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Interpolation spaces governed by analytic
semigroups of operators

October 4, 2018

1 Introduction

In this paper, we consider some characteristic of interpolation spaces of Banach
spaces, and establish some simple properties for interpolation spaces associated with
the domain of a generator of an analytic semigroup.

Let H be a complex Hilbert space and V' be a real separable Hilbert space such
that V is a dense subspace of H. Identifying the antidual of V' with V* we may
consider V-.C H C V*. Consider the following abstract Cauchy problems with initial
data xq:

dt

{ O = Ax(t) + f(t), 0<t<T, (1.1)
z(0) = xg |

where f : [0,7) — H for any T > 0. First, we will prove that A generates an analytic
semigroup in both H and V*. We refer to [?]-[?]as for problems of application of
various equations governed by semigroups. Blasio et al. [?] showed the existence
and uniqueness of the solution

x € L*(0,T; D(A)) N W0, T; H) C C([0,T); (D(A), H)1/2:2)

for o € D(A) and f € L*(0,T; H). By using properties of interpolation spaces, we
will show that

T
H={zev": [ |lacalfide < o0} = (V.V)yjza
0

where || - ||, is the norm of the element of V*, and A associated with a sesquilinear
form a(-,-) defined on V' x V satisfying Garding’s inequality generates an analytic
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semigroup in both H and V*. Hence, the equation (1.1) may be considered as an
equation in H as well as in V*. Therefore, we can apply the method of Blasio et al.
[?] to the problem (1.1) to show the existence and uniqueness of the solution

r e L*0,T;V)nWh(0,T;V*) c C([0,T]; H)

with more general conditions on an initial value zo € H and a forcing term f €
L?(0,T;V*). The last inclusion relation on continuity is well known and is an easy
consequence of the definition of real interpolation spaces by the trace method.

2 Basic results of interpolation spaces

Let X and Y be two Banach spaces contained in a locally convex linear Hausdorff
space X such that the embedding mapping of both X and Y in X is continuous.
Let X NY be a dense subspace in both X and Y. Let X and Y be Banach spaces
such that the embedding X C Y is continuous.

For 1 < p < oo, we denote by L?(X) the Banach space of all functions ¢t — u(t),
t € (0,00) and u(t) € X, for which the mapping ¢ — u(t) is strongly measurable
with respect to the measure dt/t and the norm ||u|zx) is finite, where

F° dt, 1
o =[Ol T

1
For 0 < 0 < 1, set
3 dt .1
ullezn = { [ PuoIES .
0
2 ’ dt Ly
= @I 5
0
We now introduce a Banach space

V= {u: ||ty

1£%]

120x) <00, [t || ppiyy < oo}

with norm

ully = HtQUHLfZ(X) + ||t LP(Y)-

It is easily seen that w(0) € X. In fact, choose an g € C}([0,00)) satisfying
q(t) >0, ¢q(0) =1, we know
>~ d
u0) = g0)u(0) == [ Zlaltyute)a

_ /0 " (Dult)dt — /0 " ().



By the simple calculation, from

I / (t)dt]|x = | /Oootl—eqmt@ 0%
<{ / P-4 <t>|p’%}5'{ | iy

o) f ’ 1
_ {/ O g ()7 dty o [[¢ul | x) < o0
0

where p' = p/(p — 1), it follows fooo q (Hu(t)dt € X C X. By the similar way since

||/ dt||y—H/ 0t )@Hy
<{f etaor D Iedor gy

S / / 14 "
= ([0 g0 a0} e Yargy < o0
0

it follows [ q(t)u'(t)dt € Y. Thus, u(0) € XUY C X.

Definition 2.1. We define (X,Y)g,, 0 <8 <1, 1 <p < o0, to be the space of all
elements u(0) where u € V, that is,

(X, Y, = {l*ucV}.

Lemma 2.1. ( Young’s inequality) Let a > 0, b > 0 and i%—% =1 wherel < p < o0.
aP ba
Then ab < o + "
Proposition 2.1. For 0 <0 <1 and 1 < p < oo, the space (X,Y )y, is a Banach
space with the norm
llallo, = mf{|Jul[ :w €V, u(0) = a}.

