

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Thesis for the Degree of Master of Engineering

Design and Implementation of an

Efficient Web Crawling

By

Md. Tanvir Ahmed

Department of Computer Engineering

The Graduate School

Pukyong National University

August 23, 2019

[UCI]I804:21031-200000221307[UCI]I804:21031-200000221307

Design and Implementation of an

Efficient Web Crawling

효율적인웹크롤링설계및구현

Advisor: Prof. Mokdong Chung

By

Md. Tanvir Ahmed

A thesis submitted in partial fulfillment of the requirements
for the degree of

Master of Engineering

in Department of Computer Engineering, The Graduate School,
Pukyong National University

August 23, 2019

i

Contents

List of Tables V

List of Figures VI

Abstract i

Chapter 1.

 Introduction∙∙∙ 01

1.1 Introduction∙∙

1.2. Research Purpose∙∙∙

02

03

1.3. Scope and organization of this thesis∙∙ 03

Chapter 2.

 Related Work∙∙∙ 06

2.1. Web Crawler background∙∙∙ 06

2.2. Web search and Web crawling∙∙ 07

2.3. Crawler Architecture∙∙∙ 08

2.4. Unstructured data∙∙ 10

2.5. Word2vec∙∙∙ 11

 2.5.1. Continuous Bag-of-Words Model (CBOW)∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 13

 2.5.2. Skip-gram model∙∙ 16

 2.5.2.1. Reinforcement Learning framework∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 17

 2.5.2.2. Reinforcement Learning overview∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 18

 2.5.2.3. An overview of TF-IDF∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 20

 2.5.2.4. Mathematical Framework∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 20

Chapter 3.

 Design of Web Crawler∙∙ 22

ii

3.1. Web Crawler architecture∙∙∙ 22

3.2. Hierarchical Clustering∙∙∙ 23

 3.2.1. Semantic Analysis∙∙ 24

 3.2.2. Word Embedding∙∙ 25

3.3. System Overview∙∙ 26

 3.3.1. Continuous Bag-of-Words (CBOW) Model∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 27

 3.3.2. CBOW Model System Overview∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 29

 3.3.3. Skip-gram Model∙∙∙ 31

 3.3.4. Skip-gram Model overview∙∙ 32

 3.3.5. Opt imiz ing Word2vec-Tiling Computat iona l

 Efficiency∙∙∙ 34

 3.4.Word2vec-Tiling (CBOW and Skip-gram Model)∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 35

 3.4.1. Reinforcement Learning (RL) Algorithm∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 36

 3.4.2. TF-IDF Algorithm∙∙ 39

 3.4.3. TF-IDF Working Diagram∙∙∙ 42

 3.4.4. Development Tools∙∙ 43

Chapter 4:

Implementation and Evaluation∙∙∙

4.1 Implementation∙∙

44

44

 4.1.1. Implementation of CBOW Model∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 45

 4.1.2. Implementation of Skip-gram Model ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 49

 4.1.3. Implementation of Word2vec-Tiling∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 52

 4.2. Implementation of TF-IDF Algorithm∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 54

 4.2. Implementation of Reinforcement Learning Algorithm∙∙∙∙∙∙∙∙∙∙∙∙∙ 55

4.3. Evaluation∙∙ 56

 4.3.1. Experimantal Evaluation ∙∙∙ 57

 4.3.2. TF-IDF Algorithm Experimantal Evaluation∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 60

iii

 4.3.3. Reinforcement Learning Algorithm Experimantal

 Evaluation∙∙ 62

 4.4. Data Set∙∙ 62

 4.5. Performance Measurement∙∙∙ 63

Chapter 5:

Conclusion∙∙

 5.1. Conclusion ∙∙∙

65

65

5.2. Future Work∙∙ 67

iv

Appendix A

 A.1. Practical Web Crawling Issues∙∙∙ 68

 A.2. Web server administrators concerns∙∙∙ 68

A.3. Wrong DNS Web records∙∙ 69

A.4. Range errors∙∙∙ 70

A.5. Found where you mean error∙∙∙ 71

A.6. Data collection from Web pages∙∙∙ 71

A.7. Data value different between Existing and Proposed method∙∙∙ 72

v

List of Tables

Table 2.1 TF-IDF Algorithm Tools∙∙∙ 21

Table 3.1 Algorithm of CBOW Model∙∙ 29

Table 3.2 Proposed CBOW Working process∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 32

Table 3.4 Skip-gram model Pseudocode∙∙∙ 33

Table 3.5 Text Episode Reward value Calculation process∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 37

Table 3.6 Outline of Modified Algorithm based on Q-value∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 38

Table 3.7 The update Reward Function Q-value∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 39

Table 3.8 TF-algorithm Proposed method Pseudocode∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 40

Table 4.1 The Different between CBOW and Skip-gram∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 59

Table 4.2 Performance Measures∙∙ 59

Table 4.3 Each Document Separate Value using TF Algorithm∙∙∙∙∙ 60

Table 4.4 Each Document Separate Value using RL Algorithm∙∙∙∙∙∙ 60

Table 4.5 Comparison of different data sources∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 63

Table 4.6 Performance Area∙∙ 64

Table A.1 Same data Existing but Proposed method word2vec

and word2vec-tiling value different∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 73

vi

List of Figures

Figure 1.1 The search engine’s view of the web∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 02

Figure 1.2 Topics covered in this thesis∙∙ 05

Figure 2.1 Cycle architecture for web crawler∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 07

Figure 2.2 Types of data and its application area∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 10

Figure 2.3 A simple CBOW model∙∙∙ 12

Figure 2.4 A CBOW with C words (C>1) in the context∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 14

Figure 2.5 The Skip-gram model ∙∙∙ 16

Figure 2.6 Overview of the reinforcement learning frame work∙∙∙∙∙∙∙∙∙ 17

Figure 2.7 Reinforcement Learning working overview∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 18

Figure 3.1 Web Crawler Architecture∙∙∙ 22

Figure 3.2 Sentence Clustering∙∙∙ 24

Figure 3.3 Skip-gram and CBOW Word2vec-Tiling models

Overview∙∙∙ 26

Figure 3.4 Overall Working Process∙∙∙ 27

Figure 3.5 CBOW model system overview∙∙ 30

Figure 3.6 Proposed method Skip-gram working method∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 31

Figure 3.7 Proposed method Skip-gram working process∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 34

Figure 3.8 The structure of CBOW and Skip-gram model∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 35

Figure 3.9 TF-IDF working diagram∙∙ 42

Figure 4.1 Example of applied document∙∙∙ 47

Figure 4.2 Example of word transaction using tiling method∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 47

Figure 4.3 Represent document (figure 4.1) working process∙∙∙∙∙∙∙∙∙∙∙∙∙ 47

Figure 4.4 Word2vec-Tiling working process∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 48

Figure 4.5 Existing method word2vec (CBOW) overview∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 48

Figure 4.6 Proposed method word2vec-Tiling (CBOW) overview∙∙∙∙ 48

vii

Figure 4.7 Center and context words resulting from the text corpus∙∙∙ 49

Figure 4.8 Text corpus using Skip-gram result∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 51

Figure 4.9 Proposed method skip-gram working overview∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 51

Figure 4.10 Existing method skip-gram working overview∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 52

Figure 4.11 Graph comparing CBOW and Skip-gram∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 53

Figure 4.12 Proposed method using TF-algorithm result∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 53

Figure 4.13 Existing method using TF-algorithm result∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 54

Figure 4.14 Proposed method using RL-algorithm result∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 56

Figure 4.15 Existing method using RL-algorithm result∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 56

Figure 4.16 TF-IDF algorithm semantic relation working process∙∙∙∙∙∙∙ 61

Figure 5.1 Proposed Method Performance Overview∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 66

Figure 5.2 Existing Method Performance Overview∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 66

Figure A.1 A misconfiguration in the server record for

“Ygoogle.com” resulted in the wrong contents being

assigned to its URL∙∙ 69

Figure A.2 Data collect process from the web page using keyword∙∙∙∙∙ 72

viii

Design and Implementation of an Efficient Web Crawling

Md Tanvir Ahmed

Department of Computer Engineering, The Graduate School,

Pukyong National University

ABSTRACT

The key part for the attainment of the World Wide Web (WWW) is its large size and the lack

of centralized control over its contents. Both manifestations are also the most important source

of problems for locating information. The web is a context in which traditional Information

Retrieval (IR) methods are challenged, and given the volume of the web and its speed of

change, the coverage of modern search engines is comparatively petty. Moreover, the

distribution of quality is very skewed, and interesting pages are scarce in comparison with the

rest of the content.

The web crawler is a program, which is commonly used by search engines to find the new

brainchild on the internet. The use of crawlers has made the web easier for users. In this thesis,

we have used unstructured data by structuralization to collect data from the web pages. Our

system is able to choose the word near our keyword in more than one document using

unstructured way. Neighbor data were collected on the keyword through word2vec. In this

research, we have introduced (Word2vec-Tiling) a new technique to collect data from the web

pages. In our research, we used word2vec in the tiling method. Word2vec is considered as one

of the easiest and most popular algorithms for identifying the relationship weight among the

documents. Thus, the user will get accurate information related to his keyword. In this thesis,

specific keywords were used by Word2vec-Tiling to identify naturally fused word frequencies,

semantic relationships, and directional text-ranks. Finally, our system proposed a competent

ix

web search crawling algorithm that is derived from word2vec and Reinforcement Learning

(RL) and Term Frequency and Inverse Document Frequency (TF-IDF) web search algorithm

to enhance the searching efficiency for the relevant information. Therefore, the neural network

is an advanced mechanism for verifying the semantic relationship between words and texts in

a particular document. Our approach uses the Word2vec-Tiling to capture the unstructured

data semantic features of words in the selected text while naturally integrating the word

frequency and semantic relation.

The Word2vec-Tiling is a technique for subdividing texts into multi paragraph units that

represent passages, or subtopics. The discourse cues for identifying major subtopic shifts are

patterns of semantic co-occurrence and distribution. The algorithm (Word2vec-Tiling) is fully

implemented and is shown to produce segmentation that corresponds well to Artificial

Intelligence (AI) judgments of the subtopic boundaries of multiple texts. Multi paragraph

subtopic segmentation should be useful for many text analysis tasks, including text semantic

relation and word embedding. By following the Word2vec-Tiling method that we have

proposed, it is easily possible to find out the related information about the searched keyword

on Internet that we have already proved by improving the equation of TF and RL algorithm.

1

1.1. Introduction

With the flourishing availability of text documents on the World Wide Web (WWW),

it has become very difficult for an average reader to gather information on individual

issues, events, or topics by reading each and every document with an aim to find out

the useful information. Therefore, the smart crawling system able to play a major role

to overcome this problem. Because the crawler is a program that retrieves and stores

pages from the web, commonly for a web search engine [2]. In this research, we have

discussed how web crawling is highlighted in an efficient way using unstructured

data. We preferred unstructured data in this article and the data was collected from

the web page using a specific keyword. The unstructured data is a data or information

that do not have any predefined data model or not organized pre-defined model [8],

[12]. Earlier, in the research on unstructured data [1], [8] in web pages similarity but

was very condensed. For this reason, their accuracy rate is not up to the satisfaction

levels. Therefore, to solve this phenomenon, on this research effective method of

collecting unstructured data is demonstrated. First of all, we have collected

automatically keywords related urls. Then we created the data tree using the Breadth

First Search (BFS) method from the all collected urls [20]. Unstructured data was

accounted and collected from the web page. We have collected multitudes of

unstructured data.

In recent years, most research has been focused on finding new categorization

algorithms; however, little research has been done on the improvement of document

representation models, which comes from unstructured data tools text semantic

relation. The early research on web crawler used word2vec semantic function to

Chapter 1

Introduction

2

investigate unstructured data word frequency. As a result, its accuracy rate is not up

to satisfactory levels. In this thesis, we proposed a new algorithm named Word2vec-

Tiling, based on Word2vec, a widely used weighing method in text segmentation or

categorization [19]. In this thesis, we propose an improvement on word2vec

weighting in relation to the tiling space model. Word2vec-Tiling considers both the

term frequency and inverse document frequency; in this method, if the term frequency

is high, and the term only appears in a little part of the documents, then the term has

a very good differential ability. Although this approach emphasizes the ability to

differentiate different classes more, it ignores the fact that a term that frequently

appears in documents belonging to the same class can better represent the

characteristic of that class. Therefore, we introduce a new method (Tiling) to

represent the in-class characteristic, following which we conducted some

experiments to compare the effects. The result shows that this improvement yields

better accuracy. Finally, we used Reinforcement Learning (RL) or Q-learning

algorithm by improving the equation to find out the semantic relation between these

unstructured data words in different documents and the analysis of the information

collected through the Word2vec-Tiling algorithm. The RL or Q-learning is known to

learn unrealistically high action values because it includes a maximization step over

estimated auction values that tends to prefer overestimated to underestimated values.

Figure 1.1. The search engine’s view of the web. As the crawling process takes time

and the web is very dynamic, the search engine’s view of the web represents the sta

te of web pages at different times. This is similar to watching the sky at night, as the

stars we see never existed simultaneously as we see them.

3

1.2. Research Purpose

By this time, we describe the relationship between the crawler and the web to their

workmanship in figure 1.1. Now we will describe why we are interested in research

on web crawler and their data tool. Our main aim is to deliver accurately the result of

searching data of users at very less time. For this reason, the thesis we introduced a

new method of crawler search. In order to reach this goal, we first emphasized on

collecting data from the web. According to the report of previous web research,

Google crawler uses word2vec to collect its data from the web [1], [22]. For this

reason, we have focused on collecting data from the web at the beginning of our

research. So we proposed Word2vec-Tiling in the proposed method. Using this

recommended method, the user will be able to collect information very quickly and

accurately for his search. Finally, we used the TF, RL algorithm to analyze the

performance of the tiling method. The ability to work in the efficiently way of our

proposed algorithm we tried to prove through RL and TF algorithms.

