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ABSTRACT 

다중모델앙상블과 딥러닝을 이용한 북극권 해빙면적비 근미래 예

측 

  

김 지 원 

  

부경대학교 대학원 공간정보시스템공학전공 

  

 

요   약 

북극의 온난화는 해빙의 감소로, 해빙의 감소는 다시 북극권의 온난화로 이어진다. 

위성 기반 북극의 해빙과 가속화되는 온난화와 관련된 기후 요소 사이의 관계를 

밝히기 위해 많은 연구가 수행되었다. 하지만 공간 해상도가 낮은 General Circulation 

Model (GCM) 자료를 사용하는 선형 모델링은 복잡성 또는 비선형 문제에 대한 대응이 

불가능하다. 또한 시계열 기법은 한 단계 앞의 예측에는 효과적이지만 여러 단계 앞을 

예측하는 경우에는 불확실성이 높아지기 때문에 향후 10 년 또는 20 년의 예측에는 

적합하지 않다. 이에 따라 본 연구에서는 다중 모델 앙상블을 이용한 딥러닝 기법을 

적용하여 향후 북극 해빙면적비 예측에 대한 새로운 접근법을 제시하고자 한다. GCM 

대신 고해상도로 제공되는 Regional Climate Model (RCM) 자료를 사용하였으며, RCM 

앙상블은 단일 RCM 에서 발생할 수 있는 불확실성을 최소화하기 위해 Bayesian Model 

Averaging (BMA) 을 통해 산출하였다. 또한 변수별 RCM 의 불확실성을 최소화하기 

위해 시간적 및 공간적 변화를 고려한 BMA2 기법을 통해 입력 자료의 정확도를 

향상시켰다. 해빙면적비와 기후 변수 간의 비선형적 관계를 다루고 향후 10 년에서 

20 년 동안의 근미래 예측을 위해 Deep Neural Network (DNN)을 사용하였다. 최적의 

계층구조, 손실 함수, 최적화 알고리즘 및 활성화 함수를 채택하여 최적화된 DNN 

모델을 통하여 SIC 예측의 정확도를 향상시켰다. DNN 모델이 BMA2 와 결합되었을 

때의 상관계수는 0.888 로 매우 높은 정확도를 보였으며, 본 연구를 통해 근미래 

북극의 해빙 변화에 활용하기 위한 기술을 제공할 수 있을 것으로 기대된다. 
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1. Introduction 

 

The Arctic, the region most sensitive to global climate change, is 

rapidly warming. The annual increase in Arctic temperatures over the past 

few decades is almost double that in other parts of the world. Warming in 

the Arctic will continue, and the rate will be greater than the global 

average warming rate [IPCC, 2014]. This warming of the Arctic leads to 

a decrease in sea ice, which in turn results in further warming of the Arctic 

[Curry et al., 1995]. Generally, sea ice plays an important role in 

maintaining the Earth’s average temperature by reflecting solar energy. 

Due to warming, however, the area covered by sea ice decreases and more 

solar energy is absorbed by the Arctic Ocean rather than reflected to the 

atmosphere. Hence, rising seawater temperature delays the growth of sea 

ice, and the resulting dark seas with low albedo are exposed to solar 

radiation for a longer time. Because such changes in Arctic sea ice 

interfere with ocean and atmospheric circulation and have global impacts, 

accurate observation and prediction of sea ice are essential to 

understanding climate change. 

Many studies have been conducted to investigate the relationships 
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between the decrease in Arctic sea ice and climatic factors associated with 

accelerated warming, as well as to build statistical models for predicting 

sea ice variations. Stroeve et al. [2008] found a relationship between sea 

ice concentration (SIC, the fraction of sea ice in a pixel) and 

meteorological variables such as near-surface temperature and 

atmospheric pressure in winter using multiple linear regression (MLR). 

Tivy et al. [2011] estimated the Julys SIC values between 1971 and 2005 

for Hudson Bay using canonical correlation analysis using sea-surface 

temperature, geopotential height, and near-surface air temperature. Drobot 

et al. [2006] used an MLR method to predict sea ice extent (SIE, the sum 

of the area of pixels with SIC over 15%) in pan-Arctic regions in summer 

using explanatory variables such as SIC, sea level, surface temperature, 

surface albedo, and longwave radiation flux between 1982 and 2004. 

Walsh [1977] used empirical orthogonal functions (EOF) as another 

approach, using sea-level pressure and surface air temperature as 

predictors of ice extent for all months of the year. Kim et al. [2016] used 

a seasonal EOF to derive the principal components of the first month of 

the forecast and then estimated the SIC and SIE of the Arctic for the 

following 1–12 months from January 1980 to August 2015. Additionally, 

Ahn et al. [2014] constructed an autoregressive integrated moving average 

(ARIMA) model for prediction of variation of SIC using reanalysis data 
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as explanatory variables, including skin temperature, sea-surface 

temperature, total column liquid water, total column water vapor, 

instantaneous moisture flux, and low cloud cover. Chi and Kim [2017] 

used a recurrent neural network (RNN) with SIC as an input variable to 

predict the monthly SIC of the Arctic in 2015. 

