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Abstract

Surplus production models are considered the simplest stock assessment
models, with more parsimonious model parameters, compared to other stock
assessment models. In addition to the simple model structure, the models
require only two sets of time series data including annual yield and catch-per-
unit-effort (CPUE) from commercial fishery or survey index from a scientific
survey. While many researchers had applied production models for such
advantages, most of the data fitting the models had only shown relatively
stable trends of increase or decrease. Korean chub mackerel (Scomber
japonicus) CPUE data, however, displays a mixed trend, showing fluctuations
in quantity throughout multiple periods. Thus, leading researchers to get
unreliable estimates on model parameters. While simpler model structures
provide multiple benefits, production models have been criticized for
sacrificing biological realism for mathematical simplicity. A state-space
production model is one of the solutions to such objection by accounting for
both unmodelled variability on biomass dynamics (process error) and

measurement uncertainty (observation error). The main purpose of this



study is to fit the CPUE data with a mixed trend using a Bayesian state-space
production model. To stabilize the numerical optimization, prior
distributions were considered.  Implementation is performed in script
software ADMB-RE, because it reduces the computational cost on high-
dimensional integration and provides Markov Chain Monte Carlo sampling
which is required to a Bayesian approach. Applying the state-space
production model to annual yield and CPUE data collected from a
commercial fishery during 1976-2017, the model estimated key parameters
and predicted annual CPUE and biomass. Comparison with results from
various production models showed that the state-space production model
explained the mixed trend in data best. The results suggested that the state-
space production model should be preferred to the other production models

in fitting CPUE data with a mixed trend.

xi



1. Introduction

The main goal of stock assessment is to maximize profit from the catch
while also effectively conserving a fish stock (Quinn and Deriso, 1999).
Therefore, stock assessment involves quantitative predictions about fish
populations using mathematical and statistical models. Surplus production
models, or biomass dynamics models fall into a category of stock assessment
models, which have been studied extensively for several advantages.
Compared with other stock assessment models, production models have
parsimonious number of parameters making the model structure simpler.
Moreover, the models have lighter data requirement: historical data on yield,
and relative abundance index, which can be catch-per-unit-effort (CPUE)
from commercial fisheries or survey index from scientific surveys. It is not
surprising the production models have long been primarily applied to data-
limited situations where age or size data on a stock are not available. Many
studies which used various versions of production models, however, have
used CPUE data only showed increase or decrease in the overall trend
(Carruthers et al., 2011; Chaloupka and Balazs, 2007; Millar and Meyer, 1999;

Polacheck et al., 1993; Rankin and Lemos, 2015; Zeller et al., 2008). On



the other hand, the CPUE data on Korean chub mackerel showed conspicuous
fluctuations or a mixed trend. Although some researchers attempted to
estimate the model parameters of production models with the mackerel data,
one of the study eliminated the data in 1996 regarding as an outlier which
produces a significant peak (Choi et al., 2004). Cho et al. (2009) failed to
estimate model parameters of various production models. While production
models have many advantages mentioned above, they are criticized for
sacrificing biological realism for model simplicity (Millar and Meyer, 1999).
To be specific, the model describes population growth with one parameter,
intrinsic growth rate, by aggregating natural factors including growth,
recruitment, natural mortality. Pella and Tomlinson (1969) pointed out the
model structures are too simple to explain the population dynamics with
various sources of variability, such as interactions among species and abiotic
conditions (Pedersen and Berg, 2017).

A state-space production model is one of the attempts that can alleviate
the doubt on the simplicity of production models. It explicitly includes
process errors and observation errors to account unmodelled factors and noise

in data, respectively. Despite the ability to consider the two sources of



uncertainty, process errors demand the estimation of a large number of free
parameters and require high-dimensional integration as well. Because of the
computational costs, studies have been implemented linear state-space
models, which is ecologically unrealistic (Rivot et al., 2004).  Another
action for fitting a state-space model is assuming the ratio between the
variance of the process and observation errors to be known (Kimura et al.,
1996; Ludwig et al., 1988). Fortunately, the development of statistical
software such as script software ADMB-RE (Fournier et al., 2012; Skaug and
Fournier, 2017) and R package TMB (Kristensen et al., 2016) enabled the
implementation of state-space models with Gaussian error structures through
the Laplace approximation. Another advantage of ADMB-RE is provision
of Markov Chain Monte Carlo (MCMC) sampling without any revision of the
computer code. In this study, prior distributions for model parameters are
considered to stabilize the numerical optimization.

The main purpose of this study is to apply a state-space production
model to Korean mackerel data for which CPUE showed a mixed trend. The
state-space production model was implemented within ADMB-RE, and prior

distributions were considered to aid numerical optimization. The present



study provided estimates of key parameters, including intrinsic growth rate,
carrying capacity and annual biomass, as well as their uncertainties. The
model also provided management references such as maximum sustainable

yield (MSY), harvest rate that correspond to the MSY(H,,s, ), and biomass
that yields the MSY(B,,, ). Applying various production models to the

same data, predicted CPUE and biomass trajectories were compared to show

the model performance.



2. Materials and Methods

2.1 Fishery data on mackerel

Hilborn (2002) introduced a quote from John Shepherd, stating that
counting fish is like counting invisible trees moving around. In other words,
counting fish stock size underwater is impossible, unless fishing them all.
To resolve such crucial problem, relative index of biomass (CPUE or survey
index) is utilized in estimating stock biomass.

Two sets of historical data available on chub mackerel: annual yield and
CPUE with units of metric ton (MT) and metric ton per haul (MT/haul).
Figure 1a and 1b show the annual yield and CPUE of mackerel from 1976 to
2017. Every year, Statistics Korea have collected the yield from entire
fisheries on mackerel. ~Korean National Institute of Fisheries Science
(KNIFS) have gathered the yield and effort data from 70% of the entire large
purse seine fisheries to calculate the CPUE data. ~ When the fishing trips over,
fishermen fall into the 70% provided the total yield and effort (number of
hauls). Effort is calculated by multiplying a constant to the number of
fishing days (Y. Seo, Korean National Institute of Fisheries Science, Busan,

Korea, personal communication). In this study, I regarded the CPUE



(Figure 1b) to be representative of all chub mackerel fisheries, as large purse
seine fisheries produced more than 90% of total yield on average (Figure 1c¢).
As shown in Figure 1, trajectories of yield and CPUE have the peaks with
highest value of 415,003MT and 32.44MT/haul in 1996. Several scientists
in KNIFS argued the CPUE data lost consistency after the Korea-Japan
fisheries agreement, which was signed in 1998, because of the reduction of
the fishing ground (S. Kang and H. Cha, Korean National Institute of
Fisheries Science, Busan, Korea, personal communication). Regarding
their opinion on the data, the results with data series of 1976 to 2017 should

be accepted for demonstration only.
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Figure 1. Chub mackerel data from 1976 to 2017. Panel (a) shows the
annual yield collected from entire fisheries on mackerel, and panel (b) shows
the catch per unit effort (CPUE) data. Panel (c) presents the percentage of
the yield achieved by large purse seine fisheries to total yield on chub
mackerel. Units for the yield and CPUE are metric ton (MT) and metric ton
per haul (MT/haul).




2.2 Surplus production model
In stock assessment, mathematical models involve that describe the
dynamic system and observation which linked to the population. A surplus
production model depicts the biomass dynamics with three terms — biomass

in the previous year, surplus production and catch from commercial fisheries.