1.3. Scope and organization of this thesis

This thesis focuses on Web crawler in Tiling process, and we research Web Crawling

at many different levels. Our starting point is a crawling model, and in this framework,

we develop algorithms for a web crawler data collection. Our aim at designing an

efficient web crawling architecture and developing a scheduling policy to download

pages from the web that is able to download the most “valuable” pages early during

a crawling process.

The topics covered in this thesis are shown in figure 1.2. The topics are entangled,

such as, there are several relationships that make the development non-linear. The

crawler implementation is required for web characterization, but a good crawler

design needs to consider the characteristics of the collection. Also, the crawler

architecture is required for implementing the scheduling algorithms, but the result of

the scheduling experiments drives the design of the crawler’s architecture.

4

We try to linearize this research process to present it in terms of chapters, but this is

not the way the actual research was carried out: it was much more cyclic and iterative

than the way it is presented here.

The following is an outline of the contents of this thesis. The first chapters explore

theoretical aspects of Web Crawling:

Chapter 2, reviews selected publications related to the topics covered in this thesis,

including web search, unstructured data analysis, and web crawler background. The

next chapters are organized into two parts: one theoretical and one practical.

Chapter 3, introduces a new model for web crawling (Tiling), and a novel design for

a web crawler that integrates it with the other parts of a search engine which is

illustrated by pseudocode. Several issues of the typical crawling architectures are

discussed and the architecture of the crawler is presented as a solution to some of

those problems.

Chapter 4, details implementation issues related to the design and to algorithms

presented in the previous chapters, including the data structures and key algorithms

used.

Finally, Chapter 5, summarizes our contributions and provides guidelines for future

work in this area.

We have described a new method for completing data from the web in thesis is

research, which means that we can easily implement keyword related data from the

web. We have also included in appendix-A a list of practical issues of web crawling

that were detected only after carrying several large crawls. We propose solutions for

each problem to help other crawler designers.

5

Figure 1.2 Topics covered in this thesis. Main topics covered in this thesis. Web

crawling is important in the context of Web information retrieval because it is

required for both Web search and Web characterization

6

2.1 Web Crawler Background

The first Internet "search engine", a tool called "Archie" (shortened from "Archives"),

was developed in 1990. It downloaded the directory listings from specified public

anonymous FTP (File Transfer Protocol) sites onto local files around once a month

[9]. At that time, "Gopher", which indexed plain text documents, was created. The

introduction of the World Wide Web in 1991 had numerous of these Gopher sites

changed to web sites that were properly linked by HTML links [1]. "Jughead" and

"Veronica" programs are useful for exploring the aforementioned Gopher indexes. In

1992 'Tim Berners-Lee' sets up the Virtual library of the web (also known as VLib),

which plays an important role in maintaining relevant socialist links. In the year 1993,

the "World Wide Web Wanderer", the first crawler, was formed. Although this

crawler was initially used to measure the size of the Web, it was later used to retrieve

URL’s that were then stored in a database called "Wandex" the first web search

engine. Another early search engine, "Aliweb" (Archie-like Indexing in the Web)

allowed users to submit the URL of the manually constructed index of their site. The

index contained a list of URL’s and a list of user-written keywords and descriptions.

In the year 1994, the first "full text" crawler and search engine, "WebCrawler", was

launched. web crawler permitted users to explore the web content of documents,

rather than the keyword’s and descriptors written by the web administrators, reducing

the possibility of confusing results and allowing better search capabilities. From 1994

to 1997, commercial search engines began to appear. In the early 2000s, researchers

on crawlers made some changes to their research [10]. They attempted to improve the

quality of web search engines. For this reason, they split the web search engine

through "Hypertext" and "Hyperlink" [11]. More changes on web crawler were

achieved in 2010. The crawler or web search engine's "hypertext" and "hyperlink" are

Chapter 2

Related Work

7

described as "data web mining" and "focus web". The crawler or web search engine's

"hypertext" and "hyperlink" are divided by "data mining" and "focus web", where

“deep web crawler” and “web crawler hidden data” are described.

2.2 Web search and Web crawling

The typical design of search engines is a “cascade”, in which a web crawler creates a

collection which is indexed and searched [20]. Most of the designs of search engines

consider the web crawler as just a first stage in web search, with little feedback from

the ranking algorithms to the crawling process. This is a cascade model, in which

operations are executed in strict order: first crawling, then indexing, and then

searching.

Our approach is to provide the crawler with access to all the information about the

collection to guide the crawling process effectively. This can be taken one step further,

as there are tools available for dealing with all the possible interactions between the

modules of a search engine, as shown in figure 2.1.

The indexing module can help the web crawler by providing information about the

ranking of pages, so the crawler can be more selective and try to collect important

pages first. The searching process, through log file analysis or other techniques, is a

source of optimizations for the index, and can also help the crawler by determining

Figure 2.1 Cyclic architecture for search engines, showing how different components

can use the information generated by the other components. The typical cascade

model is depicted with thick arrows.

8

the “active set” of pages which are actually seen by users. Finally, the Web crawler

could provide on-demand crawling services for search engines. All of these

interactions are possible if we conceive the search engine as a whole from the very

beginning.

2.3 Crawler Architecture

A general web crawler consists of webpage fetcher (downloader) for retrieving

webpage contents, URL’s queue (frontier) for storing unvisited URL’s, and webpage

processor for extracting text and URL’s out of a webpage’s HTML. Crawlers model

the World Wide Web (WWW) as a graph G (V, E) where nodes (V) are webpage’s

and edges (E) are links between webpage’s [15]. So, two webpage’s (nodes) will have

an edge between them if one webpage has a link pointing to the other webpage.

Similar to general Web crawling, a focused crawler has a webpage fetcher, URL’s

queue, and webpage processor. In addition, a focused crawler has a topic or domain

specific model, and a module for estimating the relevance of URL’s and webpage’s.

Typically, a focused crawler takes as input: (1) the desired number of pages to collect,

and (2) seed URL’s to start crawling from. It outputs the set of webpage’s found.

One of the important aspects of (focused) crawlers is the ordering of the URL’s in the

queue, which specifies the order of visiting the nodes of the graph. In the focused

crawler literature as example, the best-first search is the most commonly used

technique and is considered the state-of-the-art focused crawler, taking into

consideration the estimated relevance of the URL’s/webpage’s during crawling.

In Web like an Internet focused crawler starts from a seed URL. It downloads the

corresponding webpage and extracts the text of that webpage. The focused crawler

then estimates the relevance of the webpage textual content with regard to the

topic/event of interest. In the next step, there are two design options. One option is

that the focused crawler decides whether the webpage is relevant or not by comparing

its estimated score to a pre-defined threshold. If the webpage is considered relevant,

then the focused crawler extracts the embedded URL’s from the webpage and inserts

them into the queue. The other option is that the focused crawler extracts all

9

embedded URL’s from the webpage and then inserts those into the queue, not being

constrained by the webpage score. The second option takes into consideration the

tunneling phenomena in crawling, where a non-relevant webpage links to relevant

webpage’s, either directly or through several steps.

When inserting the extracted URL’s into the queue, the focused crawler has to make

another decision. One option is to insert all extracted URL’s, along with the estimated

score of the webpage from which they were extracted. Another option is to estimate

the relevance of each URL based on the tokens in both the URL’s address and anchor

text, and insert the URL and its resulting estimated relevance score into the correct

position in the priority queue. We adopt a hybrid approach where we use the average

of a URL’s score and the score of the parent webpage from which the URL was

extracted.

Next, the focused crawler pulls from its queue the URL with highest score, and

repeats the process. In pseudocode shows a focused crawler algorithm that handles

tunneling (such as, extracts the URL’s from the webpage regardless of score)

estimating the score of each URL and inserting it into the queue with its estimated

score. We consider this approach as the foundation for the baseline for evaluation

comparisons.

START

Input: Seed URLs, pagesLimit, PageScore, urlScoreThreshold

Insert seed URLs in priority queue

Topic Representation

topicVector = Build topic representation from seed pages

Crawling

While pagesCount < pagesLimit and priorityQueue is not empty:

 URL = pop (priorityQueue)

 append URL to visited list

 page = download (URL)

 # Preprocessing (Vector Space Model)

 page_Score = calculate_Score(page_Vector, topic_Vector)

10

 page_Count += 1

 if (page_Score >= page_Score_Threshold):

 page.get_URLs()

 relevant_Pages_Count += 1

 save page to event-related collection

 for link in page.out_going URLs:

 URL = link.address

 validate(URL)

 if URL not in visited list and URL not in priority_Queue:

 # Preprocessing (Vector Space Model)

 url_Vector = process(URL text)

 # Relevance Estimation (Cosine Similarity)

 url_Score = calculate_Score(url_Vector, topic_Vector)

 if url_Score >= url_Score_Threshold:

 push (URL, priority_Queue)

END

2.4 Unstructured Data

Unstructured data, [20] in contrast, refers to data that does not fit neatly into the

traditional row and column structure of relational databases. In web pages, it often

includes text and multimedia content. Examples of text files like data processor,

Figure 2.2 Type of data and its application area

11

spreadsheets, presentations, webpage’s and many other kinds of business documents.

While these sorts of files may have an internal structure, they are still considered

unstructured because the data they contain does not fit neatly in a relational database.

The learning resources and social networking sites are examples of unstructured data

[15]. The video and audio streaming of classroom is also unstructured data figure A.2.

Our thesis research focuses on learning resources and web pages multimedia data for

unstructured data. The education system generates, maintains and analyzes large

amount of data through various sources. This data is related to academic, non-

academic, learning, examination, admiration, training and placement. The nature of

such data as shown in figure 2.2 is varied in nature as given.

2.5 Word2vec

The word2vec model was proposed by Google, and its applications have recently

attracted a great deal of attention from the machine learning community [21]. It is an

algorithm for learning embedding’s using a neural language model. Its input is a text

corpus, while its output is a set of vectors. It is a neural network language model that

can process text data and generate word vectors. The dense vector representations of

words learned by word2vec can capture semantic relations, such as, the logical

relationships between words; words that we know to be synonyms are more likely to

have very similar vectors, while antonyms tend to have dissimilar vectors. Besides,

these vectors adhere surprisingly well to our intuition and obey the laws of analogy.

Google introduced two main learning algorithms under word2vec: Continuous bag-

of-words (CBOW) and Skip-gram (SG) model [22]. The CBOW model uses the

context to predict a target word, while the Skip-gram model uses a word to predict a

target context. Both algorithms learn the representation of a word that is useful for

the prediction of other words in the sentence. In this thesis, we have researched the

Skip-gram model of word2vec.

More formally, given a large training corpus represented as a sequence of words w1,

12

w2…wn the objective of the CBOW model is to maximize the log probability.

∑�
��� ∑ log � (��|��)�∈��

 (1)

Where n, is the web document and the context Cn, is the set of indices of words

surrounding keyword wk. The probability of observing a context page, wp, given wk,

will be parameterized using the aforementioned word vectors. For now, let us assume

that we are given a total number of web pages ǀPǀ that maps pairs of (word, context)

to scores in ki. One possible choice for defining the probability of a context word is

the softmax.

P������� =
���(|�|������ �)

∑ ���(|�|(��,�))�
���

 (2)

However, such a model is not adapted at this instance as it implies that given a, word

wk, we can only predict one context page, wp.

The problem of predicting context words can instead be framed as a set of

independent binary classification tasks. Then, the goal is to independently predict the

presence of context words. For the word at position n, we consider all context words

as positive examples, and sample negatives at random from the dictionary. For a

chosen context position c, using the binary logistic loss, the negative log probability

we obtained is subsequently discussed.

log�1 + ��|�|(��|��)� + ∑ log(1 + �|�|(��,�))�∈��
 (3)

Figure 2.3 A simple CBOW model

13

2.5.1 Continuous Bag-of-Words Model (CBOW)

Consider a very simple version of CBOW model where only one context word c is

given as input and the model has to predict the next word w. In figure 2.3 shows the

simplified CBOW model where V, is the size of vocabulary and N is the size of the

hidden layer and the dimension of the word embedding produced by this model [22].

The size of the output layer is same as the input layer. The size of output y, is same

as the cardinality of the vocabulary. The value at each index of the output vector

represent the propability that next word is the word at index i, of the vocabulary and

so on. Thus

yi = P(wǀc) (4)

∑ ��� = 1 (5)

The input to this network xv, is one hot vector representation of the context word.

Thus xk = 1 and xk = 0 for k’ ≠ k

There are two sets of weight matric one between input layer and hidden layer and is

denoted by W, and the other weight matrix between the hidden layer and output layer

denoted by W’. The size of the matrix W is V×N and of matrix W’ is N×V.

h = ��� (6)

Since x, is a sparse vector with only one dimension on at the kth position so the h, is

k row of W. Let w be the kth , row of Wk, h is the represented as

h = WT, x = Wk = vc

Thus, activation function of the inner layer is a linear function. Suppose

yi = φ (ui) (7)

and,

u = WT h (8)

ui = Wi h (9)

Let us denote Wi as �� therefore

ui = �� h (10)

From equation h = ��� = Wk = vc therefore

ui = ��, vc (11)

14

Figure 2.4 A CBOW with C words (C > 1) in the context

yi is the non liner function φ, applied to ui. Since we want to interpret yi, as a

probability so we will use Word2vec-Tiling classification model to obtain the

probability distribution of the worlds.

yi =
���

∑ ���
�

 (12)

From equation (11)

yi =
�����

∑ �������
 (13)

Where W∈ all the word in vocabulary V. vw and vc are the parameter of this model

that we need to find in a way that the likelihood of the model is maximized. Let θ

denote the parameters of the CBOW model such that θ = �� , ��. Let L(θ) denote the

likelihood of the parameter.