 Most previous studies have employed linear or time-series models to 

examine the relationship between sea ice and climatic factors. However, 

linear modeling methods such as MLR cannot sufficiently deal with 

problems of complexity or non-linearity [Stroeve et al., 2008; Drobot et 

al., 2006]. Time-series techniques such as ARIMA and RNN are effective 

for one-step-ahead forecasting, but are not appropriate for future 

prediction of 10–20 years due to increasing uncertainty when forecasting 

multiple steps ahead. In addition, EOF predictions with a lead time of 1 or 

2 months appeared favorable, but the prediction accuracy decreased as the 

lead time increased. Most previous studies have extracted explanatory 

variables from general circulation models (GCMs) or reanalysis data with 

spatial resolution of up to 300 km. The resolution of satellite SIC data is 

generally 25 km, meaning that as many as 144 SIC pixels correspond to 

one grid point of the explanatory variable, which can result in spatial 

incompatibility problems. 

This paper describes a new approach for near-future prediction of Arctic 
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SIC based on a deep learning method implemented with a multi-model 

ensemble. For optimization of input data, we used regional climate model 

(RCM) data provided in higher resolution, rather than a GCM. The RCM 

ensemble was produced through Bayesian model averaging (BMA) [10] 

to minimize the uncertainty that can arise from a single RCM. Using the 

RCM ensemble data as input variables, a deep neural network (DNN) 

model was built to deal with non-linearity in SIC changes and to enable 

predictions for 10– 20 years in the future. Due to optimal regularization 

and intensive optimization in a deep network structure, DNN can 

overcome the local minima problem of the classic multi-layer perceptron 

(MLP) neural network method and the overfitting problem of traditional 

machine learning methods. Our implementation DNN model aims to 

improve the accuracy of SIC prediction by adopting the best-fitted layer 

structure, loss function, optimizer, and activation function. Moreover, 

prediction accuracy was greatly improved by using the BMA in a spatially 

and temporally adaptive manner, which took into consideration of 

temporal and spatial variations of individual RCMs. 
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2. Materials 

 

2.1. Study Area 

 

The National Snow and Ice Data Center (NSIDC) provides a region 

mask for the Arctic, which includes nine seas: The Seas of Okhotsk and 

Japan, Bering Sea, Hudson Bay, Baffin Bay/Davis Strait/Labrador Sea, 

Greenland Sea, Kara and Barents Seas, Arctic Ocean, Canadian 

Archipelago, and Gulf of St. Lawrence. We selected the Kara and Barents 

Seas as our study area, and 4,076 grid points at a resolution of 25 km were 

extracted from the region mask. The Kara Sea is part of the Arctic Ocean 

on the north coast of Russia and is located between Novaya Zemlya and 

Severnaya Zemlya. The Barents Sea is surrounded by the Svalbard Islands 

to the northwest, the Franz Josef Islands to the northeast, and the Novaya 

Zemlya Islands to the east. The sea ice area of the Kara and Barents Seas 

usually begins to decrease sharply between June and August, reaching its 

minimum in September, and begins to freeze in October, peaking in April. 

The Kara and Barents Seas represent a key area of Arctic sea ice shift 

[Yang et al., 2016] as warm Atlantic waters flow into the Arctic Ocean 
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[Schauer et al., 2002]. The Kara and Barents Seas have a highly variable 

SIC which is strongly influenced by the North Atlantic oscillation 

[Sorteberg and Kvingedal, 2006]. Such changes in sea ice play an 

important role in establishing a new relationship between the atmosphere 

and sea ice under conditions of Arctic warming [Yang and Yuan, 2014]. 

In particular, the Barents Sea is an important area affecting the variation 

of the entire Arctic air-ice-ocean system [Smedsrud et al., 2013]. Sato et 

al. [2014] stated that clear link between the Barents Sea ice coverage and 

the cold Eurasian winters are associated with part of a teleconnection 

pattern, and the remote planetary wave atmospheric response to the 

poleward shift of a sea surface temperature over the Gulf Stream would 

be amplified over the Barents Sea region via interacting with the sea ice 

anomaly, promoting the warm Arctic and cold Eurasian pattern. In 

addition, the sea ice loss of the Kara and Barents Seas corresponds to the 

Ural blocking and North Atlantic Oscillation+ (NAO+) at the same time, 

and is followed by the warm Arctic–cold Eurasian (WACE) pattern. The 

existence of a long-lived UB event can lead to additional warming of the 

Kara and Barents Seas through the emergence of a persistent quasi-

biweekly WACE (QB-WACE) anomaly event and amplifies the warming 

of the Kara and Barents Seas before UB begins to establish a strong winter 
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(DJF) average WACE pattern, resulting in a loss of sea ice to the Kara and 

Barents Seas [Luo et al., 2016]. 

 

Figure 1. Map of the study area provided by National Sea and Ice Data 

Center (NSIDC). 

  

a

a

a

a
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2.2. Sea Ice Concentration Data 

 

We used the Climate Data Record (CDR) dataset of passive 

microwave sea ice concentration provided by the National Oceanic and 

Atmospheric Administration (NOAA) NSIDC. Microwave sensors play 

an important role in monitoring sea ice conditions during polar nights and 

in the presence of clouds when optical and infrared sensors fail. The 

Electrically Scanning Microwave Radiometer (ESMR) developed in 1973 

was the first microwave sensor to monitor sea ice and was replaced by the 

Scanning Multichannel Microwave Radiometer (SMMR) in 1978. From 

1987 to 2007, the Special Sensor Microwave Imager (SSM/I) was 

operated for the F8, F11, and F13 flights of the Defense Meteorological 

Satellite Program (DMSP). SSM/I was replaced by SSMIS (Special 

Sensor Microwave Imager / Sounder) onboard DMSP F17. The SMMR, 

SSM/I, and SSMIS observational records have provided continuous SIE 

and SIC values for over 30 years [Serreze and Barry, 2014] (Table 1). The 

NASA Goddard Space Flight Center (GSFC) provides merged sea ice 

concentration data, using the NOAA CDR algorithm to produce consistent 

data over a long period of time. The product is a rule-based combination 

of SIC estimates from two well-established algorithms: the NASA Team 
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algorithm [Cavaliere et al., 1984] and the NASA Bootstrap algorithm 

