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가구조사의 통합가중치 산출을 위한 반복적 칼리브레이션 방법

김 수 진

부 경 대 학 교 대 학 원 통 계 학 과

요약

가구조사에서 가구 및 개인가중치는 각 수준별로 추정할 수 있도록 만들어진다. 이 때, 이미

알려져 있는 모집단에 대한 보조정보가 주어진다면 모집단의 총계와 추정치가 일치하도록

가중치를 보정하는 방법이 적용된다. 개인들이 모여 가구를 구성하는 구조를 고려하면, 두 수

준의 보조정보를 함께 활용하는 경우 가구와 개인의 구조적 관계를 유지하면서 더욱 대표성

있는 가중치를 산출할 수 있다. 이를 통합가중치라고 칭하며, 가구와 개인가중치간의 개념구

조는 보통 몇몇 통합의 형식으로 정해진다. 본 논문에서는 각 수준별 보조정보를 이용하여

가중치보정을 조정된 가중치가 수렴할 때까지 반복하는 통합가중치 산출 방법을 제안한다.

먼저,개인설계가중치를개인수준보조변수를이용해보정된개인가중치를산출한후각가구

내 보정된 개인가중치의 평균값을 가구수준 보조변수와 함께 보정된 가구가중치를 산출한다.

다음으로, 보정된 개인가중치에 조정계수를 곱하여 가구 가중치의 변화를 반영한다. 그리고

보정 전 가중치와 보정 후 가중치가 수렴할 때 까지 위의 보정과정을 반복한다. 제안하는 방

법과 문헌에서 제시된 일부 방법들의 비교결과를 제시하기위해 ACS(American Community

Survey)를 통한 사례연구 및 모의실험을 수행하였다.

주요용어 : 통합가중치, 반복절차, 캘리브레이션, 일반화 회귀 추정량, 가구조사.
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1. Introduction

In household surveys, both household and individual weights are commonly

developed to allow estimation at each level. This double objective urges the

need for an integrated weighting for calibration when the auxiliary informa-

tion is available at different levels together. Since households and individuals

are not independent and have a hierarchical structure, we expect to pro-

duce improved weights by using a combination of household and individual

auxiliary information to be used for calibration. The conceptual structure

between household and individual weights is commonly imposed by adopting

some form of integration.

In this paper, we propose an iterative method of integrated weighting

that calibrates on the auxiliary information at each level at a time until con-

vergence. For example, the individual weights can first be obtained by cal-

ibrating its base weights on the corresponding auxiliary variables and then

their averages within households are to be calibrated to produce the house-

hold weights on the corresponding auxiliary variables. Next, the adjustment

factor reflecting changes in household weights is used to recalibrate individ-

ual weights to obtain weights until weights are similar after adjusting the

previously presented calibration process.

The paper is organized as follows. Section 2 reviews the definition of a

calibration estimator and the distance minimizing approach to calculate the

1



calibrated weights. Chapter 3 introduces methods of calibration for the in-

tegrated weights in the literature (Estevao and Särndal, 2006) and presents

a proposed calibration method. An empirical study and a simulation study

using ACS are to be carried out to present the distribution of weights pro-

duced by each method and the bias as well as variation of these calibrated

estimators for a number of survey variables of interest in Section 4. Section

5 summarizes the results of the study.
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2. Weight Calibration

In this chapter, we review the calibration to adjust the weights using auxiliary

information related to the survey variables of interest for the purpose of

enhancing the efficiency of estimation.

2.1 Calibration Estimator

Consider a probability sample s drawn from a finite population U = {1, 2, . . . ,

k, . . . , N} according to a sampling design, denoted by p(s). Let πi = P (i ∈ s)

define the inclusion probabilities of element i. The design weights are the in-

verses of the inclusion probabilities di = 1/πi. For estimating a population

total of a survey variable that we are interested Y =
∑

i∈U yi, the Horvitz-

Thomson (HT) estimator

ŶHT =
n∑
i=1

diyi (2.1)

can be used (Horvitz and Thompson, 1952).

When auxiliary information x related to the survey variable y is avail-

able, the estimator can be more precise by using the relationship between

x and y than HT estimator. Among the potential benefits of the calibra-

tion estimator are decrease in variances, bias correction for frame coverage,

nonresponse adjustment (Valliant et al., 2013). Let x be a p−dimensional

3



auxiliary vector and xi = (x1i, x2i, . . . , xpi)
′ be a vector for element i. The

calibration estimator is

Ŷcal =
n∑
i=1

wiyi, (2.2)

where the weights wi have been calibrated to the population total X =∑N
i=1 xi to satisfy the calibration equation

n∑
i=1

wixi = X (2.3)

and the calibration weights are as close as possible to the initial weights. The

calibrated weights close to the initial weights can be obtained by defining a

distance measure.

2.2 Distance Minimization Approach

The distance minimization approach was proposed by Deville and Särndal

(1992). A unique set of calibrated weights is obtained by minimizing the dis-

tance measure between the initial weights and the calibrated weights, subject

to the calibration constraint (2.3).

For element i, we consider the distance function Gi(w, d) is nonnega-

tive, strictly convex and twice continuously differentiable with respect to w

for every fixed d > 0 such that Gi(d, d) = 0 and G′i(d, d) = 0. Let Ep(·)

denote expectation with respect to the sample design p(s). To minimize

Ep(
∑

sGi(wi, di)) subject to (2.3) for all s equals to minimize
∑

sGi(wi, di)

4



subject to (2.3) for any particular s. Minimizing
∑

sGi(wi, di) subject to

(2.3) gives

gi(wi, di)− x′iλ = 0

with gi(w, d) = ∂Gi(w, d)/∂w and a vector of Lagrange multipliers λ. Let

F (·) denote the inverse function of g(·) and assume that a unique solution

exists, then calibrated weights

wi = diFi(x
′
iλ̂), (2.4)

where λ̂ obtained as a solution from (2.3).

Various distance functions are available for finding new weights (Deville

and Särndal, 1992). For example, if we define a distance function Gi(w, d) as

Gi(w, d) = (wi − di)2/2diqi, (2.5)

it gives qigi(wi, di) = wi/di − 1 and F (qix
′
iλ) = 1 + qix

′
iλ. The resulting

weights from the defined distance function is the form of

wi = di(1 + qix
′
iλ) (2.6)

with λ′ = (X − X̂)′(
∑

s diqixix
′
i)
−1. In this case, the calibrated weights can

be positive or negative. Another distance function is

Gi(w, d) = {wilog(wi/di)− wi + di}/qi (2.7)

with positive constants qi. It gives qigi(wi, di) = log(wi/di) and F (qix
′
iλ) =

exp(qix
′
iλ) and the resulting weights known as the exponential weights are

wi = diexp(qix
′
iλ̂), (2.8)
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where the solution of (2.3) is λ̂ obtained by iterative methods. The resulting

weights in (2.8) can have extremely large value.

