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Interpolation spaces governed by analytic
semigroups of operators

October 4, 2018

1 Introduction

In this paper, we consider some characteristic of interpolation spaces of Banach
spaces, and establish some simple properties for interpolation spaces associated with
the domain of a generator of an analytic semigroup.

Let H be a complex Hilbert space and V be a real separable Hilbert space such
that V is a dense subspace of H. Identifying the antidual of V with V ∗ we may
consider V ⊂ H ⊂ V ∗. Consider the following abstract Cauchy problems with initial
data x0: {

dx(t)
dt

= Ax(t) + f(t), 0 < t ≤ T,

x(0) = x0
(1.1)

where f : [0, T )→ H for any T > 0. First, we will prove that A generates an analytic
semigroup in both H and V ∗. We refer to [?]-[?]as for problems of application of
various equations governed by semigroups. Blasio et al. [?] showed the existence
and uniqueness of the solution

x ∈ L2(0, T ;D(A)) ∩W 1,2(0, T ;H) ⊂ C([0, T ]; (D(A), H)1/2,2)

for x0 ∈ D(A) and f ∈ L2(0, T ;H). By using properties of interpolation spaces, we
will show that

H = {x ∈ V ∗ :

∫ T

0

||AetAx||2∗dt <∞} = (V, V ∗)1/2,2,

where || · ||∗ is the norm of the element of V ∗, and A associated with a sesquilinear
form a(·, ·) defined on V × V satisfying G̊arding’s inequality generates an analytic
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semigroup in both H and V ∗. Hence, the equation (1.1) may be considered as an
equation in H as well as in V ∗. Therefore, we can apply the method of Blasio et al.
[?] to the problem (1.1) to show the existence and uniqueness of the solution

x ∈ L2(0, T ;V ) ∩W 1,2(0, T ;V ∗) ⊂ C([0, T ];H)

with more general conditions on an initial value x0 ∈ H and a forcing term f ∈
L2(0, T ;V ∗). The last inclusion relation on continuity is well known and is an easy
consequence of the definition of real interpolation spaces by the trace method.

2 Basic results of interpolation spaces

Let X and Y be two Banach spaces contained in a locally convex linear Hausdorff
space X such that the embedding mapping of both X and Y in X is continuous.
Let X ∩ Y be a dense subspace in both X and Y . Let X and Y be Banach spaces
such that the embedding X ⊂ Y is continuous.

For 1 < p <∞, we denote by Lp∗(X) the Banach space of all functions t→ u(t),
t ∈ (0,∞) and u(t) ∈ X, for which the mapping t → u(t) is strongly measurable
with respect to the measure dt/t and the norm ||u||Lp∗(X) is finite, where

||u||Lp∗(X) = {
∫ ∞
0

||u(t)||pX
dt

t
}

1
p .

For 0 < θ < 1, set

||tθu||Lp∗(X) = {
∫ ∞
0

||tθu(t)||pX
dt

t
}

1
p ,

||tθu′ ||Lp∗(Y ) = {
∫ ∞
0

||tθu′(t)||pY
dt

t
}

1
p .

We now introduce a Banach space

V = {u : ||tθu||Lp∗(X) <∞, ||tθu′||Lp∗(Y ) <∞}

with norm
||u||V = ||tθu||Lp∗(X) + ||tθu′||Lp∗(Y ).

It is easily seen that u(0) ∈ X . In fact, choose an q ∈ C1
0([0,∞)) satisfying

q(t) ≥ 0, q(0) = 1, we know

u(0) = q(0)u(0) = −
∫ ∞
0

d

dt
(q(t)u(t))dt

= −
∫ ∞
0

q
′
(t)u(t)dt−

∫ ∞
0

q(t)u
′
(t)dt.
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By the simple calculation, from

||
∫ ∞
0

q
′
(t)u(t)dt||X = ||

∫ ∞
0

t1−θq
′
(t)tθu(t)