[Comiso, 1986]. These products are provided in the form of monthly 

average and have a spatial resolution of 25 km with a polar stereographic 

projection centered on the North Pole (with central meridian of 45°W and 

standard parallel of 70°N). The SIC value in this product refers to the 

fraction of sea ice within a certain area. A value of 0 indicates that no ice 

is present within a pixel, and a value of 1 means that the ice covers the 

entire pixel. Although the SIC retrieval algorithm has been improved by 

many efforts, the major error sources are thin ice (30% to 50%) and 

surface melt (10% to 30 %) [NSIDC, 2015]. 

Table 1. Satellite sensors for measuring sea ice concentration since 1978. 

Sensor SMMR SMM/I SSM/I SSM/I SSMIS SSMIS 

Platform 
Nimbus-

7 

DMSP-

F8 

DMSP-

F11 

DMSP-

F13 

DMSP-

F17 

DMSP-

F18 

Spatial 

resolution 
25km 25km 25km 25km 25km 25km 

Operation 

period 

1978-

1987 

1987-

1991 

1991-

1995 

1995-

2007 

2007-

2017 

2018-

present 
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2.3. Climate Data 

 

For modeling SIC changes, RCM data provided by the Coordinated 

Regional Downscaling Experiment (CORDEX) was used. The Arctic 

CORDEX initiative is an international coordinated framework to produce 

an improved ensemble of regional climate change projections as the input 

for impact and adaptation studies aimed at a better understanding of the 

regional climate in the Arctic [Akperov et al., 2018]. The RCM is based 

on dynamic downscaling of the GCM, enabling more detailed forecasting 

in specific regions with improved spatial resolution. Nine databases are 

available for the RCM in the Arctic region, and Table 2 shows the name, 

institute of origin, and driving GCM for each database. The period of data 

used is from January 2006 to December 2030 under the RCP 8.5 scenario 

assuming that the current emission trend will continue without reduction 

of greenhouse gas emissions. Regional climate model provides 45 

variables in the form of monthly average on a 0.44° grid. We first 

extracted 19 climatic variables as the factors influencing the Arctic sea ice 

changes: precipitation, total cloud fraction, near-surface wind velocity, 

evaporation, near-surface specific humidity, sea-level pressure, near-

surface air temperature, duration of sunshine, surface downwelling 
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longwave radiation, surface upwelling longwave radiation, top of 

atmosphere (TOA) outgoing longwave radiation, surface upwelling 

shortwave radiation, TOA incident shortwave radiation, surface upwelling 

shortwave radiation, TOA outgoing shortwave radiation, surface upward 

latent heat flux and surface upward sensible heat flux.  

Using a spatial collocation procedure by the nearest neighbor method 

for the SIC and RCM datasets, correlation coefficients between SIC and 

the 19 extracted climate variables were investigated. We calculated the 

generic correlation coefficients irrespective of spatial or temporal context 

because we needed to select several appropriate variables from the 19 

RCM variables, which can represent for all the years and months, and all 

the grid points. Finally, four climate variables with absolute values of 

correlation coefficients that were 0.5 or greater were selected as input 

variables for our prediction model (Table 3): near-surface air temperature 

(TAS), near-surface specific humidity (HUSS), surface downwelling 

longwave radiation (RLDS), and surface upwelling longwave radiation 

(RLUS). To avoid the redundancy problem of the input variables, a multi-

collinearity test was carried out for the four variables (TAS, HUSS, RLDS, 

and RLUS) using the variance inflation factor (VIF), which showed no 

severe multi-collinearity. Near-surface specific humidity refers to the 

mass of water vapor per unit mass of moist air and is usually expressed in 
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units of g/kg or kg/kg. As the specific humidity in the atmosphere 

increases, atmospheric moisture fluxes increase, whereas when the sea ice 

cover decreases, the air-sea moisture flux tends to increase [Boisvert et al., 

2013]. According to Kim et al. [2016], the magnitude of winter specific 

humidity increases by 0.037 g/kg per 1% reduction in sea ice 

concentration of the Kara and Barents Seas. Recently, the temperature in 

the Kara and Barents Seas increased by 0.94°C ± 0.9°C over 10 years, and 

the SIE decreased by approximately 107 km2 [Comiso, 2012]. The 

correlation between SIC and downward longwave radiation in the Barents 

Sea was significant in winter and summer, and moisture transport through 

this region was accompanied by longwave radiation changes and SIC 

variations [Boccolari and Parmiggiani, 2017]. Over most of the Barents 

Sea, the surface heat flux trend is strongly downward, that is, a turbulent 

heat transfer trend from the atmosphere to the ocean. In the Kara Seas, the 

heat flux trend is upward, presumably reflecting the effect of declining 

sea-ice cover and ice thickness. This upward heat flux trend could be 

caused by ocean warming during the sunlit season when ice-albedo 

feedback can contribute to the warming [Lee et al., 2017]. 
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Table 2. Nine regional climate models (RCMs) available for the Arctic. 