2.3 The Generalized Regression Estimator

The generalized regression (GREG) estimator concept was presented by Cas-

sel et al. (1976). The estimator of Y =
∑

i∈U yi estimated by weights in (2.6)

can be expressed in the form of the GREG estimator

ŶGREG = ŶHT + (X− X̂)′B̂ (2.9)

with X̂ =
∑

s dixi and B̂ = (
∑

s diqixix
′
i)
−1(
∑

s diqixiyi). A property of

ŶGREG is design unbiased (Deville and Särndal, 1992). We derive The GREG

estimator with the distance measurement approach, but it can also be derived

with the model-assisted approach (Särndal, Swensson and Wretman, 1992).

In Deville and Särndal (1992), under the mild condisions on Fi(x
′
iλ), all

estimators estimated by weights getting from distance measure approach are

asymptotically equivalent to the GREG estimator in (2.9). They also have

the same asymptotic variance of ŶGREG

AV (ŶGREG) =
∑∑

U

(πij − πiπj)diEidjEj, (2.10)

where πij is the joint inclusion probability of i and j and Ei = yi−x′iB with

B satisfying the normal equation (
∑

U qixx
′)B =

∑
U qixiyi. The variance

estimator is given by

V̂ (ŶGREG) =
∑∑

s

(πij − πiπj)wieiwjej/πij, (2.11)
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where sample-based residuals is ei = yi−x′iB̂ and B̂ are the values satisfying

the sample-based normal equation (
∑

swiqixixi
′)B̂ =

∑
swiqixiyi. (2.11) is

a design-consistent variance estimator and nearly model-unbiased for the

model mean squared error.

7



3. Integrated Weighting

Many household surveys set the objective to produce both household esti-

mates and individual estimates. To allow consistent estimation at both levels,

integrated weighting is often used in many national statistical offices such as

Eurostat, Statistics Canata, Statistics New Zealand, etc. Integrated weight-

ing is computed using auxiliary information at both individual and household

levels in some composite fashions. A common approach to integrated weight-

ing is to give all members of a selected household equal weight, which is a

weight also used for producing household statistics. In this chapter, we first

briefly review integrated weighting methods for two-stage sampling in the lit-

erature (e.g., Estevao and Särndal, 2006) and propose a new method based

upon an iterative calibration approach.

3.1 Calibrated Weights in Two-Stage Sampling

Consider the population of clusters UI = {1, 2, . . . , j, . . . , NI} of size NI and

the population of units U = {1, 2, . . . , k, . . . , N} of size N . In two-stage

sampling, a sample of clusters sI is first drawn from UI with inclusion proba-

bilities πj for j ∈ UI . Units within each of selected clusters are then sampled

with inclusion probabilities πk|j for k ∈ Uj. Then the design weights are

defined by dj = 1/πj for cluster j and dk = djdk|j for unit k.

8



Let y(c) denote a survey variable at cluster level and let y(c)j denote its

value for cluster j. Also, let y(u) denote a survey variable at unit level and

let y(u)k denote its value for unit k. Similarly, let x(c)j and x(u)k denote the

auxiliary vector values for cluster j and unit k, respectively.

Assume that the survey objective is to estimate both cluster total Y(c) =∑
UI
y(c)j and unit total Y(u) =

∑
U y(u)k. Then, calibration estimators are

given as ŶI,cal =
∑

sI
wIjyj for household statistics and Ŷcal =

∑
swkyk for

individual statistics, respectively, with household weights wIj satisfying the

calibration equation ∑
sI

wIjx(c)j =
∑
UI

x(c)j (3.1)

and individual weights wk satisfying the calibration equation

∑
s

wkx(u)k =
∑
U

x(u)k. (3.2)

For integrated weighting, two options may be considered to maintain a

structural relationship between a household and persons.

(1)
∑

sj
wk = Njwj for every selected household j of size Nj.

(2) wk = dk|jwj for every selected person k in household j ∈ sI .

Under the option (1), household weights and individual weights produce the

same estimated total for each household. For a one-stage cluster sampling

where all individuals are selected, the average of the individual weights within

9



the household is set as the household weight. Under the option (2), individ-

ual weights are calculated in a manner similar to how individual weights

are computed as the product of household weights and person’s conditional

weights.

We consider the following four methods of computing weights of the cal-

ibration estimators (Estevao and Särndal, 2006).

(i) Non-integrated calibration

Calculate the calibrated weights for each level using the corresponding

auxiliary information. That is, from dj, compute household weight wj

calibrated to satisfy the constraint (3.1). Similarly, from dk = djdk|j,

compute individual weights wk calibrated to satisfy the constraint (3.2).

(ii) Single step calibration with integration option (1)

Conduct a person-level calibration by combining the auxiliary vector

into the person level by personalizing the household value. Assign the

divided the auxiliary value x(c)k = x(c)j/Nj on selected household by

number of people in the same household and define the stacked aux-

iliary vector by x(cu)k =

(
x(c)k

x(u)k

)
. From the individual input weights

dk = djdk|j, calculate individual weights wk satisfying the constraint∑
swkx(cu)k =

∑
U x(cu)k. Then, compute the household weights as

wj =
∑

si
wk/Nj.

(iii) Single step calibration with integration option (2)

Conduct a household-level calibration by combining the household and

10



person’s auxiliary vector into the household level. Define the stacked

auxiliary vector by x(cu)j =

(
x(c)j

x̂(u)j

)
, where x̂(u)j =

∑
si
dk|jx(u)k is the

unbiased estimator of the household total x(u)j =
∑

Ui
x(u)k. From dj,

calculate household weights wj to satisfy the constraint
∑

si
wjx(cu)j =∑

Ui
x(cu)j. Then, compute the individual weights as wk = dk|jwj.

(iv) Two step calibration with integration option (1)

In step one, compute household weights wj from dj calibrated to the

household information to satisfy the constraint (3.1). In step two, cal-

culate the individual weights wk from dk = djdk|j, calibrated to satisfy

(3.2) such that
∑

si
wk = Njwj for every j ∈ sI .

Weights by methods (i) and (iv) for each level satisfy only the calibration

constraint of the corresponding level, but those by method (iv) are different

in that they are created based upon the options (1). On the other hand,

those by methods (ii) and (iii) satisfy both calibration constraints (3.1) and

(3.2). Method (ii) and (iv) both differ in that they satisfy the integration

option (1), but (iv) uses personalized household variables x(c)k rather than

true household variables x(c)j. Method (iii) uses the strict integration option

(2). In one stage sampling, every household member get the same conditional

weights dk|j = 1, which implies wk = wj. In method (iv), to keep the con-

straint (3.1) is so stringent that the variation in the individual weights can

be significantly increased, and for a one-person household survey there is a

11



problem where individual weights that meet the calibration equation (3.2)

and the option (1) cannot be obtained.

