

≤ |
∫ t

0

G(t− s)B0

∞∑
n=1

Pnv(s)ds−
∫ t

0

G(t− s)B0v(s)ds|+

|
∫ t

0

G(t− s)B0v(s)ds−
∫ t

0

G(t− s)B0f(s)ds|+

|
∫ t

0

G(t− s)f(s)ds|

≤ ε

2
+

ε

2
+ |

∫ t

0

G(t− s)f(s)ds|

≤ q||f ||L2(0,t;H) + ε

where q is a constant. Thus, from the above equality we can conclude that

||B0u||2L2(0,t;H) ≤ q||f ||L2(0,t;H) + ε.

Here, we note the constant q is independent of f . Since ε is arbitrary we

have proof that the assumption of Theorem 3.2.1 implies the condition (H).

In virtue of Theorem 4.2 of [19] the proof of Theorem 3.2.1 is complete. �
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3.4 Examples of controller

Example 1. Define the controller B0 by

B0u(t) =
∞∑
n=1

un(t)

where

un(t) =

{
0, 0 ≤ t ≤ T

n
,

Pnu(t),
T
n
≤ t ≤ T.

Then as is seen in section 3 we define h, u by

h =
∞∑
n=1

hn, u(s) =
∞∑
n=1

un(s)

where hn(s) is defined by as (3.3.4),

u(s) =
∞∑
n=1

un(s), un(s) =
kn−1∑
i=1

(T − T

n
)i+1i!e−μn(T−s)Qkn−i

n hn,

respectively. Then un(s) ∈ PnH and
∫ T

0
G(T − s)B0u(s)ds =

∑∞
n=1 hn, and

this controller is satisfied the conditions in Thereom 3.2.1.

Example 2. We consider the heat control system studied by Zhou [14,

Example 1] and Naito [17, Example 1]. Let H = L2(0, π) and A0 = −d2/dx2

H = L2(0, π) and A0 = −d2/dx2 with

D(A0) = {y ∈ H : d2y/dx2 ∈ H and y(0) = y(π) = 0}.
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Then {en = (2/π)1/2 sinnx : 0 ≤ x ≤ π, n = 1, ... } is orthonomal base for

H. Define an infinite dimensional space U by

U = {
∞∑
n=2

unen :
∞∑
n=2

u2
n < ∞}

with norm defined by ||u||U = (
∑∞

n=2 u
2
n)

1/2. Define a continuous linear

operator B0 from U to H as follows:

B0u = 2u2e1 +
∞∑
n=2

unen for u =
∞∑
n=2

unen ∈ U.

It is directly seen that the above controller B0 satisfies the conditions (B1)

and (B2). We can also check breifly by using the assumption (H). In fact,

let f ∈ L2(0, T ;H) and f =
∑∞

n=1 fn(s)en. Then we choose a function

u ∈ L2(0, t;U) for 0 ≤ t ≤ T such that u2 = 1
2
f1 + f2 and un = fn for

n = 2, 3, .... Hence, choosing a constant in condition (H) such that q > 7
2
,

not only the system (CS) and (IC) with the operator A0 mentioned above

but also the general semilinear case is approximate controllable.
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Chapter 4

Controllability for semilinear systems of

parabolic type with delays

4.1 Introduction

In this paper, we deal with control problem for semilinear parabolic type

equation in Hilbert space H as follows.⎧⎪⎨
⎪⎩

d
dt
x(t) = A0x(t) +

∫ 0

−h
a(s)A1x(t+ s)ds

+f(t, x(t)) + Φ0u(t),

x(0) = g0, x(s) = g1(s), s ∈ [−h, 0).

(PS)

Let A0 be the operator associated with a sesquilinear form defined on V ×V

satisfying G̊arding inequality:

(A0u, v) = −a(u, v), u, v ∈ V

where V is a Hilbert space such that V ⊂ H ⊂ V ∗. Then it is known that A0

generates an analytic semigroup in bothH and V ∗. Let Z = H×L2(−h, 0;V )

be the state space of the equation (PS) . Z is a product Hilbert space with

the norm

||g||Z = (|g0|2 +
∫ 0

−h

||g1(s)||2ds) 1
2 , g = (g0, g1) ∈ Z.
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The operator A is defined as follows:

D(A) = {g = (g0, g1) : g0 ∈ H, g1 ∈ L2(−h, 0;V ),

g1(0) = g0, A0g
0 +

∫ 0

−h

a(s)A2g
1(s)ds ∈ H},

Ag = (A0g
0 +

∫ 0

−h

a(s)A2g
1(s)ds, ġ1).

The equation (PS) can be transposed to an following general initial problem

d

dt
z(t) = Az(t) + F (t, z(t)) + Φu(t), (IP)

where Φf = (Φ0f, 0), F (t, z(t)) = (f(t, x(t)), 0) Recently, Approximate con-

trollability for semilinear control systems can be founded in [17, 26] with a

range condition of the control action operator. In [22, 23], Naito showed

approximately controllability of the system (PS) by using the assumption

that the semigroup generated by A is compact operator, also Nakagiri and

Yamamoto [36] showed it in case where the operator A generator an analytic

semigroup. We note that in our case the semigoup generated by A is not com-

pact operator but only C0-semigroup. So, we show from the approximately

controllable of the system (IP) in space Z with the general assumption of

nonlinear part. Moreover, we derive the relations between the controllability

of the system (PS) and one of (IP).
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4.2 Preliminaries

Let V and H be Hilbert spaces forming a Gelfand triple V ⊂ H ⊂ V ∗ with

pivot space H. and the operator A0 is the operater mention in section 3.1.

Moreover, there exists a constant C1 such that

||u|| ≤ C1||u||1/2D(A0)
|u|1/2, (4.2.1)

for every u ∈ D(A0), where

||u||D(A0) = (|A0u|2 + |u|2)1/2

is the graph norm of D(A). Thus we have the following sequence

D(A0) ⊂ V ⊂ H ⊂ V ∗ ⊂ D(A0)
∗,

where each space is dense in the next one and continuous injection.

Lemma 4.2.1. With the notations (4.2.1), we have

(V, V ∗)1/2,2 = H,

(D(A0), H)1/2,2 = V,

where (V, V ∗)1/2,2 denotes the real interpolation space between V and V ∗([29],Section

1.3.3 of [9]).

