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Chapter 1

Introduction and Preliminaries

This paper is discussed mathematical interpretations including the regu-
larity of solutions and control problems for partial differential equations with
time delay based mainly on the results from analytic semigroups generated
by differential operators. The main tool of research is to apply some charac-
teristic of interpolation spaces of Banach spaces, and establish some simple
properties for interpolation spaces associated with the domain of a genera-
tor of an analytic semigroup, which is applicable for the maximal regularity
and the existence of solutions of evolution equations of parabolic type with
unbounded operators. Based on these theory, sufficient condition for iden-
tification condition which is one of the inverse problems is given as the so
called rank condition in terms of the initial values and eigenvectors of adjoint
operator was obtained, and some results on the control problems for retarded
functional differential equations of parabolic type with unbounded principal
operators are established.

In Chapter 2, we deal with the control problems for the following semilin-
ear retarded functional differential equation with initial values in a Hilbert
space H:

z'(t) = Apx(t) + Ayx(t —h) + fEh a(s)Agx(t + s)ds

+f(t,z(t)) + Bou(t), (RE)
z(0)= ¢° a(s)=g'(s), se€[-h,0).



Here, the principal operator Ay generates an analytic semigroup S(¢) on H,
and A;A;'(i = 1,2) are bounded in H. Here, By is a linear bounded operator
from U to H and U is some Banach space.

Little is known about the relationship between controllability and stabi-
lizability for solutions of the semilinear equation (RE), which is one of our

motivations. We assume that
ot =0c(A)N{\:ReX > 0}

consists entirely of a finite number of eigenvalues of Ag(see [26])

Goal of this chapter is to extend the control theory govern by general
semilinear systems to the equations with delays. Based on the semilinear
control system with positive isolated spectrum points, we will derive the
equivalent relation between controllability and stabilizability of the solution
for the control system(RE) with a condition of the completeness of system
of the generalized eigenspaces of Ay.

Let ©Q be a bounded domain in R™ with smooth boundary 0€). Let

A(z, D,) be an elliptic differential operator of second order in L'():

In Chapter 3, we consider the inverse problem for the following retarded

functional differential equation defined as Agu = —A(z, D,)u:
u'(t) = Agu(t) + yAou(t — h fo a(s)Apu(t + s)ds, (IE)
u(0) =g uls) =g'(s), s€[=h0)



Here Ay, 7, and a(-) are unknown quantities to be identified and the initial
condition g = (¢°, ¢') is known.
In [27, 30] the author discussed the control problem for the following

retarded system with L'(2)-valued controller:

u(t) = Aou(t) + Aju(t — h) + /i a(s)Asu(t + s)ds + Pow(t),  (3.1.1)
where A;(i = 1,2) are second order linear differential operators with real
coefficients, and the controller @ is a bounded linear operator from a control
Banach space to L'(Q2).

In [16], they established some results concerning identification problems
for (IE) of specific form by taking the observation. Furthermore, Yamamoto
and Nakagiri [47] studied the identifiability problem for evolution equations
in Banach spaces with unknown operators and initial values by means of
spectral theory for linear operators.

In view of Sobolev’s embedding theorem we may also consider L'(Q) C
W=tP(Q) if 1 < p < n/(n—1)as is seen in [27]. Hence, we can investigate
the system (IE) in the space W~1P(Q) considering @, as an operator into
W=1P(Q). Here, we note that the space W~12(Q) is (-convex(as for the
definition and fundamental facts of a (-convex see [24, 10]). Consequently,
in view of Dore and Venni [18] the maximal regularity for the linear initial

value problem:

u'(t) = Aou(t) + f(t), u(0) = ug

in the space W~17(Q2) holds true.



Furthermore, with the aid of a result by Seeley [55] and [27], we can
obtain the maximal regularity for solutions of the retarded linear initial value
problem (IE) in the space W~1(Q). In view of these results, we deal with
an inverse problem of (IE) in W ~1P(Q).

In Chapater 4, we study the existence of solutions and L*-regularity for
the following fractional order retarded neutral functional differential equa-

tion:

{ 2 [z (t) + g(t, 20)] = Agz(t) + th ap(8)Arx(t + s)ds + (Fx)(t) + k(t), t > 0,
(NE)

where 1/2 < a < 1, h > 0, a;(+) is Holder continuous, k is a forcing term, and
g, f, are given functions satisfying some assumptions. Moreover, Ay : H — H
is unbounded but A, is bounded. For each s € [0, T, we define x4 : [—h,0] —
H as z,(r) = z(s + 1) for r € [=h,0] and (¢°, ¢*) € H x L*(=h,0; V). We
propose a different approach of the earlier works used properties of the rela-
tive compactness. Our approach is that regularity results of general retarded
linear systems of Di Blasio et al. [17] and semilinear systems of [31] re-
main valid under the above formulation of fractional order retarded neutral
differential system (NE) even though the system (NE) contains unbounded
principal operators, delay term, and local Lipschitz continuity of the non-
linear term. The methods of the functional analysis concerning an analytic
semigroup of operators and some fixed point theorems are applied effectively.

In Chapter 5, we are concerned with the global existence of solution and

the approximate controllability for the following abstract neutral functional



differential system in a Hilbert space H:

{ #l(z(t) + (Bx)(t)] = Ax(t) + f(t,2(t)) + (Cu)(t), te€(0,T], (CE)
(0) =z, (Bx)(0) = o,

8

where A is an operator associated with a sesquilinear form on V' x V sat-
isfying Garding’s inequality, f is a nonlinear mapping of [0,7] x V into H
satisfying the local Lipschitz continuity, B : L*(0,T;V) — L*(0,T; H) and
C: L*0,T;U) — L?*(0,T; H) are appropriate bounded linear mapping.

We propose a different approach of the earlier works (briefly introduced
in [41,42],[58-61] about the mild solutions of neutral differential equations).
Our approach is that results of the linear cases of Di Blasio et al. [17]
and semilinear cases of [31] on the L*-regularity remain valid under the
above formulation of the neutral differential equation (CE). For the ba-
sic of our study, the existence of local solutions of (CE) are established in
L*(0,T;V) n W20, T;V*) — C([0,T]; H) for some T > 0 by using frac-
tional power of operators and Sadvoskii’s fixed point theorem. Thereafter,
by showing some variational of constant formula of solutions, we will obtain
the global existence of solutions of (CE), and the norm estimate of a solution
of (CE) on the solution space. Consequently, in view of the properties of the
nonlinear term, we can take advantage of the fact that the solution mapping
u € L*(0,T;U) ~ z is Lipschitz continuous, which is applicable for control
problems and the optimal control problem of systems governed by nonlinear

properties.



The second purpose of this chapter is to study the approximate controlla-
bility for the neutral equation (CE) based on the regularity for (CE), namely

that the reachable set of trajectories is a dense subset of H.



Chapter 2

Semilinear retarded control systems

2.1 Introduction

In this paper we deal with the control problems for the following semilinear
retarded functional differential equation with initial values in a Hilbert space

H:

7 @)= A Azt — B) L, a(s) Asx(t4 s)ds
+f(t, z(t)) + Bou(t), (RE)
z(0)= ¢° z(s)=g'(s), se[-h,0).

Here, the principal operator Ay generates an analytic semigroup S(¢) on H,
and A;Ay ' (i = 1,2) are bounded in H. Here, By is a linear bounded operator
from U to H and U is some Banach space.

The reachable set for its corresponding linear system of (RE) in case where
f = 0 is independent of the time T if Ay generates an analytic semigroup.
But it does not hold in general case where Ay generates Cy-semigroup as
seen in Theorem 3.10 and remark 3.4 of [19]. Similar considerations of linear
and semilinear systems have dealt with in many references(see the bibliogra-
phies of [2-5]). In [36], the approximate controllability for the semilinear
system (RE) was established by a condition for the range of the controller

By without the inequality condition and see that the necessary assumption is



more flexible than one in [3,4,7]. However, little is known about the relation-
ship between controllability and stabilizability for solutions of the semilinear

equation (RE), which is one of our motivations. We assume that
ot =0o(A)N{\:ReX >0}

consists entirely of a finite number of eigenvalues of Ag(see [26])

Our goal of this paper is to extend the control theory govern by general
semilinear systems to the equations with delays. Based on the semilinear
control system with positive isolated spectrum points, we will derive the
equivalent relation between controllability and stabilizability of the solution
for the control system(RE) with a condition of the completeness of system

of the generalized eigenspaces of Ag.

2.2 Applications for semilinear retarded systems

Consider the following linear retarded functional differential equation with
initial values in a Hilbert space H:
2 ()= Ax(t) + Aww(t —h) + [°, a(s)Asz(t + 5)ds

+f(t,x(t)) + Bou(t), (2.2.1)
z(0) = ¢° x(s)=g'(s), se[-h,0).

Let V be a Hilbert space densely and continously embedded in H. The
notations || - || and |- | denote the norms of V' and H as usual, respectively.
Let — Ay be the operator associated with a bounded sesquilinear form b(u, v)

defined on V' x V satisfying Garding’s inequality

Reb(u,u) > c||ul|, ¢>0.

8



It is known that Ay generates an analytic semigroup Sy(¢)(¢ > 0) in both of
H and V*. It is assumed that A; and A, are bounded linear operators from
V to V* and A;Ay'(i = 1,2) are bounded in H. Here, By is a linear bounded
operator from U to H and U is some Banach space.

Let f be a nonlinear mapping [0,7] x V into H for given T' > 0. We
consider the following cases:

Assumption (F) For any x1, x5 € V there exists a constant L > 0 such
that

[f sz (¢t 22)| <E||2; — 2ol

Using the Maximal regularity for more general retarded parabolic systems

as in [9,10], we know the following results.

Proposition 2.2.1. Let T > 0, (¢°, g') € HxL?*(—h,0;V) and Assumption(F)

be satisfied. Then there exists a unique solution x of equation (RE) such that
r € F2(0MSV W20, T v & CEO LY H).
Moreover, there exists a constant ¢, such that

2] 2207w 20 < e1(l9°] + 19 [ z2noary + [ullz20.007)-

Let W(-) be the fundamental solution of the linear equation associated
with (RE) which is the operator valued function satisfying
W(t) = So(t) + Jo Solt = s){AW (s = h)

+ fi)h a(T)AsW (s + 7)dr}ds, t>0
W) =1, W(t)=0, —h<t<O0,



where Sy(-) is the semigroup generated by Ay. Then the solution x(t; f, u)

for the equation (RE) can be written by

x@ﬁszwff/U&M@%

—h

+AWW—@U@w@ﬁw%HM®M&
U(s) =W(t—s—h)A + /S W(t— s+ o)a(o)Asdo.

In this section we investigate the spectral properties of the infinitesimal gen-
erator Ay of Sy(t) in the special case where A; = yAq with some constant -,
Ay = Ay and the embedding V' C H is compact. Thus, in what follows we

consider the equation
La(t)=Aox(t) + vAox(t — h)+ f s)Aox(t + s)ds
+f(t,2(t) + Bou(t ), (2.2.2)
z(0) = ¢° x(s)=g'(s), s€[=h0).
According to Riesz-Schauder theorem Ay has discrete spectrum

o(Ag) ={N 7 =1}

which has no point of accumulation except possibly A = co. The spectrum

of A is denoted by o(A). We assume:
a(A)N{A:ReX =0} =0.

Set
o, =0(A)N{A:ReA >0}, o =0c(A)N{X:ReX <0}.

10



We make natural assumption that o, is a finite and sup{ReA: A € 0_} <0,
that is,
O+ = {)‘17 7)\N})

—wo=sup{ReA: A€o _} <0

and for each j =1, ..., N.
Let Z = H x L*(—h,0;V) be the state space of the equation (2.2.2). Z

is a product Hilbert space with the norm

!sz@%+[JW@Wwﬁ g= (9" € Z.

Let g € Z and x(t; g, f,u) be a solution of (2.2.2) associated with the non-
linear term f and a control u at the time ¢. The segment z; is given by
x(s; g, fyu) = x(t + s;g, f,u), s € [—h,0). The solution semigroup S(t) for
the equation (2.2.2) is defined by

S(t)g = (z(t;9,0,0), (- g,0,0)), (2.2.3)

where 2(t;¢,0,0) is the solution of the equation (2.2.2) with f = 0 and
B =0.

Here, we remark that the operator S(t) is a Cy—semigroup on Z and the
infinitesimal generator A of S(t) is characterized by

D(A)={g=1(9".9"): ¢" € H, g € W"*(=h,0;V),

0
910 =, Ao+ 7A0g (<) + [ al5)Aog! (s € )
0

Awﬂ%f+%¢bm+/a@%¢®%ﬂﬁ

—h

11



It is also known that if the embedding V' C H is compact, then
g(A) ={A:m(\) #0, A/m(\) € 0(Ay)},

where m(A\) = 1+ ye M + fi)h eMa(s)ds.
The equation (2.2.2) can be transformed into an abstract equation as

follows.

{z’ (t) = Az(t) + F(t, 2(t)) + Bu(t), (2.2.4)

where z(t) = (z(tig, f,u), (59, f,u)) € Z and g = (¢°.¢') € Z. The
nonlinear operator F' on Z is defined by F(t, z(t)) = (f(t,z(¢),0) and the
control operator B defined by Bu = (Byu,0). The mild solution of initial

value problem (2.2.4) is the following form:

2(t;g, f,u) = S(t)g + /0 S(t—s){F(s,z(s)) + Bu(s)}ds.

We consider also the adjoint problem

(2.2.5)

{%ym = Apy(t) + yAsy(t = h) + [°, a(s) Ay(t + s)ds,
y(0)  =¢% yls)=¢'(s) se

where A} € B(V, V*) is adjoint operator of Ag and (¢°, ¢') € Hx L*(—h,0; V).
Let Ar be the infinitesimal generator of St(t) associated with the system
(2.2.5). Then the equation (2.2.5) can also be transformed into the following

equation:

(2.2.6)



where 2(t) = (y(t:6, £,0), (u(-16, £.0)) € Z and ¢ = (6°,¢!) € Z. The
structural operator H is defined by

Gg=([Gg]°,[Gg)"), g9=1(9"9")eZ

Gl = ¢, [Gal(s) = vAog (~h — 5) + / a(r) Ao (7 — ).

—h
The spectral projection

1
P =G =a=ld)
g 2m Fj( )

is an operator of finite rank, where I'; is a small circle centered at \; such

that it surrounds no point of o(A) except A;, and set

Q= = | (=2 —A)ax

2me Jr,

Let P, and 7y, denote the spectral projection and the generalized eigenspace
for A;, respectively. Just as in [5] it can be shown that A1, -, Ay are
eigenvalues of Ap. The spectral projection and the generalized eigenspace

for \; are defined by PL and ZL, respectively. Thus, we obtain the following
J J

theorem in virtue of Theorem 3.1 of [26].