Bt+l =Bt+ f(Bt)_Yt (1)

In equation (1), B, is biomassinyeart, Y, is fisheries yield in year t.
f(B,) represents the ‘surplus production’ and contains the entire changes in

natural increase and decrease, such as growth in weight, recruitment, and
natural mortality (Hilborn and Walters, 1992). Equation (1) says that the
stock size in the next year (t+1) is the sum of the biomass and surplus
production, which are removed with yield in the previous year (t). Among
the various versions of surplus production models, I chose the discrete
version of the Schaefer model (Schaefer, 1954) proposed by Hilborn and

Walters (1992):



where r is intrinsic growth rate of a population and Kk is carrying capacity.
The biological assumption lying behind this model is that the stock increase
by the growth rate until the stock size reaches to the carrying capacity. From
the logistic relationship (Figure 2a) described by equation (2), surplus

production is maximized at B =k /2, and called By under absent of

fishing (Figure 2b). MSY and harvest rate which correspond to MSY

(H s ) are calculated as rk /4 and r /2 by plugging B =k /2 into

equation (2) under absence of fishing.

The Schaefer model has been criticized because the surplus production
is always maximized when the biomass is 50% of the carrying capacity (i.e.,
B =k /2). Toimprove flexibility, Pella and Tomlinson (1969) introduced
a shape parameter that allows the production curve to be asymmetric (Quinn

and Deriso, 1999).

r B, ’
f(Bt):;Bt{l_(?j J (3)



Despite such advantage, the model should estimate one more parameter
(the shape parameter @ ) than the Schaefer model. In addition, Hilborn and

Walters (1992) pointed out that few data sets would allow modelers to obtain
reliable estimate of the shape parameter. Therefore, I chose the Schaefer
production model in this study. Equation (2) is called deterministic process
equation because it describes biomass dynamics system without statistical
errors.

Likewise, deterministic observation equation depicts the measurement

of biomass, which links the data to biomass as follows:

=B, (4)

where |, represents the CPUE collected in year t, and q is catchability

t

coefficient. If survey data is present, |, can be survey index. Equation

(4) demonstrates that the CPUE collected in year t is directly related to
biomass with a coefficient q. Since the biomass in the model may be

subjected to autocorrelation (Millar and Meyer, 1999, 2000), which reduces

10



the efficiency of parameter estimation, I used relative biomass P, by scaling
the biomass B, with carrying capacity kK (P, =B,/k). The resulting

equations are

P

t+1

=P, +rP,(1-P)-Y,/k (5)

and

| = qkR (6)

11
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Figure 2. Logistic growth (a) and surplus production curve (b) of the
Schaefer model under the absence of fishing. Panel (a) shows the
population size converges to carrying capacity, where panel (b) depicts the
surplus production as the population size grows.
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2.3 A state-space production model

Assuming multiplicative errors on equations (5) and (6), a state-space

production model is formulated as below.

Pa=[R+mR(1-R)-Y /K ]exp(s) @

l, = qkP exp(&f) (8)

In equations (7) and (8), &° is process error and & is observation

error. The errors are assumed to follow normal distributions with the mean

of 0 and variance of o} and o, respectively, i.c.,

& ~N(0,0%)

9
g ~N(0,070) )

With those errors included, equations (7) and (8) are called process
equation and observation equation. Process error in equation (7) accounts

the unmodelled natural variability which influences the biomass dynamics.

13



Punt (2003) mentioned that natural variabilities arise from the growth of the
population, recruitment, and natural mortality for production models. The
process error allows the biomass to be treated as a random variable. On the
other hand, the observation error describes variability in CPUE data including
measurement errors and reporting errors (Winker et al., 2018). To
categorize the different types of parameters, I denoted the relative biomass

P=(P

1976°

P

9775+ Pyo1g) as random effect parameters or state variables, and

parameters 6 = (r,k,q,0,,o0,) as fixed effect parameters. Note that the

random effects have subscript t, where O are time-invariant constant

parameters.

14



2.4 Likelihood function

In statistics, a likelihood function describes the likelihood of
parameters being true parameters for the given data. Parameters are
estimated by maximizing the function.

The logP, is normally distributed with the mean of

log[R +rP (1— PI)—Yt /k] and variance of o?. Thatis,

logR,, ~ N (log[ R +rR,(1-R)-Y,/k],0}) (10)

Likewise, logl, is normally distributed with the mean of log[qgkP,]

and variance of o .

log!, ~N(log[gkR]. o7 ) (11)

Assuming mutual independence, the likelihood functions for process and

observation equations have the following forms.

15



L(r.k, o}, P| Y) =

o _(logPM—[log{Pt+rPt(1—Pt)—Yt/k}])2 (12)
2

1976 \/27T0'p ZO'p

2

2017 {log I, —log[qkpt ]}
L ,k,aj,PI: exp| — 13
(q | ) 11;! 272.00 P 20'3 ( )

Note that Y = (Y 454, Yig775 -+ Yagir) and T=(lig6, Lgps oo, 1ygp0) -

With the likelihood functions (12) and (13), the joint likelihood

function have the following form, given the data D =(Y,I).

L(r.k,q,0.,0.,P|D)=
L(r.k,o,.P|Y)-L(a.k,o;,P[I)

(14)

16



2.5 Prior distributions
Within the script software ADMB-RE, the state-space production model
estimates both fixed and random effect parameters using the empirical Bayes
method (Skaug and Fournier, 2017). Under the approach, fixed effects are
estimated by maximum likelihood estimation, and random effects are
provided by modes of the posterior distribution (Vincenzi et al., 2014) using
automatic differentiation. First, the marginal likelihood function for

0=(r,k,q,0,,0;) Isprovided by the Laplace approximation.

JlogL(6,P|D)dP=logL(6|D) (15)

In other words, random effects are separated from the joint likelihood
through the approximation.

Then the fixed effects are obtained from the maximum likelihood
estimation.

A

0 =argmaxlogL(0|D) (16)
0

17



With the point estimates of fixed effects, estimates of random effects are

provided by the mode of posterior distributions of P .

ﬁzmode[p(P|D,§)} (17)

And the uncertainties on fixed effects @ and random effects P are

given as below, respectively.

2 -1
COV(B):[_M:I (18)
0000
‘gt (100) | |
o0 logL(P|0,D
cov(P)=| - ; +8—Pcov(9)(a—Pj (19)
oPoP 00 00

While the classical statistics treat parameters as unknown constant
values, Bayesian approach considers each parameter’s probability
distribution. The probabilities of parameters are updated as data obtained.

Through the Bayes rule described by equation (20), the probabilities for

18



parameters are updated by the prior distribution and the likelihood built on

data.

p(P,8|D)c p(P,0) p(D| P,6) (20)

Note that the joint posterior distribution P(P,0|D) is proportional to
the product of joint prior P(P,0) and joint likelihood pP(D|P,0).

While Bayesian approach does not involve the numerical optimization
of the likelihood function, the numerical approach did not stabilize without
priors.  Therefore, I considered prior distributions which aid numerical
optimization. Without previous studies on Korean mackerel, I specified

prior distributions for parameters 6 =(r,k,q,0,,0,), and the relative
biomassin 1976, P, . Specifically, I randomly generated values for mode

and coefficient of variation (CV) for each parameter which determine the
hyperparameters. Once the optimal prior set stabilizes the optimization, I
switched to Bayesian approach, which involves Markov Chain Monte Carlo
sampling as described below. In practice, I chose log-normal distributions

for r and k, whose domains of the distributions are positive. I considered

19



2

2
, and o, , to

inverse gamma distributions for the variances of errors, o

assign prior distributions with positive support. These prior distributions are
used in various papers which involved Bayesian stock assessment (Chaloupka
and Balazs, 2007; Meyer and Millar, 1999; Millar and Meyer, 2000; Winker
et al., 2018). Since the catchability coefficient is a scaling factor, which
range should be positive and smaller than 1, I assigned a uniform prior for
logg (McAllister et al., 1994; Millar and Meyer, 2000). I assigned a normal

distribution for log P, which is equivalent to log-normal distribution with

the same hyper parameters. [ provided the details about the relationship
between the log-normal distribution and normal distribution in appendix A,
by re-expressing the mean and variance of a normally distributed random
variable, logX, using the mode and CV of a log-normally distributed random
variable, X. I also provided the ADMB-RE code in appendix B. Table 1
lists the selected prior set with modes and CVs.

