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A length-based model for Korean chub mackerel
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Abstract

When data are not available on the ages of fish sampled by a fishery or
survey, it is necessary to resort to a size-based model, especially when time
series data about fish body sizes are provided. Assessment of Korean chub
mackerel (Scomber japonicus) stock was one such case. Building upon
Quinn’s size-based model (Quinn et al., 1998), | assessed Korean chub mackerel
stock. The merits of Quinn’s size-based model lie in constructing an
‘imaginary’ age structure for a fish population, and using this to estimate the
year and age population sizes of cohorts. The data used were yield and lengths
of fish caught by a large purse seine fishery from 2000 - 2017, and catch-per-
unit-effort from 1996 - 2017. | extended Quinn’s model in three ways. First,
I modified the objective function, which was the residual sum of squares in

Quinn’s model, into a negative log-likelihood function in which the

distributions of the annual length data and yield data were assumed to follow a

multinomial and a log-normal distributions, respectively. Then | applied a
prior distribution for natural mortality as opposed to using a fixed value as in

Quinn’s model. Finally, using AD model builder, I estimated both the point

Xi



estimates of the parameters and the uncertainty in those estimates. Estimates
of annual biomass (including recruits) ranged from 1.06 x 10° MT to 2.26 x 10°
MT. Estimates of fishing mortality rates were in the range of 0.11 - 0.31 year

"1 while an estimate of natural mortality was 0.11 year.
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1. Introduction

The vast majority of contemporary stock assessments that attempt to
reconstruct population biomass are based on age-structured models, which are
more informative than surplus production models (Punt et al., 2013). For an
age-structured model, time series data about ages are key. However, these
data are often limited in small scale fisheries, or in fisheries in developing
countries. Under these circumstances, it is necessary to resort to size-based
models, especially when time series data about the body sizes of fish caught by
a fishery or survey are available. An assessment of Korean chub mackerel
(Scomber japonicus) stock was such a case.

As a coastal-pelagic species, chub mackerel is a major commercial species
in the Pacific Northwest. Because of its schooling behavior, it has mainly been
caught by purse-seine nets, and is sometimes mixed with spotted mackerel
(Scomber australasicus). In 2017, China, Japan, Russia and South Korea
caught approximately 670,000 tons of fish, including chub mackerel and
spotted mackerel (NPFC 2019). Amongst these countries, South Korea

caught 103,870 MT of chub mackerel and 11,390 MT of spotted mackerel.



Due to a lack of long-term age data about the chub mackerel population in
the Northwest pacific, there have been several attempts at stock assessments
using length data (Hiyama et al., 2002; Choi et al., 2004; Wang et al., 2014).
However, those studies did not use the length data directly, but converted the
data into age information using a ‘length-age key’. Also, they did not show
the uncertainties of the estimates.

The purpose of our study was to apply a length-based model to Korean
chub mackerel stock without using a ‘length-age key’.  Specifically, this study
aimed to infer population parameters such as recruitment, growth, mortality
and gear-selectivity.

As a length-based approach to assessing fish stocks, Cohen and Fishman
(1980) developed a model of a stochastic growth process using time steps.  If
the initial distribution of body lengths in a cohort is assumed to be Gaussian,
incorporating growth increments using the von Bertalanffy (LVB) growth
model, the subsequent distributions will remain Gaussian throughout the
lifetime of the cohort (Cohen and Fishman 1980). Based on the Cohen-
Fishman model, Deriso and Parma developed a length-based model which
incorporates stochastic growth, recruitment and mortality, and determined the

probability distribution of the abundance and catch as a function of length

2



(Deriso and Parma 1988; Parma and Deriso 1990). As an extension of the
Deriso and Parma model, Quinn et al. (1998) developed another length-based
model. Quinn et al. (1998) assumed that length frequency distributions
follow a discrete distribution. Under this model, the length distribution for a
cohort, excepting recruits, becomes a mixture of Gaussian components,
whereas the Deriso and Parma model confines it to being Gaussian or
lognormal.  This enhancement provided for more general selectivity and
mortality representations and was therefore better for understanding fishing
gear selectivity and mortality mechanisms. Quinn et al. (1998) used their
length-based model in the case of target species which are difficult to age;
however, the method can be widely applied in a situation in which age data are
limited. There have been few studies that have attempted to extend Quinn’s
model. In this study, | modified Quinn’s length-based model, and applied it

to Korean chub mackerel stock.



2. Materials and Methods

2.1. Data

The length frequency (LF) and catch-per-unit-effort (CPUE) data for
Korean chub mackerel were provided by the Korean National Institute of
Fisheries Science (KNIFS). = The KNIFS measured fork lengths from
commercial large purse-seine (LPS) fisheries from January 2000 to December
2017. The LF data were classified into length classes of 1cm intervals and
were aggregated annually. KNIFS has collected sample yields annually, and
has sampled fishing efforts by selecting more than 80% of LPS fishing ships
targeting chub mackerel. KNIFS calculated the annual CPUE (in MT/haul)
for chub mackerel by dividing the sampled yields by the sampled fishing efforts
from 1996 to 2017. The annual yield (in MT) of chub mackerel was provided
by Statistics Korea (KOSTAT) from 1996 to 2017. In South Korea, around
90% of chub mackerel yield has been caught by LPS fisheries. CPUE and LF
data from LPS fisheries were assumed to represent those of all chub mackerel
fisheries.  In addition, KNIFS measured the length and weight of chub

mackerel from 2005 to 2017.



2.2. Length-based model

The length-based model developed by Quinn et al. (1998) set the cohort
age from the recruitment age r to a maximum age of 4, and assumed that the
distribution of fish lengths at recruitment followed a discrete normal
distribution. | assume that the age of recruitment is one year, r=1 and A
is specified as six years for the Korean chub mackerel population. | followed
the equations of Quinn’s model, that describe how the distribution of the
length frequency of a cohort propagates over time by stochastic growth and
size-selective mortality (Appendix 1). The parameters involved are
summarized in Appendix 2.

However, not all parameters in the model could be estimated. Values were

therefore taken from the literature for . , o, and L, (Choi et al., 2000;
Kim et al., 2018). Since the LF data were sampled from the LPS fisheries, the
gear selectivity function of the LPS was assumed to be logistic (Equation. A.3.).
The number of estimated parameters in this model was 28 (N,gos . = Nyoi7 5 0,
K, 0, Ly, 7, M). The parameters were estimated using AD model

builder (Founier et al., 2012).



2.3. Length-weight relationship

The allometric length-weight relationship was used to convert the fork
length of an individual fish to its weight (Equation. A.16). Estimates of «
and [ were calculated from additional estimations using the length-weight
data (2005-2017). First, the parameters (a , £ ) were estimated from the
aggregated data (2005-2017) and applied to the entire year (2000-2017) (Fig. 1).
Then the length-weight data were divided by year and the annual length-weight

parameters «;, f; (] =2005, 2006, ---, 2017) were estimated (Fig. 2).
Since the annual data did not cover the range from 2000 to 2004, the values «;

and f3, for this range were estimated from the aggregated data.



a.=0.003
15000 [=3.425
s=13714
o
£ 1000}
D
[i§]
=
500
G‘ 1 1 1 1

20 30 40 50
Fork length (cm)

Fig. 1. Fitted length-weight relationship ( weight =« -length” ) of the
aggregated length-weight data (2005-2017) from Korean chub mackerel. The
points denote data and the solid curve denotes the fitted curve (& =0.003,
3:3.425). s denotes the sample size. The vertical axis shows weight in

grams of individuals and the horizontal axis denotes fork lengths in centimeters.
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2017) from Korean chub mackerel. The points denote the data and the solid curves denote the annual fitted



length-weight relationships. s denotes the sample sizes. The vertical axis shows weight in grams of

individuals, and the horizontal axis denotes fork length in centimeters.
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2.4. Objective functions

Parameters were estimated using multinomial maximum likelihood for the
LF data and log-normal maximum likelihood for the observed yield. Let i

denote the number of length classes (i=1, 2, ---, 42) in the LF data and |

denote the year ( j = 2000, 2001, ---, 2017). Suppose that a number of fish
caught in year | are selected and their fork length measured, and let 0
denote the probability of how many caught fish are assigned to the i-th length
classinyear j. Let m; be the observed length frequency of the I -th class
inyear j and n; be the observed total length frequencies in year j.
Assuming that the m, inyear j follows a multinomial distribution

(m; ~ Multinomial(nj,Q,-)),

n.
Pr(m;)= ) o, ™o, ™ ...0,, "M (1)
i 1] 2,] 42, :
M M, ..M,

11



Further, assume that the length frequencies of the catch in each year are

independent. Thus, when the time range is from 2000 to 2017,

Pr (mzooOf Magors s Mhoa7 ) =Pr (mzooo ) : Pr(mzool) """ Pr (mzon ) :

Thus, as a multinomial log-likelihood function,

2017 42 2017 42 2017

l(onomgzoolv”'leon): Z |Og(r(nj+1'0))_z Z Iog(F(mij+l.0))+Z z mij‘logoij .(2)

j=2000 i=1 j=2000 i=1 j=2000

where 0; is the derived parameters,

0. = M , (3)

A

where C; (Xi ) is the predicted number of fish caught in the i-th length class

12



X, inyear j. Furthermore, C j (Xi) is linked with the estimates of

parameters in the model.

