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1. Introduction

In household surveys, both household and individual weights are commonly
developed to allow estimation at each level. This double objective urges the
need for an integrated weighting for calibration when the auxiliary informa-
tion is available at different levels together. Since households and individuals
are not independent and have a hierarchical structure, we expect to pro-
duce improved weights by using a combination of household and individual
auxiliary information to be used for calibration. The conceptual structure
between household and individual weights is commonly imposed by adopting
some form of integration.

In this paper, we propose an iterative method of integrated weighting
that calibrates on the auxiliary information at each level at a time until con-
vergence. For example, the individual weights can first be obtained by cal-
ibrating its base weights on the corresponding auxiliary variables and then
their averages within households are to be calibrated to produce the house-
hold weights on the corresponding auxiliary variables. Next, the adjustment
factor reflecting changes in household weights is used to recalibrate individ-
ual weights to obtain weights until weights are similar after adjusting the
previously presented calibration process.

The paper is organized as follows. Section 2 reviews the definition of a

calibration estimator and the distance minimizing approach to calculate the



calibrated weights. Chapter 3 introduces methods of calibration for the in-
tegrated weights in the literature (Estevao and Sérndal, 2006) and presents
a proposed calibration method. An empirical study and a simulation study
using ACS are to be carried out to present the distribution of weights pro-
duced by each method and the bias as well as variation of these calibrated
estimators for a number of survey variables of interest in Section 4. Section

5 summarizes the results of the study.



2. Weight Calibration

In this chapter, we review the calibration to adjust the weights using auxiliary
information related to the survey variables of interest for the purpose of

enhancing the efficiency of estimation.

2.1 Calibration Estimator

Consider a probability sample s drawn from a finite population U = {1,2, ...,
k,..., N} according to a sampling design, denoted by p(s). Let m; = P(i € s)
define the inclusion probabilities of element i. The design weights are the in-
verses of the inclusion probabilities d; = 1/m;. For estimating a population

total of a survey variable that we are interested Y = ) . ., v;, the Horvitz-

Thomson (HT') estimator
Yur = Z diy; (2.1)
i=1

can be used (Horvitz and Thompson, 1952).

When auxiliary information x related to the survey variable y is avail-
able, the estimator can be more precise by using the relationship between
x and y than HT estimator. Among the potential benefits of the calibra-
tion estimator are decrease in variances, bias correction for frame coverage,

nonresponse adjustment (Valliant et al., 2013). Let x be a p—dimensional



auxiliary vector and x; = (21, %2, ..., %) be a vector for element i. The

calibration estimator is

Ycaz = Zwiyu (2-2)
i=1

where the weights w; have been calibrated to the population total X =

Zﬁil x; to satisfy the calibration equation

i=1

and the calibration weights are as close as possible to the initial weights. The
calibrated weights close to the initial weights can be obtained by defining a

distance measure.

2.2 Distance Minimization Approach

The distance minimization approach was proposed by Deville and Sarndal
(1992). A unique set of calibrated weights is obtained by minimizing the dis-
tance measure between the initial weights and the calibrated weights, subject
to the calibration constraint (2.3).

For element ¢, we consider the distance function G;(w,d) is nonnega-
tive, strictly convex and twice continuously differentiable with respect to w
for every fixed d > 0 such that G;(d,d) = 0 and G}(d,d) = 0. Let E,(-)
denote expectation with respect to the sample design p(s). To minimize

E,(>, Gi(w;, d;)) subject to (2.3) for all s equals to minimize ) G;(w;, d;)



subject to (2.3) for any particular s. Minimizing ) G;(w;, d;) subject to
(2.3) gives
with g;(w,d) = 0G;(w,d)/O0w and a vector of Lagrange multipliers A. Let

F(-) denote the inverse function of g(-) and assume that a unique solution

exists, then calibrated weights

~

where A obtained as a solution from (2.3).
Various distance functions are available for finding new weights (Deville

and Sérndal, 1992). For example, if we define a distance function G;(w, d) as

it gives ¢gi(wi,d;) = w;/d; — 1 and F(gx\) = 1+ ¢;x;\. The resulting

weights from the defined distance function is the form of
wi = di(1 =+ gix;\) (2.6)

with X = (X — X)’(ZS d;qix;x;)~1. In this case, the calibrated weights can

be positive or negative. Another distance function is
Gi(w,d) = {w;log(w;/d;) —w; + d;}/q; (2.7)

with positive constants ¢;. It gives ¢;g;(w;, d;) = log(w;/d;) and F(g;x\\) =

exp(g;x;\) and the resulting weights known as the exponential weights are

w; = diexp(gxN), (2.8)

5



where the solution of (2.3) is \ obtained by iterative methods. The resulting

weights in (2.8) can have extremely large value.

2.3 The Generalized Regression Estimator

The generalized regression (GREG) estimator concept was presented by Cas-
sel et al. (1976). The estimator of Y = ._; v; estimated by weights in (2.6)
can be expressed in the form of the GREG estimator

A~ A~

Yerpe = Yar + (X — X)'B (2.9)

with X = > dix; and B = (O, digixixi) 1 (>0, digixiy;). A property of
Yerpe is design unbiased (Deville and Sarndal, 1992). We derive The GREG
estimator with the distance measurement approach, but it can also be derived
with the model-assisted approach (Sarndal, Swensson and Wretman, 1992).

In Deville and Sérndal (1992), under the mild condisions on F;(x}\), all
estimators estimated by weights getting from distance measure approach are

asymptotically equivalent to the GREG estimator in (2.9). They also have

the same asymptotic variance of Ygrpa

V(Yorea) = ZZ i — ;) di Byd; B, (2.10)

where ;; is the joint inclusion probability of 7 and j and E; = y; — x;B with
B satisfying the normal equation (), ¢;xx")B = ), ¢ix;y;. The variance

estimator is given by

V(Yeree) = ZZ Tij — T Wie;w;e; /mj, (2.11)



where sample-based residuals is e; = y; — x;]A3 and B are the values satisfying
the sample-based normal equation (D, wiqixixi’)]:% =Y wigiX;y;. (2.11) is
a design-consistent variance estimator and nearly model-unbiased for the

model mean squared error.



3. Integrated Weighting

Many household surveys set the objective to produce both household esti-
mates and individual estimates. To allow consistent estimation at both levels,
integrated weighting is often used in many national statistical offices such as
Eurostat, Statistics Canata, Statistics New Zealand, etc. Integrated weight-
ing is computed using auxiliary information at both individual and household
levels in some composite fashions. A common approach to integrated weight-
ing is to give all members of a selected household equal weight, which is a
weight also used for producing household statistics. In this chapter, we first
briefly review integrated weighting methods for two-stage sampling in the lit-
erature (e.g., Estevao and Sérndal, 2006) and propose a new method based

upon an iterative calibration approach.