Assuming the mutual independence of priors, joint prior probability can

be written as below.

ﬁ(r,k,q,az,cff, Ploze) = ﬁ(r)ﬂ(k)ﬂ(Q)ﬂ(Gé)ﬂ(Gj)ﬂ(Plgm) (21
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With the joint likelihood and joint prior, the joint posterior is defined by

Bayes’ rule:

p(r.k,q,0:,0,,P|D)x

p°>~ o>

z(r,k,q,02,62,P,..)L(r,k,q,02,02,P|D) (22)
s R MU s g5 Th976 SR MU psUgo

21



Table 1. Selected priors set which satisfies the numerical optimization of the
likelihood function.  Values in the parentheses are parameters for each prior
distribution.

Parameter Prior Mode CvV
r Log-normal (-1.04, 0.46) 0.28 0.49
K Log-normal (14.92, 0.59) 2,137,000 0.64

Uniform (-90, -1)
g Noninformative
on logq
o, Inverse gamma (3.09, 0.80) 0.20 0.96
o Inverse gamma (3.52, 0.43) 0.09 0.81
Normal (-0.57, 0.93)
Piose 0.22 1.24
on log Py,
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2.6 MCMC sampling

Since full posterior distributions require high-dimensional integration,
they cannot be obtained in closed form when the model contains numbers of
parameters. Instead, Markov Chain Monte Carlo (MCMC) sample sets
were generated to get (approximated) posterior distributions in the software
ADMB-RE. To be specific, ADMB-RE samples within the Metropolis
Hastings Algorithm. One in every 50,000 samples set was thinned out from
a total of 0.2 billion iterations to reduce the autocorrelation between
parameter samples.  The first 100 sample sets (i.e., initial 5,000,000 sample
sets) were removed as a burn-in period, ultimately resulting in 3,900 sample
sets remained. @ Once the posterior samples obtained, diagnosis of
convergence of MCMC samples is required. In this study, four criteria were
applied to check the convergence of the MCMC samples for each parameter

(r,k,q,0.,0;,Pgy) ¢ (i) the dependence factor of the Raftery-Lewis

statistics, (ii) lag-1 correlation, (iii) the ratio between the naive standard error
and the time series standard error ,which is corrected with autocorrelation,
and (iv) unimodal shape of histogram of MCMC samples. 1 checked the

first three criteria within R using package CODA (Plummer et al., 2006).
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The posterior samples were said to be converged when the dependence factor
of the Raftery-Lewis statistics is smaller than 5, lag-1 correlation is close to
0, the ratio of the naive standard error to the time series standard error is
around 1, as well as the shape of the posterior histogram has unimodal shape.
Summaries on the posterior distributions gave modes as point estimates, and

uncertainties as 95% credible intervals for each parameter.
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2.7 Various production models

[ chose several production models to compare and evaluate the
performance of the state-space production model; the selected models
included Fox production model (Fox, 1970), Yoshimoto-Clarke model
(Clarke et al., 1992; Yoshimoto and Clarke, 1993), Schnute regression model
(Schnute, 1977), ASPIC program (Prager, 2016, 1994) and Observation
model (equation (5) and (8)). The Fox model, commonly referred to as the
exponential (production) model, assumes an exponential relationship
between fishing effort and population size (Fox, 1970). Since the model
regards the surplus production as yield, the stock is in equilibrium (i.e.,

B B,). Fox (1970) provided the following regression model to estimate

1 =

parameters I and g with annual CPUE and effort.

log, =10g|w—%Et 23)

where the | is catch per unit effort proportional to carrying capacity, Kk,

and E, is effort in yeart.
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However, Hilborn and Walters (1992) criticized that the equilibrium
conditions lead to overestimate the stock size. Thus, they warned their
readers never to use the equilibrium methods.

Clarke et al. (1992) and Yoshimoto and Clarke (1993) modified the Fox
model under a non-equilibrium condition. I denote the model as the YC

model which is given as below:

2r 2—r
_|_

q
logl, = 1 K+ logl, ———(E,_,+E 24
ogl, ot 0gq Al ogli 2+r( t-1 ) (24)

Yoshimoto and Clarke (1993) showed that their model predicted CPUE
data even with negative estimates of g and k.

Schnute (1977) transformed the Schaefer model into a linear regression
model which allowed one to use explanatory variables with geometric means

of CPUE and effort data. The Schnute model is given as follows.

| E +E r(l +1
1 —t |=r= t t—1 R t-1 25
Og[luj q( 2 j+qk( 2 ) (&)
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I chose the former three models to compare, as they have been used
frequently in recent publications and technical reports (Cho et al., 2009; Jeong
and Nam, 2017; Kim et al., 2018; Kwon et al., 2013).

The ASPIC program is developed by Prager (1994) and has been
included in the NOAA toolbox. Among the various modes available for
fitting the data, I chose the Schaefer model with least squares method to
provide results without process and observation error. Whereas the former
three models estimate r, k, and q as free parameters, the ASPIC program

estimates four free parameters, r,k,q and B,,.

%:(I’—Bt/k)Bt—FtBt (26)

Equation (26) says that the rate of change of the biomass is determined
with the surplus production and fishing. Here, F is the fishing mortality
rate. Since the ASPIC program fits the differential equation, units for the r
and  are year! and year! haul !, respectively.

Without process error, the Observation model depicts the biomass

dynamics within a deterministic system and variability in measurement. In
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the Observation model, the relative biomass from 1977 onward

(P

1977>

P

075"+ Pao17)  treated as derived parameters, which do not require the

Laplace approximation. Therefore, the estimation of the model parameters
was performed within ADMB through maximum likelihood estimation

instead of ADMB-RE.
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3. Results

3.1 State-space production model results
I regarded the MCMC samples set built the posterior distributions with
diagnostics which showed the MCMC samples for each parameter

(r.k,q,0.,0;,P,,) converged (Table 2, Figure 3). The point estimates

(posterior modes) of intrinsic growth rate r and carrying capacity k were 0.30
and 2,143,122MT, which the value was about five times larger than the largest
yield achieved in 1996 (415,003MT, Figure 1). For the catchability
coefficient, the point estimate was 5.10x107° haul™' . Estimates of the
variance of process error and observation error were 0.09 and 0.05,
respectively. I calculated the CVs for process error and observation error as

follow:

2

=~ K TH o ). @7)
process E(locP iy 1 2017
( g t) E Z logP,
t=1976
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2
c o,

observation E(log |t) 1 20217 log | ()
t
42 t=1976

The CV for the process error was 11 times larger than that of observation
error, calculated at 89% and 8%, respectively. The relative biomass in 1976

(Ryss) was 1.12, which shows the initial biomass was about 10% larger than
the estimated carrying capacity. Management references MSY, B, and
H,s were174,298MT, 1,071,152MT, and 0.15, respectively. Table 3 lists

the 95% credible intervals for each parameter.
[ also compared the prior and posterior distributions for

(r.k,q,0;,0.,P,,) InFigure 3. All posterior distributions were skewed

to the right, and the posterior distributions of r and k showed similar to the
shape of their priors. The posterior distributions for variances of process
and observation errors updated into narrower distributions compared to their
priors (Figure 3d, 3e). While the modes of the variances of process error
and observation error estimated smaller than their modes of priors, the relative

biomass in 1976, P,.,, predicted a larger value than the mode of its prior

(Figure 3f).

30



Figure 4 shows the joint posteriors of two parameters with scatter plots.
The notable negative relationship between k and g is shown as a banana shape.
When scaling the biomass in the model with carrying capacity, it results in

the relative biomass P, having no dimension. Because the CPUE in this

study have the unit of MT/haul, carrying capacity and catchability coefficient
have a negative relationship. For example, if the model predicts a same

value of |, two possible values come from larger k and smaller ¢ or smaller

k and larger q.