dt

t
||X

≤ {
∫ ∞
0

|t1−θq′(t)|p
′ dt

t
}

1

p
′ {
∫ ∞
0

||tθu(t)||pX
dt

t
}

1
p

= {
∫ ∞
0

t(1−θ)p
′−1|q′(t)|p

′

dt}
1

p
′ ||tθu||Lp∗(X) <∞

where p
′
= p/(p− 1), it follows

∫∞
0
q
′
(t)u(t)dt ∈ X ⊂ X . By the similar way since

||
∫ ∞
0

q(t)u
′
(t)dt||Y = ||

∫ ∞
0

t1−θq(t)tθu
′
(t)
dt

t
||Y

≤ {
∫ ∞
0

|t1−θq(t)|p
′ dt

t
}

1

p
′ {
∫ ∞
0

||tθu′(t)||pY
dt

t
}

1
p

= {
∫ ∞
0

t(1−θ)p
′−1|q(t)|p

′

dt}
1

p
′ ||tθu′ ||Lp∗(Y ) <∞

it follows
∫∞
0
q(t)u

′
(t)dt ∈ Y . Thus, u(0) ∈ X ∪ Y ⊂ X .

Definition 2.1. We define (X, Y )θ,p, 0 < θ < 1, 1 ≤ p ≤ ∞, to be the space of all
elements u(0) where u ∈ V , that is,

(X, Y )θ,p = {u(0) : u ∈ V }.

Lemma 2.1. ( Young’s inequality) Let a > 0, b > 0 and 1
p
+ 1
q

= 1 where 1 < p <∞.

Then ab ≤ ap

p
+ bq

q

Proposition 2.1. For 0 < θ < 1 and 1 ≤ p ≤ ∞, the space (X, Y )θ,p is a Banach
space with the norm

||a||θ,p = inf{||u|| : u ∈ V, u(0) = a}.

Furthermore, there is a constant Cθ > 0 such that

||a||θ,p = Cθ inf{||tθu||1−θ
Lp∗(X)

||tθu′||θLp∗(Y ) : u(0) = a, u ∈ V }.

Proof. We only prove the last equality. For u ∈ V satisfying u(0) = a, we know
||a||θ,p ≤ ||u||V . Putting

uλ(t) = u(λt), λ > 0,
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it holds that
uλ ∈ V, uλ(0) = u(0) = a

and
||a||θ,p ≤ ||uλ||V = ||tθuλ||Lp∗(X) + ||tθu′λ||Lp∗(Y ). (2.1)

Since

||tθuλ||Lp∗(X) = {
∫ ∞
0

||tθuλ(t)||pX
dt

t
}

1
p = {

∫ ∞
0

||tθu(λt)||pX
dt

t
}

1
p

= {
∫ ∞
0

||( t
λ

)θu(t)||pX
dt

t
}

1
p = λ−θ||tθu||Lp∗(X)

and

||tθu′λ||Lp∗(Y ) = {
∫ ∞
0

||tθu′λ(t)||
p
Y

dt

t
}

1
p = {

∫ ∞
0

||tθλu′(λt)||pY
dt

t
}

1
p

= λ{
∫ ∞
0

||( t
λ

)θu
′
(t)||pY

dt

t
}

1
p = λ1−θ||tθu′ ||Lp∗(Y ),

from (2.1) it follows that

||a||θ,p ≤ λ−θ||tθu||Lp∗(X) + λ1−θ||tθu′||Lp∗(Y ) (2.2)

= λ−θA+ λ1−θB.

Choosing
λ = θA/(1− θ)B,

(2.2) implies that

||a||θ,p ≤ (
θA

(1− θ)B
)−θA+ (

θA

(1− θ)B
)1−θB (2.3)

= (
θ

1− θ
)−θA1−θBθ + (

θ

1− θ
)1−θA1−θBθ

= (1 +
θ

1− θ
)(

θ

1− θ
)−θA1−θBθ

=
1

1− θ
(

θ

1− θ
)−θA1−θBθ

=
A1−θBθ

(1− θ)1−θθθ
= (

A

1− θ
)1−θ(

B

θ
)θ.

By regarding as

a = (
A

1− θ
)1−θ, b = (

B

θ
)θ, p =

1

1− θ
, and q =

1

θ
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in Young’s Lemma 2.1, from (2.3) we have

||a||θ,p ≤
A1−θBθ

(1− θ)1−θθθ
≤ A+B,

that is,

||a||θ,p ≤
1

(1− θ)1−θθθ
||tθu||1−θ

Lp∗(X)
||tθu′||θLp∗(Y )

≤ ||tθu||Lp∗(X) + ||tθu′ ||Lp∗(Y ).