3.1 Calibrated Weights in Two-Stage Sampling

Consider the population of clusters Uy = {1,2,...,7,..., N;} of size N; and
the population of units U = {1,2,...,k,..., N} of size N. In two-stage
sampling, a sample of clusters s; is first drawn from U; with inclusion proba-
bilities 7; for j € U;r. Units within each of selected clusters are then sampled

with inclusion probabilities my; for & € U;. Then the design weights are

defined by d; = 1/m; for cluster j and dj, = d;dy; for unit .



Let y() denote a survey variable at cluster level and let y(.); denote its
value for cluster j. Also, let y(,) denote a survey variable at unit level and
let y(,)x denote its value for unit . Similarly, let x(); and x(,); denote the

auxiliary vector values for cluster j and unit k, respectively.

Assume that the survey objective is to estimate both cluster total Y. =

ZU, Y(e); and unit total Y,y = > Y- Then, calibration estimators are

given as Y],wl = Zs, wy;y; for household statistics and Yo = > s Wiy for

individual statistics, respectively, with household weights wy; satisfying the

calibration equation

Z P#1iX6E Z X()i (3.1)
ST Ur

and individual weights wy, satisfying the calibration equation
s U
For integrated weighting, two options may be considered to maintain a

structural relationship between a household and persons.

(1) 22, we = Njw; for every selected houschold j of size Nj.

(2) wyp = dijw; for every selected person k in household j € s;.

Under the option (1), household weights and individual weights produce the
same estimated total for each household. For a one-stage cluster sampling

where all individuals are selected, the average of the individual weights within



the household is set as the household weight. Under the option (2), individ-

ual weights are calculated in a manner similar to how individual weights

are computed as the product of household weights and person’s conditional

weights.

We consider the following four methods of computing weights of the cal-

ibration estimators (Estevao and Sérndal, 2006).

(1)

(i)

Non-integrated calibration
Calculate the calibrated weights for each level using the corresponding

auxiliary information. That is, from d;, compute household weight w;
calibrated to satisfy the constraint (3.1). Similarly, from di, = d;dy;,

compute individual weights wy, calibrated to satisfy the constraint (3.2).

Single step calibration with integration option (1)

Conduct a person-level calibration by combining the auxiliary vector
into the person level by personalizing the household value. Assign the
divided the auxiliary value x(¢)r = X();/IN; on selected household by

number of people in the same household and define the stacked aux-

X(e)k

< ) From the individual input weights
(u)k

iliary vector by Xk = (

dp = djdyy;, calculate individual weights w;, satisfying the constraint

Yo WkX(eu)k = Dy X(eupk- Then, compute the household weights as

wj =, wi/Nj.

Single step calibration with integration option (2)

Conduct a household-level calibration by combining the household and

10



person’s auxiliary vector into the household level. Define the stacked

auxiliary vector by X(c.); = (;z(c)j), where X(,); = >, dg|jX()k is the
( ) . 1

u)j
unbiased estimator of the household total x(,); = ZUi X(u)k- From dj,

calculate household weights w; to satisfy the constraint Zsi WX (cu)j =

> v, X(eu)j- Then, compute the individual weights as wy, = dj;w;.

(iv) Two step calibration with integration option (1)
In step one, compute household weights w; from d; calibrated to the
household information to satisfy the constraint (3.1). In step two, cal-
culate the individual weights wy, from dj, = d;dy,;, calibrated to satisfy

(3.2) such that  wy = Njw; for every j € s;.

Weights by methods (i) and (iv) for each level satisfy only the calibration
constraint of the corresponding level, but those by method (iv) are different
in that they are created based upon the options (1). On the other hand,
those by methods (ii) and (iii) satisfy both calibration constraints (3.1) and
(3.2). Method (ii) and (iv) both differ in that they satisfy the integration
option (1), but (iv) uses personalized household variables x (., rather than
true household variables x(.);. Method (iii) uses the strict integration option
(2). In one stage sampling, every household member get the same conditional
weights dy; = 1, which implies w, = w;. In method (iv), to keep the con-
straint (3.1) is so stringent that the variation in the individual weights can

be significantly increased, and for a one-person household survey there is a

11



problem where individual weights that meet the calibration equation (3.2)

and the option (1) cannot be obtained.

3.2 Proposed Method

In this section, we propose a new integrated weighting method, which adjusts
weights for each level in a way to retain the multivariate relationship among
the auxiliary information.

Method (ii) and (iii) presented in Section 3.1 carry out a single step
calibration using household and individual auxiliary information at the same
time. However, when applying a raking ratio adjustment instead of a GREG
as a calibration method, the sum of the marginal distributions should be the
same. Therefore, we need to reconstruct the control total and know the joint
distribution of households and individuals in this process. In general, joint
distribution of household and individual auxiliary information may not be
availiable to the public. We devised a method that can be applied even when
the joint distribution of axuiliary information at both levels is not available.

Also, it utilizes true values z(y; and @), not redefined values. In method
(iv), the individual weights increase in variability because they attempt to
satisfy option (1) at once. The proposed method satisfies option (1) through
the iterative process and calculates the household weights that reflect the
adjustments at the individual level using the adjustment factors.

Firstly, starting from initial individual weights w,(f_l) = dj, compute in-

termediate individual calibrated weights ag) to satisfy (3.2), where r = 1.

Next, take the average of intermediate individual weights as the intermediate

12



household weights denoted by ay) = N >, a,(:) and compute household

calibrated weights w} to satisfy (3.1). Finally, obtain the initial individual

weights w,(:) = a,(:)c(r)

i are adjustment factors for the

_ o)y (r)
= w;’/aj, where c;

r-th iteration, Let r = r + 1 and repeat the aforementioned steps until wj(-r)

(r)
and 7’ converge.

For simplicity’s sake, let d == w to denote the calibration process of
finding a new set of calibrated weights w = {w;,i € s} that are near the
initial weights d = {d; € s} subject to the calibration equation with an

auxiliary vector x. The proposed process can be expressed as follows:
(1) Let r =1 and let w\"™ " = d;.
(2) Do w1 =& )
(3) Let ay) SN >, al”.

(4) Do al?) 2L "),

J J

(5) Set w,(:) = a,(:)cy) with adjustment factors cy) = w](-r)/ag-r).

