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Chapter 1

Introduction and Preliminaries

This paper is discussed mathematical interpretations including the regu-

larity of solutions and control problems for partial differential equations with

time delay based mainly on the results from analytic semigroups generated

by differential operators. The main tool of research is to apply some charac-

teristic of interpolation spaces of Banach spaces, and establish some simple

properties for interpolation spaces associated with the domain of a genera-

tor of an analytic semigroup, which is applicable for the maximal regularity

and the existence of solutions of evolution equations of parabolic type with

unbounded operators. Based on these theory, sufficient condition for iden-

tification condition which is one of the inverse problems is given as the so

called rank condition in terms of the initial values and eigenvectors of adjoint

operator was obtained, and some results on the control problems for retarded

functional differential equations of parabolic type with unbounded principal

operators are established.

In Chapter 2, we deal with the control problems for the following semilin-

ear retarded functional differential equation with initial values in a Hilbert

space H: ⎧⎪⎨⎪⎩
x

′
(t) = A0x(t) + A1x(t− h) +

∫ 0

−h
a(s)A2x(t+ s)ds

+f(t, x(t)) + B0u(t),

x(0) = g0, x(s) = g1(s), s ∈ [−h, 0).

(RE)
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Here, the principal operator A0 generates an analytic semigroup S(t) on H,

and AiA
−1
0 (i = 1, 2) are bounded in H. Here, B0 is a linear bounded operator

from U to H and U is some Banach space.

Little is known about the relationship between controllability and stabi-

lizability for solutions of the semilinear equation (RE), which is one of our

motivations. We assume that

σ+ = σ(A) ∩ {λ : Reλ > 0}

consists entirely of a finite number of eigenvalues of A0(see [26])

Goal of this chapter is to extend the control theory govern by general

semilinear systems to the equations with delays. Based on the semilinear

control system with positive isolated spectrum points, we will derive the

equivalent relation between controllability and stabilizability of the solution

for the control system(RE) with a condition of the completeness of system

of the generalized eigenspaces of A0.

Let Ω be a bounded domain in R
n with smooth boundary ∂Ω. Let

A(x,Dx) be an elliptic differential operator of second order in L1(Ω):

A(x,Dx) = −
n∑

i,j=1

∂

∂xj

(ai,j(x)
∂

∂xi

) +
n∑

i=1

bi(x)
∂

∂xi

+ c(x).

In Chapter 3, we consider the inverse problem for the following retarded

functional differential equation defined as A0u = −A(x,Dx)u:

{
u

′
(t) = A0u(t) + γA0u(t− h) +

∫ 0

−h
a(s)A0u(t+ s)ds,

u(0) = g0, u(s) = g1(s), s ∈ [−h, 0).
(IE)
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Here A0, γ, and a(·) are unknown quantities to be identified and the initial

condition g = (g0, g1) is known.

In [27, 30] the author discussed the control problem for the following

retarded system with L1(Ω)-valued controller:

u(t) = A0u(t) + A1u(t− h) +

∫ 0

−h

a(s)A2u(t+ s)ds+ Φ0w(t), (3.1.1)

where Ai(i = 1, 2) are second order linear differential operators with real

coefficients, and the controller Φ0 is a bounded linear operator from a control

Banach space to L1(Ω).

In [16], they established some results concerning identification problems

for (IE) of specific form by taking the observation. Furthermore, Yamamoto

and Nakagiri [47] studied the identifiability problem for evolution equations

in Banach spaces with unknown operators and initial values by means of

spectral theory for linear operators.

In view of Sobolev’s embedding theorem we may also consider L1(Ω) ⊂
W−1,p(Ω) if 1 ≤ p < n/(n − 1) as is seen in [27]. Hence, we can investigate

the system (IE) in the space W−1,p(Ω) considering Φ0 as an operator into

W−1,p(Ω). Here, we note that the space W−1,p(Ω) is ζ-convex(as for the

definition and fundamental facts of a ζ-convex see [24, 10]). Consequently,

in view of Dore and Venni [18] the maximal regularity for the linear initial

value problem:

u′(t) = A0u(t) + f(t), u(0) = u0

in the space W−1,p(Ω) holds true.
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Furthermore, with the aid of a result by Seeley [55] and [27], we can

obtain the maximal regularity for solutions of the retarded linear initial value

problem (IE) in the space W−1,p(Ω). In view of these results, we deal with

an inverse problem of (IE) in W−1,p(Ω).

In Chapater 4, we study the existence of solutions and L2-regularity for

the following fractional order retarded neutral functional differential equa-

tion:{
dα

dtα
[x(t) + g(t, xt)] = A0x(t) +

∫ 0

−h
a1(s)A1x(t+ s)ds+ (Fx)(t) + k(t), t > 0,

x(0) = φ0, x(s) = φ1(s), −h ≤ s < 0,

(NE)

where 1/2 < α < 1, h > 0, a1(·) is Hölder continuous, k is a forcing term, and

g, f , are given functions satisfying some assumptions. Moreover, A0 : H → H

is unbounded but A1 is bounded. For each s ∈ [0, T ], we define xs : [−h, 0] →
H as xs(r) = x(s + r) for r ∈ [−h, 0] and (φ0, φ1) ∈ H × L2(−h, 0;V ). We

propose a different approach of the earlier works used properties of the rela-

tive compactness. Our approach is that regularity results of general retarded

linear systems of Di Blasio et al. [17] and semilinear systems of [31] re-

main valid under the above formulation of fractional order retarded neutral

differential system (NE) even though the system (NE) contains unbounded

principal operators, delay term, and local Lipschitz continuity of the non-

linear term. The methods of the functional analysis concerning an analytic

semigroup of operators and some fixed point theorems are applied effectively.

In Chapter 5, we are concerned with the global existence of solution and

the approximate controllability for the following abstract neutral functional
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differential system in a Hilbert space H:

{
d
dt
[(x(t) + (Bx)(t)] = Ax(t) + f(t, x(t)) + (Cu)(t), t ∈ (0, T ],

x(0) = x0, (Bx)(0) = y0,
(CE)

where A is an operator associated with a sesquilinear form on V × V sat-

isfying G̊arding’s inequality, f is a nonlinear mapping of [0, T ] × V into H

satisfying the local Lipschitz continuity, B : L2(0, T ;V ) → L2(0, T ;H) and

C : L2(0, T ;U) → L2(0, T ;H) are appropriate bounded linear mapping.

We propose a different approach of the earlier works (briefly introduced

in [41,42],[58-61] about the mild solutions of neutral differential equations).

Our approach is that results of the linear cases of Di Blasio et al. [17]

and semilinear cases of [31] on the L2-regularity remain valid under the

above formulation of the neutral differential equation (CE). For the ba-

sic of our study, the existence of local solutions of (CE) are established in

L2(0, T ;V ) ∩ W 1,2(0, T ;V ∗) ↪→ C([0, T ];H) for some T > 0 by using frac-

tional power of operators and Sadvoskii’s fixed point theorem. Thereafter,

by showing some variational of constant formula of solutions, we will obtain

the global existence of solutions of (CE), and the norm estimate of a solution

of (CE) on the solution space. Consequently, in view of the properties of the

nonlinear term, we can take advantage of the fact that the solution mapping

u ∈ L2(0, T ;U) �→ x is Lipschitz continuous, which is applicable for control

problems and the optimal control problem of systems governed by nonlinear

properties.
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The second purpose of this chapter is to study the approximate controlla-

bility for the neutral equation (CE) based on the regularity for (CE), namely

that the reachable set of trajectories is a dense subset of H.

6



Chapter 2

Semilinear retarded control systems

2.1 Introduction

In this paper we deal with the control problems for the following semilinear

retarded functional differential equation with initial values in a Hilbert space

H: ⎧⎪⎨⎪⎩
x

′
(t) = A0x(t) + A1x(t− h) +

∫ 0

−h
a(s)A2x(t+ s)ds

+f(t, x(t)) + B0u(t),

x(0) = g0, x(s) = g1(s), s ∈ [−h, 0).

(RE)

Here, the principal operator A0 generates an analytic semigroup S(t) on H,

and AiA
−1
0 (i = 1, 2) are bounded in H. Here, B0 is a linear bounded operator

from U to H and U is some Banach space.

The reachable set for its corresponding linear system of (RE) in case where

f ≡ 0 is independent of the time T if A0 generates an analytic semigroup.

But it does not hold in general case where A0 generates C0-semigroup as

seen in Theorem 3.10 and remark 3.4 of [19]. Similar considerations of linear

and semilinear systems have dealt with in many references(see the bibliogra-

phies of [2-5]). In [36], the approximate controllability for the semilinear

system (RE) was established by a condition for the range of the controller

B0 without the inequality condition and see that the necessary assumption is

7



more flexible than one in [3,4,7]. However, little is known about the relation-

ship between controllability and stabilizability for solutions of the semilinear

equation (RE), which is one of our motivations. We assume that

σ+ = σ(A) ∩ {λ : Reλ > 0}

consists entirely of a finite number of eigenvalues of A0(see [26])

Our goal of this paper is to extend the control theory govern by general

semilinear systems to the equations with delays. Based on the semilinear

control system with positive isolated spectrum points, we will derive the

equivalent relation between controllability and stabilizability of the solution

for the control system(RE) with a condition of the completeness of system

of the generalized eigenspaces of A0.

2.2 Applications for semilinear retarded systems

Consider the following linear retarded functional differential equation with

initial values in a Hilbert space H:⎧⎪⎨⎪⎩
x

′
(t) = A0x(t) + A1x(t− h) +

∫ 0

−h
a(s)A2x(t+ s)ds

+f(t, x(t)) + B0u(t),

x(0) = g0, x(s) = g1(s), s ∈ [−h, 0).

(2.2.1)

Let V be a Hilbert space densely and continously embedded in H. The

notations || · || and | · | denote the norms of V and H as usual, respectively.

Let −A0 be the operator associated with a bounded sesquilinear form b(u, v)

defined on V × V satisfying G̊arding’s inequality

Re b(u, u) ≥ c||u||, c > 0.

8



It is known that A0 generates an analytic semigroup S0(t)(t > 0) in both of

H and V ∗. It is assumed that A1 and A2 are bounded linear operators from

V to V ∗ and AiA
−1
0 (i = 1, 2) are bounded in H. Here, B0 is a linear bounded

operator from U to H and U is some Banach space.

Let f be a nonlinear mapping [0, T ] × V into H for given T > 0. We

consider the following cases:

Assumption (F) For any x1, x2 ∈ V there exists a constant L > 0 such

that

|f(t, x1)− f(t, x2)| ≤ L||x1 − x2||.

Using the Maximal regularity for more general retarded parabolic systems

as in [9,10], we know the following results.

Proposition 2.2.1. Let T > 0, (g0, g1) ∈ H×L2(−h, 0;V ) and Assumption(F )

be satisfied. Then there exists a unique solution x of equation (RE) such that

x ∈ L2(0, T ;V ) ∩W 1,2(0, T ;V ∗) ⊂ C([0, T ];H).

Moreover, there exists a constant c1 such that

||x||L2(0,T ;V )∩W 1,2(0,T ;V ∗) ≤ c1(|g0|+ ||g1||L2(−h,0;V ) + ||u||L2(0,T ;U)).

Let W (·) be the fundamental solution of the linear equation associated

with (RE) which is the operator valued function satisfying⎧⎪⎨⎪⎩
W (t) = S0(t) +

∫ t

0
S0(t− s){A1W (s− h)

+
∫ 0

−h
a(τ)A2W (s+ τ)dτ}ds, t > 0

W (0) = I, W (t) = 0, −h ≤ t < 0,

9



where S0(·) is the semigroup generated by A0. Then the solution x(t; f, u)

for the equation (RE) can be written by

x(t; f, u) = W (t)g0 +

∫ 0

−h

Ut(s)g
1(s)ds

+

∫ t

0

W (t− s){f(s, x(s; f, u)) +Bu(s)}ds,

Ut(s) = W (t− s− h)A1 +

∫ s

−h

W (t− s+ σ)a(σ)A2dσ.

In this section we investigate the spectral properties of the infinitesimal gen-

erator A0 of S0(t) in the special case where A1 = γA0 with some constant γ,

A2 = A0 and the embedding V ⊂ H is compact. Thus, in what follows we

consider the equation⎧⎪⎨⎪⎩
d
dt
x(t) = A0x(t) + γA0x(t− h) +

∫ 0

−h
a(s)A0x(t+ s)ds

+f(t, x(t)) + B0u(t),

x(0) = g0, x(s) = g1(s), s ∈ [−h, 0).

(2.2.2)

According to Riesz-Schauder theorem A0 has discrete spectrum

σ(A0) = {λj : j = 1, · · · }

which has no point of accumulation except possibly λ = ∞. The spectrum

of A is denoted by σ(A). We assume:

σ(A) ∩ {λ : Reλ = 0} = ∅.

Set

σ+ = σ(A) ∩ {λ : Reλ > 0}, σ− = σ(A) ∩ {λ : Reλ < 0}.
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We make natural assumption that σ+ is a finite and sup{Reλ : λ ∈ σ−} < 0,

that is,

σ+ = {λ1, ... , λN},

− ω0 = sup{Reλ : λ ∈ σ−} < 0

and for each j = 1, ... , N .

Let Z ≡ H × L2(−h, 0;V ) be the state space of the equation (2.2.2). Z

is a product Hilbert space with the norm

||g||Z = (|g0|2 +
∫ 0

−h

||g1(s)||2ds) 1
2 , g = (g0, g1) ∈ Z.

Let g ∈ Z and x(t; g, f, u) be a solution of (2.2.2) associated with the non-

linear term f and a control u at the time t. The segment xt is given by

xt(s; g, f, u) = x(t + s; g, f, u), s ∈ [−h, 0). The solution semigroup S(t) for

the equation (2.2.2) is defined by

S(t)g = (x(t; g, 0, 0), xt(·; g, 0, 0)), (2.2.3)

where x(t; g, 0, 0) is the solution of the equation (2.2.2) with f ≡ 0 and

B ≡ 0.

Here, we remark that the operator S(t) is a C0−semigroup on Z and the

infinitesimal generator A of S(t) is characterized by

D(A) = {g = (g0, g1) : g0 ∈ H, g1 ∈ W 1,2(−h, 0;V ),

g1(0) = g0, A0g
0 + γA0g

1(−h) +

∫ 0

−h

a(s)A0g
1(s)ds ∈ H},

Ag = (A0g
0 + A0g

1(−h) +

∫ 0

−h

a(s)A0g
1(s)ds, ġ1).
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It is also known that if the embedding V ⊂ H is compact, then

σ(A) = {λ : m(λ) �= 0, λ/m(λ) ∈ σ(A0)},

where m(λ) = 1 + γe−λh +
∫ 0

−h
eλsa(s)ds.

The equation (2.2.2) can be transformed into an abstract equation as

follows. {
z
′
(t) = Az(t) + F (t, z(t)) + Bu(t),

z(0) = g,
(2.2.4)

where z(t) = (x(t; g, f, u), xt(·; g, f, u)) ∈ Z and g = (g0, g1) ∈ Z. The

nonlinear operator F on Z is defined by F (t, z(t)) = (f(t, x(t), 0) and the

control operator B defined by Bu = (B0u, 0). The mild solution of initial

value problem (2.2.4) is the following form:

z(t; g, f, u) = S(t)g +

∫ t

0

S(t− s){F (s, z(s)) + Bu(s)}ds.

We consider also the adjoint problem

{
d
dt
y(t) = A∗

0y(t) + γA∗
0y(t− h) +

∫ 0

−h
a(s)A∗

0y(t+ s)ds,

y(0) = φ0, y(s) = φ1(s) s ∈ [−h, 0),
(2.2.5)

whereA∗
0 ∈ B(V, V ∗) is adjoint operator ofA0 and (φ0, φ1) ∈ H×L2(−h, 0;V ).

Let AT be the infinitesimal generator of ST(t) associated with the system

(2.2.5). Then the equation (2.2.5) can also be transformed into the following

equation: {
ẑ
′
(t) = ATẑ(t),

ẑ(0) = φ,
(2.2.6)
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where ẑ(t) = (y(t;φ, f, 0), (yt(·;φ, f, 0)) ∈ Z and φ = (φ0, φ1) ∈ Z. The

structural operator H is defined by

Gg = ([Gg]0, [Gg]1), g = (g0, g1) ∈ Z

[Gg]0 = g0, [Gg]1(s) = γA0g
1(−h− s) +

∫ s

−h

a(τ)A0g
1(τ − s)dτ.

The spectral projection

Pj =
1

2πi

∫
Γj

(λ− A)−1dλ

is an operator of finite rank, where Γj is a small circle centered at λj such

that it surrounds no point of σ(A) except λj, and set

Qj =
1

2πi

∫
Γj

(λ− λj)(λ− A)−1dλ.

Let Pλj
and Zλj

denote the spectral projection and the generalized eigenspace

for λj, respectively. Just as in [5] it can be shown that λ1, · · · , λN are

eigenvalues of AT . The spectral projection and the generalized eigenspace

for λj are defined by P T
λj

and ZT
λj
, respectively. Thus, we obtain the following

theorem in virtue of Theorem 3.1 of [26].

Theorem 2.2.1. Suppose that γ �= 0 and the system of the generalized

eigenspaces of A0 is complete. Let us assume the hypotheses (F) and let

f(·, ·) be uniformly bounded. If for j = 1, · · · , N ,

KerB∗ ∩ Range{
kj−1∑
n=0

(Qn
j )

∗} = {0}, (2.2.7)
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then the system (2.2.6) is Z+-approximately controllable on [0, T ].

Remark 2.2.1. According to S. Nakagiri [5], we represent the fundamental

solution W (t) for (4.1) by

W (t)g0 =

{
x(t; (g0, 0), 0, 0), t ≥ 0

0 t < 0

for g0 ∈ H. Therefore, if for each p ∈ L2(0, T ;H+) there exists an element q

belonging to the range of B such that

∫ T

0

W (T − s)p(s)ds =

∫ T

0

W (T − s)q(s)ds,

then we can directly prove the approximate controllability for (2.2.2) as in

Theorem 4.1 of [31].

Theorem 2.2.2. Suppose that γ = 0. Let us assume the hypotheses (F) and

let f(·, ·) be uniformly bounded. Then, the following statements are equiva-

lent.

(a) For any g ∈ Z there exists an u ∈ L2(0,∞;U) such that the mild solution

x of (2.2.2) satisfies (x, xt) ∈ L2(0,∞;Z), i.e.,

∫ ∞

0

{|x(t)|2 +
∫ 0

−h

||x(t+ s)||2ds}dt < ∞.

(b) The system of (2.2.4) is Z+-approximately controllable.

(c) {z∗ ∈ ZT
j : B∗

0 [(AT − λj)
nz∗]0 = 0, 1 ≤ j ≤ N, n = 0, ... , kj − 1} = {0}.