Theorem 2.2.1. Suppose that v # 0 and the system of the generalized
eigenspaces of Ay is complete. Let us assume the hypotheses (F) and let
f(,+) be uniformly bounded. If for j=1,--- N,

kj—1

KerB* N Range{Z(Q;l)*} = {0}, (2.2.7)

n=0

13



then the system (2.2.6) is Z -approximately controllable on [0,T].

Remark 2.2.1. According to S. Nakagiri [5], we represent the fundamental
solution W (t) for (4.1) by

0 __ x(t’ <9070)7070)7 tZO
0 t<0

for g° € H. Therefore, if for each p € L*(0,T; Hy) there exists an element q

belonging to the range of B such that

[ i st = [ Wi susas

then we can directly prove the approximate controllability for (2.2.2) as in

Theorem 4.1 of [31].

Theorem 2.2.2. Suppose that v = 0. Let us assume the hypotheses (F) and
let f(-,-) be uniformly bounded. Then, the following statements are equiva-

lent.

(a) For any g € Z there exists an u € L*(0,00;U) such that the mild solution
x of (2.2.2) satisfies (z,x,) € L*(0,00; Z), i.e.,

[t [ s i < oo

(b) The system of (2.2.4) is Z-approximately controllable.

(¢){z* € ZI : B[(Ar — )2 =0, 1<j<N, n=0,..,k —1} ={0}.

14



Proof. As seen in Proposition 4.1 of [29], if v = 0, then the solution semigroup
S(t) of (2.2.3) is Holder continuous in (3h,00) in operator norm. Thus, by
Proposition 3.1 of [29], we know that (a) holds iff

(=€ 2 BY(A" = X)"2" =0, n=0, ..., k; — 1} = {0}. (2.2.8)

Just as Theorems 4.2 and 8.1 of [5] it can be shown that the structural

operator H* maps D(Ar) to D(A*) and A*G* = G*Ar on D(Ar), and G*

is an isomorphism from Z% to Z3-. Hence, (2.2.8) is equivalent to the fact
J J

that

(= €20 Bil(Ar =%)0"=" =0, =0, .. ,k; — 1} = {0},

15



Chapter 3
Identification problems of retarded

differential systems in Hilbert spaces

3.1 Introduction

Let © be a bounded domain in R with smooth boundary 0€2. Let A(z, D,)

be an elliptic differential operator of second order in L'({):

a n
A(z, D,) Z 8 -(aij(z a—xl)—i-;bl(:v)

5,g=1

In this paper, we consider the inverse problem for the following retarded

functional differential equation defined as Agu = —A(x, D, )u:
u'(t) = Agu(t) +yAou(t —h fo a(s)Aou(t + s)ds, (IE)
u(0) =g", u(s) = g'(s), s€[=h0).

Here Ag, v, and a(-) are unknown quantities to be identified and the initial
condition g = (¢°, ¢') is known.

In the field of control engineering, the inverse problem, or the parameter
estimations of systems has attracted much interest and has been investigated
in many references, for example, as for one dimensional heat equation with

an unknown spatially-varying conductivity in [11-14], an abstract linear first

16



order evolution equation within the framework of operator theory in [61], and
linear retarded functional differential systems in reflexive Banach spaces in

[15-17]. In [27, 30] the author discussed the control problem for the following

retarded system with L'(Q)-valued controller:

u'(t) = Agu(t) + Aju(t — h) + /0 a(s)Aqu(t + s)ds + Pow(t),  (3.1.1)

~h

where A;(1 = 1,2) are second order linear differential operators with real
coefficients, and the controller @ is a bounded linear operator from a control
Banach space to L'(Q). In [16], they established some results concerning
identification problems for (IE) of specific form by taking the observation.
Furthermore, Yamamoto and Nakagiri [47] studied the identifiability problem
for evolution equations in Banach spaces with unknown operators and initial
values by means of spectral theory for linear operators.

In view of Sobolev’s embedding theorem we may also consider L'(Q2) C
W=P(Q) if 1 < p < nf(n—1) as is seen in [27]. Hence, we can investigate
the system (IE) in the space W~1P(Q) considering @, as an operator into
W=1P(Q). Here, we note that the space W~1P(Q) is (-convex(as for the
definition and fundamental facts of a (-convex see [24, 10]). Consequently,
in view of Dore and Venni [18] the maximal regularity for the linear initial

value problem:
u'(t) = Aou(t) + f(t),u(0) = ug

in the space W~7(Q) holds true.

17



Furthermore, with the aid of a result by Seeley [55] and [27], we can
obtain the maximal regularity for solutions of the retarded linear initial value
problem (IE) in the space W~1(Q). In view of these results, we deal with
an inverse problem of (IE) in W ~1P(Q).

The paper is organized as follows. Section 2 presents some notations.

In Section 3 from the definitions of operator Ay and the interpolation
theory as in Theorem 3.5.3 of Butzer and Berens [52], we can apply Theorem
3.2 of Dore and Venni [18] to general linear Cauchy problem in the space
W=1P(Q). Thereafter, by using the method of Di Blasio et al. [17] to the
system (3.1.1) with the forcing term f in place of the control term ®yw,
Section 4 is devoted to studying the wellposedness and regularity for solutions
of (IE) by using a solution semigroup S(¢) in the initial data space Z,, =
Hypy x L(—h, 0; W, P(Q)), where H,, = (Wy™P(Q), W1),,,(Q) for 1 < ¢ <
0.

In Section 5, in order to identify the parameters, we investigate the spec-
trum of the infinitesimal generator A of S(¢). We will give that the spectrum
of A is composed of two parts of cluster points and discrete eigenvalues.
Moreover, we are concerned with the representations of spectral projections
and the problem of completeness of generalized eigenspaces. Based on this
result, we establish a sufficient condition for the inverse problem is given as
the so called rank condition in terms of the initial values and eigenvectors of
adjoint operator.

Finally we give a simple example to which our main result can be applied.

18



3.2 Notations

Let  be a region in an n-dimensional Euclidean space R™ and closure Q.

C™(2) is the set of all m-times continuously differential functions on

Q.

C(€2) will denote the subspace of C™(€2) consisting of these functions

which have compact support in €.

WmP(Q)) is the set of all functions f = f(x) whose derivative D®f up
to degree m in distribution sense belong to LP(£2) . As usual, the norm

is then given by

I
1fllmpe = (O ID°fllbg)?, 1 <p< oo,

am

[/ lm.ce,0 = max || D%l |os. 0,
am

where D°f = f. In particular, W%?(Q) = L?(Q) with the norm ||-||,q-
WP () is the closure of C§°(€2) in W™P(2)

For p = 2 we denote W2(Q) = H™(Q) and W.?(Q) = H*(Q)

Let p = p/(p—1), 1 < p < co. W'P(Q) stands for the dual space

Wy? (Q)* of Wy* (€2) whose norm is denoted by || - || -1 .-

If X is a Banach space and 1 < p < oo,

LP(0,T; X) is the collection of all strongly measurable functions from

(0,7) into X the p-th powers of norms are integrable.
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C™([0,T]; X) will denote the set of all m-times continuously differen-

tiable functions from [0, 7] into X.

If X and Y are two Banach spaces, B(X,Y) is the collection of all
bounded linear operators from X into Y, and B(X, X) is simply written
as B(X).

For an interpolation couple of Banach spaces Xy and X, (Xo, X1)s,
for any 6 € (0,1) and 1 < p < oo and [X, X1]p denote the real and

complex interpolation spaces between Xy and X, respectively(see [22]).
Let A is a closed linear operator in a Banach space. Then

D(A) denotes the domain of (A) and R(A) the range of A.
p(A) denotes the resolvent set of A, o(A) the spectrum of A, and o,(A)

the point spectrum of A.

The kernel or null space {z € D(A) : Az = 0} of A is denoted by
Ker(A).

3.3 Cauchy problems on (-convex spaces

Let © be a bounded domain in R™ with smooth boundary 0f2. Consider

an elliptic differential operator of second order

Alw.D.) = = Y Flanfe)50) + Y b(a) g+ la)

i.j=1
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where (a;;(z) : i,7 = 1,---,n) is a positive definite symmetric matrix for

each z € Q, a;; € CY(Q), b; € C1(Q) and ¢ € L>(12). The operator

A D) ==Y (o) g = D e le)) + o)

ij=1""1 '
is the formal adjoint of A.

For 1 < p < oo we denote the realization of A in LP(€2) under the Dirichlet
boundary condition by A,:
D(4,) = W2P(Q) N Wy (),

Au=Au for we D(4,).

For p' = p/(p — 1), we can also define the realization A" in Lp/(Q) under
Dirichlet boundary condition by A

P
D(A) =W Q)N W™ (),
A5y =Aufor —ued)AN
p p
It is known that —A, and —A;, generate analytic semigroups in LP(2) and

!’

LP (), respectively, and A = A;),. For brevity, we assume that 0 € p(A4,).

From the result of Seeley [54] (see also Triebel [22, p. 321]) we obtain that

[D(Ap), LP()]1 = Wy " (),

and hence, may consider that
D(A,) C WyP(Q2) C LP(2) C W™H(Q) € D(A))".
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Let (A;,)/ be the adjoint of A;D, considered as a bounded linear operator

from D(A,) to LP/(Q). Let A be the restriction of (A;),)' to W,y (Q).

p
Then by the interpolation theory, the operator A is an isomorphism from
Wy (Q) to W=2(Q). Similarly, we consider that the restriction A of (4,) €
B(Lpl (Q), D(A,)*) to W, ? (Q) is an isomorphism from Wy (€2) to Wty (Q).
Furthermore, as seen in proposition 3.1 in Jeong [27], we obtain the following

result.

Proposition 3.3.1. The operators A and A generate analytic semigroups

in W=tP(Q) and W*Lp/(Q), respectively, and the inequality
”(AVVSHB(W*LP(Q)) < Cell —o0 < 5 < 00,

holds for some constants C >0 and v € (0,7/2).

We set

Hy = (Wol’p“)): WHP(Q))1

E7q7

g€ (1,00). (3.3.1)

Since A is an isomorphism from WgP(€) onto W12(Q) and W *(Q) and
W=r(Q) are (-convex spaces, it is easily seen that H,, is also (-convex.

From the definitions of operator A and the interpolation space H,, as in
Theorem 3.5.3 of Butzer and Berens [52], we can apply Theorem 3.2 of Dore

and Venni [18] to general linear Cauchy problem as the following result.
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Proposition 3.3.2. Let (ug, f) € Hy,, x LU0, T; W1 (Q))(1 < g < 00).

Then the Cauchy problem
u'(t) = Au(t) + f(t), u(0) = ug
has a unique solution
w € LU0, T; Wy P () nWh(0, T; WP (Q)) «— ([0, T); Hp,)-
The last inclusion relation is well known and is an easy consequence of

the definition of real interpolation spaces by the trace method.

3.4 Retarded equations and lemmas

In this section, we apply Propositions 3.3.1 and 3.3.2 to the retarded func-
tional differential equation in the space W~5?(Q). Consider the following

retarded equation in W~1P(Q):

{u/(t) = Agu(t) + Ayu(
u(0) =¢% u(s) =g'

(3.4.1)

Here, Ay = —A, and A,u (1 = 1, 2) are the restrictions Wy () of the linear

differential operators A,(¢ = 1, 2) with real coefficients:

~ J ., 9 —~ o 0
Az, D,) = — Z 8_%(%]@)8_3:,) + ;bl(qj)ax, + c'(z),

ij=1

where

at . = a;’,i - Cl(§>7 b; € Cl(ﬁ)y ¢ e LOO(Q)7

2¥)
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and (aj ;),¢ = 1,2 are positive definite. The kernel a(-) belongs to LY (—h,0).
For g € (1,00) we set
Zpq = Hyq x LU(—h,0; W, P(Q)).

Using Proposition 3.3.2 we can follow the argument as in [17] term by term

to deduce the following result(see Proposition 4.1 of [27]).

Lemma 3.4.1. Given g = (¢°,¢") € Z,, and f € L0, T;W='?(Q)). Then
the problem (3.4.1) has a unique solution
u € LU0, T; Wy P () N W0, T; W (Q))) € C([0,T; Hpy).

Moreover, we have

||u||Lq(O,T;WOl’p(Q))ﬂWLfI(O,T;W*l»P(Q)) < c(19° .
u HngLq(fh,O;WOl’p(Q)) + ||f||L‘1(0,T;W—1~P(Q)))v
where ¢ is a constant.
Let F' = 01in (3.4.1) and consider the equation on whole [0, 00). Then by

virtue of Lemma 3.4.1, we can define the solution semigroup S(t)(¢t > 0) for

the system (3.4.1) as follows [17, Theorem 4.1](or [61, 63]):
S(t) = (u(t; g), w(+5 9))

where g = (¢°, ¢') € Z,,, u(t;g) is a solution of (3.4.1) and w(-; g) is the
function u(s; g) = u(t+s; g) defined in [—h, 0]. It is also known that S(¢) is a
Co-semigroup on Z,,. As in Theorem 4.2 of [17], the infinitesimal generator

is characterized as follows.
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Lemma 3.4.2.

(i) The operator S(t) is a Co—semigroup on Z, .

(i1) The infinitesimal generator A of S(t) is characterized by

D(A)={g=(¢"g"): ¢" € WyP(Q), g" € W (—h,0; Wy (Q)),

0
gl(O) =q° Ayg® + Algl(—h) +/ G(S)A291<8)d8 € H,,},
—h
0
Ag = (Aog? + Aug () + [ a()Aag’(5)ds,g')
—h

The equation (3.4.1) can be transformed into an abstract equation in Z, ,

as follows.

2 (t) =dz(t) + Gt), =z(0) =g, (3.4.2)

where G(t) = (f(t),0), z(t) = (u(t;9),w(;9)) € Zpy and g = (g% ¢") €

Z,,q- The mild solution of initial value problem (3.4.2) is the following form:

z(t;9) = S(t)g + /Ot S(t — s)G(s)ds.

We introduce the transposed problem of (3.4.1):

{y’(t) = Asy(t) + Ajy(t — h) + [, a(s)Asy(t + s)ds, t € (0,T], (3.4.3)

y(0) = 0% yl(s)=¢'(s), s€[=h,0).
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Here, we remark that A5 At A3 € B(WeP (), W= (Q)). We can also
define the solution semigroup Sr(t) of (3.4.3) by

ST(t)¢ = (y(t; QZ))’yt('a ¢>) V(b = (¢07 ¢1) € ZP'#I’:

where y(t; ¢) is the solution of (3.4.3). Let Ay be the infinitesimal generator
of St(t) associated with the system (3.4.3).