No. RCM Institute Driving GCM 
Original resolution 

vertical, horizontal 

1 RCA4 
Swedish Meteorological and Hydrological 

Institute (SMHI) 
CCCma-CanESM2 L40, 0.44° 

2 HIRHAM5 Danish Meteorological Institute (DMI) ICHEC-EC-EARTH L31, 0.44° 

3 RCA4 
SMHI 

ICHEC-EC-EARTH 
L40, 0.44° 

4 RCA4-SN ICHEC-EC-EARTH 

5 HIRHAM5 
Alfred Wegener Institute Helmholtz Centre 

(AWI) 
MPI-M-MPI-ESM-LR L40, 0.5° 

6 RRCM 
Voeiskov Main Geophysical Observatory 

(MGO) 
MPI-M-MPI-ESM-LR L25, 50 km 

7 RCA4 

SMHI 

MPI-M-MPI-ESM-LR L40, 0.44° 

8 RCA4-SN MPI-M-MPI-ESM-LR L40, 0.44° 

9 RCA4 NCC-NorESM1-M L40, 0.44° 

`
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Table 3. Correlation coefficient between sea ice concentration and climate factors. 

Factor Variable name Corr. 

Precipitation Precipitation -0.318 

Cloud Total Cloud Fraction -0.096 

Wind 

Near-Surface Wind Speed -0.047 

Eastward Near-Surface Wind 0.067 

Northward Near-Surface Wind 0.008 

Humidity 
Evaporation -0.272 

Near-Surface Specific Humidity -0.641 

Pressure Sea Level Pressure 0.152 

Temperature Near-Surface Air Temperature -0.621 

Solar radiation Duration of Sunshine -0.046 

Radiation energy 

Surface Downwelling Longwave Radiation -0.611 

Surface Upwelling Longwave Radiation -0.630 

TOA Outgoing Longwave Radiation -0.441 

Surface Downwelling Shortwave Radiation -0.035 

TOA Incident Shortwave Radiation -0.138 

Surface Upwelling Shortwave Radiation 0.244 

TOA Outgoing Shortwave Radiation -0.039 

Surface Upward Latent Heat Flux -0.272 

Surface Upward Sensible Heat Flux 0.008 
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2.4. References Data 

 

For reference data on the four climate variables (TAS, HUSS, RLDS, 

and RLUS) from RCMs, we used the spatially interpolated version of 

ERA-Interim data on a 0.4° grid as well as the Clouds and the Earth's 

Radiant Energy System Energy Balanced and Filled (CERES-EBAF) data 

on a 1° grid. The variable HUSS is not included in the ERA-Interim 

product, but dew point temperature is, so we used the dew point 

temperature and surface pressure instead. To calculate HUSS, the vapor 

pressure, e (hPa), was derived from the dew point temperature, Td (°C): 

e = 6.112 × exp[(17.67 × Td)/(Td + 243.5)] (1) 

When the vapor pressure (e) and pressure (p) are known, specific 

humidity (q) is calculated as 

q = (0.622 × e)/[p − (0.378 × e)] (2) 

As references for the variables RLDS and RLUS, we used the data for 

downwelling longwave flux and surface upwelling longwave flux 

included in the surface product from CERES-EBAF. The CERES 

instruments onboard the Terra and Aqua satellites have been in operation 

since December 1999 and May 2002, respectively, monitoring the Earth’s 

reflected and emitted radiation [Rutan et al., 2015]. 
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3. Methods 

 

The BMA method were employed to mitigate the uncertainty problem 

that arises when using a single RCM. For the SIC modeling, DNN is used 

to deal with the non-linear relationships and future predictions. Figure 2 

shows the overall flow of database preparation, and model training and 

validation. 
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Figure 2. Overall flow diagram of this study. 
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3.1. Bayesian Model Averaging 

 

BMA is a statistical ensemble technique that solves the uncertainty 

problem in model data by setting different weights for each member based 

on the posterior probability [Hoeting et al., 1999]. For example, we 

determine the ensemble value for the variable y (reference or true data) 

using the BMA of k models. In our case, nine RCMs were used as 

ensemble member, and ERA-Interim and CERES-EBAF were used as 

reference data. When the value of each member is denoted as 𝑓𝑘, and its 

bias-corrected value is expressed as 𝑓𝑘, the theoretical formula for BMA 

is: 

p(y|𝑓1,⋯ , 𝑓𝑘) = ∑𝑤𝑘𝑔𝑘(𝑦|𝑓𝑘)

𝐾

𝑘=1

 (3) 

where 𝑤𝑘 is the weight of each member and 𝑔𝑘(𝑦|𝑓𝑘) is a probability 

density function for the bias-corrected forecast of each member 𝑓𝑘, which 

follows a normal distribution. The weight 𝑤𝑘  and the variance of the 

normal distribution can be derived using the expectation-maximization 

(EM) algorithm, a parameter optimization technique. In the expectation 

(E) step of the EM algorithm, a log likelihood function is calculated from 

a given parameter set. In the maximization (M) step, a parameter set is 
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derived to maximize this log likelihood function. The E and M steps are 

repeated to derive the optimal parameters (i.e., the weight of each member 

and the variance of the normal distribution) until the log likelihood 

function converges on a maximum value. A weighted average of the BMA 

approximation is calculated using the weight of each member derived 

from the EM algorithm: 