L(θ) =∏ �(�|�)�∈� (14)

On taking the log if the likelihood L(θ) denoted by l

l(θ) = ∑ log �(�|�)�∈� (15)

From equation (13)

 l(θ) = ∑ log
�����

∑ �������
�∈�

l(θ) = ∑ �� , �� − ��� ∑ �����
���∈� (16)

On taking the derivative of log likelihood l(θ)

��(�)

���
= �� −

1

∑ ���,����
���,����

15

��(�)

���
= �� − �(�|�)��

��(�)

���
= ���1 − �(�|�)� (17)

Using stochastic gradient descent, we can obtain the weight updating for hidden →

output layer,

�� = �� − � ���1 − �(�|�)� (18)

Similarity, on taking derivative of log likelihood �(�) also �� the weight updating

equation for input → hidden layer is estimated by

�� = �� − � ���1 − �(�|�)� (19)

Multi-word context

In this case the input is not the single word context but multiple words x1,x2,x3…xc

The hidden layer output h, is given by

h =
��(�� + �� + ⋯ + ��)

�

h =
���

+ ���
+ ⋯ + ���

�

C is the context window size. Let L(�) denotes the likelihood of the parameter �.

L(�) = ∏ �(�|��, �� … ��)�∈� (20)

On taking the log of the likelihood denoted by l(�)

L(�) = ∏ �(�|��, �� … ��)�∈�

l(�) = ∑ ���
����

∑ ����
�

�∈�

l(�) = ∑ ��ℎ − ∑ log ���,�
��∈� (21)

Using stochastic gradient descent, we can obtain the weight updating equation for

hidden → output layer.

�� = �� −
�

�
����1 − �(�|��, �� … ��)� (22)

16

Figure 2.5 The Skip-gram model

2.5.2 Skip-gram Model

In this model the aim is to predict the neighboring word given the central word as

the input [21]. The input is one hot vector representation of the central word and is

represent by x.

The input vector for the word x, is denoted by vc. Similar to the single word context

model of CBOW, there are two weight matrices denoted by W and W’.

The output of hidden layer is given by

h = WT x = Wk = vc

Score vector for the output word is generated using

��� = �� = ��ℎ = ���ℎ = �����

For c =1,2,3…C

vwj is the output vector of jth word in the vocabulary and it is also the jth column of the

output matrix W’. Using this function, each of these score is converted to a

corresponding probability.

The objective function of this model is that probability vector generated to match the

actual probability which is y(i-c), y(i-1), y(i+1…y(i+c) the one hot vector of actual output.

This probability is estimated by the formula below

P(Wt+i, W) = yc, j =
���(�����

���)

∑ ���(�����
���)��

�
 (23)

17

Figure 2.6 Overview of the reinforcement learning frame work

We need to define an objective function to evaluate the skip-gram model. Using the

Gupta Saurabh assumption, given the central word, all the neighboring words are

completely independent [22].

2.5.2.1 Reinforcement Learning Framework

In this chapter, we propose a formal framework for the deep web crawling based on

RL and formalize the crawling problem under the framework. First of all we give an

overview of the RL framework. The relation between a crawler and a deep web

database is illustrated in Figure 2.6.

From the figure, one can conclude that at any given step, an agent (crawler) perceives

its state and selects an action (query). The environment responds by giving the agent

some (possibly zero) reward (new records) and changing the agent into the successor

state [20]. In the total procedure of RL-algorithm in the proposed method is described

by the figure 2.7.

 1. Link Queue: Current set of links that have to be visited. Fetch link with highest

score on queue.

 2. Evaluate page this link points to: Based on set of text/content attributes. If

relevant, store on Good Pages.

 3. Get links from page

 4. Evaluate links, add to link queue.

 5. In the RL link scorer evaluate the links.

18

Figure 2.7 Reinforcement Learning working Overview

2.5.2.2 Reinforcement Learning Overview

Reinforcement Learning or Q-learning can acquire optimal control policies from

pending rewards, even when the agent has no former knowledge of the environment

[13]. For a discrete case, a Q-learning algorithm assumes that the initial state set s,

and action set a, can be divided into separated values. At the next step n, the agent

observes the state sn, and then chooses an action an. After executing the action in time

t, the agent receives a reward r, which reflects how good the action is (in a short-term

sense). The state will change into the next state sn+1, under action a, in time t. Then,

the agent will choose the next action, an+1, according to the established knowledge.

Conceptually, Q-learning works by learning an action-value function that gives the

desired utilization of taking , given action in a, given state. Q-learning is defined thus:

Q(s,a) ← Q(s,a) + α[r+γ. arg. ����(�(����, ��) − �(�, �))] (24)

Where r is the reward observed, the parameter, a, controls the learning rate (0 < a <

1) and ɣ is a factor discounting the rewards obtained so far (0 < ɣ < 1).

Given the learned Q-values, when reaching a state s, Q-learning algorithms typically

select the greedy action, a, which has the highest Q(s, a) value with a probability 1−∈.

The algorithms will then select a random action with a probability ∈ (with 0 < ∈ < 1).

Typically, ∈ is set to be very small (such as, close to 0); thus, most of the time, the

greedy action is selected.

This method of choosing between the greedy action and the random action is called

"∈-greedy", and it enables Q-learning to escape local maxima. After a potentially

19

large number of iterations, Q-values are learned such that when the greedy action is

chosen every time, the return at time t is maximized; the return is defined as the

summation of the rewards obtained after time t, until the episode ends.

Reinforcement Learning or Q-Learning is learning method, which renews each

synapse weights according to output signals. The learning rule can be applied to feed

forward networks and recurrent networks. The flow of measurement of the renewal

of the syndrome is shown by the pseudocode as follows.

1. Initialize state (sn, an)

2. calculate the reward of action an

3. for each document di∈r(sn-1, an)

4. for each keyword k in di do

5. if action a(k) ≠A then A = A ⋃ �(�)

6. else then restart Reinforcement-learning (RL) of action a(K)

7. end for

8. end for

9. change the current state to sn+1

10. Pr = Pr ⋃[��] restart candidate set S; S = S / [an]

11. for each ai∈S update its reward rt

12. for each ai∈S update its each value γ

13. for each ai∈S calculated its RL-value

14. return arg.maxa Q(s’, a)

Q(s,a) ← Q(s,a) + α[r+γ. arg. ����(�(����, ��) − �(�, �))]

15. End

Specifically, the surfacing algorithm first calculates the reward of the last executed

action and then updates the action set through step 3 to Step 8, which motive the agent

to transit from its state ‘sn’ to the successor state ‘sn+1’. Then the training and candidate

set are restart in accord with the new action set in step 10. After that, the algorithm

catalog the reward and RL-value for each action in candidate set in step 11, step 12

and step 13 respectively. The action that maximizes RL-value will be returned as the

next to be executed action.

20

2.5.2.3 An overview of TF-IDF

We will first introduce the mathematical background of the algorithm and also

describe the TF-IDF algorithm working process.

2.5.2.4 Mathematical Framework

Basically, TF-IDF works by determining the relative frequency of words in a specific

document compared to the inverse ratio of that word over the entire document corpus

[20]. Intuitively, this calculation determines how relevant a given word is in a special

document. Words that are common in a single or a small group of documents tend to

have higher TF-IDF numbers than common words such as articles and prepositions

[25]. The formal procedure for implementing TF-IDF has some minor differences

over all its applications, but the overall approach works as follows in table 2.1. Their

research first defines a topic keyword dictionary, at the same time the web document

is represented by x heft words, and then use TF-IDF method to calculate keywords

(K), webpage, (P) and Term Frequency (TF) as shown in equation (25).

TF(P, K) = fre (P,K) / ∑ ��� (�, ��)��∈� (25)

Here, P, K indicate the number of things of the keyword K, in the web document P.

As shown in equation (26) Inverse Document Frequency (IDF).

IDF(P, K) = ǀPǀ / ∑ ���� (�� , �)��∈� (26)

For the keyword, K with the webpages, P. Their interrelation coefficients are

calculated as shown in equation (27).

T (P,K) = TF(P,K) × IDF(P,K) (27)

TF-IDF is the multiple of the value of TF and IDF for a particular word. The value of

TF-IDF increases with the number of occurrences within a document and with rarity

of the term across the corps. Finally T has been used to establish a connection between

TF and IDF [6], [25].

21

Table 2.1 TF-IDF algorithm tools

Methods Denoted by

Term Frequency TF

Web document x

Key words K

Web page P

Number of keyword

document
Ki

Number of

webpage document
Pi

Their interrelation

coefficients
T

Total number of

web page
ǀPǀ

Total number of

Keyword
ǀKǀ

1st equation TF(P, K) = fre (P,K) / ∑ ��� (�, ��)��∈�

2nd equation IDF(P, K) = ǀPǀ / ∑ ���� (�� , �)��∈�

3rd equation T(P,K) = TF(P,K) × IDF(P,K)

22

Figure 3.1 Web Crawler Architecture

3.1 Web Crawler Architecture

 Web data acquisition is the foundation of web data mining. The web crawler is an

important tool for web data acquisition. A web crawler is a program that is an

essential web search engine to find the URL to the web page then save and download

it. Web crawlers are an important component of web search engine, where they are

used to collect the corpus of web pages index by the search engine as shown in figure

3.1 [4].

The web crawler's work methods are described [20]. The web page has different

types of data. It is not possible to separate, when we are collecting this data, such as

structured data or unstructured data in figure 2.2. Therefore, we created the

architecture to separate these data. According to this architecture, we collect data

from the web page and it is divided into structured and unstructured ways. Actually

structure data is a data which is stored in row and column format using traditional

Chapter 3

Design of Web Crawler

23

database management system. It follows all relational database management system

properties like ACID, Normalization and etc. examples are Oracle, MySQL, ms-

access, and so on. On the other hand, unstructured data is a data which is not stored

in a table format. Which has no structure. It does not have a specific pattern like

column or row. It includes audio, video, pdf file, webpage’s url etc. Therefore, we

preferred web pages unstructured data. Firstly, we have chosen a web page, after

which we have separated all the unstructured data associated with that web page,

which we saved on our server. The biggest advantage of this architecture is that the

collected data will not be lost, all data can be stored separately on the server. In this

step of the algorithm tool, we will design how to use the algorithm. Finally, the data

reaches the experimental tool. The experimental tool uses the metrics computation

tool’s output to show how a given design differ from highly rated designs with a

similar purpose. It uses several statistical models which derived from an analysis, that

were rated according to their quality and usability and finally, it sends the result to

the user.

3.2 Hierarchical Clustering

The imperialist competitive algorithm is widely used to solve different problems [5].

In this research, we use Word2vec-Tiling to identify the optimal topic boundaries of

text segmentation in a document. At first basic preprocessing applied to the text,

punctuation and the not useful words are eliminated by using a list of stop words

specific to the Python language. Then we have used clustering for text segmentation.

The hierarchical text segmentation produces a tree that can be used as a visual

illustration of the underlying hierarchical structure of a document. The benefit of this

clustering tree is that it represents different levels of granularity of the document,

which in turn means that the document can be segmented into different segmentation

levels. This is a powerful criterion in the hierarchical representation of text. In

contrast to a linear representation, in each level of the structure (tree) segmentation

with different levels of details could be obtained and can be usefully applied to many

other tasks needs show in figure 3.2. After which each word is represented as a term

24

frequency vector [6]. Then the similarity between a middle pair of sentences is

computed using cosine similarity, this is applied to all sentence middle pairs to

generate a similarity matrix. Finally, the optimal boundaries are created by

Word2vec-Tiling according to the sentence similarity matrix. In order to improve the

performance of our algorithm, we used the optimal boundaries which are found by

the word2vec-Tiling (CBOW and SG) algorithm.

3.2.1 Semantic Analysis

Semantic analysis of the text is the key issue for relations extraction form

unstructured text. In our approach to relationship extraction we used simple semantic

rule such that a sentence describing the subject entity and object entity, and predicate

in between them act as a candidate relation. Linguistic output is input to semantic

analysis process that executes defined Tiling semantic rule and extract set of entities

and semantic relations between them. For example, the rule to extract semantic

relation is pseudocode formulated as follows:

Phase: Priority

Input: Document Token

Options: Control = applet

Rule: Prior_verbs(

{Token.category == CBOW} {Token.category == CBOW}

Figure 3.2 Sentence Clustering

25

{Token.category == SG} {Token.category == SSG}

{Token.category == HC} {Token.category == HC}

)

:priori →

{

 gate.Annotation set priori = (gate.Annotation set)bindings.get(“priori”)

 gate.Fearure map features = Factory.new feature map()

 feature.put(“rule”, “priori_varbs”)

 output PREDICT.add(predi.firstNode(), predi.lastNode(); “Predicate”, feature)

}

3.2.2 Word Embeddings

Word embedding’s is a preferred technique for transforming text into a vector in text

classification, document clustering, speech tagging, entity identification, emotion

analysis, and many other natural language processing tasks. These distributed

representations aim to transform the words into vectors in order to relate the similarity

between the vectors to the semantic similarity between the words. Word2vec-Tiling

are one of the best known word embedding’s approaches.

In text classification tasks such as sentiment analysis, word embedding’s created with

word2vec are used to improve performance and obtain more accurate classification

results. The Word2vec-Tiling model shown in Figure 3.3 has two architectures:

Continuous Bag of Words (CBOW) shown in Figure 3.3(B) and Skip-gram (SG)

shown in Figure 3.3(A). Although the CBOW model is reported as several times

faster to train in the literature, it is observed that the skip-gram model works better in

predicting non-frequent words. So, we prefer the skip-gram model for obtaining pre-

trained word embedding’s research.