For A € C we define a densely defined closed linear operator by

0
AQ) =X"io & aVMN / eMals)Ayds,

—h

0
Oph) = )\ — Ar— et M / e*a(s)Abds.

—h

The operators A()) and Ap(\) are bounded in B(W,”(Q), W~17(Q)) and

B(Wol’p,(Q), W‘l’p/(Q)), respectively. Noting that if A € p(Ag)
0
A = {1~ i+ [ Maads) (=AY A - o)
—h

The structural operator F' is defined by
Fg=([Fg]’.[Fg]"), (3.4.4)

[Fgl° = ¢°,

Fl(s) = Avg!(—h — 5) + / a(r) Asg (7 — s)dr, s € [~h,0)

—h
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for g = (¢°,¢") € Z,, It is easy to see that F € B(Zp,q,Z;, q,), F* e
B(Zy s, Z;,), where

p,q 7

[F* )" = ¢,

(0 (s) = Afo (—h—s) + " a(r)Az6!(r — s)dr, s € [~h.0)

—h

for p € Z; /. Asin [27, 63] we have that
FS(t)=Sp(t)F F*Sp(t)=S*(t)F™. (3.4.5)

Let A be a pole of (A — A)~! whose order we denote by k) and Py be the

spectral projection associated with A:

1
P, =— LW
N\ 27_” (/u ) M,

where I'y is a small circle centered at A such that it surrounds no point of

o(A) except A. And we know that A € ¢(Ar) is a pole of (A — A7)~ and the
spectral projection is given by

PXT*Q—M (M Ap)~Hdp.

As is well known A is an eigenvalue of A and the generalized eigenspace

corresponding to A is given by
P\Zyy={Pw:u€ Z,,} = Ker(\l — )"

Let us set

1
2m

Q= (A AN\ — A) A
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Then we remark that

$=— A= XN = A)La.
%, =5 [ =20 2)
It is also well known that Qijj = 0 (nilpotent) and (A — X\)Py;, = Qy,(cf.

[63, 42]). The following subset of o(A) are especially of use:

0,(A) = the point spectrum of A,

o4(A) = {X € o(4) : A is isolated and dim(PyZ,,) = d\ < oo}.

Lemma 3.4.3. Let A € 0,(A) = 0,(A), where g,(A) = {\ : A(\) is not invertival}.
Then
1) For any k =1,2,---

)

Ker(A — A)F ={(6), ™) (—s)'¢}/il) :

i

N
—

I
=

Enl
|
—

(=1 TATTIN G /(i =+ 1) =0, j=1,--- ,k}.
1

i=j

2) X € p(A) = p(A7),
FA=A)"t=A\-An)"F
In particular, if X € 0,(A) then

FP, = (PI)°F.
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The proof of 1) and 2) is from Proposition 7.2 and Theorem 6.1 of Nakagiri

[63, 60], respectively.
Definition 3.4.1. The system of generalized eigenspaces of A is complete if

Cl(span{U Ker(A — A)* : X € 0,(A)}) = Z,,,

k=1

where Cl is denotes the closure in Zy .

We know that A € o4(A) if and only if X € 04(Ar) and that P\Z,, = dy =
PrZy o = dx. Let {¢a1,...;xay } and {11, .., haa, } be the bases of PrZ,,

and Py Zy 4, respectively. As is shown by the same method as Proposition

7.4 and Theorem 8.1 of [63], noting that F* is an isomorphism from P{Z,
to (Px>*Z*

g0 We can suppose that

Here, (-,-) denotes the duality between Z> and Z,,. The duality between

Z% ,and Z, , ias also denoted by (-, ).

pPq

Lemma 3.4.4.
(1) Let X € o4(Ar). Then for any g € Zy o, the spectral projection has the

following representation

dx

P)TQ = Z(F*ga Oxi) i

i=1
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(2) Let A € a4(A). Then the spectral projection has the following representa-

tion
dy

Prg = Z(Fg,wﬂ)@\i
i=1
forany g € Z,,.
Proof. 'We prove only (1) since the proof of (2) is similar. For any

g € Zy g, Plgis written as Y i ¢ithy; for ¢; € C and then by (3.4.6)

my
(F*Py g, bx1) = Zci(F*wm‘,%j) A
i=1

From the Laplace transform of the second equality in (3.4.5) we have
F* (e An) 7 = (p= )7 F*
and

1 i
F*pl = pr— =7l :—/ F*(u— Ap)"d
A o FA(M T) % oS . (M T) 2

1 o -
=— [ (p—A)"Fdp = (Py)"F".

- 2mi
Therefore, we have
¢j = (F"P{g,d5;) = (P)Fg,d5;) = (F g, Pxdy;) = (Fg, d;)-

The proof of (1) is completed. O
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3.5 Identification problem in case A; = vA) & Ay = Ay

In this section we deal with the identification problem in the case where

Ap = ~vAp with some constant v, Ay = Ag as follows.

(3.5.1)

{u’<t> = Aou(t) + yAou(t — h) + [*, a(s) Aou(t + s)ds,
u(0) =g¢°% u(s) =g'(s), s€

Here Ao, v, and a(-) are unknown quantities to be identified and the initial
conditions ¢; = (¢, 9}) € Zp 4 i =1, ..., | are known.
We denote by the model system (3.5.1)™ by the equation (3.5.1) with Ay,

m

7, a replaced by AJ', v, a™ respectively. The solutions of (3.5.1) and the
model system (3.5.1)" are denoted by u(t; g) and u™(t; g), respectively, and
the solution semigroup for model system by S™(¢). We assume that A* and

a™ satisfy the same type of assumptions as Ag and a.

The identifiability for (3.5.1) is to find conditions such that if
TR0 e (bt il - P
for g; = (¢0,9}) € Zp4,i =1, ..., 1, is a finite set of initial values, then
Ao = Af', v=17", a(s) = a"(s)

follows.

At first we investigate the spectral properties of the infinitesimal gener-

ator A™ of solution semigroup S™(t) for the equation (3.5.1)™. Since €2 is

bounded, the imbedding of W, *(Q) to H,, is compact. From [56, Theorem
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3.4], it follows that the system of generalized eigenspaces of Ay is complete

in H,,. According to Riesz-Schauder theorem Aj' has discrete spectrum

o(Ag') =A{p; 3 =1,---}

which has no point of accumulation except possibly A\ = oo.

For A\ € C we have
A™(N) = X —m(N)AY

where

0
m(A) = 14 me ™ +/ e*a™(s)ds. (3.5.2)
—h

It is clear that m is an entire function and

m(A) — 1 as ReA — oc.

Just as Theorems 1 and 2 of [28] for Aj' we can prove the following two

Lemmas.

Lemma 3.5.1. (1) Let p(A™) be the resolvent set of the infinitesimal gener-
ator A™ of S™(t). Then

A
p(A™) = {A:m(A) #0, oy © p(AT)}
= {X:A(N) is an isomorphism from WyP(Q) onto WHP(Q)}.
(2) Let o(A™) be the spectrum of A™. Then
o(A™) = o (A™) Ua,(A™),
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where o.(A™) = {X : m(\) = 0} and o,(A™) = {\ : m(\) # 0, A\/m()\) €
a(AyM)}. FEach nonzero point of .(A™) is not an eigenvalue of A™ but a
cluster point of (A™). o,(A™) consists only of discrete eigenvalues.

(8) Suppose m(0) = 0. Then there exists an analytic function g on neigh-
borhood at 0 such that g(0) # 0 and m(\) = N\g()\), and

op(A™), if k=1,
Oe{ae(m), if k>

Lemma 3.5.2. Suppose that m(0) # 0, v™ # 0. Then the system of gener-

alized eigenspaces of A™ is complete in Z, .

The structural operator F' defined by (3.4.4) is written as
Fg=([Fgl’,[Fg]"),

[Fg]° = g¢°,

(Fgl(s) = ydog =k — 5) + / a(7) Aog (= Hdr, 5 € [=h, 0).

—h

for g = (¢%,¢') € Z,,. The m™ and F™ are the structural operators of the
model system (3.5.1)™ in place of m in (3.5.2) and F, respectively.
Let A € 0,(A™), and {¢,, : k =1,---,d\} denote the basis of P{"Z,,.

Let A7 be the infinitesimal generator of transposed solution semigroup as-
sociated with (3.5.1). Then X € 0,(A7). Let {5, ik =1,---,d\} be a

basis of (P")LZz, ,, where (P™)[ denotes the projection of A7 at u. As
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shown in [29, Theorem 8.1] the projection (P™)% has the following eqivalent

representation

dx

Plg = (F"g,1)5,) b, V9 € Zyy.

k=1

Throughout this section we shall assume following:

e RANK CONDITION: For set of the initial values {gy, ..., g} is said
to be satisfy the Rank condition for the model system (3.5.1)™ if and

only if

rank((F™gi, 5, ) i =1, ..., 1, kL1, ..., dy) =dy, VA€ o,(A™)

(3.5.3)
form=1,2,---and j =1, 2, ---
The assumption of Rank condition is satisfied if and only if
Span{Ey"g5. . P59t} = PXZggir YA€ G (A™). (3.5.4)

Proposition 3.5.1. Assume that u(t;g;) = u™(t;;), i = 1, ...,1 and the
rank condition (3.5.3) for {q1, ..., g} be satisfied. Further assum that
m(0) # 0. Then

ap(A™) Co,(A), 0. (A™) C o.(A), (3.5.5)
and

A=A" on P{"Z,,. YA€ o,(A™). (3.5.6)
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Proof. By the definitionof semigroups S(t) and S(¢)™, we have from the

assumption that
S™(t)gi =S(t)gi, Vt>0, i=1,--- L (3.5.7)

By taking the Laplace transform of (3.5.7) and using the analytic continua-

tion of the resolvent operators, we have
A=A lg = (A= A)"tgi, YA E o (A™)Nay(A), i=1,---,1. (3.5.8)

Let Ao € 0,(A™). First we note that Ay # 0. Because, if \g = 0, then m(\g) #
0 and hence 0 = A\g/m(\o) € o(Af") by Lemma 3.5.1, which contradicts the
fact that A7 : WyP(Q) = W~1P(Q) is an isomorphism. We shall show

Ao € o(A). Assume contrarily that Ay € p(A4). Then from Lemma 3.5.1 there

exists a sufficiently small number ¢ > 0 such that
{A:0< | A= Xo| < e} @ p(A™); LA = Xl < e} Tp(A).

Thus, by (3.5.8), we have

1 —
Pﬁgz‘ = —/ ()\ - Am) 1gid)\
[A=Xo|=€

21

1
= — ()\—A)flgld)\:(), Z:].,,l
270 J|x—xo|=e
This implies by the span condition (3.5.4) for A = X\ that P{"Z,, = {0},
which yields the contradiction. Thus, Ay € o(A). Suppose Ag € o.(A). Since
Ao # 0 by m(A\g) = 0 in Lemma 3.5.1 and m(0) # 0, there exists a sequence

{\} C 0,(A) such that A, (# Ag) converges to A\g as n — oo. Then we

35



can choose a sufficiently small ¢ > 0 and natural number N > 1 such that
{A A= Xo| = €} C p(A) and
{An>NPC{A:0<|A=X| <€} Cp(A™),

A1 <n<N=1}n{A: | A=) <€} =0.
Since \,’s are discrete, we can also choose a positive sequence {¢, : n > N

such that {\ : |\ — X\g| < €,} C p(A™) for all n > N. Therefore, by the

residue theorem, we have

1
Plg; = —/ A— A™) " gid)
A 2mi |,\—,\0|:e( )
1 1
= A= A)gid = —/ A — A) " gidA
27 |,\,,\0|:E( ) nZZN 27 |)\7)\n|:en( )

)
=D A=A lgdd = 0=0, i=1,---,1,
;\[ 277-2 |)‘7/\n|:€n( ) Z

n>N

which also contradicts the rank condition for A = Xg.-This shows \g € 0,(A).

Since Ag is a discrete eigenvalue of A and A™, we have for sufficiently small

€ > 0 that
m 1 m\—1
PAogi =5 (A= A™)" gidA
270 Jix—xo|=
1

= — A—A)"rgd\ = Pygi, i=1,--- L 3.5.9
37 o O A (3.5.9)
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Further, again by (3.5.8) and (3.5.9), for all i = 1,--- ,[ we have

1

/ A (A — A" g,d
[A—Xo|=€

ol AR PO S L) (P PR

270 J ) xo|=e

1 1
270 J1x—xo|=c ( ) 270 J|a— )=
1

= — M= AT

21 Jp—xp|=e

1
= i AA = A)lgid\ = APy, g; = AP{'g;.  (3.5.10)
278 J )32l =e A

By the span condition (3.5.4) for A = )¢, this implies that
A= A" in POZ;,, (3.5.11)

which proves (3.5.6). Next, let A\g € 0.(A™), then m(0) = 0, so that Ay # 0 by
the assumption m(0) # 0. Therefore, there exists a sequence {\,} C 0,(A™)
such that A\, converges to \g. Hence from {\,} C 0,(A™) C 0,(A) in (3.5.5)

it follows that Ay is a cluster point of 0,(A) and hence A\ € 0.(4). ]

Theorem 3.5.1. Suppose that m(0) # 0 and 4™ # 0. Let the set of initial
values {g1,- -+ , g1} satisfy the rank condition (3.5.3) be satisfied. Then

mmplies

Ao = AT, v=7", a(s) =a™(s). (3.5.13)
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Proof. By Proposition 3.5.1, it follows from (3.5.12) and the rank condition
(3.5.3) that
A=A"in PUZ,,, X€oy(A). (3.5.14)

Since m(0) # 0 and ¥™ # 0, by Lemma 3.5.2 the system of generalized

eigenspaces of A is projectively complete, i.e.,
Cl(span{P\"Z,, : A € 0,(AN)}) = Z,,. (3.5.15)

Then by the same argument as in the proof of Theorem 3 in Yamamoto and
Nakagiri [47], we can verify by (3.5.14) and (3.5.15) that D(A™) = D(A) and
AMg = Ag for any g € D(A™). By Lemma 3.4.2, this implies
0
Aog’ +7Aog' (—h) + / a(s)Aog' (s)ds
—h
0
AP ARG )+ [ (s) AT (5)ds (3.5.16)
—h

for all g = (¢°, g') € D(A™) For any ¢° € Wy"(Q) and € € (0,h), let g.(s)

be a function in Wh4(—h,0;W,*(€2)) such that

0
3.(0)=4¢° g(s)=0 if s€[-h,—¢, and / ge(s)[[1 pds < €.
—h

(3.5.17)
Then g¢.(s) € D(A™), and we apply this g. to (3.5.16) to have

0

(AT~ Ag)g = / (a(s) Ao — a™ (5) A)g. (s)ds. (3.5.18)

—h
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By using Hélder inequality, we have from (3.5.17) and (3.5.18) that
1(AG" = Ao)goll -1,

0 0
. .m m|q 1/‘1’ q 1/q
S NIEEERE O — R I ACT(RS

—h

§€||a(')A0 - a’m(‘)Agl||Lq/(—h7O;B(W01’p(Q),Wﬁlvp(Q))) _> 0 aS € _> 0,
so that A7'g" = Agg® in W=1P(Q) for any ¢° = WyP(Q). Hence A7 = Ay
follows. It follows from this and (3.5.16) that

(™ — 7) At (—h) = / (als) — a™(s)) Ag (5)ds, Vg = (¢°.g") € D(A™).