E[y|𝑓1,⋯ , 𝑓𝑘] = ∑𝑤𝑘𝑓𝑘

𝐾

𝑘=1

 (4) 

We conducted spatial collocation analysis for the four climate variables 

using the reference data and the nine RCMs representing the period 

between January 2006 and December 2016. A total of 538,032 (11 years 

× 12 months × 4,076 grid points) match-ups were constructed, and the 

BMA ensemble value was calculated using these match-ups. 
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3.2. Multiple Linear Regression 

 

MLR is used to establish a linear combination of relationships between 

multiple explanatory variables x (HUSS, RLDS, RLUS, and TAS), and 

the response variable y (SIC). We built an MLR model using SIC data and 

the four climate variables for 132 months from January 2006 to December 

2016. 

SIC = 𝛽0 + 𝛽𝐻𝑈𝑆𝑆𝐻𝑈𝑆𝑆 + 𝛽𝑅𝐿𝐷𝑆𝑅𝐿𝐷𝑆 + 𝛽𝑅𝐿𝑈𝑆𝑅𝐿𝑈𝑆 + 𝛽𝑇𝐴𝑆𝑇𝐴𝑆 + 𝜖 (5) 

We used a BMA ensemble as well as a single RCM to determine the 

explanatory variables (HUSS, RLDS, RLUS, and TAS).  
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3.3. Deep Neural Network 

 

The classic MLP neural network method has a local minimum problem 

in which an optimization process often stops at a locally optimized state, 

rather than a globally optimized state. Moreover, general machine learning 

methods sometimes reveal an overfitting problem that cannot handle 

actual data containing outliers due to excessive learning based only on the 

given dataset. Such problems can be solved with a DNN through an 

optimization algorithm in the intensive deep network (Figure 3). 

Backward optimization and forward optimization were both conducted 

using the back-propagation algorithm for improved accuracy. The 

vanishing gradient problem of a loss function, which may occur during 

back-propagation, can be fixed by applying appropriate activation 

functions. 

We constructed a DNN model using data from January 2006 to 

December 2016. To determine an optimal layer structure, we conducted 

two-step experiments. We first tested the model structure with [10, 10], 

[30, 30], [50, 50], [100, 100], and [200, 200] neurons, and found that [50, 

50] was best among them, although they showed very little difference. 

Then we tested the models with [50, 30], [50, 10], and [50, 30, 10] neurons, 
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and the model with [50, 30] neurons produced the best performance in the 

training, where the mean square error (MSE) was used for the loss 

function. For each epoch and iteration, we used an Adaptive Delta 

(ADADELTA) optimizer to minimize the loss function by adjusting a set 

of weights and biases in the neural network. ADADELTA is a stochastic 

gradient descent algorithm that obtains the gradient of the loss function 

from a stochastically selected dataset rather than the entire dataset. It is 

less sensitive to hyper-parameters and has the advantage of preventing the 

learning rates from decreasing too quickly. In addition, we used a rectified 

linear unit (ReLU) activation function to avoid the vanishing gradient 

problem. In the case of MLR, multi-collinearity among input variables 

may cause regression coefficients to change erratically in response to 

small changes in the data, similar to the overfitting problem. In order to 

deal with the weak multi-collinearity which may remain in the input 

variables, we added L1/L2 regularization in our DNN model. The L1-

regularized loss function can secure the sparsity of a model and the L2-

regularized loss function can ensure the simplicity of a model. We used 

the least absolute shrinkage and selection operator (LASSO) for the L1 

regularization and the ridge regression for the L2 regularization. 
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Figure 3. Structure of deep neural network (DNN). 
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4. Results and Discussion 

 

4.1. Multi-Model Ensemble 

 

The correlation coefficients between the input variables and their 

reference data were improved with the BMA, from approximately by 0.03 

to 0.05 for HUSS, TAS, RLDS, and RLUS when compared with the 

average of the nine RCMs (Table 4). However, the seasonal variation of 

the climate variables was significant due to differences in the amount and 

duration of solar radiation in the Arctic during summer and winter. 

Therefore, we examined the seasonal characteristics of the monthly 

correlation coefficients of the BMA (Figure 4) and found that the 

correlation coefficients of all variables decreased in summer (May to 

August). In addition, the spatial coverage of the Arctic region is very large, 

and thus the BMA should be adjusted to deal with both the spatial and 

temporal variations in climate variables. Therefore, we employed the 

BMA2 method which extracts BMA weights by month and by grid point. 

To take into account the spatial and temporal characteristics, we divided 

all match-ups (538,032 grid points) into 12 months and then into 4,076 
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grid points to calculate the BMA weights for each member. The leave-

one-year-out (also known as jackknife) method was used for training and 

validation of the BMA2 ensemble. Training was conducted using a 10-

year dataset excluding one year, and the validation was carried out for the 

excluded year. Such tests were iterated 11 times for each year between 

2006 and 2016. The averaged error statistics of the BMA2 is shown in 

Table 4 and 5. The mean absolute error (MAE) and RMSE of BMA2 

improved markedly for all variables, with a correlation coefficient of 

approximately 0.97 (Figure 5). Compared with the RCMs, the correlation 

coefficients were improved by 0.07 for HUSS and TAS and by 0.1 for 

RLDS and RLUS. All the p-values were 0, which indicates the statistical 

significance of the correlation coefficients. Accordingly, the climate 

variables created by BMA2 were used as input data for our SIC prediction 

model. 
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Table 4. Averages of the correlation coefficients between nine RCMs and reference data. 