The operators A1 and A2 in the system (PS) are bounded linear operators

from V to V ∗ such that they map D(A0) into H. The function a(·) is assume

to be a real valued Hölder continous in [−h, 0] and the controller operator Φ0

is a bounded linear operator from a Banach space U to H, where U is called

a control set.
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Let f be a nonlinear mapping from R × V into H. We assume that for

any x1, x2 ∈ V there exists a constant L > 0 such that{
|f(t, x1)− f(f, x2)| ≤ L||x1 − x2||
f(t, 0) = 0.

(4.2.2)

Assume that (3.1.1) holds for c1 = 0. Noting that A0 + c1 is an isomorphism

from V to V ∗ if c1 �= 0. Corresponding the linear system [4, 14, 32], we have

the following result of semilinear equation (PS) as is seen in [16, 20].

Proposition 4.2.1. Under the assumption (4.2.2), then there exists a unique

solution x of (PS) such that

x ∈ L2(0, T ;V ) ∩W 1,2(0, T ;V ∗) ⊂ C([0, T ];H).

for any g = (g0, g1) ∈ Z = H ×L2(−h;V ). Moreover, there exists a constant

C such that

||x||L2(0,T ;V )∩W 1,2(0,T ;V ∗) ≤ C(|g0|+ ||g1||L2(−h,0;V ) + ||u||L2(0,T ;U)).

4.3 Controllability

Let Z ≡ H × L2(−h, 0;V ) be the state space of the equation (PS). Z is a

product Hilbert space with the norm

||g|| = (|g0|2 +
∫ 0

−h

||g1(s)||2V ds)
1
2 , g = (g0, g1) ∈ Z.

Let g ∈ Z and x(t; g, f, Φ0u) be a solution of the equation (PS) associated

with nonlinear term f and control Φ0u at time t. In view of the result of
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Proposition 4.2.1 considered as an equation in V ∗, we can define the solution

semigroup for the problem (PS) as follows:

S(t)g = (x(t; g, 0, 0), xt(·; g, 0, 0)) (4.3.1)

where g = (g0, g1) ∈ Z, x(t; g, 0, 0) is the solution of (PS) and (IP) with

f(t, x) = 0 and Φ0 = 0 and xt(s; g, 0, 0) = x(t + s; g, 0, 0) defined in [−h, 0].

It is known that the operator S(t) is a C0-semigroup on Z (see [35] ). and

the infinitesimal generator A of S(t) is characterized by⎧⎪⎨
⎪⎩
D(A) = {g = (g0, g1) : g0 ∈ H, g1 ∈ L2(−h, 0;V ),

g1(0) = g0, A0g
0 + A1g

1(−h) +
∫ 0

−h
a(s)A2g

1(s)ds ∈ H,

Ag = (A0g
0 + A1g

1(−h) +
∫ 0

−h
a(s)A2g

1(s)ds, ġ1).

Note that a(·) need not be Hólder continuous for the above results to hold.

It has only to belong to L2(−h, 0).

For the sake of simplicity, we assume that S(t) is uniformly bounded,

that is, there exists a constant M ≥ 1 such that

||S(t)||Z ≤ M. (4.3.2)

as is seen in [36], the equation (PS) can be transformed into an abstract

equation {
z(t) = Az(t) + F (z(t)) + Bu(t),

z(0) = g,
(4.3.3)

where z(t) = (x(t), xt(·)) belongs to the Hilbert space Z and g = (g0, g1) ∈ Z.

The operator A is the infinitesimal generator of C0-semigroup S(t), F (z(t)) =
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(f(t, x(t)), 0) and Bu = (B0u, 0). The mild solution of initial problem (4.3.3)

is the following form:

z(t; g, f, Bu) = S(t)g +

∫ t

0

S(t− s)F (z(s))ds+

∫ t

0

S(t− s)Bu(s)ds.

For T > 0, g ∈ Z and u ∈ L2(0, T ;U) we set

LT (g) = {z(T ; g, 0, Bu) : u ∈ L2(0, T ;U)},

RT (g) = {z(T ; g, f, Bu) : u ∈ L2(0, T ;U)},

L(g) =
⋃
T>0

LT (g), R(g) =
⋃
T>0

RT (g),

LK
T (g) = {z(T ; g, 0, Bu) : ||u||L2(0,T ;U) ≤ K},

RK
T (g) = {z(T ; g, f, Bu) : ||u||L2(0,T ;U) ≤ K}.

Definition 4.3.1. The system (4.3.3) is said to be approximately controllable

on [0, T ] if R(T ) = Z. If L(T ) = Z, the linear system (4.3.3) is said to be

approximately controllable on [0, T ].

Here, we remark that if the system (4.3.3) is said to be approximately

controllable on [0, T ] if R(T ) = Z, so is the system (PS). In view of H. Tan-

abe[11; Lemma 7.4.1] LT (0) is independent of time T .

We need the following hypothesis:

(H) |f(t, x)| ≤ M, x ∈ H(t ≥ 0).
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Theorem 4.3.1. Let us assume the hypothesis (H) and LK
T (g) have interior

points. Then we have that for any g ∈ Z there exists a constant c such that

RK
T (g) ⊂ cLK

T (g).

Proof. Since LK
T (g) = S(T )g + LT (0) and LK

T (0) is a balanced closed sub-

space, there exists a z0 ∈ Z such that

inf{||z0 − S(T )g − z|| : z ∈ LT (0)} > 2M ||g||Z +M2T. (4.3.4)

Then z0 /∈ RT (g). In fact, from (4.3.4) we obtain that⎧⎪⎨
⎪⎩
|| z(t; 0, f, Bu)− z0 + S(T )g||Z

≥ || ∫ t

0
S(t− s)Bu(s)ds− z0||Z − 2||S(T )g||Z − || ∫ t

0
S(t− s)F (z(s))ds||Z

> 0.

Hence there exists a constant a c such that

RK
T (g) ⊂ cLK

T (g).

We also assume that

(H1) z(t; g, f, 0) ∈ Lt(0) and z(t; g, 0, 0) ∈ Lt(0) (t > 0).

With the aid of the hypothesis (H1) it holds that Lt(0) = Lt(g) for every

g ∈ Z.