~h
(3.5.19)
For any f° € Wy*(Q) and e € (0, k), let f.be a function in Wh4(~h,0; W, (Q2))
such that

0
F) = £ Jufs) =0 Fs € (hrall [ (IE(llyds £ (3520
—h
Then (0, f.) € D(A™), and applying this to (3.5.19) and repeating similar
argument as above, we have
(7 = AT SO =0, VfO € WiH(Q). (3:5.21)
Applying (AZ)~! to (3.5.21), we obtain vy = ™. Finally, from (3.5.19),
applying (A7")~! and using the density argument, we have

/ (a(s) — a™(s))Al'g* (s)ds = 0 in W, P(Q), Vg' € Li(—h,0;W;7(Q)).

~h
(3.5.22)
This implies a(s) = a™(s) a.e. s € [—h,0]. O
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Remark 3.5.1. The rank condition (3.5.3) can be replaced by
rank((Fmgi,wgk) i1 kL dS) =dY, YA€ o, (A™),

{w%k ck=1,---,d}} is a basis of Ker(A— A7) and dim Ker(A— A) = dS (cf.
Corollary 1 in [47]).
3.6 example

We consider the following retarded functional differential equation of parabolic

type:

u(t,o 2u(t,z 2u(t—h,x 0 2u(t+s,x
i) — a3l 4 pTuEa 4 [0 a0 ()22t ds, | (1,2) € R x (0,7),

u(t,0) =u(t,m) =0, t>0
w(0,z) = ¢°(x), wu(s,z) =g'(s,x) ae. (s,2) € [h,0] x[0,7].

(3.6.1)
The initial data (¢°, ¢*) € H,, x L(—=h,0; WyP(0,7)), p,q# 2 are known,
where H), , is defined on the domain 2 = (0,7) Here, o # 0, § and a(s) are
unknown except that a; € L*(—h,0;C). Let Ay be the realization in H,, of

822 with Dirichlet boundary condition, that is,

the operator az—

2
Av= oty D(A) = {u € Hyg:u(t,0) = ult,7) = 0}

Then the eigenvalues and eigenfunctions of Agy are p, — an?® and e,(z) =

sin(nz), n=1,---, respectively. Let us define as

v=PB/a, a(s)=ai(s)/a se€[-h,0.
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Then the system (3.6.1) can be written in the same form as of (3.5.1) on the
space H,,. It is well known that {e, :, n = 1,---} is an orthogonal base
for H,,, and so {sin(nz), n = 1,---} is complete In H,,. Thus, we can
solve the inverse problem of the system (3.6.1) for parameters «, 3, and the
function a;(-) in the terminology of Theorem 3.5.1.

As an additional result in this case, we consider the system of generalized

eigenspaces of A as defined Lemma 3.4.2. The spectrum o(A) of A is given
by

o(A) = U Ons

where

o, ={AEC:A,(A) =A—n’(a+BeM+ /0 eMay(s)ds) =0}

as seen in [62, 58]. Hence, o(/A) is a countable set consisting entirely of
eigenvalues. Let {),;}32; be the set of roots of A, (A) =0(n=1,2,---) and
let k,;(in many cases e,; = 1) be the multiplicity of \,;. The generalized

eigenspaces Py .H, , corresponding to A,; € o(A) is given by
Span{exp(\,;s) sin(nz), - -+ , "L exp(\,;s) sin(nx)}. (3.6.2)

Since {sin(nz), n =1,---} is complete In H,,, from (3.6.2) and [2, Theorem
5.4] it follows the system of generalized eigenspaces of A is complete. In the
special case of the finite dimensional space, o(A) is a countable set consisting

entirely of eigenvalues. Noting that v # 0 and 0 # o(A), the completeness of
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the system of generalized eigenspaces of A is equivalent to KerF™* = {0} (see
Manitius [2]). If h and a; # 0 are known and the multiplicity d,; = 1 for all
nj and g' = (¢?,0) satisfies (¢?,sinnz) # 0, then «, 3, and a; in (3.6.1) are

identifiable in terminology of Section 5.
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Chapter 4

On fractional order retarded neutral
differential equations in Hilbert spaces

4.1 Introduction

Let H and V' be two complex Hilbert spaces such that V is a dense subspace
of H. In this paper, we study the existence of solutions and L>2-regularity for
the following fractional order retarded neutral functional differential equa-

tion:

{ Ll ()—I—g(t )] = Aoz (t) + [°, ar(s)Arz(t + s)ds + (Fx)(t) + k(t), t > 0,
z(0) = ¢, x(s) =¢%s), —h<s<0,
(NE)

where 1/2 < o < 1, h > 0, ay(-) is Holder continuous, k is a forcing term, and
g, f, are given functions satisfying some assumptions. Moreover, Ay : H — H
is unbounded but A; is bounded. For each s € [0, T, we define z, : [—h,0] —
H as x4(r) = x(s+r) for r € [-h,0] and (¢°, ¢*) € H x L*(—h,0;V).

This kind of systems arises in many practical mathematical models arising
in dynamic systems, economy, physics, biological and engineering problems,
etc. (see [43, 67, 13, 41]). There has been a significant development in
fractional differential equations in recent years, see [[53, 1, 66, 23]] and the

references therein.
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In [68, 11, 12], the authors have discussed the existence of solutions for
mild solutions for the neutral differential systems with state-dependence de-
lay. Most studies about the neutral initial value problems governed by re-
tarded semilinear parabolic equation have been devoted to the control prob-
lems. As for the retarded differential equations, Jeong et al [25, 31], Suka-
vanam et al. [49], and Wang [44], have discussed the regularity of solutions
and controllability of the semilinear retarded systems, and see [25, 31, 49, 44|
and references therein for the linear retarded systems.

Recently, the existence of mild solutions for fractional neutral evolution
equations has been studied in [51, 1], the existence of solutions of inhomo-
geneous fractional diffusion equations with a forcing function in Baeumer et
al. [5], and the existence and approximation of solutions to fractional evo-
lution equation in Muslim [46]. In addition, Sukavanam et al.[50] studied
approximate controllability of fractional order semilinear delay systems.

In this paper, we propose a different approach of the earlier works used
properties of the relative compactness. Our approach is that regularity re-
sults of general retarded linear systems of Di Blasio et al. [17] and semilinear
systems of [31] remain valid under the above formulation of fractional or-
der retarded neutral differential system (NE) even though the system (NE)
contains unbounded principal operators, delay term, and local Lipschitz con-
tinuity of the nonlinear term. The methods of the functional analysis con-
cerning an analytic semigroup of operators and some fixed point theorems
are applied effectively.

The paper is organized as follows. In Section 2, we deal with properties of

the analytic semigroup constructing the strict solution of the corresponding
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linear systems excluded by the nonlinear term and introduce basic properties.
In Section 3, by using properties of the strict solutions in dealt in Section
2, we will obtain the L2-regularity of solutions of (NE), and a variation of
constant formula of solutions of (NE). Finally, we also give an example to

illustrate the applications of the abstract results.

4.2 Preliminaries and Lemmas

Let H and V be two Hilbert spaces such that 1 is a dense subspace of H.
The norm of H(resp. V') is denoted by |-| (resp. ||-||) and the corresponding
scalar product by (-, ) (resp.((+,))). Assume that the injection of V into H
is continuous. The antidual of V' is denoted by V*, and the norm of V* by
|| - ||*. Identifying H with its antidual we can assume that H is embedded
in V*. Hence we have V. C H C V* densely and continuously. The duality
pairing between the element v; of V* and the element v, of V' is denoted by
(v1,v9), which is the ordinary inner product in H if vy, vy € H.

For [ € V* we denote ([, v) by the value [(v) of { at v € V. The norm of

[ as element of V* is given by

11, = sup 12
AT

Therefore, we assume that V' has a stronger topology than H and ,for brevity,
we may consider

ull. < Jul < [Jull, ueV. (12.1)
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Let a(-,-) be a bounded sesquilinear form defined in V' x V' and satistying

Garding’s inequality

Re a(u,u) > col|ul|* — cilul®, ¢ >0, ¢ >0.

Let Ay be the operator associated with the sesquilinear form —a(-, -):

((c1 — Aog)u,v) = —a(u,v), u, veV.
It follows from (4.2.2) that for every u € V

Re (Aou, u) > col|ul|*.

(4.2.2)

Then A is a bounded linear operator from V to V* according to the Lax-

Milgram theorem, and its realization in H which is the restriction of A

to
D(Ay) ={ueV;Aue H}

is also denoted by Ag. Then A, generates an analytic semigroup S(t) = e

tAg

in both H and V* as in Theorem 3.6.1 of [20]. Moreover, there exists a

constant Cy such that
712
llul| < Collul [ ¢4 ul*?,
for every u € D(Ay), where
lullpeag) = (|Aoul? + |uf?)?

is the graph norm of D(Aj). Thus we have the following sequence

D(Ay) CVCHCV*C D(Ay)",

where each space is dense in the next one and continuous injection.
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Lemma 4.2.1. With the notations (4.2.1), (4.2.3), we have
V.V )122 = H,

(D(Ao), H)1j22 =V,

where (V,V*)1 /22 denotes the real interpolation space between V' and V* (Section

1.3.3 of [22)).

If X is a Banach space and 1 < p < oo, LP(0,T'; X) is the collection of all
strongly measurable functions from (0,7") into X the p-th powers of norms
are integrable. £(X,Y) is the collection of all bounded linear operators from
X into Y, and L£(X, X) is simply written as £(X).

For the sake of simplicity we assume that the semigroup S(¢) generated

by Ag is uniformly bounded, that is, There exists a constant M, such that

My

ISOlleany < Mo, [[A0S(@)]lem < == (4.2.4)

The following lemma is from [20, Lemma 3.6.2|.

Lemma 4.2.2. There exists a constant My such that the following inequali-

ties hold:

SO ey < 72 M, (4.2.5)
1S |-y < £ M, (4.2.6)
A0S ()| ey < =32 M. (4.2.7)
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The following initial value problem for the abstract linear parabolic equa-

tion

{ G = At + Lo At +9)ds + k), 0<t<T, o

2(0) = ¢°,  x(s) = ¢'(s) s € [~h,0).

Then the mild solution z(t) is represented by

0

z(t) =S(t)¢" —l—/o S(t— 8)/ ar(T)A1z(s + 7)drds

+ /t S(t —s)k(s)ds,
r(0) =¢° z(s)i= #'(s) s'€[=h,0).

By virtue of Theorem 2.1 of [29] or [17], we have the following result on

the corresponding linear equation of (4.2.8).

Lemma 4.2.3. (1) For (¢°,¢') € V x L*(—h,0; D(Ap)) and k € L*(0,T; H),

T > 0, there exists a unique solution x of (4.2.8) belonging to
L*(0,T; D(Ay)) N WH(0,T; H) € C([0, T]; V)
and satisfying

||| L20,7: D (a0 w2 0,150 < CL|D°|] + 110 | L2(—h0sp(a0)) + Kl L20m:m0))
(4.2.9)

where C 1s a constant depending on T and
"x"L2(O,T;D(Ao))ﬂWL?(O,T;H) = maX{Hlme(o,T;D(Ao)), HJTHWL?(O,T;H)}
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(2) Let (¢°,¢') € H x L*(—h,0;V) and k € L*(0,T;V*), T > 0. Then

there ezists a unique solution x of (4.2.8) belonging to
L*(0,T; V)N W0, T;V*) c C([0,T]; H)
and satisfying

]| 2207y w20, < Ci(|6°] + |0 2 novy + |1kl z20.7v+)), (4.2.10)
where Cy is a constant depending on T.

Let the solution spaces W(T') and W, (T') of strong solutions be defined
by
W(T) = L*(0,T; D(Ao)) NW™(0, T H),

Wi(T) = L*(0,T; V) N WH2(0, T; V*).
Here, we note that by using interpolation theory, we have
W(T) c C([0,T]; V), WA(T) c C([0,T]; H):
Thus, there exists a constant ¢; > 0 such that
l|zllcqomvy < allzllway,  zlleqomm < ellzllw, @) (4.2.11)

In what follows in this section, we assume ¢; = 0 in (4.2.2) without any
loss of generality. So we have that 0 € p(Ap) and the closed half plane
{\ : ReX > 0} is contained in the resolvent set of Ag. In this case, it is
possible to define the fractional power A§ for a > 0. The subspace D(A) is

dense in H and the expression
lzlla = |AG=]l, 2 € D(AP)
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defines a norm on D(A). It is also well known that A§ is a closed operator

with its domain dense and D(AS) D D(AL) for 0 < o < . Due to the well
known fact that A;” is a bounded operator, we can assume that there is a

constant C_, > 0 such that
A |y < Cas (A vy < Cea (4.2.12)

Lemma 4.2.4. For any T > 0, there exists a positive constant C,, such that

the following inequalities hold for all t > 0:

o COé o Ca
1485 Ollzan = -5 AGSO ey < 255 (4.2.13)

Proof. The relation is from the inequalities (4.2.6) and (4.2.7) by properties
of fractional power of Ay and the definition of S(t). O

4.3 Existence of solutions

Consider the following fractional order retarded neutral differential system:

{ D12 (t) + g(t,2,)] = Ao () + [0, an(s) Azt + 5)ds + (Fa)(t) + k(t), t > 0,
z(0) =¢", z(s) =0o'(s), —h<s<0,
(4.3.1)

where 0 < o < 1 and A;(: = 0,1) are the linear operators defined as in

Section 2. For each s € [0, 7T, we define x4 : [—h,0] — H as
zs(r)=az(s+r), —h<r<ao.

