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V

지진 취약성 평가 및 지도제작

: 2016년 9월 12일 경주 지진을 중심으로

한 지 혜

부 경 대 학 교 대 학 원 공 간 정 보 시 스 템 공 학 과

요   약

2016 년 9 월 12 일 대한민국 경주시 남남서쪽 8 km 지점에서 발생한 규모 5.8 의 지진은

한반도 대부분의 지역에서 진동을 감지할 수 있을 정도의 대규모 지진으로, 이로 인해

수많은 인명 피해 및 경제적 손실 등을 초래하였다. 추후 9.12 경주 지진과 같은

대규모 지진의 발생 가능성을 배제할 수 없는 실정을 반영하여 본 연구에서는

경주시의 지진 취약성을 평가하고자 한다. 먼저, 지진 취약성에 영향을 미치는 5 가지

주요 지표 (geotechnical, physical, social, structural, capacity)를 선정하였으며, 이와 관련하여

18 개의 하위 지표 (elevation, slope, groundwater level, PGA, distance to faults, distance to 

epicenters, age of buildings, number of floors, construction materials, density of buildings, child 

population, elderly population, population density, distance to roads, distance to hospitals, distance to 

police stations, distance to gas stations, distance to fire stations)를 10 m 공간 해상도로 구축하여

독립변수로 사용하였다. 종속변수로는 9.12 경주 지진 발생 당시 실제 지진으로 인해

피해 입은 건물들의 위치 자료를 적용하였다. 분석에는 통계적 방법론인 logistic 

regression (LR), 확률적 방법론인 frequency ratio (FR), 기계학습 방법인 support vector 

machine (SVM)과 random forest (RF) 방법론을 사용하였다. 훈련 및 검증 데이터셋은 7:3 

비율로 무작위 선별되었으며, 정확도 검증은 receiver operating characteristic (ROC) 곡선을

사용하여 최적 모델을 선별하였다. 비교 결과, RF 모델 (100%) 및 예측 (94.9%) 

정확도가 가장 높게 산출되었으며, RBF-SVM, FR, LR 순서로 높은 성능을 나타냈다. 각

방법론 별 가장 정확도가 높은 모델을 기반으로 경주시 전체 건축물의 예측 값을

산출하였으며, 이를 기반으로 지진 취약성 지도를 제작하였다. 예측 값은 0∼1 범위

값으로 정규화 하여 5 개의 동일 간격으로 분류하였으며, 이를 토대로 23 개의 행정동

별로 고위험 및 안전 지역을 도출하였다. 4 개의 지도를 검토한 결과 공통적으로

강동면이 가장 안전지역으로, 3 개의 지도에서 황남동 및 월성동이 취약지역으로

도출되었다. 본 연구에서 제작한 지진 취약성 지도는 환경, 토지, 시설물 관리 및 정책

수립 등 다양한 분야에서 지진으로 인한 피해를 저감하기 위한 기초 자료로 활용

가능할 것으로 기대된다.
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1. Introduction

1.1. Background

Natural disasters cause physical damage, such as building damage, and

human, environmental and economic losses, due to unforeseen changes in 

the environment such as earthquakes, landslides, and floods (Kavzoglu et 

al., 2014). The earthquake is a serious threat to human life and safety and, 

most of the country's most destructive power of highly classified as natural 

disasters (Alizadeh et al., 2018; Bahadori et al., 2017). According to a 

United Nations report, earthquake and volcanic-related disasters account 

for about 10 percent of natural disasters over a period of about 10 years 

(1998-2017) (Wallemacq and House, 2018). Among them, economic 

damage from earthquakes accounted for about 23 percent of the total 

damage caused by natural disasters, with deaths from earthquakes 

accounting for about 56 percent of the total deaths. This means that 

although earthquakes have a relatively low incidence rate compared to 

other natural disasters, once they occur, the damage is very large (Lee et 

al., 2018).

The Korean Peninsula belongs to the plate where earthquakes can occur 

due to the accumulation of local stress caused by the plate tectonic
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movement, and it has the characteristics of an intraplate earthquake.

Intraplate earthquake is infrequent and irregular, which the time and space 

distribution of earthquakes is irregular compared to interplate earthquake

and cannot be easily predicted (Shin et al., 2016). Since the 20th century, 

there have been fewer earthquakes of medium or greater magnitude on the 

Korean Peninsula, and there has been no significant change in seismic 

activity (Lee, 2010).