Theorem 4.3.2. Under the hypotheses (H) and (H1), we have that

LT (g) ⊂ RT (g).
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Proof. Let ε > 0 and z0 ∈ LT (g) and let δ ≤ 1
2
εM2. Put z0(s) = z(s; g, f, 0)

and z1 = z(T − δ; g, f, 0), where z(T − δ; g, f, 0) = S(T − δ)g +
∫ T−δ

0
S(T −

δ − s)F (z0(s))ds. Consider the following problem:{
d
dt
y(t) = Ay(t) + Bu(t), T − δ < s ≤ T,

y(T − δ) = z1.

Then since the form of a solution of above equation is yu(T ) = S(δ)z1 +∫ t

T−δ
S(T − s)Φu(s)ds.

and Lt(0) is independent of time t, we have yu(T ) ∈ LT (0). Here, we used

the fact that S(t)Lt
′ (0) ⊂ Lt+t

′ (0). From the hypothesis (H1) there exists

u1 ∈ L2(T − δ, T ;U) such that

||yu1(T )− z0|| < ε

2
(4.3.5)

where yu1(T ) = S(δ)z1 +
∫ T

T−δ
S(T − s)Bu1(s)ds. Now we set

v(s) =

{
0 if 0 ≤ s ≤ T − δ,

u1(s) if T − δ < s ≤ T.

Then v ∈ L2(0, T ;U) and from (4.3.5) we obtain that

||z(T ; g, f, Bv)− z0||Z ≤ ||S(δ)z1 +
∫ T

T−δ

S(T − s)Bu1(s)ds− z0||Z

+ ||
∫ T

T−δ

S(T − s)F (zu1(s))ds||Z

<
ε

2
+M2δ ≤ ε.

Hence the proof is complete.
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Corollary 4.3.1. Let us assume the hypotheses (H) and (H1). Then Lt(g) =

Z if and only if Rt(g) = Z. therefore, if the linear system (4.3.3) is said to

be approximately controllable on [0, T ], so is semilinear system (4.3.3)

The proof of this Corollary holds from Theorems 4.3.1 and 4.3.2.
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Chapter 5

Optimal Control Problems for Semilinear

Retarded Functional Differential Equations

5.1 Introduction

This paper is concerned with the optimal control problem of the semilinear

functional differential equation with delay in a Hilbert space. Applications of

the optimal control problems for two types of cost functions are given; one is

the averaging observation control and the other is the observation of terminal

value. The principal operator of given equations generates an analytic semi-

group and the nonlinear term is uniformly Lipschitz continuous with respect

to the second variable. This is the semilinear case of the nonlinear part of

quasilinear equations considered by Yong and Pan [21].

The optimal control problems of linear systems have been so extensively

studied by [13, 37, 8] and the references cited there. In [37], Nakagiri ob-

tained some standard optimal control problems, namely, the fixed time inte-

gral convex cost problem and the time optimal control problem for general

linear retarded systems in reflexive Banach spaces. In [27], Papageorgiou

established the existence of the optimal control for a broad class of nonlinear
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evolution control systems and in [28], the author obtained necessary condi-

tions for optimality using the penalty method first introduced in Balakrish-

nan [2]. Actually, the work of [2] is to introduce a computational procedure

for optimal nonlinear control problems with condition of the Gâteaux differ-

entiability of the nonmonotone terms. Indeed, the optimal control problems

on semilinear partial differential equations with delay terms are not so many.

The purpose of this paper is to extend the optimal control theory for

the general linear results as in [37, 17, 15] to practical semilinear retarded

systems using the construction of the fundamental solution in case where

the principal operators are unbounded operators. Two applications of the

main results are given; one gives a uniqueness of the optimal control of the

cost function defined by distributed observation and the other gives a feed-

back control law for the observation function of terminal value. Here, using

techniques for the linear control problems and the properties of solutions

of semilinear system as developed in [26, 12, 4], we obtain the existence of

optimal controls for the equation, where the nonlinear term is given by the

convolution product and give the maximal principle for given cost functions

and present the necessary conditions of optimality which are described by

the adjoint state corresponding to the linear retarded equation without a

condition of differentiability of nonlinear term.

5.2 Preliminaries and Local Solutions

Let V and H be Hilbert spaces forming a Gelfand triple V ⊂ H ⊂ V ∗ with

pivot space H. and the operator A0 is the operater mention in section 3.1.
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The control space will be modeled by a Banach space Y . Let the controller

B is a bounded linear operator from Y to H.

We denote by Wm,p(0, T ;V ∗) the sobolev space of V ∗-valued functions on

[0, T ] whose distributional derivatives up to m belong to Lp(0, T ;V ∗).

First, we introduce the following linear retarded functional differential

equation:

{
x′(t) = A0x(t) +

∫ 0

−h
a(s)A1x(t+ s)ds+ q(t),

x(0) = φ0, x(s) = φ1(s), −h ≤ s < 0.
(RE)

The operator A1 is a bounded linear operator from V to V ∗ such that its

restriction to D(A0) is a bounded linear operator from D(A0) to H. The

function a(·) is assumed to be real valued and Hölder continuous in the

interval [−h, 0]:

|a(s)− a(τ)| ≤ K(s− τ)ρ (5.2.1)

for constants K and 0 < ρ < 1.

Let W (·) be the fundamental solution of the linear equation associated

with (RE) which is the operator valued function satisfying

{
W (t) = S(t) +

∫ t

0
S(t− s)

∫ 0

−h
a(τ)A1W (s+ τ)dτds, t > 0,

W (0) = I, W (s) = 0, −h ≤ s < 0,
(5.2.2)

where S(·) is the semigroup generated by A0. Then

x(t) = W (t)φ0 +

∫ 0

−h

Ut(s)φ
1(s)ds+

∫ t

0

W (t− s)q(s)ds,

Ut(s) =

∫ s

−h

W (t− s+ σ)a(σ)A1dσ.
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Recalling the formulation of mild solutions, we know that the mild solution

of (RE) is represented by

x(t) =

{
S(t)φ0 +

∫ t

0
S(t− s){∫ 0

−h
a(τ)A1x(s+ τ)dτ + q(s)}ds,

φ1(s), −h ≤ s < 0.

From Proposition 4.2 in [4] it follows the following results.

Proposition 5.2.1. The fundamental solution W (t) to (RE) exists uniquely.

