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고등어 (Scomber japonicus) 개체군 자원평가를 위한 베이지안 상태공간 

모델 

 

정유리 
 

부경대학교 대학원 해양생물학과 
 

요  약 

수산자원 관리를 위해서는 어업이나 과학조사를 통해 수집된 자료에 자원평가 모델을 

적용하여 환경수용력이나 개체군의 고유성장률과 같은 개체군에 대한 정보(모수)를 추정하는 

단계가 필요하다. 이 단계에서 얻은 모수 추정치들은 수산자원 관리자가 자원 관리방안을 

설정하는 데 도움을 준다. 자료의 수집 여부에 따라 다양한 자원평가 모델을 적용할 수 

있으나, 그 중에서도 잉여생산량 모델은 타 자원평가 모델에 비해 자료의 요구량이 

적고(어획량 자료와 단위노력당 어획량 혹은 과학조사지수 자료), 추정해야 할 모수의 개수가 

적다는 장점으로 현재까지도 연구가 되어 왔다. 그러나 잉여생산량 모델을 적용하여 모수를 

추정하는 대부분의 연구에서는 단위노력당 어획량자료가 전체적으로 단순하게 증가하거나 

감소하는 추세를 보인 반면, 1976년부터 2017년까지 한국에서 수집된 고등어의 단위노력당 

어획량자료는 뚜렷한 변동(fluctuation)을 보였다. 본 연구는 뚜렷한 변동을 보이는 고등어 

자료를 적합시키고, 모델의 모수들을 추정하고자 상태공간 잉여생산량 모델을 적용하였다. 

잉여생산량 모델에 상태공간 구조를 적용함으로써, 모델이 설명하지 못하는 자원량의 

자연적인 변동(natural variability)과 자료를 수집하는 과정에서 발생하는 오차를 동시에 

고려하였다. 또한, 수치적 최적화(Numerical optimization)를 만족시키는 사전확률 분포를 
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고려하여 사후확률분포를 얻었고, 이를 통해 모수의 점추정치(point estimates)및 추정치들에 

대한 불확실성을 제시하였다. 모델이 자료를 잘 설명하는 지 비교하기 위해 다른 잉여생산량 

모델을 비교하였으며, 본 논문에서 사용된 상태공간 잉여생산 모델이 주어진 고등어 자료를 

가장 잘 설명하였다. 
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Abstract 
 

Surplus production models are considered the simplest stock assessment 

models, with more parsimonious model parameters, compared to other stock 

assessment models.  In addition to the simple model structure, the models 

require only two sets of time series data including annual yield and catch-per-

unit-effort (CPUE) from commercial fishery or survey index from a scientific 

survey.  While many researchers had applied production models for such 

advantages, most of the data fitting the models had only shown relatively 

stable trends of increase or decrease.  Korean chub mackerel (Scomber 

japonicus) CPUE data, however, displays a mixed trend, showing fluctuations 

in quantity throughout multiple periods.  Thus, leading researchers to get 

unreliable estimates on model parameters.  While simpler model structures 

provide multiple benefits, production models have been criticized for 

sacrificing biological realism for mathematical simplicity.  A state-space 

production model is one of the solutions to such objection by accounting for 

both unmodelled variability on biomass dynamics (process error) and 

measurement uncertainty (observation error).  The main purpose of this 
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study is to fit the CPUE data with a mixed trend using a Bayesian state-space 

production model.  To stabilize the numerical optimization, prior 

distributions were considered.  Implementation is performed in script 

software ADMB-RE, because it reduces the computational cost on high-

dimensional integration and provides Markov Chain Monte Carlo sampling 

which is required to a Bayesian approach.  Applying the state-space 

production model to annual yield and CPUE data collected from a 

commercial fishery during 1976-2017, the model estimated key parameters 

and predicted annual CPUE and biomass.  Comparison with results from 

various production models showed that the state-space production model 

explained the mixed trend in data best.  The results suggested that the state-

space production model should be preferred to the other production models 

in fitting CPUE data with a mixed trend. 



1 

1. Introduction 

The main goal of stock assessment is to maximize profit from the catch 

while also effectively conserving a fish stock (Quinn and Deriso, 1999).  

Therefore, stock assessment involves quantitative predictions about fish 

populations using mathematical and statistical models.  Surplus production 

models, or biomass dynamics models fall into a category of stock assessment 

models, which have been studied extensively for several advantages.  

Compared with other stock assessment models, production models have 

parsimonious number of parameters making the model structure simpler.  

Moreover, the models have lighter data requirement: historical data on yield, 

and relative abundance index, which can be catch-per-unit-effort (CPUE) 

from commercial fisheries or survey index from scientific surveys.  It is not 

surprising the production models have long been primarily applied to data-

limited situations where age or size data on a stock are not available.  Many 

studies which used various versions of production models, however, have 

used CPUE data only showed increase or decrease in the overall trend 

(Carruthers et al., 2011; Chaloupka and Balazs, 2007; Millar and Meyer, 1999; 

Polacheck et al., 1993; Rankin and Lemos, 2015; Zeller et al., 2008).  On 
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the other hand, the CPUE data on Korean chub mackerel showed conspicuous 

fluctuations or a mixed trend.  Although some researchers attempted to 

estimate the model parameters of production models with the mackerel data, 

one of the study eliminated the data in 1996 regarding as an outlier which 

produces a significant peak (Choi et al., 2004).  Cho et al. (2009) failed to 

estimate model parameters of various production models.  While production 

models have many advantages mentioned above, they are criticized for 

sacrificing biological realism for model simplicity (Millar and Meyer, 1999).  

To be specific, the model describes population growth with one parameter, 

intrinsic growth rate, by aggregating natural factors including growth, 

recruitment, natural mortality.  Pella and Tomlinson (1969) pointed out the 

model structures are too simple to explain the population dynamics with 

various sources of variability, such as interactions among species and abiotic 

conditions (Pedersen and Berg, 2017).  

A state-space production model is one of the attempts that can alleviate 

the doubt on the simplicity of production models.  It explicitly includes 

process errors and observation errors to account unmodelled factors and noise 

in data, respectively.  Despite the ability to consider the two sources of 
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uncertainty, process errors demand the estimation of a large number of free 

parameters and require high-dimensional integration as well.  Because of the 

computational costs, studies have been implemented linear state-space 

models, which is ecologically unrealistic (Rivot et al., 2004).  Another 

action for fitting a state-space model is assuming the ratio between the 

variance of the process and observation errors to be known (Kimura et al., 

1996; Ludwig et al., 1988).  Fortunately, the development of statistical 

software such as script software ADMB-RE (Fournier et al., 2012; Skaug and 

Fournier, 2017) and R package TMB (Kristensen et al., 2016) enabled the 

implementation of state-space models with Gaussian error structures through 

the Laplace approximation.  Another advantage of ADMB-RE is provision 

of Markov Chain Monte Carlo (MCMC) sampling without any revision of the 

computer code.  In this study, prior distributions for model parameters are 

considered to stabilize the numerical optimization.   

The main purpose of this study is to apply a state-space production 

model to Korean mackerel data for which CPUE showed a mixed trend.  The 

state-space production model was implemented within ADMB-RE, and prior 

distributions were considered to aid numerical optimization.  The present 
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study provided estimates of key parameters, including intrinsic growth rate, 

carrying capacity and annual biomass, as well as their uncertainties.  The 

model also provided management references such as maximum sustainable 

yield (MSY), harvest rate that correspond to the MSY( MSYH ), and biomass 

that yields the MSY( MSYB  ).  Applying various production models to the 

same data, predicted CPUE and biomass trajectories were compared to show 

the model performance. 
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2. Materials and Methods 

2.1 Fishery data on mackerel 

Hilborn (2002) introduced a quote from John Shepherd, stating that 

counting fish is like counting invisible trees moving around.  In other words, 

counting fish stock size underwater is impossible, unless fishing them all.  

To resolve such crucial problem, relative index of biomass (CPUE or survey 

index) is utilized in estimating stock biomass.   

Two sets of historical data available on chub mackerel: annual yield and 

CPUE with units of metric ton (MT) and metric ton per haul (MT/haul).  

Figure 1a and 1b show the annual yield and CPUE of mackerel from 1976 to 

2017.  Every year, Statistics Korea have collected the yield from entire 

fisheries on mackerel.  Korean National Institute of Fisheries Science 

(KNIFS) have gathered the yield and effort data from 70% of the entire large 

purse seine fisheries to calculate the CPUE data.  When the fishing trips over, 

fishermen fall into the 70% provided the total yield and effort (number of 

hauls).  Effort is calculated by multiplying a constant to the number of 

fishing days (Y. Seo, Korean National Institute of Fisheries Science, Busan, 

Korea, personal communication).  In this study, I regarded the CPUE 
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(Figure 1b) to be representative of all chub mackerel fisheries, as large purse 

seine fisheries produced more than 90% of total yield on average (Figure 1c).  