We will set
II= LQ(—h,O; V).
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Definition 4.3.1. The fractional integral of order o > 0 with the lower limit

0 from a function f is defined as

iy L[S
If(t)F(&)/0 (t—s)l—ad’ t>0,

provided the right hand side is pointwise defined on [0,00), I is the Gamma
function.
The fractional derivative of order a« > 0 in the Caputo sense with the

lower limit O from a function f € C"[0,00) is defined as

d*f(t) 1 /t FO(s) :
dte I'(n—a)f, (t—s)ten ) f(#), t>0,n-l<a<n

For the basic results about fractional integrals and fractional derivative, one

can refer to [23].

The mild solution of the system (4.3.1) is represented as (see [51, 71]):

w(t) = S(1)[¢" + g(0,0")] — glt. @) + ﬁ/ﬂ (t— ) VAS(t — 5)g(s, x,)ds

- t —s)e gt — OalT 1x(s +7)dr x)(s s)Yds.
+F(a)/0(t g ){/h (r)Ava(s + 7)dr + (F ><>+k(< )}d)
4.3.2

To establish our results, we introduce the following assumptions on system
(4.3.1).

Assumption (A). We assume that a,(-) is Holder continuous of order p:
a1 (0)] < Hy,  ai(s) = ai(7)| < Hi(s —7)".

51



Assumption (F1). F isanonlinear mapping of L*(0,T; V) into L*(0,T; H)

satisfying following:
(i) There exists a function Ly : R. — R such that
1Fx = Fyll2omm) < Le(r)llz = yllomvy, ¢ €[0,T]
hold for ||z||z2(0,rv) < 7 and ||y| 2070y < 7.
(ii) The inequality
[Pl z2mm) < Le(r)(lll 2 +1)
holds for every ¢ € [0,7] and ||z||r20,13v) < 7-

Assumption (G). Let g:[0,7] x Il — H be a nonlinear mapping such

that there exists a constant L, satisfying the following conditions hold:
(i) For any z € II, the mapping ¢(:, x) is strongly measurable;

(ii) There exists a positive constant 5 > 1 — 2a/3 such that
[APg(t,0)] < Ly,  |A"g(t,x) = APg(t, 2)| < Lyllw — &[|n,

for all t € [0, 7], and z,z € I1.

Lemma 4.3.1. Let v € L*(—=h,T;V). Then the mapping s — x, belongs to
C([0, T];T1), and

el ln < ]| 2(—n,e0) (¢ > 0), (4.3.3)
2|20 < VT2 2 hvy- (4.3.4)
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Proof. The first paragraph is easy to verify. Moreover, we have

0 t
leclin = [ [ llats + niPar] < [ lla@IFar] ™ < lallisniny. >0,
h

and

T T 0
([ / . [2ds < / / lla(s +1)lrds

T T
< / s / e < TlelfEsr

O]

One of the main useful tools in the proof of existence theorems for non-

linear functional equations is the following fixed point theorem.

Lemma 4.3.2. (See [{5]) Suppose that ¥ is a closed convex subset of a
Banach space X . Assume that K1 and Ky are mappings from 3 into X such

that the following conditions are satisfied:
(1) (K + K)(X) CX,
(ii) Ky is a completely continuous mapping,
(111) Ky is a contraction mapping.
Then the operator K1 + Ky has a fized point in 3.

From now on, we establish the following results on the solvability of the

equation (4.3.1).
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Theorem 4.3.1. Let Assumptions (A), (F1) and (G) be satisfied. Assume
that (¢°,¢') € H x 11 and k € L*(0,T;V*) for T > 0. Then, there exists a
solution x of the system (4.5.1) such that

x € Wi(T) = L*(0,T; V)N W0, T;V*) — C([0,T); H).

Moreover, there is a constant Cy independent of the initial data (¢°, ¢') and

the forcing term k such that
2|2 n vy < Co1 +16°] + [0 ln + 1l 20.m0))- (4.3.5)
Proof. Let
ri=2[Cile"| + CLCgLy(|l6']] + 1)),

and

N :=C_sLy (61 + |2l 0mavy + 1)

C1(2a)~12(2a — 1)71/2
I'(a)

x (1% + 1o e2nony # L)l s2movy + 1) + [kl z2073))
leﬁLg
+ 1/2
(=3(1-8)/2)(2a+38—2)""I'(a)

(16"l + llzll 27y + 1),

where C} is the constants in Lemma 4.2.3 and § > 1 — 2/3 in Assumption

(G). Let
TY = max{T;/?, T2 T3-2/2y

and choose 0 < 717 < T such that

TYN < 5 = [Ci]¢"| + CLC-sLy (I + 1)], (4.3.6)

N =3
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and
Ci_gly

(0 —3(1—8)/2) (2 +38 — 2)/*T(a)

C1(2a) 22 — 1) V2L (1
| G b P,

N :=T7{C_gL, + (4.3.7)

< 1.
Let J be the operator on L?*(0,7Ty; V) defined by

(Ja)(t) = S(1)[¢" + g(0, )] — g(t, ) + ﬁ/o (t =)@ VAS(t — 5)g(s, x,)ds

+ = /0 (t — s)(a_l)S(t — s){ /_h a1 (1) Arz(s + 7)dr 4+ (Fz)(s) + k(s) }ds.

E,n = {fL' (- Z . ||m||L2(0,T1;V) S 7"},
which is a bounded closed subset of L(0, Ty; V).

Now, in order to show that the operator J has a fixed point in X, C

L?(0,T1; V), we take the following steps according to the process of Lemma

4.3.2.
Step 1. J maps Y, into ).

By (4.2.10), (4.2.12) and Assumption (G), and noting ¢ = ¢!, we know
||S(')g(07$0)||L2(0,T1;V) = Cl|g<07 ¢1)| (4.3.8)

= Col| AP 2 (|A%g(0, 8") — A%g(0,0)] + |A%g(0,0)))
< C10_gLy(||¢" | + 1).
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From (4.2.10) of Lemma 4.2.3 it follows

1Sl 200 < Chl@°), (4.3.9)
and by using Holder inquality
t 0
/ (t—s)*7 Y| St — 5){ / ar(T)Arz(s + 7)d7 + (F)(s) + k(s) }||ds
0 —h
(4.3.10)

< (20 = )72 DEC (160 + 10 2 cnowvy + 1F 2] 20007 + K| 20074))-
Define the operator I; from L?(0,T}; V) to itself by

(Liz)(t) = %04)/0 (t—s)"‘_ls(t—s){/_h a1 (7) Az (s+7)dT+(Fx)(s)+k(s) }ds.

Then according to (4.3.10) we obtain the following inequality

C1(20)7Y%(2a — 1) TV2T2
Ml S e T o oy (4310

+ L)zl 2 omwy + 1) + [kl omivn)-
By using Assumption (G) and Lemma 4.3.1, we have

T
g 2|2 020y = (/ | A2 A%g(t, )| *at)'"? (4.3.12)
0

T
scﬂéuﬂm@WmmsomMmWM+w

< C,ng\/ T1(||¢1||H + ||~T||L2(O,TI;V) + 1)'

Here, we note

el < ll2llz2nwy < [0+ ll2llz20mi)- (4.3.13)
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Again we define the operator I, from L?(0,Ty; V) to itself by

1 t
Lx)(t :—/ t—s) @ VAS(t — $)g(s, x,)ds.
(Io2)(1) F(a)o( ) (t = s)g(s, )
From Lemma 4.2.4 and Assumption (G) we have
1(t = 5 DAS(E - 5)g(s, )| = (¢ — )@V AIS(t = )| A g(s, )

Ci_p 5
< — 5)1—a+3(1_5)/2‘A (9(s, )]

Ci_p
= (t — 5)l-o+3(1=6)/2 Lg(||¢1’|n + H$HL2(0,T1;V) +1),

and hence, by using Hélder inequality and Assumption (G),

[T [/Tl HL/t(t—s)(a—l)AS(t—s) (s, ) ds| 2]
2 L2(0,11;V) 0 F(Od) 0 g\s, Ty

(4.3.14)

1 1 T t 1 ) 12
< i CroaLolle It el zaman 1] / ( / )

Cl_/ngT1(2a+3ﬁ_2)/2
<
" (a=3(1—-8)/2) (20 +38—2)"*I(a)

(o1 + ]| z20.105v) + 1)
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Thus, from (4.3.8)-(4.3.14) it follows that

172|201y SCLI"| + CLCs Ly (|61 + 1)

+Cop LoV Ta (19 I + |2l 2023:v) + 1)

C1(2a)~ Y2 (200 — 1)~ 12T
I'(a)

x ([0°| + 110 2(—nopvy + Le(r) (@] 20,10y + 1) + 1kl L2 0,1v)

Crrt- T(2a+3,8—2)/2
+
(=3(1=0)/2)(20.+38 — 2)

1 ) 1)
s (e[l + |/l 20,7137 + 1),
I(a)

-

<Cy|¢0] + GO gLy (|6 + D + TIN < = NS

Therefore, J maps Y, into X,.
Define mapping K; + K, on L?(0,Ty; V) by the formula

(Jz)(t) = (Kiz)(t) + (Ka2)(1),

where

(Krz)(t) = 1%) /0 (t = 5Dt =3) /O Car(r — 8) Ava(r)drds,

and

(Kax)(t) = S(t)[¢° + 9(0,20)] — g(t,20) + ﬁ /0 (t— ) VAS(t — 5)g(s, x)ds
L t (1) a(t—s T $)Vds
+F(a)/0(t s)S( {/ 1(7 = 8) A1 (7)dT + F(x)(s) + k(s)}ds.

Step 2. K, is a completely continuous mapping.
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We can now employ Lemma 4.3.2 with X,.. Assume that a sequence
{x,} of L?(0,T}; V) converges weakly to an element z, € L*(0,71;V), i.e.,

w — lim,, o0 T, = Too. Then we will show that

lim HK1$” - leoo||L2(0,T1;V) = O, (4315)

n—oo

which is equivalent to the completely continuity of K since L*(0,T;V)
is reflexive. For a fixed t € [0,T}], let zj(z) = (Kix)(t) for every x €
L*(0,T1; V). Then x; € L2(0,Ty;V*) and we have lim,, o, ¥} (x,) = 2} (2)

since w — lim,,_o ,, = Ts. Hence,

lim (K2,)(t) = (Ki7re)(t), t € [0,T1].

n—oo
By using Hoélder inequality, we obtain easily the following inequality:

| /0S a1 (7 — s)Arx(r)dr| = | /Os<a1(7' —5) — a1(0) + a1(0)) Arz(7)dr|

(4.3.16)
< {(Co+ ) sl e ( [t
Thus, by (4.2.5) and (4.3.16) it holds
()l = s [ (=10 =) [ e = o) ua(rraras|

|| Al el 2 vy [ 1 “1_(2p41)/2
< SRR | [ S (o )7 |

Hi[| Al el || 220,60

= ') {2p+1)7'B(1/2+a,(2p+3)/2)t"* + B(1/2 + a,3/2)t}.

= Cz||517||L2(0,t;V)7
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where ¢, is a constant and B(-,-) is the Beta function, that is,
t

B(1/2 +a, (2p + 3)/2)t" T = / (t — 8)V25@pHD 2
0

And we know
sup ||(K12)(8)]] < eof|z]|z20,m,v) < 00
0<t<Ty

Therefore, by Lebesgue’s dominated convergence theorem it holds

i ([ ) OFd) = ([ l[(Kize)0)]dt).

ie., imy, oo [|K1Zal|r2001:v) = K10l lL2(0,m;v)- Since L?(0,T1;V) is a re-

flexive space, it holds (4.3.15).

Step 3. K, is a contraction mapping.

For every z; and x5 € X,., we have

(KQxl)(t) - <K2332)(t) :g(t>x2t) - g(taxlt)
1 ¢ ol
¥ / (t = )" AS(f = 8)(g(t, 21,) — glt, v2,))ds

# g [ (6= 98 = )P () (s) — Flaa)()}ds

By the similar way to (4.3.8)-(4.3.14), we have
Cl_ﬁLng(Qa+3ﬂ—2)/2

|| K21 — Koo | 20,m:v) <{C-sLgV/T1 +

(0 —3(1—8)/2) (20 + 38 — 2)/*T(a)
C1(20) 72200 — 1) V2L (r) T
(@) }||ﬂ71 - $2||L2(0,T1;V)

§N||$1 — Za|| 200,111y
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So by virtue of the condition (4.3.7) the contraction mapping principle gives
that the solution of (4.3.1) exists uniquely in L*(0,71; V). This has proved

the local existence and uniqueness of the solution of (4.3.1).

Step 4. We drive a priori estimate of the solution.

To prove the global existence, we establish a variation of constant formula
(4.3.5) of solution of (4.3.1). Let = be a solution of (4.3.1) and ¢° € H. Then
we have that from (4.3.8)-(4.3.14) it follows that

]| 200137y <C1ld°| + CrC_sLy(||¢ || + 1)

+C_sLe VT (16|l + ||zl 2201wy +1)

C1(20) 320 — 1)1/ 208
I'(a)

X (10°] + o' | z2=nonry + L @) (|2l 220,110y + 1) + |kl r20,1350))

r h e 4
(e —3(1 — B)/2) (2ai+ 38 — 2)*I'(«)

(N [l + |zl 220,715 + 1),
=N||z/[ 20,y + Ni.,

where N is the constant of (4.3.7) and
V., — 0 1 1
Ny =C1|¢°] + CLC_sLy (|6 |l + 1) + C_p Ly /T1 (|16 + 1)

C1(2a)7V2(2a — 1)712T¢
@) = (16° + 110 | L2=nowy + L(r)) + 11kl 20,130+

Cl,[gL T(2a+3,872)/2
+ o 1/2
(@=3(1—-8)/2)(2a+38—2)""I'(a)

(llg" [ +1).
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Taking into account (4.3.7) there exists a constant Cy such that
2] 2201y (1= N)™' Ny (4.3.17)
<Co(1+ (6" + 110 + 1Kl 20,0)),
which obtain the inequality (4.3.5).
Now we will prove that |z(77)| < oo in order that the solution can be

extended to the interval [T1,27)]. From (4.2.11) and Lemma 4.2.3 it follows
that

1S(T1)[¢° + g(0,0)]| < 1[S()[0° + g(0, 20)||wr () (4.3.18)
< aCil¢’ +9(0,¢)]
< aC {[6°|+ CopLy(ll¢'Iln+ 1)} i= 1,
and by using Assumption (G) we have
9(T1, 20,)| < ||ATPAPg(t, 2y, (4.3.19)
< CogLy(|lory|ln+ 1)
< CsLy(10' I + lelz2my +1) =11

By (4.3.10), we have

(L) (T1)] (4.3.20)

1 Ty a—1 . Oa R » .
Sm”/o (Th —s)* S(Tx ){/_h [(7) Ava(s + 7)dr + (F)(s) + k(s) Yds|
< (2a — 1)7Y20 ()7l e/

x C1(16°] + 110" 2 -nowy + Ly(r) (|2l 20,1y + 1) + [kl |20, 1v+) := TTT
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From Lemma 4.2.4 and Assumption (G) we have
(Ty — )@ VAS(T1 — s)g(s,2,)| <
= (T1 — )" VAPS(T = 5)| e | A7 (95, )|

< Cis
- (T1 _ S)l*OH*

(1,,3) ’A,B(g(sa .Ts)’

Ch-
< Wu(llqﬂ\ln + 2l 2oz + 1),
and so
1 T
|(Loz)(Th)| = ‘m/ (Ty — s) @ DAS(Ty = s)g(s,x,)ds| (4.3.21)
0

— i 5
< Crgla+8-1) " Ly(lloMn +ll2llzomivy +1):= V.