The skip-gram model tries to predict the words around the center of a given word,

that is, context words. Figure 3.3(A) shows a classifier that takes a word vector and a

context vector as inputs. The classifier in Figure 3.3(A) is first trained to learn and

26

Figure 3.3 Skip-gram and CBOW Word2vec-Tiling models Overview

then to predict the actual label of a review, which is 0, if the sentiment polarity is

negative and 1 if the polarity is positive.

In the skip-gram word2vec model, each word w∈w’ is represented by a word vector

embedding V∈V’ and similarity each context C∈Cn is represented as a context vector,

Vr, Vwt

where r and wt is the vector size (embedding size). W is the word and C is the

contextual dictionary. Inner multiplication is performed between words and vector

representations of contexts. The output of this trained network is the weight of the

word layer. Because of the very low computational complexity, the skip-gram model

can calculate very accurate high-dimensional word vectors from very large data sets.

3.3 System Overflow

Our proposed model is shown in Figure 3.4. Our total work process will start by

collecting unstructured data from Google web pages. The process of our web crawler

work is described below.

- Next step will be a list of keyword’s related to the unstructured data.

- In the next step, we will extract the data of collected sentences through word2vec.

We will use the Tiling method to select the data related to our keyword’s. Which is

defined as Word2vec-Tiling.

27

Figure 3.4 Overall working process

- After collecting the data using our Tiling method, we will process this data

semantically.

In figure 3.4, we have described our overall working process. But since we have

focused on collecting data for which word2vec has been selected. We know in

word2vec divided by two part one is CBOW and another is Skip-gram. We have

described the existing method CBOW and Skip-gram using process in chapter 2 and

chapter 3 we described proposed method using process by pseudocode. In this chapter,

we will design their work method.

3.3.1 Continuous Bag-of-Words (CBOW) Model

Word2vec-Tiling represents each word Wp in a in a full document or text of size T

as a low dimensional dense vector jw in an embedding space Ki. It attempts to learn

the continuous word vector jw from a training corpus such that the spatial distance

between words then describes the similarity between words, the closer two words are

in the embedding space, the more similar they are semantically and syntactically.

Next, the sentence similarities are illustrated by considering a theoretical matrix gap

between every pair of sentence similarity matrix. The sentence similarity matrix is

constructed by computing all pair wise sentence similarities. The flow of the

measurement of the Word2vec-Tiling algorithm working process is shown in figure

4.4, also describe document working method in figure 4.1 and 4.2 in implementation

chapter, and described by the pseudocode as follows.

28

Table 3.1 Algorithm of CBOW model

The CBOW algorithm attempts to partition a finite collection of elements wp and

wk into a collection of dist < dmin Tiling clusters with respect to some given criteri

on.

The following is a step description of the CBOW algorithm

Step 1: At the initial state select the number of clusters dist < dmin exponential dis

t distance (left, right) initial partition element left, right.

Step 2: Calculate dist < dmin the Tiling cluster center closer pair left, right and t

he terminal criterion dmin ← distance.

Step 3: Calculate web text word [left] to web text word [right] then there is at lea

st one more point in Word2vec-Tiling.

Step 4: Select next word dist distance [right] flowing dist < dmin that's meaning

closer pear which is define by n, divided by 2 its meaning 2n according to tiling ru

le.

Step 5: According to previous step the new condition there is at one more point

in Tiling dist distance (next [Tiling], right)

Step 6: Calculate the new partition element right next [Tiling] left, which is clo

ser pear and dmin

Step 7: Therefore the previous step satisfied then stop otherwise go to step 2.

In pseudocode, we show the main structure of our proposed CBOW model

algorithm. The most inside condition evaluates the fitness value of each agent and

updates information for the whole system step 1. Using its current solution, a

keyword first finds out the best match from each document, calculates the

frequency value, and updates wp_keyword, wp_doc if necessary (step 1-6). Step 2,

is the main part of calculating document gap value. The document will be a gap

with the gap jumps excluded from the previous and the next value. In that case,

the previous value was assumed to be 2n and by reducing it to 1, the gap value is

29

determined (2n -1) (step 3). Step 4, is the main part of calculating document word

frequency value. From a random initial solution, each document continuously

searches for better solutions in the neighborhood, taking information from its own

experience (wp_keyword), and the experience of all document (wp_doc). The

actual movement of each document is determined by the update value. Finally,

as a Tiling algorithm, the final solution of Word2vec-Tiling depends on its

starting solutions, the purpose of step 6 is, therefore, to restart the system several

times, from independent random solutions, to ensure a high overall success rate.

Step 1-6, have been used for the web page keyword and web document used to

match compatibility.

In table 3.2, we show our original input text document and according in CBOW

model proposed pseudocode, the text gape value calculation process describe in

below table 3.2. In table, Tiling output result flow black value show the text

original value and red value indicate text gape value calculation.

3.3.2 CBOW Model System Overview

Web crawlers are an essential component to search engines running a web

crawler is a challenging task [5]. There are tricky performance and reliability

issues and even more importantly, there are social issues. Crawling is the most

fragile application since it involves interacting with hundreds of thousands of web

servers and various name servers, which are all beyond the control of the system.

Table 3.2 Proposed CBOW working process

Input text Tiling Output result

['william', 'shakespeare', 'was', 'born', '

in', 'stratford-upon-avon', 'in', '1564'],

['0.038329', '0.2771', '0.35388', '0.07023

', '0.09793', '1.31594', '1.2116', '0.3786', '

0.46297', '0.25444', '0.32705', '0.85704', '

0.89301', '0.1166', '0.1592',],

30

Web crawling speed is governed not only by the speed of one’s own Internet

connection but also by the speed of the sites that are to be crawled. Especially if

one is a crawling site from multiple servers, the total crawling time can be

significantly reduced, if many downloads are done in parallel. Despite the

numerous applications for Web crawlers, at the core they are all fundamentally

the same. The process of our CBOW model working process is described below.

> Parse through the downloaded page and restore all the links. For each link

restore, repeat the process.

> Every object related data will be split through the Word2vec-Tiling process.

This process is done in few steps.

 - Data of each object will be divided by following the clustering method.

 - Each data will be split up separately and each pair of data will separate the

gap between pairs of the sentence.

 - This trend will continue until it is completely sentence. Then go to next step.

> Verify the semantic relation between the words and texts in a particular

document.

> If the semantic relation is able to detect then the work is success. If not, then

introduce escape and avoidance response.

Figure 3.5 CBOW model system overview

31

Figure 3.6 Proposed method Skip-gram working method

3.3.3 Skip-gram Model

The SG model is a popular choice to learn word embeddings by leveraging the

relation between a word and its neighboring words. In detail, the SG model is to

predict the context for each given word wt and maximizes

SG =
�

|�|
∑ ∑ log � (���� , ��)��|�|��

|�|
��� (28)

on a given corpus with vocabulary V, where wt+i denotes the context words in a

window ����
��� with c, denoting the window size. Here in f(wt+i, wt)=P(wt+iǀwt) and the

probability to predict context word is estimated by

P(wt+iǀwt) =
���(�����

���)

∑ ���(�����
���)����∈�

 (29)

Where Vwt is the embedding for wt and V and V’ refer to input and output embedding

respectively. The training processing of SG model is thus to maximize SG over a

corpus iteratively. For a large vocabulary Word2vec-Tiling uses hierarchical

clustering to address the computational complexity that requires ǀVǀ×d matrix

multiplications.

32

Table 3.3 Complexities of different SG models. The column of “Parameters” and

“Operations” reports space and time complexity, respectively. And d: embeddings

dimension, C: corpus size. 0: unit operation of predicting and updating one words

embedding. n: the number of negative samples. The total Skip-gram model we

described by pseudocode as flows.

Model Parameters Operations

SG 2ǀVǀd 2cC(n+1)0

SSG (2c+1) ǀVǀd 4c2C(n+1)0

3.3.4 Skip-Gram Model Overview

The Structured Skip-gram (SSG) model is an adaptation of SG model with

consideration of words order. The overall likelihood of SSG model shares the same

from of SG model as equation (29), however, with an adapted f(wt+i,wt) where the

probability of predicting wt+i consider not only the word to word relations but also its

relative position to wt. In practice, each word in ����
��� is not predicted by a single

predictor operating on the output embeddings �����
. Instead, wt+i is predicted by 2c

predictors according to where it appears in wt context. As a result, every word is SSG

should have 2c output embedding for the 2c relative positions. The probability of

predicting wt+i in SSG or SG is thus formulated as

P(wt+iǀwt) =
���(∑ ��, ����

����
�
����)

∑ ���(∑ ��, ����
����

�
����)����∈�

 (30)

Where ��,����
define the positional output embeddings for wt+i at position r with

respect to wt. The embedding of wt is thus updated with word order information

implicitly recorded in ��,����
. Now we will describe the proposed method Skip-gram

using method by pseudocode and flow diagram 3.7 as follows.

33

Table 3.4 Skip-gram model pseudocode

The Skip-gram algorithm attempts to partition a finite collection of elements N=

{n1…nn } into a collection of c, SG clusters with respect to some given criterion.

Given a finite set of data, the algorithm returns a list of c cluster centers.

V �����
Extract Vocabulary

N Nc Number of Document

Where c∈C is the condition of Document Nc/N that tells the degree of which the e

lement textc←V

The following is a step description of the Skip-gram algorithm

Step 1: Parameters vocabulary V and document number N then count tokens of te

rm ����
initial partition matrix Nc

Step 2: Count tokens of term ����
 of all document in class Nc then the condition a

re

exp (�����
����

)

∑ exp (�����
����

)����

Step 3: Calculate new parameter ��,����
����

by using condition of c∈-c where tex

t embedding wt also V and V’ are input and output embedding for each word trun

cated [T]

[wt+i], [wt]=
���(∑ ��, ����

����
�
����)

∑ ���(∑ ��, ����
����

�
����)����∈�

Step 4: Update embedding parameter ��,����
for all document in logarithm [c] co

ndition problem [t] and [c] then the probability equation are

[wt+i], [wt]=
���(∑ ��, ����

����
�
����)

∑ ���(∑ ��, ����
����

�
����)����∈�

Step 5: The Skip-gram embedding

SG =
�

|�|
∑ ∑ log �(������)��|�|��

|�|
���

34

Figure 3.7 Proposed method Skip-gram working process

3.3.5 Optimizing Word2vec-Tiling Computational Efficiency

In both CBOW and Skip-gram the model (figure 3.8) learns two distributed

representation of word in the vocabulary input and output V and V’. At the output of

theses models we have the Hierarchical Clustering (HC) which gives us the

probability of observing each word in the vocabulary following the given input

context. One problem with this approach is that the dimension of the output HC is in

the order of the size of the vocabulary which can be in hundreds of thousands or even

millions. When we are performing the calculations we need to compute all the

activations in the hidden layer and calculate the HC probabilities. This is

computationally expensive both in terms of memory and time required to train the

models as it is required for every training instance. Thus, we need an efficient way of

defining this probability distribution function. One approach is to limit the number of

output result to be updated per training instance. The HC method working process is

described below by in figure 3.2.

35

Figure 3.8 The structure of CBOW and Skip-gram model

3.4 Word2vc-Tiling (CBOW and Skip-gram model)

Traditionally, Word2vec-Tiling models are trained on textual corpus data but here

we utilize it on the purpose data of web users. We are therefore treating each item as

a word. Then the original word2vec method can be applied in the recommendation

scenario. Based on the idea of utilizing tiling distance to measure the similarity

between items, we apply distributed representation approach to build our

recommender system. The procedure described in our recommended word2vec using

the tiling method is described at 3.2.1 and 3.2.2 above. Now how we use Word2vec-

Tiling in the combination of CBOW and Skip-gram models, we will describe it as

figure 3.8.

According in figure 3.8, we have described CBOW and skip-gram overall module,

describes the strategy that we propose for finding a text word semantic relation for a

given input slice using the trained Word2vec-Tiling model. Note that the word

embedding in a semantic may or may not represent a text embedding. If the input

slice is not in the Word2vec-Tiling (CBOW) vocabulary, the algorithm returns the

original input slice as its own substitute. Otherwise, it calculates the gap distance

between all text in the vocabulary and the input text words. It then collects a list of n

text word that are the closest to the input, where n' is an input parameter of the

36

algorithm. Because the text considered in this research is word, the algorithm uses

the top-n slices to calculate a score for the text semantic relation analysis, which can

be used to inter the keyword. The score of a particular text semantic analysis is its

normalized frequency of occurrence in the top-n slices. A sentence embedding is

represented by averaging the embeddings of words in that sentence and use word-gap

distance (CBOW) to measure the distance between two consecutive sentences. The

distance between the last sentence of the previous part and the first sentence of the

next part is usually far, resulting in a peak in the line plot Skip-gram (SG). One

example for a single abstract is shown in figure 3.3. Purify the information of purpose

corpus obtained from the SG step by removing the words whose frequency of

occurrence being the top of the purpose corpus to get the purified purpose corpus.

This corpus has higher concentration of topic information than the purpose corpus,

let alone preprocessed corpus. Train a new Word2vec-Tiling model, by using the

purified-purpose corpus obtained from the CBOW and SG step, in which similar

words have smaller n-tiling distance compared with Word2vec-Tiling in CBOW

model. Note that all the word embeddings used after CBOW step are from Word2vec-

Tiling in Skip-gram model. Finally, find the clustering category of each text

document by computing the Tiling similarity of document embeddings (Predicted

word).

3.4.1 Reinforcement Learning (RL) Algorithm

Reinforcement Learning or Q-Learning is learning method, which renews each

synapse weights according to output signals. The learning rule can be applied to feed

forward networks and recurrent networks. The flow of measurement of the renewal

of the syndrome is shown by the pseudocode as follows. Capital and lowercase letters

when used as symbols.