As shown in Figure 1, trajectories of yield and CPUE have the peaks with 

highest value of 415,003MT and 32.44MT/haul in 1996.  Several scientists 

in KNIFS argued the CPUE data lost consistency after the Korea-Japan 

fisheries agreement, which was signed in 1998, because of the reduction of 

the fishing ground (S. Kang and H. Cha, Korean National Institute of 

Fisheries Science, Busan, Korea, personal communication).  Regarding 

their opinion on the data, the results with data series of 1976 to 2017 should 

be accepted for demonstration only.   
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Figure 1. Chub mackerel data from 1976 to 2017.  Panel (a) shows the 

annual yield collected from entire fisheries on mackerel, and panel (b) shows 

the catch per unit effort (CPUE) data.  Panel (c) presents the percentage of 

the yield achieved by large purse seine fisheries to total yield on chub 

mackerel.  Units for the yield and CPUE are metric ton (MT) and metric ton 

per haul (MT/haul). 
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2.2 Surplus production model 

In stock assessment, mathematical models involve that describe the 

dynamic system and observation which linked to the population.  A surplus 

production model depicts the biomass dynamics with three terms – biomass 

in the previous year, surplus production and catch from commercial fisheries. 

 

1 )(t t t tB B f B Y        (1) 

 

In equation (1), tB  is biomass in year t, tY  is fisheries yield in year t.  

)( tf B  represents the ‘surplus production’ and contains the entire changes in 

natural increase and decrease, such as growth in weight, recruitment, and 

natural mortality (Hilborn and Walters, 1992).  Equation (1) says that the 

stock size in the next year (t+1) is the sum of the biomass and surplus 

production, which are removed with yield in the previous year (t).  Among 

the various versions of surplus production models, I chose the discrete 

version of the Schaefer model (Schaefer, 1954) proposed by Hilborn and 

Walters (1992): 
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 1 1 /t t t ttB B rB B k Y             (2) 

 

where r is intrinsic growth rate of a population and k is carrying capacity.  

The biological assumption lying behind this model is that the stock increase 

by the growth rate until the stock size reaches to the carrying capacity.  From 

the logistic relationship (Figure 2a) described by equation (2), surplus 

production is maximized at / 2B k  , and called MSYB   under absent of 

fishing (Figure 2b).  MSY and harvest rate which correspond to MSY 

( MSYH ) are calculated as / 4r k  and / 2r  by plugging / 2B k  into 

equation (2) under absence of fishing.   

The Schaefer model has been criticized because the surplus production 

is always maximized when the biomass is 50% of the carrying capacity (i.e., 

/ 2B k ).  To improve flexibility, Pella and Tomlinson (1969) introduced 

a shape parameter that allows the production curve to be asymmetric (Quinn 

and Deriso, 1999).   

 

( 1) t
t t

Br
Bf B

k





       
   (3) 
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Despite such advantage, the model should estimate one more parameter 

(the shape parameter  ) than the Schaefer model.  In addition, Hilborn and 

Walters (1992) pointed out that few data sets would allow modelers to obtain 

reliable estimate of the shape parameter.  Therefore, I chose the Schaefer 

production model in this study.  Equation (2) is called deterministic process 

equation because it describes biomass dynamics system without statistical 

errors.  

Likewise, deterministic observation equation depicts the measurement 

of biomass, which links the data to biomass as follows: 

 

t tI qB   (4) 

 

where tI   represents the CPUE collected in year t, and q is catchability 

coefficient.  If survey data is present, tI  can be survey index.  Equation 

(4) demonstrates that the CPUE collected in year t is directly related to 

biomass with a coefficient q.  Since the biomass in the model may be 

subjected to autocorrelation (Millar and Meyer, 1999, 2000), which reduces 
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the efficiency of parameter estimation, I used relative biomass tP  by scaling 

the biomass tB   with carrying capacity k ( / )t tP B k  .  The resulting 

equations are 

 

 1 1 /t t tt tP P rP P Y k       (5) 

 

and 

 

t tI qkP   (6) 
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Figure 2.  Logistic growth (a) and surplus production curve (b) of the 
Schaefer model under the absence of fishing.  Panel (a) shows the 
population size converges to carrying capacity, where panel (b) depicts the 
surplus production as the population size grows. 

  



13 

2.3 A state-space production model 

Assuming multiplicative errors on equations (5) and (6), a state-space 

production model is formulated as below. 

 

    1 1 / exp p
t t t t t tP P rP P Y k           (7) 

 

 expt t t
oI qkP    (8) 

 

In equations (7) and (8), p
t   is process error and o

t   is observation 

error.  The errors are assumed to follow normal distributions with the mean 

of 0 and variance of 2
p  and 2

o  respectively, i.e.,  

 

2

2

)~ (0,

~ (0, )

p
t p

o
t o

N

N

 

 
  (9) 

 

With those errors included, equations (7) and (8) are called process 

equation and observation equation.  Process error in equation (7) accounts 

the unmodelled natural variability which influences the biomass dynamics.  
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Punt (2003) mentioned that natural variabilities arise from the growth of the 

population, recruitment, and natural mortality for production models.  The 

process error allows the biomass to be treated as a random variable.  On the 

other hand, the observation error describes variability in CPUE data including 

measurement errors and reporting errors (Winker et al., 2018).  To 

categorize the different types of parameters, I denoted the relative biomass 

1976 1977 2018( , , )PP PP   as random effect parameters or state variables, and 

parameters 2 2( , , , , )p or k q  θ  as fixed effect parameters.  Note that the 

random effects have subscript t, where θ   are time-invariant constant 

parameters.   
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2.4 Likelihood function 

In statistics, a likelihood function describes the likelihood of 

parameters being true parameters for the given data.  Parameters are 

estimated by maximizing the function.  

The 1log tP   is normally distributed with the mean of 

  /log 1t t t tP rP P kY      and variance of 2
p .  That is,  

 

   2
1log ~ ,1 /logt t t t t pP N P r kP P Y               (10) 

 

Likewise, log tI  is normally distributed with the mean of  log tqkP  

and variance of 2
o . 

 

  2log ~ log ,t t oI N qkP    (11) 

 

Assuming mutual independence, the likelihood functions for process and 

observation equations have the following forms.   
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  2
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2
2
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1
| ) exp

log lo
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2
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,

2
t t

o
oo

I qkP
L q k 



 
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 
 

P I    (13) 

 

Note that 1976 1977 2017,( , , )Y Y YY  and 1976 1977 2017,( , , )I I II  .   

With the likelihood functions (12) and (13), the joint likelihood 

function have the following form, given the data ( , )D Y I . 

 

2 2

2 2

, |( , , , ,

( , , , | ( , , ,

)

) )|

o

o

p

p

L r k q

L r k L q k

 

 





P D

P Y P I
       (14) 

  



17 

2.5 Prior distributions 

Within the script software ADMB-RE, the state-space production model 

estimates both fixed and random effect parameters using the empirical Bayes 

method (Skaug and Fournier, 2017).  Under the approach, fixed effects are 

estimated by maximum likelihood estimation, and random effects are 

provided by modes of the posterior distribution (Vincenzi et al., 2014) using 

automatic differentiation. First, the marginal likelihood function for 

2 2( , , , , )p or k q  θ  is provided by the Laplace approximation. 

 

   log , | log |L d L θ P D P θ D   (15) 

 

In other words, random effects are separated from the joint likelihood 

through the approximation.   

Then the fixed effects are obtained from the maximum likelihood 

estimation.  

 

  arg max log |L
θ

θ θ D   (16) 
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With the point estimates of fixed effects, estimates of random effects are 

provided by the mode of posterior distributions of P . 

 

  mode | ,p   P P D θ   (17) 

 

And the uncertainties on fixed effects θ   and random effects P   are 

given as below, respectively.   

 

 
12 log ( )

c
|

ov
L







 

  
 

θ D
θ

θ θ
  (18) 

 

 
 

 
1

2 log
cov

| ,
cov

L






         
  
 
 

P θ D P P
P θ

θ θP P
 (19) 

 

While the classical statistics treat parameters as unknown constant 

values, Bayesian approach considers each parameter’s probability 

distribution.  The probabilities of parameters are updated as data obtained.  

Through the Bayes rule described by equation (20), the probabilities for 



19 

parameters are updated by the prior distribution and the likelihood built on 

data. 

 

, | ) ( , ) ( | , )( pp pP θ D P θ D P θ   (20) 

 

Note that the joint posterior distribution ( ), |p P θ D  is proportional to 

the product of joint prior ,( )p P θ  and joint likelihood ( | , )p D P θ .  