Thus,by (4.3.17)-(4.3.21) we have
|z(Th)| = |S(T1)[¢° + 9(0, m0)] — g(T1, xq,) + (L) (T1) + (Lox)(T1)|

<ITHIT+IIT+ 1V < o0o.

Hence we can solve the equation in [}, 27}] with the initial (z(7}), z7,) and
an analogous estimate to (4.3.4). Since the condition (4.3.6) is independent
of initial values, the solution can be extended to the interval [0, nT}] for any

natural number n, and so the proof is complete. O

Remark 4.3.1. Thanks for Lemma 4.2.3, we note that the solution of (4.3.1)
under conditions of Theorem 4.3.1 with (¢°;¢') € V x L*(0,T; D(A)) and
ke L?(0,T; H) for T > 0 belongs to

W(T) = L*(0,T; D(A))) N W0, T; H) — C([0,T]; V).
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Moreover, there is a constant Cy independent of the initial data (¢°, ¢') and

the forcing term k such that

2| 2—nripcay < Ca(L+ 1011 + 16 20,5004y + 1kl L2007 )-

Now, we obtain that the solution mapping is Lipschitz continuous in
the following result, which is useful for the control problem and physical

applications of the given equation.

Theorem 4.3.2. Let Assumptions (A), (F1) and (G) be satisfied. Assuming
that the initial data (¢°,¢') € H x 11 and the forcing term k € M?(0,T;V*).
Then the solution = of the equation (4.8.1) belongs to v € L*(0,T;V) and

the mapping
H x I x L*(0,T;V*) 3 (¢° ¢", k) = z € L*(0,T;V) (4.3.22)
18 Lipschitz continuous.

Proof. From Theorem 4.3.1, it follows that if (¢°, ¢', k) € L*(Q, H) x II x
M?(0,T;V*) then z belongs to M*(0,T;V). Let (¢?,¢;,k;) and z* be the
solution of (4.3.1) with (¢?, ¢}, k;) in place of (¢° @', k) for i = 1, 2. Let
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x;(i =1,2) € X,. Then it holds
wl(t) — 2*(t) = S(O[(d) — d2) + (9(0, ) — (0, 27))]

~(att.) = glt.2) + s [ 0= AS( = s)g(s,a) ~ gt D)
s t —5) VSt s OCLT a2t (s + 1) — 2*(s + 7))drds
+F(a)/o(t Jes >{/h (1) A (2! (s +7) — 2*(s + 7))drd

L t —s)le =S 2D (s) — (Fz?)(s s) — ko(s s
+p(a)/0(t ) OTVS(t — s){((Fa')(s) — (Fa®)(s)) + (k1(s) — ka(s))}ds.

1 t
—— | (=) @TVS(t — 8)(ki(s) — ka(s))d
g | = IS ) () — k(s
Hence, by applying the same argument as in the proof of Theorem 4.3.1, we
have

||z1 — @2l lp2o, vy SN |#1 = @allr20mv) + Ve,
where
Ny =C1|¢} = 65| +# C1C-aLy(||91 = 3lIn) + C—aly v/ T |61 — b3l

C1(20) Y220 = 1)V 2TY
I(e)

x (16 — &5 + 161 — dall 2oy + k1 — kallL20iv+)

Cl_ﬁLng(QOH—Bﬁ_Q)/Z

+ 161 = &slln
(a —3(1 - 8)/2) (20 + 38 - 2)*I'(a)
which implies
] |20,y <Na(1— N)7
Therefore, it implies the inequality (4.3.22). ]
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Corollary 4.3.1. For a forcing term k € L*(0,T;V*) let x} be the solution
of equation (4.3.1). Let us assume that the embedding V' C H is compact.
Then the mapping k — xy, is compact from L*(0,T;V*) to L*(0,T; H).

Proof. If k € L*(0,T;V*), then in view of Theorem 4.3.1

Nzl lwiery < Cs(1+19° + 119 | r2noivy + |l 2200,7:v+))-

Hence if k is bounded in L2(0, T'; V*), then so is xy, in L*(0,T; V))NW12(0, T; V*).
Since V' is compactly embedded in H by assumption, the embedding

L*0,T; V)N W (0, T;V*) — L2(0,T; H)

is compact in view of Theorem 2 of J. P. Aubin [32]. O

4.4 example

Let
H= [A0,7), V = H}0,7), V*=H7L0,).

Consider the following retarded neutral stochastic differential system in Hilbert
space H:
ale(t,y) + gt w(t, )] = Ax(t,y) + [2, ar(s) Are(t + 5, y)ds
+ ()Pt y) +k(ty), (ty) €[0,T] x [0, 7],

2(0,y) = ¢°(y).  x(s.y) = ¢'(s,y), (s.9) € [~h,0) x [0, 7],
(4.4.1)

where h > 0, a(-) is Holder continuous, and A; € L(H). Let

_ [T du(y) dv(y)
a(u,v)—/o B dy dy.




Then
A=0%/0y* with D(A)={x € H*0,7):2(0) =z(r) =0}.

The eigenvalue and the eigenfunction of A are A\, = —n? and z,(y) =
(2/7)'/% sin ny, respectively. Moreover,
(al) {z,:n € N} is an orthogonal basis of H and
S(t)z = Ze“zt(x, Zn)zay V€ H, t>0.
=1

Moreover, there exists a constant My such that [|S(Z)|| 2y < Mo.

(a2) Let 0 < a < 1. Then the fractional power A® : D(A%) C H — H of

A is given by
A = Zn%‘(x, Zn)2ny D(A%) .= {z: A%z €'H}.
n=1

In particular,
o0

1
A2 =N 2w, 2) 2, d [|[A~V2]] = 1.
x Zn(:r,z%z, and || |

n=1

The nonlinear mapping f is a real valued function belong to C*(]0, 00)) which

satisfies the conditions

(f1) f(0) =0, f(r) >0 for r > 0,

(£2) |f (r) < clr+1) and |gf"(r)] < ¢ for r > 0 and ¢ > 0.
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If we present

F(t,a(t,y) = f (lo(t.y))z(ty),
Then it is well known that F'is a locally Lipschitz continuous mapping from
the whole V into H by Sobolev’s imbedding theorem (see [20, Theorem
6.1.6]). As an example of ¢ in the above, we can choose q(r) = p?r + n*r?/2

(e and 7 is constants).

Define g : [0,7] x I — H as

0
—h

© st
g(t,x,) = Z/ e"gt(/ as(s)x(t + s)ds, zp)zn, .t > 0.
i —il 0

Then it can be checked that Assumption (G) is satisfied. Indeed, for x € II,

we know

Ag(t, z) = (8() ~ T) / o),

—h

where [ is the identity operator form H to itself and
|a2(0)] < Hy, ag(s) = ax(7)| < Hy(s =7)% s, 7 € [=h, 0]
for a constant k > 0. Hence we have
0 0
[Ag(t, 20| <o+ D] [ (0a() ~ ax(@att + s)ar| + | [ aa0)att + 5)ar])
—h —h
S(M() + 1)HQ{(2I€ + 1)—1h2p+1 + h}||xt||n

It is immediately seen that Assumption (G) has been satisfied. Thus, all
the conditions stated in Theorem 4.3.1 have been satisfied for the equa-
tion (4.4.1), and so there exists a solution of (4.4.1) belongs to Wi (T') =
L*(0,T;V))nWh2(0,T; V*) — C([0,T]; H).

68



Chapter 5
Control problems for semilinear neutral

differential equations in Hilbert spaces

5.1 Introduction

Let H and V' be real Hilbert spaces such that V is a dense subspace in H.
Let U be a Banach space of control variables. In this paper, we are concerned
with the global existence of solution and the approximate controllability for
the following abstract neutral functional differential system in a Hilbert space

H:

{ @)+ (Br)(t)] = Au(t) + (&, 2(t) + (Cu)(t), t€(0,T), (CE)
2(0) = zo,. (Bx)(0) = yo,

where A is an operator associated with a sesquilinear form on V' x V sat-
isfying Garding’s inequality, f is a nonlinear mapping of [0,7] x V into H
satisfying the local Lipschitz continuity, B : L*(0,T;V) — L*(0,T; H) and
C: L*0,T;U) — L*(0,T; H) are appropriate bounded linear mapping.

This kind of equations arises in population dynamics, in heat conduction
in material with memory and in control systems with hereditary feed back
control governed by an integro-differential law.

Recently, the existence of solutions for mild solutions for neutral differen-

tial equations with state-dependence delay has been studied in the literature
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in [11, 12]. As for partial neutral integro-differential equations, we refer to
[58-61]. The controllability for neutral equations has been studied by many
authors, for example, local controllability of neutral functional differential
systems with unbounded delay in [68], neutral evolution integrodifferential
systems with state dependent delay in [69, 7] , impulsive neutral functional
evolution integrodifferential systems with infinite delay in [6], and second
order neutral impulsive integrodifferential systems in [8, 14|. However there
are few papers treating the regularity and controllability for the systems with
local Lipschipz continuity, we can just find a recent article Wang [44] in case
semilinear systems. Similar considerations of semilinear systems have been
dealt with in many references [40],[67-69] .

In this paper, we propose a different approach of the earlier works (briefly
introduced in [41,42],[58-61] about the mild solutions of neutral differential
equations). Our approach is that results of the linear cases of Di Blasio et
al. [17] and semilinear cases of [31] on the L?-regularity remain valid under
the above formulation of the neutral differential equation (CE). For the ba-
sic of our study, the existence of local solutions of (CE) are established in
L0, T; V)N W2(0,T;V*) — C([0,T]; H) for some T > 0 by using frac-
tional power of operators and Sadvoskii’s fixed point theorem. Thereafter,
by showing some variational of constant formula of solutions, we will obtain
the global existence of solutions of (CE), and the norm estimate of a solution
of (CE) on the solution space. Consequently, in view of the properties of the
nonlinear term, we can take advantage of the fact that the solution mapping

u € L*(0,T;U) ~ x is Lipschitz continuous, which is applicable for control
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problems and the optimal control problem of systems governed by nonlinear
properties.

The second purpose of this paper is to study the approximate controlla-
bility for the neutral equation (CE) based on the regularity for (CE), namely
that the reachable set of trajectories is a dense subset of H. This kind of

equations arise naturally in biology, in physics, control engineering problem,
etc.

The paper is organized as follows. In section 2, we introduce some nota-
tions. In section 3, the regularity results of general linear evolution equations
besides fractional power of operators and some relations of operator spaces
are stated. In section 4, we will obtain the regularity for neutral functional
differential (CE) with nonlinear terms satisfying local Lipschitz continuity.
The approach used here is similar to that developed in [31, 44] on the gen-
eral semilnear evolution equations, which is an important role to extend the
theory of practical nonlinear partial differential equations. Thereafter, we
investigate the approximate controllability for the problem (CE) in Section
5. Our purpose in this paper is to obtain the existence of solutions and the
approximate controllability for neutral functional differential control systems
without using many of the strong restrictions considering in the previous lit-

erature.

Finally, we give a simple example to which our main result can be applied.

71



5.2 Regularity for linear equations

Let a(-,-) be a bounded sesquilinear form defined in V' x V' and satisfying

Garding’s inequality with ¢; = 0 in (4.2.2)
Re a(u,u) > col|ul|?, ¢ > 0. (5.2.1)
Let A be the operator associated with this sesquilinear form:
(Auvi=eloyv), s u,v-€V.
Then the operator A is mentioned in Section 2 of Chapter 4.

Lemma 5.2.1. Let S(t) be the semigroup generated by —A. Then there exists

a constant M such that
S@1< M, Nls@ll. < M.

For allt > 0 and every x € H or V* there exists a constant M > 0 such that

the following inequalities hold:
[S()z] < Mt 2]zl |[SE)z]] < Mt7V2|x].
By virtue of (5.2.1), we have that 0 € p(A) and the closed half plane

{A : ReX > 0} is contained in the resolvent set of A. In this case, there

exists a neighborhood U of 0 such that

p(A) D {\: |arg\| > w} UU.
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Hence, we can choose a the path I” runs in the resolvent set of A from ooe®

to coe ™, w < 0 < 7, avoiding the negative axis. For each a > 0, we put

1
A = — [ A (A— N,

211 r

where A™% is chosen to be for A > 0. By assumption, A~* is a bounded

operator. So we can assume that there is a constant My > 0 such that
A7 | gy < Mo, [|[AT| vy < Mo. (5.2.2)

For each o > 0, we define an operator A% as follows:

14 (A=)~ | foria > 0,
¥ for a = 0.

The subspace D(A®) is dense in H and the expression
zlla = [|A%2[], = € D(A%)
defines a norm on D(A?).
Lemma 5.2.2. (a) A% is a closed operator with its domain dense.

(b) If 0 < o < 3, then D(A%) D D(AP).

(¢c) For any T > 0, there exists a positive constant C,, such that the follow-

ing inequalities hold for all t > 0:

Ca C

[A*S @O een < 750 NA"S@lewv) < 7275 - (5.2.3)
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Proof. From [20, Lemma 3.6.2] it follows that there exists a positive

constant C' such that the following inequalities hold for all £ > 0 and every
xr € Hor V"

C C
[AS(t)z] < —lal,  [[AS(t)]] <

m|x’7

which implies (5.2.3) by properties of fractional power of A. For more details

about the above lemma, we refer to [20, 3. 0

First of all, consider the following linear system

{ z'(t) + Az(t) = k(1) (5.2.4)

g(0) =00,

By virtue of Theorem 3.3 of [38](or Theorem 3.1 of [33], [20]), we have

the following result on the corresponding linear equation of (5.2.4).