14



Proof. As seen in Proposition 4.1 of [29], if γ = 0, then the solution semigroup

S(t) of (2.2.3) is Hölder continuous in (3h,∞) in operator norm. Thus, by

Proposition 3.1 of [29], we know that (a) holds iff

{z∗ ∈ Z∗
j : B∗(A∗ − λj)

nz∗ = 0, n = 0, ... , kj − 1} = {0}. (2.2.8)

Just as Theorems 4.2 and 8.1 of [5] it can be shown that the structural

operator H∗ maps D(AT ) to D(A∗) and A∗G∗ = G∗AT on D(AT ), and G∗

is an isomorphism from ZT
λj

to Z∗
λj
. Hence, (2.2.8) is equivalent to the fact

that

{z∗ ∈ ZT
j : B∗

0 [(AT − λj)
nz∗]0 = 0, n = 0, ... , kj − 1} = {0}.

15



Chapter 3

Identification problems of retarded

differential systems in Hilbert spaces

3.1 Introduction

Let Ω be a bounded domain in R
n with smooth boundary ∂Ω. LetA(x,Dx)

be an elliptic differential operator of second order in L1(Ω):

A(x,Dx) = −
n∑

i,j=1

∂

∂xj

(ai,j(x)
∂

∂xi

) +
n∑

i=1

bi(x)
∂

∂xi

+ c(x).

In this paper, we consider the inverse problem for the following retarded

functional differential equation defined as A0u = −A(x,Dx)u:

{
u

′
(t) = A0u(t) + γA0u(t− h) +

∫ 0

−h
a(s)A0u(t+ s)ds,

u(0) = g0, u(s) = g1(s), s ∈ [−h, 0).
(IE)

Here A0, γ, and a(·) are unknown quantities to be identified and the initial

condition g = (g0, g1) is known.

In the field of control engineering, the inverse problem, or the parameter

estimations of systems has attracted much interest and has been investigated

in many references, for example, as for one dimensional heat equation with

an unknown spatially-varying conductivity in [11-14], an abstract linear first
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order evolution equation within the framework of operator theory in [61], and

linear retarded functional differential systems in reflexive Banach spaces in

[15-17]. In [27, 30] the author discussed the control problem for the following

retarded system with L1(Ω)-valued controller:

u
′
(t) = A0u(t) + A1u(t− h) +

∫ 0

−h

a(s)A2u(t+ s)ds+ Φ0w(t), (3.1.1)

where Ai(i = 1, 2) are second order linear differential operators with real

coefficients, and the controller Φ0 is a bounded linear operator from a control

Banach space to L1(Ω). In [16], they established some results concerning

identification problems for (IE) of specific form by taking the observation.

Furthermore, Yamamoto and Nakagiri [47] studied the identifiability problem

for evolution equations in Banach spaces with unknown operators and initial

values by means of spectral theory for linear operators.

In view of Sobolev’s embedding theorem we may also consider L1(Ω) ⊂
W−1,p(Ω) if 1 ≤ p < n/(n − 1) as is seen in [27]. Hence, we can investigate

the system (IE) in the space W−1,p(Ω) considering Φ0 as an operator into

W−1,p(Ω). Here, we note that the space W−1,p(Ω) is ζ-convex(as for the

definition and fundamental facts of a ζ-convex see [24, 10]). Consequently,

in view of Dore and Venni [18] the maximal regularity for the linear initial

value problem:

u′(t) = A0u(t) + f(t), u(0) = u0

in the space W−1,p(Ω) holds true.

17



Furthermore, with the aid of a result by Seeley [55] and [27], we can

obtain the maximal regularity for solutions of the retarded linear initial value

problem (IE) in the space W−1,p(Ω). In view of these results, we deal with

an inverse problem of (IE) in W−1,p(Ω).

The paper is organized as follows. Section 2 presents some notations.

In Section 3 from the definitions of operator A0 and the interpolation

theory as in Theorem 3.5.3 of Butzer and Berens [52], we can apply Theorem

3.2 of Dore and Venni [18] to general linear Cauchy problem in the space

W−1,p(Ω). Thereafter, by using the method of Di Blasio et al. [17] to the

system (3.1.1) with the forcing term f in place of the control term Φ0w,

Section 4 is devoted to studying the wellposedness and regularity for solutions

of (IE) by using a solution semigroup S(t) in the initial data space Zp,q =

Hp,q×Lq(−h, 0;W 1,p
0 (Ω)), where Hp,q = (W 1,p

0 (Ω),W−1,p)1/q,q(Ω) for 1 < q <

∞.

In Section 5, in order to identify the parameters, we investigate the spec-

trum of the infinitesimal generator Λ of S(t). We will give that the spectrum

of Λ is composed of two parts of cluster points and discrete eigenvalues.

Moreover, we are concerned with the representations of spectral projections

and the problem of completeness of generalized eigenspaces. Based on this

result, we establish a sufficient condition for the inverse problem is given as

the so called rank condition in terms of the initial values and eigenvectors of

adjoint operator.

Finally we give a simple example to which our main result can be applied.
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3.2 Notations

Let Ω be a region in an n-dimensional Euclidean space R
n and closure Ω.

Cm(Ω) is the set of all m-times continuously differential functions on

Ω.

Cm
0 (Ω) will denote the subspace of Cm(Ω) consisting of these functions

which have compact support in Ω.

Wm,p(Ω) is the set of all functions f = f(x) whose derivative Dαf up

to degree m in distribution sense belong to Lp(Ω) . As usual, the norm

is then given by

||f ||m,p,Ω = (
∑
α≤m

||Dαf ||pp,Ω)
1
p , 1 ≤ p < ∞,

||f ||m,∞,Ω = max
α≤m

||Dαu||∞,Ω,

where D0f = f . In particular, W 0,p(Ω) = Lp(Ω) with the norm || · ||p,Ω.

Wm,p
0 (Ω) is the closure of C∞

0 (Ω) in Wm,p(Ω)

For p = 2 we denote Wm,2(Ω) = Hm(Ω) and W 2,p
0 (Ω) = Hm

0 (Ω)

Let p
′
= p/(p − 1), 1 < p < ∞. W−1,p(Ω) stands for the dual space

W 1,p
′

0 (Ω)∗ of W 1,p
′

0 (Ω) whose norm is denoted by || · ||−1,p,∞.

If X is a Banach space and 1 < p < ∞,

Lp(0, T ;X) is the collection of all strongly measurable functions from

(0, T ) into X the p-th powers of norms are integrable.
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Cm([0, T ];X) will denote the set of all m-times continuously differen-

tiable functions from [0, T ] into X.

If X and Y are two Banach spaces, B(X, Y ) is the collection of all

bounded linear operators fromX into Y , and B(X,X) is simply written

as B(X).

For an interpolation couple of Banach spaces X0 and X1, (X0, X1)θ,p

for any θ ∈ (0, 1) and 1 ≤ p ≤ ∞ and [X0, X1]θ denote the real and

complex interpolation spaces betweenX0 andX1, respectively(see [22]).

Let A is a closed linear operator in a Banach space. Then

D(A) denotes the domain of (A) and R(A) the range of A.

ρ(A) denotes the resolvent set of A, σ(A) the spectrum of A, and σp(A)

the point spectrum of A.

The kernel or null space {x ∈ D(A) : Ax = 0} of A is denoted by

Ker(A).

3.3 Cauchy problems on ζ-convex spaces

Let Ω be a bounded domain in R
n with smooth boundary ∂Ω. Consider

an elliptic differential operator of second order

A(x,Dx) = −
n∑

i,j=1

∂

∂xj

(ai,j(x)
∂

∂xi

) +
n∑

i=1

bi(x)
∂

∂xi

+ c(x)
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where (ai,j(x) : i, j = 1, · · · , n) is a positive definite symmetric matrix for

each x ∈ Ω, ai,j ∈ C1(Ω), bi ∈ C1(Ω) and c ∈ L∞(Ω). The operator

A′
(x,Dx) = −

n∑
i,j=1

∂

∂xj

(ai,j(x)
∂

∂xi

)−
n∑

i=1

∂

∂xi

(bi(x)·) + c(x)

is the formal adjoint of A.

For 1 < p < ∞ we denote the realization ofA in Lp(Ω) under the Dirichlet

boundary condition by Ap:

D(Ap) = W 2,p(Ω) ∩W 1,p
0 (Ω),

Apu = Au for u ∈ D(Ap).

For p
′
= p/(p − 1), we can also define the realization A′

in Lp
′
(Ω) under

Dirichlet boundary condition by A
′
p′ :

D(A
′
p
′ ) = W 2,p

′
(Ω) ∩W 1,p

′

0 (Ω),

A
′
p′u = A′

u for u ∈ D(A
′
p′ ).

It is known that −Ap and −A
′
p
′ generate analytic semigroups in Lp(Ω) and

Lp
′
(Ω), respectively, and A∗

p = A
′
p′ . For brevity, we assume that 0 ∈ ρ(Ap).

From the result of Seeley [54] (see also Triebel [22, p. 321]) we obtain that

[D(Ap), L
p(Ω)] 1

2
= W 1,p

0 (Ω),

and hence, may consider that

D(Ap) ⊂ W 1,p
0 (Ω) ⊂ Lp(Ω) ⊂ W−1,p(Ω) ⊂ D(A

′
p
′ )∗.
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Let (A
′
p
′ )

′
be the adjoint of A

′
p
′ considered as a bounded linear operator

from D(A
′
p′ ) to Lp

′
(Ω). Let Ã be the restriction of (A

′
p′ )

′
to W 1,p

0 (Ω).

Then by the interpolation theory, the operator Ã is an isomorphism from

W 1,p
0 (Ω) toW−1,p(Ω). Similarly, we consider that the restriction Ã′ of (Ap)

′ ∈

B(Lp
′
(Ω), D(Ap)

∗) toW 1,p
′

0 (Ω) is an isomorphism fromW 1,p
′

0 (Ω) toW−1,p
′
(Ω).

Furthermore, as seen in proposition 3.1 in Jeong [27], we obtain the following

result.

Proposition 3.3.1. The operators Ã and Ã′ generate analytic semigroups

in W−1,p(Ω) and W−1,p′(Ω), respectively, and the inequality

||(Ã)is||B(W−1,p(Ω)) ≤ Ceγ|s|, −∞ < s < ∞,

holds for some constants C > 0 and γ ∈ (0, π/2).

We set

Hp,q = (W 1,p
0 (Ω),W−1,p(Ω)) 1

q
,q, q ∈ (1,∞). (3.3.1)

Since Ã is an isomorphism from W 1,p
0 (Ω) onto W−1,p(Ω) and W 1,p

0 (Ω) and

W−1,p(Ω) are ζ-convex spaces, it is easily seen that Hp,q is also ζ-convex.

From the definitions of operator Ã and the interpolation space Hp,q as in

Theorem 3.5.3 of Butzer and Berens [52], we can apply Theorem 3.2 of Dore

and Venni [18] to general linear Cauchy problem as the following result.
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Proposition 3.3.2. Let (u0, f) ∈ Hp,q × Lq(0, T ;W−1,p(Ω))(1 < q < ∞).

Then the Cauchy problem

u
′
(t) = Ãu(t) + f(t), u(0) = u0

has a unique solution

u ∈ Lq(0, T ;W 1,p
0 (Ω)) ∩W 1,q(0, T ;W−1,p(Ω)) ↪→ C([0, T ];Hp,q).

The last inclusion relation is well known and is an easy consequence of

the definition of real interpolation spaces by the trace method.

3.4 Retarded equations and lemmas

In this section, we apply Propositions 3.3.1 and 3.3.2 to the retarded func-

tional differential equation in the space W−1,p(Ω). Consider the following

retarded equation in W−1,p(Ω):

{
u

′
(t) = A0u(t) + A1u(t− h) +

∫ 0

−h
a(s)A2u(t+ s)ds+ f(t), t ∈ (0, T ]

u(0) = g0, u(s) = g1(s) s ∈ [−h, 0).

(3.4.1)

Here, A0 = −Ã, and Aιu (ι = 1, 2) are the restrictions W 1,p
0 (Ω) of the linear

differential operators Aι(ι = 1, 2) with real coefficients:

Aι(x,Dx) = −
n∑

i,j=1

∂

∂xj

(aιi,j(x)
∂

∂xi

) +
n∑

i=1

bιi(x)
∂

∂xi

+ cι(x),

where

aιi,j = aιj,i ∈ C1(Ω), bιi ∈ C1(Ω), cι ∈ L∞(Ω),
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and (aιi,j), ι = 1, 2 are positive definite. The kernel a(·) belongs to Lq
′
(−h, 0).

For q ∈ (1,∞) we set

Zp,q ≡ Hp,q × Lq(−h, 0;W 1,p
0 (Ω)).

Using Proposition 3.3.2 we can follow the argument as in [17] term by term

to deduce the following result(see Proposition 4.1 of [27]).

Lemma 3.4.1. Given g = (g0, g1) ∈ Zp,q and f ∈ Lq(0, T ;W−1,p(Ω)). Then

the problem (3.4.1) has a unique solution

u ∈ Lq(0, T ;W 1,p
0 (Ω))) ∩W 1,q(0, T ;W−1,p(Ω))) ⊂ C([0, T ];Hp,q).

Moreover, we have

||u||Lq(0,T ;W 1,p
0 (Ω))∩W 1,q(0,T ;W−1,p(Ω)) ≤ c(||g0||Hp,q

+ ||g1||Lq(−h,0;W 1,p
0 (Ω)) + ||f ||Lq(0,T ;W−1,p(Ω))),

where c is a constant.

Let F ≡ 0 in (3.4.1) and consider the equation on whole [0,∞). Then by

virtue of Lemma 3.4.1, we can define the solution semigroup S(t)(t ≥ 0) for

the system (3.4.1) as follows [17, Theorem 4.1](or [61, 63]):

S(t) = (u(t; g), ut(·; g))

where g = (g0, g1) ∈ Zp,q, u(t; g) is a solution of (3.4.1) and ut(·; g) is the

function ut(s; g) = u(t+s; g) defined in [−h, 0]. It is also known that S(t) is a

C0-semigroup on Zp,q. As in Theorem 4.2 of [17], the infinitesimal generator

is characterized as follows.
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Lemma 3.4.2.

(i) The operator S(t) is a C0−semigroup on Zp,q.

(ii) The infinitesimal generator Λ of S(t) is characterized by

D(Λ) = {g = (g0, g1) : g0 ∈ W 1,p
0 (Ω), g1 ∈ W 1,q(−h, 0;W 1,p

0 (Ω)),

g1(0) = g0, A0g
0 + A1g

1(−h) +

∫ 0

−h

a(s)A2g
1(s)ds ∈ Hp,q},

Λg = (A0g
0 + A1g

1(−h) +

∫ 0

−h

a(s)A2g
1(s)ds, ġ1).

The equation (3.4.1) can be transformed into an abstract equation in Zp,q

as follows.

z
′
(t) = Λz(t) +G(t), z(0) = g, (3.4.2)

where G(t) = (f(t), 0), z(t) = (u(t; g), ut(·; g)) ∈ Zp,q and g = (g0, g1) ∈
Zp,q. The mild solution of initial value problem (3.4.2) is the following form:

z(t; g) = S(t)g +

∫ t

0

S(t− s)G(s)ds.

We introduce the transposed problem of (3.4.1):

{
y

′
(t) = A∗

0y(t) + A∗
1y(t− h) +

∫ 0

−h
a(s)A∗

2y(t+ s)ds, t ∈ (0, T ],

y(0) = φ0, y(s) = φ1(s), s ∈ [−h, 0).
(3.4.3)
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Here, we remark that A∗
0, A∗

1 A∗
2 ∈ B(W 1,p′

0 (Ω),W−1,p′(Ω)). We can also

define the solution semigroup ST (t) of (3.4.3) by

ST (t)φ = (y(t;φ), yt(·, φ)) ∀φ = (φ0, φ1) ∈ Zp′,q′ ,

where y(t;φ) is the solution of (3.4.3). Let ΛT be the infinitesimal generator

of ST(t) associated with the system (3.4.3).

For λ ∈ C we define a densely defined closed linear operator by

Δ(λ) = λ− A0 − e−λhA1 −
∫ 0

−h

eλsa(s)A2ds,

ΔT (λ) = λ− A∗
0 − e−λhA∗

1 −
∫ 0

−h

eλsa(s)A∗
2ds.

The operators Δ(λ) and ΔT (λ) are bounded in B(W 1,p
0 (Ω),W−1,p(Ω)) and

B(W 1,p′
0 (Ω),W−1,p′(Ω)), respectively. Noting that if λ ∈ ρ(A0)

Δ(λ) =
{
I − (e−λhA1 +

∫ 0

−h

eλsA2ds)(λ− A0)
−1
}
(λ− A0).

The structural operator F is defined by

Fg = ([Fg]0, [Fg]1), (3.4.4)

[Fg]0 = g0,

[Fg]1(s) = A1g
1(−h− s) +

∫ s

−h

a(τ)A2g
1(τ − s)dτ, s ∈ [−h, 0)
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for g = (g0, g1) ∈ Zp,q. It is easy to see that F ∈ B(Zp,q, Z
∗
p
′
,q

′ ), F ∗ ∈

B(Zp
′
,q

′ , Z∗
p,q), where

[F ∗φ]0 = φ0,

[F ∗φ]1(s) = A∗
1φ

1(−h− s) +

∫ s

−h

a(τ)A∗
2φ

1(τ − s)dτ, s ∈ [−h, 0)

for φ ∈ Zp
′
,q

′ . As in [27, 63] we have that

FS(t) = S∗
T (t)F

, F ∗ST (t) = S∗(t)F ∗. (3.4.5)

Let λ be a pole of (λ− Λ)−1 whose order we denote by kλ and Pλ be the

spectral projection associated with λ:

Pλ =
1

2πi

∫
Γλ

(μ− Λ)−1dμ,

where Γλ is a small circle centered at λ such that it surrounds no point of

σ(Λ) except λ. And we know that λ ∈ σ(AT ) is a pole of (λ−ΛT )
−1 and the

spectral projection is given by

P T
λ
=

1

2πi

∫
Γλ

(μ− ΛT )
−1dμ.

As is well known λ is an eigenvalue of A and the generalized eigenspace

corresponding to λ is given by

PλZp,q = {Pλu : u ∈ Zp,q} = Ker(λI − Λ)kλ .

Let us set

Qλ =
1

2πi

∫
Γλ

(λ− λ)(λ− Λ)−1dλ.
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Then we remark that

Qi
λj

=
1

2πi

∫
Γλj

(λ− λj)
i(λ− Λ)−1dλ.

It is also well known that Q
kλj
λj

= 0 (nilpotent) and (Λ − λ)Pλj
= Qλj

(cf.

