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ABSTRACT 

Landsat 위성영상과 딥러닝을 이용한 산불 피해지 탐지 

  

박 성 욱 

  

부경대학교 대학원 공간정보시스템공학전공 

  

 

요   약 

우리나라는 약 70%가 산악지역으로 이루어져 있어 산불 발생 시 그 피해가 

막대하다. 이러한 지형적인 특징으로 인해 사람의 접근이 어렵고, 피해 면적이 광범위 

하기 때문에 원격탐사 기법의 필요성이 증대되고있다. 위성 영상 및 항공 영상과 

식생의 분광 특성을 활용하여 개발 된 지수들을 이용해 산림의 피해 유무를 분류하고, 

피해 정도 및 식생의 회복 정보 등을 탐지하는 연구들은 많이 선행되어 왔다. 하지만 

이러한 지수들을 활용한 피해지 탐지 관련 선행연구들은 피해지를 효과적으로 

표현하기 위해 연구자의 주관이 많이 반영이 되고, 탐지하고자 하는 지역 및 계절적 

특성, 영상의 화질 차이 문제 등으로 인해 임계치를 조정해야하는 한계점이 존재한다. 

이에 본 연구에서는 최근 빠른 속도로 발전하고 있는 딥러닝 영상 인식 기술을 

원격탐사 기술에 적용하여 분광 특성 기반의 피해지 탐지 연구들의 한계점을 

보완하고, 새로운 산불 피해지 영상으로부터 연구자의 주관이 개입되지 않고 신속히 

산불 피해지를 탐지할 수 있는 모델을 구축 및 최적화하고자 하였다. 이를 위해 

Landsat 5 TM (Thematic Mapper), Landsat 8 OLI/TIRS (Operational Land Imager / 

Thermal Infrared Sensor) 위성 영상과 산불 피해지 분석에 주로 사용되는 NBR, NDVI, 

FWI 지수를 딥러닝 모델의 입력자료로 활용하여 산불 피해지를 탐지하였다. 피해지 

탐지를 위해 활용한 딥러닝 모델은 Deep Neural Network(DNN) Classifier 와 Semantic 

Segmentation 기법 중 U-net 모델을 활용하였다. DNN classifier 와 U-net 각각 약 89%, 

93%의 높은 예측 정확도를 보였으며, 본 연구를 통해 산림 재해에 대해 딥러닝의 

적용이 가능함을 검증하였다. 
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1. Introduction 

Recently, the damage caused by abnormal weather and disasters has 

been increasing rapidly around the world, especially in Korea, as about 70 

percent of the country is made up of mountainous areas, causing huge 

damage in case of forest fire. Due to this geographical feature of Korea, 

the need for remote sensing is increasing because it is difficult for human 

to access and the area of damage is extensive [Song et al., 2006]. Recently, 

GoSeong-Sokcho and GangNeung-DongHae, in April 2019, has declared 

state of disaster of massive fires causing environmental and economic 

damage [Park et al., 2019]. The existing research about detect to damage 

areas was basically conducted through field or air observation, which has 

the disadvantage of having a large manpower and time-consuming. 

Considering these economic costs and the accessibility of field 

observations, the benefits of remote sensing can be seen as significant 

[Won et al., 2001], and it is more efficient to use them than field 

observations to investigate damage from forest fire and monitoring the 

recovery process of vegetation, and expedite the forest recovery plan 

[Kang et al., 2010; Ryu et al., 2018]. Also, forest fire caused by artificial 

and natural fires have a very important effects on the environment, human 
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life, and property [Sunar and Ö zkan, 2001], it is necessary to find ways to 

quickly identify the area and extent of forest fire in order to keep them 

sustainable [Kang et al., 2010]. Many research has been conducted on how 

to classification forest damage by using developed indices using different 

aviation platforms such as Landsat, Sentinel, and Unmanned Aerial 

Vehicle (UAV) and other factors to detect forest fire damage by utilizing 

satellite images such as damage degree and information on the recovery 

of vegetation. Normalized Burn Ratio (NBR) and Normalized Difference 

Vegetation Index (NDVI) among indices using the spectral traits of 

vegetation are mainly used in forest damage detection research. Won et al. 

[2007] calculated the area and damage intensity of forest fire using 

Landsat TM and Landsat ETM+ images and dNBR (Difference NBR), 

which is the difference between NBR before and after forest fire damage, 

and assessed damage to forest fire and the damage strength of the affected 

areas to quantify the rate of recovery. 