3.2 Proposed Method

In this section, we propose a new integrated weighting method, which adjusts

weights for each level in a way to retain the multivariate relationship among

the auxiliary information.

Method (ii) and (iii) presented in Section 3.1 carry out a single step

calibration using household and individual auxiliary information at the same

time. However, when applying a raking ratio adjustment instead of a GREG

as a calibration method, the sum of the marginal distributions should be the

same. Therefore, we need to reconstruct the control total and know the joint

distribution of households and individuals in this process. In general, joint

distribution of household and individual auxiliary information may not be

availiable to the public. We devised a method that can be applied even when

the joint distribution of axuiliary information at both levels is not available.

Also, it utilizes true values x(c)j and x(u)k, not redefined values. In method

(iv), the individual weights increase in variability because they attempt to

satisfy option (1) at once. The proposed method satisfies option (1) through

the iterative process and calculates the household weights that reflect the

adjustments at the individual level using the adjustment factors.

Firstly, starting from initial individual weights w
(r−1)
k = dk, compute in-

termediate individual calibrated weights a
(r)
k to satisfy (3.2), where r = 1.

Next, take the average of intermediate individual weights as the intermediate

12



household weights denoted by a
(r)
j = N−1j

∑
sj
a
(r)
k and compute household

calibrated weights wrj to satisfy (3.1). Finally, obtain the initial individual

weights w
(r)
k = a

(r)
k c

(r)
j = w

(r)
j /arj , where c

(r)
j are adjustment factors for the

r-th iteration, Let r = r + 1 and repeat the aforementioned steps until w
(r)
j

and r
(r)
k converge.

For simplicity’s sake, let d
x

=⇒ w to denote the calibration process of

finding a new set of calibrated weights w = {wi, i ∈ s} that are near the

initial weights d = {di ∈ s} subject to the calibration equation with an

auxiliary vector x. The proposed process can be expressed as follows:

(1) Let r = 1 and let w
(r−1)
k = dk.

(2) Do w
(r−1)
k

x(u)k
=⇒ a

(r)
k .

(3) Let a
(r)
j = N−1j

∑
sj
a
(r)
k .

(4) Do a
(r)
j

x(c)j
=⇒ w

(r)
j .

(5) Set w
(r)
k = a

(r)
k c

(r)
j with adjustment factors c

(r)
j = w

(r)
j /a

(r)
j .

(6) Let r = r + 1 and repeat steps (2)-(5)

until w
(r)
j and w

(r)
k converge.

13



4. Application to ACS

4.1 Empirical Study

An empirical study was conducted using 2012 American Community Sur-

vey (ACS) data from the IPUMS.org website to evaluate the performance of

the proposed integrated weighting method in comparison with other meth-

ods in the literature. Basic data settings refer to the paper by Kolenikov

and Hammer (2015). The ACS survey data, conducted by the United States

Census Bureau, produces the detailed population and houshold information.

The data is comprised of 2,294,898 adults over the age of 18 in 1,207,415

households. We took this data into account as a population.

A description of variables used in the analysis is as follows Table 1.

A sample was drawn from the data under a sampling design to include

5,000 households randomly selected and all adults theirin. To produce non-

response, sequential logistic response models with coefficients as listed in

Table 2 are assumed so that if a household did not respond, individuals in

the household did not respond, and if all individuals did not respond, the

household did not either. As a result, we got 3,368 respondents in 2,474

households.

Table 3 describes the distribution of population and sample by some

variables. There is an imbalance between the population and the sample

that cannot be ignored. Male and the age group 2 had fewer responses and
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Table 1. Description of variables for ACS data

Level Variable Description

Household HHSZ Household size
( 1 : one-person household,
2: two-person household,
3: three-person household,
4: household with more than four people )

HHINCOME Household income (Continous)
HHIC Household income

( 1: under 20,000,
2: 20,000 to under 40,000,
3: 40,000 to under 65,000,
4: 65,000 under 100,000,
5: 100,000 and above)

HISPRE Hispanic present ( 1: present, 2: not present )
LINGISOL Linguistically isolated

( 1: not linguistically isolated,
2: linguistically isolated)

Individual SEX Sex ( 1: male, 2: female )
AGE Age

( 1: 18-29,
2: 30-44,
3: 45-54,
4:55-64,
5: 65 and above )

RACE Race
( 1: white only,
2: black/african americal only,
3: other )

EDUC Educational attainment
( 1: below high school,
2: high school/ general education deploma,
3: some college/associate degree,
4: bachelor’s degree,
5: graduate/professional degree )

MARST Marital status ( 1: married, 2: not married )
EMPSTAT Employment

(1: employed,
2: unemployed,
3: not in labor force)

INCTOT Individual income (Continous)
15



Table 2. The response model: P(response)=(1 + ex
′β)−1

a) The household response model

Category
Variable & transformation Coefficient
HHSZ 1 -0.5
HHSZ 3 and 4 -0.7
HHINCOME ln(HHINCOME+20,000) 0.1

b) The individual response model

Variable Category Coefficient
SEX 1 -0.2
AGE 2 -0.5
RACE 1 0.25
EDUC 1 -0.4
EDUC 4 0.1
EDUC 5 0.3

the race group 1 responded well. We assumed a model in which non-response

occurs frequently when the household size group is 3 or 4. However, in the

case of single-person household, the non-response of the household occurred if

the individual did not respond, resulting in a large number of non-response of

the one-person household, and in the end, the households with two member

answered the most. We use the categorical variables (Household size, Sex,

Age, Race and Education) and the continuous variable (Household income)

as auxiliary variables.

Generalized regression(GREG) weighting were adopted for calibration for

each of the methods on the consideration given,

W1 : Non-integrated calibration

W2 : Single step calibration with integration option (1)
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Table 3. Distribution of population and sample by variables

Population Population Sample Sample
Variable Category total % count %

Households 1207415 100.00% 2474 100.00%
Household 1 388470 32.17% 531 21.46%
size 2 629353 52.12% 1516 61.28%

3 131801 10.92% 293 11.84%
4 57791 4.79% 134 5.42%

Total household income $86,277,024,521 $191,813,775
Hispanic present 145173 12.02% 264 10.67%
Linguistically isolated 47061 3.90% 106 4.28%

Individuals 2294898 100.00% 3368 100.00%
SEX 1 1085531 47.30% 1511 44.86%

2 1209367 52.70% 1857 55.14%
AGE 1 395250 17.22% 547 16.24%

2 528792 23.04% 678 20.13%
3 437672 19.07% 648 19.24%
4 428807 18.69% 673 19.98%
5 504377 21.98% 822 24.41%

RACE 1 1814707 79.08% 2786 82.72%
2 227826 9.93% 288 8.55%
3 252365 11.00% 294 8.73%

EDUC 1 299730 13.06% 370 10.99%
2 656608 28.61% 1006 29.87%
3 697947 30.41% 985 29.25%
4 399943 17.43% 600 17.81%
5 240670 10.49% 407 12.08%

Married 1297358 56.53% 2015 59.83%
Employment 1 1342689 58.51% 1960 58.19%

2 122905 5.36% 163 4.84%
3 829304 36.14% 1245 36.97%

Total individual income $86,161,238,287 $129,039,467
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W3 : Single step calibration with integration option (2)

W4 : Two step calibration with integration option (1)

W5 : Proposed calibration

In Figure 1, The distribution of the adjustment factors by iteration for

W5 is illustrated because the weights produced by the proposed method

are calculated through iteration. The figure shows that the values of the

adjustment factor converge to 1. This means that the degree of variation in

household weights by calibration is reduced by iteration.