[63, 42]). The following subset of σ(Λ) are especially of use:

σp(Λ) = the point spectrum of Λ,

σd(Λ) = {λ ∈ σ(Λ) : λ is isolated and dim(PλZp,q) = dλ < ∞}.

Lemma 3.4.3. Let λ ∈ σp(Λ) = σp(Δ), where σp(Δ) = {λ : Δ(λ) is not invertival}.
Then

1) For any k = 1, 2, · · · ,

Ker (λ− Λ)k =
{(

φ0
0, e

λs

k−1∑
i=0

(−s)iφ0
i /i!

)
:

k−1∑
i=j−1

(−1)i−jΔ(i−j+1)(λ)φ0
i /(i− j + 1)! = 0, j = 1, · · · , k}.

2) λ ∈ ρ(Λ) = ρ(Λ∗
T ),

F (λ− Λ)−1 = (λ− Λ∗
T )

−1F.

In particular, if λ ∈ σp(Λ) then

FPλ = (P T
λ
)∗F.
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The proof of 1) and 2) is from Proposition 7.2 and Theorem 6.1 of Nakagiri

[63, 60], respectively.

Definition 3.4.1. The system of generalized eigenspaces of Λ is complete if

Cl(span{
∞⋃
k=1

Ker(λ− Λ)k : λ ∈ σp(Λ)}) = Zp,q,

where Cl is denotes the closure in Zp,q.

We know that λ ∈ σd(Λ) if and only if λ ∈ σd(ΛT ) and that PλZp,q = dλ =

P T
λ
Zp′,q′ = dλ. Let {φλ1, ..., φλdλ} and {ψλ1, ..., ψλdλ} be the bases of PλZp,q

and P T
λ Zp′,q′ , respectively. As is shown by the same method as Proposition

7.4 and Theorem 8.1 of [63], noting that F ∗ is an isomorphism from P T
λ Zp′,q′

to (Pλ)
∗Z∗

p,q, we can suppose that

(F ∗ψλi, φλj) = δij, i, j = 1, · · · , dλ. (3.4.6)

Here, (·, ·) denotes the duality between Z∗
p,q and Zp,q. The duality between

Z∗
p′,q′ and Zp′,q′ ia s also denoted by (·, ·).

Lemma 3.4.4.

(1) Let λ ∈ σd(ΛT ). Then for any g ∈ Zp′,q′, the spectral projection has the

following representation

P T
λ g =

dλ∑
i=1

(F ∗g, φλi)ψλi.
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(2) Let λ ∈ σd(Λ). Then the spectral projection has the following representa-

tion

Pλg =

dλ∑
i=1

(Fg, ψλi)φλi

for any g ∈ Zp,q.

Proof. We prove only (1) since the proof of (2) is similar. For any

g ∈ Zp′,q′ , P
T
λ g is written as

∑mλ

i=1 ciψλi for ci ∈ C and then by (3.4.6)

(F ∗P T
λ g, φλj) =

mλ∑
i=1

ci(F
∗ψλi, φλj) = cj.

From the Laplace transform of the second equality in (3.4.5) we have

F ∗(μ− ΛT )
−1 = (μ− Λ∗)−1F ∗

and

F ∗P T
λ = F ∗ 1

2πi

∫
Γλ

(μ− ΛT )
−1dμ =

1

2πi

∫
Γλ

F ∗(μ− ΛT )
−1dμ

=
1

2πi

∫
Γλ

(μ− Λ∗)−1F ∗dμ = (Pλ̄)
∗F ∗.

Therefore, we have

cj = (F ∗P T
λ g, φλj) = ((Pλ)

∗F ∗g, φλj) = (F ∗g, Pλφλj) = (F ∗g, φλj).

The proof of (1) is completed. �
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3.5 Identification problem in case A1 = γA0 & A2 = A0

In this section we deal with the identification problem in the case where

A1 = γA0 with some constant γ, A2 = A0 as follows.

{
u

′
(t) = A0u(t) + γA0u(t− h) +

∫ 0

−h
a(s)A0u(t+ s)ds,

u(0) = g0, u(s) = g1(s), s ∈ [−h, 0).
(3.5.1)

Here A0, γ, and a(·) are unknown quantities to be identified and the initial

conditions gi = (g0i , g
1
i ) ∈ Zp,q, i = 1, . . . , l are known.

We denote by the model system (3.5.1)m by the equation (3.5.1) with A0,

γ, a replaced by Am
0 , γ

m, am respectively. The solutions of (3.5.1) and the

model system (3.5.1)m are denoted by u(t; g) and um(t; g), respectively, and

the solution semigroup for model system by Sm(t). We assume that Am
0 and

am satisfy the same type of assumptions as A0 and a.

The identifiability for (3.5.1) is to find conditions such that if

u(t; gi) ≡ um(t; gi), i = 1, . . . , l,

for gi = (g0i , g
1
i ) ∈ Zp,q, i = 1, . . . , l, is a finite set of initial values, then

A0 = Am
0 , γ = γm, a(s) ≡ am(s)

follows.

At first we investigate the spectral properties of the infinitesimal gener-

ator Λm of solution semigroup Sm(t) for the equation (3.5.1)m. Since Ω is

bounded, the imbedding of W 1,p
0 (Ω) to Hp,q is compact. From [56, Theorem
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3.4], it follows that the system of generalized eigenspaces of A0 is complete

in Hp,q. According to Riesz-Schauder theorem Am
0 has discrete spectrum

σ(Am
0 ) = {μj : j = 1, · · · }

which has no point of accumulation except possibly λ = ∞.

For λ ∈ C we have

Δm(λ) = λ−m(λ)Am
0

where

m(λ) = 1 + γme−λh +

∫ 0

−h

eλsam(s)ds. (3.5.2)

It is clear that m is an entire function and

m(λ) → 1 as Reλ → ∞.

Just as Theorems 1 and 2 of [28] for Am
0 we can prove the following two

Lemmas.

Lemma 3.5.1. (1) Let ρ(Λm) be the resolvent set of the infinitesimal gener-

ator Λm of Sm(t). Then

ρ(Λm) = {λ : m(λ) �= 0,
λ

m(λ)
∈ ρ(Am

0 )}

= {λ : Δ(λ) is an isomorphism from W 1,p
0 (Ω) onto W−1,p(Ω)}.

(2) Let σ(Λm) be the spectrum of Λm. Then

σ(Λm) = σe(Λ
m) ∪ σp(Λ

m),
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where σe(Λ
m) = {λ : m(λ) = 0} and σp(Λ

m) = {λ : m(λ) �= 0, λ/m(λ) ∈
σ(Am

0 )}. Each nonzero point of σe(Λ
m) is not an eigenvalue of Λm but a

cluster point of σ(Λm). σp(Λ
m) consists only of discrete eigenvalues.

(3) Suppose m(0) = 0. Then there exists an analytic function g on neigh-

borhood at 0 such that g(0) �= 0 and m(λ) = λkg(λ), and

0 ∈
{
σp(Λ

m), if k = 1,

σe(Λ
m), if k > 1.

Lemma 3.5.2. Suppose that m(0) �= 0, γm �= 0. Then the system of gener-

alized eigenspaces of Λm is complete in Zp,q.

The structural operator F defined by (3.4.4) is written as

Fg = ([Fg]0, [Fg]1),

[Fg]0 = g0,

[Fg]1(s) = γA0g
1(−h− s) +

∫ s

−h

a(τ)A0g
1(τ − s)dτ, s ∈ [−h, 0).

for g = (g1, g1) ∈ Zp,q. The mm and Fm are the structural operators of the

model system (3.5.1)m in place of m in (3.5.2) and F , respectively.

Let λ ∈ σp(Λ
m), and {φλk

: k = 1, · · · , dλ} denote the basis of Pm
λ Zp,q.

Let Λm
T be the infinitesimal generator of transposed solution semigroup as-

sociated with (3.5.1). Then λ ∈ σp(Λ
m
T ). Let {ψλk

: k = 1, · · · , dλ} be a

basis of (Pm)T
λ
ZZp′,q′ , where (Pm)Tμ denotes the projection of Λm

T at μ. As
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shown in [29, Theorem 8.1] the projection (Pm)Tλ has the following eqivalent

representation

Pm
λ g =

dλ∑
k=1

(Fmg, ψλk
) φλk

, ∀g ∈ Zp,q.

Throughout this section we shall assume following:

• RANK CONDITION: For set of the initial values {g1, . . . , gl} is said

to be satisfy the Rank condition for the model system (3.5.1)m if and

only if

rank((Fmgi, ψλk
) : i → 1, . . . , l, k ↓ 1, . . . , dλ) = dλ, ∀λ ∈ σp(Λ

m)

(3.5.3)

for n = 1, 2, · · · and j = 1, 2, · · · .

The assumption of Rank condition is satisfied if and only if

Span{Pm
λ g1, . . . , P

m
λ gl} = Pm

λ Zp,q, ∀λ ∈ σp(Λ
m). (3.5.4)

Proposition 3.5.1. Assume that u(t; gi) ≡ um(t; gi), i = 1, . . . , l and the

rank condition (3.5.3) for {g1, . . . , gl} be satisfied. Further assum that

m(0) �= 0. Then

σp(Λ
m) ⊂ σp(Λ), σe(Λ

m) ⊂ σe(Λ), (3.5.5)

and

Λ = Λm on Pm
λ Zp,q, ∀λ ∈ σp(Λ

m). (3.5.6)
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Proof. By the definitionof semigroups S(t) and S(t)m, we have from the

assumption that

Sm(t)gi = S(t)gi, ∀t > 0, i = 1, · · · , l. (3.5.7)

By taking the Laplace transform of (3.5.7) and using the analytic continua-

tion of the resolvent operators, we have

(λ− Λm)−1gi = (λ− Λ)−1gi, ∀λ ∈ σp(Λ
m) ∩ σp(Λ), i = 1, · · · , l. (3.5.8)

Let λ0 ∈ σp(Λ
m). First we note that λ0 �= 0. Because, if λ0 = 0, thenm(λ0) �=

0 and hence 0 = λ0/m(λ0) ∈ σ(Am
0 ) by Lemma 3.5.1, which contradicts the

fact that Am
0 : W 1,p

0 (Ω) → W−1,p(Ω) is an isomorphism. We shall show

λ0 ∈ σ(Λ). Assume contrarily that λ0 ∈ ρ(Λ). Then from Lemma 3.5.1 there

exists a sufficiently small number ε > 0 such that

{λ : 0 < |λ− λ0| ≤ ε} ⊂ ρ(Λm), {λ : |λ− λ0| ≤ ε} ⊂ ρ(Λ).

Thus, by (3.5.8), we have

Pm
λ0
gi =

1

2πi

∫
|λ−λ0|=ε

(λ− Λm)−1gidλ

=
1

2πi

∫
|λ−λ0|=ε

(λ− Λ)−1gidλ = 0, i = 1, · · · , l.

This implies by the span condition (3.5.4) for λ = λ0 that Pm
λ0
Zp,q = {0},

which yields the contradiction. Thus, λ0 ∈ σ(Λ). Suppose λ0 ∈ σe(Λ). Since

λ0 �= 0 by m(λ0) = 0 in Lemma 3.5.1 and m(0) �= 0, there exists a sequence

{λn} ⊂ σp(Λ) such that λn( �= λ0) converges to λ0 as n → ∞. Then we
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can choose a sufficiently small ε > 0 and natural number N ≥ 1 such that

{λ : |λ− λ0| = ε} ⊂ ρ(Λ) and

{λn : n ≥ N} ⊂ {λ : 0 < |λ− λ0| ≤ ε} ⊂ ρ(Λm),

{λn : 1 ≤ n ≤ N − 1} ∩ {λ : |λ− λ0| ≤ ε} = ∅.

Since λn’s are discrete, we can also choose a positive sequence {εn : n ≥ N

such that {λ : |λ − λ0| ≤ εn} ⊂ ρ(Λm) for all n ≥ N . Therefore, by the

residue theorem, we have

Pm
λ0
gi =

1

2πi

∫
|λ−λ0|=ε

(λ− Λm)−1gidλ

=
1

2πi

∫
|λ−λ0|=ε

(λ− Λ)−1gidλ =
∑
n≥N

1

2πi

∫
|λ−λn|=εn

(λ− Λ)−1gidλ

=
∑
n≥N

1

2πi

∫
|λ−λn|=εn

(λ− Λm)−1gidλ =
∑
n≥N

0 = 0, i = 1, · · · , l,

which also contradicts the rank condition for λ = λ0. This shows λ0 ∈ σp(Λ).

Since λ0 is a discrete eigenvalue of Λ and Λm, we have for sufficiently small

ε > 0 that

Pm
λ0
gi =

1

2πi

∫
|λ−λ0|=ε

(λ− Λm)−1gidλ

=
1

2πi

∫
|λ−λ0|=ε

(λ− Λ)−1gidλ = Pλ0gi, i = 1, · · · , l. (3.5.9)
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Further, again by (3.5.8) and (3.5.9), for all i = 1, · · · , l we have

ΛmPm
λ0
gi =

1

2πi

∫
|λ−λ0|=ε

Λm(λ− Λm)−1gidλ

=
1

2πi

∫
|λ−λ0|=ε

{λ− (λ− Λm)}(λ− Λm)−1gidλ

=
1

2πi

∫
|λ−λ0|=ε

λ(λ− Λm)−1gidλ− 1

2πi

∫
|λ−λ0|=ε

gidλ

=
1

2πi

∫
|λ−λ0|=ε

λ(λ− Λm)−1gidλ

=
1

2πi

∫
|λ−λ0|=ε

λ(λ− Λ)−1gidλ = ΛPλ0gi = ΛPm
λ0
gi. (3.5.10)

By the span condition (3.5.4) for λ = λ0, this implies that

Λ = Λm in Pm
λ0
Zp,q, (3.5.11)

which proves (3.5.6). Next, let λ0 ∈ σe(Λ
m), thenm(0) = 0, so that λ0 �= 0 by

the assumption m(0) �= 0. Therefore, there exists a sequence {λn} ⊂ σp(Λ
m)

such that λn converges to λ0. Hence from {λn} ⊂ σp(Λ
m) ⊂ σp(Λ) in (3.5.5)

it follows that λ0 is a cluster point of σp(Λ) and hence λ0 ∈ σe(Λ).

Theorem 3.5.1. Suppose that m(0) �= 0 and γm �= 0. Let the set of initial

values {g1, · · · , gl} satisfy the rank condition (3.5.3) be satisfied. Then

u(t; gi) ≡ um(t; gi), gi = (g0i , g
1
i ) ∈ Zp,q, i = 1, . . . , l (3.5.12)

implies

A0 = Am
0 , γ = γm, a(s) ≡ am(s). (3.5.13)
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Proof. By Proposition 3.5.1, it follows from (3.5.12) and the rank condition

(3.5.3) that

Λ = Λm in Pm
λ0
Zp,q, λ ∈ σp(Λ). (3.5.14)

Since m(0) �= 0 and γm �= 0, by Lemma 3.5.2 the system of generalized

eigenspaces of Λm is projectively complete, i.e.,

Cl(span{Pm
λ Zp,q : λ ∈ σp(Λ)}) = Zp,q. (3.5.15)

Then by the same argument as in the proof of Theorem 3 in Yamamoto and

Nakagiri [47], we can verify by (3.5.14) and (3.5.15) that D(Λm) = D(Λ) and

Λmg = Λg for any g ∈ D(Λm). By Lemma 3.4.2, this implies

A0g
0 + γA0g

1(−h) +

∫ 0

−h

a(s)A0g
1(s)ds

=Am
0 g

0 + γmAm
0 g

1(−h) +

∫ 0

−h

am(s)Am
0 g

1(s)ds (3.5.16)

for all g = (g0, g1) ∈ D(Λm) For any g0 ∈ W 1,p
0 (Ω) and ε ∈ (0, h), let gε(s)

be a function in W 1,q(−h, 0;W 1,p
0 (Ω)) such that

gε(0) = g0, gε(s) = 0 if s ∈ [−h,−ε], and

∫ 0

−h

||gε(s)||q1,pds ≤ εq.

(3.5.17)

Then gε(s) ∈ D(Λm), and we apply this gε to (3.5.16) to have

(Am
0 − A0)g

0 =

∫ 0

−h

(a(s)A0 − am(s)Am
0 )gε(s)ds. (3.5.18)
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By using Hölder inequality, we have from (3.5.17) and (3.5.18) that

‖(Am
0 − A0)g0‖−1,p

≤( ∫ 0

−h

||a(s)A0 − am(s)Am
0 ||q

′

B(W 1,p
0 (Ω),W−1,p(Ω))

ds
)1/q′( ∫ 0

−h

||gε(s)||q1,pds
)1/q

≤ε||a(·)A0 − am(·)Am
0 ||Lq′ (−h,0;B(W 1,p

0 (Ω),W−1,p(Ω))) → 0 as ε → 0,

so that Am
0 g

0 = A0g
0 in W−1,p(Ω) for any g0 = W 1,p

0 (Ω). Hence Am
0 = A0

follows. It follows from this and (3.5.16) that

(γm − γ)Am
0 g

1(−h) =

∫ 0

−h

(a(s)− am(s))Am
0 g

1(s)ds, ∀g = (g0, g1) ∈ D(Λm).

(3.5.19)

For any f 0 ∈ W 1,p
0 (Ω) and ε ∈ (0, h), let fε be a function inW 1,q(−h, 0;W 1,p

0 (Ω))

such that

fε(−h) = f 0, fε(s) = 0 if s ∈ [−h+ ε, 0],

∫ 0

−h

||fε(s)||q1,pds ≤ εq. (3.5.20)

Then (0, fε) ∈ D(Λm), and applying this to (3.5.19) and repeating similar

argument as above, we have

(γm − γ)Am
0 f

0 = 0, ∀f 0 ∈ W 1,p
0 (Ω). (3.5.21)

Applying (Am
0 )

−1 to (3.5.21), we obtain γ = γm. Finally, from (3.5.19),

applying (Am
0 )

−1 and using the density argument, we have∫ 0

−h

(a(s)− am(s))Am
0 g

1(s)ds = 0 in W 1,p
0 (Ω), ∀g1 ∈ Lq(−h, 0;W 1,p

0 (Ω)).

(3.5.22)

This implies a(s) = am(s) a.e. s ∈ [−h, 0].
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Remark 3.5.1. The rank condition (3.5.3) can be replaced by

rank((Fmgi, ψ
0
λk
) : i → 1, . . . , l, k ↓ 1, . . . , d0λ) = d0λ, ∀λ ∈ σp(Λ

m),

{ψ0
λk

: k = 1, · · · , d0λ} is a basis of Ker(λ−Λm
T ) and dimKer(λ−Λm

T ) = d0λ(cf.

Corollary 1 in [47]).