In addition to dNBR, there are preceding studies on the frequency of 

forest fire, detection of damaged areas, and measurement of damage 

intensity using NDVI [Lutz et al., 2011; Nararro et al., 2017; Lee et al., 

2017]. However, there are limitations that must be manually adjusted 

because preceding studies related to damage detection is highly reflective 

of the researchers in order to effectively express the damaged areas, and 
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the regional and seasonal traits that they want to detect, and the differences 

in image quality are different [Park et al., 2019; Kang et al., 2010; Lee et 

al., 2017; Turker and San, 2003; Park and Lee, 2019]. Accordingly, 

advance research is being conducted based on artificial intelligence (AI) 

that allows computers to observe faster and more accurate location and 

area of damage on their own. In addition, recent research using Deep 

Learning (DL), a more advanced form of traditional machine learning, is 

being conducted due to the amount of data and the development of 

computer hardware [Long et al., 2015; Song et al., 2018; Kussul et al., 

2017]. Zhang et al. [2015] used UAV images and Deep Convolutional 

Neural Network (CNN) to detect forest fire in RGB forest fire images, 

Kim et al. [2016] used UAV optical sensors and deep learning to develop 

a platform for disaster recognition and response to detect forest fire 

damage detection and prevent secondary damage through the Smart-eye 

platform, a forest fire monitoring technology. However, most of the 

preceding studies using deep learning and satellite images are mainly 

focused on detecting and classifying land cover changes using high–

resolution images [Song et al., 2018; Kussul et al., 2017; Zhang et al., 

2015], preceding studies that detected forest fire damage using satellite 

imagery and deep learning are not sufficient.  
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Therefore, in this study, we complement the limitations of spectral 

character-based damage detection studies using remote sensing and deep 

learning, and to construct and optimize an artificial intelligence-based 

forest fire damage detection model that does not involve the researcher’s 

subjectivity from the new forest fire damage image.  

For this study, we calculated NBR, NDVI, and Fire Withering Index 

(FWI) [Park et al., 2019], which are mainly used for forest fire damage 

research from Landsat 5 TM (Thematic Mapper) and Landsat 8 OLI/TIRS 

(Operational Land Imager / Thermal Infrared Sensor) images, and these 

indices used as input data of deep learning model to detect forest fire 

damage more accurately and effectively.  
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2. Materials 

2.1. Satellite Data  

In this study, we used Landsat 5 TM and Landsat 8 OLI/TIRS satellite 

images provided by the United States Geological Survey (USGS). Earth-

explorer (https://earthexplorer.usgs.gov) provides images such as Landsat, 

Sentinel, AVHRR (Advanced Very High Resolution Radiometer) and in 

Landsat, calibrated level-2 surface reflectance images are available in all 

bands except panchromatic and thermal bands. For Landsat 4-5 TM and 

Landsat 7 ETM+, Surface Reflectance is calculated using the Landsat 

Ecosystem Disturbance Adaptive Processing System (LEDAPS) 

algorithm [Masek et al., 2006], and Landsat 8 OLI/TIRS is calculated 

through Land Surface Reflectance Code (LaSRC) [Vermote et al., 2016]. 

Landsat 5 TM is a satellite launched in 1984 for earth observation, and 

is equipped with a Thematic Mapper (TM) sensor. The visible band (Band 

1 to Band5 and Band 7) of the Landsat 5 TM has a spatial resolution of 

30m and 120m for the thermal infrared band (Band 6) [Won et al., 2007] 

(Table 1). In the case of Landsat 7 Enhanced Thematic Mapper (ETM) +, 

there are many noises in the affected area due to Scan Line Corrector 
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(SLC)-off problem, and there is no Landsat 5 TM data since 2012, 

therefore we used Landsat 8 OLI/TIRS images. 