For every u ∈ V satisfying u(0) = a, it holds

||a||θ,p ≤ Cθ||tθu||1−θLp∗(X)
||tθu′ ||θLp∗(Y ) ≤ ||u||V

where Cθ = 1/(1− θ)1−θθθ. Therefore

||a||θ,p = Cθ inf{||tθu||1−θ
Lp∗(X)

||tθu′ ||θLp∗(Y ) : u(0) = a, u ∈ V }.

Proposition 2.2. For 0 < θ < 1 and 1 ≤ p ≤ ∞, we have (X,X)θ,p = X.

Proof. We only proof the relation (X,X)θ,p ⊃ X. Let x ∈ X and q ∈ C1
0([0,∞))

satisfying q(0) = 1. Putting u(t) = q(t)x, we have u(0) = x. By simple calculation,
since ∫ ∞

0

||tθu(t)||pX
dt

t
=

∫ ∞
0

tθp−1|q(t)|p||x||pXdt <∞,∫ ∞
0

||tθu′(t)||pX
dt

t
=

∫ ∞
0

tθp−1|q′(t)|p||x||pXdt <∞

we have x ∈ (X,X)θ,p.

Proposition 2.3. Let X ⊂ Y satisfying that there exists a constant c > 0 such that
||u||Y ≤ c||u||X . If 0 < θ < θ

′
< 1 then we have

(X, Y )θ,p ⊂ (X, Y )θ′ ,p.

Proof. Let a ∈ (X, Y )θ,p. Then there exists u ∈ V such that u(0) = a and

||tθu||Lp∗(X) ≤ ∞, ||tθu′ ||Lp∗(Y ) ≤ ∞.
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Let q ∈ C1
0([0,∞)) satisfying q(0) = 1, 0 ≤ q(t) ≤ 1 for t ∈ (0, 1) and q(t) = 0 for

1 ≤ t. Putting v(t) = q(t)u(t), we have

||tθ
′

v||Lp∗(X) = {
∫ ∞
0

(tθ
′

||v(t)||X)p
dt

t
}

1
p

= {
∫ 1

0

(tθ
′

q(t)||u(t)||X)p
dt

t
}

1
p

≤ {
∫ 1

0

(tθ
′

||u(t)||X)p
dt

t
}

1
p <∞,

and

||tθ
′

v
′ ||Lp∗(Y ) = {

∫ ∞
0

(tθ
′

||q(t)u′(t) + q
′
(t)u(t)||Y )p

dt

t
}

1
p

≤ {
∫ ∞
0

(tθ
′

q(t)||u′(t)||Y )p
dt

t
}

1
p

+ {
∫ ∞
0

(tθ
′

q
′
(t)||u(t)||Y )p

dt

t
}

1
p

≤ {
∫ ∞
0

(tθ
′

||u′(t)||Y )p
dt

t
}

1
p

+ max |q′(t)|{
∫ ∞
0

(tθ
′

||u(t)||Y )p
dt

t
}

1
p <∞,

hence we obtain that a = v(0) ∈ (X, Y )θ′ ,p.

From now on we will deal with the complex interpolation methods introduced
by [5], which the complex methods will yield new interpolation spaces. Let

F = {u : u is continuous function in 0 ≤ Rez ≤ 1 with u(z) ∈ X ,
and analytic in 0 < Rez < 1. For −∞ < y <∞, u(iy) ∈ X,
u(1 + iy) ∈ Y, u(iy) and u(1 + iy) are strongly continous and

bounded on X and Y, respectively}.

As is seen in Triebel [?], we know that F is a Banach space equipped with the norm

||u||F = max{ sup
−∞<y<∞

||u(iy)||X , sup
−∞<y<∞

||u(1 + iy)||Y }.

Definition 2.2. Let {X, Y } be an interpolation couple. We now introduce a Banach
space. For 0 < θ < 1, put

[X, Y ]θ = {u(θ) : u ∈ F}
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with norm
||a||[X,Y ]θ = inf

u(θ)=a
||u||F .