 RCM1 RCM2 RCM3 RCM4 RCM5 RCM6 RCM7 RCM8 RCM9 Avg BMA BMA2 

HUSS 0.91 0.90 0.92 0.92 0.91 0.91 0.92 0.91 0.90 0.91 0.94 0.98 

RLDS 0.85 0.89 0.87 0.87 0.90 0.87 0.89 0.87 0.88 0.88 0.93 0.97 

RLUS 0.83 0.88 0.89 0.88 0.89 0.87 0.90 0.89 0.88 0.88 0.92 0.97 

TAS 0.87 0.90 0.90 0.89 0.91 0.91 0.91 0.90 0.92 0.90 0.93 0.96 
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Figure 4. Averages of the correlation coefficients of BMA ensemble for each month during 2006–2016. The correlation 

coefficients of all variables decreased in summer (May to August), particularly for RLDS. 
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Table 5. Accuracy of BMA2 for the four input variables. 

 Mean bias MAE RMSE Corr. 

HUSS 0.0000 0.0003 0.0004 0.9782 

RLDS 0.4549 6.4845 8.8463 0.9726 

RLUS 0.0000 6.1103 9.0419 0.9726 

TAS 0.1249 1.6528 2.2661 0.9657 

 

Figure 5. Error statistics of BMA and BMA2 for the four input 

variables. Accuracy of BMA2 was improved markedly with a correlation 

coefficient of approximately 0.97. 
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4.2. Prediction of Sea Ice Concentration 

 

We first built prediction models using MLR and the DNN from the 

match-ups used for SIC and climate variables obtained from a single RCM 

(MGO-RRCM) between January 2006 and December 2016. The leave-

one-year-out method was used for training and validation. The prediction 

model was trained using a 10-year dataset excluding one year, and the 

predicted values for the excluded year were compared with the true values. 

For example, the predicted values for the period 2006–2015 excluding the 

year 2016 were validated using 2016 data. In this way, 11 sets of training 

and validation were carried out for each year (2006, 2007, …, 2016), and 

Table 6 summarizes the validation statistics. The MLR with a single RCM 

had a correlation of 0.719, and the correlation was improved when using 

the DNN model (r = 0.766). The correlation was even more improved 

further by using the DNN with the BMA2 ensemble (r = 0.888). Compared 

with MLR, the correlation of the DNN increased by 0.047 (0.766 − 0.719). 

Additionally, the correlation of DNN with the BMA2 ensemble increased 

by 0.122 (0.888 − 0.766) compared with DNN and a single RCM. Finally, 
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DNN with the BMA2 ensemble exhibited a synergistic advantage of 0.169 

(0.888 − 0.719) compared with the generic MLR. These results indicate 

that correlation was improved by combining the optimal input data 

(BMA2) with the optimal non-linear model (DNN). All the p-values were 

0, which indicates the statistical significance of the correlation coefficients. 

We also obtained SIC data for the latest years (2017 and 2018), and 

applied it to the DNN with BMA2 ensemble. As a result, the correlation 

coefficient was 0.852, which was slightly lower than the previous 

experiment. This is probably due to the fact that the weights of input 

variables optimized for 2006–2016 were applied to the input data of 2017 

and 2018. However, DNN with BMA2 ensemble still exhibited the best 

synergistic effect of accuracy improvement compared to the other two 

models. 

 

Table 6. Averages of the validation statistics of the prediction models for 

sea ice concentration. 

 
Mean 

bias 
MAE RMSE Corr. 

MLR with a single RCM 0.023 0.242 0.299 0.719 

DNN with a single RCM 0.002 0.177 0.273 0.766 

DNN with BMA2 

ensemble 
0.000 0.109 0.194 0.888 
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Because long-term changes in sea ice can exhibit seasonality 

[Simmonds, 2015], we examined the monthly characteristics of the 

validation statistics of the DNN with BMA2 ensemble. Figure 6 shows the 

Eleven-year (2006–2016) averages of the monthly anomalies of the sea 

ice concentration from satellite observations and the predictions of the 

DNN with BMA2 ensemble. From November to May, when sea ice is 

growing, the model showed high correlation coefficients, but relatively 

low correlations were found in the melting season from June to October 

(Table 7). In August and September, when sea ice was mostly melted, the 

correlation was lowest (0.467 and 0.384, respectively). Although a low 

correlation coefficient is generally accompanied by high RMSE, the 

RMSE of the prediction model was also low (0.145 and 0.121, 

respectively), because the sea ice of the Kara and Barents Seas in August 

and September has a very low SIC value of zero or nearly zero. Therefore, 

we calculated the normalized RMSE (NRMSE), which can be calculated 

by dividing the RMSE by the standard deviation to represent error 

normalized according to the range of the values. The NRMSE showed the 

opposite trend to that of the correlation coefficient, which allows an 

intuitive understanding of the error characteristics. Low prediction 

accuracy in summer presumably occurs because thin summer ice is more 

sensitive to variations in atmospheric conditions [Stroeve et al., 2012; 
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Holland et al., 2008]. In addition, the decline in summer snowfall due to 

the shift from snowfall to rainfall has greatly increased the fraction of bare 

sea ice and melt ponds with much lower albedo than snow-covered sea ice, 

likely contributing to the thinning of sea ice in recent decades [Screen and 

Simmonds, 2012]. In addition to thermodynamic conditions, thin ice is 

more sensitive to wind forcing, which is observed as increased ice drift 

speeds [Spreen et al., 2011; Vihma et al., 2012]. 
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Table 7. Validation statistics of monthly sea ice concentration predicted by DNN with BMA2 ensemble for the Kara and 

Barents Seas during 2006-2016. 