Furthermore, there is a constant Cy > 0 such that

lallo, = Coinf{|It"ull /x|

vy tu(0)=a, ueV}

Proof. We only prove the last equality. For u € V satisfying u(0) = a, we know
llallop < [lullv. Putting
ux(t) = u(At), A >0,



it holds that
uy €V, ux(0) =u(0) =a

and
lallop < Ilually = [l L2z, + 1
Since
) = {/ ()| 2 p—4/ a0l Sy
— (IO T = Xl
and

RO w-&/ 2 ()l S
—M/‘ I FH = Xz,

from (2.1) it follows that

llallo,, < A0
=294+ )79B,

Choosing
A=0A/(1-0)B,

(2.2) implies that

A
< =y
’|a|’97p—<<1_0)B>
_ 0 —0 41-0 Ro
— () A
0 0
A
1 0 —0 41-60 o
=— (——)"A"pB
1—9(1—9>
—0 o
A =By,
1—0)9 ‘1—-0" ‘0

0A
1-0)B

4 1-0 A1-6 o
— ) "A"B
1— 9)

—GAl—GBG

70A_|_< )1793

By regarding as

|~

(2.1)

(2.2)

(2.3)



in Young’s Lemma 2.1, from (2.3) we have

Al-9 R0
llallop < =0y <A+ B,
that is,
lallo < 7—gy=aga It ullzzg 1% Ilzzcry

<1l oy + 11 || o vy-
For every u € V satisfying u(0) = a, it holds

lallo, < Col[t"ul

_ ’
Zoollte ]

12y < llullv

where Cy = 1/(1 — 6)'99°. Therefore

lallo, = Coinf{[1t%ul| 50y 17|

i{:(Y) cu(0)=a, ueV}.

Proposition 2.2. For0 <0 <1 and 1 <p < oo, we have (X, X)y, = X.

Proof. We only proof the relation (X, X)g, D X. Let z € X and q € C}(]0,0))
satisfying ¢(0) = 1. Putting u(t) = ¢(t)x, we have u(0) = x. By simple calculation,
since

o dt oo 5
|1l F= [ @l < .
0

0
& ’ dt 0 7 ’
| eI = [ @l < o
we have z € (X, X)g,. O

Proposition 2.3. Let X C Y satisfying that there exists a constant ¢ > 0 such that
ully < clullx. If0 <0 <6 <1 then we have

(X, Y)e,p C (X, Y)G',p'
Proof. Let a € (X,Y)p,. Then there exists u € V such that u(0) = a and

|[t%ul r(x) < 00, Htau/HLf(Y) < 0.




Let ¢ € C3([0,00)) satisfying ¢(0) =1, 0<gq(t) <1for ¢ € (0,1) and ¢(¢t) = 0 for
1 <'t. Putting v(t) = q(t)u(t), we have

[t

and
B(Y) = {/Ooo(telllq(t)ul(t) + q/(t)u(t)||y)p%}zl>
<(f m(t@'qu)rru’(t)uy)p@}%
@Ol
<{ @ olrd
smaxly O [0 )y 71 < o
hence we obtain that a = v(0) € (X,Y) . -

From now on we will deal with the complex interpolation methods introduced
by [5], which the complex methods will yield new interpolation spaces. Let
F ={u:uis continuous function in 0 < Rez < 1 with u(z) € X,
and analytic in 0 < Rez < 1. For — oo < y < o0, u(iy) € X,
u(l+idy) €Y, u(iy) and u(l + dy) are strongly continous and
bounded on X and Y, respectively}.

As is seen in Triebel [?], we know that F'is a Banach space equipped with the norm

lullp =max{" sup fu(iy)|lx,  sup |ju(l+dy)ly}.