While Bayesian approach does not involve the numerical optimization 

of the likelihood function, the numerical approach did not stabilize without 

priors.  Therefore, I considered prior distributions which aid numerical 

optimization.  Without previous studies on Korean mackerel, I specified 

prior distributions for parameters 2 2( , , , , )p or k q  θ  , and the relative 

biomass in 1976, 1976P .  Specifically, I randomly generated values for mode 

and coefficient of variation (CV) for each parameter which determine the 

hyperparameters.  Once the optimal prior set stabilizes the optimization, I 

switched to Bayesian approach, which involves Markov Chain Monte Carlo 

sampling as described below.  In practice, I chose log-normal distributions 

for r and k, whose domains of the distributions are positive.  I considered 
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inverse gamma distributions for the variances of errors, 2
p   and 2

o  , to 

assign prior distributions with positive support.  These prior distributions are 

used in various papers which involved Bayesian stock assessment (Chaloupka 

and Balazs, 2007; Meyer and Millar, 1999; Millar and Meyer, 2000; Winker 

et al., 2018).  Since the catchability coefficient is a scaling factor, which 

range should be positive and smaller than 1, I assigned a uniform prior for 

logq (McAllister et al., 1994; Millar and Meyer, 2000).  I assigned a normal 

distribution for 1976log P  which is equivalent to log-normal distribution with 

the same hyper parameters.  I provided the details about the relationship 

between the log-normal distribution and normal distribution in appendix A, 

by re-expressing the mean and variance of a normally distributed random 

variable, logX, using the mode and CV of a log-normally distributed random 

variable, X.  I also provided the ADMB-RE code in appendix B.  Table 1 

lists the selected prior set with modes and CVs.   

Assuming the mutual independence of priors, joint prior probability can 

be written as below. 

 

    2 2 2 2
1976 1976( , , , , ) ( ) ( ) ( ) ( ) ( ) (, )opopr k q r k PP q                (21) 
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With the joint likelihood and joint prior, the joint posterior is defined by 

Bayes’ rule: 
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Table 1. Selected priors set which satisfies the numerical optimization of the 
likelihood function.  Values in the parentheses are parameters for each prior 
distribution. 

Parameter Prior Mode CV 

r  Log-normal (-1.04, 0.46) 0.28 0.49 

k  Log-normal (14.92, 0.59) 2,137,000 0.64 

q  
Uniform (-90, -1) 

on log q  
Noninformative 

2
p  Inverse gamma (3.09, 0.80) 0.20 0.96 

2
o  Inverse gamma (3.52, 0.43) 0.09 0.81 

1976P  
Normal (-0.57, 0.93)  

on 1976log P  
0.22 1.24 
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2.6 MCMC sampling 

Since full posterior distributions require high-dimensional integration, 

they cannot be obtained in closed form when the model contains numbers of 

parameters.  Instead, Markov Chain Monte Carlo (MCMC) sample sets 

were generated to get (approximated) posterior distributions in the software 

ADMB-RE.  To be specific, ADMB-RE samples within the Metropolis 

Hastings Algorithm.  One in every 50,000 samples set was thinned out from 

a total of 0.2 billion iterations to reduce the autocorrelation between 

parameter samples.  The first 100 sample sets (i.e., initial 5,000,000 sample 

sets) were removed as a burn-in period, ultimately resulting in 3,900 sample 

sets remained.  Once the posterior samples obtained, diagnosis of 

convergence of MCMC samples is required.  In this study, four criteria were 

applied to check the convergence of the MCMC samples for each parameter 

2 2
1976, , ,( , , )p ok q Pr    : (i) the dependence factor of the Raftery-Lewis 

statistics, (ii) lag-1 correlation, (iii) the ratio between the naïve standard error 

and the time series standard error ,which is corrected with autocorrelation, 

and (iv) unimodal shape of histogram of MCMC samples.  I checked the 

first three criteria within R using package CODA (Plummer et al., 2006).  



24 

The posterior samples were said to be converged when the dependence factor 

of the Raftery-Lewis statistics is smaller than 5, lag-1 correlation is close to 

0, the ratio of the naïve standard error to the time series standard error is 

around 1, as well as the shape of the posterior histogram has unimodal shape.  

Summaries on the posterior distributions gave modes as point estimates, and 

uncertainties as 95% credible intervals for each parameter.  
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2.7 Various production models 

I chose several production models to compare and evaluate the 

performance of the state-space production model; the selected models 

included Fox production model (Fox, 1970), Yoshimoto-Clarke model 

(Clarke et al., 1992; Yoshimoto and Clarke, 1993), Schnute regression model 

(Schnute, 1977), ASPIC program (Prager, 2016, 1994) and Observation 

model (equation (5) and (8)).  The Fox model, commonly referred to as the 

exponential (production) model, assumes an exponential relationship 

between fishing effort and population size (Fox, 1970).  Since the model 

regards the surplus production as yield, the stock is in equilibrium (i.e., 

1t tB B  ).  Fox (1970) provided the following regression model to estimate 

parameters r and q with annual CPUE and effort. 

 

log logt tr
I I

q
E   (23) 

 

where the I  is catch per unit effort proportional to carrying capacity, k, 

and tE  is effort in year t.   
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However, Hilborn and Walters (1992) criticized that the equilibrium 

conditions lead to overestimate the stock size.  Thus, they warned their 

readers never to use the equilibrium methods.   

Clarke et al. (1992) and Yoshimoto and Clarke (1993) modified the Fox 

model under a non-equilibrium condition.  I denote the model as the YC 

model which is given as below: 

 

1 1log log
2 2

2 2 2
log ( )t t t t

r r q
E

r r
I qk I E

r 



  

        (24) 

 

Yoshimoto and Clarke (1993) showed that their model predicted CPUE 

data even with negative estimates of q and k.  

Schnute (1977) transformed the Schaefer model into a linear regression 

model which allowed one to use explanatory variables with geometric means 

of CPUE and effort data.  The Schnute model is given as follows.  

 

1 1

1 2
g

2
lo t t t t t

t

E E II
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Ir

qk
q  



        
 

  
 
 

(25) 
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I chose the former three models to compare, as they have been used 

frequently in recent publications and technical reports (Cho et al., 2009; Jeong 

and Nam, 2017; Kim et al., 2018; Kwon et al., 2013). 

The ASPIC program is developed by Prager (1994) and has been 

included in the NOAA toolbox.  Among the various modes available for 

fitting the data, I chose the Schaefer model with least squares method to 

provide results without process and observation error.  Whereas the former 

three models estimate r, k, and q as free parameters, the ASPIC program 

estimates four free parameters, , ,r k q  and 1976B .   

 

( / )t
t t t t

dB
r k

dt
BB F B    (26) 

 

Equation (26) says that the rate of change of the biomass is determined 

with the surplus production and fishing.  Here, tF  is the fishing mortality 

rate.  Since the ASPIC program fits the differential equation, units for the r 

and q are year-1 and year-1 haul-1, respectively.   

Without process error, the Observation model depicts the biomass 

dynamics within a deterministic system and variability in measurement.  In 
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the Observation model, the relative biomass from 1977 onward

1977 1978 2017,( , , )P P P  treated as derived parameters, which do not require the 

Laplace approximation.  Therefore, the estimation of the model parameters 

was performed within ADMB through maximum likelihood estimation 

instead of ADMB-RE. 
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3. Results 

3.1 State-space production model results 

I regarded the MCMC samples set built the posterior distributions with 

diagnostics which showed the MCMC samples for each parameter 

2 2
1976( , , , , , )opr k q P    converged (Table 2, Figure 3).  The point estimates 

(posterior modes) of intrinsic growth rate r and carrying capacity k were 0.30 

and 2,143,122MT, which the value was about five times larger than the largest 

yield achieved in 1996 (415,003MT, Figure 1).  For the catchability 

coefficient, the point estimate was 161010 l5. hau   .  Estimates of the 

variance of process error and observation error were 0.09 and 0.05, 

respectively.  I calculated the CVs for process error and observation error as 

follow: 

 

 
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The CV for the process error was 11 times larger than that of observation 

error, calculated at 89% and 8%, respectively.  The relative biomass in 1976 

1976( )P  was 1.12, which shows the initial biomass was about 10% larger than 

the estimated carrying capacity.  Management references MSY, MSYB  and 

MSYH  were 174,298MT, 1,071,152MT, and 0.15, respectively.  Table 3 lists 

the 95% credible intervals for each parameter.   

I also compared the prior and posterior distributions for 

2 2
1976( , , , , , )opr k q P   in Figure 3.  All posterior distributions were skewed 

to the right, and the posterior distributions of r and k showed similar to the 

shape of their priors.  The posterior distributions for variances of process 

and observation errors updated into narrower distributions compared to their 

priors (Figure 3d, 3e).  While the modes of the variances of process error 

and observation error estimated smaller than their modes of priors, the relative 

biomass in 1976, 1976P , predicted a larger value than the mode of its prior 

(Figure 3f).   



31 

Figure 4 shows the joint posteriors of two parameters with scatter plots.  

The notable negative relationship between k and q is shown as a banana shape.  