Landsat 8 OLI/TIRS is equipped with two sensors, OLI and TIRS, to 

provide images in the visible and near-infrared (VNIR) and thermal 

infrared (TIR) bands. The spatial resolution is the same as the Landsat 5 

TM at 30m (visible band), and data obtained from OLI and TIRS sensors 

improved signal-to-noise performance compared to other Landsat series 

images, making it easier to analyze the condition and traits of the surface 

[Roy et al., 2014].  
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Table 1. Landsat 5 Thematic Mapper band designations 

Landsat 5  

Band description Wavelength(μm) Resolution(m) 

Band1(Blue) 0.45-0.52 30 

Band2(Green) 0.52-0.60 30 

Band3(Red) 0.63-0.69 30 

Band4(NIR) 0.76-0.90 30 

Band5(SWIR1) 1.55-1.75 30 

Band6(Thermal) 10.40-12.50 120 

Band7(SWIR2) 2.08-2.35 30 
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Table 2. Landsat 8 Operational Land Imager/Thermal Infrared Sensor(OLI/TIRS) band designations  

Landsat 8  

Band Description Wavelength (μm) Resolution(m) 

Band1 (Coastal aerosol) 0.43-0.45 30 

Band2 (Blue) 0.45-0.51 30 

Band3 (Green) 0.53-0.59 30 

Band4 (Red) 0.64-0.67 30 

Band5 (NIR) 0.85-0.88 30 

Band6 (SWIR1) 1.57-1.65 30 

Band7 (SWIR2) 2.11-2.29 30 

Band8 (Panchromatic) 0.50-0.68 15 

Band9 (Cirrus) 1.36-1.38 30 

Band10 (Thermal Infrared 1) 10.60-11.19 100 

Band11(Thermal Infrared 2) 11.50-12.51 100 
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2.2. Forest fire Burned Area Data  

For the forest fire damage data used in this study, the area of damage 

over 10 hectares (ha) was selected for 16 years (2003 – 2018) by referring 

to the ‘Forest fire Damage Register’ provided by the Korea Forest Service. 

If the size of the damage area is too small, the error rate may increase due 

to the influence of the surrounding pixels during the model learning 

process. As a result, there were 107 cases of damage of more than 10 

hectares in total 6,910 cases of damage in the ‘Forest fire Damage 

Register’, and 48 images were obtained. It was difficult to obtain a large 

number of images because of the limitations in obtaining images due to 

the presence of the problem of location discrimination due to the influence 

of shadows in clouds and mountain ranges or lack of images in the areas. 
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2.3. Input Data and Label Data 

In the case of deep learning, the number of input images and true labels 

used for learning are important [Najafabadi et al ., 2015], In recent deep 

learning research, deep learning models can be trained without the need 

for label creation because there is dataset with large numbers of images 

and true labels such as ImageNet, MS COCO, and MNIST [Najafabadi et 

al ., 2015; LeCun et al., 2015], but this study needs to collect input image 

and create true labels because there is no satellite image and true label for 

forest fire damage. Therefore, the size of the input image to be used in this 

study was set to 96 x 96 to reduce errors caused by the surrounding pixel 

values around the forest fire, and only the parts of the damaged areas were 

clipped from the entire image.  

In the case of the true label, since the true label for deep learning about 

forest fire damage is not established, we have determined the area of 

damage by referring to RGB true color images and R, NIR and G 

composite images for 48 areas. Using the Qgis software, we created a 

polygon map of the damaged area and the true label consisting of 0 and 1 

values (one-hot encoding) was created through rasterizing. 
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3. Methods 

In this study, we used indices using the spectral traits of vegetation as 

input data for deep learning to verify the applicability of deep learning in 

the field of remote sensing and the availability of detection of forest fire 

damage areas, and to establish and optimize a fast and accurate artificial 

intelligence-based model for detecting forest fire damage from images of 

new forest fire. 

 The overall study flow chart is as shown in Figure 1. Red, Green, Near 

Infrared bands of three visible bands and indices(NBR, NDVI, FWI) 

created by the spectral traits of vegetation were used as in put data for deep 

learning models, and we used DNN Classifier and Semantic Segmentation 

to detect, compare and analyze forest fire damage areas.
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Figure 1. Overall flow of this study. 
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3.1. Approach Based on Spectral Characteristics of 

Vegetation  

Healthy vegetation mainly absorbs the red band and reflects the green 

band and near infrared band, but the damaged vegetation exhibits the 

opposite spectral traits, so there are many indices and preceding studies 

using contrasting spectral traits of damaged forest and normal [Kumar et 

al., 2002]. In this study, we used NBR, NDVI, and FWI. 