A magnitude 5.8 earthquake occurred in Gyeongju, South Korea, at 

20:32:54 on September 12, 2016; this earthquake was preceded by a 5.1 

foreshock, followed by many aftershocks, the largest of which 4.5 

occurred at 11:33:58 on September 19, 2016 (Kim et al., 2016a; 2016b). 

The 9.12 Gyeongju Earthquake was recorded as the largest earthquake 

since South Korea began measuring earthquakes in 1978 (Kim et al.,

2016a; 2016b). It reported tremors were detected in most parts of the 

country, with 23 injured and 5,368 property damage reported (MPSS,

2017). 

Cities can easily amplify damage in the event of an earthquake disaster, 

and because of the concentration of various facilities and populations, the 

resulting riffle effects can be seen in the long term, resulting in great 

economic damage (NEMA 2012). Natural hazards management should be 

promoted in order to mitigate losses on multiple sides (Pourghasemi et al.,
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2019), in advance of sustainable management. Based on this, we can 

reduce the overall damage caused by the earthquake in case of a disaster

(Moustafa et al., 2016; Walker et al., 2014).

1.2. Literature review

In the past several years, many studies of natural disasters have 

implemented various methods to assess vulnerability, resulting in the 

development of maps.

A study based on probabilistic and statistical methods, Yalcin et al. 

(2011) is a comparison of five risk studies that performed landslide 

susceptibility mapping in the Turkey Trabzon region using the analytical 

hierarchy process (AHP) and bivariate statistics, FR, and LR 

methodologies. Rahmati et al. (2015) used FR and weights-of-evidence 

(WoE) models for flood susceptibility mapping, with 76.47% and 74.74% 

prediction accuracy. Youssef et al. (2015) also produced FR, FR-LR 

ensemble models, with 91.3% and 89.6% of their predicted accuracy. In 

the Khosravi et al. (2016) study, the generation of FR, WoE, AHP, and 

FR-AHP ensemble models resulted in 96.57%, 95.96%, 94.92%, and 

84.69% of each prediction accuracy. Based on these criteria, the level of 

risk was 5 and flooding usability mapping was performed. Compared to 
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the ensemble model, the predictive accuracy of the model with a single 

methodology was generally higher, and the probability-based FR model 

was found to be more accurate.

A study based on machine learning, Conforti et al. (2014) produced a 

map of landslide susceptibility in the Turbolo River Catchment, North 

Calabria, South Italy basin using the artificial neural networks (ANN) 

methodology, with a prediction accuracy of 87%. Kim et al. (2018) 

generated a boosted tree and RF model, a machine learning method 

affiliated with the tree, to perform a comparison verification based on the 

landslide susceptibility mapping of Pyeongchang, Korea. The predictive 

accuracy of the Boosted tree model was 84.87%, about 5% higher than 

that of RF.

We can also see studies based on probability, statistical methods, and 

machine learning methodologies, associated with landslide vulnerabilities.

Yilmaz (2010) maps and compares the probability-based conditional 

probability (CP) model with the statistics-based LR model, machine-

learning-based ANN and SVM model. As a result of the validation, ANN 

(0.846) showed the highest accuracy, followed by SVM (0.841), LR 

(0.831), and CP (0.827). Wang et al. (2016) used the FR, LR, ANN, DT, 

and WoE methodologies, and produced three versions of training data to 

evaluate the accuracy of the model. Models created by randomly 



5

classifying training data within the study area at 5:5 ratio showed 

generally high performance, with high predictability in the order LR, FR, 

WOE, DT, and ANN. Chen et al. (2019) created the WoE, WoE-LR and 

WoE-RF models, which hybrid models based on WoE., to compare and 

analyze their performance. The prediction accuracy was 69.5%, 76.3%, 

and 78.2%, indicating that the WoE-RF had the best performance, and 

demonstrated the superiority of the hybrid model. In the Kadavi et al. 

(2019) study, LR and DT models were used, and the DT model generated 

three models (CHAID, exhaustive CHAID, and QUEST) based on three 

algorithms. As a result, based on DT the exhaustive chaid algorithm (0.906) 

the highest prediction accuracy, and the DT CHAID (0.902), LR (0.901), 

and DT QUEST (0.843) are so accurate in order. In general, many studies 

were conducted with probability and statistics-based methodologies to 

compare with machine learning, and the accuracy of machine learning 

models was found to be relatively high. In the paper using the SVM, it was 

found that the model was created mainly based on the RBF kernel

Whereas the vulnerability study applied with earthquakes is relatively 

inadequate compared to natural disasters such as landslides and floods.