(6) Let r =7+ 1 and repeat steps (2)-(5)

(r)
k

until w](.r) and w,;’ converge.

13



4. Application to ACS

4.1 Empirical Study

An empirical study was conducted using 2012 American Community Sur-
vey (ACS) data from the IPUMS.org website to evaluate the performance of
the proposed integrated weighting method in comparison with other meth-
ods in the literature. Basic data settings refer to the paper by Kolenikov
and Hammer (2015). The ACS survey data, conducted by the United States
Census Bureau, produces the detailed population and houshold information.
The data is comprised of 2,294,898 adults over the age of 18 in 1,207,415
households. We took this data into account as a population.

A description of variables used in the analysis is as follows Table 1.

A sample was drawn from the data under a sampling design to include
5,000 households randomly selected and all adults theirin. To produce non-
response, sequential logistic response models with coefficients as listed in
Table 2 are assumed so that if a household did not respond, individuals in
the household did not respond, and if all individuals did not respond, the
household did not either. As a result, we got 3,368 respondents in 2,474
households.

Table 3 describes the distribution of population and sample by some
variables. There is an imbalance between the population and the sample

that cannot be ignored. Male and the age group 2 had fewer responses and

14



Table 1. Description of variables for ACS data

Level

Variable

Description

Household

HHSZ

Household size

( 1 : one-person household,

2: two-person household,

3: three-person household,

4: household with more than four people )

HHINCOME

Household income (Continous)

HHIC

Household income

( 1: under 20,000,

2: 20,000 to under 40,000,
3: 40,000 to under 65,000,
4: 65,000 under 100,000,
5: 100,000 and above)

HISPRE

Hispanic present ( 1: present, 2: not present )

LINGISOL

Linguistically isolated
( 1: not linguistically isolated,
2: linguistically isolated)

Individual

SEX

Sex ( 1: male, 2: female )

AGE

Age

(1: 18-29,

2: 30-44,
3:45-54,

4:55-64,

5: 65 and above )

RACE

Race

('1: white only,

2: black/african americal only,
3: other )

EDUC

Educational attainment

( 1: below high school,

2: high school/ general education deploma,
3: some college/associate degree,

4: bachelor’s degree,

5: graduate/professional degree )

MARST

Marital status ( 1: married, 2: not married )

EMPSTAT

Employment

(1: employed,

2: unemployed,

3: not in labor force)

INCTOT

Individual income (Continous)

15




Table 2. The response model: P(response)=(1 + ¢*'#)~!

a) The household response model

Category
Variable & transformation Coefficient
HHSZ 1 -0.5
HHSZ 3 and 4 -0.7
HHINCOME In(HHINCOME+20,000) 0.1

b) The individual response model

Variable Category | Coefficient
SEX 1 -0.2
AGE 2 -0.5
RACE 1 0.25
EDUC 1 -0.4
EDUC 4 0.1
EDUC 5 0.3

the race group 1 responded well. We assumed a model in which non-response
occurs frequently when the household size group is 3 or 4. However, in the
case of single-person household, the non-response of the household occurred if
the individual did not respond, resulting in a large number of non-response of
the one-person household, and in the end, the households with two member
answered the most. We use the categorical variables (Household size, Sex,

Age, Race and Education) and the continuous variable (Household income)

as auxiliary variables.

Generalized regression(GREG) weighting were adopted for calibration for

each of the methods on the consideration given,

W1 : Non-integrated calibration

W2 : Single step calibration with integration option (1)

16




Table 3. Distribution of population and sample by variables

Population Population Sample Sample

Variable Category total % count %
Households 1207415 100.00% 2474 100.00%
Household 1 388470 32.17% 531 21.46%
size 2 629353 52.12% 1516 61.28%
3 131801 10.92% 293 11.84%
4 57791 4.79% 134 5.42%
Total household income $86,277,024,521 $191,813,775
Hispanic present 145173 12.02% 264 10.67%
Linguistically isolated 47061 3.90% 106 4.28%
Individuals 2294898 100.00% 3368 100.00%
SEX 1 1085531 47.30% 1511 44.86%
2 1209367 52.70% 1857 55.14%
AGE 1 395250 17.22% 547 16.24%
2 528792 23.04% 678 20.13%
3 437672 19.07% 648 19.24%
4 428807 18.69% 673 19.98%
5 504377 21.98% 822 24.41%
RACE | 1814707 79.08% 2786 82.72%
2 227826 9.93% 288 8.55%
3 252365 11.00% 294 8.73%
EDUC 1 299730 13.06% 370 10.99%
2 656608 28.61% 1006 29.87%
3 697947 30.41% 985 29.25%
4 399943 17.43% 600 17.81%
5 240670 10.49% 407 12.08%
Married 1297358 56.53% 2015 59.83%
Employment 1 1342689 58.51% 1960 58.19%
2 122905 5.36% 163 4.84%
3 829304 36.14% 1245 36.97%

Total individual income

$36,161,238,287

$129,039,467

17




W3 : Single step calibration with integration option (2)
W4 : Two step calibration with integration option (1)

W5 : Proposed calibration

In Figure 1, The distribution of the adjustment factors by iteration for
W5 is illustrated because the weights produced by the proposed method
are calculated through iteration. The figure shows that the values of the
adjustment factor converge to 1. This means that the degree of variation in

household weights by calibration is reduced by iteration.

1.2

et

08
|

0.8

iteration

Figure 1. Box plot of adjustment factor by iteration

In Figure 2, each panel is divided by iteration and each point is colored
by the household size(HHSZ) with a categorical variable. The figure shows
that the intermediate weights and the calibrated weights become similar by
iteration and household non-response by household size is also adjusted by

repeated weighting.
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Figure 2. Scatter plot of a(™ vs w by iteration
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Table 4 compares the distribution of weights calculated for each calibra-
tion method. The spread of weights can be assessed with simple descriptive
statistics min, man and max. The variation in weights can be also eval-
uated through the amount of variance increase due to unequal weighting
L, = 1+cv?, where cv, is the coefficient of variation in weights and the sum
of distance measurement G(w, d) in (2.5). At the household level, the sum of
weights is consistent with the number of households in the population and
the average weight of all households is equal to 488.0. Table 4 shows that the
variation of W1 and W4 which are identical is the smallest because they do
not consider individual characteristics in the calibration process. Among W2,
W3, W5 taking into account both household and individual characteristics as
auxiliary variables for calibration, W3 has the largest variation and W2 and
W5 distribute similarly. In the W3 method, 25% of the weights is negative.
At the individual level, the sum of W4 and W5 is slightly inconsistent with
the number of individuals. This inconsistency can be corrected with rescal-
ing. W3 and W4 have some negative weights. In terms of the variation in
weights, W1 using the least variable in weighting has the smallest variation,
and W3 has the largest variation among integrated weights. On the other
hand, the W2 and W5 can be found to have relatively small variations.