NBR is an index that is a formalized form using difference and the 

sum of near-infrared and mid-infrared reflectance. Since the moisture in 

the vegetation has a high absorption rate in the mid-infrared band, the 

higher the moisture content, the lower the reflectance of the mid-infrared 

band. Therefore, healthy forests have high NBR due to low reflectance of 

mid-infrared band, while damaged forests have relatively low NBR due to 

high reflectance of mid-infrared reflectance [Won et al., 2007; Miller and 

Thode, 2007]. We used Band 4 and Band 7 for Landsat 5 TM (Equations 

1), and Band 5 and Band 7 for Landsat 8 OLI/TIRS to calculate the NBR.  

 

NBR =  
𝐵𝑎𝑛𝑑 4 − 𝐵𝑎𝑛𝑑 7

𝐵𝑎𝑛𝑑 4 + 𝑏𝑎𝑛𝑑 7
 (1) 
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NDVI is calculated using the traits that the difference in vegetation 

reflectance is large in red band and near infrared band, it is mainly used to 

identify the situation of vegetation distribution. NDVI has a value between 

-1 and 1, and the higher the value of healthy forests, the lower the value if 

there is damage or little vegetation [Lee et al., 2012]. We used Band 3 and 

Band 4 for Landsat 5 TM (Equations 2), and Band 4 and Band 5 for 

Landsat 8 OLI/TIRS to calculate the NDVI.  

NDVI =   
𝐵𝑎𝑛𝑑 4 − 𝐵𝑎𝑛𝑑 3

𝐵𝑎𝑛𝑑 4 + 𝐵𝑎𝑛𝑑 3
 (2) 

FWI is an index indicating the damage by weighted band reflectance, 

using the red, green, near-infrared bands among several combinations to 

best represent forest fire damage, and using the traits of high reflectance 

of the near-infrared band in healthy forests. Park and Lee [2019] 

developed and applied FWI to large forest fire in GoSeong-SokCho and 

GangNeung-DongHae in April 2019 to detect and extract the area of 

damage quickly. We used Band 2, Band 3 and Band 4 for Landsat 5 TM 

(Equations 3), and Band 3, Band 4 and Band 5 for Landsat 8 OLI/TIRS to 

calculate the FWI.  

 

FWI = (0.3 ∗ Band 3) + (0.6 ∗ 𝐵𝑎𝑛𝑑 4) + (0.1 ∗ 𝐵𝑎𝑛𝑑 2) (3) 
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3.2. Approach Based on Deep Learning 

Recently, as the use of high-performance computers has become more 

common due to the development of hardware along with the utilization of 

big data, the use and interest of DL, a more advanced form of ML, has 

been increasing [Szegedy et al., 2013]. Even with deep network layers, the 

time required for training is reduced and the accuracy of DL models is 

gradually increasing [LeCun et al., 2015]. Typical DL models include 

Deep Neural Network(DNN) and Convolutional Neural Network(CNN).  

DNN is a deeper model of the Artificial Neural Network(ANN), which 

consists of several hidden layers between the input and output layers 

[Bengio et al., 2013]. It is a DL model that can improve the problems of 

classical machine learning and ANN and performs well in object detection 

as well as classification [Szegedy et al., 2013]. DL uses several techniques 

to prevent overfitting in which the model only describes some specific 

data in the process of testing the model, and increase accuracy in 

optimizing models such as back-propagation algorithms, activation 

functions, and drop-out, etc [Long et al., 2015; Brownlee, 2018; 

Ronneberger et al., 2015].   

CNN is a type of neural network that is being studied a lot in various 

image processing and computer vision fields, such as image recognition 
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by computer and extracting high levels of abstracted information from 

them, or drawing new pictures [Kim et al., 2014]. As shown in Figure 2, 

the CNN’s structure has repeatedly piled up a convolution layer that 

performs a convolution operation, a filter operation used in image 

processing, in front of the existing ANN, and the structure can be divided 

into a part that extracts the features of an image using a filter and a Fully 

Connected Layer(FCN) that classifies the class [LeCun et al., 2015]. Many 

CNN models (AlexNet [Krizhevsky et al., 2012], VGGNet [Simonyan et 

al., 2014], GoogLeNet [Szegedy et al., 2015], and ResNet [He et al., 2016]) 

have been demonstrated and are being studied to improve performance at 

the ILSVRC (Large Scale Visual Recognition Challenge Challenge) 

competition, which gives large sets of images such as image recognition 

and classification. However, these CNN models have computational 

problems at the FCL, or the problem of receiving only fixed-size inputs, 

and the problem of losing the location and spatial information for the input 

images because the three-dimensional input is converted to one-

dimensional vector form as it passes through the FCL [LeCun et al., 2015]. 

