

Thesis for the Degree of Master of Philosophy

Interpolation spaces governed by analytic semigroups of operators

Department of Applied Mathematics The Graduate School Pukyong National University January 2019

Interpolation spaces governed by analytic semigroups of operators (작용소의 해석적 반군에 의해 제어되는 보간공간)

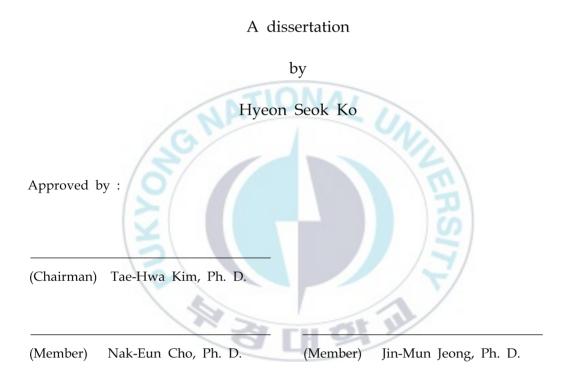
A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Philosophy

in Department of Applied Mathematics, The Graduate School, Pukyong National University

January 2019

Interpolation spaces governed by analytic semigroups of operators



February 22, 2019

CONTENTS

Abstract(Korean)	·····	ii
AUSU act (AUI call)		11

- 2. Basic results of interpolation spaces 2
- 3. Interpolation spaces by analytic semigroup generator 7
- 4. Applications for Initial value problem 11
- 5. References 13

작용소의 해석적 반군에 의해 제어되는 보간공간

고 현 석

부경대학교 대학원 응용수학과

요 약

본 논문은 Banach 공간에서 해석적 반군에 의해 생성되는 보간들을 보간 공간의 이론들을 이용하여 공간들의 특성과 수식 화를 정리하였다.

주결과의 내용은 첫째로, $0 < heta < 1, \ 0 \leq t$, T(t)가 A에 의해 생성되는 해석적 반군이라면

$$\begin{split} &(1-\theta) \bigg\{ \int_0^\infty (t^{\theta-1} \parallel (T(t)-I)x \parallel)^p \frac{dt}{t} \bigg\}^{\frac{1}{p}} \leq \bigg\{ \int_0^\infty (t^{\theta} \parallel AT(t)x \parallel)^p \frac{dt}{t} \bigg\}^{\frac{1}{p}} \\ &\leq \frac{K}{1-2^{-\theta}} \bigg\{ \int_0^\infty (t^{\theta-1} \parallel (T(t)-I)x \parallel)^p \frac{dt}{t} \bigg\}^{\frac{1}{p}} \\ & \text{old, werd} \ (D(A),X)_{\theta,p} = \bigg\{ x \in X \colon \int_0^\infty (t^{\theta} \parallel AT(t)x \parallel)^p \frac{dt}{t} < \infty \bigg\}. \\ & \text{seme, } p = 1/\theta \text{ un, } \ (D(A),X)_{\theta,\frac{1}{\theta}} = \bigg\{ x \in X \colon \int_0^\infty \parallel AT(t)x \parallel^{\frac{1}{\theta}} dt < \infty \bigg\} \text{ end} \ \text{end} \ \text{e$$

H 와 V 를 Hilbert 공간으로 하고 V 가 조밀한 공간으로서 그의 공액공간을 V^* 로 하자. 다음과 같이 Banach 공간 H 상에서 A 를 포함하는 초기치 문제:

$$\begin{cases} \frac{d}{dt}x(t) = Ax(t) + f(t), \quad t \in (0,T], \\ x(0) = x_0 \end{cases}$$

에서, $f \in L^2(0, T; V^*)$ 그리고 $x_0 \in H$ 로 주어지면 위의 초기치 문제의 해는 유일 하게 존재하며, 아울려 $x \in L^2(0, T; V) \cap W^{1,2}(0, T; V^*) \subset C([0, T]; H).$

임을 증명하였다.

Interpolation spaces governed by analytic semigroups of operators

October 4, 2018

1 Introduction

In this paper, we consider some characteristic of interpolation spaces of Banach spaces, and establish some simple properties for interpolation spaces associated with the domain of a generator of an analytic semigroup.

Let H be a complex Hilbert space and V be a real separable Hilbert space such that V is a dense subspace of H. Identifying the antidual of V with V^* we may consider $V \subset H \subset V^*$. Consider the following abstract Cauchy problems with initial data x_0 :

$$\begin{cases} \frac{dx(t)}{dt} = Ax(t) + f(t), & 0 < t \le T, \\ x(0) = x_0 \end{cases}$$
(1.1)

where $f : [0, T) \to H$ for any T > 0. First, we will prove that A generates an analytic semigroup in both H and V^* . We refer to [?]-[?]as for problems of application of various equations governed by semigroups. Blasio *et al.* [?] showed the existence and uniqueness of the solution

$$x \in L^2(0,T;D(A)) \cap W^{1,2}(0,T;H) \subset C([0,T];(D(A),H)_{1/2,2})$$

for $x_0 \in D(A)$ and $f \in L^2(0,T;H)$. By using properties of interpolation spaces, we will show that

$$H = \{x \in V^* : \int_0^T ||Ae^{tA}x||_*^2 dt < \infty\} = (V, V^*)_{1/2, 2},$$

where $|| \cdot ||_*$ is the norm of the element of V^* , and A associated with a sesquilinear form $a(\cdot, \cdot)$ defined on $V \times V$ satisfying Gårding's inequality generates an analytic

semigroup in both H and V^* . Hence, the equation (1.1) may be considered as an equation in H as well as in V^* . Therefore, we can apply the method of Blasio *et al.* [?] to the problem (1.1) to show the existence and uniqueness of the solution

$$x \in L^2(0,T;V) \cap W^{1,2}(0,T;V^*) \subset C([0,T];H)$$

with more general conditions on an initial value $x_0 \in H$ and a forcing term $f \in L^2(0,T;V^*)$. The last inclusion relation on continuity is well known and is an easy consequence of the definition of real interpolation spaces by the trace method.