When scaling the biomass in the model with carrying capacity, it results in 

the relative biomass tP  having no dimension.  Because the CPUE in this 

study have the unit of MT/haul, carrying capacity and catchability coefficient 

have a negative relationship.  For example, if the model predicts a same 

value of tI , two possible values come from larger k and smaller q or smaller 

k and larger q.   

The state-space production (hereafter SSP) model fitted the CPUE data 

with the mixed trend by following the upward and downward phase (Figure 

5a).  Since there is no rigid criterion on fitting CPUE data which can 

determine to be a ‘good fit’ or a ‘bad fit’, I only presented the distance (i.e., 

2ˆ( )t tI I ) between the predicted values and the data.  The model showed 

the largest distance (9.21MT/haul) with the CPUE data (22.23MT/haul) in 

1996 (i.e., 199
2

6 1996
ˆ( )II   ), while the others remained within 5MT/haul.  

Estimated MSY from the model suggests that the stock was overexploited in 

the years of 1993-1996, 1999, 2001, 2004 and 2008 (Figure 5b).  Predicted 

annual biomass showed fluctuations in the range of 54 10 MT to 62.4 10
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MT, and was 61.5 10 MT in average (Figure 5c).  Because the stock did not 

reach a steady state during the entire period, the population size larger than 

the carrying capacity can be regarded as temporary variations in 1976, 1996, 

2008, 2009, 2011 and 2012.  The result argued that mackerel stock had a 

smaller size than MSYB  in 1982-1988 and 1990.  Only four years achieved 

a larger harvest rate than MSYH   (i.e., 1986, 1988, 1995, 1996) and has 

declined since 1996 (Figure 5d).   
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Table 2. Diagnostics for Markov Chain Monte Carlo samples for parameters 
2 2

1976( , , , , , )opr k q P   : Dependence factor of Raftery-Lewis statistics (DF), 

lag-1 autocorrelation, the ratio of the naïve standard error to the time series 
standard error, and the shape of posterior distributions were checked.  

Parameters DF 
Lag-1 

autocorrelation
Naïve / 

Time series
Posterior 

shape 

r  1.04 -0.02 1.08 Unimodal 

k  1.02 -0.03 1.04 Unimodal 

q  1.00 0.02 1.00 Unimodal 

2
p  1.04 -0.05 1.05 Unimodal 

2
o  1.04 0.01 1.00 Unimodal 

1976P  1.15 0.01 1.00 Unimodal 
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Table 3. Posterior summary for each parameter 2 2
1976( , , , , , )opr k q P   and management references.  Note that 

the units for k, MSY, MSYB  are metric ton (MT), q and 2
o  are 1/haul and log[MT/haul], respectively. 

Parameters 
 Summary 

 Mode 2.5% 50% 97.5% 

r   0.30 0.12 0.32 0.57 

k  
 2,143,122 950,266 2,770,000 6,408,487 

q   
 65.05 10    61.13 10    67.60 10    51.88 10   

2
p   

0.09 0.05 0.09 0.15 

2
o   

0.05 0.03 0.05 0.09 

1976P   1.12 0.43 1.20 2.13 

M SY    174,298 55,227 212,762 561,277 

M SYB   
1,071,152 473,829 1,380,000 3,207,033 

MSYH   
0.15 0.06 0.16 0.29 
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Figure 3. Posterior densities obtained with the specified priors.  Bold lines represent the priors and histograms 



36 

show the Markov Chain Monte Carlo samples from the posterior distributions in each panel.  Units for k, q and 
2
o  are metric ton (MT), 1/haul and log[MT/haul], respectively.  Note that a uniform prior for logq is considered 

while it is not shown in panel (c).
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Figure 4. Scatter plots of joint posteriors of two parameters.  Units for k, q and 2
o  are metric ton (MT), 1/haul 

and log[MT/haul], respectively.
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Figure 5. Results from the state-space production model including predicted CPUE, 
annual biomass, annual harvest rate and management references.  CPUE data 
(filled squares) is compared with the predicted CPUE (solid line) in panel (a).  
Panel (b) shows the Maximum sustainable yield (MSY, dashed line) with annual 
yield (solid line with filled circles).  Panel (c) depicts the predicted annual biomass 
(solid line) with carrying capacity (two-dashed line) and biomass that yields the 
MSY ( MSYB , dashed line).  Panel (d) shows the annual harvest rate (solid line) with 

the harvest rate that corresponds to MSY ( MSYH , dashed line).  
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3.2 Comparison with various production models 

Applying the various production models, each model provided parameter 

estimates.  Table 4 lists the estimates.  The Fox model, YC model, and Schnute 

model estimated three parameters r, k, q, whereas the ASPIC program estimated an 

additional parameter, the relative biomass in 1976, 1976P .  Since the Observation 

model considers the observation error, the model estimates one more parameter, 

2
o , than the ASPIC program.  The Observation model provided 95% confidence 

intervals for parameter estimates.  The Fox model and YC model estimated the 

intrinsic growth rate about 0.7 which values are larger than that of the SSP model.  

However, the Schnute model provided negative value on growth rate (-0.37), which 

implies the stock decreasing.  ASPIC program showed that the stock grew by 0.02 

per year and the Observation model estimated the growth rate as 0.46.  The Fox 

model and Schnute model estimated carrying capacity as -556,659MT and -

1,913,152MT, respectively.  The YC model estimated the smallest carrying 

capacity (585,284MT).  The Observation model and ASPIC program estimated 

the maximum population size to be greater than that of SSP model with 133.18 10  

and 124.86 10   in MT, respectively.  Regarding the average yield was 

51.40 10  MT in the entire duration (1976-2017), those two models suggest the 

stock was underexploited.  The ASPIC program also estimated that the biomass 
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level was low (0.1%) in 1976 compared to the carrying capacity, while the 

observation model estimated the stock size in 1976 was greater than its carrying 

capacity (177%).  The Fox model and Schnute model gave negative estimates for 

carrying capacity and catchability coefficient.  The YC model estimated the 

catchability coefficient which value is eight times larger than the estimated 

catchability coefficient from SSP model.  The observation model estimated the 

catchability coefficient with the smallest value, 1314. 3 07    in 1haul  , where 

ASPIC program estimated 92.09 10 1 1year haul   .  The ASPIC program and 

Schnute model estimated the relative biomass in 1976 smaller than 1, whereas the 

Fox and Schnute model provided negative values.  Observation error variance 

estimated from the Observation model was 0.15, three times larger than that of the 

SSP model.  Since the Observation model provided the lower 95% confidence 

limits for k and q with negative values (i.e., 171.66 10 MT for k and 902.47 1 

1haul  for q), which should have positive domains, only positive ranges of the 95% 

confidence intervals for k and q shown in Table 4.  I excluded the Fox and Schnute 

model in comparison of the predicted CPUE and biomass with other models, for 

producing unreliable estimates such as negative carrying capacity and catchability 

coefficient. 

I showed the predicted CPUE and biomass from the four different models in 
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Figure 6.  While the YC model moderately described the CPUE data (Figure 6a), 

it predicted the biomass in 1996 as 52.63 10 MT and failed to account the largest 

yield (Figure 6e).  The predicted CPUE from the ASPIC program showed a 

monotonic increase in years of 1976-2017, resulting in the stock size increase 

during the period (Figure 6b, 6f).  On the other hand, the Observation model 

predicted the declining CPUE which is similar to the data for initial years (i.e., 

1976-1980), but remained the same from 1986 onward (15.8MT/haul) (Figure 6c).  

In consequence, the predicted biomass graph showed a flat line from 1982 (Figure 

6g).  In addition to the flat graphs, 95% confidence intervals did not include the 

CPUE data, where the 95% confidence intervals for annual biomass was too wide 

to be shown with the predicted biomass.  The SSP model predicted the CPUE by 

picking up the fluctuation in the CPUE data (Figure 6d) and included the data within 

the 95% credible intervals.  In contrast to the YC model, which failed to explain 

the yield in 1996, the SSP model predicted the annual stock size to be larger than 

the annual yield from 1976 to 2017.  Not surprisingly, the goodness-of-fit statistics 

(i.e., 2( ˆ )t tII  ) suggested that the SSP model outperformed in fitting the CPUE 

data (YC: 1209, ASPIC: 1221, observation: 1459, SSP: 191).   
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Table 4. Parameter estimates obtained from various production models - Fox model (Fox), Yoshimoto-Clarke 
model (YC), Schnute model (Schnute), ASPIC program (ASPIC), Observation model (Observation) which the 
process error is not considered, and the state-space production model (SSP).  NAs in the table indicate that the 
model does not estimate the corresponding parameter(s).  Except for the ASPIC results, Units for k, q and 2

o  

are metric ton (MT), 1/haul and log[MT/haul] respectively.  For ASPIC, the units for r and q are 1year  and 
1 1year haul  , respectively.  The 95% confidence intervals and 95% credible intervals for estimates from the 

Observation and SSP are provided in parentheses, respectively.  Only positive ranges were showed for the 95% 
confidence intervals for k and q of the Observation model results. 