This can be seen as a limitation for use in remote sensing where location 

and spatial information is important [Song et al., 2018]. Therefore, this 

study used Semantic Segmentation based on CNN.  
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Semantic Segmentation is an image recognition technique applied to 

pixel-wise classification unlike CNN, which categorizes images as a 

whole [LeCun et al., 2015; Noh et al., 2015]. Whereas CNN classifies 

what a target is for an image, Semantic Segmentation classifies it into 

pixels, allowing it into include all information about what the target is and 

where it is located [Noh et al., 2015]. 

Semantic Segmentation considers CNN's fully connected layer to be 

1x1convolution, which allows the entire structure to perform convolution 

operations, thereby maintaining location information and not limiting 

input images. [LeCun et al., 2015]. The U-net used in this study is a 

representative model of Semantic Segmentation that has demonstrated 

effective performance in discriminating cell boundaries and cancer cells 

in the field of medical image segmentation [Ronneberger et al., 2015]. In 

field of medical image segmentation, the objective is to distinguish 

between normal and abnormal pixels, so we judged that U-net could be 

applied to the field of remote sensing.  

U-net is a model designed with Contracting path and Expanding path. 

Contracting path is the process of extracting features while reducing the 

size of the input image, and Expanding path is the process of restoring to 

the original image size while preventing loss of location information 

[Ronneberger et al., 2015]. When up-sampling to restore the image size in 
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the expanding path, U-net used copy and crop, which refers to the feature 

of the contracting path as shown in the gray line in Figure 2, to obtain 

more accurate localization, and Data augmentation has shown good 

performance in biomedical segmentation applications even with a small 

number of training samples [Ronneberger et al., 2015]. 

Data augmentation techniques are used by many studies to increase the 

number of data learned by inverting, shifting, and distorting the input 

image. Many studies have been used to improve the stability and accuracy 

of the learning model, and to prevent overfitting [Kim et al., 2016; 

Ronneberger et al., 2015; Krizhevsky et al., 2012]. In this study, data 

augmentation was used because the number of training samples required 

for training was not large (Figure 3). 
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Figure 2. Structure of U-net model [Ronneberger et al., 2015]. 

 

Figure 3. Example images of data augmentation. The images in the first 

column are originals and the rest of the images are transformed by data 

augmentation. 
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The loss function of the model was Binary Cross Entropy(BCE). In 

general, Squared Sum Error(SSE) is used for regression, and Cross 

Entropy(CE) is mainly used for classification. As shown in Equation 4, 

log is the natural logarithm base e(𝑙𝑜𝑔𝑒), 𝑦𝑖 is the prediction result, and 

𝑡𝑖 is the true label. In this case, 𝑡𝑖 shall have a one-hot encoding form in 

which the correct answer has a value of 1 and all the rest have 0 [Pappagari 

et al., 2018]. BCE is a special form of CE, and if one probability is p, the 

other probability is a function of the two patterns in which one probability 

is 1-p. In Equation 5, i denoted a sample number, 𝑦𝑖  denoted output 

data(0 to 1) of the i-th sample class k, and 𝑡𝑖 denoted a true label (0 or 1) 

of the i-th sample class k [Pappagari et al., 2018; Wang et al., 2017]. Because 

of the effects of negative symbols, the higher the number of matched 

samples, the lower the overall error, since the output data and true label 

(e.g., forest fire 1, normal 0) are allowed to have a maximum value rather 

than the maximum value when fully matched.  

𝐶𝐸(𝑡, 𝑦) = − ∑ 𝑡𝑖

𝑁

𝑖=1

∙ 𝑙𝑜𝑔(𝑦𝑖) (4) 

𝐵𝐶𝐸(𝑡, 𝑦) = −
1

𝑁
∑ 𝑡𝑖

𝑁

𝑖=1

∙ 𝑙𝑜𝑔(𝑦𝑖) + (1 − 𝑡𝑖) ∙ 𝑙𝑜𝑔 (1 − 𝑦𝑖) (5) 
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We used Adaptive Moment Estimate(Adam) as an optimizer. In DL, the 

optimizer is a neural network optimization method that allows the speed- 

up and stabilizes learning by updating weight values in a direction that 

minimizes the resulting of loss function values [Lim et al., 2017]. Among 

them, Adam is currently the most commonly used optimizer in DL that 

combines Momentum, which complements the shortcomings of the 

Stochastic Gradient Descent (SGD), and Root Mean Square Propagation 

(RMSprop), which prevents learning rate decay, by only reflecting new 

gradient information [Lim et al., 2017; Kingma and Ba, 2014].  