At initial state as input the starting state s, a waiting time t the collection of Q-value

for each individual classes q, the set of total document δ, the set of all possible action

37

Table 3.5 Text episode reward value calculation process

Step 1: Set n=1 and for all s←sn and a∈A(i), Q(s, a)=Q(sn+1, an)=0 specify g∈δ

Step 2: For each episode rewards r∈δ then

Step 3: Calculate every text word gap value by

δ = (1/r)(1/1+r)

a, the step-size parameter α, the discount rate parameters ɣ, from Q-learning and the

parameter ∈ for the ∈-greedy selection of action.

Out total working process we divided by two way. In the begging, we use the Q-value

learning in previous episodes to control the reward and total document. Finally, we

update the Q-value from the sequence of initial state (s, a) and next state (sn+1, an)

triples that occurred in the episode that just ended.

In initializes s, to the initial next state sn and starts the episode. During an episode, Q-

value periodically waits and then observes the current state sn. For each document δ

in the set of classes g, create the current state s, for the class δ by customizing the

observed state sn. The reason why we have to do this is because different classes need

different kinds of information. The size of the observed state sn is very large and

contains various kinds of information. Each class requires some of the information

uniquely. We will detail the kind of information extracted in the next chapter.

According table 3.6, the next step is to create the set of valid actions A, of class δ

under current situation. We cannot use αc directly because some of the actions might

not be applicable in the current state. For example, cultivators can edify his land.

However, without sufficient funds, etymology will ignore this command. Therefore,

Step 2 shows us the invalid actions. Any action randomly chosen from this set of

actions is guaranteed to be a valid action. Next, retrieve the Q-table of class δ from

the collection of Q-tables q. For each unit g if the unit δ is idle, Q-value retrieves an

action a from the Q-table using µ-greedy exploration. Notice that the algorithm

choose an action a from the set of valid action a, not from the set of possible actions

38

αδ. Then execute the action a step 3. Because this is remote learning method, step 3,

saves the set of sδ, aδ and the current state sn for the Q-learning updates in the second

phase. We wait until the end of the episode to update the Q-values because we have

found experimentally to be more effective to use the outcome at the end of the episode.

This is why we have to save the list of state-action to perform the remote-line update

later. Step 3 we also updates the previous state sG and the previous action aδ.

Table 3.6 Outline of modified algorithm based on Q-value

Step 1: Set n=1, and select an initial middle state (aδ, s)

Step 2: Initialize the Q-value for all states and actions to initial middle value Q←

q(δ)

Use the following transformation repeatedly until the Q-values converge in an ∈-

approximate sense.

For all episode if random(1) ≥µ

α ← arg.maxa∈A(δ(sn+1, an))

Step 3: Generate a new episode LG using the following relation

LG<sδ, αδ, sn>

SG←sn, αδ←α

According in table 3.7, in the second phase, after calculating the reward r, we use

the Q-learning update on all value in the list Lδ of each individual unit q to update

Q-value of each value δ. Finally, return the Q-value show in Step 2.

39

Table 3.7 The update reward function Q-value

Step 1: Let Lδ denote the next episode of action sn+1, an such as, the sample

obtained in the sn iteration.

Step 2: Update reward value δ∈g using , the current sample q←δ such as

<s,a,sn>Lδ

Finally update Q-value

Q(s,a) ← Q(s,a) + αδ(sn+1,an)[r+γ. arg. ����(�(����, ��) − �(�, �))]

3.4.2 TF-IDF Algorithm

In a good segmentation, sentences among different segments should belong to

different subtopic’s. Hence, the goal is to find the segmentation with the maximum

external (two consecutive segments) dissimilarity. There are two types of

segmentation in the field of the web such as structured and unstructured data (figure

2.2). Web researchers usually use these two types of data to complete their web

research. In this thesis, we have preferred only web pages of unstructured data which

we have collected by web pages using BFS method. In the existing method, they have

preferred web pages data. As a result, they are not able to find their keyword data

equally. The equation (25) used in the existing method, in the primary stage if the

Web page (P), Keyword’s (K) and Number of keyword document (Ki) any value are

"0" so, the result of the total TF value is zero, it means that the keyword is unable to

choose a similar or closer word from the same document, which is not a good result.

In this reason, the accuracy rate is not up to the satisfaction levels.

Therefore, to solve this problem we have used the total number of keyword document

“|K|” in equation (31) [20]. In previous research, the total number of words has not

been calculated. In this thesis research, we have calculated the total word value. This

means that in the same document, the keyword can be correctly selected as a similar

word. Therefore, if the more documents a term appears, the less important that term

40

will be, and the weighting will be less. So the user can find their information easily

and within in a short time.

TF(P, K) ←fre (P,K) / ∑ ��� (ǀ�ǀ, ��)��∈� +ǀKǀ (31)

IDF(P, K) = ǀPǀ / ∑ ���� (�� , �)��∈� (32)

The flow of measurement of the TF-algorithm of the syndrome is shown by the

pseudocode and working flow diagram figure 3.9, as follows.

Table 3.8 TF-algorithm proposed method pseudocode

The TF-IDF algorithm attempts to partition a finite collection of element k=1...n,

into a finite collection of p=x=0; TF clusters with respect to some given criterion.

Given a finite set of data, the algorithm feeds forward a list of TF cluster centers.

Where ǀPǀ the total number of web page ǀPǀ and keyword ǀKǀ then the total Term

Frequency step are

Step 1: Select list the x square score for each term p category.

Step 2: Select the new condition the keyword ǀPǀ is not empty and total number of

keyword ǀKǀ is queue then

ǀPǀ[Ki] > 0 and t > x[Ki]+x

Step 3: Then go to search web page p, number of keyword document Ki with web

page document Pi

ǀPǀ[Ki] = Pi[Ki] - 1 or x[ki] = t

Step 4: If previous condition is satisfy then go to step 4, k==n then reject web page

total number of keyword value. Otherwise condition are

ǀPǀ[ǀKǀ] < T and ǀPǀ [ǀKǀ] > 0 and t > x [ǀKǀ] + x

Step 5: Select new state of web page total number with total number of keyword

and subtraction with 1, ǀPǀ[ǀKǀ] -1 then set x [ǀKǀ] = t where is a controller by p

Step 6: Select the new value interrelation coefficients T with web page total

number and total keyword

ǀPǀ[ǀKǀ] > + T and P [ǀKǀ] < fre P and K / (get_total (P and Ki))

Step 7: Push total keyword value in the internal keyword queue value x [Ki] = t

Step 8: Keyword queue is empty for initial and next state s and s’ the set P[Ki]<fre

P and Ki

41

Step 9: If previous is satisfy the x [Ki] = t frequency total value are

TF(P, K) ←fre (P,K) / ∑ ��� (ǀ�ǀ, ��)��∈� +ǀKǀ

Invocation and initialization (Step 1 and 3). The block functionality is executed in an

infinite loop, activated every time interval. The current P state is set to the lowest

value, Pi and the vector of time of the previous P state change, x, is set to 0.

Task fetching, the tasks external queue is checked if empty end, if not a task total

keyword value ǀKǀ is fetched.

The conditional rejection (Step 3 to 5), The code related to this step is executed inside

a loop whose iterator k ranges from 1 to n, which is the number of cores in the

processor. If the output value of the Ki is controller (ǀPǀ[K]) is negative and the

corresponding Ki core operates with highest performance and the interval between

the previous P state switching time and current time t, is long enough this value is

assumed to have no capacity to execute task Ki. Consequently, if all the cores in the

analyzed processor have no capacity, task ǀKǀ is rejected. Moreover, if P, state of the

Ki core is different from P and its Pi state has not been switched for at least time web

document x, P state in the Ki core is decreased and the Ki element of vector x, storing

the previous time of the Pi state alteration of the value Ki, is updated. As the previous

errors in the k controller have been observed in a different P state. Hence, these

obsolete values do not influence future admittance decisions.

Task conditional admittance (Step 6 to 8), If the output value ǀKǀ controller is lower

then threshold +T, ǀPǀ state in the ǀKǀ core is long enough, the ǀPǀ state is lower, and x

is updated accordingly. In case the ǀKǀ dependent controller output value is above

threshold +T, P state of the Ki core is different from the highest P state available in

the processor (frequency p) and the previous switching of P, state in the ǀKǀ core is

increased, PǀKǀ and x is updated. Finally, ǀKǀ is sent to the every state queue.

P, state conditional increase, the functionality of this next state step is activated a’

and s’. Under such condition, P, state of all n cores are analyzed in a loop. If the core

performance is not the lowest possible then the core’s P state is increased, the web

document value continues updated. Invocation (Step 9), the block functionality is

executed in an infinite loop, activated every time interval.

42

Figure 3.9 TF-IDF working diagram

3.4.3 TF-IDF Working Diagram

First of all, data has to be fetched from websites. Secondly, in preprocessing phase,

one has to look for HTML/CSS and stop words and remove all of them as they are

unnecessary has no importance in this scenario. Third, one need to count total number

of words and their occurrences in all documents. Once these steps are performed, one

can apply Term Frequency formula to calculate TF as discussed in equation (31).

After calculating TF, one has to check, if each word is found in every document or

not and has to count total number of documents in hand. Once these steps are

completed, one can apply Inverse Document Frequency (IDF) formula to calculate

IDF as discussed in chapter 3 and equation (32). In the last, after obtaining TF and

IDF, one can easily calculate TF-IDF by applying its formula as described. The

algorithm can be implemented in any programming language of your choice. For this

research, it was implemented using PHP for the sake of simplicity.

The TF-IDF process can be observed using a diagram here which is showing all major

and minor steps that has to be taken in order to successfully implement the algorithm

using computer programming.

43

3.4.4 Development tools

For model development, Matlab Mint was used because it is easier to install and hold

the environment on the Unix-based operating system. The language chosen was

Python 3.6, because it was used to create the system and has a lot of efficient packages

for machine learning tasks. Scikit-learn, which is built for machine learning tasks,

NumPy very good library for scientific computations, pandas is developed for data

analysis, ScraPy scientific computing tool for Python. ScraPy is a full framework for

web crawling which has the tools to manage every stage of a web crawler. Gensim is

an easy to use library for generating similarities. Something very useful is that all

these libraries communicate perfectly with each other. As a main development

environment, PyCharm CE 2018.3.5. was used because it highlights errors, suggests

better code styling, provides autocomplete and includes other comfortable features.

Anaconda is a virtual environment system for python to handle package installation.

It was used to install all necessary libraries, as well as the Jupyter Notebook. Jupyter

Notebook helps to save intermediate results and allows to use them in other code cells

inside one notebook, what is very convenient and important for data analysts, because

it saves a lot of time that otherwise would be used saving and loading files for every

intermediate result.

44

4.1 Implementation

In order to prove that the accuracy of the semantic analysis can be improved by

applying web data, two experiments are conducted in this research. The first is an

experiment to distinguish document features by extracting features of document

semantics; the other one is word embedding [12], which is used to distinguish the

meaning of words in a document. Object distribution vector and word embedding

such as Word2vec-Tiling are all distributed representations of words. Word2vec-

Tiling uses a fixed-size sliding window to collect contextual information on the

current word in documents that only reflects the semantics of word items at sentence-

level. Topic distribution vector is derived from the Latent Dirichlet Allocation (also

known as LDA) model, which can characterize the relationship between words at

document-level [7]. In this thesis research, Word2vec-Tiling word embedding based

on topic distribution vector is proposed. The topic segmentation process is the basis

core of Tiling system. It can be launched in two different ways [8]. The first one

allows the user, once he visualizes the results of his research, to launch this process

for every document appearing in the list of research results. The second method gives

the user a chance to segment a text outside the research interface. From the

segmentation interface, the user must choose a text to segment; he can see the

different stages of the segmentation process after activating the segmentation

synthesis option. Tiling segmentation can be done in two ways, pre-processing and

segmentation. In this research, we followed this method.

Chapter 4

Implementation and Evaluation

45

The pre-processing phase consists of the succession of the following operations:

normalization, stop words elimination, and stemming; while the segmentation phase

is constituted of the following operations: TF-IDF weights, blocks similarity,

cohesion score, and boundaries selection.

First of all we will describe our data collect process from the web page. By using the

specific keywords, we collected all hyperlinks which belong to in that web page. In

this thesis research, firstly we have presented the working design of our crawling

system by an architecture in chapter 3 by figure 3.1. Here the process of execution of

RL and TF-IDF algorithm work is displayed. When the crawler finishes downloading

a page from web, the relevance of the page needs to be identified to improve the

efficiency of the crawling process and save the storage space. For this reason we have

used Breadth-first search (BFS) and Word2vec-Tiling algorithm. At first we explain

an interesting feature of the BFS algorithm [11]. The BFS algorithm traverses the

graph by following its links. The distance of each crawled page from the root (seed)

is always less than or equal to that of the uncrowded pages. The BFS ordering is not

the best method for crawling but breadth-first has an interesting feature. It can

discover pages with high page rank in the initial stages of the crawling process.

According to Word2vec-Tiling, it works by dividing it into two steps such as CBOW

and Skip-gram. Now we will describe these two methods to follow the existing

procedure.

4.1.1 Implementation of CBOW model

We collected unstructured data from web pages using the BFS algorithm. Then, we

used Word2vec-Tiling (CBOW) to divide the closer neighboring words in our used

keywords. According in CBOW model we proposed our equation as

log
(��∑ (��,����|��,����)�

���)

�∑ (��,��)�×(����,����)�
�∈��

+ ∑ log(1 + �|�|(���))�∈��
 (33)

According to the equation (33), the word gap value is calculated by a logarithm

measure, where given the two text word blocks wp and wk each with going to next

step wp+1 and wk+1 where n, ranges over all the terms that have been registered during

46

the tiling tokenization step and wp,wp+1 in the weight assigned to term n, in block wp+1.