 

Parameters Fox YC Schnute ASPIC Observation SSP 

r  0.71 0.74 -0.37 0.02 0.46 
(0.06, 0.87) 

0.30 
0.12,( 0.57)  

k  -556,659 585,284 -1,913,152 124.86 10
133.18 10  

17(0,1.66 10 )  
2,143,122 

( , 6 40950 266 8 487)

q  505.77 1  54.39 10 502.55 1  92.09 10
1314. 3 07   
9(0, 2.47 10 )  

65.10 10  
6 5(1.13 , 1.8810 10 )  
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2
o  NA NA NA NA 0.15 

(0.09, 0.22) 
0.05 

( 03,0. 0.09)  

2
p  NA NA NA NA NA 

0.09 
( 05,0. 0.15)  

1976P  1.37 1.06 0.55 0.001 1.77 
(0.47, 3.10) 

1.12 
( 40,0. 2.10)  
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Figure 6. Predicted CPUE and biomass from the four different production models: Clarke-Yoshimoto production 
model, ASPIC program, Observation model and the state-space production model.  Plots in the first row show 
the predicted CPUE whereas plots in the second row show the predicted biomass.  Unit for the CPUE is metric 

ton per haul (MT/haul) and biomass for 610 metric tons (MT).  
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4. Discussion 

4.1 Estimates from various production models 

Because of the simplicity concerning data requirement and model structures, 

surplus production models have been applied until recently.  However, the results 

presented in Table 4 suggest that the simplicity does not guarantee the reliable 

estimates of model parameters and biomass, especially when the relative biomass 

index data shows a mixed trend.  For example, the Fox and Schnute model 

estimated negative values for carrying capacity and catchability coefficient which 

values should be positive.  While the YC model moderately fitted the CPUE data, 

it failed to estimate stock size larger than the yield in 1996.  The Observation 

model provided the uncertainties for the predicted CPUE as the SSP model had.  

However, the intervals of the model were too narrow to include the CPUE data 

(Figure 6c), which, in contrast, the SSP model could (Figure 6d).  This may the 

case the Observation model considers the observation errors only, whereas the SSP 

model incorporated both process and observation errors, resulting in the wider 

credible intervals for the predicted CPUE.  The ASPIC program and Observation 

model estimated the growth rate and carrying capacity as positive values, those two 

models suggest the optimum yield level with 93.89 10  MT and 101.94 10  MT 

respectively, which imply the stock was severely underexploited throughout the 
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whole duration.  In other words, the ASPIC program and Observation model may 

have an optimistic view of mackerel stock, which allows fishermen to exploit the 

stock more than the present level.  This is because the production models which 

were compared with the SSP model cannot account the fluctuations of CPUE data 

especially in the mid-90s.  In short, a state-space production model can be a 

solution for CPUE data with a mixed trend.   

Hilborn and Walters (1992) coined the term ‘data failures’ to explain that data 

containing insufficient information on model parameters, leading one to have 

unreliable estimates of carrying capacity and catchability coefficient (Table 4).  

Although the Observation model provided variances for point estimates, while the 

regression models and ASPIC program did not, the 95% confidence intervals of k 

and q (Table 4) included negative support.  Since the curvature of a likelihood 

function is associated with the amount of information in the data (Pawitan, 2001), 

the high variance of the maximum likelihood estimates (i.e., k̂  and q̂ ) imply the 

data is not very informative in estimating k and q.  Moreover, posterior results 

from the SSP model support this point.  While the posteriors of 1976P , q, 2
p , and 

2
o   updated from the prior and likelihood, the posteriors of r and k remained 

similar to their priors (Figure 3).  Regarding the posterior distribution on a 

parameter updated with prior and likelihood, the mackerel data did not provide 
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sufficient information to estimate r and k, resulting in the posterior distributions to 

reflect their priors.  Hilborn and Walters (1992) argued the data for production 

models are responsible for unreliable estimates.  They explained that the biomass 

dynamics models require data with historical change on stock size and fishing effort 

to get reliable estimates on parameters including r, k, and q.  For example, stock 

size consistently reduced from carrying capacity as the fishing effort increase at the 

beginning of fishing.  Once the stock size reduced about half of the virgin state, 

fishing effort decrease, and the stock has a chance to recover.  The recovery phases 

provide information on the intrinsic growth rate, where the depletion phases provide 

information on the catchability coefficient.  In practice, however, collecting data 

which provide sufficient information for parameters rarely accomplished.  

Therefore, ‘data failure’ can be translated into ‘model failure’, which implies 

insufficient description of biomass dynamics, and many researchers have 

mentioned (Carruthers et al., 2011; Millar and Meyer, 1999; Musick and Bonfil, 

2005; National Research Council, 1998; Pedersen and Berg, 2017).   
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4.2 Implementation of a state-space production model 

While state-space models have been favored for addressing the variability of 

a system which the model describes and noise in data, the estimation of random 

effects is computationally demanding.  As explained earlier, the state-space 

production model estimates both fixed effect parameters and random effect 

parameters.  Prager (1994) suggested to provide auxiliary information or 

assumptions for state-space models.  In the same context, prior distributions were 

considered as additional information for the state-space production model.  

Without previous studies of population parameters on chub mackerel, which aid in 

specifying prior distributions on model parameters, I borrowed prior distributions 

for model parameters from various studies.  Since priors address the probability 

on parameters, biologically absurd prior values were excluded.  For example, 

positive domains were chosen for modes of growth rate r, catchability coefficient q 

and 1976P .  Mode for carrying capacity k was only selected when its value was 

larger than the largest yield (415,003MT).  Since the priors were not supported by 

previous researches, minimum CV for each informative prior was set by 40% to 

avoid assigning highly informative priors.  In addition to the priors, software 

ADMB-RE performed both numerical optimization and MCMC sampling.  While 

the numerical optimization was an intermediate stage to find optimal priors for the 
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state-space production model, the software provides Laplace approximation 

without restrictive assumptions such as fixing the ratio between process and 

observation error variance or linear structure of models.  Once the priors selected, 

posteriors also can be calculated through the sampling without editing codes.  

Therefore, I recommend taking advantages of the statistical tool for the 

implementation of state-space models under both presence or absence of priors.   
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4.3 Stock assessment using data series from 1999 to 2017 

Yet, the state-space production model outperformed various production 

models in fitting a mixed trend data, the results should be regarded as a 

demonstration, not as a stock assessment for the stock.  While the CPUE data have 

been collected quite prolonged period (about 40 years), scientists in KNIFS 

conjectured that CPUE data lost consistency for reduction of fishing ground for the 

Korea-Japan Fisheries Agreement which was signed in 1998.  Therefore, I applied 

the state-space production model to shorter time series data (1999-2017) on 

mackerel and included the results in this section.  I denote the data set as ‘short 

data’ to distinguish it from the data set mentioned in the method section.  Since the 

numerical optimization was not achieved with the short data, I repeated the same 

method for implementation of the state-space production model, which described 

in section 2.  Table 5 lists the priors set which stabilized the numerical 

optimization.  Again, the length of 3900 posterior sample sets were obtained from 

the 0.2 billion iterations with a thinning interval of 50,000, and the initial 500,000 

samples were removed as a burn-in period.  Table 6 lists the diagnostics of samples, 

which showed the MCMC samples passed all four criteria.  The posterior 

summaries were provided in Table 7 and the comparison of priors and posteriors 

for each parameter was provided in Figure 7.  The posterior distributions of r, k, 
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and 1999P  reflected the priors, which indicate the amount of information contained 

in the data was not enough to estimate the three parameters (Figure 7a, 7b, 7f).   

The estimates of intrinsic growth rate, carrying capacity, and catchability 

coefficient, were 0.16 and 1,832,623MT, 55.49 10 1haul  , respectively.  

Variances for the process error and the observation error were 0.13 and 0.07, 

respectively.  The CVs of the process and observation error were 84% and 9% 

respectively, which indicate the relative variability of the process error was 9 times 

larger than the relative variability of the observation error.  The relative biomass 

in 1999 1999( )P  was 0.51, which indicates the stock size in 1999 was roughly half 

of the carrying capacity.  Calculated MSY, MSYB  and MSYH  were 152,677MT, 

910,866MT and 0.08, respectively.  95% credible intervals for the estimates were 

provided in Table 7, as uncertainties of estimates.   

With the short data, the SSP model fitted the CPUE data by following its trend, 

and the 95% credible intervals included the CPUE data (Figure 8a).  Compared to 

the calculated MSY, annual yield achieved in 1999, 2001, 2004 and 2008 were 

larger than MSY, where the other years remained below the MSY (Figure 8b).  

Predicted annual stock size was in a range of 61.0 10 MT to 61.8 10 MT, and the 

average biomass during the recent decade was about 61.2 10  MT (Figure 8c).  