The state-space production (hereafter SSP) model fitted the CPUE data
with the mixed trend by following the upward and downward phase (Figure
5a). Since there is no rigid criterion on fitting CPUE data which can

determine to be a ‘good fit’ or a ‘bad fit’, I only presented the distance (i.e.,
J(I, = 1,)*) between the predicted values and the data. The model showed
the largest distance (9.21MT/haul) with the CPUE data (22.23MT/haul) in

1996 (i.e., /(1,00 — I00s)* ), While the others remained within 5MT/haul.

Estimated MSY from the model suggests that the stock was overexploited in

the years of 1993-1996, 1999, 2001, 2004 and 2008 (Figure 5b). Predicted

annual biomass showed fluctuations in the range of 4x10°MT to 2.4x10°
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MT, and was 1.5x10°MT in average (Figure 5c). Because the stock did not
reach a steady state during the entire period, the population size larger than
the carrying capacity can be regarded as temporary variations in 1976, 1996,
2008, 2009, 2011 and 2012. The result argued that mackerel stock had a
smaller size than B,,;, in 1982-1988 and 1990. Only four years achieved

a larger harvest rate than H,  (i.e., 1986, 1988, 1995, 1996) and has

declined since 1996 (Figure 5d).
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Table 2. Diagnostics for Markov Chain Monte Carlo samples for parameters
(r,k,0,0,,00,Pgy): Dependence factor of Raftery-Lewis statistics (DF),

lag-1 autocorrelation, the ratio of the naive standard error to the time series
standard error, and the shape of posterior distributions were checked.

Parameters DE autocl;oar%;ation Tiflfzzrées leif;ieor
r 1.04 -0.02 1.08 Unimodal

k 1.02 -0.03 1.04 Unimodal

q 1.00 0.02 1.00 Unimodal

o, 1.04 -0.05 1.05 Unimodal

ol 1.04 0.01 1.00 Unimodal
Pio76 1.15 0.01 1.00 Unimodal
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Table 3. Posterior summary for each parameter (r,k,q,o;,0;,P,,) and management references. Note that

the units for k, MSY, B, are metric ton (MT), qand o] are 1/haul and log[MT/haul], respectively.

Summary
Parameters
Mode 2.5% 50% 97.5%
r 0.30 0.12 0.32 0.57
k 2,143,122 950,266 2,770,000 6,408,487
q 5.05x10°° 1.13x10°° 7.60x107° 1.88x10°°
o, 0.09 0.05 0.09 0.15
o? 0.05 0.03 0.05 0.09
Py 1.12 0.43 1.20 2.13
MSY 174,298 55,227 212,762 561,277
Busy 1,071,152 473,829 1,380,000 3,207,033
H sy 0.15 0.06 0.16 0.29
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Figure 3. Posterior densities obtained with the specified priors. Bold lines represent the priors and histograms

35



show the Markov Chain Monte Carlo samples from the posterior distributions in each panel. Units for k, g and

o2 are metric ton (MT), 1/haul and log[MT/haul], respectively. Note that a uniform prior for logq is considered

0

while it is not shown in panel (¢).
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Figure 4. Scatter plots of joint posteriors of two parameters. Units fork, qand &} are metric ton (MT), 1/haul

and log[MT/haul], respectively.
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Figure 5. Results from the state-space production model including predicted CPUE,
annual biomass, annual harvest rate and management references. CPUE data
(filled squares) is compared with the predicted CPUE (solid line) in panel (a).
Panel (b) shows the Maximum sustainable yield (MSY, dashed line) with annual
yield (solid line with filled circles). Panel (c) depicts the predicted annual biomass
(solid line) with carrying capacity (two-dashed line) and biomass that yields the
MSY (B, , dashed line). Panel (d) shows the annual harvest rate (solid line) with

the harvest rate that corresponds to MSY (H s, , dashed line).
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3.2 Comparison with various production models
Applying the various production models, each model provided parameter
estimates. Table 4 lists the estimates. The Fox model, YC model, and Schnute
model estimated three parameters r, K, g, whereas the ASPIC program estimated an

additional parameter, the relative biomass in 1976, P,.,. Since the Observation

model considers the observation error, the model estimates one more parameter,

o, than the ASPIC program. The Observation model provided 95% confidence

intervals for parameter estimates. The Fox model and YC model estimated the
intrinsic growth rate about 0.7 which values are larger than that of the SSP model.
However, the Schnute model provided negative value on growth rate (-0.37), which
implies the stock decreasing. ASPIC program showed that the stock grew by 0.02
per year and the Observation model estimated the growth rate as 0.46. The Fox
model and Schnute model estimated carrying capacity as -556,659MT and -
1,913,152MT, respectively. The YC model estimated the smallest carrying

capacity (585,284MT). The Observation model and ASPIC program estimated
the maximum population size to be greater than that of SSP model with 3.18x 10"
and 4.86x10"” in MT, respectively.  Regarding the average yield was
1.40x10° MT in the entire duration (1976-2017), those two models suggest the

stock was underexploited. The ASPIC program also estimated that the biomass
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level was low (0.1%) in 1976 compared to the carrying capacity, while the
observation model estimated the stock size in 1976 was greater than its carrying
capacity (177%). The Fox model and Schnute model gave negative estimates for
carrying capacity and catchability coefficient. The YC model estimated the
catchability coefficient which value is eight times larger than the estimated

catchability coefficient from SSP model. The observation model estimated the
catchability coefficient with the smallest value, 4.73x10" in haul™, where
ASPIC program estimated 2.09x10™ year'haul”' . The ASPIC program and

Schnute model estimated the relative biomass in 1976 smaller than 1, whereas the
Fox and Schnute model provided negative values. Observation error variance
estimated from the Observation model was 0.15, three times larger than that of the

SSP model. Since the Observation model provided the lower 95% confidence
limits for k and g with negative values (i.e., —1.66x10" MT fork and -2.47x10”

haul™ for q), which should have positive domains, only positive ranges of the 95%
confidence intervals for k and q shown in Table 4. T excluded the Fox and Schnute
model in comparison of the predicted CPUE and biomass with other models, for
producing unreliable estimates such as negative carrying capacity and catchability
coefficient.

I showed the predicted CPUE and biomass from the four different models in
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Figure 6. While the YC model moderately described the CPUE data (Figure 6a),

it predicted the biomass in 1996 as 2.63x10°MT and failed to account the largest
yield (Figure 6¢e). The predicted CPUE from the ASPIC program showed a
monotonic increase in years of 1976-2017, resulting in the stock size increase
during the period (Figure 6b, 6f). On the other hand, the Observation model
predicted the declining CPUE which is similar to the data for initial years (i.e.,
1976-1980), but remained the same from 1986 onward (15.8MT/haul) (Figure 6c¢).
In consequence, the predicted biomass graph showed a flat line from 1982 (Figure
6g). In addition to the flat graphs, 95% confidence intervals did not include the
CPUE data, where the 95% confidence intervals for annual biomass was too wide
to be shown with the predicted biomass. The SSP model predicted the CPUE by
picking up the fluctuation in the CPUE data (Figure 6d) and included the data within
the 95% credible intervals. In contrast to the YC model, which failed to explain
the yield in 1996, the SSP model predicted the annual stock size to be larger than

the annual yield from 1976 to 2017. Not surprisingly, the goodness-of-fit statistics
(i.e., Z:(It - ft)z ) suggested that the SSP model outperformed in fitting the CPUE

data (YC: 1209, ASPIC: 1221, observation: 1459, SSP: 191).
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Table 4. Parameter estimates obtained from various production models - Fox model (Fox), Yoshimoto-Clarke
model (YC), Schnute model (Schnute), ASPIC program (ASPIC), Observation model (Observation) which the
process error is not considered, and the state-space production model (SSP). NAs in the table indicate that the
model does not estimate the corresponding parameter(s). Except for the ASPIC results, Units for k, g and o

are metric ton (MT), 1/haul and log[MT/haul] respectively. For ASPIC, the units for r and g are year' and

year 'haul™, respectively. The 95% confidence intervals and 95% credible intervals for estimates from the

Observation and SSP are provided in parentheses, respectively. Only positive ranges were showed for the 95%
confidence intervals for k and ¢ of the Observation model results.