Figure 1. Box plot of adjustment factor by iteration

In Figure 2, each panel is divided by iteration and each point is colored

by the household size(HHSZ) with a categorical variable. The figure shows

that the intermediate weights and the calibrated weights become similar by

iteration and household non-response by household size is also adjusted by

repeated weighting.
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a) Changes in household weights by iteration

b) Changes in individual weights by iteration

Figure 2. Scatter plot of a(r) vs w(r) by iteration
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Table 4 compares the distribution of weights calculated for each calibra-

tion method. The spread of weights can be assessed with simple descriptive

statistics min, man and max. The variation in weights can be also eval-

uated through the amount of variance increase due to unequal weighting

Lw = 1+cv2w, where cvw is the coefficient of variation in weights and the sum

of distance measurement G(w, d) in (2.5). At the household level, the sum of

weights is consistent with the number of households in the population and

the average weight of all households is equal to 488.0. Table 4 shows that the

variation of W1 and W4 which are identical is the smallest because they do

not consider individual characteristics in the calibration process. Among W2,

W3, W5 taking into account both household and individual characteristics as

auxiliary variables for calibration, W3 has the largest variation and W2 and

W5 distribute similarly. In the W3 method, 25% of the weights is negative.

At the individual level, the sum of W4 and W5 is slightly inconsistent with

the number of individuals. This inconsistency can be corrected with rescal-

ing. W3 and W4 have some negative weights. In terms of the variation in

weights, W1 using the least variable in weighting has the smallest variation,

and W3 has the largest variation among integrated weights. On the other

hand, the W2 and W5 can be found to have relatively small variations.

Figure 3 is a density plot of the distribution of household weights accord-

ing to each calibration method. W2, W3, W5 are more widely distributed

than W1 and W4, especially W3 is heavy-tailed. W2 and W5 in particular

are similarly distributed. Figure 4 is a density plot of the distribution of in-

dividual weights according to each calibration method. W3 is distributed in

a similar form to household weights. W1, W2 and W5 are similarly adjusted,
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Table 4. Summary statistics of weights

Level Method Mean Sum Min Q1 Q2 Q3 Max Std Deff G(d,w)
House W1 488.0 1207415 341.0 415.7 418.9 452.9 734.2 127.9 1.07 7.90
-hold W2 488.0 1207415 127.3 298.8 490.9 649.3 1031.6 197.1 1.16 10.21

W3 488.0 1207415 -1142.0 -22.3 614.8 938.1 5134.2 603.4 2.53 43.52
W4 488.0 1207415 341.0 415.7 418.9 452.9 734.2 127.9 1.07 7.90
W5 488.0 1207415 139.5 300.1 488.1 644.1 1075.2 197.6 1.16 10.23

Indivi W1 681.4 2294898 474.6 605.5 671.8 743.2 1068.7 105.8 1.02 28.55
-dual W2 681.4 2294898 431.2 571.6 668.6 768.0 1180.0 135.7 1.04 29.56

W3 681.4 2294898 -1142.0 60.3 740.2 1082.9 5134.2 688.7 2.02 93.12
W4 682.4 2298233 -2231.0 501.8 732.9 834.2 3319.4 389.1 1.33 48.22
W5 682.1 2297367 443.9 576.9 661.8 761.9 1238.4 136.3 1.04 29.67

Figure 3. Density plot of household
weights by methods

Figure 4. Density plot of individual
weights by methods

especially 2 and 5 are more similar. W4 becomes more diverse for individual

characteristics under option (1).

Table 5 shows estimated totals and percentages of household variables

considered as auxiliary information. W1 to W5 estimate the variable equal

to the target population value.

As shown in Table 6, estimated totals and percentages based on W1, W2
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Table 5. Estimated total and percentage of household variables

[ W1 W2 W3 W4 W5 ]
Population Population Weighted Weighted

Variable Category total % count %
HHSZ 1 388470 32.17% 388470 32.17%

2 629353 52.12% 629353 52.12%
3 131801 10.92% 131801 10.92%
4 57791 4.79% 57791 4.79%

Total household income $86,277,024,521 $86,277,024,521

and W3 are equal to the target population. W4 is slightly different in total

and percentage. W5 is different in total but the percentage is the same. As

mentioned before, the slight inconsistency in total estimates based on W5

can be resolved through rescaling.
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4.2 Simulation Study

We conducted the simulation study to assess the performance of the estima-

tors based on each weight. Under the same sampling design as the empirical

study, we selected 200 household samples of size 5000 each. we assumed the

same response model in Table 2.

The performance of the estimators was examined by the Chi-squared

statistic Χ2

Χ
2 =

G∑
g=1

(Ŷg − Yg)2

Yg
,

where Ŷg is the estimator for categorical variable with the number of groups

g.

Table 7 shows the distribution of the Chi-squared statistics of the esti-

mators based on wk. The estimators are for combinations of variables using

an auxiliary variable. This is the result of the individual level estimation for

the combination of the household variable HHSZ and the individual variables

SEX, AGE, RACE and EDUC. Overall, W5 is good in terms of the adequacy

of the total estimators and the W2 as well. W4 also estimates better than

W1 which produced by the non-integration method. The estimators based

on W3 are the most unstable except for SEX.

Table 8 reports Χ2 of the individual estimators for combination of the

household variable HHIC and the individual variables. W2 and W5 are also

good when assessing the adequacy of the total estimators. In case of W3, it

can be seen that the variation in the Chi-squared statistics is greatest.