3.6 example

We consider the following retarded functional differential equation of parabolic

type:

⎧⎪⎨⎪⎩
∂u(t,x)

∂t
= α∂2u(t,x)

∂x2 + β ∂2u(t−h,x)
∂x2 +

∫ 0

−h
a1(s)

∂2u(t+s,x)
∂x2 ds, (t, x) ∈ R

+ × (0, π),

u(t, 0) = u(t, π) = 0, t > 0

u(0, x) = g0(x), u(s, x) = g1(s, x) a.e. (s, x) ∈ [−h, 0]× [0, π].

(3.6.1)

The initial data (g0, g1) ∈ Hp,q × Lq(−h, 0;W 1,p
0 (0, π)), p, q �= 2 are known,

where Hp,q is defined on the domain Ω = (0, π) Here, α �= 0, β and a(s) are

unknown except that a1 ∈ L2(−h, 0;C). Let A0 be the realization in Hp,q of

the operator α ∂2

∂x2 with Dirichlet boundary condition, that is,

A0 = α
∂2

∂x2
, D(A0) = {u ∈ Hp,q : u(t, 0) = u(t, π) = 0}.

Then the eigenvalues and eigenfunctions of A0 are μn − an2 and en(x) =

sin(nx), n = 1, · · · , respectively. Let us define as

γ = β/α, a(s) = a1(s)/α s ∈ [−h, 0].
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Then the system (3.6.1) can be written in the same form as of (3.5.1) on the

space Hp,q. It is well known that {en :, n = 1, · · · } is an orthogonal base

for Hp,q, and so {sin(nx), n = 1, · · · } is complete In Hp,q. Thus, we can

solve the inverse problem of the system (3.6.1) for parameters α, β, and the

function a1(·) in the terminology of Theorem 3.5.1.

As an additional result in this case, we consider the system of generalized

eigenspaces of Λ as defined Lemma 3.4.2. The spectrum σ(Λ) of Λ is given

by

σ(Λ) =
∞⋃
n=1

σn,

where

σn =
{
λ ∈ C : Δn(λ) = λ− n2

(
α + βeλh +

∫ 0

−h

eλsa1(s)ds
)
= 0

}
as seen in [62, 58]. Hence, σ(Λ) is a countable set consisting entirely of

eigenvalues. Let {λnj}∞j=1 be the set of roots of Δn(λ) = 0(n = 1, 2, · · · ) and
let knj(in many cases enj = 1) be the multiplicity of λnj. The generalized

eigenspaces Pλnj
Hp,q corresponding to λnj ∈ σ(Λ) is given by

Span{exp(λnjs) sin(nx), · · · , sknj−1 exp(λnjs) sin(nx)}. (3.6.2)

Since {sin(nx), n = 1, · · · } is complete In Hp,q, from (3.6.2) and [2, Theorem

5.4] it follows the system of generalized eigenspaces of Λ is complete. In the

special case of the finite dimensional space, σ(Λ) is a countable set consisting

entirely of eigenvalues. Noting that γ �= 0 and 0 �= σ(Λ), the completeness of
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the system of generalized eigenspaces of Λ is equivalent to KerF ∗ = {0}(see
Manitius [2]). If h and a1 �= 0 are known and the multiplicity dnj = 1 for all

nj and g1 = (g01, 0) satisfies (g
0
1, sinnx) �= 0, then α, β, and a1 in (3.6.1) are

identifiable in terminology of Section 5.
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Chapter 4

On fractional order retarded neutral

differential equations in Hilbert spaces

4.1 Introduction

LetH and V be two complex Hilbert spaces such that V is a dense subspace

of H. In this paper, we study the existence of solutions and L2-regularity for

the following fractional order retarded neutral functional differential equa-

tion:{
dα

dtα
[x(t) + g(t, xt)] = A0x(t) +

∫ 0

−h
a1(s)A1x(t+ s)ds+ (Fx)(t) + k(t), t > 0,

x(0) = φ0, x(s) = φ1(s), −h ≤ s < 0,

(NE)

where 1/2 < α < 1, h > 0, a1(·) is Hölder continuous, k is a forcing term, and

g, f , are given functions satisfying some assumptions. Moreover, A0 : H → H

is unbounded but A1 is bounded. For each s ∈ [0, T ], we define xs : [−h, 0] →
H as xs(r) = x(s+ r) for r ∈ [−h, 0] and (φ0, φ1) ∈ H × L2(−h, 0;V ).

This kind of systems arises in many practical mathematical models arising

in dynamic systems, economy, physics, biological and engineering problems,

etc. (see [43, 67, 13, 41]). There has been a significant development in

fractional differential equations in recent years, see [[53, 1, 66, 23]] and the

references therein.
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In [68, 11, 12], the authors have discussed the existence of solutions for

mild solutions for the neutral differential systems with state-dependence de-

lay. Most studies about the neutral initial value problems governed by re-

tarded semilinear parabolic equation have been devoted to the control prob-

lems. As for the retarded differential equations, Jeong et al [25, 31], Suka-

vanam et al. [49], and Wang [44], have discussed the regularity of solutions

and controllability of the semilinear retarded systems, and see [25, 31, 49, 44]

and references therein for the linear retarded systems.

Recently, the existence of mild solutions for fractional neutral evolution

equations has been studied in [51, 1], the existence of solutions of inhomo-

geneous fractional diffusion equations with a forcing function in Baeumer et

al. [5], and the existence and approximation of solutions to fractional evo-

lution equation in Muslim [46]. In addition, Sukavanam et al.[50] studied

approximate controllability of fractional order semilinear delay systems.

In this paper, we propose a different approach of the earlier works used

properties of the relative compactness. Our approach is that regularity re-

sults of general retarded linear systems of Di Blasio et al. [17] and semilinear

systems of [31] remain valid under the above formulation of fractional or-

der retarded neutral differential system (NE) even though the system (NE)

contains unbounded principal operators, delay term, and local Lipschitz con-

tinuity of the nonlinear term. The methods of the functional analysis con-

cerning an analytic semigroup of operators and some fixed point theorems

are applied effectively.

The paper is organized as follows. In Section 2, we deal with properties of

the analytic semigroup constructing the strict solution of the corresponding
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linear systems excluded by the nonlinear term and introduce basic properties.

In Section 3, by using properties of the strict solutions in dealt in Section

2, we will obtain the L2-regularity of solutions of (NE), and a variation of

constant formula of solutions of (NE). Finally, we also give an example to

illustrate the applications of the abstract results.

4.2 Preliminaries and Lemmas

Let H and V be two Hilbert spaces such that V is a dense subspace of H.

The norm of H(resp. V ) is denoted by | · | (resp. || · ||) and the corresponding

scalar product by (·, ·) (resp.((·, ·))). Assume that the injection of V into H

is continuous. The antidual of V is denoted by V ∗, and the norm of V ∗ by

|| · ||∗. Identifying H with its antidual we can assume that H is embedded

in V ∗. Hence we have V ⊂ H ⊂ V ∗ densely and continuously. The duality

pairing between the element v1 of V ∗ and the element v2 of V is denoted by

(v1, v2), which is the ordinary inner product in H if v1, v2 ∈ H.

For l ∈ V ∗ we denote (l, v) by the value l(v) of l at v ∈ V . The norm of

l as element of V ∗ is given by

||l||∗ = sup
v∈V

|(l, v)|
||v|| .

Therefore, we assume that V has a stronger topology than H and ,for brevity,

we may consider

||u||∗ ≤ |u| ≤ ||u||, u ∈ V. (4.2.1)
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Let a(·, ·) be a bounded sesquilinear form defined in V × V and satisfying

G̊arding’s inequality

Re a(u, u) ≥ c0||u||2 − c1|u|2, c0 > 0, c1 ≥ 0. (4.2.2)

Let A0 be the operator associated with the sesquilinear form −a(·, ·):

((c1 − A0)u, v) = −a(u, v), u, v ∈ V.

It follows from (4.2.2) that for every u ∈ V

Re (A0u, u) ≥ c0||u||2.

Then A0 is a bounded linear operator from V to V ∗ according to the Lax-

Milgram theorem, and its realization in H which is the restriction of A0

to

D(A0) = {u ∈ V ;A0u ∈ H}

is also denoted by A0. Then A0 generates an analytic semigroup S(t) = etA0

in both H and V ∗ as in Theorem 3.6.1 of [20]. Moreover, there exists a

constant C0 such that

||u|| ≤ C0||u||1/2D(A0)
|u|1/2, (4.2.3)

for every u ∈ D(A0), where

||u||D(A0) = (|A0u|2 + |u|2)1/2

is the graph norm of D(A0). Thus we have the following sequence

D(A0) ⊂ V ⊂ H ⊂ V ∗ ⊂ D(A0)
∗,

where each space is dense in the next one and continuous injection.
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Lemma 4.2.1. With the notations (4.2.1), (4.2.3), we have

(V, V ∗)1/2,2 = H,

(D(A0), H)1/2,2 = V,

where (V, V ∗)1/2,2 denotes the real interpolation space between V and V ∗(Section

1.3.3 of [22]).

If X is a Banach space and 1 < p < ∞, Lp(0, T ;X) is the collection of all

strongly measurable functions from (0, T ) into X the p-th powers of norms

are integrable. L(X, Y ) is the collection of all bounded linear operators from

X into Y , and L(X,X) is simply written as L(X).

For the sake of simplicity we assume that the semigroup S(t) generated

by A0 is uniformly bounded, that is, There exists a constant M0 such that

||S(t)||L(H) ≤ M0, ||A0S(t)||L(H) ≤ M0

t
. (4.2.4)

The following lemma is from [20, Lemma 3.6.2].

Lemma 4.2.2. There exists a constant M0 such that the following inequali-

ties hold:

||S(t)||L(H,V ) ≤ t−1/2M0, (4.2.5)

||S(t)||L(V ∗,V ) ≤ t−1M0, (4.2.6)

||A0S(t)||L(H,V ) ≤ t−3/2M0. (4.2.7)
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The following initial value problem for the abstract linear parabolic equa-

tion

{
dx(t)
dt

= A0x(t) +
∫ 0

−h
a1(s)A1x(t+ s)ds+ k(t), 0 < t ≤ T,

x(0) = φ0, x(s) = φ1(s) s ∈ [−h, 0).
(4.2.8)

Then the mild solution x(t) is represented by

x(t) =S(t)φ0 +

∫ t

0

S(t− s)

∫ 0

−h

a1(τ)A1x(s+ τ)dτds

+

∫ t

0

S(t− s)k(s)ds,

x(0) =φ0, x(s) = φ1(s) s ∈ [−h, 0).

By virtue of Theorem 2.1 of [29] or [17], we have the following result on

the corresponding linear equation of (4.2.8).

Lemma 4.2.3. (1) For (φ0, φ1) ∈ V ×L2(−h, 0;D(A0)) and k ∈ L2(0, T ;H),

T > 0, there exists a unique solution x of (4.2.8) belonging to

L2(0, T ;D(A0)) ∩W 1,2(0, T ;H) ⊂ C([0, T ];V )

and satisfying

||x||L2(0,T ;D(A0))∩W 1,2(0,T ;H) ≤ C1(||φ0||+ ||φ1||L2(−h,0;D(A0)) + ||k||L2(0,T ;H)),

(4.2.9)

where C1 is a constant depending on T and

||x||L2(0,T ;D(A0))∩W 1,2(0,T ;H) = max{||x||L2(0,T ;D(A0)), ||x||W 1,2(0,T ;H)}
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(2) Let (φ0, φ1) ∈ H × L2(−h, 0;V ) and k ∈ L2(0, T ;V ∗), T > 0. Then

there exists a unique solution x of (4.2.8) belonging to

L2(0, T ;V ) ∩W 1,2(0, T ;V ∗) ⊂ C([0, T ];H)

and satisfying

||x||L2(0,T ;V )∩W 1,2(0,T ;V ∗) ≤ C1(|φ0|+ ||φ1||L2(−h,0;V ) + ||k||L2(0,T ;V ∗)), (4.2.10)

where C1 is a constant depending on T .

Let the solution spaces W(T ) and W1(T ) of strong solutions be defined

by

W(T ) = L2(0, T ;D(A0)) ∩W 1,2(0, T ;H),

W1(T ) = L2(0, T ;V ) ∩W 1,2(0, T ;V ∗).

Here, we note that by using interpolation theory, we have

W(T ) ⊂ C([0, T ];V ), W1(T ) ⊂ C([0, T ];H).

Thus, there exists a constant c1 > 0 such that

||x||C([0,T ];V ) ≤ c1||x||W(T ), ||x||C([0,T ];H) ≤ c1||x||W1(T ). (4.2.11)

In what follows in this section, we assume c1 = 0 in (4.2.2) without any

loss of generality. So we have that 0 ∈ ρ(A0) and the closed half plane

{λ : Reλ ≥ 0} is contained in the resolvent set of A0. In this case, it is

possible to define the fractional power Aα
0 for α > 0. The subspace D(Aα

0 ) is

dense in H and the expression

||x||α = ||Aα
0x||, x ∈ D(Aα

0 )
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defines a norm on D(Aα
0 ). It is also well known that Aα

0 is a closed operator

with its domain dense and D(Aα
0 ) ⊃ D(Aβ

0 ) for 0 < α < β. Due to the well

known fact that A−α
0 is a bounded operator, we can assume that there is a

constant C−α > 0 such that

||A−α
0 ||L(H) ≤ C−α, ||A−α

0 ||L(V ∗,V ) ≤ C−α. (4.2.12)

Lemma 4.2.4. For any T > 0, there exists a positive constant Cα such that

the following inequalities hold for all t > 0:

||Aα
0S(t)||L(H) ≤ Cα

tα
, ||Aα

0S(t)||L(H,V ) ≤ Cα

t3α/2
. (4.2.13)

Proof. The relation is from the inequalities (4.2.6) and (4.2.7) by properties

of fractional power of A0 and the definition of S(t).

4.3 Existence of solutions

Consider the following fractional order retarded neutral differential system:{
dα

dtα
[x(t) + g(t, xt)] = A0x(t) +

∫ 0

−h
a1(s)A1x(t+ s)ds+ (Fx)(t) + k(t), t > 0,

x(0) = φ0, x(s) = φ1(s), −h ≤ s < 0,

(4.3.1)

where 0 < α < 1 and Ai(i = 0, 1) are the linear operators defined as in

Section 2. For each s ∈ [0, T ], we define xs : [−h, 0] → H as

xs(r) = x(s+ r), −h ≤ r ≤ 0.

We will set

Π = L2(−h, 0;V ).
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Definition 4.3.1. The fractional integral of order α > 0 with the lower limit

0 from a function f is defined as

Iαf(t) =
1

Γ (α)

∫ t

0

f(s)

(t− s)1−α
ds, t > 0,

provided the right hand side is pointwise defined on [0,∞), Γ is the Gamma

function.

The fractional derivative of order α > 0 in the Caputo sense with the

lower limit 0 from a function f ∈ Cn[0,∞) is defined as

dαf(t)

dtα
=

1

Γ (n− α)

∫ t

0

f (n)(s)

(t− s)1+α−n
ds = In−αf (n)(t), t > 0, n−1 < α < n.

For the basic results about fractional integrals and fractional derivative, one

can refer to [23].

The mild solution of the system (4.3.1) is represented as (see [51, 71]):

x(t) = S(t)[φ0 + g(0, φ1)]− g(t, xt) +
1

Γ (α)

∫ t

0

(t− s)(α−1)AS(t− s)g(s, xs)ds

+
1

Γ (α)

∫ t

0

(t− s)(α−1)S(t− s)
{∫ 0

−h

a1(τ)A1x(s+ τ)dτ + (Fx)(s) + k(s)}ds.
(4.3.2)

To establish our results, we introduce the following assumptions on system

(4.3.1).

Assumption (A). We assume that a1(·) is Hölder continuous of order ρ:

|a1(0)| ≤ H1, |a1(s)− a1(τ)| ≤ H1(s− τ)ρ.
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Assumption (F1). F is a nonlinear mapping of L2(0, T ;V ) into L2(0, T ;H)

satisfying following:

(i) There exists a function Lf : R+ → R such that

||Fx− Fy||L2(0,T ;H) ≤ Lf (r)||x− y||L2(0,T ;V ), t ∈ [0, T ]

hold for ||x||L2(0,T ;V ) ≤ r and ||y||L2(0,T ;V ) ≤ r.

(ii) The inequality

||Fx||L2(0,T ;H) ≤ Lf (r)(||x||L2(0,T ;V ) + 1)

holds for every t ∈ [0, T ] and ||x||L2(0,T ;V ) ≤ r.

Assumption (G). Let g : [0, T ]×Π → H be a nonlinear mapping such

that there exists a constant Lg satisfying the following conditions hold:

(i) For any x ∈ Π, the mapping g(·, x) is strongly measurable;

(ii) There exists a positive constant β > 1− 2α/3 such that

|Aβg(t, 0)| ≤ Lg, |Aβg(t, x)− Aβg(t, x̂)| ≤ Lg||x− x̂||Π,

for all t ∈ [0, T ], and x, x̂ ∈ Π.

Lemma 4.3.1. Let x ∈ L2(−h, T ;V ). Then the mapping s �→ xs belongs to

C([0, T ]; Π), and

||xt||Π ≤ ||x||L2(−h,t;V )(t > 0), (4.3.3)

||x·||L2(0,T ;Π) ≤
√
T ||x||L2(−h,T ;V ). (4.3.4)
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Proof. The first paragraph is easy to verify. Moreover, we have

||xt||Π =
[ ∫ 0

−h

||x(s+ τ)||2dτ]1/2 ≤ [ ∫ t

−h

||x(τ)||2dτ]1/2 ≤ ||x||L2(−h,t;V ), t > 0,

and

||x·||2L2(0,T ;Π) ≤
∫ T

0

||xs||2Πds ≤
∫ T

0

∫ 0

−h

||x(s+ r)||2drds

≤
∫ T

0

ds

∫ T

−h

||x(r)||2dr ≤ T ||x||2L2(−h,T ;V ).

One of the main useful tools in the proof of existence theorems for non-

linear functional equations is the following fixed point theorem.

Lemma 4.3.2. (See [45]) Suppose that Σ is a closed convex subset of a

Banach space X. Assume that K1 and K2 are mappings from Σ into X such

that the following conditions are satisfied:

(i) (K1 +K2)(Σ) ⊂ Σ,

(ii) K1 is a completely continuous mapping,

(iii) K2 is a contraction mapping.

Then the operator K1 +K2 has a fixed point in Σ.

From now on, we establish the following results on the solvability of the

equation (4.3.1).
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Theorem 4.3.1. Let Assumptions (A), (F1) and (G) be satisfied. Assume

that (φ0, φ1) ∈ H × Π and k ∈ L2(0, T ;V ∗) for T > 0. Then, there exists a

solution x of the system (4.3.1) such that

x ∈ W1(T ) = L2(0, T ;V ) ∩W 1,2(0, T ;V ∗) ↪→ C([0, T ];H).