§-Effort, -S(x;)

C.(x)=N.(x)- :
() =N () M +4-Effort, -S(x;)

-(1—exp(—M —§-Effort, -S(x ))) 4)

where Nj (xi) is a predicted abundance in the i-th length class Xx; inyear

j, Effort; is the fishing effortin year j: Effort,=Y, /CPUE,, §(xi) isa

predicted gear selectivity at x,: S(x) :]/[(1+ exp(—;?(xi - IZSO/)))} :

Let Y; denote the observed yield in year j. From Equation (A.24), the
predicted yield inyear j is Y;=» C,(X):-W(x). Then, assume a
i=1

multiplicative error model:

Y, =Y, -exp(s;), where £, ~N(0,5,%) ()

13



where & i is a stochastic error term, which is assumed to follow a normal
distribution with a mean of zero and variance o,”. Taking the logarithm of
both sides of Equation (5) results in logY; =log YAJ- +¢&;. Then, the
distribution of logY; follows a normal distribution whose variance is a

constant over time: logY; ~ N(log \fj,aYz) . Thus, as the normal log-

likelihood,

2017

; d d 1 N
I(Iong,aYz)=—EI0927z—ElogoY2—2 - Z(Iong—Iong) (6)

Oy j=2000

where d (=18) is the length of the observed yield (2000-2017). However,

the maximum likelihood estimator (MLE) of ., ? can be analytically solved:

1 2017 L2
MLE of 6,2 == > [Iong—IogYJ :

j=2000

Thus, Equation (6) can be rewritten:
14



2017 2

\ 1 \
I(Iong):—%log il > [Iong—Iong] —%IogZﬂ—%. (7

j=2000

Assume a prior with lognormal distribution for M , and instantaneous natural
mortality as a constant over time, that is, M ~lognormal(z,,c,,?). Thus, as

the log-normal log-likelihood function,

(Iog M — Hy )2
2-0,,° '

I(M):—%-IogZﬂ—logM—logo-M— 8)

However, u,, and o, can be represented using the mode and coefficient of

variance (CV) of the prior distribution (z,, = Iog(modeM (ev,? +1.0)),

o, = \/Iog(CVMz +1.0)).
An objective function J was constructed as a combination of log-
likelihood functions. The parameters were estimated using the multinomial

the normal log-likelihood

log-likelihood 1(o;) linked with the LF data m;,

15



I(Iog\fj) linked with the observed yield Y; and the lognormal log-

likelihood for M :

J :_1-0'[114(92000’92001”"’92017)+ﬂz -I(Iog\fj)+I(M ):| (9)

where A, and A, were weighting terms for the LF data and the yield data
respectively, and were assigned the values A4,=0.05and A, =10.0 after

repeated estimations adjusting fitted values for the data.

16



2.5. Estimation

ADMB software (Founier et al., 2012) was used to estimate the parameters
which minimize the objective function value J using numerical
differentiation, and its TPL (ADMB code) is shown in Appendix 3and 4. It
was numerically differentiated with respect to the free parameters to obtain the
parameter estimates.

Parameter estimations were performed with different assumptions, and the

best fit determined based on AIC:

AIC =2xk _2X{I (onoo’gzoov”'1@2017)""(Iogf)} 1 (10)

where k (=28) is the number of free parameters, 1(8,400,0.001: "+ 0017) @Nd

I(Iog\f) were the maximized values of the likelihood functions linked with

the data.

17



3. Results

By applying the length-weight data in two ways: one with @ and ,B

from the aggregated length-weight data (Case 1) and the other with annual ¢,

and ,3]. from the annual length-weight data (Case I1), the best fit in each case

was found and the results compared.

By minimizing the objective function J, the annual LF data (2000-2017)
and yield data (2000-2017) were fitted with their corresponding model values
linked with the estimates of the parameters. The predicted values for the
yield and LF data were fitted well by the best fit in both Case | and Case 11
(Fig. 3, Fig. 4, Fig 5).

M was unusual among the parameters to be estimated, because | assumed

a prior distribution for M . Changing Mode,, and CV,, as input values,

the free parameters (including M ) were estimated, and the best fit, where AIC
was the lowest in both cases, was found. In Case I, the minimum AIC
(36551.6) was obtained at M = 0.13 year? (Fig. 6). In Case Il, the minimum

AIC (36541.6) was obtained at M = 0.11 year™ (Fig. 6). Interestingly, the

18



trend of the AIC for M varied with A. For A=6, as shown in Fig. 6, the
graph was concave in shape. Thus, the lowest point (minimum AIC) could be
specified. For A=5, however, the graph showed a monotonically increasing
trend and M for minimum AIC was nearly zero. For A=7 or more, the
estimations failed. In both cases, the best fit was shown when A=6. In the
model, the year of the first recruit is determined by A. When A=6,ifItrace
back the last age-class in 2000 (the first year of LF data), the recruits will start
from 1995. However, the recruits from 1995 could be ignored and recruits
estimated from 1996, because the LF data in 2000 poorly support the
recruitment in 1995. Consequently, the number of estimated parameters was
28 (Nyggs, =Nooi7, » A, &, 0, Ly, 7, M).
In Case | and Case I, the fitted values with best fit were almost the same

(Fig. 3, Fig. 4, Fig. 5), but the predicted annual biomass, recruitment, and

fishing mortality rates differed in value, with similar trends. In Case | and

Case I, the predicted annual average (2000-2017) biomasses were 2.03x 108
MT and 1.74x108 MT (Fig. 7), and the estimated annual average (1996-2017)

recruitments in weight were 137.97x103 MT and 110.76x10° MT (Fig. 8).
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The instantaneous fishing mortality rates in average (2000-2017) were 0.17
yeart and 0.19 year? (Fig. 9). The estimates of the parameters and the
standard error in each case are shown in Tables 1 and 2. The relative

standard errors among the estimates of annual recruits were the largest in

Ny, @nd the smallestin N, in both cases (Fig. 8).
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Table 1. Estimates of parameters and standard error (SE) of the estimates at the
best fit using ¢ and B from the aggregated length-weight data (Case 1).
Niggs, 10 Ny, denote the annual recruitment parameters. q (year”-
haul™') denotes the catchability coefficient. « (year?) denotes the growth
parameter. L., (cm)and y (cm™) denote the parameters in the selectivity

function. M (year™) denotes the natural mortality and o, (cm) denotes the

deviation of stochastic error term in the growth equation.

Parameters Estimates SE Parameters Estimates SE
10g Nigg5 21.59 0.48 log N, 2181  0.54
log N,gq; 20.83 0.51 log Ny, 21.81  0.53
109 Nggq 21.90 0.49 log N, 21.73 0.53
109 N,gg6,, 21.73 0.51 log Ny, 2099  0.70
10g N g0, 21.74 0.50 109 Nyo14 ¢ 19.08  2.42
109 Nygo 21.49 0.53 109 Njgss., 2144 0.3
109 Nyooy 21.53 0.52 109 Nyg56 21.34 0.57
10g Nyg0s 21.69 0.52 log Ny, 18.77  2.31
109 Ngos 21.71 0.51 logq -10.75  0.40
10g N,ggs . 2154 055 log x 226 0.03
109 N,05., 2178 0.54 10 Logy, 333 001
10g Nyog7 21.85 0.54 4 0.46 0.02
109 N0 21.94 0.54 logM -2.01 0.51
10g N 06, 21.85 0.55 o 099  0.04
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Table 2. Estimates of parameters and standard error (SE) of the estimates at the

best fit using «; and ﬁj from annual length-weight data (Case 11). N,

to N,y denote the annual recruitment parameters. g (year'- haul™)

denotes the catchability coefficient. x (year?) denotes the growth parameter.

L, (cm) and y (cm™) denote the parameters in the selectivity function.
M (year?) denotes the natural mortality and o, (cm) denotes the deviation

of stochastic error term in the growth equation.

Parameters Estimates  SE Parameters Estimates SE
109 Nygq6 21.37 0.42 log Ny, 21.62 047
log N,q; 20.63 0.46 log N,,, , 21.62 046
109 Nggq 21.70 0.43 log N,y 21.55 046
10g Niggq 21.53 0.44 109 Nyoys, 20.80  0.64
109 Noog0,, 2149 0.44 109 Nogs.r 1892 240
109 N,y 21.30 0.46 10g N5, 2128 047
109 Nyoos 21.32 0.45 109 Nyg6., 21.17  0.51
10g Nyg0s 21.47 0.45 log Ny, 18.58  2.36
log N, 21.48 0.45 logq -10.62 035
109 Noy0s 2129 0.49 log 225 0.03
109 N5, 2150  0.48 log Ly, 333 0.0l
log N,y , 2164 047 Y 045 0.0l
109 No0q., 21.68 0.48 logM 222 057
109 N,g0o,1 21.65 0.48 o 0.99  0.04

22



250

200

150

MT (x10%)

100

50
1 | | |
2000 2005 2010 2015

Year

Fig. 3. Annual observed yield of Korean chub mackerel from in South Korea
and the predicted yield from the length-based model with the best fit (Case | and
Case Il). The solid line and broken line denote the predicted yield from Case
| (using aggregated length-weight data) and Case Il (using annual length-weight
data) respectively. The dots denote the observed yield. The vertical axis

denotes yield in MT (x10%) and the horizontal axis denotes time in years.
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Fig. 4. Observed length frequency of Korean chub mackerel from the large purse-seine fisheries in South
Korea (2000-2017) and the predicted length frequency from the length-based model with the best fit in Case |
(using aggregated length-weight data). The horizontal axis denotes length-classes with an interval of 1cm
and the vertical axis denotes frequencies. The blank histograms denote the data and the solid lines denote

predicted values from the model. n; on each panel denotes the sample size of the annual dataset

(J=2000, 2001, ---, 2017).
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Fig. 5. Observed length frequency data of Korean chub mackerel from the large purse-seine fisheries in
South Korea (2000-2017) and the predicted length frequency from the length-based model with the best fit
in Case Il (using annual length-weight data). The horizontal axis denotes length-classes with an interval of
1cm and the vertical axis denotes frequencies.  The blank histograms denote the data and the broken lines

denote predicted values from the model.  n; on each panel denotes the sample size of the annual dataset

(J=2000, 2001, ---, 2017).
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Fig. 6. AIC values for the estimated M (M ) using aggregated length-weight
data (Case I, solid convex line) and annual length-weight data (Case I, broken

convex line). The maximum age, A was set to be six years in both cases.