We used Rectified Linear Unit (ReLU) as an activation function.  The 

ReLU is a function designed to compensate for the drawback of gradient 

vanishing problem when passing through layers when performing back-

propagation, which is a disadvantage of Sigmoid function. If the input 

value is less than 0, it outputs 0, and if it is greater than 0, the input value 

is output as it is [Krizhevsky et al., 2012; Nair and Hinton, 2010].  

ReLU, f = {𝑥≥0 ,𝑓(𝑥)=𝑥
𝑥<0 ,𝑓(𝑥)=0 

 (6) 

In this study, ReLU was used until before the last convolution layer of 

the U-net model, and since the last layer used Sigmoid function, the 

predicted images produced as a heat map image with probability values in 
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the range of 0 to 1. The hyper-parameters used in the study are shown in 

Table3. 
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Table 3. Hyper-parameters list used on U-net model.  

 U-net model hyper-parameter 

Input images 960 (train + val + test) 

Input size 96 x 96 

Layers R,NIR,G,FWI,NBR,NDVI 

Spatial Resolution (m) 30  

Epochs 300 

batch size 10 

Loss function Binary cross entropy 

Optimizer Adam(Adaptive Moment Estimation) 

Activation function 
ReLU (Rectified Linear Unit) /  

Sigmoid (Last layer) 

Output Probability Map (0~1) 
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4. Results and Discussion 

4.1. DNN Classifier  

The spectral traits-based approach can effectively explain forest disaster 

phenomena, but has limitations in that the threshold setting must be mad 

empirically and manually [Park et al., 2019; Kang et al., 2010; Lee et al., 

2017; Truker and San, 2003]. Therefore, we used the spectral traits-based 

information as input data for DL, thereby enhanced the advantages and 

complemented the disadvantages of the spectral traits-based approach.  

In this study, we tried to detect the damaged areas by constructing a 

DNN classifier using the R software’s h2o library. ‘H2O’ library is a Java-

based open source platform for machine learning, deep learning 

deployment and analysis of big data [h2o]. We created a matchup data 

(approximately 440,000 pixels) that arranged the pixel values of all layers 

(R, NIR, G, NBR, FWI and NDVI) of the images used as input data for 

DNN classifier. The number of training (epochs) consisted of 1000 times 

and the number of hidden layers was 200 x 200. We also divided the data 

into 6 folds to predict all 48 damaged areas and built a dataset to predict 8 

images for each fold. As a result of the DNN classifier test, the average 
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prediction accuracy was 89.72%, we generated the predicted images by 

rasterizing the pixel values of each image predicted by DNN classifier. 

The prediction images showed that the predicted damaged areas were very 

similar to the R, NIR and G composite images (Figure 4). However, it can 

be seen that there is a tendency to make false alarm about the area having 

the similar pixel value as the pixel of the damaged areas such as the urban, 

the boundary between the water body and land, and the shadow of the 

mountain. When using the DNN classifier to detect the damaged areas, the 

area is well predicted, but the salt and pepper noise is present, and since it 

seems to be affected by the pixels around the damaged areas. 
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Figure 4. R, NIR, G composite images and predict images of DNN classifier. 
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4.2. Prediction of Forest fire Burned Areas Using a 

Semantic Segmentation 

In order to use the U-net model, we augmented 48 original images to 

960 through data augmentation, and then constructed the dataset with 800 

training data, 80 validation data, and 80 test data. And cross validation 

was performed to select the model's optimal hyper-parameter and to verify 

the model's generalization capability through various test sets. Model 

training and validation under various conditions, such as learning epochs, 

learning rate and batch size, resulted in the highest accuracy and low loss 

value when learning epochs 300, learning rate 0.001, batch size 10. 