Moreover, there is a constant C2 independent of the initial data (φ0, φ1) and

the forcing term k such that

||x||L2(−h,T ;V ) ≤ C2(1 + |φ0|+ ||φ1||Π + ||k||L2(0,T ;V ∗)). (4.3.5)

Proof. Let

r := 2
[
C1|φ0|+ C1C−βLg(||φ1||+ 1)],

and

N :=C−βLg

(||φ1||Π + ||x||L2(0,T1;V ) + 1
)

+
C1(2α)

−1/2(2α− 1)−1/2

Γ (α)

× (|φ0|+ ||φ1||L2(−h,0;V ) + Lf (r)(||x||L2(0,T1;V ) + 1) + ||k||L2(0,T1;V ∗)
)

+
C1−βLg(

α− 3(1− β)/2
)(
2α + 3β − 2

)1/2
Γ (α)

(||φ1||Π + ||x||L2(0,T1;V ) + 1),

where C1 is the constants in Lemma 4.2.3 and β > 1− 2α/3 in Assumption

(G). Let

T γ
1 := max{T 1/2

1 , T
(2α+3β−2)/2
1 }

and choose 0 < T1 < T such that

T γ
1 N ≤ r

2
=

[
C1|φ0|+ C1C−βLg(||φ1||+ 1)], (4.3.6)
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and

N̂ :=T γ
1

{
C−βLg +

C1−βLg(
α− 3(1− β)/2

)(
2α + 3β − 2

)1/2
Γ (α)

(4.3.7)

+
C1(2α)

−1/2(2α− 1)−1/2Lf (r)

Γ (α)

}
< 1.

Let J be the operator on L2(0, T1;V ) defined by

(Jx)(t) = S(t)[φ0 + g(0, φ1)]− g(t, xt) +
1

Γ (α)

∫ t

0

(t− s)(α−1)AS(t− s)g(s, xs)ds

+
1

Γ (α)

∫ t

0

(t− s)(α−1)S(t− s)
{∫ 0

−h

a1(τ)A1x(s+ τ)dτ + (Fx)(s) + k(s)}ds.

Let

Σ = {x ∈ L2(−h, T1;V ) : x(0) = φ0, and x(s) = φ1(s)(s ∈ [−h, 0))}.

and

Σr = {x ∈ Σ : ||x||L2(0,T1;V ) ≤ r},

which is a bounded closed subset of L2(0, T1;V ).

Now, in order to show that the operator J has a fixed point in Σr ⊂
L2(0, T1;V ), we take the following steps according to the process of Lemma

4.3.2.

Step 1. J maps Σr into Σr.

By (4.2.10), (4.2.12) and Assumption (G), and noting x0 = φ1, we know

||S(·)g(0, x0)||L2(0,T1;V ) = C1|g(0, φ1)| (4.3.8)

= C1||A−β||L(H)

(|Aβg(0, φ1)− Aβg(0, 0)|+ |Aβg(0, 0)|)
≤ C1C−βLg(||φ1||Π + 1).
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From (4.2.10) of Lemma 4.2.3 it follows

||S(t)φ0||L2(0,T1;V ) ≤ C1|φ0|, (4.3.9)

and by using Hölder inquality∫ t

0

(t− s)α−1
∥∥S(t− s)

{∫ 0

−h

a1(τ)A1x(s+ τ)dτ + (Fx)(s) + k(s)
}∥∥ds

(4.3.10)

≤ (2α− 1)−1/2t(2α−1)/2C1(|φ0|+ ||φ1||L2(−h,0;V ) + ||Fx||L2(0,t;V ∗) + ||k||L2(0,t;V ∗)).

Define the operator I1 from L2(0, T1;V ) to itself by

(I1x)(t) =
1

Γ (α)

∫ t

0

(t−s)α−1S(t−s)
{∫ 0

−h

a1(τ)A1x(s+τ)dτ+(Fx)(s)+k(s)
}
ds.

Then according to (4.3.10) we obtain the following inequality

||I1||L2(0,T1;V ) ≤C1(2α)
−1/2(2α− 1)−1/2T α

1

Γ (α)

(|φ0|+ ||φ1||L2(−h,0;V ) (4.3.11)

+ Lf (r)(||x||L2(0,T1;V ) + 1) + ||k||L2(0,T1;V ∗)
)
.

By using Assumption (G) and Lemma 4.3.1, we have

||g(·, x·)||L2(0,T1;V ) =
( ∫ T1

0

∥∥A−βAβg(t, xt)
∥∥2
dt
)1/2

(4.3.12)

≤ C−β

( ∫ T1

0

∥∥Aβg(t, xt)
∥∥2
dt
)1/2 ≤ C−βLg

√
T1

(||xt||Π + 1
)

≤ C−βLg

√
T1

(||φ1||Π + ||x||L2(0,T1;V ) + 1
)
.

Here, we note

||xt||Π ≤ ||x||L2(−h,T1;V ) ≤ ||φ1||Π + ||x||L2(0,T1;V ). (4.3.13)
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Again we define the operator I2 from L2(0, T1;V ) to itself by

(I2x)(t) =
1

Γ (α)

∫ t

0

(t− s)(α−1)AS(t− s)g(s, xs)ds.

From Lemma 4.2.4 and Assumption (G) we have

||(t− s)(α−1)AS(t− s)g(s, xs)|| = (t− s)(α−1)||A1−βS(t− s)||L(H,V )|Aβg(s, xs)|

≤ C1−β

(t− s)1−α+3(1−β)/2
|Aβ(g(s, xs)|

≤ C1−β

(t− s)1−α+3(1−β)/2
Lg(||φ1||Π + ||x||L2(0,T1;V ) + 1),

and hence, by using Hólder inequality and Assumption (G),

||I2x||L2(0,T1;V ) =
[ ∫ T1

0

∥∥ 1

Γ (α)

∫ t

0

(t− s)(α−1)AS(t− s)g(s, xs)ds
∥∥2
dt
]1/2
(4.3.14)

≤ 1

Γ (α)
C1−βLg(||φ1||Π + ||x||L2(0,T1;V ) + 1)

[ ∫ T1

0

( ∫ t

0

1

(t− s)1−α+3(1−β)/2
ds
)2
dt
]1/2

≤ C1−βLgT
(2α+3β−2)/2
1(

α− 3(1− β)/2
)(
2α + 3β − 2

)1/2
Γ (α)

(||φ1||Π + ||x||L2(0,T1;V ) + 1).
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Thus, from (4.3.8)-(4.3.14) it follows that

||Jx||L2(0,T1;V ) ≤C1|φ0|+ C1C−βLg(||φ1||+ 1)

+ C−βLg

√
T1

(||φ1||Π + ||x||L2(0,T1;V ) + 1
)

+
C1(2α)

−1/2(2α− 1)−1/2T α
1

Γ (α)

× (|φ0|+ ||φ1||L2(−h,0;V ) + Lf (r)(||x||L2(0,T1;V ) + 1) + ||k||L2(0,T1;V )

)
+

C1−βLgT
(2α+3β−2)/2
1(

α− 3(1− β)/2
)(
2α + 3β − 2

)1/2
Γ (α)

(||φ1||Π + ||x||L2(0,T1;V ) + 1),

≤C1|φ0|+ C1C−βLg(||φ1||+ 1) + T γ
1 N ≤ r

2
+

r

2
≤ r.

Therefore, J maps Σr into Σr.

Define mapping K1 +K2 on L2(0, T1;V ) by the formula

(Jx)(t) = (K1x)(t) + (K2x)(t),

where

(K1x)(t) =
1

Γ (α)

∫ t

0

(t− s)(α−1)S(t− s)

∫ s

0

a1(τ − s)A1x(τ)dτds,

and

(K2x)(t) = S(t)[φ0 + g(0, x0)]− g(t, xt) +
1

Γ (α)

∫ t

0

(t− s)(α−1)AS(t− s)g(s, xs)ds

+
1

Γ (α)

∫ t

0

(t− s)(α−1)S(t− s)
{∫ 0

s−h

a1(τ − s)A1φ
1(τ)dτ + F (x)(s) + k(s)}ds.

Step 2. K1 is a completely continuous mapping.

58



We can now employ Lemma 4.3.2 with Σr. Assume that a sequence

{xn} of L2(0, T1;V ) converges weakly to an element x∞ ∈ L2(0, T1;V ), i.e.,

w − limn→∞ xn = x∞. Then we will show that

lim
n→∞

||K1xn −K1x∞||L2(0,T1;V ) = 0, (4.3.15)

which is equivalent to the completely continuity of K1 since L2(0, T1;V )

is reflexive. For a fixed t ∈ [0, T1], let x∗
t (x) = (K1x)(t) for every x ∈

L2(0, T1;V ). Then x∗
t ∈ L2(0, T1;V

∗) and we have limn→∞ x∗
t (xn) = x∗

t (x∞)

since w − limn→∞ xn = x∞. Hence,

lim
n→∞

(K1xn)(t) = (K1x∞)(t), t ∈ [0, T1].

By using Hölder inequality, we obtain easily the following inequality:

|
∫ s

0

a1(τ − s)A1x(τ)dτ | =
∣∣ ∫ s

0

(a1(τ − s)− a1(0) + a1(0))A1x(τ)dτ
∣∣

(4.3.16)

≤ {(
(2ρ+ 1)−1s2ρ+1

)1/2
+
√
s
}
H1||A1||L(H)

( ∫ s

0

||x(τ)||2dτ)1/2.
Thus, by (4.2.5) and (4.3.16) it holds

||(K1x)(t)|| =
∥∥ 1

Γ (α)

∫ t

0

(t− s)(α−1)S(t− s)

∫ s

0

a1(τ − s)A1x(τ)dτds
∥∥

≤ H1||A1||L(H)||x||L2(0,t;V )

Γ (α)

∥∥ ∫ t

0

1

(t− s)1/2−α

{
((2ρ+ 1)−1s(2ρ+1)/2 +

√
s
}
ds
∥∥

≤ H1||A1||L(H)||x||L2(0,t;V )

Γ (α)

{
(2ρ+ 1)−1B(1/2 + α, (2ρ+ 3)/2)tρ+1 +B(1/2 + α, 3/2)t

}
.

:= c2||x||L2(0,t;V ),
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where c2 is a constant and B(·, ·) is the Beta function, that is,

B(1/2 + α, (2ρ+ 3)/2)tρ+1 =

∫ t

0

(t− s)α−1/2s(2ρ+1)/2ds.

And we know

sup
0≤t≤T1

||(K1x)(t)|| ≤ c2||x||L2(0,T1;V ) ≤ ∞.

Therefore, by Lebesgue’s dominated convergence theorem it holds

lim
n→∞

( ∫ T1

0

||(K1xn)(t)||2dt
)
=

( ∫ T1

0

||(K1x∞)(t)||2dt),
i.e., limn→∞ ||K1xn||L2(0,T1;V ) = ||K1x∞||L2(0,T1;V ). Since L2(0, T1;V ) is a re-

flexive space, it holds (4.3.15).

Step 3. K2 is a contraction mapping.

For every x1 and x2 ∈ Σr, we have

(K2x1)(t)− (K2x2)(t) =g(t, x2t)− g(t, x1t)

+
1

Γ (α)

∫ t

0

(t− s)α−1AS(t− s)
(
g(t, x1s)− g(t, x2s)

)
ds

+
1

Γ (α)

∫ t

0

(t− s)α−1S(t− s){F (x1)(s)− F (x2)(s)}ds.

By the similar way to (4.3.8)-(4.3.14), we have

||K2x1 −K2x2||L2(0,T1;V ) ≤
{
C−βLg

√
T1 +

C1−βLgT
(2α+3β−2)/2
1(

α− 3(1− β)/2
)(
2α + 3β − 2

)1/2
Γ (α)

+
C1(2α)

−1/2(2α− 1)−1/2Lf (r)T
α
1

Γ (α)

}||x1 − x2||L2(0,T1;V )

≤N̂ ||x1 − x2||L2(0,T1;V ).
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So by virtue of the condition (4.3.7) the contraction mapping principle gives

that the solution of (4.3.1) exists uniquely in L2(0, T1;V ). This has proved

the local existence and uniqueness of the solution of (4.3.1).

Step 4. We drive a priori estimate of the solution.

To prove the global existence, we establish a variation of constant formula

(4.3.5) of solution of (4.3.1). Let x be a solution of (4.3.1) and φ0 ∈ H. Then

we have that from (4.3.8)-(4.3.14) it follows that

||x||L2(0,T1;V ) ≤C1|φ0|+ C1C−βLg(||φ1||Π + 1)

+ C−βLg

√
T1

(||φ1||Π + ||x||L2(0,T1;V ) + 1
)

+
C1(2α)

−1/2(2α− 1)−1/2T α
1

Γ (α)

× (|φ0|+ ||φ1||L2(−h,0;V ) + Lf (r)(||x||L2(0,T1;V ) + 1) + ||k||L2(0,T1;V )

)
+

C1−βLgT
(2α+3β−2)/2
1(

α− 3(1− β)/2
)(
2α + 3β − 2

)1/2
Γ (α)

(||φ1||Π + ||x||L2(0,T1;V ) + 1),

=N̂ ||x||L2(0,T1;V ) + N̂1,

where N̂ is the constant of (4.3.7) and

N̂1 =C1|φ0|+ C1C−βLg(||φ1||Π + 1) + C−βLg

√
T1

(||φ1||Π + 1
)

+
C1(2α)

−1/2(2α− 1)−1/2T α
1

Γ (α)

(|φ0|+ ||φ1||L2(−h,0;V ) + Lf (r)) + ||k||L2(0,T1;V ∗)
)

+
C1−βLgT

(2α+3β−2)/2
1(

α− 3(1− β)/2
)(
2α + 3β − 2

)1/2
Γ (α)

(||φ1||Π + 1).
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Taking into account (4.3.7) there exists a constant C2 such that

||x||L2(0,T1;V ) ≤(1− N̂)−1N̂1 (4.3.17)

≤C2(1 + |φ0|+ ||φ1||Π + ||k||L2(0,T1;V ∗)),

which obtain the inequality (4.3.5).

Now we will prove that |x(T1)| < ∞ in order that the solution can be

extended to the interval [T1, 2T1]. From (4.2.11) and Lemma 4.2.3 it follows

that

|S(T1)[φ
0 + g(0, x0)]| ≤ c1||S(·)[φ0 + g(0, x0)||W1(T1) (4.3.18)

≤ c1C1|φ0 + g(0, φ1)|

≤ c1C1

{|φ0|+ C−βLg(||φ1||Π + 1)
}
:= I,

and by using Assumption (G) we have

|g(T1, xT1)| ≤
∥∥A−βAβg(t, xT1)

∥∥, (4.3.19)

≤ C−βLg

(||xT1 ||Π + 1
)

≤ C−βLg

(||φ1||Π + ||x||L2(0,T1;V ) + 1
)
:= II.

By (4.3.10), we have

|(I1x)(T1)| (4.3.20)

≤ 1

Γ (α)

∥∥ ∫ T1

0

(T1 − s)α−1S(T1 − s)
{∫ 0

−h

a1(τ)A1x(s+ τ)dτ + (Fx)(s) + k(s)
}
ds
∥∥

≤ (2α− 1)−1/2Γ (α)−1T1
(2α−1)/2

× C1(|φ0|+ ||φ1||L2(−h,0;V ) + Lf (r)(||x||L2(0,T1;V ) + 1) + ||k||L2(0,T1;V ∗)) := III
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From Lemma 4.2.4 and Assumption (G) we have

|(T1 − s)(α−1)AS(T1 − s)g(s, xs)| ≤

= (T1 − s)(α−1)|A1−βS(T1 − s)|L(H)|Aβ(g(s, xs)|

≤ C1−β

(T1 − s)1−α+(1−β)
|Aβ(g(s, xs)|

≤ C1−β

(T1 − s)2−α−β
Lg(||φ1||Π + ||x||L2(0,T1;V ) + 1),

and so

|(I2x)(T1)| =
∣∣ 1

Γ (α)

∫ T1

0

(T1 − s)(α−1)AS(T1 − s)g(s, xs)ds
∣∣ (4.3.21)

≤ C1−β

(
α + β − 1

)−1
T α+β−1
1 Lg(||φ1||Π + ||x||L2(0,T1;V ) + 1) := IV.

Thus,by (4.3.17)-(4.3.21) we have

|x(T1)| =
∣∣S(T1)[φ

0 + g(0, x0)]− g(T1, xT1) + (I1x)(T1) + (I2x)(T1)
∣∣

≤ I + II + III + IV < ∞.

Hence we can solve the equation in [T1, 2T1] with the initial (x(T1), xT1) and

an analogous estimate to (4.3.4). Since the condition (4.3.6) is independent

of initial values, the solution can be extended to the interval [0, nT1] for any

natural number n, and so the proof is complete.

Remark 4.3.1. Thanks for Lemma 4.2.3, we note that the solution of (4.3.1)

under conditions of Theorem 4.3.1 with (φ0, φ1) ∈ V × L2(0, T ;D(A)) and

k ∈ L2(0, T ;H) for T > 0 belongs to

W(T ) = L2(0, T ;D(A))) ∩W 1,2(0, T ;H) ↪→ C([0, T ];V ).
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Moreover, there is a constant C2 independent of the initial data (φ0, φ1) and

the forcing term k such that

||x||L2(−h,T ;D(A)) ≤ C2(1 + ||φ0||+ ||φ1||L2(0,T ;D(A)) + ||k||L2(0,T ;H)).

Now, we obtain that the solution mapping is Lipschitz continuous in

the following result, which is useful for the control problem and physical

applications of the given equation.

Theorem 4.3.2. Let Assumptions (A), (F1) and (G) be satisfied. Assuming

that the initial data (φ0, φ1) ∈ H ×Π and the forcing term k ∈ M2(0, T ;V ∗).

Then the solution x of the equation (4.3.1) belongs to x ∈ L2(0, T ;V ) and

the mapping

H × Π× L2(0, T ;V ∗) � (φ0, φ1, k) �→ x ∈ L2(0, T ;V ) (4.3.22)

is Lipschitz continuous.

Proof. From Theorem 4.3.1, it follows that if (φ0, φ1, k) ∈ L2(Ω, H) × Π ×
M2(0, T ;V ∗) then x belongs to M2(0, T ;V ). Let (φ0

i , φ
1
i , ki) and xi be the

solution of (4.3.1) with (φ0
i , φ

1
i , ki) in place of (φ0, φ1, k) for i = 1, 2. Let
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xi(i = 1, 2) ∈ Σr. Then it holds

x1(t)− x2(t) = S(t)[(φ0
1 − φ0

2) + (g(0, x1
0)− g(0, x2

0))]

− (g(t, x1
t )− g(t, x2

t )) +
1

Γ (α)

∫ t

0

(t− s)(α−1)AS(t− s)(g(s, x1
s)− g(t, x2

s))ds

+
1

Γ (α)

∫ t

0

(t− s)(α−1)S(t− s)
{∫ 0

−h

a1(τ)A1(x
1(s+ τ)− x2(s+ τ))dτds

+
1

Γ (α)

∫ t

0

(t− s)(α−1)S(t− s){((Fx1)(s)− (Fx2)(s)) + (k1(s)− k2(s))}ds.