M were estimated by adjusting the mode and coefficient of variation of the

prior distribution for M . The solid vertical line denotes M (=0.13 year™)

for the minimum AIC (=36551.6) from Case I. The broken vertical line

denotes M (=0.11 year) for the minimum AIC (=36541.6). For the

estimates of the parameters other than M , see Tables 1 and 2.
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Fig. 7. Predicted annual biomass of Korean chub mackerel stock from the model
with the best fit in Cases | and Il. The solid line and broken line denote the
predicted annual biomass from Case | (using aggregated length-weight data)

and Case Il (using annual length-weight data) respectively. The vertical axis

denotes biomass in MT (x10°) and the horizontal axis denotes time in years.
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Fig. 8. Estimated the annual recruitment in weight (1996-2017) of Korean chub

mackerel stock from the model with the best fit in Case | (panel (a)) and Case

Il (panel (b)).

The points in panel (a) and (b) denote the estimated recruitments

in weight from Case I (using aggregated length-weight data) and Case 11 (using

annual length-weight data).

standard errors of the estimates.

The vertical lines around the points denote the

The vertical axis denotes biomass in MT

(x10°%) and the horizontal axis denotes time in years.
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Fig. 9. Predicted annual instantaneous fishing mortality (1996-2017) of Korean
chub mackerel stock from the model with the best fit in Case | and Case II.
The solid and broken lines denote the predicted annual instantaneous fishing
mortality from Case | (using aggregated length-weight data) and Case 11 (using
annual length-weight data) respectively. The wvertical axis denotes
instantaneous fishing mortality per year and the horizontal axis denotes time in

years.
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4. Discussion

4.1. Recruitment parameters

In this model, the recruitment parameters accounted for most of the free
parameters, as in Quinn's model. However, Quinn et al. (1998) were not able
to estimate all the recruits, so they used values for eight of the 31 recruits as
derived parameters. Unlike Quinn’s assumption, | tried to set all recruits as
free parameters.  Since the LF data begin from 2000, recruits start from 1995,
under the assumption that A issix. However, in this case, the results were

unacceptable because the predicted F; or estimated M was extremely low.

Hence, the recruits in 1995 were ignored, and recruits from 1996 were
estimated (Fig. 10). The recruits in 1995 could be ignored because of the
characteristics of the LF data from 2000. The recruits in 1995 were only
supported by the LF data from 2000, and the length frequency distribution of
the catch should be fitted as the last age-class with the LF data in 2000.
However, the LF data in 2000 were unusual among the annual LF datasets

(2000-2017) because the sample size is the smallest (n,,,, =3033), and it is the

only data set that does not have samples over 40cm in length (Fig. 4 (a)).
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Consequently, there are insufficient data for LF in 2000, hindering estimation

of recruits in 1995.
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Year Agel Age2 Age3 Aged Age5 Age6

1995

2014 T S R Q P @]
2015 U I S R Q P
2016 V U T S R Q

Fig. 10. Age-time structure in this model. The maximum age was assumed to be
six years. The Age 1 class was assumed to be recruits (Column ‘Agel’). ‘A’
to ‘W’ denote different cohorts. Since the observed annual length frequency
were fitted to the model from 2000 to 2017, the column ‘Agel’ begins from
1995. However, the best fit was obtained when cohort A was removed. The
length frequency data from 2000 were fitted with five age classes, and the others

(2001 to 2017) were fitted with six age classes.
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4.2. Maximum age

The maximum age A refers to the number of age classes fitted to the

annual LF data. In this model, there are no age classes over A. Choi et al.
(2000) reported that the maximum age of Korean chub mackerel was six years,
and Hernandez and Ortega (2000) reported that 11-year-old mackerel had been
caught in the Pacific Northwest. Based on this information, several values of

A were tried. The best results were found at A =6.

Since estimations were failed when A was seven years or older, the
longevity of chub mackerel of 11 years reported by Hernandez and Ortega
(2000) can be regarded as an extraordinary value of A under this model.
Hernéndez and Ortega (2000) reported that the age composition of mackerel
was dominated by the two- to four-year-old individuals, and individuals older
than six years were very uncommon.  This report is consistent with the
results of our model, in which the best fit was shown at A =6.

Consequently, A in our model can be understood as the number of major

age classes in the catch, rather than as the longevity of a species.
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4.3. Growth

This model shows the change in the length frequency distribution of a
cohort over time. In practice, the variance of length at a specific age tends to
increase with increasing age (Schnute and Founier 1980; Jones 1987; Parma
and Dersio 1990), and the model results were consistent with this observation

(Fig. 11). Since the length distribution of recruits of all cohorts in the model

shared the parameters (», , o,%), and their growth also shared the parameters

of the LVB growth equation (L,, «, o), the mean lengths of all cohorts at

the same age were calculated as being similar. From Case II, the average of
the mean lengths of all cohorts from ages one to six were 18.00cm, 21.38cm,
24.40cm, 27.08cm, 29.46¢cm, and 31.59cm.  However, according to the LVB
growth equation reported by Choi et al. (2000), the calculated lengths from
ages one to six were 17.97cm, 26.67cm, 33.13cm, 37.92cm, 41,47cm, and
44.11cm (Fig. 11). Choi et al. (2000) used samples of Korean chub mackerel
from May 1996 to Dec 1998 and | used LF data from Jan 2000 to Dec 2017.
Therefore, it appears that the length of Korean chub mackerel stock decreased

in 2000-2017 compared to 1996-1998.
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Fig. 11. Year-to-year changes in the length frequency distribution of the cohort
recruited in 2005 from the model (Case Il). The six bell-shaped curves
represent the length frequency distribution of abundance from 2005 to 2010,
from left to right. The class interval of the horizontal axis is 1cm. The
vertical axis denotes the number of individuals. The vertical solid lines with
lower triangles represent the mean length of the cohort by year. The broken
lines with upper asterisks represent the lengths by age from one to six according

to the LVB growth equation published by Choi et al. (2000).
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4.4. Sample size in LF

The three years with the largest normalized difference between the LF data

and the fitted values were 2000, 2001 and 2005, and only these datasets have

less than 10,000 samples ( N,y =3,033, N,y =9,424, N,y =8,935, n

average
=15,120). This observation implies the existence of a relationship between

the sample size and the model fit.

It is obvious that larger sample sizes are more representative of a
population, and insufficient sample sizes may yield false representations. For
example, in a length frequency analysis, a histogram of frequencies of length
often shows distinct modes that hypothetically represent distinct age-classes
(Quinn and Deriso 1999), and the number of modes can be affected by the
sample size (see Figure 1 in Carlile 2005). However, taking either too few or
too many samples can be wasted effort (Miranda 2007). It is not
straightforward to determine an optimal sample size, because optimal sample
size varies with bin width, the range of lengths, the number of age classes, and
life history characteristics (Erzini 1990). According to Miranda (2007),
smaller species, smaller populations, and populations with higher mortality

required fewer samples.
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Despite those difficulties, previous studies have suggested sample sizes for
length data. Erzini (1990) suggested that sample sizes greater than 1000 are
required in order to identify more than half the modes in a typical distribution.
Carlile (2005) suggested that the use of 1000-2000 samples stabilizes the
distribution.  Miranda (2007) found that 1cm length-frequency histograms
required 375-1200 samples. Grant et al. (1987) suggested that very large
samples sizes (>1000) were necessary for computer-based methods if modes
were obscured.  Overall, the authors suggested sample sizes of more than
1000.

Therefore, accepting the above criteria and assuming that the optimum
sample size for the monthly LF data is 1000, there will be 12,000 samples per
year. This value lends weight to the hypothesis that the differences between
the fitted values and the data shown in the 2000, 2001 and 2005 were due to
small sample sizes. However, this suggestion is only based on the references
and was not examined by simulation or experiment.  Therefore, further study

is needed to determine optimal sample sizes for this model.
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4.5. Length-weight data

Comparing Case | and Case II, the lowest AIC was found in Case II;
better results were obtained with more detailed length-weight information.