Parameters Fox YC Schnute ASPIC Observation SSP
0.46 0.30
r 0.71 0.74 -0.37 0.02 (0.06, 0.87) ©.12,057)
3.18x10" 2,143,122
12 s D
K ~536,659 205,280 iyt 310 (0,1.66x10'7) (950266, 6408 487)
—13 —6
v SS77x10° 439x10° —2.55x10°  200x10°  r73x107 31010
(0,2.47x107) (1.13x10°°, 1.88x107)
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NA

NA

1.37

NA

NA

1.06

NA

NA

0.55

NA

NA

0.001

0.15
(0.09, 0.22)

NA

1.77
(0.47, 3.10)

0.05
(0.03,0.09)

0.09
(0.05,0.15)

1.12
(0.40,2.10)
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Figure 6. Predicted CPUE and biomass from the four different production models: Clarke-Yoshimoto production
model, ASPIC program, Observation model and the state-space production model. Plots in the first row show
the predicted CPUE whereas plots in the second row show the predicted biomass.  Unit for the CPUE is metric

ton per haul (MT/haul) and biomass for 10°metric tons (MT).

44



4. Discussion

4.1 Estimates from various production models

Because of the simplicity concerning data requirement and model structures,
surplus production models have been applied until recently. However, the results
presented in Table 4 suggest that the simplicity does not guarantee the reliable
estimates of model parameters and biomass, especially when the relative biomass
index data shows a mixed trend. For example, the Fox and Schnute model
estimated negative values for carrying capacity and catchability coefficient which
values should be positive. While the YC model moderately fitted the CPUE data,
it failed to estimate stock size larger than the yield in 1996. The Observation
model provided the uncertainties for the predicted CPUE as the SSP model had.
However, the intervals of the model were too narrow to include the CPUE data
(Figure 6¢), which, in contrast, the SSP model could (Figure 6d). This may the
case the Observation model considers the observation errors only, whereas the SSP
model incorporated both process and observation errors, resulting in the wider
credible intervals for the predicted CPUE. The ASPIC program and Observation

model estimated the growth rate and carrying capacity as positive values, those two

models suggest the optimum vyield level with 3.89x10°MT and 1.94x10"°MT

respectively, which imply the stock was severely underexploited throughout the
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whole duration. In other words, the ASPIC program and Observation model may
have an optimistic view of mackerel stock, which allows fishermen to exploit the
stock more than the present level. This is because the production models which
were compared with the SSP model cannot account the fluctuations of CPUE data
especially in the mid-90s. In short, a state-space production model can be a
solution for CPUE data with a mixed trend.

Hilborn and Walters (1992) coined the term ‘data failures’ to explain that data
containing insufficient information on model parameters, leading one to have
unreliable estimates of carrying capacity and catchability coefficient (Table 4).
Although the Observation model provided variances for point estimates, while the
regression models and ASPIC program did not, the 95% confidence intervals of k
and  (Table 4) included negative support. Since the curvature of a likelihood

function is associated with the amount of information in the data (Pawitan, 2001),
the high variance of the maximum likelihood estimates (i.e., Kk and 4 ) imply the

data is not very informative in estimating k and q. Moreover, posterior results

2

,» and

from the SSP model support this point. While the posteriors of P, 0,0

O'j updated from the prior and likelihood, the posteriors of r and k remained

similar to their priors (Figure 3). Regarding the posterior distribution on a

parameter updated with prior and likelihood, the mackerel data did not provide
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sufficient information to estimate r and K, resulting in the posterior distributions to
reflect their priors. Hilborn and Walters (1992) argued the data for production
models are responsible for unreliable estimates. They explained that the biomass
dynamics models require data with historical change on stock size and fishing effort
to get reliable estimates on parameters including r, k, and q. For example, stock
size consistently reduced from carrying capacity as the fishing effort increase at the
beginning of fishing. Once the stock size reduced about half of the virgin state,
fishing effort decrease, and the stock has a chance to recover. The recovery phases
provide information on the intrinsic growth rate, where the depletion phases provide
information on the catchability coefficient. In practice, however, collecting data
which provide sufficient information for parameters rarely accomplished.
Therefore, ‘data failure’ can be translated into ‘model failure’, which implies
insufficient description of biomass dynamics, and many researchers have
mentioned (Carruthers et al., 2011; Millar and Meyer, 1999; Musick and Bonfil,

2005; National Research Council, 1998; Pedersen and Berg, 2017).
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4.2 Implementation of a state-space production model

While state-space models have been favored for addressing the variability of
a system which the model describes and noise in data, the estimation of random
effects is computationally demanding. As explained earlier, the state-space
production model estimates both fixed effect parameters and random effect
parameters.  Prager (1994) suggested to provide auxiliary information or
assumptions for state-space models. In the same context, prior distributions were
considered as additional information for the state-space production model.
Without previous studies of population parameters on chub mackerel, which aid in
specifying prior distributions on model parameters, I borrowed prior distributions
for model parameters from various studies. Since priors address the probability
on parameters, biologically absurd prior values were excluded. For example,
positive domains were chosen for modes of growth rate r, catchability coefficient q

and P,,.. Mode for carrying capacity k was only selected when its value was

larger than the largest yield (415,003MT). Since the priors were not supported by
previous researches, minimum CV for each informative prior was set by 40% to
avoid assigning highly informative priors. In addition to the priors, software
ADMB-RE performed both numerical optimization and MCMC sampling. While

the numerical optimization was an intermediate stage to find optimal priors for the
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state-space production model, the software provides Laplace approximation
without restrictive assumptions such as fixing the ratio between process and
observation error variance or linear structure of models. Once the priors selected,
posteriors also can be calculated through the sampling without editing codes.
Therefore, I recommend taking advantages of the statistical tool for the

implementation of state-space models under both presence or absence of priors.
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4.3 Stock assessment using data series from 1999 to 2017

Yet, the state-space production model outperformed various production
models in fitting a mixed trend data, the results should be regarded as a
demonstration, not as a stock assessment for the stock. While the CPUE data have
been collected quite prolonged period (about 40 years), scientists in KNIFS
conjectured that CPUE data lost consistency for reduction of fishing ground for the
Korea-Japan Fisheries Agreement which was signed in 1998.  Therefore, I applied
the state-space production model to shorter time series data (1999-2017) on
mackerel and included the results in this section. I denote the data set as ‘short
data’ to distinguish it from the data set mentioned in the method section.  Since the
numerical optimization was not achieved with the short data, I repeated the same
method for implementation of the state-space production model, which described
in section 2. Table 5 lists the priors set which stabilized the numerical
optimization. Again, the length of 3900 posterior sample sets were obtained from
the 0.2 billion iterations with a thinning interval of 50,000, and the initial 500,000
samples were removed as a burn-in period. Table 6 lists the diagnostics of samples,
which showed the MCMC samples passed all four criteria. The posterior
summaries were provided in Table 7 and the comparison of priors and posteriors

for each parameter was provided in Figure 7. The posterior distributions of r, Kk,
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and B, reflected the priors, which indicate the amount of information contained

in the data was not enough to estimate the three parameters (Figure 7a, 7b, 7).
The estimates of intrinsic growth rate, carrying capacity, and catchability
coefficient, were 0.16 and 1,832,623MT, 5.49x10~ haul™ , respectively.
Variances for the process error and the observation error were 0.13 and 0.07,
respectively. The CVs of the process and observation error were 84% and 9%
respectively, which indicate the relative variability of the process error was 9 times
larger than the relative variability of the observation error. The relative biomass

in 1999 (By,) was 0.51, which indicates the stock size in 1999 was roughly half

of the carrying capacity. Calculated MSY, B,,, and H,g were 152,677MT,

910,866MT and 0.08, respectively. 95% credible intervals for the estimates were
provided in Table 7, as uncertainties of estimates.