For any natural number n and i = 0, 1, there exists a constant Cn such that

||W (t)|| ≤ Cn, (5.2.3)

||AiW (t)|| ≤ Cn/t, (5.2.4)

||AiW (t)A−1
0 || ≤ Cn (5.2.5)

on [0, nh] and

||
∫ t

′

t

AiW (τ)dτ || ≤ Cn, 0 ≤ t < t′ ≤ nh. (5.2.6)

Here, || · || stands for the operator norm simply.

Considering as an equation in V ∗ we also obtain the same norm estimates

of (5.2.3)-(5.2.6) in the space L(V ∗) which is the collection of all bounded

linear operators from V ∗ to itself.

Proposition 5.2.2. There exists a constant C such that the following in-

equalities hold for all t > 0 and every x ∈ H or V ∗:

|W (t)x| ≤ Ct−1/2||x||∗, (5.2.7)

||W (t)x|| ≤ Ct−1/2|x| (5.2.8)
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Proof. As in Lemma 3.6.2 of [8], if {S(t)} represents the semigroup generated

by A0, then there exists a constant C such that

|S(t)x| ≤ Ct−1/2||x||∗, ||S(t)x|| ≤ Ct−1/2|x|, (5.2.9)

for t > 0 and x ∈ H or V ∗. With the aid of the change of the variable and

noting W (t) = 0 for t < 0, we get

W (t)x = S(t)x+

∫ t

0

S(t− s)

∫ s

0

a(τ − s)A1W (τ)xdτds

on [0, h] and

W (t)x = S(t)x+

∫ t

0

S(t− s)

∫ s

s−h

a(τ − s)A1W (τ)xdτds

on [h,∞]. We write the second term of the representation W (t) in [h,∞] as∫ t

0

S(t− s)

∫ s

s−h

a(τ − s)A1W (τ)xdτds

=

∫ t

0

S(t− s)

∫ s

s−h

(a(τ − s)− a(−s))A1W (τ)xdτds

+

∫ t

0

S(t− s)a(−s)

∫ s

s−h

A1W (τ)xdτds

= I + II.

Combining (5.2.1), (5.2.7)( or (5.2.8)), and (5.2.9), we get

||I|| ≤
∫ t

0

C(t− s)−1/2

∫ s

s−h

KCnτ
ρ−1|x|dτds

≤ 2CCnKρ−1B(
1

2
, ρ+ 1)|x|,
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where B(·, ·) is the Beta function. From (5.2.6), it follows that II is also

bounded. We can also obtain the similar inequalities in [0, h]. Thus, the

proof is easily obtained from (5.2.9) and using the representation (5.2.2) of

W (t).

By virtue of Theorem 3.3 of [4] we have the following result on the linear

equation (RE).

Proposition 5.2.3. 1) Let F = (D(A0), H) 1
2
,2, where (D(A0), H)1/2,2 denote

the real interpolation space between D(A0) and H. Let

(φ0, φ1) ∈ F × L2(−h, 0;D(A0)) textand q ∈ L2(0, T ;H), T > 0.

Then there exists a unique solution x of (RE) belonging to

W0(T ) ≡ L2(−h, T ;D(A0)) ∩W 1,2(0, T ;H) ⊂ C([0, T ];F )

and satisfying

||x||W0(T ) ≤ C ′
1(||φ0||F + ||φ1||L2(−h,0;D(A0)) + ||q||L2(0,T ;H)), (5.2.10)

where C ′
1 is a constant depending on T .

2) Let (φ0, φ1) ∈ H × L2(−h, 0;V ) and q ∈ L2(0, T ;V ∗), T > 0. Then there

exists a unique solution x of (RE) belonging to

W1(T ) ≡ L2(−h, T ;V ) ∩W 1,2(0, T ;V ∗) ⊂ C([0, T ];H)

and satisfying

||x||W1(T ) ≤ C ′
1(|φ0|+ ||φ1||L2(−h,0;V ) + ||q||L2(0,T ;V ∗)). (5.2.11)
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In what follows we assume that W (t) is uniformly bounded: There is a

constant M > 0 such that

||W (t)|| ≤ M, t > 0 (5.2.12)

for the sake of simplicity. Let g : [0, T ]×V → H be a nonlinear mapping. We

assume that there exists a constant L > 0 such that t 
→ g(t, x) is measurable

and

|g(t, x)− g(t, y)| ≤ L||x− y||, g(t, 0) = 0 (5.2.13)

for all x1, x2 ∈ V .

For x ∈ L2(0, T ;V ) and k ∈ L2(0, T ) we set

f(t, x) =

∫ t

0

k(t− s)g(s, x(s))ds. (5.2.14)

Now, we consider the following semilinear retarded functional differential

equation

{
x′(t) = A0x(t) +

∫ 0

−h
a(s)A1x(t+ s)ds+ f(t, x(t)) + q(t),

x(0) = φ0, x(s) = φ1(s), −h ≤ s < 0.
(5.2.15)

Lemma 5.2.1. Let x ∈ L2(0, T ;V ), T > 0. Then f(·, x) ∈ L2(0, T ;H). and

||f(·, x)||L2(0,T ;H) ≤ L||k||L2(0,T )

√
T ||x||L2(0,T ;V ).

Moreover, if x1, x2 ∈ L2(0, T ;V ), then

||f(·, x1)− f(·, x2)||L2(0,T ;H) ≤ L||k||L2(0,T )

√
T ||x1 − x2||L2(0,T ;V ).
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Proof. From (5.2.13) and using the Hölder inequality it is easily seen that

||f(·, x)||2L2(0,T ;H) ≤
∫ T

0

|
∫ t

0

k(t− s)g(s, x(s))ds|2dt

≤ ||k||2L2(0,T )

∫ T

0

∫ t

0

L2||x(s)||2dsdt

≤ TL2||k||2L2(0,T )||x||2L2(0,T ;V ).

The proof of the second paragraph is similar.

In virtue of Lemma 5.2.1, using the maximal regularity for more gen-

eral retarded parabolic system from Theorem 3.1 in [31], we establish the

following result on the solvability of (5.2.15).