In our algorithm, the weights on the terms are simply their frequency (term frequency)

within the block. However, because the similarity is measured between two blocks

and wp+1 and wk+1, where wp+1 spans token sequences 2n-1 through n, which show the

results of the block Word2vec-Tiling algorithm on the semantic text. The boundaries

are determined by changes in the sequence of similarity scores. The text sequence

gap numbers are ordered according to how steeply the slopes of the plot are to either

side of the text sequence gap, rather than by their absolute similarity score. For a

given text gap n (our defined gap value), the algorithm looks at the scores of the gaps

to the left, as long are their values are changing figure 4.2. When the values to the left

peak are found, the difference between the score at the peak and the score are recorded.

The same procedure takes place with the text gaps to the right of n; their scores are

examined as long as they continue to rise, as shown in figure 4.4. The relative height

of the peak to the right of n is added to the relative height of the peak to the left. These

new scores, called depth scores, corresponding to how sharply a change occurs on

both sides of the token sequence gap, are then sorted. Segment boundaries are

assigned to the text sequence gaps with the largest corresponding scores, adjusted as

necessary to correspond to true paragraph breaks.

On the other hand, in previous researches on tiling, they tokenize each of the text by

20, under a gap. In this way, they calculate the distance between multiple gaps [3],

[4]. After tokenization, the next step is the comparison of adjacent pairs of blocks of

text-sequences for overall text similarity. Another important parameter for the

algorithm is the block size, the number of token sequences that are grouped together

into a block in comparison with an adjacent group of token sequences. They do not

use actual paragraphs or text because their lengths can be highly irregular, leading to

unbalanced comparisons. However, in our system, we can use the actual paragraph

or text. Using our equation (33), our overall result is shown in figure 4.6. In the figure,

we gave the lifestyle of Shakespeare, with about 10,000 words, as an input document.

However, we get 3,686 words related to our inputted keyword. On the other hand,

using the equation (3) of the existing method, from 10,000 words in figure 4.5, we

get about 5,816 words, some of which are not related to our keyword.

47

Figure 4.1 Example of applied document

Figure 4.2 Example of word transaction using Tiling method

Figure 4.3 Represent document (figure 4.1) working process

48

Figure 4.4 Word2vec-Tiling (figure 4.2) working process

Figure 4.5 Existing method word2vec overview

Figure 4.6 Proposed method Word2vec-Tiling overview

49

Figure 4.7 Center and context words resulting from the text corpus “I love playing

ball with my friends”.

4.1.2 Implementation of Skip-Gram model

Now we are going to describe about Skip-gram model that we proposed in this thesis.

The first step in our implementation is to transform a text corpus into numbers.

Specifically, into one-hot encoded. Recall that in Word2vec-Tiling we scan through

a text corpus and for each training example we define a center word with its

surrounding context words. Depending on the algorithm of choice (Skip-gram), the

center and context words may work as inputs and labels, respectively, or vice versa.

Typically the context words are define as a symmetric window of predefined length,

on both the left and right hand sides of the center word. For example, suppose our

corpus of the sentence “I love playing ball with my friends”. Also, let’s say that we

define our window to be symmetric around the center word and of length two. Then,

our one-hot encoded context and center words can be visualized as follows in figure

4.7.

The function above returns the corpus tokenized and the size V of the vocabulary.

The vocabulary is not sorted in alphabetical order (it is not necessary to do so) but it

simply follows the order of appearance. At this point we can proceed with the

mapping from text to one-hot encoded context and center words using the function

“corpus2io” which uses the auxiliary function to categorical.

50

To show that the functions defined above do accomplish the required task, we can

replicate the example presented in figure 4.8. First, we define the size of the window

and the corpus text. Then, we tokenize the corpus and apply the “corpus2io” function

defined above to find out the one-hot encoded arrays of context and center words as

flows:

1. window_size = 2

Declare total text corpus size

2. corpus = [“I love playing ball with my friends”]

Example our input text

3. corpus_tokenized, V = tokenize(corpus)

Every word separate using tokenize condition

4. for i, (x, y) in enumerate(corpus2io(corpus_tokenized, V, window_size)):

Every word divided with x and y with vocabulary V, it is condition for showing

result

5. print(i, “/n center word=”,y, “/n context words =/n”,x)

Using the print command the total program show there final result

Note that at the boundaries the context words are not symmetric around the center

words.

We are essentially interested in writing a few lines of code that accomplish this

mapping, from text to one-hot-encoded vectors, as displayed in the figure above. In

order to do so, first we need to tokenize the corpus text.

1. def tokenize (corpus):

“”“ Tokenize the corpus text.

 :parameter corpus: list containing a string of text (example:[“I love playing ball

with my friends”])

 :return corpus_tokenized: index list of words in the corpus, in the same order as

the original corpus(the example above would return [1, 2, 3, 4...])

 :return V: size of vocabulary

“”“

2. tokenizer = Tokenizer()

Every text word are divided using command

51

3. tokenizer.fit_on_texts(corpus)

4. corpus_tokenized = tokenizer.texts_to_sequences(corpus)

5. V = len (tokenizer.word_index)

Text word vocabulary using tokenize function and split all text word

6. return corpus_tokenized, V

Using this command the text word vocabulary complete there split up.

Overall pseudocode working figure as show in 4.8.

Figure 4.8 Text corpus using skip-gram result

Figure 4.9 Proposed system using equation result of working skip-gram.

Comparisons of training speed in logarithm against different context keyword size.

Sec refers to thousand words per second.

52

Figure 4.10 Existing system using equation result

According the figure 4.9 which is define in proposed method and figure 4.10 define

existing method using equation (30) and (23). We can see in Existing method using

equation (23) figure 4.10 the word value is going to lower because the input data is

not finding their actual keyword, on the other hand, in Proposed method using

equation (30) in figure 4.9 word value going to height velocity because input data is

successful in finding their actual keyword. According to in figure the university

related data almost 30% success for choosing their value.

4.1.3 Implementation of Word2vec-Tiling

Word2vec-Tiling is touted as one of the biggest, most recent break through in the

field of Natural Language Processing (NLP). The concept is simple, elegant and

(relatively) easy to grasp. A quick Google search returns multiple results on how to

use them with standard libraries such as Matlab or TensorFlow.

According, in figure 4.11, a dashed grey line at y = 0.6 which represents the baseline

against which we have measured both algorithms CBOW and Skip-gram. Any line

above the 0.5 thresholds is performing at a rate that is better than chance. This adds

another condition with which to evaluate CBOW and Skip-gram. While both models

eventually end up performing below the threshold, the difference between when each

crosses the 0.6 threshold is notable. Both algorithms start by performing at perfect

accuracy. After the first 1% of paraphrases are generated, CBOW begins a swift dive

53

towards the chance threshold. There is a slight recovery before it plummets again by

the time it has generated the first 10% of paraphrases. Skip-gram, on the other hand,

maintains perfect accuracy for the first 7% of the data it outputs. Accuracy then starts

to degrade steadily for a few percentage points until it achieves an equilibrium that

keeps it hovering between 60% and 70%. This trend is maintained until that Skip-

gram has generated over 50% of the paraphrases it will generate during its execution.

After this, a steady slump downwards starts, with the accuracy line intersecting the

0.5 threshold when Skip-gram has generated 59% of its total paraphrases. Only after

70% of the total data has been output does Skip-gram’s performance degrade to equal

that of CBOW.

Figure 4.11 Graph comparing CBOW and Skip-gram. Algorithms above the dashed

line are performing better than chance.

Figure 4.12 Proposed method using TF-algorithm result.

54

Figure 4.13 Existing method using TF-algorithm result.

4.2 Implementation of TF-IDF algorithm

In order to prove that the accuracy of the semantic analysis can be improved by

applying web data, two experiments are conducted in this research. This of one is an

experiment to distinguish document features by extracting features of document

semantics and another one is word embedding, which is used to distinguish the

meaning of words in a document [3]. The data used to test that is an online website

corpus like NASA, Korean University and so on related to Sky, Love, Life, War and

University and four data sets are created to check the performance of web devices by

dividing mesne the data. We chose the closest data from the total data of the keyword

using Word2vec-Tiling in figure 4.6 and table 4.1.

TF-IDF is a combination of two different words such as, Term Frequency and Inverse

Document Frequency. Actually, in this thesis research we implemented TF method

equation (31). Following this aforementioned equation, we implement data from

Word2vec-Tiling in figure 4.12.

On the other hand, flowing existing method equation (25) we show the result in figure

4.13. According in figure 4.12 and 4.13, we can see that TF-algorithm's performance

is not satisfactory. Because our keyword related document accuracy rate is not more

than 65%. It’s meaning those TF algorithm even follows word frequency but can not

use word frequency properly for multiple words. According in figure 4.12 and 4.13,

here we have used twenty document, which can be seen as “True” and “False”. These

results show that if the same word appears in every document, it excludes words with

55

a value of “False”, which did not produce good results in learning. So accuracy based

on learning outcomes was unsatisfactory. On the other hand, the results show that if

the same word does not appear in every document, it excludes words with a value of

“True”, which provides good results. So accuracy based on learning outcomes was

satisfactory.

4.3 Implementation of Reinforcement Learning Algorithm

Reinforcement Learning is a learning method, which renews each synapse weights

according to output. The learning rule can be applied to feed forward networks and

recurrent networks. The calculated flow of renewing synapse weights is shown in

follows. Firstly, the influence of rewards ‘r’ and the influence of document ‘δ’ are

obtained by

r = ∑ ������
�
��� (34)

δ = (1/r)(1/1+r) (35)

Q(s,a) ← Q(s,a) + α[r+γ. arg. ����(�(����, ��) − �(�, �))] (36)

Q(s,a) ← Q(s,a) + αδ(sn+1,an)[r+γ. arg. ����(�(����, ��) − �(�, �))] (37)

Following the aforementioned equation, we compute the reward and value of each

corpus. Here, we can see in figure 4.15, that the accuracy rate is 65%, because the

baseline system selected the document value randomly, using equation (36). In order

to randomly select the keyword related word, the existing method used the previous

method (using equation ‘3’) of word2vec. In order to solve this problem, we multiply

the value “δ(sn+1,an)” used in equation (37) also describe in chapter 3 part. As a

result, our accuracy rate has increased by 15%, because we have calculated the gap

value in each sentence using “δ(sn+1,an)”. Therefore, our accuracy rate is 90%, in

figure 4.14.

56

Figure 4.14 Proposed system equation (37) RL algorithm result

Figure 4.15 Existing system equation (36) RL algorithm result

4.3 Evaluation

In this chapter, we have presented the performance results for each algorithm on the

Tiling test sets with respect to the aforementioned evaluation metrics. We determine

the effectiveness of the Tiling algorithm with respect to another word2vec-based

approach to segmentation, the Word2vec-Tiling algorithm. For our dataset, we first

performed the preprocessing steps discussed in chapter 2.

We have calculated the frequency of the word to obtain the semantic relation of the

text. For this, we have used the Word2vec-Tiling method. Next, we ran the five

segments (divided by 20) by employing the default values for any system parameters

and by letting the systems estimate the number of thematic boundaries. In order to

57

simplify the analyses, we provide the algorithms with the number of segments that

they had to identify.

4.3.1 Experimental Evaluation

Data collection is very important for Web Crawler research because the evaluation of

the research depends on it. Therefore, in the proposed method we have defined

Word2vec-Tiling to collect data properly. Our approach uses the Word2vec-Tiling to

capture the semantic features between words in the selected text. In the previous

research on word2vec, most of the information in their collected data is not related to

their input keyword because the word2vec technique is based on a feed-forward. For

this reason, most of the time, it is unable to show the perfect result because the

word2vec cannot detect the gap between texts. However, using the Tiling method, we

can solve this problem, because it is possible to identify the value of the gap between

the texts through the Tiling method. Therefore, in the proposed method, we defined

Word2vec-Tiling algorithm for calculating the gap in text. We have described the

procedure of the Word2vec-Tiling (CBOW) algorithm in chapter 3 by pseudocode

and in the implementation chapter we have shown in figure 4.1, 4.2, 4.3 and 4.5. In

figure 4.3, we have shown 10000 text results. In figure 4.1, we have divided the

document separate process. We have chosen Williams Shakespeare life story as our

input data. In figure 4.2, we calculated the gap of the document using the proposed

Tiling method, except the stop word from the previous document. In figure 4.3, we

have described our input document working process. According to figure 4.3, there

are consistently words show in figure 4.1, so the figure 4.3 is not changing. On the

other hand, figure 4.4, each word is vibration for the gap between the neighbor words.

According to in figure 4.4, the lower efficiency of the vibrator indicates the negative

value and upper efficiency of the vibrator indicates are positive value. That means

our proposed algorithm is working successfully. Finally, we have collected the

keyword-related data using the Tiling method shown in figure 4.6. In figures 4.5 and

4.6, we have shown the difference between word2vec using equation (3) and

Word2vec-Tiling method using equation (35).

58

On the other hand, in Word2vec-Tiling (Skip-gram) model we have described in

chapter 3 in chapter 3.3.4 by pseudocode. In the proposed method, by changing a

previous Skip-gram model equation and we implement it, in the proposed method.