With the short data, the SSP model fitted the CPUE data by following its trend,
and the 95% credible intervals included the CPUE data (Figure 8a). Compared to
the calculated MSY, annual yield achieved in 1999, 2001, 2004 and 2008 were
larger than MSY, where the other years remained below the MSY (Figure 8b).

Predicted annual stock size was in a range of 1.0x10°MT to 1.8x10°MT, and the

average biomass during the recent decade was about 1.2x10°MT (Figure 8c).

Mean biomass during 1999 to 2017 was 1,064,924MT, and the smallest and the
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largest biomass were 805,645MT and 1,419,278MT, respectively. Harvest rate,
the proportion of yield to biomass, showed decrease during the period (Figure 8d).
Annual harvest rate was kept above the calculated H q, .

According to the National Oceanic and Atmospheric Administration (NOAA),
‘overfishing’ and ‘overfished’ applied when a stock having harvest rate larger than
Hys (e.g., H,>H,s ) and the stock size is smaller than 0.5B,,, (e.g.,
0.5B,,sy > B,). Regarding these definitions, I presented the historical trajectories
of the annual harvest rate and biomass in a Kobe plot (Figure 9). The plot suggests
the stock was subject to overfishing from 1999 to 2017 and that the harvest rate

exceeded H,g, . After 1999, the annual harvest rate showed a decrease. On the

other hand, the annual biomass was larger than 0.5B,,q, , indicating that the stock

was not overfished during 1999-2017. The graph shows a small increase in the
ratio between the biomass and B,,, from 1.00 in 1999 to 1.07 in 2017.

Quota management have been applied to mackerel since 1999 for large purse
seine fisheries. In 2017, the total allowable catch (TAC) was set at 123,000MT
(Korean Ministry of Ocean and Fisheries, 2017), which was 80.56% of the MSY
calculated in this study. For fisheries managers, Hilborn (2010) introduced the

concept of a ‘Pretty good yield’ defined as 80% of the MSY (Hilborn, 2010).
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However, since the method of calculating TAC is not available to the public in
Korea, the ‘pretty good yield” from the result and the TAC cannot be directly
compared. Because the minimum legal size for mackerel is 21cm, the predicted
annual biomass in this study must be interpreted as the biomass of fish larger than
2lcm. The quota in 2017 can therefore be said to be optimal only if the TAC

targets stock biomass within the legal size.
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Table 5. Selected priors set that satisfied the numerical optimization of the
likelihood function. Values in the parentheses are parameters for each prior
distribution.

Parameter Prior Mode Cv
r Log-normal ( -0.75, 0.86) 0.22 1.05
k Log-normal (15.14, 0.96) 1,454,000 1.26

Uniform (-90, -1)
g Noninformative
on logq
o, Inverse gamma (2.68, 1.06) 0.29 1.21
o Inverse gamma (4.78, 0.66) 0.11 0.60
Normal (-1.37, 1.35)
Piooo 0.07 1.69
on log P,
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Table 6. Diagnostics for Markov Chain Monte Carlo samples for parameters
(r.k,q,0;,07, Py,): Dependence factor of Raftery-Lewis statistics (DF), lag-1

autocorrelation, the ratio of the naive standard error to the time series standard error
and the shape of posterior distributions were checked.

Parameters DF autocl;oar%;ation Tiif‘s/:rges Pzif;ieor
r 1.04 0.00 1.03 Unimodal

k 1.02 -0.02 1.00 Unimodal

q 1.03 0.00 1.00 Unimodal

o, 0.99 -0.00 1.00 Unimodal

ol 0.98 -0.01 1.00 Unimodal
Pioos 1.06 0.02 0.94 Unimodal
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Table 7. Posterior summaries of each parameter (r,k,q,o0.,0;,P,,) and management reference points:

maximum sustainable yield (MSY), biomass that yields MSY( B,,s, ), and harvest rate which corresponds to MSY

(Hygy ). Units for k, MSY, B, aremetricton (MT),qand &’ are 1/haul and log[MT/haul], respectively.
Summary
Parameters
Mode 2.5% 50% 97.5%
r 0.16 0.05 0.28 1.03
k 1,832,623 851,710 2,890,000 12,900,000
q 5.49x107 1.70x10° 1.06x107 4.18x10°
o, 0.13 0.08 0.14 0.30
ol 0.07 0.04 0.08 0.15
Pogs 0.51 0.13 0.56 1.49
MSY 152,677 33,208 205,295 1,020,000
Busy 910,866 425,856 1,450,000 6,450,000
H sy 0.08 0.03 0.14 0.52
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annual biomass (thick solid line) and 95% credible intervals (dotted lines) are
presented with estimated B,,, (dashed line) and carrying capacity (two-dashed

line). Panel (d) contrasts the predicted harvest rate (thick solid line) and H,
(dashed line).
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Figure 9. Kobe plot showing the predicted trajectories of B,/ B,,;, and H,/H,,,
from 1999 to 2017.  The stock is said to be “overfished” when the biomass B, is
smaller than B, /2, and “overfishing” is said to occur when the harvest rate is

larger than H,, .
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4.4 Suggestions for future research

CPUE data are often influenced by various factors such as oceanic conditions
or fishing gears (Hinton and Maunder, 2003; Hoyle et al., 2014). To be specific,
the observation equation in this study addresses that the CPUE is proportionally
related to biomass with scaling factor q, where fishing vessels usually have
selectivity to the target stock. Therefore, Hinton and Maunder (2003) and Hoyle
et al. (2014) suggested to present the observation equation as a generalized linear
model to bring factors that may affect CPUE.  In case of Korean mackerel, fishing
area can be included as a predictor variable.

Another suggestion for assessing Korean mackerel is to combine the data from
three countries, including Korea, China, and Japan to view as one population.
While it is common to ignore movement (i.e., immigration or emigration) in
production models, chub mackerel is known as a highly migratory species,
distributed from the East China Sea to Kurile Island, including East/ Japan Sea
(Castro Hernandez and Ortega Santana, 2000; Hiyama et al., 2002; Lee, 2018). In
addition to the wide range of habitats, chub mackerel is exploited by Korea, China
and Japan in adjacent fishing grounds. This weakness could be addressed by
aggregating annual yield and CPUE data from all three countries and applying the

state-space production model to assess the stock as a single population. ~ Similarly,
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Hiyama et al. (2002) used two data sets, one each collected from Korea and Japan,
and estimated the stock size as a single population in the East China Sea and the
Japan Sea based on chub mackerel migration patterns. This simple approach may
provide better estimates of model parameters once rigorous studies have been

conducted on the migratory pattern of the species.
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5. Conclusions

In this study, I applied a state-space production model to Korean mackerel data
collected from 1976 to 2017 with prior distributions for model parameters with the
script software ADMB-RE. The model provided parameter estimates including
intrinsic growth rate, carrying capacity, catchability coefficient, variances of
process and observation error and annual biomass, as well as their uncertainties.
The state-space production model outperformed various production models in
fitting CPUE data with a mixed trend. Result of applying the model to data from
1999 to 2017 indicated that the stock suffered from overexploitation in terms of
harvest rate. In conclusion, the state-space production model should be preferred
when fitting the relative biomass index which trajectories show fluctuations in the
overall period. Future studies regarding the migration pattern of the species and
modification of the observation equation in the state-space production model would

be worthwhile.
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8. Appendices

Appendix A: Normal prior on logP,,, in ADMB-RE

1976
In practice, within the software ADMB-RE, prior distributions for model

parameters (r,k,q,0:,0,,P,,) were considered using mode and CV. A normal

distribution was specified for logP,,, using the mode and CV for R A

976 -
simple proof of the relationship between a normal distribution and a log-normal
distribution with transformation of a random variable given as below.