Figure 5 shows a boxplot of Χ2 presented in Tables 7 and 8.
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Table 7. Χ2 of the individual estimators by combinations of auxiliary
variables (1)

Variable Statistic Method
Household Individual Χ

2 W1 W2 W3 W4 W5
HHSZ SEX Mean 23650 2044 12000 4312 2017

Min 3456 24 706 80 79
Q1 17020 882 6347 2066 909
Q2 22780 1571 9960 3511 1578
Q3 30200 2622 16120 5931 2630
Max 50990 8263 48910 16650 8331

AGE Mean 31310 10530 33890 27890 10030
Min 10260 2537 5951 5325 2835
Q1 25030 7002 23080 18380 6896
Q2 30300 9976 31000 26230 9389
Q3 37610 13620 41050 35440 12870
Max 65040 29920 91420 86750 25850

RACE Mean 29930 8891 35260 10790 8864
Min 10510 557 6377 876 476
Q1 22890 4514 22480 5885 4487
Q2 28610 7820 31500 9583 7385
Q3 36820 12450 44500 13870 12110
Max 57680 26340 153600 35150 24630

EDUC Mean 31450 11080 35460 19040 10790
Min 8189 1789 5316 4363 1395
Q1 24640 7534 24220 13890 7669
Q2 31190 10780 32700 17810 10230
Q3 37640 13820 43660 23190 13180
Max 57700 29340 96040 49640 27540
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Table 8. Χ2 of the individual estimators by combinations of auxiliary
variables (2)

Variable Statistic Method
Household Individual Χ

2 W1 W2 W3 W4 W5
HHIC SEX Mean 6931 6373 16240 8134 6376

Min 1126 809 1775 1576 858
Q1 4441 4190 9232 5702 4097
Q2 6257 5836 14020 7741 5913
Q3 9070 8143 19950 9884 8148
Max 20990 17660 53910 27010 17380

AGE Mean 18710 17680 43900 21440 17620
Min 6641 5465 14840 7646 5356
Q1 15010 13960 31050 16530 13890
Q2 18350 17240 41550 20690 17280
Q3 21750 20880 55230 24820 20540
Max 34970 36620 90220 42460 35980

RACE Mean 15320 14860 43990 15890 14980
Min 3655 3561 15110 2777 3730
Q1 10760 10170 31220 11020 10700
Q2 14620 14360 41180 14790 14550
Q3 18950 18350 53310 19110 18660
Max 37560 36610 115000 40490 36030

EDUC Mean 18020 17400 44430 23060 17400
Min 4236 4148 13720 7250 3281
Q1 13390 12810 32450 17080 12910
Q2 17100 16190 42660 22150 16050
Q3 22070 21990 54180 27020 21760
Max 37240 39950 100300 62140 39940
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Figure 5. Box plot of Χ2 of the individual estimators

We examined the relative bias(RB)(%) and the relative root mean squared

errors(RRMSE)(%) for comparisons of each method for variables not used as

auxiliary information.

• RB(%) = (E(Ŷ )− Y )/Y × 100; relative bias

• MSE = E[(Ŷ − Y )2] = V (Ŷ ) +Bias2 ; mean squared error

• RMSE =
√
MSE ; root mean squared error

• RRMSE(%) = RMSE/Y × 100 ; relative root mean squared error

In addition, the distribution of estimators for each method is expressed

by the box plot.
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Table 9. Relative bias and root mean squared error of estimators for
household level variables

Variable Statistic W1 W2 W3 W4 W5
Hispanic RB(%) -14.5 -7.6 1.7 -14.5 -7.7
present RRMSE(%) 15.30 9.25 8.72 15.30 9.27
Linguistically RB(%) -9.1 -0.6 3.0 -9.1 -0.7
isolated RRMSE(%) 13.83 11.28 15.90 13.83 11.35

Table 9 reports the relative bias and the relative root mean squared error

of the household level estimators. For Hispanic present, W3 has the least RB

and RRMSE, but the variation of the estimators is somewhat large. In case

W1 and W4, there is the overall underestimation. W2 and W5 are slightly

underestimated and have a moderate variation than W3. For Lilnguistically

isolated, RB is the largest for W1 and W4. W3 has the largest RRMSE, W2

has the smallest RRMSE, and W5 is the next smallest.

In the same manner, Figure 6 and 7 show the distribution of each es-

timator by methods. The horizontal line of the box plot means the known

population value.

Table 10 reports the relative bias and the relative root mean squared

error of the individual level estimators. W5 is the smallest RB when Married

and Total individual income are estimated, and RRMSE is the smallest when

Married, Employed, and Total individual income are estimated. W3 is the

smallest RB for Employed, Unemployed, and Not in labor force, but the

RRMSE is large overall because the variance of the estimators is large. W2

has the smallest RRMSE in Unemployed, Not in labor force.
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Figure 6. Box plot of the estimators (Hispanic present) by methods

Figure 7. Box plot of the estimators (Linguistically isolated) by methods
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Table 10. Relative bias and root mean squared error of estimators for
individual level variables

Variable Statistic W1 W2 W3 W4 W5
Married RB(%) 2.95 0.25 -0.46 -0.25 0.24

RRMSE(%) 3.35 1.39 2.26 1.45 1.39
Employment RB(%) 0.41 0.20 0.06 -0.27 0.17
- Employed RRMSE(%) 1.39 1.32 1.90 1.62 1.32
Employment RB(%) -2.50 -1.07 -0.33 0.34 -1.02
- Unemployed RRMSE(%) 8.48 8.34 12.29 9.30 8.40
Employment RB(%) -0.30 -0.16 -0.05 0.49 -0.14
- Not in labor force RRMSE(%) 2.03 1.98 2.83 2.40 2.00
Total individual income RB(%) 1.50 0.04 0.11 -1.43 -0.01

RRMSE(%) 2.61 1.06 1.35 2.26 1.04

In Figure 8, W2, W4 and W5 deliver quite stable estimators in the sense

that RB and RRMSE are small in estimating the Married variable. The esti-

mators using W3 have the greatest variation and W1 tends to overestimate.

In Figure 9, the estimators based on W2 and W5 are similarly calculated.

They have the small variance and the bias. For the estimators based on W3,

the bias is the smallest, but the variance is the greatest.

In Figure 10, W3 and W4 have small RB, but the variation of estimators

is greater than the others. W2 and W5 also produce similar estimators.

In Figure 11, The estimators based on W3 produce the best results con-

sidering RB, although the range of estimators is wide. The next best results

are produced by W5, W2, W1 and W4.

The Figure 12 are presented that W2 and W5 well estimate the variable

(Total individual income). The estimators based on W1 tend to be overesti-

mated and have the widest range.
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Figure 8. Box plot of the estimators (Married) by methods

To summarize, in estimating the joint distribution of households and indi-

vidual variables used in the calibration process, W5 estimates the population

value most accurately. In estimating variables that were not used as auxiliary

information, W3 has a small RB and a large variation of estimators in many

cases. W2 and W5 produce efficient estimates in terms of MSE considering

bias and variance.
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Figure 9. Box plot of the estimators (Employment - Employed) by methods

Figure 10. Box plot of the estimators (Employment - Unemployed) by methods
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Figure 11. Box plot of the estimators (Employment - Not in labor force) by
methods

Figure 12. Box plot of the estimators (Total individual income) by methods
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5. Conclusions

In household surveys, estimates at different levels are needed according to

the circumstances. Estimates for each level can be further improved when

household and individual weights are well calculated to reflect each other’s

multivariate structures. Therefore, the objective of our study was to produce

improved weights by using auxiliary information of both levels.