The «; and p; used in Case Il are more effective because they did not

lose the annual information in the length-weight data, as happened with the

aggregated o and S usedin Case . However, the approach in Case Il

does not always guarantee better results. When data are divided into smaller
time units, outliers can be a problem. The effect of outliers can be more
significant when dividing the data by year (Fig. 2 (), (k), (I)). Also, if the
sample size is small, outliers can distort estimates (Fig. 2, (b)). However, in
this study, the improved results of Case Il were obtained without removing

outliers, suggesting that attempts to include more detailed data are valuable.
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4.6. Parameter estimation

Quinn et al. (1998) found the best fit in their model by reducing the
number of free parameters. This reduction involved setting some of the

recruits as the derived parameters, and defining M or ( as an input value.

For simplicity, Quinn et al. (1998) assumed three time-invariant factors: a

discrete length frequency distribution of recruits (4, , O rz ); an LVB growth

equation ( L., Zat& ); and instantaneous natural mortality (M ). These

factors were in our model.

The major difference between the model described here and that of Quinn
and colleagues is the definition of the objective function as the negative log-
likelihood. Considering the results, the distributions assumed for LF and
yield data in the objective function seem reasonable. = However, after
estimating parameters, even if the model values fitted well to the data, the
model assumptions were reexamined when the estimates or calculated values

were unreasonable or extreme.
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5. Conclusions

The model described here was based upon Quinn’s length-based model and
provides age-structured information on chub mackerel stock by applying time-
series length data. Several factors are important for successful estimation,
including the assumptions made about the data and parameters, the biological
characteristics of the fish species, and the appropriate sample size for the length
data. Therefore, if this method was to be applied to other fish species in the
future, these factors should be considered.

This study was part of an effort to conduct a stock assessment in a situation
in which data, particularly age data, are limited. @A length-based age-
structured model was used to overcome the lack of age data, but in practice,
the model still suffers from a problem of lack of length data due to factors such
as insufficient sample sizes and time series with missing data periods.  Further
study is needed to overcome the problems of availability and use of data when

applying the length-based model.
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Appendix 1. Detailed descriptions of the length-
based model

It was assumed that the length frequency of Korean chub mackerel at
recruitment follows a discrete normal distribution (Normal, ) with mean g,
and variance &> (X ~Normal, (s ,0°,)). The probability mass function

(PMF) for the i -th fork length class X;

in the start of year j and at

recruiting age r is:

fj,r(xi) b exp(_ 20_12 (Xi —H; )Zj/gj,r ) (Al)

r

1 2
where &, =ZX:eXp[— L (% — i) ]

r

The constant ;. is a normalizing constant so that the sum of equation (A.1)

over X equals 1. The number of individuals of the newly recruited mackerel

in the i-th length class X, is N; (x)=N; -f, (x). To obtain the
abundance N,,,.(x) at the start of year j+1 at age a+1 from
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abundance N,,(x) (starting at age r ), the process of mortality was
accounted for first, followed by growth.

The total mortality Zj(xi) is composed of time-independent natural
mortality M and fishing mortality S(x)F,, where F, is full fishing
mortality:

Z(x)=M+S(x)-F

J

(A2)

J' 3

where S(x;) is the gear selectivity function that follows the logistic curve:

1
F 1+exp(_7/(xi = LSO%))

S(x%)

, (A.3)

where L., is the size where 50% of the fish are vulnerable and y is the

shape parameter.
Natural mortality M is assumed to be a constant over lengths and years,

and full fishing mortality F; may be approximately related to fishing effort as
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F=q- Effort ;» Where the catchability q is assumed to be a constant, Effort;
is the fishing effort in year j: Effort;=Y; /CPUE,
For a given PMF f, (X) in year ] at the start of age a, the relative

distribution of lengths in the population after mortality occurs in year j is:

Piaz (%)= . (%) exp(-M =S (x)F;)= ;. (x)-exp(=Z; (%)) - (A4)

To account for growth, it is assumed that an individual of the i-th length
X, will grow to length |, in one time step according to a stochastic growth

model. One useful model is the von Bertalanffy (LVB) model with stochastic
error, which was first derived in Cohen and Fishman (1980) and utilized in the
length-based model of Deriso and Parma (1988). The deterministic LVB model

1S:

L=l @-e")

where L, isasymptotic length, x is a growth parameter, and a, is the age
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corresponding to length 0. An equivalent formulation for size L, at age
a+1 asa function of previous size L, with the inclusion of a stochastic term

1S:

L.=L (1-p)+pL, +¢ (A.5)

where o is exp(—K), ¢ 1s an independent, normally distributed random

variable with mean zero and variance GLZ . From Cohen and Fishman (1980),

the expected length and variance at age a+1 for an individual of the i-th

length X, atage a,considering that it was recruited at age r, are:

(%)=L, (1-p)+px (A.6)
and
_ 2(at+l-r)
52a+1 _ O_Lz ]-,0—2+p2(a+1-r)0r2 . (A7)
1-p
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The normal PMF for the length (1,) distribution after one growth increment
for an individual originally of the i -th length ( X, ),

L ~ Normal,, (t,,, (X ), 07,,1) » is given by:

a+l

fj+1,a+l,G (I | X) = exp(‘ 2(7]; (Ii - :ua+l(xi))2J/é:j+l,a+l,xl , (A.8)

1
Where §j+l,a+lyxi = Zexp[_ 2 2 (II B lLléH-l (XI ))ZJ '
| (o)

a+l

The relative distribution of lengths (|, ) at the start of age a+1 is then obtained

from the relative distribution of lengths after mortality equation (Equation A.4)

and the PMF for growth equation (Equation A.8), which results in:

pj+l,a+l(|i ) = Z fj+1,a+l,G (Ii | Xi)' Pjaz (Xi) (A-9)

X

The number of individuals at the i-th length class |;, N, .., (I;), year j+1
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atage a+1 is then:

Nj+l,a+l(|i): Nj,a. pj+l,a+1(|i) (AIO)

and
fj+l,a+1 (II ) = pj+l,a+1 (II )/Z pj+l,a+1 (II ) . (A 1 1)
|
The total number of individuals in year j+1 atage a-+1is then:

N j+la+l = z N j+1,a+1(|i) p (A12)
|

From Deriso and Parma (1988), the relative distribution of lengths in the

catch followed the Baranov catch equation C=N(F /Z)[l—exp(—Z ):| and

is given by:
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S(x)F.
Djac (%)= n@<x)—159—4(1—exp(zj(m))y (A.13)

Z;(x)

The number of caught fish of the i-thlength X, inyear j atage a

follows:
Cia(X) =N Pjac(%)- (A.14)
The total catch in year | atage a is:

Cia=2.Cia(x). (A.15)

Weight at length was modeled as the allometric relationship,
W, (x)=a;-x". (A.16)

And then length-specific values were multiplied by the corresponding weight.

Thus biomass (abundance in weight) and yield (catch in weight) were
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calculated by multiplying length-specific abundance and catch, respectively,

by weight at that length and summing over length, or

B =2 N (%)W(x) (A.17)

and
W, =>'C. N Wi(x ). (A.18)

This formulation covered the progress of a single year class through its lifespan.
Identical equations could be constructed for all year classes and referenced to
the passage of time. Thus, the length distributions of the population at a given
time from this model could be assembled by summing over all age classes

present. The number of individuals at the i-th length X; from a cohort in

year | atage a follows:

Ni,a(xi):Nj,a' fj,a(xi)' (A.19)



It is assumed that the maximum age of mackerel is six years, thus, the population

would consist of six cohorts:

N, (x)=D_N;.(%). (A.20)

In the same way, the number of caught fish of the i-th length in year ]

follows:

A

C,(%)=>.Ca(x). (A.21)

a=1

Consequently, the total biomass of the population and total yield in year |

follows:

B, =D N;(%)W(x) (A.23)

and
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Y, =206, (%) W (x). (A.24)

59



Appendix 2. The notations used in the model

Indices

a Age.

r Recruitment age.

A Maximum age.

[ Index for length: 1, 2, ---, 42.

j Index for year.

X; Mid-point of i -th length class.

I Mid-point of i -th length class after one growth
increment.

L, Length at age a.

g Stochastic error term in the growth equation,
&~ Normal(0,5,%).

3 Stochastic error term in the multiplicative error model,
g; ~ Normal (O, UYZ).

a, Age corresponding to length 0.
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The objective function.

Weighting terms.

Number of free parameters (= 28).
In this paper, the hat notation denotes a predicted or
fitted quantity.

In this paper, the tilde mark denotes a vector.

The number of samples of the i -th length class in the

length frequency data in year j.

The sample size of the length frequency data in year j.

The observed yield in year j.

The time length of the observed yield.

The catch-per-unit-effort data from the large purse seine
fisheries inyear j.

The fishing effort in year j: Effort,=Y,/CPUE;.

The asymptotic length.

The mean length at recruitment.
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o, The standard deviation of the length frequency normal
distribution at recruitment.

a;, B, Parameters in the allometric length-weight relationship
inyear j.

Hu Mean of a prior distribution for M.

0M2 Variance of a prior distribution for M.