The gap between texts in the previous equation (23) has not been used. Therefore, it

is not possible to get the correct result of text word without there gap calculation. We

calculated the value of the gap between the texts through the CBOW model and used

it in the skip-gram model equation (30). In the implementation chapter figure 4.9, we

have described the results of our using equation. In figure 4.7 we have used a text as

an example. There the first word has been called "central word", according to figure

4.7. The "central word" means the first semantic word of input text, other than this

(such as, central word), the text of word cannot be formed or text structure is not

possible. Then the next word is "context word", it can be a partition in a few ways. In

the proposed method, we divided the "context words" into two ways. Later we used

the “center word” to be divided into [1 0 0 0 0 0 0]. Our input total word number 7 is

so in the first step, central word 1 and all other 0. The next step in "context word" is

"center word". Here the key value of "center word" is [1 0 0 0 0 0 0], but the value of

the next two "center word" will be used. Because the text structure of the sentence

"context word" depends on the next two "center words". We described the entire work

process in figure 4.8 also show in figure 4.9 and 4.10. In figure 4.9, we have used 5

keyword’s. According to figure 4.9, we have seen the university related data accuracy

higher because the university related data has correctly selected there input data or

keyword. On the other hand, the existing method results in figure 4.10, their data

accuracy is lower because correctly, the input data unable to select their keyword’s,

so their values have decreased. In table 4.1, we describe the data quality of our CBOW

and Skip-gram models. In addition, we discussed the differences between the existing

method and the proposed method in table 4.2. According to the table in the existing

method, the Precision, Recall, Accuracy and F-score values are less than the proposed

method. So firmly we can say our proposed method equation performance is better

than other methods.

59

Table 4.1 The difference between CBOW and Skip-gram using the tiling method

Keyword’s CBOW Skip-gram

Love

modest=0.874555

lust=0.623111

remorse=0.366633

dandle=0.455522

canoodle=0.512011

consistent=0.584411

War

hostility=0.622232

estimated=0.754445

prehistoric=0.611222

significantly=0.655525

destructive=0.745544

morph=0.544414

University

integrated=0.744451

vein=0.644114

swamp=0.821142

cavity=0.841451

immune=0.685411

radiation=0.655544

Sky

concentrating=0.855512

deputize=0.674424

follicle=0.547744

engagement=0.665542

exoplanet=0.744511

aboriginal=0.776122

Life

existence=0.774522

molecules=0.855512

tedious=0.699881

subsistence=0.877441

aggravating=0.665514

purification=0.874451

Table 4.2 Performance Measures

Existing System

Algorithm Precision Recall Accuracy F-score

TF-IDF 46.3 42.1 51.4 44.1

Reinforcement

Learning (RL)
63.1 53.2 61.2 57.7

Proposed System

Algorithm Precision Recall Accuracy F-score

TF-IDF 64.2 71.1 74.2 67.4

Reinforcement

Learning (RL)
81.2 72.2 78.4 76.4

60

Table 4.3 Each document separate value using TF algorithm

Purpose Sky War Love University Life

Existing Method

TF algorithm

result

0.121142 0.233221 0.322122 0.28444 0.111021

Proposed

Method modify

TF algorithm

result

0.372211 0.522214 0.462212 0.451112 0.212232

Table 4.4 Each document separate value using RL algorithm

Purpose Sky War Love University Life

Before using

“δ(sn+1,an)” function

(Existing Method)

0.352211 0.222322 0.322421 0.201522 0.331132

After using

“δ(sn+1,an)” function

(Proposed Method)

0.411222 0.408854 0.516628 0.414512 0.421422

4.3.2. TF-IDF Algorithm Experimental Evaluation

In figure 4.12, we shows our TF-algorithm overall performance. When a user

searches on his document, he will get results in a short time because our algorithm

does not face any overlap and can show the correct results. In the evaluation, we will

explain it more detail by table 4.3. First, we have selected five keyword’s (Sky, War,

Love, University, Life) and we have collected data from the web page. We have

provided data with 100 hyperlink related data per webpage according to each

keyword. We collected 500-hyperlink information from each of keyword’s. We have

created a data tree using the Breadth First Search (BFS) method. By using Word2vec-

Tiling we have collected the keyword related data. Therefore, we use the TF

algorithm to calculate the weight value of each hyperlink data. The results of the TF

61

algorithm used in the existing and proposed systems are described in the table 4.3.

Here we have described each keyword's category’s average value different in existing

method TF equation (25) and proposed method TF equation (31). Here we can see in

proposed method keyword category’s value is higher than existing method by

improving equation.

The semantic relation approach provides a novel way of glancing at the matter of

text deliverance, which links it with a lot of recent research in oratory. As word

embeddings approach of TF-IDF algorithm emphasizes, the semantic relation

approach to TF provides a different approach to scoring matches between documents

and queries, and the prospect is that the word embeddings modeling establishment

enhances the weights that are used, and consequently the representation of the TF

model. The major manifestation is the estimation of the document model, such as

choices of how to easy or smooth it effectively. The model has achieved very good

salvation results. Compared to other probabilistic approaches, such as the existing

method in TF from Chapter 2, the main difference originally appears to be that the

TF approach does away with apparently modeling relevance. The TF semantic

relation comprises that documents and expressions of information needs are objects

of the same type, and comprises their match by exposing the tools and methods of

text embeddings modeling from Natural Language Processing (NLP). The resulting

model is mathematically appropriate, theoretically simple, intuitively appealing, and

computationally tractable. Our TF-IDF semantic relation using has some limitation.

Our TF-IDF is based on the Word2vec-Tiling model, therefore it does not capture the

position in the text in different documents, so, the level of accuracy is less (show in

figure 4.12) than the other algorithms. In figure 16, we have shown our TF-IDF

algorithm semantic relation process.

Figure 4.16 TF-IDF algorithm semantic relation working process

62

4.3.3. Reinforcement Learning Algorithm Experimental Evaluation

In this research, we applied the Word2vec-Tiling to capture the semantic features of

words in text. However, we used the RL algorithm to calculate the semantic features

of the document.

Where δ, is used to find out the value of the words separately, and δ(sn+1,an) [17] is

used to identify the difference in the text. In the baseline method, the word value is

randomly captured, and the total word gap number of the text is estimated (20 text

gap); for this reason, their total word value is not clear (gap value fixed), and the

accuracy rate is lower [20].

However, using “αδ(sn+1,an)”, the proposed system demonstrated increased accuracy

by 15% by using Word2vec-Tiling. Here, we have calculated the text gap value in the

words. By calculating the value of the text, the overall performance of the accuracy

rate is quite good, as we have described through figure 4.14, in the implementation

chapter. The best aspect of the Word2vec-Tiling method is the ease of achieving the

correct value of each word in the text. In table 4.4, we described the properties before

and after using “αδ(sn+1,an)” in the RL-algorithm flowing equations (36) and (37).

4.3.2 Data Set

At the beginning of any research, collecting data is especially important. In table 4.5,

we have described the dataset, data types, and data amount of both our method and

that of existing research. We have collected 20 types of data from five keywords

(Love, War, University, Sky, and Life).

63

Table 4.5 Comparison of different data sources

Title Data Set Data amount Data amount

Existing

Method

Wikipedia and

social media

Average 2.47MB

600000 texts

These texts are short, some

disorderly and have a lot of

modern and Network

Technology.

Proposed

Method

Nobel, NASA,

History and

Wikipedia

Average 5.90MB

1000000 texts

1. Long text, formal format,
and clear semantics.

2. Some texts are short and

some disorderly and have a

lot of modern and old text.

4.3.3 Performance Measurement

This chapter reports on the performance of our system and the existing one during

the crawl. In our analysis of web crawler performance, we contrast it with the

performance of the Google, Internet archive crawlers, and the existing system. We

make no attempt to adjust for different hardware configurations because the

research’s describing the two other crawlers do not contain enough information

enabling us to do so. Our main intention in presenting this performance data is to

convey the relative speeds of the various crawlers. The overall performance

comparison of the proposed and existing methods is described in table 4.6. According

to table 4.6, we can say the proposed method's HTTP request rate is much better than

the existing method. Because the proposed method uses the Python programming

language SciPy, Scrapy, and NLTK library. We know that SciPy, Scrapy, and NLTK

library is faster for collecting data from the web. In this reason, in the proposed

method HTTP data collection rate is higher.

64

Table 4.6 Performance area

Category System Descriptions

Index Title Existing Method Proposed Method

1 Programming Language Java Python and Matlab

2 HTTP request in 7 days 75.6 million [11], [24] 84.2 million

3 Download rate
120 document/sec and

1682KB/sec

120 document/sec and

1872KB/sec

65

5.1 Conclusion

In this thesis, topic classification based on deep learning is researched and the

influence of different word embedding on classification accuracy is compared. An

improved word embedding model Word2vec-Tiling is proposed based on word2vec

and topic model. The experiments demonstrate that the model outperforms word2vec

and Tiling using two different text classification datasets. The performance of our

algorithm is quite satisfactory show in figure 5.1, represented proposed method and

in figure 5.2, represented existing method, in particular, it yields the best results

reported so far on the segmentation of this text collection. This thesis, the main topic

of semantic relation based on Reinforcement Learning (RL) is studied and the

influence of different word embedding on keyword accuracy is compared. In this

thesis, we use two methods to reach our goal, one is Word2vec-Tiling and the other

is RL algorithm, that is, we use Word2vec-Tiling to convert text to word vector and

improve the RL algorithm from two aspects, and finally, we extract semantic relation

with the improved method. Our proposed Word2vec-Tiling method advantage is, this

method can differentiate the gap between text, following the tiling method. So,

Word2vec-Tiling method assumes that a set of text items is in use during the course

(text word) of a given subtopic discussion, and when that subtopic changes, a

significant proportion of the vocabulary changes as well. As a result, users can find

out easily the related information about searched keywords without any overloading,

which provides a better result than the existing method. Our experimental results are

compared with the five data sets. Experimental results suggest that our algorithm can

show the semantic features of the web pages very quickly and properly.

Chapter 5

Conclusion

66

Figure 5.1 Proposed method performance overview

Figure 5.2 Existing method performance overview

67

5.1 Future Work

Although the initial results are encouraging, there is still a lot of work to do for

improving the crawling efficiency. A major open issue for future work is to do

extension test with large volume of web pages. In Word2vec-Tiling at this point, web

services are solely modeled as their names of the service description files and mapped

as “text or words”. It could be extended in the future by including more components

of service description files. Moreover, service embedding is applied to generate

documents for simplicity. Future work could be conducted such that more real-world

service composition methods are used to generate different types of documents. The

dependency of the proposed method is accuracy of the dictionary used in the method.

68

A.1 Practical Web Crawling Issues

When we tested our implementation, which is described in Chapter 4, we found that

there were several problems of Web crawling that did not become evident until a large

crawl was executed. Our experiences arise from several crawls of the Life, University,

Love, War, and Sky Web carried out during this thesis.

We are interested in documenting these problems for two reasons:

- To help other crawler designers, because most of the problems we found are related

to the characteristics of the Web, independent of the Web crawler architecture chosen.

-To encourage Web application developers to check their software and configurations

for compliance to standards, as this can improve their visibility on search engine’s

results and attract more traffic to their Web sites.

A.2 Web Server Administrators Concerns

Web crawlers prompted suspicion from Web site administrators when they first

appeared, mostly because of concerns about bandwidth usage and security, and some

of those concerns are still in place today. In our experience, repeated access to a Web

page can trigger some alarms on the Web server, and complaints from its

administrator.

We consider that the two most important guideline given here:

- A crawler must identify itself, including an e-mail address for contact, or some Web

site administrators will send complaints to the listed owner of the entire originating

network segment.

- A crawler must wait between repeated accesses to the same Web site.

Appendix A

69

These guidelines are even more important if we consider that many host names point

to the same IP, usually belonging to a Web hosting provider, and in general several

Web sites are hosted by a few physical servers. Being unpolite with a Web site can

result in being banned from all the Web sites hosted by the same ISP.

Recommendation or Our Solution: The crawler should avoid overloading Web

sites, and it must provide an e-mail address in the from HTTP header, and/or a Web

site address as a comment in the user-Agent HTTP header.

A.3 Wrong DNS Web records

Consider the scenario depicted in figure A.1

Figure A.1 A misconfiguration in the server record for “Ygoogle.com” resulted in the

wrong contents being assigned to its URL

1. At crawling time, the server record for Ygoogle.com pointed to the website of

Xgoogle.com, so the contents of the later were indexed as if there URL was

Ygoogle.com. This Domain Name Server (DNS) misconfiguration can be accidental

or malicious.

70

2. When the home page of Xgoogle.com was downloaded, its contents were found to

be a duplicate of Ygoogle.com, so the pages of Xgoogle.com were not downloaded

again.

3. The wrong DNS server record of Ygoogle.com was fixed later.

4. In the search results, when users search for “Xgoogle”, they can be mistakenly

redirected to the Web site of “Ygoogle”.

Recommendation or Our Solution: It is possible for Web site administrators to

avoid these kind of problems by a careful configuration of virtual hosts. Any access

to the IP address of the Web server that does not contain a known Host field in the

request, should be redirected to the default virtual host, referencing the later by its

canonical name.

A.4 Range Errors

To ensure a good coverage of the Web, we must limit the amount of data that is

downloaded from every Web server. This can be done by limiting both the maximum

page size, and the number of Web pages that are downloaded from a single Web site.

We limit page size usualy to a default of 300-400 Kb per Web page. We consider that

this should capture enough keywords to index each document. To inform the Web

servers of the download limit, we use the HTTP Range header:

GET / page.html HTTP/1.1

Range: 0-400000

However, a few Web sites return a response code 416 (range error). We have found

that these responses correspond to files that are smaller than the desired size. This is

not correct, because the HTTP specification indicates that “if the [second] value is

greater than or equal to the current length of the entity-body, last-bytepos is taken to

be equal to one less than the current length of the entity- body in bytes".

Recommendation or Our Solution: In the case of range errors, a second attempt for

download could be made without the Range header. In all cases, the Web server may

ignore the range, so the Web crawler must be prepared to disconnect from the Web

server, or discard part of the contents, if the server sends a long document.

71

A.5 Found where you mean error

It is hard to build a Web site without internal broken links, and the message shown

by Web servers when a page is not found, such as, when the Web server returns a 404

(not found) response, is considered by many Web site administrators as too annoying

for users.