2 Basic results of interpolation spaces

Let X and Y be two Banach spaces contained in a locally convex linear Hausdorff space \mathcal{X} such that the embedding mapping of both X and Y in \mathcal{X} is continuous. Let $X \cap Y$ be a dense subspace in both X and Y. Let X and Y be Banach spaces such that the embedding $X \subset Y$ is continuous.

For $1 , we denote by <math>L^p_*(X)$ the Banach space of all functions $t \to u(t)$, $t \in (0, \infty)$ and $u(t) \in X$, for which the mapping $t \to u(t)$ is strongly measurable with respect to the measure dt/t and the norm $||u||_{L^p_*(X)}$ is finite, where

$$\begin{split} ||u||_{L_*^p(X)} &= \{\int_0^\infty ||u(t)||_X^p \frac{dt}{t}\}^{\frac{1}{p}}.\\ 0 < \theta < 1, \text{ set} \\ ||t^\theta u||_{L_*^p(X)} &= \{\int_0^\infty ||t^\theta u(t)||_X^p \frac{dt}{t}\}^{\frac{1}{p}},\\ ||t^\theta u'||_{L_*^p(Y)} &= \{\int_0^\infty ||t^\theta u'(t)||_Y^p \frac{dt}{t}\}^{\frac{1}{p}}. \end{split}$$

We now introduce a Banach space

$$V = \{ u : ||t^{\theta}u||_{L^{p}_{*}(X)} < \infty, \quad ||t^{\theta}u'||_{L^{p}_{*}(Y)} < \infty \}$$

with norm

For

$$||u||_{V} = ||t^{\theta}u||_{L^{p}_{*}(X)} + ||t^{\theta}u'||_{L^{p}_{*}(Y)}.$$

It is easily seen that $u(0) \in \mathcal{X}$. In fact, choose an $q \in C_0^1([0,\infty))$ satisfying $q(t) \geq 0$, q(0) = 1, we know

$$u(0) = q(0)u(0) = -\int_0^\infty \frac{d}{dt}(q(t)u(t))dt$$

= $-\int_0^\infty q'(t)u(t)dt - \int_0^\infty q(t)u'(t)dt.$

By the simple calculation, from

$$\begin{split} ||\int_{0}^{\infty} q'(t)u(t)dt||_{X} &= ||\int_{0}^{\infty} t^{1-\theta}q'(t)t^{\theta}u(t)\frac{dt}{t}||_{X} \\ &\leq \{\int_{0}^{\infty} |t^{1-\theta}q'(t)|^{p'}\frac{dt}{t}\}^{\frac{1}{p'}}\{\int_{0}^{\infty} ||t^{\theta}u(t)||_{X}^{p}\frac{dt}{t}\}^{\frac{1}{p}} \\ &= \{\int_{0}^{\infty} t^{(1-\theta)p'-1}|q'(t)|^{p'}dt\}^{\frac{1}{p'}}||t^{\theta}u||_{L_{*}^{p}(X)} < \infty \end{split}$$

where p' = p/(p-1), it follows $\int_0^\infty q'(t)u(t)dt \in X \subset \mathcal{X}$. By the similar way since

$$\begin{split} ||\int_{0}^{\infty} q(t)u'(t)dt||_{Y} &= ||\int_{0}^{\infty} t^{1-\theta}q(t)t^{\theta}u'(t)\frac{dt}{t}||_{Y} \\ &\leq \{\int_{0}^{\infty} |t^{1-\theta}q(t)|^{p'}\frac{dt}{t}\}^{\frac{1}{p'}}\{\int_{0}^{\infty} ||t^{\theta}u'(t)||_{Y}^{p}\frac{dt}{t}\}^{\frac{1}{p}} \\ &= \{\int_{0}^{\infty} t^{(1-\theta)p'-1}|q(t)|^{p'}dt\}^{\frac{1}{p'}}||t^{\theta}u'||_{L_{*}^{p}(Y)} < \infty \end{split}$$

it follows $\int_0^\infty q(t)u'(t)dt \in Y$. Thus, $u(0) \in X \cup Y \subset \mathcal{X}$.