—oo<y<co —oo<y<oo

Definition 2.2. Let {X,Y'} be an interpolation couple. We now introduce a Banach
space. For 0 < 0 <1, put

[(X,Y]p={u(d) :u e F}



with norm

= inf
llallxyy, = inf lullr-

It is well known result that if H; and H, are Hilbert spaces satisfying that H; is
a dense space of Hy and the embedding is continuous then

[Hl,Hz]g - (Hl,HQ)GQ 0 < 9 < 1

3 Interpolation spaces by analytic semigroup gen-
erator

In this section we consider an interpolation method between the initial Banach space
and the domain of the infinitesimal generator A of the analytic semigroup T'(t). We
will verify the fact that

(D) Xhop ={a € X+ [ (AT @lP5 < )

for0<f<1,1<p<o0,

which is mainly on the role of interpolation spaces in the study of analytic semi-
group of operators.

Let X be a Banach space with norm || - || and T'(¢) be an analytic semigroup
with infinitesimal generator A. We may assume that

ITOI < M, JIAT(@#)]| < ?

for some positive constants M, K and t > 0.

Lemma 3.1. Let 0 <0 < 1,1 <p< oo and ¢(t) > 0 almost everywhere. Then

e [oarr < Tt @snrt

Proof. Let 0 < € < N < 0o. Then

/ s [ o= | "oy [ otsyasya
— [ﬂ(/td)(s)dS)P]ﬁv - /N %pd)(t)(/ot o(s)ds)Pdt

P N t
6(0 i / O(s)ds)" + < 9 t<"—1>P¢(t)( / (s)ds)P~dt.
- 0




Since
[ otsrs= [ 5050
<(f seom }{/w PP
:{%}5{ [tor ey,
we see that

/¢dss - {/% et

tends to zero as € tends to zero. If € — 0 and N — o0, then we have

NG / oo < gt [ 0ot [ oasyan
1—9 o

t(91p1+9¢ /¢ dsp 1dt
1

t
=174/ t% t“/qs dspldt

_—{/ (6 (1) }{/ t“/¢ )dsy 313,

Hence the proof is complete.
The main results in this paper is the following.

Theorem 3.1. Let 0 < 0 < 1,0 < t. Then
a=o) @ - Dl
<{ [ @ar@ar ey
< gt [ @@ - DallyF.

Therefore, we have

(D), Xy = {a € X+ [ (AT @l < .



Proof. From

AT () = — En:(AT@’f“t) — AT(2%))z + AT (2" )2

k=0
n

= — Y (AT(2*)(T(2") — Dx + AT (2" 't)z

it follows that

n

K
ATl < 37 S IT @) Dall + el
k=0

AT (t)e|| < Ky 27 (25) (T (2"t) — D]

+ el

2n+1

and hence
([ @Aty
< K,; 24 [ (@R - Delly S
+ el e Sy
—KZW{/ T ) — Dal Py

K E(6 1p
el (=),
2 (1—=0)p

B =

+

(28t — 1),

for every € > 0. Thus,

([ @aralr

<KZ2 ke{/ (@) - Dal Ly
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as n — 0o. Therefore, passing ¢ — 0, we obtain
o dt 1
([ @narwalyrdy
S kog [ 01 dt, 1
<KDY 2 (@ (T() - Dal )P
k=0 0 t

— o @ - nally

On the other hand, since

0= Nell = 1 [ AT)adsl| < [ 1aT)eiies
we have
(@@ = nalr gy
< ([T [y Ly,
from Lemma 4.1, ffollows
(@@ = nally gy
<st @laT@alr R

hence, the proof is complete. O]

Corollary 3.1. Let T'(t) be an analytic semigroup with generator A in X. Then

(D(A), X)yr ={z€X: /OOO |AT (t)z||7dt < oo}

1
0
In particular, if 0 = % then

L*(0, 00; D(A)) N WH#(0, 003 X) C C([0, 00); (D(A), X)1 5)

(ST

where

29

(D(A), X)1y = {z€ X : /Ooo AT (¢)|Pdt < o0}



11

4  Applications for Initial value problem

We consider the regular problem for the following functional differential equation of
parabolic type