Mode,, Mode of a prior distribution for M:
Mode,, =exp( 4, —oy,°)-

CvV,, Coefficient of variance of a prior distribution for M :
CVy =0y /ty -

Free parameters

N Recruiting individuals in year j. Also,

ir

Nr :(N1996,r’ N1997,r’ " N2017,r)-

M Instantaneous natural mortality rate.
q Catchability coefficient.
L Length at which 50% of the fish entering the gear is

50%

retained.
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Shape parameter for the gear selectivity.
Brody growth coefficient.
The standard deviation of stochastic error term in the

growth equation:

L,=L @-e")+e"L +¢, e~N (o,gLZ)_

Derived parameters

fia(X)

fj+l,a+l,G (II | Xi )

é]ya’ fjvavxi

pj,a,c(xi)

Pjaz (Xi)

The probability of individuals at the i -th length class

x; of the cohort in the start of year j forage a.
The conditional probability of individuals at the i-th
length class |, after one growth increment for
individuals originally of the i -th length class x. .
Normalizing constant.

The relative distribution of lengths in the catch for the
cohort at age a inyear j.

The relative distribution of lengths in the cohort at age

a after mortality occurs in year j.
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pj+1,a+l(|i)

The relative distribution of lengths after one year of
mortality and growth.

The number of individuals of the cohort at age a in
year |.

The number of individuals at the i -th length class X

in the cohort at age a inyear j.

The number of individuals at the i -th length class x;

inyear j. Also, N;.(x)= ZA: N,.(%).

a=1
The number of individuals of caught fish at age a
inyear j.
The number of individuals of caught fish in the 1-th
length class X, atage a inyear j.
The number of individuals of caught fish at the i -th

A
length classinyear j. Also, C,.(%)=>.C,.(X).

a=1

Allometric length-weight relationship:

W(x)=a-x’
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=<

j,o

The biomass of the stock at age a inyear j.

Total biomass of the stock in year j. Also,

A
The predicted yield in year j. Also, Y;, = ZYi,a .
a=1
Time-constant variance, where
logY; ~ Normal (Iog\fj,a,ogyz).

The probability of how many caught fish are assigned in

the 1-th length class in year j.
Instantaneous fishing mortality rate in year j.

Gear selectivity function; A probability that fish in the i

-th length class is caught by the fishing gear:
S(x) :]/[1+exp(—;/(xi -~ LSO%))].

Total mortality for a length class x; inyear j.
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Haiq ( X )

a+l

The expected length at age a+1 after growth for

individuals in a length class x, atage a from Cohen
and Fishman (1980): /., (%)=L, (1-p)+p-X.

The variance at age a+1 after growth for individuals

from Cohen and Fishman (1980):

g~ 2(a+l-r)
2 :O_Lz '0—2+p
1-p

2(a+l—r)o_ 2
ro
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Appendix 3. ADMB code for the length-based
model (Case I)

TPL file

lllengthSA: a length-based stock assessment for the Korean mackerel
population;

//data file name: mackerel_aggre.DAT

/[Author: Saang-Yoon Hyun and Jinwoo Gim as of Aug 23, 2019

1

DATA_SECTION

init_int nages; /I 6 years
init_int nlengths; Il 42 classes
init_int nyrs; Il 22 years (1996-2017)

init_matrix yieldcpue(1,nyrs,1,3);
vector years(1,nyrs);
llyears=column(yieldcpue,l);

init_int indexMinyrLD; //2000 ==> index of 5;
int nyrsLD,; /Inyears for the length data
'nyrsLD=nyrs-4; /li.e., 2000-2017;

init_vector x(1,nlengths);  //discrete lengths;
vector L(1,nlengths); //discrete lengths;
HL=x;

init_matrix lengthfrg(1,nyrsLD,1,nlengths);

vector yield(1,nyrs); /['in MT
llyield=column(yieldcpue,?2);
vector CPUE(1,nyrs); /l'in MT/haul

NCPUE=column(yieldcpue,3);
vector Effort(1,nyrs);
llEffort=elem_div(yield, CPUE); // vector(1,23) in hauls
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init_vector musig2_r(1,2);
number mu_r;

number sig2_r;
I'mu_r=musig2_r(1);
llsig2_r=musig2_r(2);
init_vector abWL(1,2);
number aWL;

number bWL;
NaWL=abWL(1);
bWL=abWL(2);

vector Wt(1,nlengths);

/lprior for M ~ lognormal(mu, sigmaz2)

init_number mode_M; /linit_number M; // Natural mortaility as a
salar;

init_number CV_M;

number mu_M;

number sig_M,;

init_number lambdal; // lambda in the objective function
init_number lambdaz2; // lambda in the objective function

init_number logLinf;

number Linf;

Linf=mfexp(logLinf);

intr;

lr=1; //recruitment is defined as the pop size at age 1;
int ncohorts;

Ilncohorts=nyrs;

ivector SamSize(1,nyrs); //annual sample size for the length data;
PARAMETER_SECTION

init_number logq(1); /llog of the catchability in F_yr
g*Effort_yr;
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init_bounded_vector logRec(1,nyrs,11.5,25.0,2);
init_bounded_number logkappa(-3.0,-0.80,3);

init_bounded_number logL50(3.0,4.0,4); /Iselectivity

init_bounded_number gamma(0.05,1.5,5); I/selectivity

init_bounded_number log_M(-2.996,-0.799,6); /Inatural mortality;

init_bounded_number sigmalL(0.0,1.5,6); /lthe uncertainty
in the L_{a+1} equation

number M;

number q;

vector Recruits(1,nyrs);
number kappa;
number L50;

vector Sel(1,nlengths);

number Rho;

number kkk; //for the cumulative purpose

matrix f(1,nages,1,nlengths); //length frequency as pmf

3darray pp(1,nages,1,nlengths,1,nlengths); //pp(1 To Ages,1 To x,1
To L);

/I x --> (growth) --> L
vector Mu(1,nlengths); //differ by length class
vector SS(1,nages); //lassumed to be constant over length classes

vector F_yr(1,nyrs); I/ fishing mortality;
matrix F_tx(1,nyrs,1,nlengths); IE_{t,x};

matrix Z(1,nyrs,1,nlengths);

matrix ExpZ(1,nyrs,1,nlengths);  //Exp(-2);

3darray NL(1,nages,1,ncohorts,1,nlengths);
matrix N(1,nyrs,1,nages);

number SumP;

vector p(1,nlengths);
number CNum;
number CWt;

vector TCatch(1,nyrs);
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matrix Catch(1,nyrs,1,nlengths);

vector Yieldhat(1,nyrs);

vector Pop(1,nyrs);

3darray ENx(1,nages,1,ncohorts,1,nlengths);

vector EN(1,ncohorts);

vector B(1,ncohorts);

vector EB(1,ncohorts);

matrix LF(1,nlengths,1,nyrs); /llexpected length-frequency by

number logmult; /Nlog(multinomial);

vector elem_obj2(indexMinyrLD,nyrs); //lelements in part 2 of the
objective function;

number sig2_yield:;

number lognormal; /Nlog(normal);
number maxloglike; /I for calculation of AIC
number aic;

objective_function_value obj;

PRELIMINARY_CALCS_SECTION

/lre-arrangement of data for calculation purposes;

/[Calculate the weight relationship

Wt=aWL*pow(x,bWL)/1000; //the division of 1000 is to convert gram
to kg

/lannual sample size for the length data

inti;

i=0;

SamSize=0;

for(int m=indexMinyrLD;m<=nyrs;m++) {
i=m-4;
SamSize(m)=sum(lengthfrq(i));

3

/lprior for M
mu_M=log(mode_M*(square(CV_M)+1));
sig_M=sqrt( log(square(CV_M)+1) );
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PROCEDURE_SECTION
g=mfexp(logq);
kappa=mfexp(logkappa);
L50=mfexp(logL50);
for(int i=1;i<=nyrs;i++)

Recruits(i)=mfexp(logRec(i));
M=mfexp(log_M);

0bj=0.0;

/[Calculate the selectivity for each length class;
Sel=1.0/(1+mfexp(-1.0*gamma*(x-L50)));

/[Calculate fishing mortality for each length using F = g*Effort*Sel,
/ISum_over x_F_{yr,x} =/=F_{yr}; "=/=""is not equal to"
F_yr=q*Effort; /11996 - 2017 (i.e., catch data)
for(int t=1;t<=nyrs;t++)
for(int xind=1;xind<=nlengths;xind++) {
F_tx(t,xind)=F _yr(t)*Sel(xind); //F_tx;
Z(t,xind)=M+F_tx(t,xind);
ExpZ(t,xind)=mfexp(-1.0*Z(t,xind));
I3

/[Calculating the length frequency dsn of the recruits;

/lrecruitment is at one year of age;

/lf(1,x) is the same for all cohorts so this can be in the initial

calculations;

Rho=mfexp(-1.0*kappa);

SS(1)=sig2_r;

kkk=0.0;

for(int xind=1;xind<=nlengths;xind++) {
f(1,xind)=mfexp(-1.0*square(x(xind)-mu_r)/(2.0*SS(1)));
kkk=kkk+f(1,xind);

I3
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for(int xind=1;xind<=nlengths;xind++) {
f(1,xind)=f(1,xind)/kkk; //normalize;
Mu(xind)=Linf-(Linf-x(xind))*Rho;