It is well known result that if H1 and H2 are Hilbert spaces satisfying that H1 is
a dense space of H2 and the embedding is continuous then

[H1, H2]θ = (H1, H2)θ,2 0 < θ < 1.

3 Interpolation spaces by analytic semigroup gen-

erator

In this section we consider an interpolation method between the initial Banach space
and the domain of the infinitesimal generator A of the analytic semigroup T (t). We
will verify the fact that

(D(A), X)θ,p = {x ∈ X :

∫ ∞
0

(tθ||AT (t)x||)pdt
t
<∞},

for 0 < θ < 1, 1 ≤ p ≤ ∞,
which is mainly on the role of interpolation spaces in the study of analytic semi-

group of operators.
Let X be a Banach space with norm || · || and T (t) be an analytic semigroup

with infinitesimal generator A. We may assume that

||T (t)|| ≤M, ||AT (t)|| ≤ K

t

for some positive constants M , K and t ≥ 0.

Lemma 3.1. Let 0 < θ < 1, 1 < p <∞ and φ(t) ≥ 0 almost everywhere. Then

{
∫ ∞
0

(tθ−1
∫ t

0

φ(s)ds)p
dt

t
}

1
p ≤ 1

1− θ
{
∫ ∞
0

(tθφ(t))p
dt

t
}

1
p .

Proof. Let 0 < ε < N <∞. Then∫ N

ε

(tθ−1
∫ t

0

φ(s)ds)p
dt

t
=

∫ N

ε

t(θ−1)p−1(

∫ t

0

φ(s)ds)pdt

= [
t(θ−1)p

(θ − 1)p
(

∫ t

0

φ(s)ds)p]Nε −
∫ N

ε

t(θ−1)p

(θ − 1)p
pφ(t)(

∫ t

0

φ(s)ds)p−1dt

≤ ε(θ−1)p

(1− θ)p
(

∫ ε

0

φ(s)ds)p +
1

1− θ

∫ N

ε

t(θ−1)pφ(t)(

∫ t

0

φ(s)ds)p−1dt.
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Since ∫ ε

0

φ(s)ds =

∫ ε

0

s1−θsθφ(s)
ds

s

≤ {
∫ ε

0

s(1−θ)p
′ ds

s
}

1

p
′ {
∫ ε

0

(sθφ(s))p
ds

s
}

1
p

= { ε
(1−θ)p′

(1− θ)p′
}

1
p′ {

∫ ε

0

(sθφ(s))p
ds

s
}

1
p ,

we see that

εθ−1(

∫ ε

0

φ(s)ds) ≤ (
1

(1− θ)p′
)

1

p
′ {
∫ ε

0

(sθφ(s))p
ds

s
}

1
p

tends to zero as ε tends to zero. If ε→ 0 and N →∞, then we have∫ ∞
0

(tθ−1
∫ t

0

φ(s)ds)p
dt

t
≤ 1

1− θ
{
∫ ∞
0

t(θ−1)pφ(t)(

∫ t

0

φ(s)ds)p−1dt}

=
1

1− θ

∫ ∞
0

t(θ−1)(p−1)+θφ(t)(

∫ t

0

φ(s)ds)p−1
dt

t

=
1

1− θ

∫ ∞
0

tθφ(t)(tθ−1
∫ t

0

φ(s)ds)p−1
dt

t

≤ 1

1− θ
{
∫ ∞
0

(tθφ(t))p
dt

t
}

1
p{
∫ ∞
0

(tθ−1
∫ t

0

φ(s)ds)p
dt

t
}1−

1
p .

Hence the proof is complete.

The main results in this paper is the following.

Theorem 3.1. Let 0 < θ < 1, 0 ≤ t. Then

(1− θ){
∫ ∞
0

(tθ−1||(T (t)− I)x||)pdt
t
}

1
p

≤ {
∫ ∞
0

(tθ||AT (t)x||)pdt
t
}

1
p

≤ K

1− 2−θ
{
∫ ∞
0

(tθ−1||(T (t)− I)x||)pdt
t
}

1
p .