Lemma 5.2.3. Suppose that the assumptions for the principal operator A
stated above are satisfied. Then the following properties hold:
1) For xg € V = (D(A), H)1/s2(see Lemma 5.2.1) and k € L*(0,T; H), T >
0, there exists a unique solution x of (5.2.4) belonging to W(T')  C([0,T];V)
and satisfying

zllwer) < Ci(llzol| + [|kl|z20,7;m)), (5.2.5)
where C 1s a constant depending on T'.
2) Let vy € H and k € L*(0,T;V*), T > 0. Then there exists a unique
solution © of (5.2.4) belonging to Wi (T') C C([0,T]; H) and satisfying

2|y () < Cilzo| + [|E| 22(0,m3v)), (5.2.6)
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where C 1s a constant depending on T'.

Lemma 5.2.4. For every k € L*(0,T; H), let x(t fo (t—s)

0<t<T. Then there exists a constant Cy such that
][ 2(0,m3v) < 02ﬁ||k“L2(0,T;H)~
Proof. By (5.2.5) we have
2| 20,7:00a)) < Cillkl|L20,1;8m)-

Since

k(s)ds for

(5.2.7)

(5.2.8)

2!z = Jo | S(E = s)k(s)dsPdt < M f,"(fy |k(s)lds)*dt

<M [Tt [{k(s)Pdsdt < MZ [T |k(s)|*ds

it follows that
|| 220,z < T/ M/ 2(|K | 220,720

From (4.2.3), (5.2.8), and (5.2.9) it holds that

2| r20.m:v) < Con/CiT(M/2)Y | |K|| L2017, 10)-

So, the proof is completed.
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5.3 Semilinear differential equations

Consider the following abstract neutral functional differential system:

{ allo®) + (B)(0)] = Az(t) + f(t,2(0) + k(1) tE€OT] g

2(0) = xo,  (Bx)(0) = yo.

Then we will show that the initial value problem (5.3.1) has a solution by

solving the integral equation:

#(t) =S(8)[o + 10} = (Ba)(2) (5.3.2)

+/0 AS(t—s)Bm(s)der/O S(t — $){f(s,2(s)) + k(s)}ds.

Now we give the basic assumptions on the system (5.3.1)
Assumption (B). Let B : L*(0,T;V) — L*0,T;H) be a bounded
linear mapping such that there exist constants § > 1/3, L > 0, and a

continuous nondecreasing function b(t) : [0,7] — R with b(0) = 0 such that

|AP Bx|| 120,40y < b#)|[#llz205v), V(£ ) €(0,T] x L*(0,T; V).

Assumption (F2). f is a nonlinear mapping of [0,7] x V into H

satisfying following:
(i) There exists a function L; : Ry — R such that
[f(t,2) = f( )] < La(r)lfe —yll, ¢ €0, 7]
hold for ||z|| <7 and ||y|| < r.
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(ii) The inequality
[F(t2)] < La(r)([[z]] + 1)

holds for every t € [0,7] and z € V.

Let us rewrite (Fx)(t) = f(t,x(t)) for each x € L*(0,T;V). Then there is a

constant, denoted again by L;(r) such that
a2z < La(r)([[#]| 20wy + 1),

||Fxy — Faol|p20mm) < Li(r)||z1 — Zallr200,mv)

hold for z € L*(0,T; V) and x1, x5 € B,(T) = {x € L*(0,T; V) : ||z||1200,7yv) <
r}.

One of the main useful tools in the proof of existence theorems for func-

tional equations is Sadvoskii’s fixed point theorem of Lemma 4.3.2 of Chapter
4.

From now on, we establish the following results on the solvability of the

equation (5.3.1).

Theorem 5.3.1. Let Assumptions (B) and (F2) be satisfied. Assume that
19 € H, k € L*(0,T;V*) for T > 0. Then, there exists a solution x of the
equation (5.3.1) such that

r € WI(T) = L*0,T; V)N W0, T;V*) c C([0,T]; H).

Moreover, there is a constant C3 independent of xo and the forcing term k
such that
|z llwiry < Cs(L + ol + [IEl| L20/v+))- (5.3.3)
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Proof. Let
o = 201|x0 + y()’,

where C} is constant in Lemma 5.2.4. Let § > 1/3, choose 0 < T; < T such

that

TP [{CoLa(ro)(ro + 1) + Chl [kl 200} + 2r0b(T) Crs(38) /(36 — 2)7']
(5.3.4)

+ roMob(Th) < Cilzo + Yol
where (5 is constant in Lemma 5.2.5. Let

M = TP {Co Ly (o) + 2(38)"Y2(38 — 2) 1Cy_pb(T1) } + Mob(Th) < 1.
(5.3.5)
Define a mapping J : L*(0,Ty; V) — L*(0,Ty; V) as

(J)(t) =5 () (o + yo) = (Bx)(t)

+ /o AS(t— s)(Bz)(s)ds + /0 S(t—s){f(s,x(s)) + k(s)}ds.

It will be shown that the operator J has a fixed point in the space L*(0,Ty; V).
By assumptions (B) and (F2), it is easily seen that J is continuous from

C([0,T}]; H) into itself. Let
Y ={z e L*0,T;V) : ||z]|lz200m.v) < T0, (0) = 0},
which is a bounded closed subset of L?(0,7y; V). From (5.2.5) it follows

1S () (o + yo)llz20,05v) < Chlwo + yol- (5.3.6)
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By (5.2.2), (4.2.11) and Assumption (B) we have
|1 Bz[12(0,2v) = [|A™7 A” Bz 120110, (5.3.7)

<A a1 A Bzl 205y < 7o Mob(Th).
By virtue of (5.2.7) in Lemma 5.2.4, for 0 < ¢ < 77, it holds

t
H/ S(t —s){f(s,2(s)) + k(s)}ds|[z20mv) < Cov/Th|[F2 4 K| 220,131
0

(5.3.8)
< CovV/Ti{La(ro)(||zllz20mivy + 1) + 1kl 220,137
< CoV/Ti{La(ro)(ro + 1) + ||kl 20 }-
Since (5.2.3) and Assumption (B) the following inequality holds:
AS(t —s)B = [|A'PS(t - 5)A°B g 9y b(T
145 ~ 9 Bo()l| = 14" 75t s P Bale) £ o Frsmb(Th)
Let
¢
(Wez)(t) = / AS(t — s)Bx(s)ds.
0
Then there holds
T gt
Wl = [ / | / AS(t = 5)Ba(s)ds|Pdt]”* (5.3.9)
0 0

< Tl( G, b(Ty)ds) dt]
— Jo o (t—s)30-02 00

T

< 2r0b(T1)Ch_5(38 — 2)7*( / R
0

= 2r0b(T1)Ch—5(38)7/*(38 — 2) ' T77".
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Therefore, from (5.3.4), (5.3.6)-(5.3.9) it follows that

1Tz 200.1:v) < Chlzo + yo| + 170 Mob(Th)
+ TP {Co Ly (r0) (ro + 1) + Co| k]| 2oy } + 2(38)"Y2(38 — 2) " 1rob(T1)Cy_g]
< o,
and hence J maps Y into V.
Define mapping K; + K, on L?(0,Ty; V) by the formula
(Jo)(t) = (Kyw)(F) + (Kax)(t),

(Kyz)(t) = —(Bx)(t)

(o)1) = S@) (o + v0) + / AS(t = 5)(Ba)(s)ds

+ /0 S(t — s){f(s,z(s)) + k(s)}ds.

We can now employ Lemma 5.3.1 with X¥. Assume that a sequence {z,}
of L*(0,Ty;V) converges weakly to an element x., € L*(0,Ty; V), ie., w —

lim,, oo £, = Too. Then we will show that

lim ||Kyz, — Kizo|| = 0, (5.3.10)

n—oo

which is equivalent to the completely continuity of K since L*(0,Ty;V)
is reflexive. For a fixed t € [0,71], let zj(x) = (Kyz)(t) for every x €
L*(0,Ty;V). Then zy € L*(0,T1;V*) and we have lim,, o 7} (7,) = 2} (To0)

since w — lim,,_,o *,, = To. Hence,

lim (Ky2,)(t) = (Kizao)(t), ¢ € [0, T} (5.3.11)

n—oo
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By (5.2.3), (4.2.11) and Assumption (B) we have
(K1) (Ol = 1B O] = 1|4~ A7 Ba()]] < 1A e |A° Ballzzoomy < oo.

Therefore, by Lebesgue’s dominated convergence theorem it holds

Ty Ty
lim H(len)(t)Hth—/ [|(Kr2e0) (1) dt,
Le., limy, oo || K120l 200m:v) = [[KiZool|z20msv)-  Since L?(0,T1;V) is a

Hilbert space, it holds (5.3.10). Next, we prove that K, is a contraction

mapping on Y. Indeed, for every x; and x5 € X, we have

(FKaz1) (1) = (Kazo) (1) = /0 AS(t — $){(Ba1)(s) — (Bxs)(t)}ds
+/0 S(t—s){f(s,x1(s)) — f(s,22(s)) }ds.

By similar to (5.3.8) and (5.3.9), we have

||K2I1 - K2$2|’L2(0,T1;V)

< Tfﬁm{Cle(TO) +2(38)72(38 — 2) 7 Cr_pb(Th) H|z1 — 22| 120,71

So by virtue of the condition (5.3.5) the contraction mapping principle gives
that the solution of (5.3.1) exists uniquely in [0, 7}].

So by virtue of the condition (5.3.5), K, is contractive. Thus, Lemma
5.3.1 gives that the equation of (5.3.1) has a solution in W, (7).

From now on we establish a variation of constant formula (5.3.3) of so-

lution of (5.3.1). Let 2 be a solution of (5.3.1) and zy € H. Then we have
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that from (5.3.6)-(5.3.9) it follows that

2| 2(0,10,v) <Cilwo + Yol + Mob(Th)||[|L20.71,v)
36/2
+ TP {CoLa(ro) (1l 2o mv) + 1) + CollEll 20,1504 }
+2(38) 238 = 2) " Crpb(T)||2|| 201,17 -
Taking into account (5.3.5) there exists a constant Cj such that
|2 20,7y <(1 = M)~ [Chlwo + yo| + roMob(Th)
+ 1777{Cs L (ro) + Cal [kl 20,135+ }]

<C3(1 + [wo| + [|&]|L2(0,10;v+))

which obtain the inequality (5.3.3). Since the conditions (5.3.4) and (5.3.5)

are independent of initial value and by (4.2.11)

[2(T0)| < lzlleqormy < M|l ),
by repeating the above process, the solution can be extended to the interval
[0,T]. O
Corollary 5.3.1. If Myb(Ty) < 1 then the uniqueness of the solution solution
of (5.3.1) in Wi (T) is obtained.

Proof. Let MyL < 1. Then instead of the condition (5.3.5), we can

choose T7 such that

Mob(Ty) + TP {Cy L (ro) + 2(38) V235 — 2)1C1_pb(T1)} < 1. (5.3.12)
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For every z; and x5 € Y, we have

(Jxq)(t) — (Jx2)(t) =(Bxo)(t) — (Bxq)(t) +/0 AS(t — s){Bx1(s) — Bxy(t)}ds

—|—/O S(t—s){f(s,xz1(s)) — f(s,22(s))}ds.

By similar to (5.3.8) and (5.3.9), we have

[ Jz1 — Jo| 120,151

< [Mob(Tl) + TEB/Q{Cng(ro) L ReIVEs- 2)‘101,5b(T1)}] |21 = 22| L2(0,1:)-

So by virtue of the condition (5.3.12) the contraction mapping principle gives
that the solution of (5.3.1) exists uniquely in [0, 7}]. O

Remark 5.3.1. Let Assumptions (B) and (F2) be satisfied and (xo,k) €
D(A) x L*(0,T; H). Then by the argument of the proof of Theorem 5.5.1

term by term, we also obtain that there exists a solution x of (5.3.1) such

that
v € W(T) = L*0,T; D(A) nWh(0,T; H) c C([0,T]; V).
Moreover, there exists a constant C3 such that
|zl lwy < Cs(1+ [[xol| + [Kl|2 0.3

where C3 1s a constant depending on T.
The following inequality is refereed to as the Young inequality.
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Lemma 5.3.1. (Young inequality) Let a > 0, b > 0 and 1/p+1/q = 1 where

1<p<oandl < q<oo. Then for every A > 0 one has

NaP Ve
ab < —_
p g

From the following result, we obtain that the solution mapping is contin-

uous, which is useful for physical applications of the given equation.

Theorem 5.3.2. Let Assumptions (B) and (F2) be satisfied and (zo, yo, k) €
H x H x L*(0,T;V*). Then the solution x of the equation (5.3.1) belongs to
r e Wi(T) = L0, T;V) N W20, T; V*) and the mapping

H x H x L*(0,T;V*) 3 (z0,%0, k) — x € Wi(T)

1S continuous.

Proof. From Theorem 5.3.1, it follows that if (2, k) € H x L*(0,T;V*)
then x belongs to Wi (T). Let (wg;yoi, ki) € H x H x L*(0,T;V*) and
x; € Wi(T) be the solution of (5.3.1) with (x¢;, yoi, k) in place of (x¢, yo, k)
fori=1, 2. Let z;(i = 1,2) € X. Then as seen in Theorem 5.3.1, it holds

Gl (t) = 22(t) + (Br)(t) — (Ba2)(t)] = Az (t) — (1))
Hf () = ftw2(t) + ka(t) — ka(t),

.’L‘l(O) — .’L'Q(O) = Zo1 — To2-
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So the solution of the above equation is represented by

w1 (t) — z2(t) =S () {(zo1 — To2) + (Yo1 — Yo2)} + (Bx2)(t) — (Bx1)(t)

+/0 AS(t — s){(Bwy)(t) — (Bxa)(t) }ds

+ /0 St = s){f(s,21(1)) = f(s,22(s) + kr(s) — kals)}ds,

and hence, it holds

||9€1 - $2||L2(0,T1;V) < 01(|9C01 = 3302| T |y01 3 y02|) == C2T136/2||/€1 - kQHL?(O,Tl;V*)

+ TP LMoL+ Co Ly (r) + 2(38) 72(38 — 2) 7 6(T1)Cip Y |21 — ol | 20,130

From (5.3.4), we have

|[|z1 = 332HL2(0,T1;V) <(1- M)_1(01(|1701 — Zoz2| + |Yo1 — Yo2!)
£ CoT SR (720 7.1t

Hence, repeating this process as seen in Theorem 5.3.1, we conclude that the

solution mapping is continuous. O

For k € L*(0,T;V*) let x; be the solution of equation (5.3.1) with k

instead of Bu.