Figure 3 is a density plot of the distribution of household weights accord-
ing to each calibration method. W2, W3, W5 are more widely distributed
than W1 and W4, especially W3 is heavy-tailed. W2 and W5 in particular
are similarly distributed. Figure 4 is a density plot of the distribution of in-
dividual weights according to each calibration method. W3 is distributed in

a similar form to household weights. W1, W2 and W5 are similarly adjusted,

20



Table 4. Summary statistics of weights

Level | Method | Mean Sum Min Q1 Q2 Q3 Max Std Deff G(d,w)

House| W1 488.0 1207415  341.0 415.7 4189 4529 734.2 1279 1.07 7.90
-hold W2 488.0 1207415 127.3 298.8 490.9 649.3 1031.6 197.1 1.16 10.21
W3 488.0 1207415 -1142.0 -22.3 614.8 938.1 5134.2 603.4 2.53 43.52
W4 | 488.0 1207415  341.0 415.7 4189 4529 734.2 1279 1.07 7.90
W5 488.0 1207415 139.5 300.1 488.1 644.1 1075.2 197.6 1.16 10.23

Indivi| W1 681.4 2294898 474.6 605.5 671.8 743.2 1068.7 105.8 1.02  28.55
-dual W2 681.4 2294898 431.2 571.6 668.6 768.0 1180.0 135.7 1.04 29.56
W3 681.4 2294898 -1142.0 60.3 740.2 1082.9 5134.2 688.7 2.02  93.12
W4 | 682.4 2298233 -2231.0 501.8 732.9 834.2 3319.4 389.1 1.33 48.22
W5 682.1 2297367 4439 576.9 661.8 761.9 1238.4 136.3 1.04 29.67
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Figure 3. Density plot of household Figure 4. Density plot of individual
weights by methods weights by methods

especially 2 and 5 are more similar. W4 becomes more diverse for individual
characteristics under option (1).

Table 5 shows estimated totals and percentages of household variables
considered as auxiliary information. W1 to W5 estimate the variable equal
to the target population value.

As shown in Table 6, estimated totals and percentages based on W1, W2
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Table 5. Estimated total and percentage of household variables

[W1 W2 W3 W4 W5 |

Population Population | Weighted =~ Weighted
Variable Category total % count %
HHSZ 1 388470 32.17% 388470 32.17%
2 629353 52.12% 629353 52.12%
3 131801 10.92% 131801 10.92%
4 57791 4.79% 57791 4.79%

Total household income

$86,277,024,521

$86,277,024,521

and W3 are equal to the target population. W4 is slightly different in total

and percentage. W5 is different in total but the percentage is the same. As

mentioned before, the slight inconsistency in total estimates based on W5

can be resolved through rescaling.
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4.2 Simulation Study

We conducted the simulation study to assess the performance of the estima-
tors based on each weight. Under the same sampling design as the empirical
study, we selected 200 household samples of size 5000 each. we assumed the
same response model in Table 2.

The performance of the estimators was examined by the Chi-squared

statistic X?

~

G 2
= K- HALAC)
K WAL

g9=1 g

where }79 is the estimator for categorical variable with the number of groups
g.

Table 7 shows the distribution of the Chi-squared statistics of the esti-
mators based on wy. The estimators are for combinations of variables using
an auxiliary variable. This is the result of the individual level estimation for

the combination of the household variable HHSZ and the individual variables

SEX, AGE, RACE and EDUC. Overall, W5 is good in terms of the adequacy

of the total estimators and the W2 as well. W4 also estimates better than
W1 which produced by the non-integration method. The estimators based

on W3 are the most unstable except for SEX.
Table 8 reports X2 of the individual estimators for combination of the

household variable HHIC and the individual variables. W2 and W5 are also

good when assessing the adequacy of the total estimators. In case of W3, it
can be seen that the variation in the Chi-squared statistics is greatest.

Figure 5 shows a boxplot of X? presented in Tables 7 and 8.
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Table 7. X? of the individual estimators by combinations of auxiliary

variables (1)

Variable Statistic Method

Household | Individual X2 W1 W2 W3 W4 W5
HHSZ SEX Mean 23650 2044 12000 4312 2017
Min 3456 24 706 80 79

Q1 17020 882 6347 2066 909

Q2 22780 1571 9960 3511 1578

Q3 30200 2622 16120 5931 2630

Max 50990 8263 48910 16650 8331

AGE Mean 31310 10530 33890 27890 10030

Min 10260 2537 5951 5325 2835

Q1 25030 7002 23080 18380 6896

Q2 30300 9976 31000 26230 9389

Q3 37610 13620 41050 35440 12870

Max 65040 29920 91420 86750 25850

RACE Mean 29930 8891 35260 10790 8864

Min 10510 557 6377 876 476

Q1 22890 4514 22480 5885 4487

Q2 28610 7820 31500 9583 7385

Q3 36820 12450 44500 13870 12110

Max 57680 26340 153600 35150 24630

EDUC Mean 31450 11080 35460 19040 10790

Min 8189 1789 5316 4363 1395

Q1 24640 7534 24220 13890 7669

Q2 31190 10780 32700 17810 10230

Q3 37640 13820 43660 23190 13180

Max 57700 29340 96040 49640 27540
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Table 8. X? of the individual estimators by combinations of auxiliary

variables (2)

Variable Statistic Method

Household | Individual X2 W1 W2 W3 W4 W5
HHIC SEX Mean 6931 6373 16240 8134 6376
Min 1126 809 1775 1576 858

Q1 4441 4190 9232 5702 4097

Q2 6257 5836 14020 7741 5913

Q3 9070 8143 19950 9884 8148

Max 20990 17660 53910 27010 17380

AGE Mean 18710 17680 43900 21440 17620

Min 6641 5465 14840 7646 5356

Q1 15010 13960 31050 16530 13890

Q2 18350 17240 41550 20690 17280

Q3 21750 20830 55230 24820 20540

Max 34970 36620 90220 42460 35980

RACE Mean 15320 14860 43990 15890 14980

Min 3655 3561 15110 2777 3730

Q1 10760 10170 31220 11020 10700

Q2 14620 14360 41180 14790 14550

Q3 18950 18350 53310 19110 18660

Max 37560 36610 115000 40490 36030

EDUC Mean 18020 17400 44430 23060 17400

Min 4236 4148 13720 7250 3281

Q1 13390 12810 32450 17080 12910

Q2 17100 16190 42660 22150 16050

Q3 22070 21990 54180 27020 21760

Max 37240 39950 100300 62140 39940
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Figure 5. Box plot of X2 of the individual estimators