+
1

Γ (α)

∫ t

0

(t− s)(α−1)S(t− s)(k1(s)− k2(s))ds

Hence, by applying the same argument as in the proof of Theorem 4.3.1, we

have

||x1 − x2||L2(0,T1;V ) ≤N̂ ||x1 − x2||L2(0,T1;V ) + N̂2,

where

N̂2 =C1|φ0
1 − φ0

2|+ C1C−αLg(||φ1
1 − φ1

2||Π) + C−αLg

√
T1||φ1

1 − φ1
2||Π

+
C1(2α)

−1/2(2α− 1)−1/2T α
1

Γ (α)

× (|φ0
1 − φ0

2|+ ||φ1
1 − φ1

2||L2(−h,0;V ) + ||k1 − k2||L2(0,T1;V ∗)
)

+
C1−βLgT

(2α+3β−2)/2
1(

α− 3(1− β)/2
)(
2α + 3β − 2

)1/2
Γ (α)

||φ1
1 − φ1

2||Π

which implies

||x||M2(0,T1;V ) ≤N̂2(1− N̂)−1.

Therefore, it implies the inequality (4.3.22).
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Corollary 4.3.1. For a forcing term k ∈ L2(0, T ;V ∗) let xk be the solution

of equation (4.3.1). Let us assume that the embedding V ⊂ H is compact.

Then the mapping k �→ xk is compact from L2(0, T ;V ∗) to L2(0, T ;H).

Proof. If k ∈ L2(0, T ;V ∗), then in view of Theorem 4.3.1

||xk||W1(T ) ≤ C3(1 + |g0|+ ||g1||L2(−h,0;V ) + ||k||L2(0,T ;V ∗)).

Hence if k is bounded in L2(0, T ;V ∗), then so is xk in L2(0, T ;V ))∩W 1,2(0, T ;V ∗).

Since V is compactly embedded in H by assumption, the embedding

L2(0, T ;V ) ∩W 1,2(0, T ;V ∗) ↪→ L2(0, T ;H)

is compact in view of Theorem 2 of J. P. Aubin [32].

4.4 example

Let

H = L2(0, π), V = H1
0 (0, π), V ∗ = H−1(0, π).

Consider the following retarded neutral stochastic differential system in Hilbert

space H:⎧⎪⎨⎪⎩
dα

dtα
[x(t, y) + g(t, xt(t, y))] = Ax(t, y) +

∫ 0

−h
a1(s)A1x(t+ s, y)ds

+ f
′
(|x(t, y)|2)x(t, y) + k(t, y), (t, y) ∈ [0, T ]× [0, π],

x(0, y) = φ0(y), x(s, y) = φ1(s, y), (s, y) ∈ [−h, 0)× [0, π],

(4.4.1)

where h > 0, a1(·) is Hölder continuous, and A1 ∈ L(H). Let

a(u, v) =

∫ π

0

du(y)

dy

dv(y)

dy
dy.
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Then

A = ∂2/∂y2 with D(A) = {x ∈ H2(0, π) : x(0) = x(π) = 0}.

The eigenvalue and the eigenfunction of A are λn = −n2 and zn(y) =

(2/π)1/2 sinny, respectively. Moreover,

(a1) {zn : n ∈ N} is an orthogonal basis of H and

S(t)x =
∞∑
n=1

en
2t(x, zn)zn, ∀x ∈ H, t > 0.

Moreover, there exists a constant M0 such that ||S(t)||L(H) ≤ M0.

(a2) Let 0 < α < 1. Then the fractional power Aα : D(Aα) ⊂ H → H of

A is given by

Aαx =
∞∑
n=1

n2α(x, zn)zn, D(Aα) := {x : Aαx ∈ H}.

In particular,

A−1/2x =
∞∑
n=1

1

n
(x, zn)zn, and ||A−1/2|| = 1.

The nonlinear mapping f is a real valued function belong to C2([0,∞)) which

satisfies the conditions

(f1) f(0) = 0, f(r) ≥ 0 for r > 0,

(f2) |f ′
(r) ≤ c(r + 1) and |qf ′′(r)| ≤ c for r ≥ 0 and c > 0.
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If we present

F (t, x(t, y)) = f
′
(|x(t, y)|2)x(t, y),

Then it is well known that F is a locally Lipschitz continuous mapping from

the whole V into H by Sobolev’s imbedding theorem (see [20, Theorem

6.1.6]). As an example of q in the above, we can choose q(r) = μ2r + η2r2/2

(μ and η is constants).

Define g : [0, T ]× Π → H as

g(t, xt) =
∞∑
n=1

∫ t

0

en
2t(

∫ 0

−h

a2(s)x(t+ s)ds, zn)zn, , t > 0.

Then it can be checked that Assumption (G) is satisfied. Indeed, for x ∈ Π,

we know

Ag(t, xt) = (S(t)− I)

∫ 0

−h

a2(s)x(t+ s)ds,

where I is the identity operator form H to itself and

|a2(0)| ≤ H2, |a2(s)− a2(τ)| ≤ H2(s− τ)κ, s, τ ∈ [−h, 0]

for a constant κ > 0. Hence we have

|Ag(t, xt)| ≤(M0 + 1)
{∣∣ ∫ 0

−h

(a2(s)− a2(0))x(t+ s)dτ
∣∣+ ∣∣ ∫ 0

−h

a2(0)x(t+ s)dτ
∣∣}

≤(M0 + 1)H2

{
(2κ+ 1)−1h2ρ+1 + h

}||xt||Π.

It is immediately seen that Assumption (G) has been satisfied. Thus, all

the conditions stated in Theorem 4.3.1 have been satisfied for the equa-

tion (4.4.1), and so there exists a solution of (4.4.1) belongs to W1(T ) =

L2(0, T ;V )) ∩W 1,2(0, T ;V ∗) ↪→ C([0, T ];H).
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Chapter 5

Control problems for semilinear neutral

differential equations in Hilbert spaces

5.1 Introduction

Let H and V be real Hilbert spaces such that V is a dense subspace in H.

Let U be a Banach space of control variables. In this paper, we are concerned

with the global existence of solution and the approximate controllability for

the following abstract neutral functional differential system in a Hilbert space

H:{
d
dt
[(x(t) + (Bx)(t)] = Ax(t) + f(t, x(t)) + (Cu)(t), t ∈ (0, T ],

x(0) = x0, (Bx)(0) = y0,
(CE)

where A is an operator associated with a sesquilinear form on V × V sat-

isfying G̊arding’s inequality, f is a nonlinear mapping of [0, T ] × V into H

satisfying the local Lipschitz continuity, B : L2(0, T ;V ) → L2(0, T ;H) and

C : L2(0, T ;U) → L2(0, T ;H) are appropriate bounded linear mapping.

This kind of equations arises in population dynamics, in heat conduction

in material with memory and in control systems with hereditary feed back

control governed by an integro-differential law.

Recently, the existence of solutions for mild solutions for neutral differen-

tial equations with state-dependence delay has been studied in the literature
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in [11, 12]. As for partial neutral integro-differential equations, we refer to

[58-61]. The controllability for neutral equations has been studied by many

authors, for example, local controllability of neutral functional differential

systems with unbounded delay in [68], neutral evolution integrodifferential

systems with state dependent delay in [69, 7] , impulsive neutral functional

evolution integrodifferential systems with infinite delay in [6], and second

order neutral impulsive integrodifferential systems in [8, 14]. However there

are few papers treating the regularity and controllability for the systems with

local Lipschipz continuity, we can just find a recent article Wang [44] in case

semilinear systems. Similar considerations of semilinear systems have been

dealt with in many references [40],[67-69] .

In this paper, we propose a different approach of the earlier works (briefly

introduced in [41,42],[58-61] about the mild solutions of neutral differential

equations). Our approach is that results of the linear cases of Di Blasio et

al. [17] and semilinear cases of [31] on the L2-regularity remain valid under

the above formulation of the neutral differential equation (CE). For the ba-

sic of our study, the existence of local solutions of (CE) are established in

L2(0, T ;V ) ∩ W 1,2(0, T ;V ∗) ↪→ C([0, T ];H) for some T > 0 by using frac-

tional power of operators and Sadvoskii’s fixed point theorem. Thereafter,

by showing some variational of constant formula of solutions, we will obtain

the global existence of solutions of (CE), and the norm estimate of a solution

of (CE) on the solution space. Consequently, in view of the properties of the

nonlinear term, we can take advantage of the fact that the solution mapping

u ∈ L2(0, T ;U) �→ x is Lipschitz continuous, which is applicable for control
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problems and the optimal control problem of systems governed by nonlinear

properties.

The second purpose of this paper is to study the approximate controlla-

bility for the neutral equation (CE) based on the regularity for (CE), namely

that the reachable set of trajectories is a dense subset of H. This kind of

equations arise naturally in biology, in physics, control engineering problem,

etc.

The paper is organized as follows. In section 2, we introduce some nota-

tions. In section 3, the regularity results of general linear evolution equations

besides fractional power of operators and some relations of operator spaces

are stated. In section 4, we will obtain the regularity for neutral functional

differential (CE) with nonlinear terms satisfying local Lipschitz continuity.

The approach used here is similar to that developed in [31, 44] on the gen-

eral semilnear evolution equations, which is an important role to extend the

theory of practical nonlinear partial differential equations. Thereafter, we

investigate the approximate controllability for the problem (CE) in Section

5. Our purpose in this paper is to obtain the existence of solutions and the

approximate controllability for neutral functional differential control systems

without using many of the strong restrictions considering in the previous lit-

erature.

Finally, we give a simple example to which our main result can be applied.
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5.2 Regularity for linear equations

Let a(·, ·) be a bounded sesquilinear form defined in V × V and satisfying

G̊arding’s inequality with c1 = 0 in (4.2.2)

Re a(u, u) ≥ c0||u||2, c0 > 0. (5.2.1)

Let A be the operator associated with this sesquilinear form:

(Au, v) = a(u, v), u, v ∈ V.

Then the operator A is mentioned in Section 2 of Chapter 4.

Lemma 5.2.1. Let S(t) be the semigroup generated by −A. Then there exists

a constant M such that

|S(t)| ≤ M, ||s(t)||∗ ≤ M.

For all t > 0 and every x ∈ H or V ∗ there exists a constant M > 0 such that

the following inequalities hold:

|S(t)x| ≤ Mt−1/2||x||∗, ||S(t)x|| ≤ Mt−1/2|x|.

By virtue of (5.2.1), we have that 0 ∈ ρ(A) and the closed half plane

{λ : Reλ ≥ 0} is contained in the resolvent set of A. In this case, there

exists a neighborhood U of 0 such that

ρ(A) ⊃ {λ : | arg λ| > ω} ∪ U.
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Hence, we can choose a the path Γ runs in the resolvent set of A from ∞eiθ

to ∞e−iθ, ω < θ < π, avoiding the negative axis. For each α > 0, we put

A−α =
1

2πi

∫
Γ

λ−α(A− λ)−1dλ,

where λ−α is chosen to be for λ > 0. By assumption, A−α is a bounded

operator. So we can assume that there is a constant M0 > 0 such that

||A−α||L(H) ≤ M0, ||A−α||L(V ∗,V ) ≤ M0. (5.2.2)

For each α ≥ 0, we define an operator Aα as follows:

Aα =

{
(A−α)−1 for α > 0,

I for α = 0.

The subspace D(Aα) is dense in H and the expression

||x||α = ||Aαx||, x ∈ D(Aα)

defines a norm on D(Aα).

Lemma 5.2.2. (a) Aα is a closed operator with its domain dense.

(b) If 0 < α < β, then D(Aα) ⊃ D(Aβ).

(c) For any T > 0, there exists a positive constant Cα such that the follow-

ing inequalities hold for all t > 0:

||AαS(t)||L(H) ≤ Cα

tα
, ||AαS(t)||L(H,V ) ≤ Cα

t3α/2
. (5.2.3)
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Proof. From [20, Lemma 3.6.2] it follows that there exists a positive

constant C such that the following inequalities hold for all t > 0 and every

x ∈ H or V ∗:

|AS(t)x| ≤ C

t
|x|, ||AS(t)x|| ≤ C

t3/2
|x|,

which implies (5.2.3) by properties of fractional power of A. For more details

about the above lemma, we refer to [20, 3]. �

First of all, consider the following linear system

{
x

′
(t) + Ax(t) = k(t),

x(0) = x0.
(5.2.4)

By virtue of Theorem 3.3 of [38](or Theorem 3.1 of [33], [20]), we have

the following result on the corresponding linear equation of (5.2.4).

Lemma 5.2.3. Suppose that the assumptions for the principal operator A

stated above are satisfied. Then the following properties hold:

1) For x0 ∈ V = (D(A), H)1/2,2(see Lemma 5.2.1) and k ∈ L2(0, T ;H), T >

0, there exists a unique solution x of (5.2.4) belonging to W(T ) ⊂ C([0, T ];V )

and satisfying

||x||W(T ) ≤ C1(||x0||+ ||k||L2(0,T ;H)), (5.2.5)

where C1 is a constant depending on T .

2) Let x0 ∈ H and k ∈ L2(0, T ;V ∗), T > 0. Then there exists a unique

solution x of (5.2.4) belonging to W1(T ) ⊂ C([0, T ];H) and satisfying

||x||W1(T ) ≤ C1(|x0|+ ||k||L2(0,T ;V ∗)), (5.2.6)
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where C1 is a constant depending on T .

Lemma 5.2.4. For every k ∈ L2(0, T ;H), let x(t) =
∫ t

0
S(t − s)k(s)ds for

0 ≤ t ≤ T . Then there exists a constant C2 such that

||x||L2(0,T ;V ) ≤ C2

√
T ||k||L2(0,T ;H). (5.2.7)

Proof. By (5.2.5) we have

||x||L2(0,T ;D(A)) ≤ C1||k||L2(0,T ;H). (5.2.8)

Since

||x||2L2(0,T ;H) =
∫ T

0
| ∫ t

0
S(t− s)k(s)ds|2dt ≤ M

∫ T

0
(
∫ t

0
|k(s)|ds)2dt

≤ M
∫ T

0
t
∫ t

0
|k(s)|2dsdt ≤ M T 2

2

∫ T

0
|k(s)|2ds

it follows that

||x||L2(0,T ;H) ≤ T
√

M/2||k||L2(0,T ;H). (5.2.9)

From (4.2.3), (5.2.8), and (5.2.9) it holds that

||x||L2(0,T ;V ) ≤ C0

√
C1T (M/2)1/4||k||L2(0,T ;H).

So, the proof is completed. �
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5.3 Semilinear differential equations

Consider the following abstract neutral functional differential system:

{
d
dt
[(x(t) + (Bx)(t)] = Ax(t) + f(t, x(t)) + k(t), t ∈ (0, T ],

x(0) = x0, (Bx)(0) = y0.
(5.3.1)

Then we will show that the initial value problem (5.3.1) has a solution by

solving the integral equation:

x(t) =S(t)[x0 + y0]− (Bx)(t) (5.3.2)

+

∫ t

0

AS(t− s)Bx(s)ds+

∫ t

0

S(t− s){f(s, x(s)) + k(s)}ds.

Now we give the basic assumptions on the system (5.3.1)

Assumption (B). Let B : L2(0, T ;V ) → L2(0, T ;H) be a bounded

linear mapping such that there exist constants β > 1/3, L > 0, and a

continuous nondecreasing function b(t) : [0, T ] → R with b(0) = 0 such that

||AβBx||L2(0,t;H) ≤ b(t)||x||L2(0,t;V ), ∀(t, x) ∈ (0, T ]× L2(0, T ;V ).

Assumption (F2). f is a nonlinear mapping of [0, T ] × V into H

satisfying following:

(i) There exists a function L1 : R+ → R such that

|f(t, x)− f(t, y)| ≤ L1(r)||x− y||, t ∈ [0, T ]

hold for ||x|| ≤ r and ||y|| ≤ r.
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(ii) The inequality

|f(t, x)| ≤ L1(r)(||x||+ 1)

holds for every t ∈ [0, T ] and x ∈ V .

Let us rewrite (Fx)(t) = f(t, x(t)) for each x ∈ L2(0, T ;V ). Then there is a

constant, denoted again by L1(r) such that

||Fx||L2(0,T ;H) ≤ L1(r)(||x||L2(0,T ;V ) + 1),

||Fx1 − Fx2||L2(0,T ;H) ≤ L1(r)||x1 − x2||L2(0,T ;V )

hold for x ∈ L2(0, T ;V ) and x1, x2 ∈ Br(T ) = {x ∈ L2(0, T ;V ) : ||x||L2(0,T ;V ) ≤
r}.

One of the main useful tools in the proof of existence theorems for func-

tional equations is Sadvoskii’s fixed point theorem of Lemma 4.3.2 of Chapter

4.

From now on, we establish the following results on the solvability of the

equation (5.3.1).

Theorem 5.3.1. Let Assumptions (B) and (F2) be satisfied. Assume that

x0 ∈ H, k ∈ L2(0, T ;V ∗) for T > 0. Then, there exists a solution x of the

equation (5.3.1) such that

x ∈ W1(T ) ≡ L2(0, T ;V ) ∩W 1,2(0, T ;V ∗) ⊂ C([0, T ];H).

Moreover, there is a constant C3 independent of x0 and the forcing term k

such that

||x||W1(T ) ≤ C3(1 + |x0|+ ||k||L2(0,T ;V ∗)). (5.3.3)

77



Proof. Let

r0 = 2C1|x0 + y0|,

where C1 is constant in Lemma 5.2.4. Let β > 1/3, choose 0 < T1 < T such

that

T
3β/2
1

[{C2L1(r0)(r0 + 1) + C2||k||L2(0,T1;V )}+ 2r0b(T1)C1−β(3β)
−1/2(3β − 2)−1

]
(5.3.4)

+ r0M0b(T1) ≤ C1|x0 + y0|,

where C2 is constant in Lemma 5.2.5. Let

M̂ ≡ T
3β/2
1

{
C2L1(r0) + 2(3β)−1/2(3β − 2)−1C1−βb(T1)

}
+M0b(T1) < 1.

(5.3.5)

Define a mapping J : L2(0, T1;V ) → L2(0, T1;V ) as

(Jx)(t) =S(t)(x0 + y0)− (Bx)(t)

+

∫ t

0

AS(t− s)(Bx)(s)ds+

∫ t

0

S(t− s){f(s, x(s)) + k(s)}ds.