Proposition 5.2.4. Suppose that the assumptions (5.2.13) is satisfied. Then

for any

(φ0, φ1) ∈ H × L2(−h, 0;V ) and q ∈ L2(0, T ;V ∗), T > 0,

the solution x of (5.2.15) exists and is unique in L2(−h, T ;V )∩W 1,2(0, T ;V ∗),

and there exists a constant C ′
2 depending on T such that

||x||L2(−h,T ;V )∩W 1,2(0,T ;V ∗) ≤ C ′
2(1 + |φ0|+ ||φ1||L2(−h,0;V ) + ||q||L2(0,T ;V ∗)).

(5.2.16)

Let I = [0, T ], T > 0 be a finite interval. We introduce the transposed

system which is exactly the same as in Nakagiri [37]. Let q∗0 ∈ H, q∗1 ∈
L1(I;H). The retarded transposed system in H is defined by{

dz(t)
dt

+ A∗
0z(t) +

∫ 0

−h
a(s)A∗

1z(t− s)ds− q∗1(t) = 0 a.e. t ∈ I,

z(T ) = q∗0, z(s) = 0 a.e. s ∈]T, T + h].
(5.2.17)
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Let W ∗(t) denote the adjoint of W (t). Then the mild solution of (5.2.17) is

defined as follows:

z(t) = W ∗(T − t)q∗0 +
∫ T

t

W ∗(ξ − t)q∗1(ξ)dξ,

for t ∈ I in the weak sense. The transposed system will be used to describe

a formulation of the optimality conditions for optimization problems.

5.3 Optimal Control for the Distributed Observation

In this section we assume that the embeddingD(A0) ⊂ V is compact. Choose

a bounded subset U of Y and call it a control set. Suppose that an admissible

control u ∈ L2(0, T ;Y ) is a strongly measurable function satisfying u(t) ∈ U

for almost all t, and let x(t; f, u) be a solution of (5.2.15) associated with the

nonlinear term f and a control u at time t. The solution x(t; f, u) of (5.2.15)

for each admissible control u is called a trajectory corresponding to u.

Let F and B be the Nemitsky operators corresponding to the map f and

B, which are defined by

(Fu)(·) = f(·, xu(·)) and (Bu)(·) = Bu(·),

respectively. Then,

x(t; f, u) = x(t;φ) +

∫ t

0

W (t− s){f(s, x(s) +Bu(s)}ds

= x(t;φ) +

∫ t

0

W (t− s)((F + B)u)(s)ds,
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where

x(t;φ) = W (t)φ0 +

∫ 0

−h

Ut(s)φ
1(s)ds.

Let Z be a real Hilbert space and let C(t) be bounded from H to Z

for each t and be continuous in t ∈ [0, T ]. Let y ∈ L2(0, T ;Z). Suppose

that there exists no admissible control which satisfies C(t)x(t; f, u) = y(t)

for almost all t. Then, we consider a cost function given by

J(u) =
1

2

∫ T

0

|C(t)x(t; f, u)− y(t)|2dt. (5.3.1)

Let u ∈ L1(0, T ;Y ). Then it is well known that

lim
h→0

h−1

∫ h

0

||u(t+ s)− u(t)||Y ds = 0 (5.3.2)

for almost all points of t ∈ [0, T ].

Definition 5.3.1. The point t, which permits (5.3.2) to hold, is called a

Lebesgue point of u.

Lemma 5.3.1. Let xu be the solution of (5.2.15) corresponding to u. Then

the mapping u 
→ xu is compact from L2(0, T ;Y ) to L2(0, T ;V ).

Proof. We define the solution mapping S from L2(0, T ;Y ) to L2(0, T ;V ) by

(Su)(t) = xu(t), u ∈ L2(0, T ;Y ).
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In virtue of (5.2.10), (5.2.16), and Lemma 5.2.1

||Su||L2(0,T ;D(A0))∩W 1,2(0,T ;H) = ||xu||L2(0,T ;D(A0))∩W 1,2(0,T ;H)

≤ C ′
1(||φ0||F + ||φ1||L2(−h,0;D(A0)) + ||(F + B)u||L2(0,T ;H))

≤ C ′
1(||φ0||F + ||φ1||L2(−h,0;D(A0))

+ L||k||L2(0,T )

√
T ||x||L2(0,T ;V ) + ||B||||u||L2(0,T ;Y ))

≤ C ′
1{||φ0||F + ||φ1||L2(−h,0;D(A0)) + L||k||L2(0,T )

√
T (C ′

2(1 + |φ0|

+ ||φ1||L2(−h,0;V ) + ||B||||u||L2(0,T ;Y )) + ||B||||u||L2(0,T ;Y )}.

Hence if u is bounded in L2(0, T ;Y ), then so is xu in L2(0, T ;D(A0)) ∩
W 1,2(0, T ;H). Noting that D(A0) is compactly embedded in V by assump-

tion, the embedding

L2(0, T ;D(A0)) ∩W 1,2(0, T ;H) ⊂ L2(0, T ;V ))

is also compact in view of Theorem 2 of J. P. Aubin [18]. Hence, the mapping

u 
→ Su = xu is compact from L2(0, T ;Y ) to L2(0, T ;V ).

Theorem 5.3.1. Let U be a bounded closed convex subset of Y . Then, there

exists an optimal control for the cost function (5.3.1).

Proof. Let {un} be a minimizing sequence of J such that

inf
u∈U

J(u) = lim
n→∞

J(un).

Since U is bounded and weakly closed, there exist a subsequence, which we

write again by {un}, of {un} and a û ∈ U such that

un → û weakly in L2(0, T ;Y ).
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Now we show that û is admissible as follows. Since U is a closed convex set

of Y , by Mazur’s theorem as an important consequence of the Hahn-Banach

theorem, there exists an f0 ∈ Y ∗ and c ∈ [−∞,∞] be such that f0(u) ≤ c

for all u ∈ U . Let s be a Lebesgue point of û. and put

wε,n =
1

ε

∫ s+ε

s

un(t)dt

for each ε > 0 and n. Then, f0(wε,n) ≤ c and we have

wε,n→wε =
1

ε

∫ s+ε

s

û(t)dt weakly as n → ∞.

By letting ε → 0, it holds that wε → û(s) and f0(û) ≤ c, so that û(s) ∈ U .