 Jan. Feb. Mar. Apr. May. Jun Jul. Aug. Sep. Oct. Nov. Dec. 

Mean bias 0.02 0.03 0 -0.05 -0.07 -0.04 -0.03 0.03 0.03 0.02 0.04 0.04 

MAE 0.09 0.10 0.10 0.14 0.16 0.19 0.11 0.06 0.05 0.09 0.12 0.12 

RMSE 0.17 0.19 0.19 0.22 0.24 0.28 0.21 0.15 0.12 0.17 0.20 0.21 

NRMSE 0.38 0.41 0.41 0.49 0.55 0.75 0.82 1.13 1.39 0.82 0.52 0.47 

Corr. 0.93 0.91 0.91 0.88 0.85 0.67 0.58 0.47 0.38 0.64 0.86 0.89 
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Figure 6. Eleven-year averages of the monthly anomalies of sea ice concentration from satellite observations and 

the predictions of the DNN with BMA2 ensemble for the Kara and Barents Seas during 2006–2016. 
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Figure 7 shows monthly satellite observations of SIC and Figure 8 

shows the predictions of the DNN with BMA2 ensemble for the period 

2006–2016. Each of these figures uses the 11-year averages for each pixel. 

Figure 9 shows the difference between the observations and predictions, 

with overestimation indicated in red and underestimation in blue. High 

SIC had a tendency to be underestimated, while seemed to be often 

overestimated. It is probably because of the conservative behavior of the 

prediction model to optimize the loss function. Such an error distribution 

is stronger in spring and summer. In particular, overestimation was vague 

at the boundary between the sea ice and open ocean. Warm and salty 

Atlantic Water flows into the Barents Sea through the Barents Sea 

Opening (BSO) and meets the cold Arctic water, resulting in a polar front. 

The uncertainty of SIC prediction can be affected by this polar front, 

which is located close to the boundary between the sea ice and open ocean 

[Lubinski et al., 2001]. In addition, coastline pixels showed relatively 

large errors due to the mixed pixel problem, which occurs when land and 

sea are both included in a pixel. Because coastline can be influenced by 

meteorological phenomena that occur over land, the errors can increase 

when the surface temperature changes drastically between the coastline 

and inland area. 
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Figure 7. Monthly averages of sea ice concentration from satellite 

observations of the Kara and Barents Seas during 2006–2016. 
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Figure 8. . Monthly averages of sea ice concentration predicted by the 

DNN with BMA2 ensemble for the Kara and Barents Seas during 2006–

2016. 
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Figure 9. Errors of monthly averages of sea ice concentration predicted 

by the DNN with BMA2 ensemble for the Kara and Barents Seas during 

2006–2016. 
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In light of recent trends in the decrease of Arctic sea ice due to global 

warming, we examined the time-series characteristics of SIC prediction 

(Table 8). The accuracy was quite high, with a correlation coefficient of 

over 0.87 for most years. The correlation was slightly lower in 2012 and 

2016 (0.85 and 0.858, respectively) with a pattern of underestimation, 

which means that sea ice melted more than expected, especially in 2012 

and 2016. Indeed, in September 2012 and 2016, Arctic SIE reached its 

minimum since satellite observation began. In 2012 and 2016, the Kara 

and Barents Seas began to melt three to four weeks earlier than the other 

years. The decrease in surface albedo caused by such early melting 

accelerated the melting process through absorption of more solar radiation 

[NSIDC]. Hence, we assume that the prediction errors for these two years 

were partly because of the earlier melting. Figure 10 is a map showing 

yearly RMSE for the period between 2006 and 2016. The error is 

relatively large in shallow areas north of Novaya Zemlya. The North 

Atlantic Current, which flows through the BSO, is transformed into 

Circumpolar Deep Water (CDW) below 0°C through cooling and mixing 

due to wind and cold atmosphere [Serreze and Barry, 2014, Pfirman et al., 

1994]. Heat energy in the transformed current decreases gradually as it 

flows to the Arctic Ocean through the strait between the Novaya Zemlya 

and Franz Josef Islands [Pfirman et al., 1994]. These unique regional 
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characteristics were not taken into account in our prediction model, 

resulting in a partly lower performance. 

Figure 11 shows the time-series change in monthly averages of sea ice 

area (SIA), the sum of the area covered by sea ice, for the period 1981–

2030. The SIA is defined by multiplication of SIC and the area size of a 

pixel. The black dotted line denotes satellite observations, and the red 

solid line represents values predicted by our DNN with BMA2 ensemble. 

The prediction accuracy for 2017–2030 is similar to that for 2006–2016 (r 

= 0.884). SIA appears to decline continuously over the next 10 years 

(2017–2030), but its decrease may be slower than during the period before 

2016. Indeed, the RCMs did not show sensitive change after 2017, which 

leads to the small variation of the SIC for the period 2017–2030. 