Definition 2.1. We define $(X, Y)_{\theta,p}$, $0 < \theta < 1$, $1 \le p \le \infty$, to be the space of all elements u(0) where $u \in V$, that is,

$$(X,Y)_{\theta,p} = \{u(0) : u \in V\}.$$

Lemma 2.1. (Young's inequality) Let a > 0, b > 0 and $\frac{1}{p} + \frac{1}{q} = 1$ where 1 . $Then <math>ab \leq \frac{a^p}{p} + \frac{b^q}{q}$

Proposition 2.1. For $0 < \theta < 1$ and $1 \le p \le \infty$, the space $(X, Y)_{\theta,p}$ is a Banach space with the norm

$$||a||_{\theta,p} = \inf\{||u|| : u \in V, \quad u(0) = a\}.$$

Furthermore, there is a constant $C_{\theta} > 0$ such that

$$||a||_{\theta,p} = C_{\theta} \inf\{||t^{\theta}u||_{L^{p}_{*}(X)}^{1-\theta}||t^{\theta}u'||_{L^{p}_{*}(Y)}^{\theta}: u(0) = a, \quad u \in V\}.$$

Proof. We only prove the last equality. For $u \in V$ satisfying u(0) = a, we know $||a||_{\theta,p} \leq ||u||_V$. Putting

$$u_{\lambda}(t) = u(\lambda t), \quad \lambda > 0,$$

4

it holds that

$$u_{\lambda} \in V, \quad u_{\lambda}(0) = u(0) = a$$

and

$$||a||_{\theta,p} \le ||u_{\lambda}||_{V} = ||t^{\theta}u_{\lambda}||_{L^{p}_{*}(X)} + ||t^{\theta}u_{\lambda}^{'}||_{L^{p}_{*}(Y)}.$$
(2.1)

Since

$$\begin{aligned} ||t^{\theta}u_{\lambda}||_{L^{p}_{*}(X)} &= \{\int_{0}^{\infty} ||t^{\theta}u_{\lambda}(t)||_{X}^{p} \frac{dt}{t}\}^{\frac{1}{p}} = \{\int_{0}^{\infty} ||t^{\theta}u(\lambda t)||_{X}^{p} \frac{dt}{t}\}^{\frac{1}{p}} \\ &= \{\int_{0}^{\infty} ||(\frac{t}{\lambda})^{\theta}u(t)||_{X}^{p} \frac{dt}{t}\}^{\frac{1}{p}} = \lambda^{-\theta} ||t^{\theta}u||_{L^{p}_{*}(X)} \end{aligned}$$

and

$$\begin{split} ||t^{\theta}u_{\lambda}^{'}||_{L_{*}^{p}(Y)} &= \{\int_{0}^{\infty} ||t^{\theta}u_{\lambda}^{'}(t)||_{Y}^{p}\frac{dt}{t}\}^{\frac{1}{p}} = \{\int_{0}^{\infty} ||t^{\theta}\lambda u^{'}(\lambda t)||_{Y}^{p}\frac{dt}{t}\}^{\frac{1}{p}} \\ &= \lambda\{\int_{0}^{\infty} ||(\frac{t}{\lambda})^{\theta}u^{'}(t)||_{Y}^{p}\frac{dt}{t}\}^{\frac{1}{p}} = \lambda^{1-\theta}||t^{\theta}u^{'}||_{L_{*}^{p}(Y)}, \end{split}$$

from (2.1) it follows that

$$||a||_{\theta,p} \leq \lambda^{-\theta} ||t^{\theta}u||_{L^{p}_{*}(X)} + \lambda^{1-\theta} ||t^{\theta}u'||_{L^{p}_{*}(Y)}$$

$$= \lambda^{-\theta}A + \lambda^{1-\theta}B.$$
(2.2)

Choosing

 $\lambda = \theta A / (1 - \theta) B,$

(2.2) implies that

$$||a||_{\theta,p} \leq \left(\frac{\theta A}{(1-\theta)B}\right)^{-\theta} A + \left(\frac{\theta A}{(1-\theta)B}\right)^{1-\theta} B$$

$$= \left(\frac{\theta}{1-\theta}\right)^{-\theta} A^{1-\theta} B^{\theta} + \left(\frac{\theta}{1-\theta}\right)^{1-\theta} A^{1-\theta} B^{\theta}$$

$$= \left(1 + \frac{\theta}{1-\theta}\right) \left(\frac{\theta}{1-\theta}\right)^{-\theta} A^{1-\theta} B^{\theta}$$

$$= \frac{1}{1-\theta} \left(\frac{\theta}{1-\theta}\right)^{-\theta} A^{1-\theta} B^{\theta}$$

$$= \frac{A^{1-\theta} B^{\theta}}{(1-\theta)^{1-\theta} \theta^{\theta}} = \left(\frac{A}{1-\theta}\right)^{1-\theta} \left(\frac{B}{\theta}\right)^{\theta}.$$

$$(2.3)$$

By regarding as

$$a = (\frac{A}{1-\theta})^{1-\theta}, \quad b = (\frac{B}{\theta})^{\theta}, \quad p = \frac{1}{1-\theta}, \quad \text{and} \quad q = \frac{1}{\theta}$$

in Young's Lemma 2.1, from (2.3) we have

$$||a||_{\theta,p} \le \frac{A^{1-\theta}B^{\theta}}{(1-\theta)^{1-\theta}\theta^{\theta}} \le A + B$$

that is,

$$\begin{aligned} ||a||_{\theta,p} &\leq \frac{1}{(1-\theta)^{1-\theta}\theta^{\theta}} ||t^{\theta}u||_{L^{p}_{*}(X)}^{1-\theta}||t^{\theta}u'||_{L^{p}_{*}(Y)}^{\theta} \\ &\leq ||t^{\theta}u||_{L^{p}_{*}(X)} + ||t^{\theta}u'||_{L^{p}_{*}(Y)}. \end{aligned}$$