Noting that

xn(t) = x(t;φ) +

∫ t

0

W (t− s)((F + B)un)(s)ds, (5.3.3)

where

x(t;φ) = W (t)φ0 +

∫ 0

−h

Ut(s)φ
1(s)ds,

it follows from Proposition 5.2.4 that {xn(t)} is bounded and hence weakly

sequentially compact. From (5.2.13) and Lemma 5.3.1, we see that F is a

compact operator from L2(0, T ;Y ) to L2(0, T ;H) and hence, it holds Fun →
Fu0 strongly in L2(0, T ;H). Hence, since B andW (t) are strongly continuous

on [0, T ], we have

xn(t) → x(t; f, û) weakly in H,
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where

x(t; f, û) = x(t;φ) +

∫ t

0

W (t− s){(F + B)û(s)}(s)ds.

Therefore, we have

inf J(u) ≤ J(û) ≤ lim inf J(un) = inf J(u).

Thus, this û is an optimal control.

The maximum principle is derived from the optimal condition as follows.

Theorem 5.3.2. Let (5.2.13) be satisfied and let û be an optimal control.

Then the equality

max
v∈U

(v,B∗z(s)) = (û(s), B∗z(s))

holds, where

z(s) =

∫ T

s

W ∗(t− s)C∗(t)(y(t)− C(t)x(t; f, û))dt.

Here, z(s) satisfies the following transposed system:

{
z′(t) + A∗

0z(t)
∫ 0

−h
a(s)A∗

1z(t− s)ds− C∗(t)(y(t)− C(t)x(t; f, û)) = 0 a.e. t ∈ I,

z(T ) = 0, z(s) = 0 a.e. s ∈ [T, T + h].

(5.3.4)

in the weak sense.
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Proof. Let û be an optimal control and x̂(t) = x(t; f, û). For ε > 0, choose

v ∈ L2(0, T ;U) so that ||û − v||L2(0,T ;U) < ε. Let t0 be a Lebesgue point of

û, v. For t0 < t0 + ε < T , put

u(t) =

{
v, if t0 < t < t0 + ε,

û(t), otherwise.
(5.3.5)

Then u is an admissible control. Let x(t) = x(t; f, u). Then x(t)− x̂(t) = 0

for 0 ≤ t ≤ t0 and

x(t)−x̂(t) =

∫ t0+ε

t0

W (t−s){f(s, x(s))−f(s, x̂(s))+B(v−û(s))}ds, (5.3.6)

for t0 + ε ≤ t ≤ T . If t0 < t < t0 + ε then

x(t)− x̂(t) =

∫ t

t0

W (t− s){f(s, x(s))− f(s, x̂(s)) +B(v− û(s))}ds. (5.3.7)

Let t0 + ε ≤ t ≤ T and let us put

w(t) =

∫ t0+ε

t0

W (t− s)B(v − û(s))ds.

Noting that v − û is admissible and t0 is a Lebesgue point of v − û and

for 0 < α < 1

log(1 + ε) =

∫ 1+ε

1

1

y
dy ≤

∫ 1+ε

1

1

y1−α
dy =

1

α
((1 + ε)α − 1) ≤ εα

α
,
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we have that from (5.2.8) of proposition 5.2.2 and Hölder inequality, it follows

||w(t)|| ≤ C

∫ t0+ε

t0

(t− s)−1/2|B(v − û(s))|ds (5.3.8)

≤ C||B||{log t− t0
t− t0 − ε

} 1
2 ||û− v||L2(0,T ;U)

≤ α−1/2ε(
ε

t− t0 − ε
)α/2C||B||.

From (5.3.6) and (5.3.8), it follows that

||x(t)− x̂(t)|| (5.3.9)

≤ ||
∫ t0+ε

t0

W (t− s){f(s, x(s))− f(s, x̂(s))}ds||+ ||w(t)||

≤ C

∫ t0+ε

t0

(t− s)−1/2|f(s, x(s))− f(s, x̂(s))|ds+ ||w(t)||

≤ CL

∫ t0+ε

t0

(t− s)−1/2||x(s)− x̂(s)||ds+ α−1/2ε(
ε

t− t0 − ε
)α/2C||B||.
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Therefore, if we put X(t) = ||x(t)− x̂(t)||, then

X(t) ≤ CL

∫ t0+ε

t0

(t− s)−1/2X(s)ds+ α−1/2ε(
ε

t− t0 − ε
)α/2C||B||

≤ CL

∫ t0+ε

t0

(t− s)−1/2{CL

∫ s

0

(s− τ)−1/2X(τ)dτ

+ α−1/2ε(
ε

t− t0 − ε
)α/2C||B||}ds+ α−1/2ε(

ε

t− t0 − ε
)α/2C||B||

= (CL)2
∫ t0+ε

t0

(t− s)−1/2

∫ s

0

(s− τ)−1/2X(τ)dτds

+ α−1/2ε(
ε

t− t0 − ε
)α/2C||B||

∫ t0+ε

t0

(t− s)−1/2ds

+ α−1/2ε(
ε

t− t0 − ε
)α/2C||B||

= (CL)2
∫ t0+ε

t0

∫ t

τ

(t− s)−1/2(s− τ)−1/2dsX(τ)dτ

+
1

2
α−1/2ε3/2(

ε

t− t0 − ε
)α/2C||B||+ α−1/2ε(

ε

t− t0 − ε
)α/2C||B||

= (CL)2B(
1

2
,
1

2
)

∫ t0+ε

t0

X(τ)dτ +
1

2
α−1/2ε3/2(

ε

t− t0 − ε
)α/2C||B||

+ α−1/2ε(
ε

t− t0 − ε
)α/2C||B||,

where B(·, ·) is the Beta function. Gronwal’s inequality implies

|x(t)− x̂(t)| ≤ ||x(t)− x̂(t)|| ≤ c2ε(
ε

t− t0 − ε
)α/2 (5.3.10)
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for some constant c2 > 0. It holds the inequality (5.3.10) in case where

0 ≤ t < t0 + ε naturally. Since û is optimal, we have

0 ≤ 1

ε
(J(u)− J(û)) (5.3.11)

=
1

ε

∫ T

0

(C(t)(x(t)− x̂(t)), C(t)x̂(t)− y(t))dt

+
1

2ε

∫ T

0

|C(t)(x(t)− x̂(t))|2dt

= I + II.