I

for(int a=2;a<=nages;a++) {
SS(a)=square(sigmal.)*(1.0-pow(Rho,(2.0*a-2.0*r)))/(1.0-
square(Rho))+(pow(Rho,(2.0*a-2.0*r)))*sig2_r;
/Ithis SS is for Shrimp; //see Cohen and Fishman (1980)
I3

for(int a=1;a<=nages;a++) {
for(int xind=1;xind<=nlengths;xind++) {

kkk=0.0;

for(int Lind=1;Lind<=nlengths;Lind++) {
pp(a,Lind,xind)=mfexp(-1.0/(2.0*SS(a))*square(L(Lind)-

Mu(xind)));

kkk=kkk+pp(a,Lind,xind);

I3

for(int Lind=1;Lind<=nlengths;Lind++)
pp(a,Lind,xind)=pp(a,Lind,xind)/kKk;
I3

h

//Start of cohort loop
int m;
for(int c=1;c<=ncohorts;c++) {
int a=1;
M=c;
N(m,a)=0.0;
for(int xind=1;xind<=nlengths;xind++) {
NL(a,m,xind)=Recruits(m)*f(a,xind);
N(m,a)=N(m,a)+NL(a,m,xind); /[Be careful that N has yrs x
ages;

3
for(int a=2;a<=nages;at++) {//note that a starts at 2, not 1,
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m=a+c-1;
if(m>nyrs)
SumP=0.0;
else {
SumP=0.0;

for(int Lind=1;Lind<=nlengths;Lind++) {

p(Lind)=0;

for(int xind=1;xind<=nlengths;xind++)
p(Lind)=p(Lind)+f(a-1,xind)*ExpZ(m-

1,xind)*pp(a,Lind,xind);

SumP=SumP+p(Lind);
3
N(m,a)=0.0;

for(int Lind=1;Lind<=nlengths;Lind++) {
f(a,Lind)=p(Lind)/SumP; /Inormalize;
NL(a,m,Lind)=N(m-1,a-1)*p(Lind);

N(m,a)=N(m,a)+NL(a,m,Lind);

[[================[/note m starts at indexMinyrLD;
//Sum through the population matrix to calculate;

/lexpected catch distribution;

/[summing for each time by length class for all ages;

for(int m=indexMinyrLD;m<=nyrs;m++) {
indexMinyrLD;

TCatch(m)=0.0;

Catch(m)=0.0;

Yieldhat(m)=0.0;

Pop(m)=0.0;

EN(m)=0.0;

B(m)=0.0;

EB(m)=0.0;
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for(int a=1;a<=nages;a++) {

for(int xind=1;xind<=nlengths;xind++) {

CNum=NL(a,m,xind)*(F_tx(m,xind)/Z(m,xind))*(1-
ExpZ(m,xind));

CWt=CNum*Wt(xind); //in kg
Catch(m,xind)=Catch(m,xind)+CNum;
TCatch(m)=TCatch(m)+CNum,;
Yieldhat(m)=Yieldhat(m)+CWt;

Pop(m)=Pop(m)+NL(a,m,xind);  //population;

ENx(a,m,xind)=NL(a,m,xind)*Sel(xind);
//[Exploitable population;

EN(m)=EN(m)+ENx(a,m,xind);

B(m)=B(m)+NL(a,m,xind)*Wt(xind); //Biomass;
/lin kg

EB(m)=EB(m)+ENx(a,m,xind)*Wt(xind);
/lexploitable biomass;

3
h
h

/IThe expected length-frequency
for(int m=indexMinyrLD;m<=nyrs;m++) { /Inote m starts at
indexMinyrLD;
for(int xind=1;xind<=nlengths;xind++) {
LF(xind,m)=(Catch(m,xind)/sum(Catch(m)))*SamSize(m);
I3

h

/lIpart 1 of the objective function: multinomial

logmult=0.0;

for(int i=indexMinyrLD;i<=nyrs;i++) {
logmult+=gammin(SamSize(i)+1);
for(int xind=1;xind<=nlengths;xind++) {

logmult+=-1.0*gammiIn((lengthfrq(i-4,xind)+1))+lengthfrq((i-
4),xind)*log(Catch(i,xind)/sum(Catch(i)));

3
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%
obj+=lambdal*(-1.0*logmult); //lamdal*(the negative multinomial
likelihood);

maxloglike=0.0;
maxloglike+=logmult;

/Ipart 2 of the objective function: normal
sig2_yield=0.0;
for(int m=indexMinyrLD;m<=nyrs;m++)
elem_obj2(m)=square(log(yield(m))-log(Yieldhat(m)/1000)); //in
MT

sig2_yield=sum(elem_obj2)/(nyrs-indexMinyrLD+1); IIMLE  of
sigma2

obj+=lambda2*(0.5*(nyrs-
indexMinyrLD+1)*log(sig2_yield)+sum(elem_obj2)/(2.0*sig2_yield));
/lamda2*(the negative normal loglikelihood);

lognormal=0.0;
lognormal=(-0.5*(nyrs-indexMinyrLD+1)*log(2*M_PI)-0.5*(nyrs-
indexMinyrLD+1)*log(sig2_yield)-sum(elem_obj2)/(2.0*sig2_yield));

maxloglike+=lognormal,

/Ipart 3: prior for M

Ilprior for M ~lognormal(mu,sig?2); // as the negative logarithm;

obj+=0.5*log(2.0*M_PI)+log(sig_M)+log_M+square(log(M)-
mu_M)/(2.0*sig_M*sig_M);

aic=-2.0*maxloglike+2.0*(nyrs+6); /lcheck the number of free
parameters.

REPORT_SECTION
report<<"Yr Recruits Fyr Yield Yieldhat"<<end];
for(int i=1;i<=nyrs;i++)
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report<<years(i)<<" "<<Recruits(i)<<" "<<F_yr(i)<<" "<<yield(i)<<"
"<<Yieldhat(i)/1000<<endl;

report<<"yrs Pop B.in.kg ExploitB"<<endl;
for(int i=1;i<=nyrs;i++)
report<<years(i)<<" "<<Pop(i)<<" "<<B(i)<<" "<<EB(i)<<endl;

report<<"yrs N"<<endl;
for(int i=1;i<=nyrs;i++)
report<<years(i)<<" "<<N(i)<<endl;

report<<"N:"<<N<<endl;

report<<"lengthfrqg: "<<lengthfrg<<endl;

report<<"Catchhat: "<<Catch<<endl;

report<<"max.grad: "<<objective_function_value::gmax<<endl;
report<<"Sample size in the length frequency: "<<SamSize<<end|;

report<<"x(1,nlengths): "<<x<<endl;
report<<"Mu(1,nlengths): "<<Mu<<end];

report<<"SS(1,nages): "<<SS<<endl;
report<<"M, sigmal, and aic: "<<M<<" "<<sigmal<<" "<<aic<<endl;

RUNTIME_SECTION
maximum_function_evaluations 100,150,300,10000
convergence_criteria .01,.0001,1e-7

TOP_OF_MAIN_SECTION
gradient_structure::set. MAX_NVAR_OFFSET(1000); //maximum
number of depdendent variables of 400 exceeded
gradient_structure::set. NUM_DEPENDENT_VARIABLES(1000);
gradient_structure::set. GRADSTACK_BUFFER_SIZE(100000);
gradient_structure::set. CMPDIF_BUFFER_SIZE(1000000);
arrmblsize=900000;
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GLOBALS_SECTION
#include <admodel.h>
#include <math.h>
#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>
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DAT file (mackerel_aggre.DAT)

#nages: number of age classes

6

#number of length classes; #median length of maxFL =51.5 cm;
42

#number of years for the fishery catch data: nyrs of 1996-2017;
22

#fishery (large-purse seine) catch

# Yield(MT) CPUE(MT/haul)

1996 415003.0

1997 160448.0 CPUE data are not allowed by the National
1998 172925.0 Institute of Fisheries Sciences (NIFS) to
1999 177540.0 be revealed.

2000 145908.0 If someone wants those data, get the

2001 203717.0 permission of NIFS.

2002 141751.0
2003 122044.0
2004 184274.0
2005 135596.0
2006 101427.0
2007 143776.0
2008 187240.0
2009 117960.0
2010 94331.0
2011 138729.0
2012 125143.0
2013 102114.0
2014 127452.0
2015 131735.0
2016 133200.0
2017 103870.0
#

#
#indexMinyrLD: index of the minimum year for the length data; //2000
5

#
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#midpoints (cm) of length classes;

105 115 125 135 145 155 165 175 185
195 205 215 225 235 245 255 265
275 285 295 305 315 325 335 345
355 365 375 385 395 405 415 425
435 445 455 465 475 485 495 505
51.5

#length frequency data (18 x 42);

#18: year 2000 - 2017

#42: midpoints (cm) of length classes: 10.5, 11.5, 12.5, ..., 51.5

Length data are not allowed by NIFS to be revealed.
If someone wants those data, get the permission of NIFS.
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Length data are not allowed by NIFS to be revealed.
If someone wants those data, get the permission of NIFS.
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Length data are not allowed by NIFS to be revealed.
If someone wants those data, get the permission of NIFS.