Mean biomass during 1999 to 2017 was 1,064,924MT, and the smallest and the 
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largest biomass were 805,645MT and 1,419,278MT, respectively.  Harvest rate, 

the proportion of yield to biomass, showed decrease during the period (Figure 8d).  

Annual harvest rate was kept above the calculated MSYH .   

According to the National Oceanic and Atmospheric Administration (NOAA), 

‘overfishing’ and ‘overfished’ applied when a stock having harvest rate larger than 

MSYH   (e.g., t MSYH H  ) and the stock size is smaller than 0.5 MSYB   (e.g., 

0.5 MSY tB B ).  Regarding these definitions, I presented the historical trajectories 

of the annual harvest rate and biomass in a Kobe plot (Figure 9).  The plot suggests 

the stock was subject to overfishing from 1999 to 2017 and that the harvest rate 

exceeded MSYH .  After 1999, the annual harvest rate showed a decrease.  On the 

other hand, the annual biomass was larger than 0.5 MSYB , indicating that the stock 

was not overfished during 1999-2017.  The graph shows a small increase in the 

ratio between the biomass and MSYB  from 1.00 in 1999 to 1.07 in 2017.   

Quota management have been applied to mackerel since 1999 for large purse 

seine fisheries.  In 2017, the total allowable catch (TAC) was set at 123,000MT 

(Korean Ministry of Ocean and Fisheries, 2017), which was 80.56% of the MSY 

calculated in this study.  For fisheries managers, Hilborn (2010) introduced the 

concept of a ‘Pretty good yield’ defined as 80% of the MSY (Hilborn, 2010).  
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However, since the method of calculating TAC is not available to the public in 

Korea, the ‘pretty good yield’ from the result and the TAC cannot be directly 

compared.  Because the minimum legal size for mackerel is 21cm, the predicted 

annual biomass in this study must be interpreted as the biomass of fish larger than 

21cm.  The quota in 2017 can therefore be said to be optimal only if the TAC 

targets stock biomass within the legal size. 
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Table 5. Selected priors set that satisfied the numerical optimization of the 
likelihood function.  Values in the parentheses are parameters for each prior 
distribution. 

Parameter Prior Mode CV 

r  Log-normal ( -0.75, 0.86) 0.22 1.05 

k  Log-normal (15.14, 0.96) 1,454,000 1.26 

q  
Uniform (-90, -1) 

on log q  
Noninformative 

2
p  Inverse gamma (2.68, 1.06) 0.29 1.21 

2
o  Inverse gamma (4.78, 0.66) 0.11 0.60 

1999P  
Normal (-1.37, 1.35)  

on 1999log P  
0.07 1.69 
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Table 6. Diagnostics for Markov Chain Monte Carlo samples for parameters 
2 2

1999( , , , , , )opr k q P   : Dependence factor of Raftery-Lewis statistics (DF), lag-1 

autocorrelation, the ratio of the naïve standard error to the time series standard error 
and the shape of posterior distributions were checked. 

Parameters DF 
Lag-1 

autocorrelation
Naïve / 

Time series
Posterior 

shape 

r  1.04 0.00 1.03 Unimodal 

k  1.02 -0.02 1.00 Unimodal 

q  1.03 0.00 1.00 Unimodal 

2
p  0.99 -0.00 1.00 Unimodal 

2
o  0.98 -0.01 1.00 Unimodal 

1999P  1.06 0.02 0.94 Unimodal 
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Table 7. Posterior summaries of each parameter 2 2
1999( , , , , , )opr k q P    and management reference points: 

maximum sustainable yield (MSY), biomass that yields MSY( MSYB ), and harvest rate which corresponds to MSY 

( MSYH ).  Units for k, MSY, MSYB  are metric ton (MT), q and 2
o  are 1/haul and log[MT/haul], respectively. 

Parameters 
 Summary 

 Mode 2.5% 50% 97.5% 

r   0.16 0.05 0.28 1.03 

k  
 1,832,623 851,710 2,890,000 12,900,000 

q   
 

55.49 10    
61.70 10    

51.06 10    
54.18 10   

2
p   

0.13 0.08 0.14 0.30 

2
o   

0.07 0.04 0.08 0.15 

1999P   0.51 0.13 0.56 1.49 

M SY    152,677 33,208 205,295 1,020,000 

M SYB   
910,866 425,856 1,450,000 6,450,000 

MSYH   
0.08 0.03 0.14 0.52 
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Figure 7. Posterior densities obtained with the specified priors.  Dashed lines represent the priors and histograms 
depict the Markov Chain Monte Carlo samples from the posterior distribution in each panel.  Units for k, q and 

2
o  are metric ton (MT), 1/haul and log[MT/haul] respectively.  Note that a uniform prior for logq is considered 

while it is not shown in panel (c). 
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Figure 8. Comparison of management references and predicted values.  Panel (a) 
shows the CPUE data (filled squares) and the predicted CPUE (thick solid line) 
with the 95% credible intervals (dotted lines).  Annual yields are shown (solid line 
with filled circles) with MSY (dashed line) in panel (b).  In panel (c), the predicted 
annual biomass (thick solid line) and 95% credible intervals (dotted lines) are 
presented with estimated MSYB  (dashed line) and carrying capacity (two-dashed 

line).  Panel (d) contrasts the predicted harvest rate (thick solid line) and MSYH

(dashed line). 
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Figure 9. Kobe plot showing the predicted trajectories of /t MSYB B  and /t MSYH H  

from 1999 to 2017.  The stock is said to be “overfished” when the biomass tB  is 

smaller than / 2MSYB , and “overfishing” is said to occur when the harvest rate is 

larger than MSYH .   
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4.4 Suggestions for future research 

CPUE data are often influenced by various factors such as oceanic conditions 

or fishing gears (Hinton and Maunder, 2003; Hoyle et al., 2014).  To be specific, 

the observation equation in this study addresses that the CPUE is proportionally 

related to biomass with scaling factor q, where fishing vessels usually have 

selectivity to the target stock.  Therefore, Hinton and Maunder (2003) and Hoyle 

et al. (2014) suggested to present the observation equation as a generalized linear 

model to bring factors that may affect CPUE.  In case of Korean mackerel, fishing 

area can be included as a predictor variable.   

Another suggestion for assessing Korean mackerel is to combine the data from 

three countries, including Korea, China, and Japan to view as one population.  

While it is common to ignore movement (i.e., immigration or emigration) in 

production models, chub mackerel is known as a highly migratory species, 

distributed from the East China Sea to Kurile Island, including East/ Japan Sea 

(Castro Hernandez and Ortega Santana, 2000; Hiyama et al., 2002; Lee, 2018).  In 

addition to the wide range of habitats, chub mackerel is exploited by Korea, China 

and Japan in adjacent fishing grounds.  This weakness could be addressed by 

aggregating annual yield and CPUE data from all three countries and applying the 

state-space production model to assess the stock as a single population.  Similarly, 
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Hiyama et al. (2002) used two data sets, one each collected from Korea and Japan, 

and estimated the stock size as a single population in the East China Sea and the 

Japan Sea based on chub mackerel migration patterns.  This simple approach may 

provide better estimates of model parameters once rigorous studies have been 

conducted on the migratory pattern of the species. 
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5. Conclusions 

In this study, I applied a state-space production model to Korean mackerel data 

collected from 1976 to 2017 with prior distributions for model parameters with the 

script software ADMB-RE.  The model provided parameter estimates including 

intrinsic growth rate, carrying capacity, catchability coefficient, variances of 

process and observation error and annual biomass, as well as their uncertainties.  

The state-space production model outperformed various production models in 

fitting CPUE data with a mixed trend.  Result of applying the model to data from 

1999 to 2017 indicated that the stock suffered from overexploitation in terms of 

harvest rate.  In conclusion, the state-space production model should be preferred 

when fitting the relative biomass index which trajectories show fluctuations in the 

overall period.  Future studies regarding the migration pattern of the species and 

modification of the observation equation in the state-space production model would 

be worthwhile.   
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학을 조금 더 이해할 수 있는 깊은 시간을 보냈습니다.  또한 고등어와 자료에 대해 

많은 질문을 드렸음에도, 자세하게 답변해주신 서영일 박사님과 이재봉 박사님 덕분
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건물에서 마주칠 때마다 따뜻한 한마디로 격려해 주셨던 김수암 교수님, 남기완 

교수님, 백혜자 교수님, 오철웅 교수님, 김현우 교수님, 박원규 교수님께 진심으로 감

사드립니다.  교수님들의 지도 덕분에 해양생물이라는 분야의 여러 면모를 맛볼 수 

있었습니다.  

많은 질문에 일일이 시간 내주시고, 다방면으로 조언을 주신 윤민 교수님께 감사

드립니다.  교수님 덕분에 제가 학문을 대하는 자세를 다시 돌아보고 고민해보는 시

간을 가졌습니다.   