It will be shown that the operator J has a fixed point in the space L2(0, T1;V ).

By assumptions (B) and (F2), it is easily seen that J is continuous from

C([0, T1];H) into itself. Let

Σ = {x ∈ L2(0, T1;V ) : ||x||L2(0,T1;V ) ≤ r0, x(0) = x0},

which is a bounded closed subset of L2(0, T1;V ). From (5.2.5) it follows

||S(·)(x0 + y0)||L2(0,T1;V ) ≤ C1|x0 + y0|. (5.3.6)
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By (5.2.2), (4.2.11) and Assumption (B) we have

||Bx||L2(0,T1;V ) = ||A−βAβBx||L2(0,T1;V ) (5.3.7)

≤ ||A−β||L(H,V )||AβBx||L2(0,T1;H) ≤ r0M0b(T1).

By virtue of (5.2.7) in Lemma 5.2.4, for 0 < t < T1, it holds

||
∫ t

0

S(t− s){f(s, x(s)) + k(s)}ds||L2(0,T1;V ) ≤ C2

√
T1||Fx+ k||L2(0,T1;H)

(5.3.8)

≤ C2

√
T1{L1(r0)(||x||L2(0,T1;V ) + 1) + ||k||L2(0,T1;V )}

≤ C2

√
T1{L1(r0)(r0 + 1) + ||k||L2(0,T1;V )}.

Since (5.2.3) and Assumption (B) the following inequality holds:

||AS(t− s)Bx(s)|| = ||A1−βS(t− s)AβBx(s)|| ≤ C1−β

(t− s)3(1−β)/2
r0b(T1).

Let

(Wx)(t) =

∫ t

0

AS(t− s)Bx(s)ds.

Then there holds

||Wx||L2(0,T1;V ) =
[ ∫ T1

0

||
∫ t

0

AS(t− s)Bx(s)ds||2dt]1/2 (5.3.9)

≤ [ ∫ T1

0

( ∫ t

0

C1−β

(t− s)3(1−β)/2
r0b(T1)ds

)2
dt
]1/2

≤ 2r0b(T1)C1−β(3β − 2)−1
( ∫ T1

0

t3β−1dt
)1/2

= 2r0b(T1)C1−β(3β)
−1/2(3β − 2)−1T

3β/2
1 .
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Therefore, from (5.3.4), (5.3.6)-(5.3.9) it follows that

||Jx||L2(0,T1;V ) ≤ C1|x0 + y0|+ r0M0b(T1)

+ T
3β/2
1

[{C2L1(r0)(r0 + 1) + C2||k||L2(0,T1;V )}+ 2(3β)−1/2(3β − 2)−1r0b(T1)C1−β

]
≤ r0,

and hence J maps Σ into Σ.

Define mapping K1 +K2 on L2(0, T1;V ) by the formula

(Jx)(t) = (K1x)(t) + (K2x)(t),

(K1x)(t) = −(Bx)(t)

(K2x)(t) = S(t)(x0 + y0) +

∫ t

0

AS(t− s)(Bx)(s)ds

+

∫ t

0

S(t− s){f(s, x(s)) + k(s)}ds.

We can now employ Lemma 5.3.1 with Σ. Assume that a sequence {xn}
of L2(0, T1;V ) converges weakly to an element x∞ ∈ L2(0, T1;V ), i.e., w −
limn→∞ xn = x∞. Then we will show that

lim
n→∞

||K1xn −K1x∞|| = 0, (5.3.10)

which is equivalent to the completely continuity of K1 since L2(0, T1;V )

is reflexive. For a fixed t ∈ [0, T1], let x∗
t (x) = (K1x)(t) for every x ∈

L2(0, T1;V ). Then x∗
t ∈ L2(0, T1;V

∗) and we have limn→∞ x∗
t (xn) = x∗

t (x∞)

since w − limn→∞ xn = x∞. Hence,

lim
n→∞

(K1xn)(t) = (K1x∞)(t), t ∈ [0, T1]. (5.3.11)
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By (5.2.3), (4.2.11) and Assumption (B) we have

||(K1x)(t)|| = ||(Bx)(t)|| = ||A−βAβBx(t)|| ≤ ||A−β||L(H,V )||AβBx||L2(0,T1;H) ≤ ∞.

Therefore, by Lebesgue’s dominated convergence theorem it holds

lim
n→∞

∫ T1

0

||(K1xn)(t)||2dt =
∫ T1

0

||(K1x∞)(t)||2dt,

i.e., limn→∞ ||K1xn||L2(0,T1;V ) = ||K1x∞||L2(0,T1;V ). Since L2(0, T1;V ) is a

Hilbert space, it holds (5.3.10). Next, we prove that K2 is a contraction

mapping on Σ. Indeed, for every x1 and x2 ∈ Σ, we have

(K2x1)(t)− (K2x2)(t) =

∫ t

0

AS(t− s){(Bx1)(s)− (Bx2)(t)}ds

+

∫ t

0

S(t− s){f(s, x1(s))− f(s, x2(s))}ds.

By similar to (5.3.8) and (5.3.9), we have

||K2x1 −K2x2||L2(0,T1;V )

≤ T
3β/2
1

{
C2L1(r0) + 2(3β)−1/2(3β − 2)−1C1−βb(T1)

}||x1 − x2||L2(0,T1;V ).

So by virtue of the condition (5.3.5) the contraction mapping principle gives

that the solution of (5.3.1) exists uniquely in [0, T1].

So by virtue of the condition (5.3.5), K2 is contractive. Thus, Lemma

5.3.1 gives that the equation of (5.3.1) has a solution in W1(T1).

From now on we establish a variation of constant formula (5.3.3) of so-

lution of (5.3.1). Let x be a solution of (5.3.1) and x0 ∈ H. Then we have
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that from (5.3.6)-(5.3.9) it follows that

||x||L2(0,T1;V ) ≤C1|x0 + y0|+M0b(T1)||x||L2(0,T1;V )

+ T
3β/2
1

[{C2L1(r0)(||x||L2(0,T1;V ∗) + 1) + C2||k||L2(0,T1;V ∗)}

+ 2(3β)−1/2(3β − 2)−1C1−βb(T1)||x||L2(0,T1;V )

]
.

Taking into account (5.3.5) there exists a constant C3 such that

||x||L2(0,T1;V ) ≤(1− M̂)−1
[
C1|x0 + y0|+ r0M0b(T1)

+ T
3β/2
1 {C2L1(r0) + C2||k||L2(0,T1;V ∗)}

]
≤C3(1 + |x0|+ ||k||L2(0,T1;V ∗))

which obtain the inequality (5.3.3). Since the conditions (5.3.4) and (5.3.5)

are independent of initial value and by (4.2.11)

|x(T1)| ≤ ||x||C([0,T1;H]) ≤ M1||x||W1(T ),

by repeating the above process, the solution can be extended to the interval

[0, T ]. �

Corollary 5.3.1. If M0b(T1) < 1 then the uniqueness of the solution solution

of (5.3.1) in W1(T ) is obtained.

Proof. Let M0L < 1. Then instead of the condition (5.3.5), we can

choose T1 such that

M0b(T1) + T
3β/2
1

{
C2L1(r0) + 2(3β)−1/2(3β − 2)−1C1−βb(T1)

}
< 1. (5.3.12)
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For every x1 and x2 ∈ Σ, we have

(Jx1)(t)− (Jx2)(t) =(Bx2)(t)− (Bx1)(t) +

∫ t

0

AS(t− s){Bx1(s)− Bx2(t)}ds

+

∫ t

0

S(t− s){f(s, x1(s))− f(s, x2(s))}ds.

By similar to (5.3.8) and (5.3.9), we have

||Jx1 − Jx2||L2(0,T1;V )

≤ [
M0b(T1) + T

3β/2
1

{
C2L1(r0) + 2(3β)−1/2(3β − 2)−1C1−βb(T1)

}]||x1 − x2||L2(0,T1;V ).

So by virtue of the condition (5.3.12) the contraction mapping principle gives

that the solution of (5.3.1) exists uniquely in [0, T1]. �

Remark 5.3.1. Let Assumptions (B) and (F2) be satisfied and (x0, k) ∈
D(A) × L2(0, T ;H). Then by the argument of the proof of Theorem 5.3.1

term by term, we also obtain that there exists a solution x of (5.3.1) such

that

x ∈ W(T ) ≡ L2(0, T ;D(A)) ∩W 1,2(0, T ;H) ⊂ C([0, T ];V ).

Moreover, there exists a constant C3 such that

||x||W(T ) ≤ C3(1 + ||x0||+ ||k||L2(0,T ;H)),

where C3 is a constant depending on T .

The following inequality is refereed to as the Young inequality.
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Lemma 5.3.1. (Young inequality) Let a > 0, b > 0 and 1/p+1/q = 1 where

1 ≤ p < ∞ and 1 < q < ∞. Then for every λ > 0 one has

ab ≤ λpap

p
+

bq

λqq
.

From the following result, we obtain that the solution mapping is contin-

uous, which is useful for physical applications of the given equation.

Theorem 5.3.2. Let Assumptions (B) and (F2) be satisfied and (x0, y0, k) ∈
H ×H ×L2(0, T ;V ∗). Then the solution x of the equation (5.3.1) belongs to

x ∈ W1(T ) ≡ L2(0, T ;V ) ∩W 1,2(0, T ;V ∗) and the mapping

H ×H × L2(0, T ;V ∗) � (x0, y0, k) �→ x ∈ W1(T )

is continuous.

Proof. From Theorem 5.3.1, it follows that if (x0, k) ∈ H × L2(0, T ;V ∗)

then x belongs to W1(T ). Let (x0i, y0i, ki) ∈ H × H × L2(0, T ;V ∗) and

xi ∈ W1(T ) be the solution of (5.3.1) with (x0i, y0i, ki) in place of (x0, y0, k)

for i = 1, 2. Let xi(i = 1, 2) ∈ Σ. Then as seen in Theorem 5.3.1, it holds

⎧⎪⎨⎪⎩
d
dt
[x1(t)− x2(t) + (Bx1)(t)− (Bx2)(t)] = A(x1(t)− x2(t))

+f(t, x1(t))− f(t, x2(t)) + k1(t)− k2(t),

x1(0)− x2(0) = x01 − x02.
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So the solution of the above equation is represented by

x1(t)− x2(t) =S(t){(x01 − x02) + (y01 − y02)}+ (Bx2)(t)− (Bx1)(t)

+

∫ t

0

AS(t− s){(Bx1)(t)− (Bx2)(t)}ds

+

∫ t

0

S(t− s){f(s, x1(t))− f(s, x2(s) + k1(s)− k2(s)}ds,

and hence, it holds

||x1 − x2||L2(0,T1;V ) ≤ C1(|x01 − x02|+ |y01 − y02|) + C2T
3β/2
1 ||k1 − k2||L2(0,T1;V ∗)

+ T
3β/2
1

{
M0L+ C2L1(r) + 2(3β)−1/2(3β − 2)−1b(T1)C1−β

}]||x1 − x2||L2(0,T1;V ).

From (5.3.4), we have

|||x1 − x2||L2(0,T1;V ) ≤(1− M̂)−1
(
C1(|x01 − x02|+ |y01 − y02|)

+ C2T
3β/2
1 ||k1 − k2||L2(0,T1;V ∗)

)
.

Hence, repeating this process as seen in Theorem 5.3.1, we conclude that the

solution mapping is continuous. �

For k ∈ L2(0, T ;V ∗) let xk be the solution of equation (5.3.1) with k

instead of Bu.

Theorem 5.3.3. Let us assume that the embedding V ⊂ H is compact. For

k ∈ L2(0, T ;V ∗) let xk be the solution of equation (5.3.1). Then the mapping

k �→ xk is compact from L2(0, T ;V ∗) to L2(0, T ;H). Moreover, if we define

the operator F by

F(k) = f(·, xk),

then F is also a compact mapping from L2(0, T ;V ∗) to L2(0, T ;H).
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Proof. If (x0, k) ∈ H × L2(0, T ;V ∗), then in view of Theorem 5.3.1

||yk||W1(T ) ≤ C2(|x0|+ ||k||L2(0,T ;V ∗)).

Since xk ∈ L2(0, T ;V ), we have f(·, xk) ∈ L2(0, T ;H). Consequently, by

(4.2.11), we know xk ∈ W1(T ) ⊂ C([0, T ];H). With aid of 1) of Lemma

5.2.3, noting that ||xk||L2(0,T ;V ) ≤ ||xk||W1(T ), we have

||xk||W1(T ) ≤ C3(1 + |x0|+ ||k||L2(0,T ;V ∗)}

Hence if k is bounded in L2(0, T ;V ∗), then so is xk in W1(T ) ≡ L2(0, T ;V )∩
W 1,2(0, T ;V ∗). Since V is compactly embedded in H by assumption, the

embedding

W1(T ) ⊂ L2(0, T ;H)

is compact in view of Theorem 2 of Aubin [32]. Hence k �→ xk is compact

from L2(0, T ;V ∗). Moreover, it is immediately that F is a compact mapping

of

L2(0, T ;V ∗) ↪→ W1(T ) ↪→ L2(0, T ;H),

which is of L2(0, T ;V ∗) to L2(0, T ;H). �

5.4 Approximate Controllability

In this section, we show that the controllability of the corresponding lin-

ear equation is extended to the nonlinear differential equation. Let U be a

Banach space of control variables. Here C is a linear bounded operator from
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L2(0, T ;U) to L2(0, T ;H), which is called a controller. For x ∈ L2(0, T ;H)

we set

(Bx)(t) =

∫ t

0

N(t− s)x(s)ds,

where N : [0,∞) → L(H, V ) is strongly continuous. Then it is immediately

seen that Bx ∈ C([0, T ];V ) and hence AS(s)(Bx)(s) = AS(s)(Bx)(s) for

0 ≤ s ≤ T because D(A) = V . Since t → N(t) is strong continuous, by the

uniform boundedness principle there exists a constant MN such that for any

T > 0,

sup
t∈[0,T ]

||AN(t)||L(H,V ∗) ≤ MN .

Consider the following neutral control equation

{
d
dt
[x(t) + (Bx)(t)] = Ax(t) + f(t, x(t)) + (Cu)(t), t ∈ (0, T ],

x(0) = x0, (Bx)(0) = y0.
(5.4.1)

Let x(T ;B, f, u) be a state value of the system (5.4.1) at time T correspond-

ing to the operator B, the nonlinear term f and the control u. We note

that S(·) is the analytic semigroup generated by −A. Then the solution

x(t;B, f, u) can be written as

x(t;B, f, u) =S(t)(x0 + y0)− (Bx)(t) (5.4.2)

+

∫ t

0

S(t− s){A(Bx)(s)ds+ f(s, x(s)) + (Cu)(s)}ds.

and in view of Theorem 5.3.1,

||x(·;B, f, u)||W1(T ) ≤ C3(|x0|+ ||C||L(U,H)||u||L2(0,T ;U)). (5.4.3)
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We define the reachable sets for the system (5.3.1) as follows:

R(T ) = {x(T ;B, f, u) : u ∈ L2(0, T ;U)},

L(T ) = {x(T ; 0, 0, u) : u ∈ L2(0, T ;U)}.

Definition 5.4.1. The system (5.4.1) is said to be approximately controllable

on [0, T ] if for every desired final state zT ∈ H and ε > 0 there exists a

control function u ∈ L2(0, T ;U) such that the solution x(T ;B, f, u) of (5.4.1)

satisfies |x(T ; f, u)− zT | < ε, that is, RT (f) = H where R(T ) is the closure

of R(T ) in H.

We define the linear operator Ŝ from L2(0, T ;H) to H by

Ŝp =

∫ T

0

S(T − s)p(s)ds

for p ∈ L2(0, T ;H).

We need the following hypothesis:

Assumption (S).

(i) For any ε > 0 and p ∈ L2(0, T ;H) there exists a u ∈ L2(0, T ;U) such

that {
|Ŝp− ŜCu| < ε,

||Cu||L2(0,t;H) ≤ q1||p||L2(0,t;H), 0 ≤ t ≤ T.

where q1 is a constant independent of p.

88



(ii) f is a nonlinear mapping of [0, T ]×H into H satisfying following:

There exists a function L1 : R+ → R such that

|f(t, x)− f(t, y)| ≤ L1(r)|x− y|, t ∈ [0, T ]

hold for |x| ≤ r and |y| ≤ r.

By virtue of the condition (i) of Assumption (S) we note that AS(t −
s)Bx = S(t − s)ABx for each x ∈ V . Therefore, the system (5.4.1) is

approximately controllable on [0, T ] if for any ε > 0 and zT ∈ H there exists

a control u ∈ L2(0, T ;U) such that

||S(T )(x0 + y0)− (Bx)(T ) + Ŝ{ABx+ Fx+ Cu} − zT || < ε,

where (Fx)(t) = f(t, x(t)) for t ≥ 0. Throughout this section, Invoking

(5.4.3), we can choose a constant r1 such that

r1 > C3(|x0|+ ||C||L(U,H)||u||L2(0,T ;U)), (5.4.4)

and set

G(s, x) = A(Bx)(s) + f(s, x(s)).

Lemma 5.4.1. Let u1 and u2 be in L2(0, T ;U). Then under the assumption

(S), we have that for 0 ≤ t ≤ T ,

|x(t;B, f, u1)− x(t;B, f, u2)| ≤ MeM2
√
t||Cu1 − Cu2||L2(0,T ;H),

where M2 = eM(MNT+L1(r1))
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Proof. Let x(t) = x(t;B, f, u1) and x2(t) = x(t;B, f, u2). Then for

0 ≤ t ≤ T , we have

x1(t)− x2(t) =(Bx2)(t)− (Bx1)(t) +

∫ t

0

S(t− s){G(s, x1)−G(s, x2)}ds
(5.4.5)

+

∫ t

0

S(t− s)C(u1(s)− u2(s))ds.

So we immediately obtain

|A(Bx2)(t)− A(Bx1)(t)| ≤ MN

∫ t

0

|x2(s)− x1(s)|ds,

and so it holds

|
∫ t

0

S(t− s)A{(Bx2)(s)− (Bx1)(s)}ds| ≤ MMNT

∫ t

0

|x2(s)− x1(s)|ds

Moreover, we have

|
∫ t

0

S(t− s){f(s, x1(s))− f(s, x2(s)}ds| ≤ ML1(r1)

∫ t

0

|x2(s)− x1(s)|ds,

|
∫ t

0

S(t− s){Cu1(s)− Cu2(s)}ds| ≤ M
√
t||Cu1 − Cu2||L2(0,T1;V ).