We examined the relative bias(RB) (%) and the relative root mean squared
errors(RRMSE) (%) for comparisons of each method for variables not used as

auxiliary information.
e RB(%) = (E(Y) —Y)/Y x 100; relative bias
e MSE = E[(Y —Y)?] = V(Y) + Bias® ; mean squared error
e RMSE =+/MSE ; root mean squared error

e RRMSE(%) = RMSE]/Y x 100 ; relative root mean squared error

In addition, the distribution of estimators for each method is expressed

by the box plot.
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Table 9. Relative bias and root mean squared error of estimators for
household level variables

Variable Statistic W1 W2 W3 W4 W5
Hispanic RB(%) -14.5 -7.6 1.7 -145 7.7
present RRMSE(%) | 15.30 9.25 8.72  15.30 9.27
Linguistically | RB(%) 9.1 -0.6 3.0 -9.1 -0.7
isolated RRMSE(%) | 13.83 1128 1590 13.83 11.35

Table 9 reports the relative bias and the relative root mean squared error
of the household level estimators. For Hispanic present, W3 has the least RB
and RRMSE, but the variation of the estimators is somewhat large. In case
W1 and W4, there is the overall underestimation. W2 and W5 are slightly
underestimated and have a moderate variation than W3. For Lilnguistically
isolated, RB is the largest for W1 and W4. W3 has the largest RRMSE, W2
has the smallest RRMSE, and W5 is the next smallest.

In the same manner, Figure 6 and 7 show the distribution of each es-
timator by methods. The horizontal line of the box plot means the known
population value.

Table 10 reports the relative bias and the relative root mean squared

error of the individual level estimators. W5 is the smallest RB when Married

and Total individual income are estimated, and RRMSE is the smallest when
Married, Employed, and Total individual income are estimated. W3 is the
smallest RB for Employed, Unemployed, and Not in labor force, but the
RRMSE is large overall because the variance of the estimators is large. W2

has the smallest RRMSE in Unemployed, Not in labor force.
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Table 10. Relative bias and root mean squared error of estimators for

individual level variables

Variable Statistic W1 W2 W3 W4 W5
Married RB(%) 2.95 025 -0.46  -0.25 0.24

RRMSE(%) | 335 139 226 145  1.39
Employment RB(%) 0.41 0.20 0.06  -0.27 0.17
- Employed RRMSE(%) | 1.39 132 100 162  1.32
Employment RB(%) -2.50  -1.07  -0.33 0.34  -1.02
- Unemployed RRMSE(%) 8.48 834 12.29 9.30 8.40
Employment RB(%) -0.30  -0.16  -0.05 0.49  -0.14
- Not in labor force RRMSE(%) 2.03 1.98 2.83 2.40 2.00
Total individual income | RB(%) 1.50 0.04 0.11 -143 -0.01

RRMSE(%) 2.61 1.06 1.35 2.26 1.04

In Figure 8, W2, W4 and W5 deliver quite stable estimators in the sense
that RB and RRMSE are small in estimating the Married variable. The esti-
mators using W3 have the greatest variation and W1 tends to overestimate.

In Figure 9, the estimators based on W2 and W5 are similarly calculated.
They have the small variance and the bias. For the estimators based on W3,
the bias is the smallest, but the variance is the greatest.

In Figure 10, W3 and W4 have small RB, but the variation of estimators
is greater than the others. W2 and W5 also produce similar estimators.

In Figure 11, The estimators based on W3 produce the best results con-
sidering RB, although the range of estimators is wide. The next best results
are produced by W5, W2, W1 and W4.

The Figure 12 are presented that W2 and W5 well estimate the variable
(Total individual income). The estimators based on W1 tend to be overesti-

mated and have the widest range.
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Figure 8. Box plot of the estimators (Married) by methods

To summarize, in estimating the joint distribution of households and indi-
vidual variables used in the calibration process, W5 estimates the population
value most accurately. In estimating variables that were not used as auxiliary
information, W3 has a small RB and a large variation of estimators in many
cases. W2 and W5 produce efficient estimates in terms of MSE considering

bias and variance.
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5. Conclusions

In household surveys, estimates at different levels are needed according to
the circumstances. Estimates for each level can be further improved when
household and individual weights are well calculated to reflect each other’s
multivariate structures. Therefore, the objective of our study was to produce
improved weights by using auxiliary information of both levels.

In this paper, we proposed the iterative composite fitting approach that
repeats the calibration at the household and individual level in an effort to
maintain a structural relationship between them. The existing calibration
methods for integrated weights in the literature and proposed method were
compared and analyzed using both empirical study and simulation study.

Under our sampling design and response mechanism, we have identified
that the proposed method and the single step calibration with integration
option (1) were similarly distributed. The difference between the two methods
is that the single step calibration can only be calculated when the joint
distribution of households and individuals is available when applying raking
ratio adjustment as a calibration method, but the proposed method can
be produced even when the joint distribution can not be accessed. Plus, the
proposed method differs in that it does not redefine auxiliary information but
uses auxiliary information for each level as it is. Our method is calibrated at
each level, so it is possible to adjust non-response at each level. Though Non-

integrated calibration produced weights with the smallest variation, variance
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of estimators based on the weights could be increased. Single step calibration
with integration option (2) yielded weights with wide range and negative.
This in turn increased inefficiency in the estimation. Two step calibration
with integration option (1) was unable to produce the household weights
reflected the auxiliary information of the individual level. Individual weights
computed by two step calibration were negative and wide because the option
(1) must be keep in the calibration process.