Let X be a random variable which follows a log-normal distribution with a

mean of 4, and variance of o . Thatis, X~logN(u,,o;). Thus, X have

the probability density function (PDF) as follows.

_ 2
£ ()N 22) lp(wj 450/ 0% 0
270, X 205

Let Y=0(X)=log(X). Thatis, g~'(y)=x=exp(y). Note that the function

g~'(y) is monotonic increasing function.

dx _dg'(y)

Let
) dy dy

Then, the cumulative density function (CDF) for Y is
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given that

Fe(Y)=P[Y <y]=P[g(X)<y]=P[X < g7 (¥)]=F (g7 (y))

Hence, the PDF for Y is given by

fv<y>=§—yFY(y>= fx(g”<y)>j—§= fx(g-l(y))‘dg(;y(y)‘

=exp(y),

g7 (y) =exp(y); ‘w‘
y

1 log(X)— 1, )* e
L) 2exp(_< g(z)zux) J 2 g0
7oy Oy X
_ 2
=;exp{—wj, yeRR, 0)2( >0
270, X

Since the random variable X is log-normally distributed, Y is said to follow a
normal distribution with the same parameters of the distribution of X. Note that

the parameters u, and o forthe random variable X are not mean and variance,

73



but they are for Y =logX which follows a normal distribution. Mean and

variance of X are given as

E(X):exp(,uX +%O')2(j (A.1)

Var(X):exp(Z,uX +a§)x(exp(o§)—l) (A.2)
And the mode and CV are given as

2

mode(X):exp(,uX —O'X) (A.3)

CVzJexp(O'f()—l (A.4)

ADMB-RE code shown in next section involves re-expression of x, and
oy with the mode and CV of X, and I provided how I derived them from (A.1)
and (A.2).

First, switch the first term in variance of X with [E (X )]2 = exp(2 Ly + 0 ) .

Then the (A.2) can be written as below.
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var(X) =[E(X) ] xexp(3 )-[E(X)]

Then the variance of X can be expressed in terms of eXp(O')z( ) . Thatis,

var(X)+[E(X)] As)

Taking the logarithm of (A.5), variance of Y =log X is obtained as

var(X)+[E(X) ]
| [E( X)]Z (A.6)
=log var(X)+[E(X)ﬂ_log[[E(x)]z}

oy =log

Taking the logarithm of both sides of (A.1), and re-express the o5 with the

right-hand side of (A.6). The resulting equation is:

log[E(X)]:,ux +%G)2(
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That is,

|
My =10g[E(X)]—§0§

:log[E(X)]—%log[Var(X)+[E(X)]2}+%log[[E(X)]2}

Mean of Y =log X can then be expressed with mean and variance of X, E(X)

and var(X).

Ly =210g[E(X)]—%log[Var(X)+[E(X)]2} (A.7)

Given the mode and CV in (A.3) and (A4), u, and o, arere-expressed

as below.
Ly =log[mode(X)-(CV(X)2 +1)} (A.8)

ol = 1og([cv( X)T + 1) (A.9)
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Appendix B: ADMB-RE code for a Bayesian state-space production model

TPL file

//a state-space production model

//Target data: Chub Mackerel (KNIFS)

//Author: Saang-Yoon Hyun and Yuri Jung

TOP_OF MAIN_SECTION
arrmblsize=50000000;
gradient structure::set MAX NVAR OFFSET(50000);
gradient_structure::set NUM_DEPENDENT VARIABLES(100000);

DATA SECTION
init_ivector ddim(1,3);
int nyrs;
int ncol; //data column
"nyrs=ddim(1);
'ncol=ddim(2);

init_matrix catchcpue(1,nyrs,1,ncol);
vector yrs(1,nyrs);

vector Ct(1,nyrs); //Yield

vector It(1,nyrs); //cpue data
vector log_It(1,nyrs);
yrs=column(catchcpue,1);
!'Ct=column(catchcpue,2);
!'Tt=column(catchcpue,3);

Mog It=log(It);

number min_logK;
"min_logK=log(max(Ct));

init_vector mode P1(1,3);
init_vector CV_PI1(1,3);
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number mu_logP1; // mean of the log P1
number var logP1; // variance of the log P1
number mean_P1;

number var P1;

number check mean_logP1;

number check var logP1;

//prior for sig2 obs ~ inverse gamma (alpha, beta);
init_vector mode sig2 obs(1,3);

init_vector CV_sig2 obs(1,3);

number alpha sig2 obs;

number beta_sig2 obs;

//prior for sig2 proc ~ inverse gamma (alpha, beta);
init_vector mode sig2 pr(1,3);

init_vector CV_sig2 pr(1,3);

number alpha sig2 pr;

number beta_sig2 pr;

//prior for K ~ lognormal (mu, sigma2); - Inorm(mu,sigma2)
init_vector mode K(1,3);

init_vector CV_K(1,3);

number sig K;

number mu_K;

///prior for r ~ lognormal (mu, sigma2);
init_vector mode r(1,3);
init_vector CV_r(1,3);
number sig_r;
number mu_r;

PARAMETER SECTION
init_number log_sig20(4);
init_number log_sig2p(5);
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init_bounded number log K(min logK,17.0,2);
init_bounded number log q(-90.0,-1.0,3);

init number log_r(1);

random_effects vector log Pt(1,nyrs+1,6); //Pt= Bt/K;

number sig20; //observation error
number sdo;

number sig2p; //process error

number sdp; //sd of the process error
number K;

number ¢

number 1;

number P1;

number aic;

sdreport_vector Pt(1,nyrs+1);

sdreport number MSY;
sdreport number Bmsy;
sdreport number Hmsy;
sdreport_number Fmsy;

sdreport_vector Bt(1,nyrs+1); //Pt=Bt/K;
sdreport_vector fCPUE(1,nyrs+1); //fitted CPUE

objective function value jnll; //joint negative log-likelihood

PRELIMINARY CALCS SECTION
mu_logP1=log( mode P1(1)*( square(CV_P1(1))+1));
var_logP1=log( square(CV_P1(1))+1);
mean_Pl=mfexp( mu logP1+0.5*var logP1 );
var_Pl=mfexp( 2.0*mu_logPl+var logP1 )*( mfexp(var logP1)-1);
check mean logP1=2.0*log(mean P1)-

0.5*log( var_P1+square(mean_P1));
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check var logP1=-2.0*log(mean P1)+log( var Pl+square(mean_P1));

alpha_sig2 obs=(1.0/square(CV _sig2 obs(1)))+2.0;
beta sig2 obs=mode sig2 obs(1)*(alpha sig2 obs+1);
alpha_sig2 pr=(1.0/square(CV_sig2 pr(1)))+2.0;

beta sig2 pr=mode sig2 pr(1)*(alpha_sig2 pr+l);
mu_K=log(mode K(1)*(square(CV_K(1))+1));

sig. K=sqrt( log(square(CV_K(1))+1) );
mu_r=log(mode_r(1)*(square(CV_r(1))+1));
sig_r=sqrt( log(square(CV _r(1))+1));

PROCEDURE SECTION
jnll=0.0;

sig2o=mfexp(log sig20); //exp(log(a))=a
sdo=sqrt(sig20);

sig2p=mfexp(log sig2p);
sdp=sqrt(sig2p);

//sdp=sdo*scale; //scale //sdp=mfexp(log sdp);
K=mfexp(log K);

q=mfexp(log_q);

r=mfexp(log_r);

Pl=mfexp(log_ Pt(1));

Pt=mfexp(log_Pt);

fCPUE=mfexp(log Pt)*q*K; //fitted CPUE

Bt=mfexp(log_ Pt)*K;

MSY=r*K/4;

Bmsy=K/2;

Hmsy=r1/2;

Fmsy=MSY/Bmsy; //Compare the results from Hmsy, Fmsy!