Therefore, we have

(D(A), X)θ,p = {x ∈ X :

∫ ∞
0

(tθ||AT (t)x||)pdt
t
<∞}.
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Proof. From

AT (t)x = −
n∑
k=0

(AT (2k+1t)− AT (2kt))x+ AT (2n+1t)x

= −
n∑
k=0

(AT (2kt)(T (2kt)− I)x+ AT (2n+1t)x

it follows that

||AT (t)x|| ≤
n∑
k=0

K

2kt
||(T (2kt)− I)x||+ K

2n+1t
||x||,

tθ||AT (t)x|| ≤ K
n∑
k=0

2−kθ(2kt)θ−1||(T (2kt)− I)x||

+
K

2n+1
||x||tθ−1,

and hence

{
∫ ∞
0

(tθ||AT (t)x||)pdt
t
}

1
p

≤ K
n∑
k=0

2−kθ{
∫ ∞
ε

((2kt)θ−1||(T (2kt)− I)x||)pdt
t
}

1
p

+
K

2n+1
||x||{

∫ ∞
ε

t(θ−1)p
dt

t
}

1
p

= K
n∑
k=0

2−kθ{
∫ ∞
2kε

(tθ−1||(T (t)− I)x||)pdt
t
}

1
p

+
K

2n+1
||x||( ε(θ−1)p

(1− θ)p
)
1
p , (2kt→ t),

for every ε > 0. Thus,

{
∫ ∞
ε

(tθ||AT (t)x||)pdt
t
}

1
p

≤ K

∞∑
k=0

2−kθ{
∫ ∞
2kε

(tθ−1||(T (t)− I)x||)pdt
t
}

1
p
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as n→∞. Therefore, passing ε→ 0, we obtain

{
∫ ∞
0

(tθ||AT (t)x||)pdt
t
}

1
p

≤ K
∞∑
k=0

2−kθ{
∫ ∞
0

(tθ−1||(T (t)− I)x||)pdt
t
}

1
p

=
K

1− 2−θ
{
∫ ∞
0

(tθ−1||(T (t)− I)x||)pdt
t
}

1
p .

On the other hand, since

||(T (t)− I)x|| = ||
∫ t

0

AT (s)xds|| ≤
∫ t

0

||AT (s)x||ds,

we have

{
∫ ∞
0

(tθ−1||(T (t)− I)x||)pdt
t
}

1
p

≤ {
∫ ∞
0

(tθ−1
∫ t

0

||AT (s)x||ds)pdt
t
}

1
p ,

from Lemma 4.1, it follows

{
∫ ∞
0

(tθ−1||(T (t)− I)x||)pdt
t
}

1
p

≤ 1

1− θ
{
∫ ∞
0

(tθ||AT (t)x||)pdt
t
}

1
p ,

hence, the proof is complete.

Corollary 3.1. Let T (t) be an analytic semigroup with generator A in X. Then

(D(A), X)θ, 1
θ

= {x ∈ X :

∫ ∞
0

||AT (t)x||
1
θ dt <∞}.

In particular, if θ = 1
2

then

L2(0,∞;D(A)) ∩W 1,2(0,∞;X) ⊂ C([0,∞); (D(A), X) 1
2
,2)

where

(D(A), X) 1
2
,2 = {x ∈ X :

∫ ∞
0

||AT (t)x||2dt <∞}.
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4 Applications for Initial value problem

We consider the regular problem for the following functional differential equation of
parabolic type {

dx(t)
dt

= Ax(t) + f(t), 0 < t ≤ T,

x(0) = x0
(4.1)

in a Hilbert space H. Let V be another Hilbert space such that V ⊂ H. Identi-
fying the antidual of V with V ∗ we may consider V ⊂ H ⊂ V ∗. Therefore, for the
sake of simplicity, we may regard that

||u||∗ ≤ |u| ≤ ||u||, v ∈ V

where the notations |·|, ||·|| and ||·||∗ denote the norms of H, V and V ∗, respectively
as usual. Let a(u, v) be a bounded sesquilinear form defined in V × V satisfying
G̊arding’s inequality

Re a(u, u) ≥ c0||u||2 − c1|u|2, c0 > 0, c1 ≥ 0. (4.2)

Let A be the operator associated with a sesquilinear form

(Au, v) = −a(u, v), u, v ∈ V.