From (5.3.10) it follows that

lim
ε↓0

II = 0. (5.3.12)

The first term of (5.3.11) can be represented as

I =
1

ε

∫ T

t0

(C(t)(x(t)− x̂(t)), C(t)x̂(t)− y(t))dt =
1

ε

∫ t0+ε

t0

+
1

ε

∫ T

t0+ε

= I1 + I2.

On account of (5.3.10), it holds that

lim
ε↓0

I1 = 0. (5.3.13)

Noting

|f(s, x(s))− f(s, x̂(s))| ≤ L||k||L2(0,T )(

∫ s

0

|x(τ)− x̂(τ)|2dτ)1/2

≤ εc2
√
TL||k||L2(0,T ),
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we have that

|
∫ t0+ε

t0

W (t−s)(f(s, x(s))−f(s, x̂(s)))ds| ≤ ε2c2
√
TCL||k||L2(0,T ). (5.3.14)

Hence, we obtain

lim
ε↓0

1

ε
(x(t)− x̂(t))

= lim
ε↓0

1

ε

∫ t0+ε

t0

W (t− s){f(s, x(s))− f(s, x̂(s)) + B(v − û)(s)}ds

= W (t− t0)B(v − û)(t0).

Thus, as in (5.3.11), we have

lim
ε↓0

I2 =

∫ T

t0

(C(t)(W (t− t0)B(v − û)(t0), C(t)x̂(t)− y(t))dt,

that is, from (5.3.11)-(5.3.14) it follows

∫ T

s

(C(t)W (t− s)B(v − û)(s), C(t)x̂(t)− y(t))dt ≥ 0

holds for every v ∈ U and for all Lebesgue points s of û. Hence, we have

(v − û(s), B∗z(s))dt ≤ 0,

where

z(s) =

∫ T

s

W ∗(t− s)C∗(t)(y(t)− C(t)x̂(t))dt.

Here, z(s) is a solution in a weak sense of the equation (5.3.4).
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The optimality condition J is often used to derive the uniqueness of opti-

mal control. To give such an application we need the following lemma, which

is well known for the fundamental solution W (t)[[37], Lemma 5.1].

Lemma 5.3.2. Given an interval I ⊂ R and a Banach space X, let f ∈
Lp(I;X) for 1 ≤ p ≤ ∞. If

∫ t

0

W (t− s)f(s)ds = 0, for all t ∈ I,

then f(t) = 0 almost everywhere t ∈ I.

Now, we give the conditions for the uniqueness of optimal control as

follows.

Theorem 5.3.3. Let F +B and C(t)(t ≥ 0) be one to one mappings. Then,

the optimal control for the cost function (5.3.1) is unique.

Proof. Let u be an admissible control defined by (5.3.5) and let t0 be a

Lebesgue point of û, v and F(v − û). Putting that x̂(t) = x(t; f, û) and

x(t) = x(t; f, u), we obtain the estimate of x(t)− x̂(t) in H by using simple

calculations and known results, which is also obtained from (5.3.10) directly.

Using the Hölder inequality it is easily seen that

||f(·, x)− f(·, x)||2L2(t0,t0+ε;H) ≤
∫ t0+ε

t0

|
∫ s

0

k(s− τ)(g(τ, x(τ))− g(τ, x̂(τ)))dτ |2ds

≤ ||k||2L2(0,T )

∫ t0+ε

t0

∫ s

0

L2||x(τ)− x̂(τ)||2dτds

≤ εL2||k||2L2(0,T )||x− x̂||2L2(t0,t0+ε;V )
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and hence, with the aid of Hölder inequality

|
∫ t0+ε

t0

W (t− s)(f(s, x(s))− f(s, x̂(s)))ds| (5.3.15)

≤ εML||k||L2(0,T )||x− x̂||L2(t0,t0+ε;V )

for t0 + ε ≤ t ≤ T . Since the control set U is bounded, noting that v − û is

admissible and t0 is Lebesgue point of v − û, there exists a constant c1 > 0

such that

|B(v − û(t))| ≤ c1, for 0 ≤ t ≤ T.

Thus, we obtain

|x(t)− x̂(t)| ≤ |
∫ t0+ε

t0

W (t− s){f(s, x(s))− f(s, x̂(s)) + B(v − û(s))}ds|

≤ εML||k||L2(0,T )||x− x̂||L2(t0,t0+ε;V ) + εc1M.

Hence, in virtue of Proposition 5.2.4, there exists a constant c3 such that

|x(t)− x̂(t)| ≤ c3ε (5.3.16)

holds for any 0 ≤ t ≤ T . In case where 0 ≤ t < t0 + ε, it also holds (5.3.16).

Let us consider the optimal relation (5.3.11), it follows from (5.3.16) that

lim
ε↓0

II = 0. (5.3.17)

On account of (5.3.16), as in (5.3.13), it holds that

lim
ε↓0

I1 = 0. (5.3.18)
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Let t > t0 and ε ↓ 0. Then, we obtain

lim
ε↓0

1

ε
(x(t)− x̂(t))

= lim
ε↓0

1

ε

∫ t0+ε

t0

W (t− s)(F + B)(v − û)(s)ds

= W (t− t0)(F + B)(v − û)(t0).

Hence,

lim
ε↓0

I2 = lim
ε↓0

1

ε

∫ T

t0+ε

(C(t)(x(t)− x̂(t)), C(t)x̂(t)− y(t))dt (5.3.19)

=

∫ T

t0

(C(t)W (t− t0)(F + B)(v − û)(t0), C(t)x̂(t)− y(t))dt.

By (5.3.17)-(5.3.19), the inequality

∫ T

s

(C(t)W (t− s)(F + B)(v − û)(s), C(t)x̂(t)− y(t))dt ≥ 0

holds for every v ∈ U and for all Lebesgue points s of û. Let us denote two

optimal controls by u1 and u2 and their corresponding by x1 and x2. Then,

by the similar procedure mentioned above, the inequalities

∫ T

s

(C(t)W (t− s)(F + B)(u2 − u1)(s), C(t)x̂1(t)− y(t))dt ≥ 0

and

∫ T

s

(C(t)W (t− s)(F + B)(u1 − u2)(s), C(t)x̂2(t)− y(t)dt ≥ 0
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hold. Add both inequalities and integrate the resultant inequality from 0 to

T with respect to s. Then, since

x2(t)− x1(t) =

∫ t

0

W (t− s)(F + B)(u1 − u2)(s)ds,

it holds ∫ T

0

|C(t)(x2(t)− x1(t))|2 ≤ 0.