Over parts of the Kara Seas, where the surface heat flux trend is upward 

and with a larger magnitude than the downward infrared radiation trend, 

it is possible that the positive surface air temperature trend arises from an 

upward sensible and/or latent heat flux, as well as an increase in the 

downward infrared radiation due to the input of additional water vapor 

into the atmosphere. It was shown that the downward infrared radiation 

trend is associated with a trend in the moisture fluxes from mid-latitudes 

into the Arctic, as well as a trend in the total column liquid water and ice 

in the Arctic [Lee et al., 2017]. Gong and Luo [2017] showed that a long‐
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term increase in the intraseasonal moisture intrusions into the Arctic can 

help account for the positive trend in the downward infrared radiation 

during the winter season over recent decades. An increase in low- and 

mid-latitude moisture and the moisture fluxes into the Arctic are an 

important contributor to the downward infrared radiation trend poleward 

of 70°N. More moisture intrusion into the Kara and Barents Seas seems to 

result in enhanced downward infrared radiation and, in turn, stronger 

warming [Luo et al., 2017]. That is, the combined UB and NAO+ patterns 

results in a cooperative circulation pattern conducive to strong decline of 

sea ice through strong warming of Kara and Barents Seas due to strong 

downward infrared radiation associated with increased water vapor. 

Recent climate changes lead to the transition from the cold and stratified 

Arctic to the warm and well-mixed Atlantic. The Barents Sea, which is the 

gateway between the Atlantic and the Arctic ocean, has two climatic 

regimes: a cooler Arctic with fresher water in the North and a softer 

Atlantic with saltier water in the South. This warming is particularly 

stronger in the North of the Kara and Barents Seas, which allows the heat 

from the Atlantic water to remain on the surface and slow the formation 

of ice in the winter [Å rthun and Eldevik, 2016]. However, due to the 

mixing of warm and salty Atlantic water and cold and fresh Arctic water, 

the upper layers became saltier, which prevents the formation of ice. 
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Therefore, the variability and uncertainty in the sea ice change become 

more complicated. 



43 

 

Figure 10. Twelve-month averages of root mean square error predicted 

by the DNN with BMA2 ensemble for the Kara and Barents Seas during 

2006–2016. 
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Table 8. Yearly average of validation statistics for sea ice concentration predicted by DNN with BMA2 ensemble for the 

Kara and Barents Seas during 2006-2016. 

 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 

Mean bias 0.001 0.027 -0.015 -0.032 -0.046 -0.004 0.072 -0.031 -0.053 0.012 0.088 

MAE 0.104 0.106 0.104 0.107 0.120 0.103 0.115 0.116 0.107 0.099 0.127 

RMSE 0.189 0.196 0.197 0.200 0.215 0.190 0.218 0.196 0.196 0.172 0.219 

NRMSE 0.449 0.464 0.464 0.472 0.503 0.455 0.578 0.461 0.458 0.414 0.577 

Corr. 0.894 0.888 0.887 0.885 0.871 0.890 0.850 0.893 0.898 0.911 0.858 
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Figure 11. Monthly averages of sea ice area from satellite observations (black dotted line) and the predictions by DNN 

with BMA2 ensemble (red solid line) from 1981 to 2030. The decrease of sea ice after 2016 may be slower than during 

the period before 2016. 
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5. Conclusions 

 

Indeed, we are dealing with an environment where background 

conditions are changing rapidly. Hence the relative importance of the 

relevant physical processes may be changing, and the linear algorithms 

based on historical data may not apply in future scenarios. In this context, 

we presented a near-future prediction of Arctic SIC between 2017 and 

2030 based on integration of an advanced RCM ensemble and an 

optimized DNN model. The accuracies of the RCM variables (TAS, 

HUSS, RLDS, and RLUS) were greatly improved with the BMA2 method, 

which considered temporal and spatial variations in order to minimize the 

uncertainty of individual RCMs. The DNN was used to deal with the non-

linear relationships between SIC and climate variables and to provide a 

near-future prediction for the next 10–20 years. We adjusted the DNN 

model for optimized SIC prediction by adopting a best-fitted layer 

structure, loss function, optimizer algorithm, and activation function. 

Accuracy improved greatly when the DNN model was combined with the 

BMA2 ensemble, with a correlation coefficient of 0.888.  



47 

 

The accuracy in the melting season (June to October) was somewhat 

lower than that in the freezing season (November to May), presumably 

due to the influence of thinning of sea ice. In summer, thin ice is more 

sensitive to the effects of atmospheric conditions. In addition, the 

influence of currents and tides and the locations of polar fronts should be 

considered in future research. Gradual thinning of sea ice from the past 

represents sea-ice memory [Blanchard-Wrigglesworth et al., 2011] and 

suggests that a time-series approach must be integrated into DNN 

modeling. As a future work, use of additional, appropriate variables will 

be necessary for accuracy improvement of the DNN model. Principal 

component (PC) analysis will be another useful approach. Several PCs can 

be used as input variables for the DNN model, instead of using the climate 

variable itself. Also, Fourier analysis of the time-series SIC can be 

conducted to see whether there are any other periodic patterns in addition 

to the annual variation, which will facilitate the prediction. The important 

climate change effects such as UB/NAO, downward longwave radiation, 

and Atlantification should be examined in terms of regional scale. This 

paper, which is for prediction at a pixel-by-pixel level, did not cover the 

regional-scale climate effects, but they will provide a clue to solve the 

uncertainty problem in the Arctic SIC prediction. 
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