{ da(ci(tt) =Az(t)+ f(t), 0<t<T, (4.1)

in a Hilbert space H. Let V be another Hilbert space such that V' C H. Identi-
fying the antidual of V' with V* we may consider V' C H C V*. Therefore, for the
sake of simplicity, we may regard that

lull« < ful <, veV

where the notations |-, ||-|| and [|-||+ denote the norms of H, V and V*, respectively
as usual. Let a(u,v) be a bounded sesquilinear form defined in V' x V satisfying
Garding’s inequality

Re a(u,u) > col|ul|®* — c|ul?>, co >0, ¢ >0. (4.2)
Let A be the operator associated with a sesquilinear form
(Au,v) = —a(u,v), u, veV.

Then the operator A is a bounded linear from V to V*. We may assume that
(D(A), H)1/22 =V satisfying

1/2
[ul| < Cillull 5yl (4.3)

for some a constant C; > 0 where (D(A), H)p, denotes the real interpolation space
between D(A) and H as is seen in Section 2.

Lemma 4.1. With the notations (4.2), (4.3), we have

(‘/7 V*)1/2,2 = H7
(D(A)a H)l/2,2 = V7

where (V,V*)1/90 denotes the real interpolation space between V' and V*(Section
1.3.3 of [7, ?]).

We may assume that (4.2) holds for ¢; = 0 as noting that Ay + ¢; is an isomor-
phism from V' to V* if ¢; # 0.

By virtue of Theorem 3.3 of [?] we have the following result on the corresponding
linear equation of (4.1).
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Proposition 4.1. Suppose that the assumptions mentioned above are satisfied. For
X € (D(A),H)%’2 and f € L*(0,T;H), T > 0, there exists a unique solution x of
(4.1) belonging to

L*(0,T; D(A)) nWH(0,T; H) € C([0,T); (D(A), H) 1 »)

N

and satisfying
lellz20,rpapawr 2mm) < Collzoll oy, , + 1 fllz20mm),
where Cy is a constant depending on T and
|| : ||LQ(O,T;D(A))OWL?(O,T;H) = max {|| : ||L2(0,T;D(A))a || : ||W1v2(0,T;H)}~
Lemma 4.2. Let T' > 0. Then

]
HAYn e % / || Ae*z||2dt < ool
0

where || - ||« is the norm of the element of V*.

Proof. Put u(t) = ez for x € H. From

%%m(m? = Re (a(?), u(t)) = Re (Au(t), u(t))
= —Re a(u(t),u(t)) < —co||lu®)|%,
it follows 1d
57 ) + collu(@)]* <0.

By integrating over ¢, it yields

1 t 1
Sl +co [ lu(s) s < G
0

Hence, we obtain that

T T
/ || Aez|[2dt < / Al Bvv)
0 0

Conversely, suppose that z € V* and fOT ||[Aetz||?2dt < co. Put u(t) = .
Then since A is an isomorphism operator from V' to V* there exists a constant ¢ > 0

such that
T T T
| lutolpde < [ jauo)ae=c [ jlaca
0 0 0

u(s)||?ds < oc.
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From the assumptions and u(t) = Ae4x it follows
w € L20,T; V)N W20, T;V*) c C([0,T); H).
Therefore, + = u(0) € H. O

The realization of A in H which is the restriction of A to
DA)={ueV:Auec H}

is also denoted by A. It is known that A generates an analytic semigroup in both H
and V*(see [?, 7, ?]). Replaying the interpolation space F' in Blasio et al. [?] with
the space H, we can derive the results of [?] regarding term by term to deduce the
following result.

Theorem 4.1. Let zg € H and f € L*(0,T;V*). Then for each T > 0, a solution
x of the equation (4.1) belongs to

L*(0,T; V) n W0, T;V*) C C([0,T); H).
Moreover, for some constant Cy we have

||37‘|L2(O,T;V)DWL2(O,T;V*) <Cao(|zo| + Hf”L?(o,T;V*))-
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