졸업 이후에도 학문적으로 많은 도움을 주신 김규한, 이효태 선배님께 감사드립
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니다.  두 분의 피드백 덕분에 이 페이지까지 무사히 도착했습니다.  실험실에서 함께 

의지하며 공부했던 김진우 동기님께, 그리고 안동영, 박민규, 이승준 후배님께 감사드

립니다.  

아울러 늘 저를 응원해준 무진언니, 늘 걱정해주고 챙겨주신 화현언니, 부족한 영

어를 다듬는데 많은 시간을 할애해주신 김도균 선생님, 늘 도움의 손길을 내밀어주셨

던 윤정훈 선생님, 제 작은 고민에도 주기적으로 시간 내주시던 가람언니, 시도때도 

없는 디버깅을 도와주신 동원오빠, 항상 용기를 주었던 현정언니와 주란언니, 바쁜 와

중에도 불구하고 디펜스 들으러 먼 걸음 해주신 태우오빠, 공감률 100% 의철오빠, 

서글서글한 서하 회장님, 어느덧 박사님이 되신 영선언니와 곧 박사님이 되실 승은언

니, 미래가 기대되는 부용이, 열심히 살아가는 태용이, 꽃길만 걷게 될 대근오빠, 한 

학기 먼저 졸업하고 힘내라는 말을 아낌없이 던져준 수진이, 끈기파 대학원생 소정이, 

파워 긍정 소영이, 훌륭하게 학업을 마무리한 해인이, 사회인으로서 성실히 살아가고 

있는 윤정, 민경, 수진, 네 학기 내내 고마웠던 온화한 선생님 경란이와 어엿한 직장

인 예지, 그리고 이진호 과장님에게 진심으로 감사드립니다. 

마지막으로, 제 성취도에 관계없이 따끔하고 따뜻한 말로 저를 보듬어준, 사랑하

는 나의 가족에게 이 논문을 바칩니다.  
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8. Appendices 

Appendix A: Normal prior on 1976log P  in ADMB-RE 

In practice, within the software ADMB-RE, prior distributions for model 

parameters 2 2
1976( , , , , ),opr Pk q    were considered using mode and CV.  A normal 

distribution was specified for 1976log P   using the mode and CV for 1976P  .  A 

simple proof of the relationship between a normal distribution and a log-normal 

distribution with transformation of a random variable given as below.  

Let X be a random variable which follows a log-normal distribution with a 

mean of X  and variance of 2
X .  That is, X 2~ log ( , )X XN   .  Thus, X have 

the probability density function (PDF) as follows. 
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given that 
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Since the random variable X is log-normally distributed, Y is said to follow a 

normal distribution with the same parameters of the distribution of X.  Note that 

the parameters X  and 2
X  for the random variable X are not mean and variance, 
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but they are for logY X   which follows a normal distribution.  Mean and 

variance of X are given as  

 

21

2
( ) exp X XE X     

 
  (A.1) 

 

       2 2var exp 2 exp 1X X XX       (A.2) 

 

And the mode and CV are given as 

 

   2mode exp X XX      (A.3) 

 

 2exp 1CV X    (A.4) 

 

ADMB-RE code shown in next section involves re-expression of X   and 

2
X  with the mode and CV of X, and I provided how I derived them from (A.1) 

and (A.2). 

First, switch the first term in variance of X with    2 2exp 2 X XE X      . 

Then the (A.2) can be written as below. 
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Then the variance of X can be expressed in terms of  2exp X .  That is, 
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Taking the logarithm of (A.5), variance of logY X  is obtained as  
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 (A.6) 

 

Taking the logarithm of both sides of (A.1), and re-express the 2
X  with the 

right-hand side of (A.6).  The resulting equation is: 
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That is,  
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Mean of logY X  can then be expressed with mean and variance of X, E(X) 

and var(X). 
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2
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Given the mode and CV in (A.3) and (A.4), X  and 2
X  are re-expressed 

as below. 
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  22 CVlog 1X X       (A.9)
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Appendix B: ADMB-RE code for a Bayesian state-space production model 

TPL file 
//a state-space production model  
//Target data: Chub Mackerel (KNIFS)  
//Author: Saang-Yoon Hyun and Yuri Jung  
TOP_OF_MAIN_SECTION 
  arrmblsize=50000000; 
  gradient_structure::set_MAX_NVAR_OFFSET(50000); 
  gradient_structure::set_NUM_DEPENDENT_VARIABLES(100000); 
   
DATA_SECTION 
  init_ivector ddim(1,3); 
  int nyrs;  
  int ncol;  //data column 
  !!nyrs=ddim(1);  
  !!ncol=ddim(2);  
   
  init_matrix catchcpue(1,nyrs,1,ncol);    
  vector yrs(1,nyrs);  
  vector Ct(1,nyrs);  //Yield  
  vector It(1,nyrs);  //cpue data 
  vector log_It(1,nyrs); 
  !!yrs=column(catchcpue,1);  
  !!Ct=column(catchcpue,2); 
  !!It=column(catchcpue,3); 
  !!log_It=log(It);           
   
  number min_logK;  
  !!min_logK=log(max(Ct)); 
 
  init_vector mode_P1(1,3); 
  init_vector CV_P1(1,3); 
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  number mu_logP1; // mean of the log_P1 
  number var_logP1; // variance of the log_P1 
  number mean_P1; 
  number var_P1; 
  number check_mean_logP1; 
  number check_var_logP1; 
   
  //prior for sig2_obs ~ inverse gamma (alpha, beta); 
  init_vector mode_sig2_obs(1,3);  
  init_vector CV_sig2_obs(1,3);  
  number alpha_sig2_obs;   
  number beta_sig2_obs;  
  
  //prior for sig2_proc ~ inverse gamma (alpha, beta); 
  init_vector mode_sig2_pr(1,3);  
  init_vector CV_sig2_pr(1,3);  
  number alpha_sig2_pr; 
  number beta_sig2_pr;  
   

//prior for K ~ lognormal (mu, sigma2); - lnorm(mu,sigma2) 
  init_vector mode_K(1,3); 
  init_vector CV_K(1,3); 
  number sig_K; 
  number mu_K; 

 
///prior for r ~ lognormal (mu, sigma2);  
  init_vector mode_r(1,3); 
  init_vector CV_r(1,3); 
  number sig_r; 
  number mu_r;  
   
PARAMETER_SECTION 
  init_number log_sig2o(4);     
  init_number log_sig2p(5);  
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  init_bounded_number log_K(min_logK,17.0,2);   
  init_bounded_number log_q(-90.0,-1.0,3); 
  init_number log_r(1);     
  random_effects_vector log_Pt(1,nyrs+1,6); //Pt= Bt/K;   
     
  number sig2o;  //observation error 
  number sdo;  
  number sig2p; //process error 
  number sdp;  //sd of the process error  
  number K;  
  number q;  
  number r; 
  number P1; 
  number aic; 
   
  sdreport_vector Pt(1,nyrs+1); 
   
  sdreport_number MSY; 
  sdreport_number Bmsy; 
  sdreport_number Hmsy; 
  sdreport_number Fmsy; 
   
  sdreport_vector Bt(1,nyrs+1);  //Pt= Bt/K; 
  sdreport_vector fCPUE(1,nyrs+1); //fitted CPUE 
   
  objective_function_value jnll;  // joint negative log-likelihood  
   
PRELIMINARY_CALCS_SECTION 
  mu_logP1=log( mode_P1(1)*( square(CV_P1(1))+1) ); 
  var_logP1=log( square(CV_P1(1))+1 ); 
  mean_P1=mfexp( mu_logP1+0.5*var_logP1 ); 
  var_P1=mfexp( 2.0*mu_logP1+var_logP1 )*( mfexp(var_logP1)-1 ); 
  check_mean_logP1=2.0*log(mean_P1)-
0.5*log( var_P1+square(mean_P1) ); 
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  check_var_logP1=-2.0*log(mean_P1)+log( var_P1+square(mean_P1) ); 
   
  alpha_sig2_obs=(1.0/square(CV_sig2_obs(1)))+2.0;  
  beta_sig2_obs=mode_sig2_obs(1)*(alpha_sig2_obs+1);  
  alpha_sig2_pr=(1.0/square(CV_sig2_pr(1)))+2.0;  
  beta_sig2_pr=mode_sig2_pr(1)*(alpha_sig2_pr+1);  
  mu_K=log(mode_K(1)*(square(CV_K(1))+1)); 
  sig_K=sqrt( log(square(CV_K(1))+1) );                               
  mu_r=log(mode_r(1)*(square(CV_r(1))+1)); 
  sig_r=sqrt( log(square(CV_r(1))+1)); 
   
PROCEDURE_SECTION 
  jnll=0.0; 
   
  sig2o=mfexp(log_sig2o); //exp(log(a))=a 
  sdo=sqrt(sig2o);  
  sig2p=mfexp(log_sig2p); 
  sdp=sqrt(sig2p); 
   
  //sdp=sdo*scale;    //scale  //sdp=mfexp(log_sdp); 
  K=mfexp(log_K); 
  q=mfexp(log_q); 
  r=mfexp(log_r); 
  P1=mfexp(log_Pt(1)); 
  Pt=mfexp(log_Pt); 
   
  fCPUE=mfexp(log_Pt)*q*K; //fitted CPUE  
  Bt=mfexp(log_Pt)*K; 
  MSY=r*K/4; 
  Bmsy=K/2; 
  Hmsy=r/2; 
  Fmsy=MSY/Bmsy; //Compare the results from Hmsy, Fmsy! 
   