For every $u \in V$ satisfying u(0) = a, it holds

$$||a||_{\theta,p} \leq C_{\theta} ||t^{\theta}u||_{L^{p}_{*}(X)}^{1-\theta}||t^{\theta}u'||_{L^{p}_{*}(Y)}^{\theta} \leq ||u||_{V}$$

where $C_{\theta} = 1/(1-\theta)^{1-\theta}\theta^{\theta}$. Therefore
 $||a||_{\theta,p} = C_{\theta} \inf\{||t^{\theta}u||_{L^{p}_{*}(X)}^{1-\theta}||t^{\theta}u'||_{L^{p}_{*}(Y)}^{\theta}: u(0) = a, \quad u \in V\}.$

Proposition 2.2. For $0 < \theta < 1$ and $1 \le p \le \infty$, we have $(X, X)_{\theta, p} = X$.

Proof. We only proof the relation $(X, X)_{\theta,p} \supset X$. Let $x \in X$ and $q \in C_0^1([0, \infty))$ satisfying q(0) = 1. Putting u(t) = q(t)x, we have u(0) = x. By simple calculation, since

$$\begin{split} \int_{0}^{\infty} ||t^{\theta}u(t)||_{X}^{p} \frac{dt}{t} &= \int_{0}^{\infty} t^{\theta p-1} |q(t)|^{p} ||x||_{X}^{p} dt < \infty, \\ \int_{0}^{\infty} ||t^{\theta}u^{'}(t)||_{X}^{p} \frac{dt}{t} &= \int_{0}^{\infty} t^{\theta p-1} |q^{'}(t)|^{p} ||x||_{X}^{p} dt < \infty \end{split}$$

we have $x \in (X, X)_{\theta, p}$.

Proposition 2.3. Let $X \subset Y$ satisfying that there exists a constant c > 0 such that $||u||_Y \leq c||u||_X$. If $0 < \theta < \theta' < 1$ then we have

$$(X,Y)_{\theta,p} \subset (X,Y)_{\theta',p}.$$

Proof. Let $a \in (X, Y)_{\theta, p}$. Then there exists $u \in V$ such that u(0) = a and

$$||t^{\theta}u||_{L^{p}_{*}(X)} \leq \infty, \quad ||t^{\theta}u'||_{L^{p}_{*}(Y)} \leq \infty.$$

Let $q \in C_0^1([0,\infty))$ satisfying q(0) = 1, $0 \le q(t) \le 1$ for $t \in (0,1)$ and q(t) = 0 for $1 \le t$. Putting v(t) = q(t)u(t), we have

$$\begin{aligned} ||t^{\theta'}v||_{L^{p}_{*}(X)} &= \{\int_{0}^{\infty} (t^{\theta'}||v(t)||_{X})^{p} \frac{dt}{t}\}^{\frac{1}{p}} \\ &= \{\int_{0}^{1} (t^{\theta'}q(t)||u(t)||_{X})^{p} \frac{dt}{t}\}^{\frac{1}{p}} \\ &\leq \{\int_{0}^{1} (t^{\theta'}||u(t)||_{X})^{p} \frac{dt}{t}\}^{\frac{1}{p}} < \infty. \end{aligned}$$

and

$$\begin{split} ||t^{\theta'}v'||_{L^{p}_{*}(Y)} &= \{\int_{0}^{\infty} (t^{\theta'}||q(t)u'(t) + q'(t)u(t)||_{Y})^{p} \frac{dt}{t}\}^{\frac{1}{p}} \\ &\leq \{\int_{0}^{\infty} (t^{\theta'}q(t)||u'(t)||_{Y})^{p} \frac{dt}{t}\}^{\frac{1}{p}} \\ &+ \{\int_{0}^{\infty} (t^{\theta'}q'(t)||u(t)||_{Y})^{p} \frac{dt}{t}\}^{\frac{1}{p}} \\ &\leq \{\int_{0}^{\infty} (t^{\theta'}||u'(t)||_{Y})^{p} \frac{dt}{t}\}^{\frac{1}{p}} \\ &+ \max |q'(t)|\{\int_{0}^{\infty} (t^{\theta'}||u(t)||_{Y})^{p} \frac{dt}{t}\}^{\frac{1}{p}} < \infty, \end{split}$$

hence we obtain that $a = v(0) \in (X, Y)_{\theta', p}$.

From now on we will deal with the complex interpolation methods introduced by [5], which the complex methods will yield new interpolation spaces. Let

14

04

$$F = \{u : u \text{ is continuous function in } 0 \leq \operatorname{Re} z \leq 1 \text{ with } u(z) \in \mathcal{X}, \\ \text{and analytic in } 0 < \operatorname{Re} z < 1. \text{ For } -\infty < y < \infty, \ u(iy) \in X, \\ u(1+iy) \in Y, \ u(iy) \text{ and } u(1+iy) \text{ are strongly continous and} \\ \text{bounded on } X \text{ and } Y, \text{ respectively} \}.$$

As is seen in Triebel [?], we know that F is a Banach space equipped with the norm

$$||u||_F = \max\{\sup_{-\infty < y < \infty} ||u(iy)||_X, \quad \sup_{-\infty < y < \infty} ||u(1+iy)||_Y\}.$$