Then the operator A is a bounded linear from V to V ∗. We may assume that
(D(A), H)1/2,2 = V satisfying

||u|| ≤ C1||u||1/2D(A)|u|
1/2 (4.3)

for some a constant C1 > 0 where (D(A), H)θ,p denotes the real interpolation space
between D(A) and H as is seen in Section 2.

Lemma 4.1. With the notations (4.2), (4.3), we have

(V, V ∗)1/2,2 = H,

(D(A), H)1/2,2 = V,

where (V, V ∗)1/2,2 denotes the real interpolation space between V and V ∗(Section
1.3.3 of [?, ?]).

We may assume that (4.2) holds for c1 = 0 as noting that A0 + c1 is an isomor-
phism from V to V ∗ if c1 6= 0.

By virtue of Theorem 3.3 of [?] we have the following result on the corresponding
linear equation of (4.1).
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Proposition 4.1. Suppose that the assumptions mentioned above are satisfied. For
x0 ∈ (D(A), H) 1

2
,2 and f ∈ L2(0, T ;H), T > 0, there exists a unique solution x of

(4.1) belonging to

L2(0, T ;D(A)) ∩W 1,2(0, T ;H) ⊂ C([0, T ]; (D(A), H) 1
2
,2)

and satisfying

||x||L2(0,T ;D(A))∩W 1,2(0,T ;H) ≤ C2(||x0||(D(A),H) 1
2 ,2

+ ||f ||L2(0,T ;H)),

where C2 is a constant depending on T and

|| · ||L2(0,T ;D(A))∩W 1,2(0,T ;H) = max {|| · ||L2(0,T ;D(A)), || · ||W 1,2(0,T ;H)}.

Lemma 4.2. Let T > 0. Then

H = {x ∈ V ∗ :

∫ T

0

||AetAx||2∗dt <∞},

where || · ||∗ is the norm of the element of V ∗.

Proof. Put u(t) = etAx for x ∈ H. From

1

2

d

dt
|u(t)|2 = Re (u̇(t), u(t)) = Re (Au(t), u(t))

= −Re a(u(t), u(t)) ≤ −c0||u(t)||2,

it follows
1

2

d

dt
|u(t)|2 + c0||u(t)||2 ≤ 0.

By integrating over t, it yields

1

2
|u(t)|2 + c0

∫ t

0

||u(s)||2ds ≤ 1

2
|x|2.

Hence, we obtain that∫ T

0

||AetAx||2∗dt ≤
∫ T

0

||A||B(V,V ∗)||u(s)||2ds <∞.

Conversely, suppose that x ∈ V ∗ and
∫ T
0
||AetAx||2∗dt < ∞. Put u(t) = etAx.

Then since A is an isomorphism operator from V to V ∗ there exists a constant c > 0
such that ∫ T

0

||u(t)||2dt ≤ c

∫ T

0

||Au(t)||2∗dt = c

∫ T

0

||AetAx||2∗dt.
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From the assumptions and u̇(t) = AetAx it follows

u ∈ L2(0, T ;V ) ∩W 1,2(0, T ;V ∗) ⊂ C([0, T ];H).

Therefore, x = u(0) ∈ H.

The realization of A in H which is the restriction of A to

D(A) = {u ∈ V : Au ∈ H}

is also denoted by A. It is known that A generates an analytic semigroup in both H
and V ∗(see [?, ?, ?]). Replaying the interpolation space F in Blasio et al. [?] with
the space H, we can derive the results of [?] regarding term by term to deduce the
following result.

Theorem 4.1. Let x0 ∈ H and f ∈ L2(0, T ;V ∗). Then for each T > 0, a solution
x of the equation (4.1) belongs to

L2(0, T ;V ) ∩W 1,2(0, T ;V ∗) ⊂ C([0, T ];H).

Moreover, for some constant C2 we have

||x||L2(0,T ;V )∩W 1,2(0,T ;V ∗) ≤C2(|x0|+ ||f ||L2(0,T ;V ∗)).
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