In this paper, we proposed the iterative composite fitting approach that

repeats the calibration at the household and individual level in an effort to

maintain a structural relationship between them. The existing calibration

methods for integrated weights in the literature and proposed method were

compared and analyzed using both empirical study and simulation study.

Under our sampling design and response mechanism, we have identified

that the proposed method and the single step calibration with integration

option (1) were similarly distributed. The difference between the two methods

is that the single step calibration can only be calculated when the joint

distribution of households and individuals is available when applying raking

ratio adjustment as a calibration method, but the proposed method can

be produced even when the joint distribution can not be accessed. Plus, the

proposed method differs in that it does not redefine auxiliary information but

uses auxiliary information for each level as it is. Our method is calibrated at

each level, so it is possible to adjust non-response at each level. Though Non-

integrated calibration produced weights with the smallest variation, variance
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of estimators based on the weights could be increased. Single step calibration

with integration option (2) yielded weights with wide range and negative.

This in turn increased inefficiency in the estimation. Two step calibration

with integration option (1) was unable to produce the household weights

reflected the auxiliary information of the individual level. Individual weights

computed by two step calibration were negative and wide because the option

(1) must be keep in the calibration process.

For the future study, our simulation will be extended to more practical

situations where stratified multistage sample designs is used. Weight trim-

ming can also be considered to solve negative weights for our study. Further

research on the estimation of variance for the proposed weights is needed.
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Appendix.

R Code

library(sas7bdat)

library(survey)

library(sampling)

library(questionr)

# ACS2012 ( hh level )

hh=read.sas7bdat("F:\\논문\\data\\hh1205.sas7bdat")

hh$HHSZ<- replace(hh$num_adults,hh$num_adults>=4,4)

hh$HHIC<-

ifelse(-20000<=hh$HHINCOME&hh$HHINCOME<=19999,1,

ifelse(20000<=hh$HHINCOME&hh$HHINCOME<=39999,2,

ifelse(40000<=hh$HHINCOME&hh$HHINCOME<=64999,3,

ifelse(65000<=hh$HHINCOME&hh$HHINCOME<=99999,4,5))))

# ACS2012 ( ps level )

ps=read.sas7bdat("F:\\논문\\data\\ps1205.sas7bdat")

ps$RACE <- ifelse(ps$RACE>=3,3,ps$RACE)

ps$EDUC <- ifelse(1<=ps$EDUCD&ps$EDUCD<=61,1,

ifelse(63<=ps$EDUCD&ps$EDUCD<=64,2,

ifelse(65<=ps$EDUCD&ps$EDUCD<=99,3,

ifelse(100<=ps$EDUCD&ps$EDUCD<=110,4,5))))

ps$AGE <- ifelse (18<=ps$AGE&ps$AGE<=29,1,
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ifelse (30<=ps$AGE&ps$AGE<=44,2,

ifelse (45<=ps$AGE&ps$AGE<=54,3,

ifelse (55<=ps$AGE&ps$AGE<=64,4,5))))

ps$HHSZ<- replace(ps$num_adults,ps$num_adults>=4,4)

ps$INCTOT5<-

ifelse(ps$INCTOT<=9999,1,

ifelse(10000<=ps$INCTOT&ps$INCTOT<=19999,2,

ifelse(20000<=ps$INCTOT&ps$INCTOT<=32749,3,

ifelse(32750<=ps$INCTOT&ps$INCTOT<=49999,4,5))))

# pop totals of hh var

N_hh <- nrow(hh)

x.HHSZ <- table(hh$HHSZ)[-1]

x.HHINCOME <- sum(hh$HHINCOME)

pop.hh_w1 <- c(’(Intercept)’ = N_hh,

HHSZ = x.HHSZ,

HHINCOME = x.HHINCOME)

# pop totals of ps var

N_ps <- nrow(ps)

x.SEX <- table(ps$SEX)[-1]

x.RACE <- table(ps$RACE)[-1]

x.EDUC <- table(ps$EDUC)[-1]

x.AGE <- table(ps$AGE)[-1]

pop.ps_w1 <- c(’(Intercept)’ = N_ps,

SEX = x.SEX,

RACE = x.RACE,

EDUC = x.EDUC,
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AGE = x.AGE

)

pop.ps_w2<- c(

’(Intercept)’ = N_ps,

SEX = x.SEX,

RACE = x.RACE,

EDUC = x.EDUC,

AGE = x.AGE,

HHSZ=table(hh$HHSZ),

HHINCOME <- sum(hh$HHINCOME)

)

pop.hh_w3<- c(

’(Intercept)’ = N_hh,

SEX = table(ps$SEX),

RACE = x.RACE,

EDUC = x.EDUC,

AGE = x.AGE,

HHSZ=x.HHSZ,

HHINCOME=sum(hh$HHINCOME)

)

pop.hh_w4 <- c(’(Intercept)’ = N_hh,

HHSZ = x.HHSZ,

HHINCOME=sum(hh$HHINCOME)

)

pop.hh_w5 <- c(’(Intercept)’ = N_hh,

HHSZ = x.HHSZ,

HHINCOME=sum(hh$HHINCOME)
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)

pop.ps_w5 <- c(’(Intercept)’ = N_ps,

SEX = x.SEX,

RACE = x.RACE,

EDUC = x.EDUC,

AGE = x.AGE

)

set.seed(2018200)

n=1

I<-list()

w_hh_1<-list();w_ps_1<-list();w_hh_2<-list();w_ps_2<-list();

w_hh_3<-list();w_ps_3<-list();w_hh_4<-list();w_ps_4<-list();

w_hh_5<-list();w_ps_5<-list();sam_hh<-list();sam_ps<-list()

repeat{

######################################################################

# randomly select 5000 households

n_hh <- 5000

p_hh <- rep(n_hh/N_hh,N_hh)

samh <- sample(1:N_hh, n_hh)

samdat_hh <- hh[samh, ]

samdat_hh$d_hh <- 1/p_hh[samh]

# non-response model

h_respro=1/(1+exp(-(-0.5*(samdat_hh$HHSZ==1)

-0.7*(samdat_hh$HHSZ>=3)

+0.1*log(samdat_hh$HHINCOME+20000))))

h_responded<-runif(5000)<h_respro

samdat_hh<-samdat_hh[h_responded,]
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samp<-merge(samdat_hh[,c(1,11)],ps,by=’SERIAL’,all.x=T)

ps_respro=1/(1+exp(-(-0.2*(samp$SEX==1)-0.5*(samp$AGE==2)

+0.25*(samp$RACE==1)-0.4*(samp$EDUC==1)

+0.1*(samp$EDUC==4)+0.3*(samp$EDUC==5)

)))

ps_responded<-runif(length(ps_respro))<ps_respro

# respondents

samdat_ps<-samp[ps_responded,]

samdat_hh <- samdat_hh[with(samdat_hh,order(SERIAL)),]

samdat_ps <- samdat_ps[with(samdat_ps,order(SERIAL)),]

samhh_<-data.frame(unique(samdat_ps$SERIAL)