For the future study, our simulation will be extended to more practical
situations where stratified multistage sample designs is used. Weight trim-
ming can also be considered to solve negative weights for our study. Further

research on the estimation of variance for the proposed weights is needed.
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Appendix.
R Code

library(sas7bdat)
library(survey)
library(sampling)

library(questionr)

# ACS2012 ( hh level )
hh=read.sas7bdat ("F:\\===\\data\\hh1205.sas7bdat")
hh$HHSZ<- replace(hh$num_adults,hh$num_adults>=4,4)
hh$HHIC<-
ifelse(-20000<=hh$HHINCOME&hh$HHINCOME<=19999,1,
ifelse(20000<=hh$HHINCOME&hh$HHINCOME<=39999, 2,
ifelse(40000<=hh$HHINCOME&hh$HHINCOME<=64999, 3,
ifelse(65000<=hh$HHINCOME&hh$HHINCOME<=99999,4,5))))

# ACS2012 ( ps level )
ps=read.sas7bdat ("F:\\=F\\data\\ps1205.sas7bdat")
PS$RACE <- ifelse(ps$RACE>=3,3,ps$RACE)
ps$EDUC <- ifelse(1<=ps$EDUCD&ps$EDUCD<=61,1,
ifelse (63<=ps$EDUCD&ps$EDUCD<=64, 2,
ifelse (65<=ps$EDUCD&ps$EDUCD<=99,3,
ifelse (100<=ps$EDUCD&ps$EDUCD<=110,4,5))))

ps$AGE <- ifelse (18<=ps$AGE&ps$AGE<=29,1,

37



ifelse (30<=ps$AGE&ps$AGE<=44,2,
ifelse (45<=ps$AGE&ps$AGE<=54,3,

ifelse (55<=ps$AGE&ps$AGE<=64,4,5))))

ps$HHSZ<- replace(ps$num_adults,ps$num_adults>=4,4)
ps$INCTOTE<~
ifelse(ps$INCTOT<=9999,1,
ifelse (10000<=ps$INCTOT&ps$INCTOT<=19999,2,
ifelse(20000<=ps$INCTOT&ps$INCTOT<=32749,3,

ifelse (32750<=ps$INCTOT&ps$INCTOT<=49999,4,5))))

# pop totals of hh var

N_hh <- nrow(hh)

x.HHSZ <- table(hh$HHSZ) [-1]

x.HHINCOME <- sum(hh$HHINCOME)

pop-hh_wl <- c(’(Intercept)’ = N_hh,
HHSZ = x.HHSZ,

HHINCOME = x.HHINCOME)

# pop totals of ps var

N_ps <- nrow(ps)

x.SEX <- table(ps$SEX) [-1]

x.RACE <- table(ps$RACE) [-1]

x.EDUC <- table(ps$EDUC) [-1]

x.AGE <- table(ps$AGE) [-1]

pop.ps_wl <- c(’(Intercept)’ = N_ps,
SEX = x.SEX,

RACE = x.RACE,
EDUC

x.EDUC,
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AGE = x.AGE

pop.ps_w2<- c(
>(Intercept)’ = N_ps,
SEX = x.SEX,

RACE

x.RACE,
EDUC

x.EDUC,
AGE = x.AGE,
HHSZ=table (hh$HHSZ) ,

HHINCOME <- sum(hh$HHINCOME)

pop.hh_w3<- c(
>(Intercept)’ = N_hh,

SEX = table (ps$SEX),

RACE = x.RACE,
EDUC = x.EDUC,
AGE = x.AGE,
HHSZ=x .HHSZ,

HHINCOME=sum (hh$HHINCOME)

)

pop.hh_w4 <- c(’(Intercept)’ = N_hh,
HHSZ = x.HHSZ,
HHINCOME=sum(hh$HHINCOME)

)

pop.hh_w5 <- c(’(Intercept)’ = N_hh,
HHSZ = x.HHSZ,

HHINCOME=sum(hh$HHINCOME)
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)
pop.ps_wb <- c(’(Intercept)’ = N_ps,
SEX = x.SEX,
RACE

x.RACE,
EDUC

x.EDUC,
AGE = x.AGE

set.seed(2018200)

n=1

I<-1list()
w_hh_1<-1ist();w_ps_1<-list();w_hh_2<-1list();w_ps_2<-1list();
w_hh_3<-1ist () ;w_ps_3<-list();w_hh_4<-1list();w_ps_4<-list();

w_hh_5<-1ist () ;w_ps_5<-1list () ;sam_hh<-1ist () ;sam_ps<-list()

repeatq{

B g
# randomly select 5000 households

n_hh <- 5000

p_hh <- rep(n_hh/N_hh,N_hh)
samh <- sample(1:N_hh, n_hh)
samdat_hh <- hh[samh, ]

samdat_hh$d_hh <- 1/p_hh[samh]

# non-response model
h_respro=1/(1+exp(-(-0.5*(samdat_hh$HHSZ==1)
-0.7*(samdat_hh$HHSZ>=3)
+0.1*1log (samdat_hh$HHINCOME+20000))))
h_responded<-runif (5000)<h_respro

samdat_hh<-samdat_hh[h_responded,]
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samp<-merge (samdat_hh[,c(1,11)],ps,by="SERIAL’,all.x=T)

ps_respro=1/(1+exp(-(-0.2* (samp$SEX==1) -0.5% (samp$AGE==2)
+0.25% (samp$RACE==1)-0.4* (samp$EDUC==1)
+0. 1% (samp$EDUC==4) +0 . 3* (samp$EDUC==5)

)))

ps_responded<-runif (length(ps_respro))<ps_respro

# respondents

samdat_ps<-samp [ps_responded, ]

samdat_hh <- samdat_hh[with(samdat_hh,order (SERIAL)),]

samdat_ps <- samdat_ps[with(samdat_ps,order (SERIAL)),]

samhh_<-data.frame(unique (samdat_ps$SERIAL)

,rep(1,length(unique (samdat_ps$SERIAL))))

colnames (samhh_)<-c("SERIAL","I")

#responded household

samdat_hh<-merge (samhh_,samdat_hh,by=>SERIAL’,all.x=T) [,-2]

samdat_ps$d_ps<-samdat_ps$d_hh

HHBBHHHHHHH R R R R R R R

# wl
acs.dsgn_hh <- svydesign(ids = ~0, # no clusters
strata = NULL, # no strata
data = data.frame(samdat_hh),
weights = ~ d_hh)
hh.lin_wl <- calibrate(design = acs.dsgn_hh,
formula = ~as.factor(HHSZ) + HHINCOME,
population = pop.hh_wil,

calfun="linear")

41



wt_hh_1<-weights(hh.lin_w1l)

acs.dsgn_ps <- svydesign(ids = 0, # no clusters
strata = NULL, # no strata
data = data.frame(samdat_ps),

weights = ~ d_ps)

ps.lin_wl <- calibrate(design = acs.dsgn_ps,
formula = “as.factor(SEX) + as.factor(RACE)
+ as.factor (EDUC)
+ as.factor(AGE),
population = pop.ps_wl,

calfun="linear")

wt_ps_1 <- weights(ps.lin_wl)