Indeed, the default message looses the context of the Web site, so the Web site

administrators of some Web sites prefer to build error pages that maintain visual and

navigational consistency with the rest of their Web sites.

The problem is that in many cases the response for a page that does not exists is just

a normal redirect to a custom-built error page, without the response header signaling

the error condition. D. Zhao et al. refer to these error pages as “soft-404”, and observe

that about 29% of dead links point to them.

The indexing process could consider a redirect to a “soft-404” error page as a link

between the URL in which the page was not found and the error page, and this can

increase the score of the later.

Recommendation or Our Solution: Web site administrators should configure their

Web servers in such a way that the error messages have the correct response codes

signaling the error conditions. Servers can be tested by Web crawlers issuing a request

for a known non-existent page (such as, an existent URL concatenated with a random

string) and checking the result code.

A.6 Data collection from Web pages

By solving the problem described above, we have collected data about our keyword’s

from web pages. We have described our data collection process from web pages in

figure A.2.

72

Figure A.2 Data collect process from the web page using keyword

A.7 Data value different between Existing and Proposed method

The main and important thing on this thesis is that we recommend by Word2vec to

Word2vec-Tiling. Through, Table A.1, we describe the difference between the

proposed and the existing method.

73

Table A.1 Same data Existing but Proposed method word2vec and word2vec-tiling

value different.

Keyword’s Category
Existing

Method

Proposed

Method

Sky

atmosphere

stellar

breeze

0.421321

0.365421

0.362211

0.521421

0.632145

0.614441

War

struggle

combat

hostility

0.452122

0.012877

0.321132

0.623214

0.321552

0.512211

Love

mercy

rapacity

devotion

0.366532

0.623111

0.321452

0.463222

0.652112

0.612212

University

prospective

intervention

essential

0.211221

0.312135

0.421211

0.310011

0.312221

0.481222

Life

cognition

longevity

conduct

0.321122

0.341141

0.421121

0.381222

0.361122

0.512211

74

References

[1]S. Saranya, B.S.E. Zoraida, and P.V. Paul, "A Study on Competent Crawling

Algorithm (CCA) for Web Search to Enhance Efficiency of Information Retrieval,"

Proceeding of Artificial Intelligence and Evolutionary Algorithms in Engineering

Systems, Springer, New Delhi, pp. 9-16, 2015.

[2]K.S. Kim, K.Y. Kim, K.H. Lee, T.K. Kim, and W.S. Cho, "Design and

implementation of web crawler based on dynamic web collection cycle," Proceeding

of The International Conference on Information Network, IEEE, pp. 562-566, 2012.

[3]Y. Kim, H. Hong, and M. Chung, "Application of Cohesion Devices for

Improvement of Distributional Representation," Proceeding of The 14th

International Conference on Multimedia Information Technology and Applications

(MITA), pp. 84-87, 2018.

[4]M.Y. Ivory and M.A. Hearst, "Improving web site design," IEEE Internet

Computing 2, Vol. 6, No. 2, pp. 56-63, 2002.

[5]D. Debraj and P. Das, "Study of deep web and a new form based crawling

technique," International Journal of Computer Engineering and Technology (IJCET),

Vol. 7, No. 1, pp. 36-44, 2016.

[6]Z. Guojun, J. Wenchao, S. Jihui, S. Fan, Z. Hao, L. Jiang, et al., "Design and

application of intelligent dynamic crawler for web data mining," Proceeding of 2017

32nd Youth Academic Annual Conference of Chinese Association of Automation

(YAC) IEEE, pp. 1098-1105, 2017.

[7]K.A. Pakojwar, R.S. Mangrulkar, and V.G. Bhujade, "Web data extraction and

alignment using tag and value similarity," Proceeding of 2015 International

Conference on Innovations in Information, Embedded and Communication Systems

(ICIIECS), pp. 1-4, 2015.

[8]S. Kolhatkar, M.M. Pati, M.S. Kolhatkar, and M.S. Paranjape, "Emergence of

Unstructured Data and Scope of Big Data in Indian Education," International Journal

of Advanced Computer Science and Applications (IJACSA), Vol. 8, No. 1, pp. 150-

157, 2017.

75

[9]M. Afsharizadeh, H. Ebrahimpour-Komleh, and A. Bagheri, "Query-oriented text

summarization using sentence extraction technique," Proceeding of 4th International

Conference on Web Research (ICWR), pp. 128-132, 2018.

[10]S. Ringe, N. Francis, and A.H.S.A. Palanawala, "Ontology Based Web Crawler,"

International Journal of Computer Applications in Engineering Sciences, Vol. 2, No.

3, pp. 194-197, 2012.

[11] L. Jiang, Z. Wu, Q. Feng, J. Liu, and Q. Zheng, “Efficient deep web crawling

using reinforcement learning,” Proceeding of Pacific-Asia Conference on Knowledge

Discovery and Data Mining, Springer, Berlin, Heidelberg, pp. 428-439, 2010.

[12] Y. Kim, B. Kim, and M. Chung, “Unstructured data analysis and multi-pattern

storage technique for traffic information inference,” The Journal of Multimedia

Information System, Vol. 21, No. 2, pp. 211-223, 2018.

[13] R. Jason and A. McCallum, "Using reinforcement learning to spider the web

efficiently," Proceeding of International Conference on Machine Learning (ICML),

Vol. 99, 1999.

[14] M. Liu, Y. Jiangang, “An improvement of TFIDF weighting in text

categorization”, International computer science and information technology (ICCTS),

Vol. 47 No. 9, pp. 44-47, 2012.

[15] M. Shi, J. Liu, D. ZHou, M. Tang, B. Cao, “WE-LDA: A Word Embeddings

Augmented LDA Model for Web Services Clustering”, Processing of IEEE

International Conference on Web Services (ICWS), pp. 9-16 2017.

[16] F. Harrag, A. Hamdi-Cherif, A. S. Al-Salman, “Comparative study of topic

segmentation Algorithms based on lexical cohesion: Experimental results on Arabic

language”, Arabian Journal for Science and Engineering, Vol. 35, No.2, pp.183-202,

2010.

[17] A. M. Tanvir, M. Chung, “Design and Implementation of an Efficient Web

Crawling Using Neural Network”, Proceeding of The International Conference on

Computer Science and its Applications (CSA), December 17-19, Kuala Lumpur,

Malaysia, 2018.

[18] X. Wang, L. Xie, B. Ma, E. S. Chng, H. Li, “Phoneme lattice based TextTiling

towards multilingual story segmentation”, Proceeding of Eleventh Annual

76

Conference of the International Speech Communication Association Makuhari,

Chiba, Japan, pp. 1305-1308, 2010.

[19] M. Riedl and C. Biemann "TopicTiling: a text segmentation algorithm based on

LDA", Proceedings of ACL 2012 Student Research Workshop. Association for

Computational Linguistics, 2012.

[20] A.M. Tanvir and M. Chung, “Design and Implementation of Web Crawler

utilizing Unstructured data”, Journal of Korea Multimedia Society, Vol. 22, No. 3,

pp. 374-385, 2019.

[21] D. Zhao, N. Du, Z. Chang and Y. Li, "Keyword extraction for social media short

text." Procedding of 2017 14th Web Information Systems and Applications

Conference (WISA), IEEE, pp. 251-256, 2017.

[22] G. Saurabh. and V. Khare, "Blazingtext: Scaling and accelerating word2vec

using multiple gpus" Proceedings of the Machine Learning on HPC Environments,

ACM, 2017.

[23] C.D.C. Ta and T.P. Thi, “Identifying the semantic relations on unstructured data”,

International Journal of Information Sciences and Techniques (IJIST), Vol.4, No.3,

pp. 1-10, 2014.

[24] X. Zhang and M. Lapata, "Sentence Simplification with Deep Reinforcement

Learning", Proceedings of the 2017 Conference on Empirical Methods in Natural

Language Processing, pp. 584-594, 2017.

[25] S. Qaiser and R. Ali, "Text Mining: Use of TF-IDF to Examine the Relevance

of Words to Documents", International Journal of Computer Applications (0975 -

8887), Vol. 181, No. 1, pp.25-29, 2018.

77

Acknowledgements

First of all, I am very pleased to convey my sincere gratefulness and indebtedness to

Professor Mokdong Chung, my advisor, for giving me all the necessary research

facilities, valuable suggestion, guidance, and financial support during my study. My

advisor is the man who saved me in Korea as well as my study so that I am really

grateful to him. No words are enough to express gratitude to him. I express my regards

to all committee members Prof. Jeong-Mo Yeo and Prof. Kyung-Ryong Seo for their

valuable comments and suggestions. I would also like to thank the faculty and staff

members in the Department of Computer Engineering for their necessary help

throughout my study.

I also express my gratitude to my elder lab mates, Ph.D. candidate Yonghoon Kim,

my study would not be possible without his recommendation. I really appreciated that

the numerous help is done by my labmates Master degree friend, Hyungi Hong, with

generous help, encouragement and assisted me to complete my research.

Special thanks to all my friends and lab mates especially to senior Ph.D. candidate

Yonghoon Kim, Master classmate Hyungi Hong, and Jaehyeok Choi and

undergraduate students Seoyoung Jang, Seunghyeon Baek, Park JaeWan and Kim

SangYul for their care, help and support.

Finally, I would like to convey my deepest gratefulness to my parents for their great

sacrifices and it was nearly impossible to complete my work without their support

during my study in South Korea. I would not be capable to come here and finish work

without their encouragement and sacrifice.

	1. Introduction
	1.1. Introduction
	1.2. Research Purpose
	1.3. Scope and organization of this thesis

	2. Related Work
	2.1. Web Crawler background
	2.2. Web search and Web crawling
	2.3. Crawler Architecture
	2.4. Unstructured data
	2.5. Word2vec
	2.5.1. Continuous Bag-of-Words Model (CBOW)
	2.5.2. Skip-gram model
	2.5.2.1. Reinforcement Learning framework
	2.5.2.2. Reinforcement Learning overview
	2.5.2.3. An overview of TF-IDF
	2.5.2.4. Mathematical Framework

	3. Design of Web Crawler
	3.1. Web Crawler architecture
	3.2. Hierarchical Clustering
	3.2.1. Semantic Analysis
	3.2.2. Word Embedding

	3.3. System Overview
	3.3.1. Continuous Bag-of-Words (CBOW) Model
	3.3.2. CBOW Model System Overview
	3.3.3. Skip-gram Model
	3.3.4. Skip-gram Model overview
	3.3.5. Optimizing Word2vec-Tiling Computational Efficiency

	3.4. Word2vec-Tiling (CBOW and Skip-gram Model)
	3.4.1. Reinforcement Learning (RL) Algorithm
	3.4.2. TF-IDF Algorithm
	3.4.3. TF-IDF Working Diagram
	3.4.4. Development Tools

	4. Implementation and Evaluation
	4.1 Implementation
	4.1.1. Implementation of CBOW Model
	4.1.2. Implementation of Skip-gram Model
	4.1.3. Implementation of Word2vec-Tiling

	4.2. Implementation of TF-IDF Algorithm
	4.2. Implementation of Reinforcement Learning Algorithm
	4.3. Evaluation
	4.3.1. Experimantal Evaluation
	4.3.2. TF-IDF Algorithm Experimantal Evaluation
	4.3.3. Reinforcement Learning Algorithm Experimantal Evaluation

	4.4. Data Set
	4.5. Performance Measurement

	5. Conclusion
	5.1. Conclusion
	5.2. Future Work

<startpage>12
1. Introduction 3
 1.1. Introduction 3
 1.2. Research Purpose 5
 1.3. Scope and organization of this thesis 5
2. Related Work 8
 2.1. Web Crawler background 8
 2.2. Web search and Web crawling 9
 2.3. Crawler Architecture 10
 2.4. Unstructured data 12
 2.5. Word2vec 13
 2.5.1. Continuous Bag-of-Words Model (CBOW) 15
 2.5.2. Skip-gram model 18
 2.5.2.1. Reinforcement Learning framework 19
 2.5.2.2. Reinforcement Learning overview 20
 2.5.2.3. An overview of TF-IDF 22
 2.5.2.4. Mathematical Framework 22
3. Design of Web Crawler 24
 3.1. Web Crawler architecture 24
 3.2. Hierarchical Clustering 25
 3.2.1. Semantic Analysis 26
 3.2.2. Word Embedding 27
 3.3. System Overview 28
 3.3.1. Continuous Bag-of-Words (CBOW) Model 29
 3.3.2. CBOW Model System Overview 31
 3.3.3. Skip-gram Model 33
 3.3.4. Skip-gram Model overview 34
 3.3.5. Optimizing Word2vec-Tiling Computational Efficiency 36
 3.4. Word2vec-Tiling (CBOW and Skip-gram Model) 37
 3.4.1. Reinforcement Learning (RL) Algorithm 38
 3.4.2. TF-IDF Algorithm 41
 3.4.3. TF-IDF Working Diagram 44
 3.4.4. Development Tools 45
4. Implementation and Evaluation 46
 4.1 Implementation 46
 4.1.1. Implementation of CBOW Model 47
 4.1.2. Implementation of Skip-gram Model 51
 4.1.3. Implementation of Word2vec-Tiling 54
 4.2. Implementation of TF-IDF Algorithm 56
 4.2. Implementation of Reinforcement Learning Algorithm 57
 4.3. Evaluation 58
 4.3.1. Experimantal Evaluation 59
 4.3.2. TF-IDF Algorithm Experimantal Evaluation 62
 4.3.3. Reinforcement Learning Algorithm Experimantal Evaluation 64
 4.4. Data Set 64
 4.5. Performance Measurement 65
5. Conclusion 67
 5.1. Conclusion 67
 5.2. Future Work 69
</body>