,rep(1,length(unique(samdat_ps$SERIAL))))

colnames(samhh_)<-c("SERIAL","I")

#responded household

samdat_hh<-merge(samhh_,samdat_hh,by=’SERIAL’,all.x=T)[,-2]

samdat_ps$d_ps<-samdat_ps$d_hh

#######################################################################

# w1

acs.dsgn_hh <- svydesign(ids = ~0, # no clusters

strata = NULL, # no strata

data = data.frame(samdat_hh),

weights = ~ d_hh)

hh.lin_w1 <- calibrate(design = acs.dsgn_hh,

formula = ~as.factor(HHSZ) + HHINCOME,

population = pop.hh_w1,

calfun="linear")
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wt_hh_1<-weights(hh.lin_w1)

acs.dsgn_ps <- svydesign(ids = ~0, # no clusters

strata = NULL, # no strata

data = data.frame(samdat_ps),

weights = ~ d_ps)

ps.lin_w1 <- calibrate(design = acs.dsgn_ps,

formula = ~as.factor(SEX) + as.factor(RACE)

+ as.factor(EDUC)

+ as.factor(AGE),

population = pop.ps_w1,

calfun="linear")

wt_ps_1 <- weights(ps.lin_w1)

#######################################################################

#######################################################################

# w2

samdat_ps_w2<-samdat_ps

samdat_ps_w2$HHSZ<- replace(samdat_ps$num_adults

,samdat_ps$num_adults>=4,4)

samdat_ps_w2$HHIC<-

ifelse(-20000<=samdat_ps$HHINCOME&samdat_ps$HHINCOME<=19999,1,

ifelse(20000<=samdat_ps$HHINCOME&samdat_ps$HHINCOME<=39999,2,

ifelse(40000<=samdat_ps$HHINCOME&samdat_ps$HHINCOME<=64999,3,

ifelse(65000<=samdat_ps$HHINCOME&samdat_ps$HHINCOME<=99999,4,5))))

samdat_ps_w2<-transform(samdat_ps_w2,
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HHSZ_1=ifelse(HHSZ==1,1,0),

HHSZ_2=ifelse(HHSZ==2,1,0),

HHSZ_3=ifelse(HHSZ==3,1,0),

HHSZ_4=ifelse(HHSZ==4,1,0)

)

samdat_ps_w2<-transform(samdat_ps_w2,

HHIC_1=ifelse(HHIC==1,1,0),

HHIC_2=ifelse(HHIC==2,1,0),

HHIC_3=ifelse(HHIC==3,1,0),

HHIC_4=ifelse(HHIC==4,1,0),

HHIC_5=ifelse(HHIC==5,1,0))

samdat_ps_w2$HHINCOME<-samdat_ps$HHINCOME/samdat_ps$num_adults

for ( i in 25:28 ){

samdat_ps_w2[,i]<-samdat_ps_w2[,i]/samdat_ps_w2$num_adults

}

for ( i in 29:33 ){

samdat_ps_w2[,i]<-samdat_ps_w2[,i]/samdat_ps_w2$num_adults

}

acs.dsgn_ps <- svydesign(ids = ~0, # no clusters

strata = NULL, # no strata

data = data.frame(samdat_ps_w2),

weights = ~ d_ps)

# Compute ps GREG weights

ps.lin_w2 <- calibrate(design = acs.dsgn_ps,

formula = ~as.factor(SEX)+ as.factor(RACE)

+ as.factor(EDUC)

+ as.factor(AGE)

+HHSZ_1+HHSZ_2+HHSZ_3

+HHSZ_4+HHINCOME,
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population = pop.ps_w2,

calfun="linear")

samdat_ps_w2$wt_ps_2<-weights(ps.lin_w2)

wt_ps_2<-weights(ps.lin_w2)

wt_hh_2 <- aggregate(samdat_ps_w2$wt_ps_2

,by=list(samdat_ps_w2$SERIAL),sum)[,2]/samdat_hh$num_adults

#######################################################################

#######################################################################

# w3

samdat_ps_w3<-samdat_ps

samdat_ps_w3<-transform(samdat_ps_w3,

SEX_1=ifelse(SEX==1,1,0),

SEX_2=ifelse(SEX==2,1,0))

samdat_ps_w3<-transform(samdat_ps_w3,

AGE_1=ifelse(AGE==1,1,0),

AGE_2=ifelse(AGE==2,1,0),

AGE_3=ifelse(AGE==3,1,0),

AGE_4=ifelse(AGE==4,1,0),

AGE_5=ifelse(AGE==5,1,0)

)

samdat_ps_w3<-transform(samdat_ps_w3,

RACE_1=ifelse(RACE==1,1,0),

RACE_2=ifelse(RACE==2,1,0),

RACE_3=ifelse(RACE==3,1,0)

)

samdat_ps_w3<-transform(samdat_ps_w3,
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EDUC_1=ifelse(EDUC==1,1,0),

EDUC_2=ifelse(EDUC==2,1,0),

EDUC_3=ifelse(EDUC==3,1,0),

EDUC_4=ifelse(EDUC==4,1,0),

EDUC_5=ifelse(EDUC==5,1,0)

)

head(samdat_ps_w3,7)

samdat_hh_w3<-samdat_hh

SEX_1<-aggregate(as.numeric(samdat_ps_w3$SEX_1)

, by=list(samdat_ps_w3$SERIAL), FUN=sum)[,2]

SEX_2<-aggregate(as.numeric(samdat_ps_w3$SEX_2)

, by=list(samdat_ps_w3$SERIAL), FUN=sum)[,2]

AGE_1<-aggregate(as.numeric(samdat_ps_w3$AGE_1)

, by=list(samdat_ps_w3$SERIAL), FUN=sum)[,2]

AGE_2<-aggregate(as.numeric(samdat_ps_w3$AGE_2)

, by=list(samdat_ps_w3$SERIAL), FUN=sum)[,2]

AGE_3<-aggregate(as.numeric(samdat_ps_w3$AGE_3)

, by=list(samdat_ps_w3$SERIAL), FUN=sum)[,2]

AGE_4<-aggregate(as.numeric(samdat_ps_w3$AGE_4)

, by=list(samdat_ps_w3$SERIAL), FUN=sum)[,2]

AGE_5<-aggregate(as.numeric(samdat_ps_w3$AGE_5)

, by=list(samdat_ps_w3$SERIAL), FUN=sum)[,2]

RACE_1<-aggregate(as.numeric(samdat_ps_w3$RACE_1)

, by=list(samdat_ps_w3$SERIAL), FUN=sum)[,2]

RACE_2<-aggregate(as.numeric(samdat_ps_w3$RACE_2)

, by=list(samdat_ps_w3$SERIAL), FUN=sum)[,2]

RACE_3<-aggregate(as.numeric(samdat_ps_w3$RACE_3)