#

#Prior info

#Korean mackerel

#the mean (cm) and the variance (cm”2) of the lengths at the recruit
stage (age 1);

#18.00 was calculated from the Linf below, Linf=exp(3.95);

18.00 2.10

#

#parameters in W =a*(L"b); #W in gram; # L in cm;

#aand b
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#We estimated these using actual data;

0.003 3.425

#

#M: Natural mortality (instantaneous rate) as a prior dsn;
#mode of M

5.0

#CV of M

2.0

#

#lambdal for the length data in the objective function
0.05

#lambdaz2 for the yield data in the objective function;
10.0

#

#logLinf

3.95
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PIN file

#logq

-9.5

#logRec(1,nyrs)

20 20 20
20 20
20 20

#logkappa

-1.21

20
20
20

#logL50 in the selectivity

3.38

#gamma in the selectivity

0.6
#log_M
-1.386
#sigmalL
0.66

20 20
20 20
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Appendix 4. ADMB code for the length-based
model (Case I1)

TPL file

lllengthSA: a length-based stock assessment for the Korean mackerel
population;

/[data file name: mackerel_annual.DAT

/[Author: Saang-Yoon Hyun and Jinwoo Gim as of Aug 23, 2019

1

DATA_SECTION

init_int nages; /I 6 years
init_int nlengths; Il 42 classes
init_int nyrs; Il 22 years (1996-2017)

init_matrix yieldcpue(1,nyrs,1,3);
vector years(1,nyrs);
llyears=column(yieldcpue,l);

init_int indexMinyrLD; //2000 ==> index of 5;

int nyrsLD; /Inyears for the length data
'nyrsLD=nyrs-4; /li.e., 2000-2017;

init_vector x(1,nlengths); //discrete lengths;
vector L(1,nlengths); /ldiscrete lengths;
HL=x;

init_matrix lengthfrq(1,nyrsLD,1,nlengths);

vector yield(1,nyrs); // in MT
llyield=column(yieldcpue,2);

vector CPUE(1,nyrs); //in MT/haul
HCPUE=column(yieldcpue,3);

84



vector Effort(1,nyrs);
llEffort=elem_div(yield, CPUE); // vector(1,23) in hauls

init_vector musig2_r(1,2);
number mu_r;

number sig2_r;
I'mu_r=musig2_r(1);
lIsig2_r=musig2_r(2);

init_matrix abWL(1,nyrs,1,2);
vector aWL;

vector bWL,;
faWL=column(abWL,1);
"bWL=column(abWL,?2);

matrix Wt(1,nyrs,1,nlengths);

/lprior for M ~ lognormal(mu, sigma?2)

init_number mode_M; //init_number M; // Natural mortaility as a
salar;

init_number CV_M;

number mu_M;

number sig_M,;

init_number lambdal; // lambda in the objective function

init_number lambda2; // lambda in the objective function

init_number logLinf;

number Linf;

Linf=mfexp(logLinf);

intr;
Ir=1; //recruitment is defined as the pop size at age 1;

int ncohorts;
IIncohorts=nyrs;

ivector SamSize(1,nyrs); //annual sample size for the length data;

PARAMETER_SECTION
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init_number logq(l); /Nlog of the catchability in F_yr =
g*Effort_yr;

init_bounded_vector logRec(1,nyrs,11.5,25.0,2);

init_bounded_number logkappa(-3.0,-0.80,3);

init_bounded_number logL50(3.0,4.0,4); IIselectivity

init_bounded _number gamma(0.05,1.5,5); I/selectivity

init_bounded_number log_M(-2.996,-0.799,6); //natural mortality;

init_bounded_number sigmalL(0.0,1.5,6); /lthe uncertainty in the
L_{a+1} equation

number M;

number q;

vector Recruits(1,nyrs);

number Rbar;

number kappa;

number L50;

vector Sel(1,nlengths);

number Rho;

number kkk; //for the cumulative purpose

matrix f(1,nages,1,nlengths); //length frequency as pmf

3darray pp(1,nages,1,nlengths,1,nlengths); //pp(1 To Ages,1 To x,1
To L);

/[ x --> (growth) --> L

vector Mu(1,nlengths); //differ by length class

vector SS(1,nages); /lassumed to be constant over length
classes

vector F_yr(1,nyrs); // fishing mortality;

matrix F_tx(1,nyrs,1,nlengths); //F_{t,x}; //FM in the VB code;

matrix Z(1,nyrs,1,nlengths);

matrix ExpZ(1,nyrs,1,nlengths); //Exp(-2);

3darray NL(1,nages,1,ncohorts,1,nlengths);

matrix N(1,nyrs,1,nages); //dimension index is different from the VB
code;

number SumP;

vector p(1,nlengths);

number CNum;

number CWt;
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vector TCatch(1,nyrs);

matrix Catch(1,nyrs,1,nlengths);

vector Yieldhat(1,nyrs);

vector Pop(1,nyrs);

3darray ENx(1,nages,1,ncohorts,1,nlengths);

vector EN(1,ncohorts);

vector B(1,ncohorts);

vector EB(1,ncohorts);

matrix LF(1,nlengths,1,nyrs); /llexpected length-frequency by

number logmult; //log(multinomial);

vector elem_obj2(indexMinyrLD,nyrs); //elements in part 2 of the
objective function;

number sig2_yield:;

number lognormal; //log(normal);

number maxloglike; // for calculation of AIC

number aic;

objective_function_value obj;

PRELIMINARY_CALCS_SECTION

/lre-arrangement of data for calculation purposes;

/[Calculate the weight relationship

for(int w=1;w<=nyrs;w++)

Wt(w)=aWL(w)*pow(x,bWL(w))/1000; //the division of 1000 is to
convert gram to kg

/lannual sample size for the length data

inti;

i=0;

SamSize=0;

for(int m=indexMinyrLD;m<=nyrs;m++) {
i=m-4;
SamSize(m)=sum(lengthfrq(i));

I3

[lprior for M
mu_M=log(mode_M*(square(CV_M)+1));

87



sig_M=sqrt( log(square(CV_M)+1) );

PROCEDURE_SECTION

q=mfexp(logq);

kappa=mfexp(logkappa);

L50=mfexp(logL50);

for(int i=1;i<=nyrs;i++)
Recruits(i)=mfexp(logRec(i));

M=mfexp(log_M);

0bj=0.0;

/[Calculate the selectivity for each length class;
Sel=1.0/(1+mfexp(-1.0*gamma*(x-L50)));

/[Calculate fishing mortality for each length using F = g*Effort*Sel;
/I[Sum_over x_F_{yr,x} =/=F_{yr}; "=/=""is not equal to"
F_yr=qg*Effort; /11996 - 2016 (i.e., catch data)
for(int t=1;t<=nyrs;t++)
for(int xind=1;xind<=nlengths;xind++) {
F_tx(t,xind)=F_yr(t)*Sel(xind); //F_tx; //FM in the VB code;
Z(t,xind)=M+F_tx(t,xind);
ExpZ(t,xind)=mfexp(-1.0*Z(t,xind));
I3

/[Calculating the length frequency dsn of the recruits;
/lrecruitment is at one year of age;
/lf(1,x) is the same for all cohorts so this can be in the initial

calculations;

Rho=mfexp(-1.0*kappa);

SS(1)=sig2_r;

kkk=0.0;

for(int xind=1;xind<=nlengths;xind++) {
f(1,xind)=mfexp(-1.0*square(x(xind)-mu_r)/(2.0*SS(1)));
kkk=kkk+f(1,xind);

3
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for(int xind=1;xind<=nlengths;xind++) {
f(1,xind)=f(1,xind)/kkk; //normalize;
Mu(xind)=Linf-(Linf-x(xind))*Rho;

I3

for(int a=2;a<=nages;a++) {
SS(a)=square(sigmaL)*(1.0-pow(Rho,(2.0*a-2.0*r)))/(1.0-
square(Rho))+(pow(Rho,(2.0*a-2.0*r)))*sig2_r;
[Ithis SS is for Shrimp; //see Cohen and Fishman (1980)
%

for(int a=1;a<=nages;a++) {
for(int xind=1;xind<=nlengths;xind++) {

kkk=0.0;

for(int Lind=1;Lind<=nlengths;Lind++) {
pp(a,Lind,xind)=mfexp(-1.0/(2.0*SS(a))*square(L(Lind)-

Mu(xind)));

kkk=kkk+pp(a,Lind,xind);

I3

for(int Lind=1;Lind<=nlengths;Lind++)
pp(a,Lind,xind)=pp(a,Lind,xind)/kkk;
I3

h

/[Start of cohort loop
int m;
for(int c=1;c<=ncohorts;c++) {
int a=1;
M=c;
N(m,a)=0.0;
for(int xind=1;xind<=nlengths;xind++) {
NL(a,m,xind)=Recruits(m)*f(a,xind);
N(m,a)=N(m,a)+NL(a,m,xind); //Be careful that N has yrs x
ages; //different from the VB code

h
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for(int a=2;a<=nages;a++) {//note that a starts at 2, not 1;
m=a+c-1;
if(m>nyrs)
SumP=0.0;
else {
SumP=0.0;
for(int Lind=1;Lind<=nlengths;Lind++) {
p(Lind)=0;
for(int xind=1;xind<=nlengths;xind++)
p(Lind)=p(Lind)+f(a-1,xind)*ExpZ(m-
1,xind)*pp(a,Lind,xind);