Since C(t) is one to one, we have that x2(t)− x1(t) ≡ 0. Hence, by Lemma

5.3.2, it holds that (F + B)(u1 − u2)(t) = 0 almost everywhere. From that

F + B is one to one, u1(t) = u2(t) holds for almost all t.

5.4 Observation of Terminal Value

Let y be an element of H and suppose there exists no admissible control

which satisfies

x(T ; f, u) = y.

We assume a cost function given by

J1 =
1

2
|x(T ; f, u)− y|. (5.4.1)

Theorem 5.4.1. Let U be a bounded closed convex subset of Y and let

(5.2.13) be satisfied. Then, there exists an optimal control for the cost func-

tion (5.4.1). Moreover, if û is an optimal control for (5.4.1) then

max
v∈U

(v, B∗z(t)) = (û(t), B∗z(t)) (5.4.2)
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almost everywhere in 0 ≤ t ≤ T , where z(t) = W ∗(T − t)(x(T ; f, u) − y)

satisfies the terminal value problem

{
z′(t) + A∗

0z(t) +
∫ 0

−h
a(s)A∗

1z(t− s)ds = 0,

z(T ) = x(T ; f, u)− y

in the weak sense.

Proof. Let v ∈ U . Let u be an admissible control defined by (5.3.5) and t0

be a Lebesgue point of û, v ∈ U . Put x(t) = x(t; f, u) and x̂(t) = x(t; f, û),

then

x(T )− x̂(T ) =

∫ t0+ε

t0

W (T − s){f(s, x(s))− f(s, x̂(s)) + B(v − û(s))}ds.

Since û is an optimal control, we have

0 ≤ 1

ε
(J1(u)

2 − J1(û)
2) (5.4.3)

=
1

ε
(x(T )− x̂(T ), x̂(T )− y) +

1

2ε
|x(T )− x̂(T )|2

= I + II.

From (5.3.10) or (5.3.15), we have II ↓ 0 as ε ↓ 0. From (5.3.14) it follows

that

1

ε

∫ t0+ε

t0

W (T − s)(f(s, x(s))− f(s, x̂(s)))ds → 0,

thus,

I = (
1

ε

∫ t0+ε

t0

W (T − s){f(s, x(s))− f(s, x̂(s)) + B(v − û)(s)}ds, x̂(T )− y)

→ (W (T − t0)B(v − û)(t0), x̂(T )− y).
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Therefore, from (5.4.3) we have

0 ≤ ((v − û)(t0), B
∗W ∗(T − t0)(x̂(T )− y)),

which implies that (5.4.2) holds at each Lebesgue point û.

Definition 5.4.1. Let z(t) = W (T − t)∗z0 be a solution of the equation

z′(t) + A∗
0z(t) +

∫ 0

−h

a(s)A∗
1z(t− s)ds = 0, z(T ) = z0. (5.4.4)

We say the adjoint system (5.4.4) is weakly regular if z0 = 0 follows from

the existence of a set E ⊂ [0, T ] such that the measure of E is positive and

z(t) = W (T − t)∗z0 = 0 for all t ∈ E.

The examples for which the system (5.5.4) is weakly regular are given in

[[1], p. 41] or Section 7.3 of [37].

Theorem 5.4.2. Let the cost J1 be given in (5.4.1). Assume that the adjoint

system (5.4.4) is weakly regular and B∗ is one to one, then the optimal control

û(t) is the bang-bang control, i.e., û(t) satisfies

û(t) ∈ ∂U for almost everywhere t ∈ [0, T ], (5.4.5)

Proof. For the cost function J1, the maximal principle is written by

max
v∈U

(v,B∗z(t)) = (û(t), B∗z(t)) a.e. t ∈ [0, T ],

where z(t) = W (T − t)∗z0. It is sufficient to show (5.4.5) that B∗z(t) �= 0

a.e. t ∈ [0, T ]. Suppose the contrary that there exists a set E such that the

measure of E is positive and B∗z(t) = 0 t ∈ E. Since B∗ is one to one and

(5.4.4) is weakly regular, we have that z0 = 0, which is a contraction.
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The unique problem of the optimal control for the terminal value cost

function J1 is an open problem. One of the difficulties is that we do not

obtain the convexity property of nonlinear term.

5.5 Conclusions

The purpose of this paper is to extend the optimal control theory for the

general linear results to practical semilinear retarded systems using the con-

struction of the fundamental solution in case where the principal operators

are unbounded operators. We give the existence and uniqueness of the op-

timal control of the cost function defined by distributed observation, and

establish the maximal principle represented by the necessary conditions of

optimality which are described by the adjoint state corresponding to the

linear retarded equation without a condition of differentiability of nonlinear

term. Moreover, we give a feedback control law for the observation function

of terminal value, and the existence of optimal controls for the equation,

where the nonlinear term is given by the convolution product.

The unique problem of the optimal control for the observation function of

terminal value cost function J1 is an open problem. One of the difficulties is

that we do not obtain the convexity property of nonlinear term. Further, we

intend to show how to apply control problems and optimal control to various

nonlinear differential equations and systems arising in science.
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(1963).

[19] J. Y. Park, J. M. Jeong and Y. C. Kwun, Reacsable set of semilinear

control system, Proceeding of Nonlinear Analysis and Convex Analysis,

Koyto Univ, Japan, (1995), 33–45.

[20] J. Y. Park and J. M. Jeong,Controllability retarded system with nonlin-

ear term, Pusan-Kyungnam Math. J. 8 (1992), 189–197.

[21] J. Yong and L. Pan: Quasi-linear parabolic partial differential equations

with delays in the highest order partial derivatives, J. Austral. Math.

Soc. 54, 174-203 (1993).

[22] K. Naito, Controllability of semilinear control systems dominated by the

linear part, SIAM J. Control Optim. 25 (1987), 715–722.

[23] K. Naito, Approximate controllability for trajectories of semilinear con-

trol systems, J. Optim. Theory Appl. 60 (1989 ), 57–65.

[24] K. Yosida, Functional Analysis 3rd ed., Springer-Verlag, 1980.
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