Theorem 5.3.3. Let us assume that the embedding V C H is compact. For
k€ L?(0,T;V*) let x), be the solution of equation (5.5.1). Then the mapping
k — xy is compact from L*(0,T;V*) to L*(0,T; H). Moreover, if we define
the operator F by

F(k) = f(z),

then F is also a compact mapping from L*(0,T;V*) to L*(0,T; H).
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Proof. If (zg, k) € H x L*(0,T;V*), then in view of Theorem 5.3.1
yklbwi @) < Callzol + 1Kl L20,250+))-

Since x;, € L*(0,T;V), we have f(-,x;) € L*(0,T; H). Consequently, by
(4.2.11), we know zp € Wy(T) C C([0,T]; H). With aid of 1) of Lemma

5.2.3, noting that ||z||z2(0,rv) < ||@k||wy (1), We have
zkl by < Cs(L+ ol + [|kl| 2200}

Hence if k is bounded in L*(0,7; V*), then so is zx in Wi (T) = L*(0,T; V)N
Wh2(0,T;V*). Since V is compactly embedded in H by assumption, the
embedding

Wi(T) c L*(0,T; H)

is compact in view of Theorem 2 of Aubin [32]. Hence k +— xj is compact

from L?(0,T; V*). Moreover, it is immediately that F is a compact mapping
of
L2(0;T; V= W, (T0) —3-L%(0,T; H),

which is of L*(0,T;V*) to L*(0,T; H). O

5.4 Approximate Controllability

In this section, we show that the controllability of the corresponding lin-
ear equation is extended to the nonlinear differential equation. Let U be a

Banach space of control variables. Here C'is a linear bounded operator from
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L*(0,T;U) to L*(0,T; H), which is called a controller. For x € L*(0,T; H)

we set
(Bx)(t) = /0 N(t — s)x(s)ds,

where N : [0,00) — L(H,V) is strongly continuous. Then it is immediately
seen that Bx € C([0,7];V) and hence AS(s)(Bx)(s) = AS(s)(Bx)(s) for
0 < s < T because D(A) = V. Since t — N(t) is strong continuous, by the
uniform boundedness principle there exists a constant My such that for any
T >0,

sup [|[AN )|z < My.
t€[0,7)

Consider the following neutral control equation

Let z(T'; B, f,u) be a state value of the system (5.4.1) at time 7" correspond-
ing to the operator B, the nonlinear term f and the control u. We note
that S(-) is the analytic semigroup generated by —A. Then the solution

x(t; B, f,u) can be written as

o(t B, £, u) =5(t) (o + yo) — (Ba)(2) (5.42)
+ /0 S(t — s){A(Bz)(s)ds + f(s,z(s)) + (Cu)(s)}ds.

and in view of Theorem 5.3.1,

2 (- B, f,u)llw ) < Cs(|zol + |C| e, l|ul| 20,m:0) - (5.4.3)
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We define the reachable sets for the system (5.3.1) as follows:
R(T) = {z(T; B, f,u) : u € L*(0,T;U)},

L(T) = {z(T;0,0,u) : w € L*(0,T;U)}.

Definition 5.4.1. The system (5.4.1) is said to be approximately controllable
on [0,T) if for every desired final state zr € H and € > 0 there exists a

control function w € L*(0,T;U) such that the solution z(T; B, f,u) of (5.4.1)

satisfies |x(T'; f,u) — zr| < €, that is, Rr(f) = H where R(T) is the closure
of R(T') in H.

We define the linear operator S from L2(0,T; H) to H by

Sp = /0 S(T — s)p(s)ds

for p e L*(0,T; H).
We need the following hypothesis:
Assumption (S).

(i) For any e >0 and p € L*(0,T; H) there exists a u € L*(0,T;U) such
that

|Sp — SCu| < e,
Cul| 200 < allpl|20m), 0<t<T.

where ¢; is a constant independent of p.
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(ii) f is a nonlinear mapping of [0, 7] x H into H satisfying following:

There exists a function L; : R, — R such that
[f(tx) = [t y)l < La(r)e —yl, £ €0,T]
hold for |z| < r and |y| < r.

By virtue of the condition (i) of Assumption (S) we note that AS(t —
s)Bx = S(t — s)ABx for each x € V. Therefore, the system (5.4.1) is
approximately controllable on [0, T] if for any € > 0 and 2y € H there exists

a control u € L*(0,T;U) such that
1S(T) (0 + yo) — (Bx)(T) + S{ABz + Fz + Cu} — z7|| < e,

where (Fx)(t) = f(t,z(t)) for ¢ > 0. Throughout this section, Invoking

(5.4.3), we can choose a constant 7, such that

1> Cs(|zo| + [|Cl|cw,mllulle20m:0), (5.4.4)

and set

G(s,x) = A(Bzx)(s) + f(s,x(s)).

Lemma 5.4.1. Let uy and uy be in L*(0,T;U). Then under the assumption
(S), we have that for 0 <t <T,

(t; B, fu1) — x(t; B, f,u2)| < Me™V/t||Cuy — Cus|| 20750,

where My = eMMNT+Li(r))
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Proof. Let xt) = x(t; B, f,u1) and x5(t) = x(t; B, f,uz). Then for

0 <t <T, we have

x1(t) — 22(t) =(Bxo)(t) — (Bx1)(t) +/O S(t — s){G(s,x1) — G(s,x2) }ds
(5.4.5)

4 /Ot S(t — $)C(us () — ua(s))ds.
So we immediately obtain
1A(B25)t) = ABr)O] < My [ loale) = 3106,
and so it holds
[ it 9B )~ (B o)}l < MAT [ fess) — )

Moreover, we have

| / S(t — ) {528V s ra(s)}ds| < MLy (m) / [22(s) — 21 (5)]ds,
| / S(t — $){Cus(s) — Cus(s)}ds| < MVE||Cus — Cunl 20w,

Thus, from (5.4.5) it follows that

\2(t; B, f,w1) — x(t; B, f,u2)| < MVH||Cuy — Cug|| 20, 1:0) (5.4.6)

+ {MMNT + ML1<7~1)}/0 2a(s) — 21 (s)|ds.

Therefore, by using Gronwall’s inequality this lemma follows. a
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Theorem 5.4.1. Under the assumptions (S), the system (5.4.1) is approzi-

mately controllable on [0,T].

Proof. We will show that D(A) C Rr(g), ie., for given ¢ > 0 and
21 € D(A) there exists u € L*(0,T;U) such that

|ZT—$(T;B,f,U)‘ <g,

where
x(T; B, f,u) = S(T)(onryo)—(Bx)(T)Jr/O S(T—s){G(s,2(:; B, f,u))+Cu(s)}ds.

As 2y € D(A) there exists a p € L*(0, T Z) such that
Sp = 2r + (Bx)(T) = S(T)(o + o),

for instance, take p(s) = {(zr + (Bz)(T)) — sA(zr + (Bz)(T))} — S(s)(xo +
Yo)/T. Let uy € L*(0,T;U) be arbitrary fixed. Since by the assumption (S)
there exists us € L*(0,7;U) such that

~

S(p— G(-a(-, B, fm) = SCus] < 2.

it follows
pT+camav—saw@0+wg—SG«,ﬂ.BJn“»—SCW|<Z.@47)

We can also choose wy € L?(0,T;U) by the assumption (S) such that

ﬁ@bﬂqRﬁW»—GQMqBJWM—§&M<§ (5.4.8)
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and by the assumption (S)
||Cw2||L2(0,t;H) < Q1||G( ) l’( ) Ba fu ul)) - G( : 7‘7;( "5 Ba fa u2)>||L2(0,t;H)
for 0 <t < T. Therefore, in view of Lemma 5.4.1 and the assumption (S)

t
HCUJ2HL2(0¢;H) < (h{/ |G(7,2(7; B, f,u2)) — G(7,2(7; B, f, U1>)|2d7}5
0
t 1
< Oy -+ L[ [olri B, fow) = ol B. £ P
0
t
<G + LoD | (MEMPrCutz = Canl )
0
t 1
S q1(MN -+ L(Tl))M€M2(/ TdT)§||CU2 — CU1||L2(O,t;H)
0
My t2\1
= q(Mn+ L(ry))Me (5)2 [|Cug — Curl|L2(0,4,m)-

Put us = us — wy. We determine ws such that

1S(G(-,z(-; B, fug)y— Gz (-3 B, f,ug)P)— SCws| < %

||Cw3|‘L2(O,t;H) S Q1||G( . ,l’( : ;viv U3)> - G( ' ,$( 3 B7f7 u2))|’L2(07t;H)
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for 0 <t <T. Hence, we have

HC7~U3| ‘Lz(O,t;H)

t 1
<o [ 16(r.a(ri B. fowa)) = G(r.a(ri B, frun) Pr)
0
t 1
< qa(My + L(ﬁ)){/ lz(; B, f, Us) —x(7; B, f, U2)’2d7}2
0
¢ 1
< ql(MN + L(Tl))MeMz{ / T||CU3 - Cu2||%2(O,T:H)dT}2
0
t 1
< @ (My + L(ry))Me / Tl|Cwal (120 )7 } ?
0
t 7_2 1
< qi(My + L(ry))Me™ { / (g1 (Mn + L(Tl))M€M2)23||CU2 — Cuy[F2(0 7.1y }
0

t .3 .
< (1 (My + L(Tl))M€M2)2(/ EdT) 2||Cug — CUlHL?(o,t;H)
0

t4

= (@ (M + L)) Me (-

i
)§||CU2 — CUIHLQ(O,t;H)-

By proceeding with this process, and from that

|C(wn, — uny 1)l 20,601 = [|Cwnl|L2(0,1:m)
t2n—2

2.4 (2n—2)

< (q1(My + L)) M) = ( )2|Cuy — Cual| 204

My + L(r))MeM2t 1
(h( N ( 1)) '||CU2 o CUl”L?(O,t;H)a

I Y ce
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it follows that

Z |Cupt1 — CunllL20/m;m)

n=1

= @ T(My + L(ri)) MeM:
- Z(ql (Mn (1)) ) — Cuyl| 20,71y < 0.
—0

1
2 v

Therefore, there exists u* € L?(0,T; H) such that

lim Ge=ui™y & KGRH).

n—o0

From (5.4.7), (5.4.8) it follows that
|27 + (Bx)(T) = S(T) (w0 + yo) — SG(-,x(5 B, f,us)) = SCus]
= |27 + (B2)(T) — S(T) (w0 + %) — SG(,x(;; B, f,u1)) — SCus + SCw,

— S[G(-,x(-;B,f, ug)) = G(-,z(+; B, f, U1))]|

1 1
? + ﬁ)é‘

<(
By choosing w,, € L*(0,T;U) by the assumption (B) such that

3

IS(G(-2(+: B, f,un) —G(-2(+: B, fytn_1)) — SCw,| < TISE

putting u,.+1 = u, — w,, we have

|zr + (Bx)(T) — S(T)(xo + yo) — 5’G(~,$(-; B, fu,)) — S'Cunﬂ\

<ot
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Therefore, for € > 0 there exists integer N such that
1SCun+1 — SCuy| < %
and
|20+ (Ba)(T) = S(T) (0 + o) = SG(-,2(s B, f,un)) — SCux]
< |z + (Ba)(T) = S(T)(wo + yo) — SG(-,2(; B, f,un)) — SCun+1]

+ ‘§CUN+1 — gCuN]

i 5
Ye A= < €.

< gva )T 5 S

Thus the system (5.4.1) is approximately controllable on [0,7] as N tends

to infinity. O

5.5 example

Let
H = L*0,7), V.= Hy(0,7), V*= H *(0,7),
Td d
a(u,v) = /o Z;y) Zgjj)dy
and
A=0*/0y* with D(A) = {x € H*(0,7) : 2(0) = z(7) = 0}.
The eigenvalue and the eigenfunction of A are \, = —n? and ¢,(y) =

(2/7)'/% sin ny, respectively. Moreover,
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(a) {¢n:n € N} is an orthogonal basis of H and
(b) S(t)r =302, ez, 60, Va € H, t>0.

(¢) Let 0 < a < 1. Then the fractional power A* : D(A%) C H — H of

A is given by
A%z =302 (2,6,)bn, D(AY) = {a: A% € H}.
n=1

In particular, A=Y2z = 3> 1(z,¢,)¢, and |JA~1/?|| = 1.
Consider the following neutral differential control system:
0/ot[x(t,y) + fg Jo bt — s, 2, y)a(s, z)dzds]
= Az(t,y) + ¢ (lz(t, ) P)2(t,y) + (Cu)(t), te€(0,T],  (55.1)
z(t,0) = z(t, m9) = 0,

where ¢ is a real valued function belong to C?([0,00)) which satisfies the

conditions

(i) ¢(0)=0, g(r) >0 forr >0,

(i) |g'(r) <c(r+1)and |g"(r)| < cfor r >0 and ¢ > 0.

If we present

fla(ty) = g (lx(t.y)P)a(t,y),
f is a mapping from the whole V' into H by Sobolev’s imbedding theorem
(see [20, Theorem 6.1.6]). As an example of g in the above, we can choose
g(r) = p*r +n*r?/2 (u and 7 is constants).

In addition, we need to impose the following conditions(see [68, 70]).
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(iii) The function b is measurable and

™ t ™
/ / / V2 (t — s, 2,y)dzdsdy < co.
o Jo Jo

(iv) The function (9?/9z?)b is measurable, b(0,y, ) = b(0,y,0), and

™ t ™ a
M, = / / / (Eb(t — s, z,y))dedsdy < 0.
o Jo Jo

(v) C:L*0,T;U) — L*0,T; H) is a bounded linear operator.

We define B : L*(0,T;V) — L*(0,T; H) by

// —8,2,y)x(s, z)dyds.

From (ii) it follows that B is bounded linear and

12

AY2(Bz)(t) = ((Bx)( ), sinny)gbn

t ™ a
— %(/0 /o a—yb(t — s, 2,y)dyds, cosny) é,,
— %((le)(t), cosny) oy

where

(Biz)(t / / — s, 2,y)dyds.

97



Thus, by (iv) the operator B; is bounded linear with ||B;|| < /M, and we
have that B € D(A'Y?) and ||AY2Bx|| = ||Bz||. Therefore from Theorem

5.3.1, there exists a solution x of the equation (5.5.1) such that
€ L*0,T;V)NW"(0,T;V*) C C([0,T); H).

Moreover, from Theorem 5.4.1 the neutral system (5.5.1) is approximately

controllable on [0, T7.
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