We divided the dataset into 12 folds to ensure that the data of the 

training, validation and test sets do not overlap each other, and computed 

the average prediction accuracy by constructing the test sets for each fold 

differently. In addition, if Normalization or Standardization is applied to 

the input data during the DL process, the distribution of data values is set 

to 0 to 1 or -1 to 1 so that the model can be trained stably and the learning 

speed is improved [Yang et al., 2015]. Thus, through data standardization 

(Equation 6), we transformed the input data into a standard normal 

distribution with a mean of 0 and a standard deviation of 1 [Mesnil et al., 

2011].  



28 

 

 

𝑋𝑠 =
𝑋−𝜇

𝜎
   (6) 

𝑊ℎ𝑒𝑟𝑒 𝜇 =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1  𝑎𝑛𝑑 𝜎 = √

1

𝑛−1
∑ (𝑥𝑖 − 𝜇)2𝑛

𝑖=1    
(1) 

 

 

 

The test result of the U-net model was 0.926, achieving high average 

prediction accuracy. Compared with the DNN classifier prediction result, 

the U-net model shows that the damaged area is clearly revealed, and the 

ratio of the surrounding false alarm such as salt and pepper effect is also 

reduced. 

For a convenient comparison between the predicted image and the true 

label, the pixel values of the predicted image were rounded to create a 

round image expressed as 0 and 1 and the true label looked very similar 

when compared (Figure 5 – Figure 8). However, like the DNN classifier, 

there is a problem in which the non-damaged area is false alarm as the 

damaged area when the damage value and the pixel value distribution are 

similar, such as roads, shadows, and urban areas. Also, the prediction 

accuracy was about 3% higher for U-net model. Therefore, it is judged 

that it is highly useful for the rapid detection of forest fire damaged areas 

and extracting the estimated areas.  
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In the case of fold 4, the accuracy is lower than other folds (Table 4), 

which indicates that the accuracy is lowered because an error occurs in the 

area where the true label can’t show the damage detail. Although the 

accuracy is low, it is judged that the accuracy is lowered because an error 

occurs in the area where the true label can’t the damage detail.  If the true 

label is made as detailed as possible in the future, the prediction accuracy 

will be better.
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Table 4. Prediction accuracy of each folds and average accuracy of 

model in 300 epochs and 10 batch size.  

 Accuracy 

Fold 1 0.871 

Fold 2 0.961 

Fold 3 0.883 

Fold 4 0.851 

Fold 5 0.932 

Fold 6 0.929 

Fold 7 0.940 

Fold 8 0.923 

Fold 9 0.968 

Fold 10 0.948 

Fold 11 0.951 

Fold 12 0.949 

Average 0.926 
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Figure 5. Test images, true label images, prediction images and round 

images in fold 1 of U-net model 
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Figure 6. Test images, true label images, prediction images and round 

images in fold 2 of U-net model 
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Figure 7. Test images, true label images, prediction images and round 

images in fold 4 of U-net model 
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Figure 8. Test images, true label images, prediction images and round 

images in fold 5 of U-net model 
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We found that there was a part of the labeling process that was difficult 

to judge clearly between damaged area and un-damaged area. Therefore, 

in order to know whether these difficult parts affect the prediction 

accuracy, we selected four areas of difficulty during the creating true 

labels and divided forest fire severity into three categories (‘Exactly’, 

‘Ambiguous’, ‘Normal’). And compared them to the U-net prediction 

images (Figure 9). The distribution of pixel values by masking only the 

areas identified as "Ambiguous" showed the highest ratio of pixels of over 

0 and less than 0.1 in all four regions (Figure 10). This shows even if 

ambiguous parts are included in the process of creating the true label, it is 

more likely to be predicted as a non-damaged, and the proportion of areas 

where the model predicted as a damaged area from those corresponding to 

‘Ambiguous’ was low. 

Thus, we found that the true labels for forest fire damage were generated 

manually, but he ambiguity was not enough to affect prediction accuracy. 

This study has shown that even with the limitation of training with a small 

number of samples, U-net’s prediction result can predict the area similar 

to forest fire damaged areas. And if more samples are made and utilized 

in the future, the model is expected to improve with higher accuracy.
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Figure 6. R,NIR,G composite Images(Top), Images in 3 burn categories(Red: ‘Exactly’, Yellow : ‘Ambiguous’ , 

Black: ‘Normal’) and U-net prediction images (Bottom) 
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Figure 7. Masking images and histograms for ‘Ambiguous’ 



38 

 