Thus, from (5.4.5) it follows that

|x(t;B, f, u1)− x(t;B, f, u2)| ≤ M
√
t||Cu1 − Cu2||L2(0,T ;H) (5.4.6)

+ {MMNT +ML1(r1)}
∫ t

0

|x2(s)− x1(s)|ds.

Therefore, by using Gronwall’s inequality this lemma follows. �
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Theorem 5.4.1. Under the assumptions (S), the system (5.4.1) is approxi-

mately controllable on [0, T ].

Proof. We will show that D(A) ⊂ RT (g), i.e., for given ε > 0 and

zT ∈ D(A) there exists u ∈ L2(0, T ;U) such that

|zT − x(T ;B, f, u)| < ε,

where

x(T ;B, f, u) = S(T )(x0+y0)−(Bx)(T )+

∫ T

0

S(T−s){G(s, x(·;B, f, u))+Cu(s)}ds.

As zT ∈ D(A) there exists a p ∈ L2(0, T ;Z) such that

Ŝp = zT + (Bx)(T )− S(T )(x0 + y0),

for instance, take p(s) = {(zT + (Bx)(T ))− sA(zT + (Bx)(T ))} − S(s)(x0 +

y0)/T . Let u1 ∈ L2(0, T ;U) be arbitrary fixed. Since by the assumption (S)

there exists u2 ∈ L2(0, T ;U) such that

|Ŝ(p−G( · , x( · , B, f, u1)))− ŜCu2| < ε

4
,

it follows

|zT + (Bx)(T )− S(T )(x0 + y0)− ŜG( · , x( ·B, f, u1))− ŜCu2| < ε

4
. (5.4.7)

We can also choose w2 ∈ L2(0, T ;U) by the assumption (S) such that

|Ŝ(G( · x( · ;B, f, u2))−G( · x( · ;B, f, u1))− ŜCw2| < ε

8
(5.4.8)
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and by the assumption (S)

‖Cw2||L2(0,t;H) ≤ q1||G( · , x( · ;B, f, u1))−G( · , x( · ;B, f, u2))||L2(0,t;H)

for 0 ≤ t ≤ T . Therefore, in view of Lemma 5.4.1 and the assumption (S)

||Cw2||L2(0,t;H) ≤ q1{
∫ t

0

|G(τ, x(τ ;B, f, u2))−G(τ, x(τ ;B, f, u1))|2dτ} 1
2

≤ q1(MN + L(r1)){
∫ t

0

|x(τ ;B, f, u2)− x(τ ;B, f, u1)|2dτ} 1
2

≤ q1(MN + L(r1)){
∫ t

0

(MeM2)2τ ||Cu2 − Cu1||2L2(0,τ ;H)dτ}
1
2

≤ q1(MN + L(r1))MeM2(

∫ t

0

τdτ)
1
2 ||Cu2 − Cu1||L2(0,t;H)

= q1(MN + L(r1))MeM2(
t2

2
)
1
2 ||Cu2 − Cu1||L2(0,t;H).

Put u3 = u2 − w2. We determine w3 such that

|Ŝ(G( · , x(· ;B, f, u3))−G( · , x(· ;B, f, u2)))− ŜCw3| < ε

8
,

||Cw3||L2(0,t;H) ≤ q1||G( · , x( · ;B, f, u3))−G( · , x( · ;B, f, u2))||L2(0,t;H)
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for 0 ≤ t ≤ T . Hence, we have

||Cw3||L2(0,t;H)

≤ q1
{∫ t

0

|G(τ, x(τ ;B, f, u3))−G(τ, x(τ ;B, f, u2))|2dτ
} 1

2

≤ q1(MN + L(r1))
{∫ t

0

|x(τ ;B, f, u3)− x(τ ;B, f, u2)|2dτ
} 1

2

≤ q1(MN + L(r1))MeM2
{∫ t

0

τ ||Cu3 − Cu2||2L2(0,τ :H)dτ
} 1

2

≤ q1(MN + L(r1))MeM2
{∫ t

0

τ ||Cw2||2L2(0,τ ;H)dτ
} 1

2

≤ q1(MN + L(r1))MeM2
{∫ t

0

τ(q1(MN + L(r1))MeM2)2
τ 2

2
||Cu2 − Cu1||2L2(0,τ ;H)dτ

} 1
2

≤ (q1(MN + L(r1))MeM2)2
( ∫ t

0

τ 3

2
dτ

) 1
2 ||Cu2 − Cu1||L2(0,t;H)

= (q1(MN + L(r1))MeM2)2(
t4

2 · 4)
1
2 ||Cu2 − Cu1||L2(0,t;H).

By proceeding with this process, and from that

||C(un − un+1)||L2(0,t;H) = ||Cwn||L2(0,t;H)

≤ (q1(MN + L(r1))MeM2)n−1
( t2n−2

2 · 4 · · · (2n− 2)

) 1
2 ||Cu2 − Cu1||L2(0,t;H)

=
(q1(MN + L(r1))MeM2t√

2

)n−1 1√
(n− 1)!

||Cu2 − Cu1||L2(0,t;H),

93



it follows that

∞∑
n=1

||Cun+1 − Cun||L2(0,T ;H)

≤
∞∑
n=0

(
q1T (MN + L(r1))MeM2

√
2

)n
1√
n!
||Cu2 − Cu1||L2(0,T ;H) < ∞.

Therefore, there exists u∗ ∈ L2(0, T ;H) such that

lim
n→∞

Cun = u∗ ∈ L2(0, T ;H).

From (5.4.7), (5.4.8) it follows that

|zT + (Bx)(T )− S(T )(x0 + y0)− ŜG(·, x(·;B, f, u2))− ŜCu3|

=
∣∣zT + (Bx)(T )− S(T )(x0 + y0)− ŜG(·, x(·;B, f, u1))− ŜCu2 + ŜCw2

− Ŝ[G(·, x(·;B, f, u2))−G(·, x(·;B, f, u1))]
∣∣

< (
1

22
+

1

23
)ε.

By choosing wn ∈ L2(0, T ;U) by the assumption (B) such that

|Ŝ(G( · x( · ;B, f, un))−G( · x( · ;B, f, un−1))− ŜCwn| < ε

2n+1
,

putting un+1 = un − wn, we have

|zT + (Bx)(T )− S(T )(x0 + y0)− ŜG(·, x(·;B, f, un))− ŜCun+1|

< (
1

22
+ · · ·+ 1

2n+1
)ε, n = 1 2, · · ·.
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Therefore, for ε > 0 there exists integer N such that

|ŜCuN+1 − ŜCuN | < ε

2

and

|zT + (Bx)(T )− S(T )(x0 + y0)− ŜG(·, x(·;B, f, uN))− ŜCuN |

≤ |zT + (Bx)(T )− S(T )(x0 + y0)− ŜG(·, x(·;B, f, uN))− ŜCuN+1|

+ |ŜCuN+1 − ŜCuN |

< (
1

22
+ · · ·+ 1

2N+1
)ε+

ε

2
≤ ε.

Thus the system (5.4.1) is approximately controllable on [0, T ] as N tends

to infinity. �

5.5 example

Let

H = L2(0, π), V = H1
0 (0, π), V ∗ = H−1(0, π),

a(u, v) =

∫ π

0

du(y)

dy

dv(y)

dy
dy

and

A = ∂2/∂y2 with D(A) = {x ∈ H2(0, π) : x(0) = x(π) = 0}.

The eigenvalue and the eigenfunction of A are λn = −n2 and φn(y) =

(2/π)1/2 sinny, respectively. Moreover,
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(a) {φn : n ∈ N} is an orthogonal basis of H and

(b) S(t)x =
∑∞

n=1 e
n2t(x, φn)φn, ∀x ∈ H, t > 0.

(c) Let 0 < α < 1. Then the fractional power Aα : D(Aα) ⊂ H → H of

A is given by

Aαx =
∞∑
n=1

n2α(x, φn)φn, D(Aα) := {x : Aαx ∈ H}.

In particular, A−1/2x =
∑∞

n=1
1
n
(x, φn)φn and ||A−1/2|| = 1.

Consider the following neutral differential control system:

⎧⎪⎨⎪⎩
∂/∂t

[
x(t, y) +

∫ t

0

∫ π

0
b(t− s, z, y)x(s, z)dzds

]
= Ax(t, y) + g

′
(|x(t, y)|2)x(t, y) + (Cu)(t), t ∈ (0, T ],

x(t, 0) = x(t, π0) = 0,

(5.5.1)

where g is a real valued function belong to C2([0,∞)) which satisfies the

conditions

(i) g(0) = 0, g(r) ≥ 0 for r > 0,

(ii) |g′
(r) ≤ c(r + 1) and |g′′

(r)| ≤ c for r ≥ 0 and c > 0.

If we present

f(x(t, y)) = g
′
(|x(t, y)|2)x(t, y),

f is a mapping from the whole V into H by Sobolev’s imbedding theorem

(see [20, Theorem 6.1.6]). As an example of g in the above, we can choose

g(r) = μ2r + η2r2/2 (μ and η is constants).

In addition, we need to impose the following conditions(see [68, 70]).
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(iii) The function b is measurable and

∫ π

0

∫ t

0

∫ π

0

b2(t− s, z, y)dzdsdy < ∞.

(iv) The function (∂2/∂z2)b is measurable, b(0, y, π) = b(0, y, 0), and

Mb :=

∫ π

0

∫ t

0

∫ π

0

( ∂

∂z
b(t− s, z, y)

)2
dzdsdy < ∞.

(v) C : L2(0, T ;U) → L2(0, T ;H) is a bounded linear operator.

We define B : L2(0, T ;V ) → L2(0, T ;H) by

(Bx)(t) =

∫ t

0

∫ π

0

b(t− s, z, y)x(s, z)dyds.

From (ii) it follows that B is bounded linear and

A1/2(Bx)(t) =
1

n

2

π

(
(Bx)(t), sinny

)
φn

=
2

π

( ∫ t

0

∫ π

0

∂

∂y
b(t− s, z, y)dyds, cosny

)
φn

=
2

π

(
(B1x)(t), cosny

)
φn.

where

(B1x)(t) =

∫ t

0

∫ π

0

∂

∂y
b(t− s, z, y)dyds.
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Thus, by (iv) the operator B1 is bounded linear with ||B1|| ≤
√
Mb and we

have that B ∈ D(A1/2) and ||A1/2Bx|| = ||B1x||. Therefore from Theorem

5.3.1, there exists a solution x of the equation (5.5.1) such that

x ∈ L2(0, T ;V ) ∩W 1,2(0, T ;V ∗) ⊂ C([0, T ];H).

Moreover, from Theorem 5.4.1 the neutral system (5.5.1) is approximately

controllable on [0, T ].
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5042-5044.

102



[33] J.P.C and dos Santos, Existence results for a partial neutral integro-

differential equation with state-dependent delay, Elec. J. Qualitative The-

ory Differ. Equ. 29 (2010), 1-12.

[34] J.P.C and dos Santos, On state-dependent delay partial neutral integro-

differential equations , Appl. Math. Comput. 216(5) (2010), 1637-1644.

[35] J. P. Dauer and N. I. Mahmudov, Exact null controllability of semilinear

integrodifferential systems in Hilbert spaces, J. Math. Anal. Appl. 299(2)

(2004), 322-332.

[36] J. Y. Park, J. M. Jeong and Y. C. Kwun, Regularity and controllability

for semilinear control system, Indian J. pure appl. Math. 29(3) (1998),

239-252.

[37] K. Balachandran and R. Sakthivel, Existence of solutions of neutral

functional integrodifferential equation in Banach spaces, Proc. Indian

Acad. Sci. (Math. Sci.) 109(3) (1999), 325-332.

[38] K. Balachandran, G. Shija and J. H. Kim, Existence of solutions of non-

linear abstract neutral integrodifferential equations, Comp. Math. Appl.

48 (2004), no.10-11, 1403-1414.

[39] K. Naito, Approximate controllability for trajectories of semilinear con-

trol systems, J. Optim. Theory Appl. 60 (1989), 57-65.

[40] K. Naito, Controllability of semilinear control systems dominated by the

linear part, SIAM J. Control Optim. 25(3) (1987), 715-722.

103



[41] K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and

Differential Equations, John Wiley, New York, 1993.

[42] K. Yosida, Functional analysis, Classics in Mathematics, Springer-

Verlag, Berlin, 1995.

[43] L. Gaul, P. Klein, S. Kempfle, Damping description involving fractional

operators, Mech. Syst. Signal Process. 5 (1991), 81-88.

[44] L. Wang, Approximate controllability for integrodifferential equations

and multiple delays, J. Optim. Theory Appl. 143(1) (2009), 185-206.

[45] M. A. Krannoselski, Topological Methods in the Theory of Nonlinear

Integral Equations, Pergamon Press, New York, 1964.

[46] M. Muslim, Existence and approximation of solutions to fractional dif-

ferential equations, Math. Comput. Modelling 49 (2009), no.5-6, 1164-

1172.

[47] M. Yamamoto and S. Nakagiri, Identiability of operators for evolu tion

equations in Banach spaces with an application to transport equations,

J. Math. Anal. Appl., 186(1994), 161-181.

[48] N. I. Mahmudov, Approximate controllability of semilinear deterministic

and stochastic evolution equations in abstract spaces, SIAM J. Control

Optim. 42(2006), 175-181.

[49] N. Sukavanam and Nutan Kumar Tomar, Approximate controllability

of semilinear delay control system, Nonlinear Func.Anal.Appl. 12(1)

(2007), 53-59.

104



[50] N. Sukavanam and S. Kumar, Approximate controllability of fractional

order semilinear with delay systems, J. Optim. Theory Appl. 151(2)

(2011), 373-384.

[51] O.K. Jardat, A. Al-Omari, S. Momani, Existence of the mild solution

for fractional semilinear initial value problems, Nonlinear Anal. 69(9)

(2008), 3153-3159.

[52] P. L. Butzer and H. Berens, Semi-Groups of Operators and Approxima-

tion, Springer-verlag, Belin-Heidelberg-NewYork, 1967.

[53] R. Hilfer, Applications of Fractional Calculus in Physics, World Scien-

tific, Singapore, 2000.

[54] R. Seeley, Interpolation in Lp with boundary conditions, Studia Math.

44(1972), 47-60.

[55] R. Seeley, Norms and domains of the complex power AZ
B, Amer. J. Math.

93(1971), 299-309.

[56] S. Agmon, On the eigenfunctions and the eigenvalues of general elliptic

boundary value problems, Comm. Pure. Appl. Math. 15(1962), 119-147.

[57] S. Kitamura and S. Nakagiri, Identifiability of spatially varying and con-

stant parameters in distributes systems of parabolic type, SIAM J. Con-

trol & Optim. 15 (1977), 785-802.

[58] S. Lenhart and C. C. Travis, Stability of functional partial differential

equations, J. Differential Equation. 58(1985), 212-227.

105



[59] S. Nakagiri, Controllability and identifiability for linear time-delay sys-

tems in Hilbert space. Control theory of distributed parameter systems

and applications, Lecture Notes in Control and Inform. Sci., Springer,

Berlin, 159(1991), 116-125.

[60] S. Nakagiri and H. Tanabe, Structural operators and eigenmanifold

decomposition for functional differential equations in Hilbert space, J.

Math. Anal. Appl.,204(1996), 554-581.

[61] S. Nakagiri, Identifiability of linear systems in Hilbert spaces, SIAM

J.cotrol & option. 21(1983), 501-530.

[62] S. Nakagiri and M. Yamamoto, Identifiability of linear retarded systems

in Banach space, Funkcial. Ekvac. 31(1988), 315-329.

[63] S. Nakagiri, Structural properties of functional differential equations in

Banach spaces, Osaka J. Math. 25 (1988), 353-398.

[64] T. Suzuki, Uniquenee and nonuniqueness in an inverse problem for thep-

arabolic problem, J. Differential Equations, 47 (1983), 296-316.

[65] V. Barbu, Analysis and Control of Nonlinear Infinite Dimensional Sys-

tems, Academic Press, 1993.

[66] V. Lakshmikantham, S. Leela, J. Vasundhara Devi, Theory of Fractional

Dynamic Systems, Cambridge Scientific Publishers, 2009.

[67] W.G. Glockle, T.F. Nonnenmacher, A fractional calculus approach of

self-similar protein dynamics, Biophys. J. 68 (1995), 46-53.

106



[68] X. Fu,Controllability of neutral functional differential systems in abstract

space, Appl. Math. Comput. 141 (2003), no. 2-3, 281-296.

[69] Y. C. Kwun, S. H. Park, D. K. Park and S. J. Park, Controllability of

semilinear neutral functional differential evolution equations with non-

local conditions, J. Korea Soc. Math. Educ. 15 (2008), 245-257.

[70] Y. Hino, S. Murakami and T. Naito, Functional differential equations

with infinite delay, vol. 1473 of Lecture Notes in Mathematics, Springer,

Berlin, Germany, 1991.

[71] Y. Zhou and F. Jiao, Existence of mild solutions for fractional neutral

evolution equations, Comput. Math. Appl. 59(3) (2010), 1063-1077.

107


	1 Introduction and Preliminaries
	2 Semilinear retarded control systems
	2.1 Introduction 
	2.2 Applications for semilinear retarded systems 

	3 Identification problems of retarded differential systems
	Hilbert spaces
	3.1 Introduction
	3.2 Notations 
	3.3 Cauchy problems on ζ-convex spaces
	3.4 Retarded equations and lemmas
	3.5 Identification problem in case A1 = γA0 & A2  A0
	3.6 example

	4 On fractional order retarded neutral differential equations in Hilbert spaces 
	4.1 Introduction
	4.2 Preliminaries and Lemmas 
	4.3 Existence of solutions
	4.4 example

	5 Control problems for semilinear neutral differential equations in Hilbert spaces 
	5.1 Introduction
	5.2 Regularity for linear equations
	5.3 Semilinear differential equations
	5.4 Approximate Controllability 
	5.5 example

	References


<startpage>8
1 Introduction and Preliminaries 1
2 Semilinear retarded control systems 7
 2.1 Introduction  7
 2.2 Applications for semilinear retarded systems  8
3 Identification problems of retarded differential systems in
Hilbert spaces 16
 3.1 Introduction 16
 3.2 Notations  19
 3.3 Cauchy problems on ζ-convex spaces 20
 3.4 Retarded equations and lemmas 23
 3.5 Identification problem in case A1 = γA0 & A2  A0 31
 3.6 example 40
4 On fractional order retarded neutral differential equations in Hilbert spaces  43
 4.1 Introduction 43
 4.2 Preliminaries and Lemmas  45
 4.3 Existence of solutions 50
 4.4 example 66
5 Control problems for semilinear neutral differential equations in Hilbert spaces  69
 5.1 Introduction 69
 5.2 Regularity for linear equations 72
 5.3 Semilinear differential equations 76
 5.4 Approximate Controllability  86
 5.5 example 95
References 99
</body>