Definition 2.2. Let $\{X, Y\}$ be an interpolation couple. We now introduce a Banach space. For $0 < \theta < 1$, put

$$[X,Y]_{\theta} = \{u(\theta) : u \in F\}$$

with norm

$$||a||_{[X,Y]_{\theta}} = \inf_{u(\theta)=a} ||u||_{F}.$$

It is well known result that if H_1 and H_2 are Hilbert spaces satisfying that H_1 is a dense space of H_2 and the embedding is continuous then

$$[H_1, H_2]_{\theta} = (H_1, H_2)_{\theta, 2} \quad 0 < \theta < 1.$$

3 Interpolation spaces by analytic semigroup generator

In this section we consider an interpolation method between the initial Banach space and the domain of the infinitesimal generator A of the analytic semigroup T(t). We will verify the fact that

$$(D(A), X)_{\theta, p} = \{ x \in X : \int_0^\infty (t^\theta ||AT(t)x||)^p \frac{dt}{t} < \infty \},\$$

for $0 < \theta < 1, 1 \le p \le \infty$,

which is mainly on the role of interpolation spaces in the study of analytic semigroup of operators.

Let X be a Banach space with norm $|| \cdot ||$ and T(t) be an analytic semigroup with infinitesimal generator A. We may assume that

$$||T(t)|| \le M, \quad ||AT(t)|| \le \frac{K}{t}$$

for some positive constants M, K and $t \ge 0$.

Lemma 3.1. Let $0 < \theta < 1$, $1 and <math>\phi(t) \ge 0$ almost everywhere. Then

$$\{\int_0^\infty (t^{\theta-1}\int_0^t \phi(s)ds)^p \frac{dt}{t}\}^{\frac{1}{p}} \le \frac{1}{1-\theta}\{\int_0^\infty (t^\theta \phi(t))^p \frac{dt}{t}\}^{\frac{1}{p}}.$$

Proof. Let $0 < \epsilon < N < \infty$. Then

$$\begin{split} &\int_{\epsilon}^{N} (t^{\theta-1} \int_{0}^{t} \phi(s) ds)^{p} \frac{dt}{t} = \int_{\epsilon}^{N} t^{(\theta-1)p-1} (\int_{0}^{t} \phi(s) ds)^{p} dt \\ &= [\frac{t^{(\theta-1)p}}{(\theta-1)p} (\int_{0}^{t} \phi(s) ds)^{p}]_{\epsilon}^{N} - \int_{\epsilon}^{N} \frac{t^{(\theta-1)p}}{(\theta-1)p} p\phi(t) (\int_{0}^{t} \phi(s) ds)^{p-1} dt \\ &\leq \frac{\epsilon^{(\theta-1)p}}{(1-\theta)p} (\int_{0}^{\epsilon} \phi(s) ds)^{p} + \frac{1}{1-\theta} \int_{\epsilon}^{N} t^{(\theta-1)p} \phi(t) (\int_{0}^{t} \phi(s) ds)^{p-1} dt. \end{split}$$

Since

$$\begin{split} \int_0^\epsilon \phi(s)ds &= \int_0^\epsilon s^{1-\theta} s^\theta \phi(s) \frac{ds}{s} \\ &\leq \{\int_0^\epsilon s^{(1-\theta)p'} \frac{ds}{s}\}^{\frac{1}{p'}} \{\int_0^\epsilon (s^\theta \phi(s))^p \frac{ds}{s}\}^{\frac{1}{p}} \\ &= \{\frac{\epsilon^{(1-\theta)p'}}{(1-\theta)p'}\}^{\frac{1}{p'}} \{\int_0^\epsilon (s^\theta \phi(s))^p \frac{ds}{s}\}^{\frac{1}{p}}, \end{split}$$

we see that

$$\epsilon^{\theta-1} (\int_0^{\epsilon} \phi(s) ds) \le (\frac{1}{(1-\theta)p'})^{\frac{1}{p'}} \{\int_0^{\epsilon} (s^{\theta}\phi(s))^p \frac{ds}{s}\}^{\frac{1}{p}}$$

tends to zero as ϵ tends to zero. If $\epsilon \to 0$ and $N \to \infty$, then we have

$$\begin{split} &\int_0^\infty (t^{\theta-1} \int_0^t \phi(s) ds)^p \frac{dt}{t} \leq \frac{1}{1-\theta} \{ \int_0^\infty t^{(\theta-1)p} \phi(t) (\int_0^t \phi(s) ds)^{p-1} dt \} \\ &= \frac{1}{1-\theta} \int_0^\infty t^{(\theta-1)(p-1)+\theta} \phi(t) (\int_0^t \phi(s) ds)^{p-1} \frac{dt}{t} \\ &= \frac{1}{1-\theta} \int_0^\infty t^\theta \phi(t) (t^{\theta-1} \int_0^t \phi(s) ds)^{p-1} \frac{dt}{t} \\ &\leq \frac{1}{1-\theta} \{ \int_0^\infty (t^\theta \phi(t))^p \frac{dt}{t} \}^{\frac{1}{p}} \{ \int_0^\infty (t^{\theta-1} \int_0^t \phi(s) ds)^p \frac{dt}{t} \}^{1-\frac{1}{p}}. \end{split}$$
e proof is complete. main results in this paper is the following.