SumP=SumP+p(Lind);

J§

N(m,a)=0.0;

for(int Lind=1;Lind<=nlengths;Lind++) {
f(a,Lind)=p(Lind)/SumP; //normalize;
NL(a,m,Lind)=N(m-1,a-1)*p(Lind);
N(m,a)=N(m,a)+NL(a,m,Lind);

[[================//note m starts at indexMinyrLD;
//Sum through the population matrix to calculate;
/lexpected catch distribution;
/[summing for each time by length class for all ages;
for(int m=indexMinyrLD;m<=nyrs;m++) { /Inote m starts at
indexMinyrLD;

TCatch(m)=0.0;

Catch(m)=0.0;

Yieldhat(m)=0.0;

Pop(m)=0.0;

EN(m)=0.0;

B(m)=0.0;

EB(m)=0.0;
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for(int a=1;a<=nages;a++) {

for(int xind=1;xind<=nlengths;xind++) {

CNum=NL(a,m,xind)*(F_tx(m,xind)/Z(m,xind))*(1-
ExpZ(m,xind));

CWt=CNum*Wt(m,xind); //in kg
Catch(m,xind)=Catch(m,xind)+CNum;
TCatch(m)=TCatch(m)+CNum,;
Yieldhat(m)=Yieldhat(m)+CWt;

Pop(m)=Pop(m)+NL(a,m,xind);  //population;

ENx(a,m,xind)=NL(a,m,xind)*Sel(xind);
//[Exploitable population;

EN(m)=EN(m)+ENx(a,m,xind);

B(m)=B(m)+NL(a,m,xind)*Wt(m,xind);
/[Biomass; //in kg

EB(m)=EB(m)+ENx(a,m,xind)*Wt(m,xind);
/lexpoitable biomass;

3
h
h

/IThe expected length-frequency
for(int m=indexMinyrLD;m<=nyrs;m++) { /Inote m starts at
indexMinyrLD;
for(int xind=1;xind<=nlengths;xind++) {
LF(xind,m)=(Catch(m,xind)/sum(Catch(m)))*SamSize(m);
%

h

/Ipart 1 of the objective funcion: multinomial

logmult=0.0;

for(int i=indexMinyrLD;i<=nyrs;i++) {
logmult+=gammin(SamSize(i)+1);

for(int xind=1;xind<=nlengths;xind++) {
logmult+=-1.0*gammlIn((lengthfrq(i-4,xind)+1))+lengthfrq((i-
4),xind)*log(Catch(i,xind)/sum(Catch(i)));
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3
I
obj+=lambdal*(-1.0*logmult); //lamdal*(the negative multinomial
likelihood);

maxloglike=0.0;
maxloglike+=logmult;

/Ipart 2 of the objective function: normal
sig2_yield=0.0;
for(int m=indexMinyrLD;m<=nyrs;m++)
elem_obj2(m)=square(log(yield(m))-log(Yieldhat(m)/1000)); //in
MT

sig2_yield=sum(elem_obj2)/(nyrs-indexMinyrLD+1); /IMLE of
sigma2

obj+=lambda2*(0.5*(nyrs-
indexMinyrLD+1)*log(sig2_yield)+sum(elem_obj2)/(2.0*sig2_yield));
/lamda2*(the negative normal loglikelihood);

lognormal=0.0;
lognormal=(-0.5*(nyrs-indexMinyrLD+1)*log(2*M_PI)-0.5*(nyrs-
indexMinyrLD+1)*log(sig2_yield)-sum(elem_obj2)/(2.0*sig2_yield));

maxloglike+=lognormal,

/lpart 3: prior for M

Ilprior for M ~lognormal(mu,sig?2); // as the negative logarithm;

obj+=0.5*log(2.0*M_PI)+log(sig_M)+log_M+square(log(M)-
mu_M)/(2.0*sig_M*sig_M);

aic=-2.0*maxloglike+2.0*(nyrs+6); /lcheck the number of free
parameters.

REPORT_SECTION
report<<"Yr Recruits Fyr Yield Yieldhat"<<end];
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for(int i=1;i<=nyrs;i++)
report<<years(i)<<" "<<Recruits(i)<<" "<<F_yr(i)<<" "<<yield(i)<<"
"<<Yieldhat(i)/1000<<endl;

report<<"yrs Pop B.in.kg ExploitB"<<endl;
for(int i=1;i<=nyrs;i++)
report<<years(i)<<" "<<Pop(i)<<" "<<B(i)<<" "<<EB(i)<<end];

report<<"yrs N"<<endl;
for(int i=1;i<=nyrs;i++)
report<<years(i)<<" "<<N(i)<<endl;

report<<"N:"<<N<<endl;

report<<"lengthfrq: "<<lengthfrq<<endl;

report<<"Catchhat: "<<Catch<<endl;

report<<"max.grad: "<<objective_function_value::gmax<<end];
report<<"Sample size in the length frequency: "<<SamSize<<end];

report<<"x(1,nlengths): "<<x<<endl;
report<<"Mu(1,nlengths): "<<Mu<<end];

report<<"SS(1,nages): "<<SS<<endl;
report<<"M, sigmal, and aic: "<<M<<" "<<sigmal<<" "<<aic<<endl;

RUNTIME_SECTION
maximum_function_evaluations 100,150,300,10000
convergence_criteria .01,.0001,1e-7

TOP_OF_MAIN_SECTION
gradient_structure::set. MAX_NVAR_OFFSET(1000); //maximum
number of depdendent variables of 400 exceeded
gradient_structure::set. NUM_DEPENDENT_VARIABLES(1000);
gradient_structure::set. GRADSTACK_BUFFER_SIZE(100000);
gradient_structure::set CMPDIF_BUFFER_SIZE(1000000);
arrmblsize=900000;
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GLOBALS_SECTION
#include <admodel.h>
#include <math.h>
#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>
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DAT file (mackerel_annual.DAT)

#nages: number of age classes

6

#number of length classes; #median length of maxFL =51.5 cm;
42

#number of years for the fishery catch data: nyrs of 1996-2017;
22

#ishery (large-purse-seine) catch

# Yield(MT) CPUE(MT/haul)

1996 415003.0

1997 160448.0 CPUE data are not allowed by the National
1998 172925.0 Institute of Fisheries Sciences (NIFS) to
1999 177540.0 be revealed.

2000 145908.0 If someone wants those data, get the

2001 203717.0 permission of NIFS.

2002 141751.0
2003 122044.0
2004 184274.0
2005 135596.0
2006 101427.0
2007 143776.0
2008 187240.0
2009 117960.0
2010 94331.0
2011 138729.0
2012 125143.0
2013 102114.0
2014 127452.0
2015 131735.0
2016 133200.0
2017 103870.0
#

#
#indexMinyrLD: index of the minimum year for the length data; //2000
5

#

95



#midpoints (cm) of length classes;

105 115 125 135 145 155 165 175 185
195 205 215 225 235 245 255 265
275 285 295 305 315 325 335 345
355 365 375 385 395 405 415 425
435 445 455 465 475 485 495 505
51.5

#length frequency data (18 x 42);

#18: year 2000 - 2017

#42: midpoints (cm) of length classes: 10.5, 11.5, 12.5, ..., 51.5

Length data are not allowed by NIFS to be revealed.
If someone wants those data, get the permission of NIFS.
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Length data are not allowed by NIFS to be revealed.
If someone wants those data, get the permission of NIFS.
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Length data are not allowed by NIFS to be revealed.
If someone wants those data, get the permission of NIFS.

#

#Prior info

#Korean mackerel

#the mean (cm) and the variance (cm”2) of the lengths at the recruit
stage (age 1);

#18.00 was calculated from the Linf below, Linf=exp(3.95);

18.00 2.10

#

#parameters in W =a*(L"b); #W in gram; # L in cm;

#aand b
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0.003 3.425 #1996 #1
0.003 3.425 #1997 #2
0.003 3.425 #1998 #3
0.003 3.425 #1999 #4
0.003 3.425 #2000 #5 $1%$
0.003 3.425 #2001 #6
0.003 3.425 #2002 #7
0.003 3.425 #2003 #38
0.003 3.425 #2004 #9
0.0036 3.3813 #2005 #10
0.0028 3.4388 #2006 #11
0.0025 3.4768 #2007 #12
0.0023 3.5062 #2008 #13
0.0018 3.5805 #2009 #14
0.0038 3.373 #2010 #15
0.0027 3.4681 #2011 #16
0.0024 3.488 #2012 #17
0.002 3.5491 #2013 #18
0.0023 3.4858 #2014 #19
0.0026 3.4521 #2015 #20
0.0029 3.4222 #2016 #21
0.003 3.4081 #2017 #22

#

#M: Natural mortality (instantaneous rate) as a prior dsn;
#mode of M

2.0

#CV of M

2.0

#

#lambdal for the length data in the objective function
0.05

#lambdaz2 for the yield data in the objective function;
10.0

#

#logLinf
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PIN file

#logq

-9.5

#logRec(1,nyrs)

20 20 20
20 20
20 20

#logkappa

-1.21

20
20
20

#logL50 in the selectivity

3.38

#gamma in the selectivity

0.6
#log_M
-1.386
#sigmalL
0.66

20 20
20 20
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