  //prior for log_Pt(1);  



81 

  jnll+=0.5*log(2.0*M_PI)+0.5*log(var_logP1)+square(log_Pt(1)-
mu_logP1)/(2.0*var_logP1); //log(P1)~normal(mu_logP1, var_logP1); 
   
  for(int i=2;i<=(nyrs+1);++i)  { 
     step(log_Pt(i-1),log_Pt(i),sdp,K,r,i-1); 
  };  
  for(int i=1;i<=nyrs;++i)  { 
     obs(q,K,log_Pt(i),sdo,i);     
  };  
   
  //prior for sig2_obs ~ inverse gamma  //as the negative logarithm; 
  jnll+=-
1.0*alpha_sig2_obs*log(beta_sig2_obs)+gammln(alpha_sig2_obs)+1.0*(alp
ha_sig2_obs+1.0)*log(sig2o)+beta_sig2_obs/(sig2o);  
    
  //prior for sig2_process ~ inverse gamma; //as the negative logarithm; 
  jnll+=-
1.0*alpha_sig2_pr*log(beta_sig2_pr)+gammln(alpha_sig2_pr)+1.0*(alpha_s
ig2_pr+1.0)*log(sig2p)+beta_sig2_pr/(sig2p);  
   
  jnll+=0.5*log(2.0*M_PI)+log(sig_K)+log_K+square(log(K)-
mu_K)/(2.0*sig_K*sig_K); 
   
  //prior for r ~lognormal distribution (-1.38, 0.51^2) // as the negative 
logarithm; 

jnll+=0.5*log(2.0*M_PI)+log(sig_r)+log_r+square(log(r)-
mu_r)/(2.0*sig_r*sig_r); 
   
  aic=2.0*jnll+2.0*(nyrs+6); // number of free parameters: 5 free parameters 
and the Pt(1, nyrs+1) 
 
  if(mceval_phase()) Get_outputs(); 

 
FUNCTION Get_outputs   
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out1<<sig2o<<" "<<sig2p<<" "<<K<<" "<<q<<" "<<r<<" "<<MSY<<" 
"<<Bmsy<<" "<<Hmsy<<" "<<Pt<<" "<<Bt<<endl;  //see Global_section   
 
SEPARABLE_FUNCTION void step(const dvariable& log_P1, const 
dvariable& log_P2, const dvariable& sdp, const dvariable& K, const 
dvariable& r, int i) 
  dvariable varp=square(sdp);  
  dvariable P1=mfexp(log_P1); 
  dvariable predP=(P1+r*P1*(1-P1)-Ct(i)/K); 
  jnll+=0.5*log(2.0*M_PI)+0.5*log(varp)+square(log_P2-
log(predP))/(2.0*varp); 
   
   
SEPARABLE_FUNCTION void obs(const dvariable& q, const dvariable& K, 
const dvariable& log_Pt, const dvariable& sdo, int i) 
  dvariable varo=square(sdo); 
  dvariable log_predIt=(log(q)+log(K)+log_Pt);  
  jnll+=0.5*log(2.0*M_PI*varo)+square(log_It(i)-log_predIt)/(2.0*varo); 
   
REPORT_SECTION  
  report<<"#prior for sig2_obs ~ inverse gamma(alpha, and beta)"<<endl; 
  report<<"#alpha.o, beta.o, mode.o, CV.o: "<<endl; 
  report<<alpha_sig2_obs<<" "<<beta_sig2_obs<<" 
"<<mode_sig2_obs(1)<<" "<<CV_sig2_obs(1)<<endl; 
  report<<"#alpha.p, beta.p, mode.p, CV.p: "<<endl; 
  report<<alpha_sig2_pr<<" "<<beta_sig2_pr<<" "<<mode_sig2_pr(1)<<" 
"<<CV_sig2_pr(1)<<endl; 
  report<<"#sdp, sdo: "<<endl; 
  report<<sdp<<" "<<sdo<<" "<<endl; 
  report<<"#mu_r, sig_r: "<<endl; 
  report<<mu_r<<" "<<sig_r<<endl; 
  report<<"#mu_K, sig_K: "<<endl; 
  report<<mu_K<<" "<<sig_K<<endl; 
  report<<"#min_logK: "<<endl; 
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  report<<min_logK<<endl; 
  report<<"#mu_logP1, check_mean_logP1, var_logP1, check_var_logP1, 
mean_P1, var_P1"<<endl; 

report<<mu_logP1<<" "<<check_mean_logP1<<" "<<var_logP1<<" 
"<<check_var_logP1<<" "<<mean_P1<<" "<<var_P1<<endl; 
  report<<"#MSY, jnll, AIC: "<<endl; 
  report<<MSY<<" "<<jnll<<" "<<aic<<endl; 
  report<<"#yr Ct It predIt Pt Bt max.grad: "<<endl;  
  for(int i=1;i<=nyrs;i++)  { 
     report<<yrs(i)<<" "<<Ct(i)<<" "<<It(i)<<" 
"<<q*K*mfexp(log_Pt(i))<<" "<<mfexp(log_Pt(i))<<" 
"<<K*mfexp(log_Pt(i))<<" "; 
     report<<objective_function_value::gmax<<endl;  
  }; 
   
GLOBALS_SECTION 
  #include <admodel.h> 
  #include <math.h> 
  #include <stdio.h> 
  #include <stddef.h> 
  #include <stdlib.h> 
   
  ofstream out1("mcmc.out"); 
   

DAT file with mackerel data (1976-2017) 
# dimension 
42 3 -99  
# year, # yield (Metric ton) # CPUE (Metric ton per haul) 
1976 107382 27.3 
1977 113051 19.3 
1978 99519 16.5 
1979 120283 18 
1980 62690 10.4 
1981 108082 13.1 
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1982 99447 10 
1983 122883 11.42 
1984 101714 7.95 
1985 68479 3.87 
1986 103511 7.75 
1987 101337 8.49 
1988 162828 12.79 
1989 163617 14.47 
1990 96297 10.1 
1991 89738 12.03 
1992 115619 12.47 
1993 174684 15.07 
1994 210442 17.45 
1995 200481 12.66 
1996 415003 32.44 
1997 160448 16.19 
1998 172925 18.17 
1999 177540 16.73 
2000 145908 12.8 
2001 203717 16.64 
2002 141751 14.22 
2003 122044 15.26 
2004 184274 22.33 
2005 135596 15.74 
2006 101427 12.65 
2007 143776 18.93 
2008 187240 27.47 
2009 117960 26.22 
2010 94331 17.77 
2011 138729 26.93 
2012 125143 25.11 
2013 102114 19.3 
2014 127452 21.55 
2015 131735 21.08 
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2016 133200 20.16 
2017 103870 16.46 
# mode for P1 
0.22244 -99 -99 
# CV for P1 
1.24 -99 -99 
# mode for variance of observation error 
0.09451 -99 -99 
# CV for variance of observation error 
0.81 -99 -99 
# mode for variance of process error 
0.19654 -99 -99 
# CV for variance of process error 
0.96 -99 -99 
# mode for K 
2137000 -99 -99 
# CV for K 
0.64 -99 -99 
# mode for r 
0.28336 -99 -99 
# CV for r 
0.49 -99 -99 
 

DAT file with mackerel data (1999-2017) 
# dimension 
19 3 -99 
# year, # yield (Metric ton) # CPUE (Metric ton per haul) 
1999 177540 16.73 
2000 145908 12.8 
2001 203717 16.64 
2002 141751 14.22 
2003 122044 15.26 
2004 184274 22.33 
2005 135596 15.74 



86 

2006 101427 12.65 
2007 143776 18.93 
2008 187240 27.47 
2009 117960 26.22 
2010 94331 17.77 
2011 138729 26.93 
2012 125143 25.11 
2013 102114 19.3 
2014 127452 21.55 
2015 131735 21.08 
2016 133200 20.16 
2017 103870 16.46 
# mode for P1 
0.06603 -99 -99 
# CV for P1 
1.69 -99 -99 
# mode for variance of observation error  
0.11479 -99 -99 
# CV for variance of observation error 
0.6 -99 -99 
# mode for variance of process error 
0.28697 -99 -99 
#CV for variance of process error 
1.21 -99 -99 
# mode for k 
1454000 -99 -99 
# CV for k 
1.26 -99 -99 
# mode for r 
0.22498 -99 -99 
# CV for r 
1.05 -99 -99 
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