Hence the proof is complete.

The main results in this paper is the following.

Theorem 3.1. Let $0 < \theta < 1, 0 \le t$. Then

$$\begin{aligned} &(1-\theta) \{ \int_0^\infty (t^{\theta-1}||(T(t)-I)x||)^p \frac{dt}{t} \}^{\frac{1}{p}} \\ &\leq \{ \int_0^\infty (t^{\theta}||AT(t)x||)^p \frac{dt}{t} \}^{\frac{1}{p}} \\ &\leq \frac{K}{1-2^{-\theta}} \{ \int_0^\infty (t^{\theta-1}||(T(t)-I)x||)^p \frac{dt}{t} \}^{\frac{1}{p}} \end{aligned}$$

Therefore, we have

$$(D(A), X)_{\theta, p} = \{ x \in X : \int_0^\infty (t^\theta ||AT(t)x||)^p \frac{dt}{t} < \infty \}.$$

8

Proof. From

$$AT(t)x = -\sum_{k=0}^{n} (AT(2^{k+1}t) - AT(2^{k}t))x + AT(2^{n+1}t)x$$
$$= -\sum_{k=0}^{n} (AT(2^{k}t)(T(2^{k}t) - I)x + AT(2^{n+1}t)x)$$

it follows that

$$\begin{split} ||AT(t)x|| &\leq \sum_{k=0}^{n} \frac{K}{2^{k}t} ||(T(2^{k}t) - I)x|| + \frac{K}{2^{n+1}t} ||x||,\\ t^{\theta} ||AT(t)x|| &\leq K \sum_{k=0}^{n} 2^{-k\theta} (2^{k}t)^{\theta-1} ||(T(2^{k}t) - I)x|| \\ &+ \frac{K}{2^{n+1}} ||x|| t^{\theta-1}, \end{split}$$

and hence

$$\begin{aligned} &\{\int_{0}^{\infty} (t^{\theta} || AT(t)x||)^{p} \frac{dt}{t} \}^{\frac{1}{p}} \\ &\leq K \sum_{k=0}^{n} 2^{-k\theta} \{\int_{\epsilon}^{\infty} ((2^{k}t)^{\theta-1} || (T(2^{k}t) - I)x||)^{p} \frac{dt}{t} \}^{\frac{1}{p}} \\ &+ \frac{K}{2^{n+1}} ||x|| \{\int_{\epsilon}^{\infty} t^{(\theta-1)p} \frac{dt}{t} \}^{\frac{1}{p}} \\ &= K \sum_{k=0}^{n} 2^{-k\theta} \{\int_{2^{k}\epsilon}^{\infty} (t^{\theta-1} || (T(t) - I)x||)^{p} \frac{dt}{t} \}^{\frac{1}{p}} \\ &+ \frac{K}{2^{n+1}} ||x|| (\frac{\epsilon^{(\theta-1)p}}{(1-\theta)p})^{\frac{1}{p}}, \quad (2^{k}t \to t), \end{aligned}$$

for every $\epsilon > 0$. Thus,

$$\{\int_{\epsilon}^{\infty} (t^{\theta} || AT(t)x ||)^{p} \frac{dt}{t} \}^{\frac{1}{p}} \\ \leq K \sum_{k=0}^{\infty} 2^{-k\theta} \{\int_{2^{k}\epsilon}^{\infty} (t^{\theta-1} || (T(t) - I)x ||)^{p} \frac{dt}{t} \}^{\frac{1}{p}}$$

as $n \to \infty$. Therefore, passing $\epsilon \to 0$, we obtain

$$\begin{split} &\{\int_0^\infty (t^\theta ||AT(t)x||)^p \frac{dt}{t}\}^{\frac{1}{p}} \\ &\leq K \sum_{k=0}^\infty 2^{-k\theta} \{\int_0^\infty (t^{\theta-1}||(T(t)-I)x||)^p \frac{dt}{t}\}^{\frac{1}{p}} \\ &= \frac{K}{1-2^{-\theta}} \{\int_0^\infty (t^{\theta-1}||(T(t)-I)x||)^p \frac{dt}{t}\}^{\frac{1}{p}}. \end{split}$$

On the other hand, since

$$||(T(t) - I)x|| = ||\int_0^t AT(s)xds|| \le \int_0^t ||AT(s)x||ds,$$

we have

$$\{\int_{0}^{\infty} (t^{\theta-1}||(T(t)-I)x||)^{p} \frac{dt}{t}\}^{\frac{1}{p}} \le \{\int_{0}^{\infty} (t^{\theta-1} \int_{0}^{t} ||AT(s)x||ds)^{p} \frac{dt}{t}\}^{\frac{1}{p}},$$

from Lemma 4.1, it follows

$$\{\int_{0}^{\infty} (t^{\theta-1}||(T(t)-I)x||)^{p} \frac{dt}{t}\}^{\frac{1}{p}} \le \frac{1}{1-\theta} \{\int_{0}^{\infty} (t^{\theta}||AT(t)x||)^{p} \frac{dt}{t}\}^{\frac{1}{p}},$$

hence, the proof is complete.