HESHHBHFHHHFHHBHHFRA SRR B HBR SRR B H RS H RS HH RS H AR R R AR RS

HHFHHH R R R R
# w2

samdat_ps_w2<-samdat_ps
samdat_ps_w2$HHSZ<- replace(samdat_ps$num_adults
,samdat_ps$num_adults>=4,4)

samdat_ps_w2$HHIC<-
ifelse(-20000<=samdat_ps$HHINCOME&samdat_ps$HHINCOME<=19999,1,
ifelse(20000<=samdat_ps$HHINCOME&samdat _ps$HHINCOME<=39999, 2,
ifelse (40000<=samdat_ps$HHINCOME&samdat_ps$HHINCOME<=64999,3,
ifelse(65000<=samdat_ps$HHINCOME&samdat_ps$HHINCOME<=99999,4,5))))

samdat_ps_w2<-transform(samdat_ps_w2,
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HHSZ_1=ifelse(HHSZ==1,1,0),
HHSZ_2=ifelse(HHSZ==2,1,0),
HHSZ_3=ifelse (HHSZ==3,1,0),
HHSZ_4=ifelse(HHSZ==4,1,0)
)
samdat_ps_w2<-transform(samdat_ps_w2,
HHIC_1=ifelse(HHIC==1,1,0),
HHIC_2=ifelse (HHIC==2,1,0),
HHIC_3=ifelse(HHIC==3,1,0),
HHIC_4=ifelse(HHIC==4,1,0),
HHIC_6=ifelse(HHIC==5,1,0))
samdat_ps_w2$HHINCOME<-samdat_ps$HHINCOME/samdat_ps$num_adults
for (i in 25:28 ){
samdat_ps_w2[,i]<-samdat_ps_w2[,i]/samdat_ps_w2$num_adults
3
for (i in 29:33 ){
samdat_ps_w2[,i]<-samdat_ps_w2[,i]/samdat_ps_w2$num_adults
}
acs.dsgn_ps <- svydesign(ids = ~0, # no clusters
strata = NULL, # no strata
data = data.frame(samdat_ps_w2),
weights = ~ d_ps)
# Compute ps GREG weights
ps.lin_w2 <- calibrate(design = acs.dsgn_ps,
formula = “as.factor(SEX)+ as.factor (RACE)
+ as.factor (EDUC)
+ as.factor (AGE)
+HHSZ_1+HHSZ_2+HHSZ_3
+HHSZ_4+HHINCOME,
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population = pop.ps_w2,

calfun="linear")

samdat_ps_w2$wt_ps_2<-weights(ps.lin_w2)
wt_ps_2<-weights(ps.lin_w2)
wt_hh_2 <- aggregate(samdat_ps_w2$wt_ps_2

,by=list(samdat_ps_w2$SERIAL) ,sum) [,2] /samdat_hh$num_adults

HESHHBHFHHHFHHBHHHBH SR BB HHH B SH BB GHH B R AR SHR R R RS

HESHHBHFHHHFHHBHHHBHFHHBHHF RS H BB H B H AR AR R RS

# w3

samdat_ps_w3<-samdat_ps

samdat_ps_w3<-transform(samdat_ps_w3,
SEX_1=ifelse(SEX==1,1,0),
SEX_2=ifelse(SEX==2,1,0))

samdat_ps_w3<-transform(samdat_ps_w3,
AGE_1=ifelse(AGE==1,1,0),
AGE_2=ifelse(AGE==2,1,0),
AGE_3=ifelse(AGE==3,1,0),
AGE_4=ifelse(AGE==4,1,0),
AGE_5=ifelse(AGE==5,1,0)

)

samdat_ps_w3<-transform(samdat_ps_w3,
RACE_1=ifelse(RACE==1,1,0),
RACE_2=ifelse(RACE==2,1,0),
RACE_3=ifelse(RACE==3,1,0)

)

samdat_ps_w3<-transform(samdat_ps_w3,
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EDUC_1=ifelse(EDUC==1,1,0),
EDUC_2=ifelse(EDUC==2,1,0),
EDUC_3=ifelse(EDUC==3,1,0),
EDUC_4=ifelse(EDUC==4,1,0),
EDUC_5=ifelse (EDUC==5,1,0)
)
head (samdat_ps_w3,7)
samdat_hh_w3<-samdat_hh
SEX_1<-aggregate(as.numeric(samdat_ps_w3$SEX_1)
, by=list(samdat_ps_w3$SERIAL), FUN=sum) [,2]
SEX_2<-aggregate(as.numeric(samdat_ps_w3$SEX_2)
, by=list(samdat_ps_w3$SERIAL), FUN=sum)[,2]
AGE_1<-aggregate(as.numeric(samdat_ps_w3$AGE_1)
, by=list(samdat_ps_w3$SERIAL), FUN=sum)[,2]
AGE_2<-aggregate (as.numeric(samdat_ps_w3$AGE_2)
, by=list(samdat_ps_w3$SERIAL), FUN=sum) [,2]
AGE_3<-aggregate(as.numeric(samdat_ps_w3$AGE_3)
, by=list (samdat_ps_w3$SERIAL), FUN=sum) [,2]
AGE_4<-aggregate(as.numeric(samdat_ps_w3$AGE_4)
, by=list(samdat_ps_w3$SERIAL), FUN=sum) [,2]
AGE_b<-aggregate (as.numeric(samdat_ps_w3$AGE_5)
, by=list(samdat_ps_w3$SERIAL), FUN=sum) [,2]
RACE_1<-aggregate (as.numeric(samdat_ps_w3$RACE_1)
, by=list(samdat_ps_w3$SERIAL), FUN=sum) [,2]
RACE_2<-aggregate(as.numeric(samdat_ps_w3$RACE_2)
, by=list(samdat_ps_w3$SERIAL), FUN=sum) [,2]
RACE_3<-aggregate(as.numeric(samdat_ps_w3$RACE_3)

, by=list(samdat_ps_w3$SERIAL), FUN=sum) [,2]
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EDUC_1<-aggregate(as.numeric(samdat_ps_w3$EDUC_1)

, by=list(samdat_ps_w3$SERIAL), FUN=sum) [,2]
EDUC_2<-aggregate (as.numeric(samdat_ps_w3$EDUC_2)

, by=list(samdat_ps_w3$SERIAL), FUN=sum) [,2]
EDUC_3<-aggregate (as.numeric (samdat_ps_w3$EDUC_3)