, by=list(samdat_ps_w3$SERIAL), FUN=sum)[,2]
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EDUC_1<-aggregate(as.numeric(samdat_ps_w3$EDUC_1)

, by=list(samdat_ps_w3$SERIAL), FUN=sum)[,2]

EDUC_2<-aggregate(as.numeric(samdat_ps_w3$EDUC_2)

, by=list(samdat_ps_w3$SERIAL), FUN=sum)[,2]

EDUC_3<-aggregate(as.numeric(samdat_ps_w3$EDUC_3)

, by=list(samdat_ps_w3$SERIAL), FUN=sum)[,2]

EDUC_4<-aggregate(as.numeric(samdat_ps_w3$EDUC_4)

, by=list(samdat_ps_w3$SERIAL), FUN=sum)[,2]

EDUC_5<-aggregate(as.numeric(samdat_ps_w3$EDUC_5)

, by=list(samdat_ps_w3$SERIAL), FUN=sum)[,2]

dummy<-data.frame(SEX_1,SEX_2,AGE_1,AGE_2,AGE_3,AGE_4,AGE_5

,RACE_1,RACE_2,RACE_3,EDUC_1,EDUC_2,EDUC_3,EDUC_4,EDUC_5)

samdat_hh_w3[,12:26]<-dummy

acs.dsgn_hh <- svydesign(ids = ~0, # no clusters

strata = NULL, # no strata

data = data.frame(samdat_hh_w3),

weights = ~ d_hh)

hh.lin_w3 <- calibrate(design = acs.dsgn_hh,

formula = ~SEX_1+SEX_2+RACE_2+RACE_3

+EDUC_2+EDUC_3+EDUC_4+EDUC_5

+AGE_2+AGE_3+AGE_4+AGE_5

+as.factor(HHSZ)+HHINCOME,

population = pop.hh_w3,

calfun="linear")

samdat_hh_w3$wt_hh_3<-weights(hh.lin_w3)

wt_hh_3<-weights(hh.lin_w3)

wt_ps_3<-(merge(samdat_hh_w3[,c(1,27)],samdat_ps_w3,key="CLUSTER",all.y=T))[,2]
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samdat_ps_w3$wt_ps_3<-wt_ps_3

#######################################################################

#######################################################################

# w4

acs.dsgn_hh <- svydesign(ids = ~0, # no clusters

strata = NULL, # no strata

data = data.frame(samdat_hh),

weights = ~ d_hh)

hh.lin_w4 <- calibrate(design = acs.dsgn_hh,

formula = ~ as.factor(HHSZ)+HHINCOME,

population = pop.hh_w4,

calfun="linear")

wt_hh_4<-weights(hh.lin_w4)

constr<-wt_hh_4*samdat_hh$num_adults

acs.dsgn_ps <- svydesign(ids = ~0, # no clusters

strata = NULL, # no strata

data = data.frame(samdat_ps),

weights = ~ d_ps)

x.constr <- constr

pop.ps_w4 <- c(constr = x.constr,

SEX = x.SEX,

RACE = x.RACE,

EDUC = x.EDUC,

AGE = x.AGE

)

# Compute ps GREG weights

ps.lin_w4 <- calibrate(design = acs.dsgn_ps,
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formula = ~as.factor(SERIAL) + as.factor(SEX)

+ as.factor(RACE) + as.factor(EDUC)

+ as.factor(AGE)+0,

population = pop.ps_w4,

calfun="linear")

wt_ps_4 <- weights(ps.lin_w4)

#######################################################################

#######################################################################

# w5

iter=1

c_j <- data.frame(rep(0,dim(samdat_hh)[1])) # adjustment factor

colnames(c_j)<- c("V1")

w_hh<-data.frame(V1=rep(0,nrow(samdat_hh)))

w_ps<-data.frame(V1=rep(0,nrow(samdat_ps)))

tw_hh<-data.frame(V1=rep(0,nrow(samdat_hh)))

tw_ps<-data.frame(V1=rep(0,nrow(samdat_ps)))

repeat{

acs.dsgn_ps <- svydesign(ids = ~0, # no clusters

strata = NULL, # no strata

data = data.frame(samdat_ps),

weights = ~ d_ps)

ps.lin_w5 <- calibrate(design = acs.dsgn_ps,

formula = ~as.factor(SEX) + as.factor(RACE)

+ as.factor(EDUC)

+ as.factor(AGE),

population = pop.ps_w5,
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calfun="linear")

samdat_ps$twt_ps <- weights(ps.lin_w5)

samdat_hh$twt_hh <- aggregate(samdat_ps$twt_ps

,by=list(samdat_ps$SERIAL),sum)[,2]/samdat_hh$num_adults

tw_hh[,iter] <- samdat_hh$twt_hh

tw_ps[,iter] <- samdat_ps$twt_ps

acs.dsgn_hh <- svydesign(ids = ~0, # no clusters

strata = NULL, # no strata

data = data.frame(samdat_hh),

weights = ~ twt_hh)

hh.lin_w5 <- calibrate(design = acs.dsgn_hh,

formula = ~as.factor(HHSZ) + HHINCOME,

population = pop.hh_w5,

calfun="linear")

samdat_hh$wt_hh<-weights(hh.lin_w5)

if (iter==1) {

samdat_ps <- merge(samdat_hh[,c(1,12,13)]

,samdat_ps,key="CLUSTER",all.y=T)

} else {

samdat_ps <- merge(samdat_hh[,c(1,12,13)]

,samdat_ps[,-c(2,3)],key="CLUSTER",all.y=T)

}

samdat_ps$wt_ps <- samdat_ps$wt_hh*samdat_ps$twt_ps/samdat_ps$twt_hh

c_j[,iter] <- samdat_hh$wt_hh/samdat_hh$twt_hh

w_hh[,iter] <- samdat_hh$wt_hh

w_ps[,iter] <- samdat_ps$wt_ps
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if((max(abs(samdat_ps$d_ps-samdat_ps$wt_ps))<0.00001)|iter>=100){break}

iter<-iter+1

samdat_ps$d_ps <- samdat_ps$wt_ps

}

wt_hh_5<-w_hh[,dim(w_hh)[2]]

wt_ps_5<-w_ps[,dim(w_hh)[2]]

I[[n]]<-iter

w_hh_1[[n]]<-wt_hh_1

w_ps_1[[n]]<-wt_ps_1

w_hh_2[[n]]<-wt_hh_2

w_ps_2[[n]]<-wt_ps_2

w_hh_3[[n]]<-wt_hh_3

w_ps_3[[n]]<-wt_ps_3

w_hh_4[[n]]<-wt_hh_4

w_ps_4[[n]]<-wt_ps_4

w_hh_5[[n]]<-wt_hh_5

w_ps_5[[n]]<-wt_ps_5

sam_hh[[n]]<-samdat_hh

sam_ps[[n]]<-samdat_ps

if(n==200){break}

n<-n+1

}
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