Corollary 3.1. Let T(t) be an analytic semigroup with generator A in X. Then

$$(D(A),X)_{\theta,\frac{1}{\theta}} = \{x \in X : \int_0^\infty ||AT(t)x||^{\frac{1}{\theta}} dt < \infty\}.$$

In particular, if $\theta = \frac{1}{2}$ then

$$L^{2}(0,\infty; D(A)) \cap W^{1,2}(0,\infty; X) \subset C([0,\infty); (D(A), X)_{\frac{1}{2}, 2})$$

where

$$(D(A), X)_{\frac{1}{2}, 2} = \{ x \in X : \int_0^\infty ||AT(t)x||^2 dt < \infty \}.$$

4 Applications for Initial value problem

We consider the regular problem for the following functional differential equation of parabolic type

$$\begin{cases}
\frac{dx(t)}{dt} = Ax(t) + f(t), & 0 < t \le T, \\
x(0) = x_0
\end{cases}$$
(4.1)

in a Hilbert space H. Let V be another Hilbert space such that $V \subset H$. Identifying the antidual of V with V^* we may consider $V \subset H \subset V^*$. Therefore, for the sake of simplicity, we may regard that

$$||u||_* \le |u| \le ||u||, \quad v \in V$$

where the notations $|\cdot|$, $||\cdot||$ and $||\cdot||_*$ denote the norms of H, V and V^* , respectively as usual. Let a(u, v) be a bounded sesquilinear form defined in $V \times V$ satisfying Gårding's inequality

Re
$$a(u, u) \ge c_0 ||u||^2 - c_1 |u|^2$$
, $c_0 > 0$, $c_1 \ge 0$. (4.2)

Let A be the operator associated with a sesquilinear form

$$(Au, v) = -a(u, v), \quad u, v \in V.$$

Then the operator A is a bounded linear from V to V^{*}. We may assume that $(D(A), H)_{1/2,2} = V$ satisfying

$$||u|| \le C_1 ||u||_{D(A)}^{1/2} |u|^{1/2}$$
(4.3)

for some a constant $C_1 > 0$ where $(D(A), H)_{\theta,p}$ denotes the real interpolation space between D(A) and H as is seen in Section 2.

Lemma 4.1. With the notations (4.2), (4.3), we have

$$(V, V^*)_{1/2,2} = H,$$

 $(D(A), H)_{1/2,2} = V,$

where $(V, V^*)_{1/2,2}$ denotes the real interpolation space between V and V^{*}(Section 1.3.3 of [?, ?]).

We may assume that (4.2) holds for $c_1 = 0$ as noting that $A_0 + c_1$ is an isomorphism from V to V^* if $c_1 \neq 0$.

By virtue of Theorem 3.3 of [?] we have the following result on the corresponding linear equation of (4.1).

Proposition 4.1. Suppose that the assumptions mentioned above are satisfied. For $x_0 \in (D(A), H)_{\frac{1}{2},2}$ and $f \in L^2(0,T;H)$, T > 0, there exists a unique solution x of (4.1) belonging to

$$L^{2}(0,T;D(A)) \cap W^{1,2}(0,T;H) \subset C([0,T];(D(A),H)_{\frac{1}{2},2})$$

and satisfying

$$||x||_{L^{2}(0,T;D(A))\cap W^{1,2}(0,T;H)} \leq C_{2}(||x_{0}||_{(D(A),H)_{\frac{1}{2},2}} + ||f||_{L^{2}(0,T;H)}),$$

where C_2 is a constant depending on T and

$$||\cdot||_{L^2(0,T;D(A))\cap W^{1,2}(0,T;H)} = \max\{||\cdot||_{L^2(0,T;D(A))}, ||\cdot||_{W^{1,2}(0,T;H)}\}.$$

Lemma 4.2. Let T > 0. Then

$$H = \{ x \in V^* : \int_0^T ||Ae^{tA}x||_*^2 dt < \infty \},$$

where $|| \cdot ||_*$ is the norm of the element of V^* Proof. Put $u(t) = e^{tA}x$ for $x \in H$. From

$$\frac{1}{2}\frac{d}{dt}|u(t)|^2 = \operatorname{Re}(\dot{u}(t), u(t)) = \operatorname{Re}(Au(t), u(t))$$
$$= -\operatorname{Re}a(u(t), u(t)) \leq -c_0||u(t)||^2,$$

it follows

$$\frac{1}{2}\frac{d}{dt}|u(t)|^2 + c_0||u(t)||^2 \le 0.$$

By integrating over t, it yields

$$\frac{1}{2}|u(t)|^2 + c_0 \int_0^t ||u(s)||^2 ds \le \frac{1}{2}|x|^2.$$

Hence, we obtain that

$$\int_0^T ||Ae^{tA}x||_*^2 dt \le \int_0^T ||A||_{B(V,V^*)} ||u(s)||^2 ds < \infty$$

Conversely, suppose that $x \in V^*$ and $\int_0^T ||Ae^{tA}x||_*^2 dt < \infty$. Put $u(t) = e^{tA}x$. Then since A is an isomorphism operator from V to V^{*} there exists a constant c > 0 such that

$$\int_0^T ||u(t)||^2 dt \le c \int_0^T ||Au(t)||_*^2 dt = c \int_0^T ||Ae^{tA}x||_*^2 dt$$

$$u \in L^2(0,T;V) \cap W^{1,2}(0,T;V^*) \subset C([0,T];H).$$

Therefore, $x = u(0) \in H$.