, by=list(samdat_ps_w3$SERIAL), FUN=sum) [,2]
EDUC_4<-aggregate (as.numeric (samdat_ps_w3$EDUC_4)

, by=list(samdat_ps_w3$SERIAL), FUN=sum) [,2]
EDUC_5<-aggregate (as.numeric(samdat_ps_w3$EDUC_5)

, by=list (samdat_ps_w3$SERIAL), FUN=sum) [,2]
dummy<-data.frame(SEX_1,SEX_2,AGE_1,AGE_2,AGE_3,AGE_4,AGE_5

,RACE_1,RACE_2,RACE_3,EDUC_1,EDUC_2,EDUC_3,EDUC_4,EDUC_5)

samdat_hh_w3[, 12:26] <-dummy

acs.dsgn_hh <- svydesign(ids = ~“0, # no clusters
strata = NULL, # no strata
data = data.frame(samdat_hh_w3),
weights = 7 d_hh)
hh.lin_w3 <- calibrate(design = acs.dsgn_hh,
formula = “SEX_1+SEX_2+RACE_2+RACE_3
+EDUC_2+EDUC_3+EDUC_4+EDUC_5
+AGE_2+AGE_3+AGE_4+AGE_5
+as.factor (HHSZ)+HHINCOME,
population = pop.hh_w3,

calfun="linear")

samdat_hh_w3$wt_hh_3<-weights(hh.lin_w3)
wt_hh_3<-weights(hh.lin_w3)

wt_ps_3<-(merge (samdat_hh_w3[,c(1,27)],samdat_ps_w3,key="CLUSTER",all.y=T)) [,2]
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samdat_ps_w3$wt_ps_3<-wt_ps_3

HHBBHHHHHHH R R R R R R R

S s s s s s s s 2
# wé
acs.dsgn_hh <- svydesign(ids = ~0, # no clusters
strata = NULL, # no strata
data = data.frame(samdat_hh),
weights = ~ d_hh)
hh.1lin w4 <- calibrate(design = acs.dsgn_hh,
formula = ~ as.factor (HHSZ)+HHINCOME,
population = pop.hh_w4,

calfun="linear")

wt_hh_4<-weights(hh.lin_w4)

constr<-wt_hh_4*samdat_hh$num_adults
acs.dsgn_ps <- svydesign(ids = ~0, # no clusters
strata = NULL, # no strata
data = data.frame(samdat_ps),
weights = 7 d_ps)
x.constr <- constr
pop.ps_w4 <- c(constr = x.constr,
SEX = x.SEX,
RACE

x.RACE,

EDUC = x.EDUC,
AGE = x.AGE

)

# Compute ps GREG weights

ps.lin_w4 <- calibrate(design = acs.dsgn_ps,
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formula = “as.factor (SERIAL) + as.factor(SEX)
+ as.factor(RACE) + as.factor (EDUC)

+ as.factor (AGE)+O0,

population = pop.ps_w4,

calfun="linear")

wt_ps_4 <- weights(ps.lin_w4)

HHHBHHHHHHH B R R R R R

it S
# wb

iter=1

c_j <- data.frame(rep(0,dim(samdat_hh) [1])) # adjustment factor
colnames(c_j)<- c("V1i")
w_hh<-data.frame(Vi=rep(0,nrow(samdat_hh)))
w_ps<-data.frame(Vi=rep(0,nrow(samdat_ps)))
tw_hh<-data.frame(Vi=rep(0,nrow(samdat_hh)))

tw_ps<-data.frame(Vi=rep(0,nrow(samdat_ps)))

repeatq{
acs.dsgn_ps <- svydesign(ids = "0, # no clusters
strata = NULL, # no strata
data = data.frame(samdat_ps),
weights = ~ d_ps)
ps.lin_wb <- calibrate(design = acs.dsgn_ps,
formula = “as.factor(SEX) + as.factor(RACE)
+ as.factor (EDUC)
+ as.factor(AGE),

population = pop.ps_wb,
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calfun="linear")

samdat_ps$twt_ps <- weights(ps.lin_wb)
samdat_hh$twt_hh <- aggregate(samdat_ps$twt_ps
,by=list (samdat_ps$SERIAL),sum) [,2] /samdat_hh$num_adults
tw_hh[,iter] <- samdat_hh$twt_hh
tw_ps[,iter] <- samdat_ps$twt_ps
acs.dsgn_hh <- svydesign(ids = “0, # no clusters
strata = NULL, # no strata
data = data.frame(samdat_hh),
weights = ~ twt_hh)
hh.lin_w5 <- calibrate(design = acs.dsgn_hh,
formula = “as.factor (HHSZ) + HHINCOME,
population = pop.hh_w5,
calfun="linear")

samdat_hh$wt_hh<-weights(hh.lin_w5)

if (iter==1) {

samdat_ps <- merge(samdat_hh[,c(1,12,13)]
,samdat_ps,key="CLUSTER",all.y=T)

} else {

samdat_ps <- merge(samdat_hh[,c(1,12,13)]
,samdat_ps[,-c(2,3)],key="CLUSTER",all.y=T)

}

samdat_ps$wt_ps <- samdat_ps$wt_hh*samdat_ps$twt_ps/samdat_ps$twt_hh

c_jl,iter] <- samdat_hh$wt_hh/samdat_hh$twt_hh
w_hh[,iter] <- samdat_hh$wt_hh

w_ps[,iter] <- samdat_ps$wt_ps
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if ((max (abs(samdat_ps$d_ps-samdat_ps$wt_ps))<0.00001) | iter>=100) {break}
iter<-iter+l1

samdat_ps$d_ps <- samdat_ps$wt_ps

wt_hh_5<-w_hh[,dim(w_hh) [2]]

wt_ps_b<-w_ps[,dim(w_hh) [2]]

I[[n]]l<-iter
w_hh_1[[n]]<-wt_hh_1
w_ps_1[[n]]<-wt_ps_1
w_hh_2[[n]]<-wt_hh_2
w_ps_2[[n]]<-wt_ps_2
w_hh_3[[n]]<-wt_hh_3
w_ps_3[[n]]<-wt_ps_3
w_hh_4[[n]]<-wt_hh_4
w_ps_4[[n]l<-wt_ps_4
w_hh_5[[n]]<-wt_hh_5
w_ps_5[[n]]l<-wt_ps_5
sam_hh[[n]]<-samdat_hh
sam_ps[[n]]<-samdat_ps
if (n==200){break}

n<-n+1
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