We also selected 20 predictions from 48 regions of testing and calculated 

the monthly average prediction accuracy. Forest fire occurred mainly from 

April to June, and the U-net model showed an estimated accuracy of about 

93% in April and June. And in March, the prediction accuracy is low and 

in October, it is high, but since the number of cases is 1, making it is 

difficult to generalize the accuracy for the month. We also quantitatively 

verified the performance of the model through the verification indices of 

the detection type data: Proportion Correct (PC) [Kubo et al., 2017], 

Probability of Detection (POD), False Alarm Ratio (FAR) and Critical 

Access Index (CSI) [Kubo et al., 2017; Roebber, 2009]. The confusion 

matrix classifies pixels as A (Hit) if the model predicted correctly, B 

(False alarm) if the model is predicted as damaged area but is actually non-

damaged area, C (Misses) if the model predicted as non-damaged area, but 

is actually damaged area and D (Correct negative) if the non-damaged area 

is predicted correctly (Table 5).   
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Table 5. Confusion matrix to compare the prediction and true values to measure the prediction performance of the 

model. 

 
True (Label) 

 Yes No Total 

Predict 

Yes 
A  

(hit) 

B  

(False alarms) 
A+B 

No 
C  

(misses) 

D  

(Correct negative) 
C+D 

Total A+C B+C A + B + C + D 
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𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 (𝑃𝐶) = (𝐴+𝐷)
(𝐴+𝐵+𝐶+𝐷)

   (7) 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 (𝑃𝑂𝐷) = 𝐴
(𝐴+𝐶)

   (8) 

𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚 𝑅𝑎𝑡𝑖𝑜 (𝐹𝐴𝑅) = 𝐵
(𝐴+𝐵)

   (9) 

 

PC represents the proportion of the total number of pixels that 

correctly predicted both damaged and non-damaged area correctly. It is 

the same formula to calculate the accuracy used in this study (Equation 7). 

POD represents the ratio of pixels predicted to be damaged area that are 

actually aligned and closer to 1 is ideal (Equation 8). FAR is not actually 

damaged area, but it is the percentage predicted as damaged area, and the 

closer the value is to 1, the worse the prediction (Equation 9).  

The U-net used in this study also showed high PC and POD and low 

FAR. In addition, the distribution of accuracy for 46 cases between April 

and June, excluding 1 case in March and October, showed similar 

accuracy, and therefore, for springtime images with frequent forest fire, 

the U-net model can detect damaged areas with high accuracy (Table 6). 
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Table 6. The number of monthly forest fire and calculated PC, POD, and FAR values of images used in this study. 

 

Month Number of case ACC(%) PC POD FAR 

3 1 77.23 0.77 0.35 0.12 

4 14 89.2 0.89 0.62 0.26 

5 23 93.93 0.94 0.72 0.29 

6 9 95.38 0.95 0.81 0.28 

10 1 99.11 0.99 0.95 0.18 

Average 90.97 0.91 0.69 0.23 
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5. Conclusions 

Studies that detect damaged areas based on spectral traits may 

effectively represent them, but the threshold setting is limited in 

expressing the damaged areas because it is empirical and manual.  

Therefore, we applied deep learning, which has superior performance 

compared with classical neural network and machine learning, to detect 

forest fire to verify the applicability and usability of satellite images and 

deep learning. As the image recognition model of deep learning has more 

label images, the model can be stably trained and learn about various 

samples, thereby increasing the generalization performance of the model.  

In this study, it is difficult to obtain a large number of true label images, 

but as an alternative, we could use the data augmentation technique to 

improve the accuracy and generalization of the model. As a result, we 

achieved high average prediction accuracy of 0.892 and 0.926 for DNN 

classifier and U-net, respectively. Although there was a limit that the true 

label could not be described in details of the damaged areas due to the 

manual production of the true label, it was possible to predict an accuracy 

of about 93% even with the labels built in this study.  
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With more training samples and finely crafted true labels, higher and 

more stable predictions accuracy can be achieved, and damage ratings can 

be determined. In the future work, if the data is refined based on the quality 

assessment of the Landsat image and the noise such as the terrain 

occlusion are removed, the accuracy will be higher. In this study, we 

verified that deep learning can be applied to forest fire damage detection, 

and since it has not been studied to detect damage by using deep learning 

image recognition in forest disaster remote sensing. Therefore, this study 

is meaningful in that it is a prior study of other studies. After that, if a data 

set is constructed, it can be applied to other forest disasters (hail, pests). 
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