The realization of A in H which is the restriction of A to

$$D(A) = \{ u \in V : Au \in H \}$$

is also denoted by A. It is known that A generates an analytic semigroup in both H and $V^*(\text{see } [?, ?, ?])$. Replaying the interpolation space F in Blasio *et al.* [?] with the space H, we can derive the results of [?] regarding term by term to deduce the following result.

Theorem 4.1. Let $x_0 \in H$ and $f \in L^2(0,T;V^*)$. Then for each T > 0, a solution x of the equation (4.1) belongs to

$$L^{2}(0,T;V) \cap W^{1,2}(0,T;V^{*}) \subset C([0,T];H).$$

Moreover, for some constant C_2 we have

$$|x||_{L^2(0,T;V)\cap W^{1,2}(0,T;V^*)} \le C_2(|x_0| + ||f||_{L^2(0,T;V^*)}).$$

References

- Abu Arqub, O., & Al-Smadi M. (2014), Numerical algorithm for solving two-point, second-order periodic boundary value problems for mixed integrodifferential equations, *Applied Mathematics and Computation*, 243, 911–922.
- [2] Abu Arqub, O., & Rashaideh H.(2017), The RKHS method for numerical treatment for integrodifferential algebraic systems of temporal two-point BVPs, *Neural Computing and Applications*, doi:10.1007/s00521-017-2845-7.
- [3] Aubin, J. P.,(1963), Un théoréme de compacité, Comptes Rendus Hebdomadaires des Sances de l'Acadmie des Sciences. Vie Acadmique, 256, 5042– 5044.
- [4] Bashirov, A. E., & Mahmudov, N. I.(1999), On concept of controllability for linear deterministic and stochastic systems, SIAM Journal on Control and Optimization, 37, 1808–1821.

- Butzer, P. L., & Berens, H. (1967), Semi-Groups of Operators and Approximation, Springer-verlag, Belin-Heidelberg-NewYork.
- [6] Di Blasio, G., Kunisch, K., & Sinestrari, E. (1984), L²-regularity for parabolic partial integrodifferential equations with delay in the highest-order derivatives, *Journal of Mathematical Analysis and Applications*, 102, 38-57.
- [7] Fitzgibbon, W. E. (1980), Semilinear integrodifferential equations in Banach space, Nonlinear Analysis, 4, 745–760.
- [8] Fu, X. (2014), Approximate controllability of semilinear neutral evolution systems with delays, ÎMA Journal of Mathematical Control and Information, 31, 465-486.
- [9] Fučik, S., Nečas, J., Souček, J., & Souček, V.(1973), lecture Notes in Mathematics 346, Springer-verlag, Belin-Heidelberg-NewYork.
- [10] Heard, M. L. (1981), An abstract semilinear Hyperbolic volterra integrodifferential equation, Journal of Mathematical Analysis and Applications, 80, 175–202.
- [11] Jeong, J. M.(1993), Retarded functional differential equations with L¹-valued controller, *Funkcialaj Ekvacioj*, 36, 71-93.
- [12] Jeong, J. M., Kwun, Y. C., & Park, J. Y. (1999), Approximate controllability for semilinear retarded functional differential equations, *Journal Dynamics and Control Systems*, 5(3), 329-346.
- [13] Lloid, N. G. (1978) Degree Theory, Cambridge Univ. Press.
- [14] Mahmudov, N. I. (2006), Approximate controllability of semilinear deterministic and stochastic evolution equations in abstract spaces, SIAM Journal on Control and Optimization, 42, 175-181.
- [15] Manitius, A. (1980), Completeness and F-completeness of eigenfunctions associated with retarded functional differential equation, *Journal Differential Equations*, 35, 1-29.
- [16] Momani S., Abu Arqub O., Hayat T., & Al-Sulami H. (2014), A computational method for solving periodic boundary value problems for integro-differential equations of FredholmVolterra type, *Applied Mathematics and Computation*, 240 (2014) 229-239.

- [17] Naito, K. (1987), Controllability of semilinear control systems dominated by the linear part, SIAM Journal on Control and Optimization, 25, 715-722.
- [18] Nakagiri, S. (1988), Structural properties of functional differential equations in Banach spaces, Osaka Journal of Mathematics, 25, 353-398.
- [19] Radhakrishnan, B., & Balachandran, K. (2012), Controllability of neutral evolution integrodifferential systems with state dependent delay, *Journal of Optimization Theory and Applications*, 153, 85-97.
- [20] Sukavanam, N., & Nutan Kumar Tomar (2007), Approximate controllability of semilinear delay control system, Nonlinear Functional Analysis and Application, 12, 53-59.
- [21] Tanabe, H. (1978), Equations of Evolution, Pitman-London.
- [22] Tanabe, H. (1988), Structural operators for linear delay-differential equations in Hilbert space, *Proceedings of the Japan Academy, Series A (Mathematical Sciences)*, 64(A), 265-266.
- [23] Tanabe, H. (1992), Fundamental solutions of differential equation with time delay in Banach space, *Funkcialaj Ekvacioj*, 35, 149–177.
- [24] Triebel, H. (1978), Interpolation Theory, Function Spaces, Differential Operators, North-Holland.
- [25] Wang, L. (2009), Approximate controllability for integrodifferential equations with multiple delays, *Journal of Optimization Theory and Applications*, 143, 185–206.