//prior for log_Pt(1);
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jnll+=0.5*log(2.0*M_PI)+0.5*log(var logP1)+square(log_Pt(1)-
mu_logP1)/(2.0*var_logP1); //log(P1)~normal(mu_logP1, var logP1);

for(int i=2;i<=(nyrs+1);++1) {
step(log_Pt(i-1),log_Pt(i),sdp,K,1,i-1);

¥

for(int i=1;i<=nyrs;++i) {
obs(q,K,log_Pt(i),sdo,i);

s

//prior for sig2 obs ~ inverse gamma //as the negative logarithm;
joll+=-
1.0*alpha_sig2 obs*log(beta_sig2 obs)+gammln(alpha sig2 obs)+1.0*(alp
ha sig2 obs+1.0)*log(sig20)+beta_sig2 obs/(sig20);

//prior for sig2 process ~ inverse gamma; //as the negative logarithm;
jnll+=-
1.0*alpha_sig2 pr*log(beta sig2 pr)+gammlin(alpha sig2 pr)+1.0*(alpha s
1g2 pr+1.0)*log(sig2p)+beta sig2 pr/(sig2p);

jnll+=0.5*log(2.0*M_PI)+log(sig_K)+log K+square(log(K)-
mu_K)/(2.0*sig K*sig K);

/lprior for r ~lognormal distribution (-1.38, 0.51"2) // as the negative
logarithm;

jnll+=0.5*log(2.0*M_PI)+log(sig r)+log r+square(log(r)-
mu_r)/(2.0*sig_r*sig_1);

aic=2.0*jnll+2.0*(nyrs+6); // number of free parameters: 5 free parameters
and the Pt(1, nyrs+1)

if(mceval phase()) Get _outputs();

FUNCTION Get_outputs

81



0ut1<<sig20<<" ”<<sig2p<<" "< K<< "<<q<<" "<<r<<" "<<MSY <<"
"<<Bmsy<<" "<<Hmsy<<" "<<Pt<<" "<<Bt<<endl; //see Global section

SEPARABLE FUNCTION void step(const dvariable& log P1, const
dvariable& log P2, const dvariable& sdp, const dvariable& K, const
dvariable& r, int 1)

dvariable varp=square(sdp);

dvariable P1=mfexp(log P1);

dvariable predP=(P1+r*P1*(1-P1)-Ct(i)/K);

jnll+=0.5*log(2.0*M_PI)+0.5*log(varp)+square(log_P2-
log(predP))/(2.0*varp);

SEPARABLE FUNCTION void obs(const dvariable& q, const dvariable& K,
const dvariable& log_Pt, const dvariable& sdo, int 1)

dvariable varo=square(sdo);

dvariable log predlt=(log(q)+log(K)+log Pt);

jnll+=0.5*log(2.0*M_ PI*varo)+square(log_It(i)-log predlIt)/(2.0*varo);

REPORT SECTION

report<<"#prior for sig2 obs ~ inverse gamma(alpha, and beta)"<<endl;

report<<"#alpha.o, beta.o, mode.o, CV.o: "<<end],

report<<alpha sig2 obs<<" "<<beta sig2 obs<<"
"<<mode sig2 obs(1)<<" "<<CV_sig2 obs(l)<<endl;

report<<"#alpha.p, beta.p, mode.p, CV.p: "<<endl;

report<<alpha sig2 pr<<""<<beta sig2 pr<<""<<mode sig2 pr(1)<<"
"<<CV _sig2 pr(1)<<end];

report<<"#sdp, sdo: "<<endl;

report<<sdp<<" "<<sdo<<" "<<endl;

report<<"#mu_r, sig_r: "<<endl;

report<<mu_r<<" "<<sig_r<<endl;

report<<"#mu_K, sig K: "<<end],

report<<mu_K<<" "<<sig K<<endl;

report<<"#min_logK: "<<endl;
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report<<min_logK<<end]l;
report<<"#mu_logP1, check mean logP1, var logP1, check var logP1,
mean_P1, var P1"<<endl;
report<<mu_logP1<<" "<<check mean logP1<<" "<<var logP1<<"
"<<check var logP1<<""<<mean P1<<""<<var Pl<<endl;
report<<"#MSY, jnll, AIC: "<<end],
report<<MSY<<" "<<jnll<<" "<<aic<<endl;
report<<"#yr Ct It predIt Pt Bt max.grad: "<<end],
for(int i=1;1<=nyrs;i++) {
report<<yrs(1)<<" "<<Ct(1)<<" "<<It(1)<<"
"<<g*K*mfexp(log Pt(i))<<" "<<mfexp(log Pt(i))<<"
"<<K*mfexp(log Pt(i))<<"";
report<<objective function value::gmax<<endl;

¥

GLOBALS SECTION
#include <admodel.h>
#include <math.h>
#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>

ofstream out1("mcmc.out");

DAT file with mackerel data (1976-2017)
# dimension
42 3 -99
# year, # yield (Metric ton) # CPUE (Metric ton per haul)
1976 107382 27.3
1977 113051 19.3
1978 99519 16.5
1979 120283 18
1980 62690 10.4
1981 108082 13.1
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1982 99447 10
1983 122883 11.42
1984 101714 7.95
1985 68479 3.87
1986 103511 7.75
1987 101337 8.49
1988 162828 12.79
1989 163617 14.47
1990 96297 10.1
1991 89738 12.03
1992 115619 12.47
1993 174684 15.07
1994 210442 17.45
1995 200481 12.66
1996 415003 32.44
1997 160448 16.19
1998 172925 18.17
1999 177540 16.73
2000 145908 12.8
2001 203717 16.64
2002 141751 14.22
2003 122044 15.26
2004 184274 22.33
2005 135596 15.74
2006 101427 12.65
2007 143776 18.93
2008 187240 27.47
2009 117960 26.22
201094331 17.77
2011 138729 26.93
2012 125143 25.11
2013102114 19.3
2014 127452 21.55
2015131735 21.08

84



2016 133200 20.16

2017 103870 16.46

# mode for P1

0.22244 -99 -99

# CV for P1

1.24 -99 -99

# mode for variance of observation error
0.09451 -99 -99

# CV for variance of observation error
0.81-99 -99

# mode for variance of process error
0.19654 -99 -99

# CV for variance of process error
0.96 -99 -99

# mode for K

2137000 -99 -99

# CV for K

0.64 -99 -99

# mode for r

0.28336 -99 -99

#CV forr

0.49 -99 -99

DAT file with mackerel data (1999-2017)
# dimension
19 3-99
# year, # yield (Metric ton) # CPUE (Metric ton per haul)
1999 177540 16.73
2000 145908 12.8
2001 203717 16.64
2002 141751 14.22
2003 122044 15.26
2004 184274 22.33
2005 135596 15.74
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2006 101427 12.65

2007 143776 18.93

2008 187240 27.47

2009 117960 26.22

201094331 17.77

2011 138729 26.93

2012 125143 25.11

2013 102114 19.3

2014 127452 21.55

2015 131735 21.08

2016 133200 20.16

2017 103870 16.46

# mode for P1

0.06603 -99 -99

# CV for P1

1.69 -99 -99

# mode for variance of observation error
0.11479 -99 -99

# CV for variance of observation error
0.6 -99 -99

# mode for variance of process error
0.28697 -99 -99

#CV for variance of process error
1.21-99 -99

# mode for k

1454000 -99 -99

# CV for k

1.26 -99 -99

# mode for r

0.22498 -99 -99

#CV forr

1.05-99 -99
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