Seismic vulnerabilities are multi-criteria decision problems that inherently 

sustainable development (Amiri et al., 2007), in which AHP and multi-

criteria decision analysis (MCDA) methodologies based on the 
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geographies information system (GIS) were used in many studies to assess 

them. If multiple targets require evaluation, these are stratified and their 

importance quantified to determine the relative priorities of their criteria, 

using weighting of factor (Aliabadi et al., 2015; Armaş, 2012; Bahadori et 

al., 2017; Panahi et al., 2014; Rezaie and Panahi, 2015; Walker et al.,

2014).

Recent studies have shown attempts to assess seismic vulnerability by 

applying machine learning, although not enough cases are available.

Machine learning analyzes and predicts data based on automatic learning 

of statistical rules and patterns from large volumes of data (Kim and Yoon,

2018), and has proven applicable in a variety of areas (Lary et al., 2016).

Şengezer et al. (2008) used the decision tree (DT) technique to evaluate 

parameters affecting earthquake damage, while Borfecchia et al. (2010) 

used DT and ANN each data mining method to estimate the urban 

vulnerability. Tesfamariam and Liu (2010) used support vector machine 

(SVM) and random force (RF) and six other classification techniques, 

while Guettiche et al. (2017) used association rule learning (ARL) 

techniques to perform seismic vulnerability assessment of buildings.

Riedel et al. (2015) and Liu et al. (2019) presented methods for estimating 

seismic vulnerabilities of buildings from SVMs and ARLs based on 

building data. Alizadeh et al. (2018) Iran through the Seismic risk model 
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is created based on the ANN Tabriz city of social vulnerability assessment, 

and Ahmed and Morita (2018) analyzed seismic vulnerabilities in 

residential buildings in Dhaka City, Bangladesh, based on RF and DT.

Studies based on machine learning have assessed the seismic 

vulnerability of target areas using seismic factors, with a focus on 

buildings. Although the seismic vulnerability assessment applied to a 

single factor, such as lipids, buildings, and social factors, was conducted 

by several researchers, but the study considering the various factors 

comprehensively was insufficient. It was also possible to find that there 

were insufficient research cases in which models were created and 

compared based on different types of methodologies.
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1.3. Objectives

In this study aimed to evaluate and mapping of seismic vulnerability 

targeting all buildings in Gyeongju city, South Korea. To performed this, 

we used four methodologies; probabilistic methodologies such as 

frequency ratio (FR), statistical methodology such as logistic regression 

(LR), and support vector machine (SVM) and random forest (RF) 

methodology, which are evaluated as the most robust of machine learning 

methodologies. The SVM has created a models with four kernels (linear, 

polynomial, radial function, and sigmoid) and applied 18 sub-indicators

related to geotechnical, physical, structural, social, and capacity indicators

to a total of seven models. The accuracy of each model was verified using 

the relative operating characteristic (ROC) curve, and a seismic 

vulnerability map was produced to evaluate the target regions according 

to administrative district. The flow chart of this study is shown in Fig. 1.
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Fig. 1. Flow chart of this study.
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2. Data

2.1. Study area

The target region of the present study was Gyeongju, Gyeongsangbuk-

do, South Korea, is located between 35° 39′N and 36° 04′N in latitude and 

between 128° 58′E and 129° 31′E in longitude, which adjoining the East 

Sea in the east; Cheongdo County and Yeongcheon City, Gyeongsangbuk-

do, in the west; Ulju County, Ulsan, in the south; and Pohang City, 

Gyeongsangbuk-do, in the north. Comprising four eups, eight myeons, 

and eleven administrative districts, Gyeongju has a size of 1,324.82 km�

and population of 256,141 (Fig. 2).

Of the total area, Gyeongju has 67.9 percent of forest land, 16.8 percent 

of farmland and 15.3 percent of other land areas, with a large proportion 

of forest areas and low cultivation rates. Several faults are distributed, 

including the Ulsan and Yangsan faults, and quaternary fault movement 

has been reported along the Dongrae, Moryang, Miryang, and Ilkwang 

faults (Kim et al., 2017). These geographical features can contribute to 

higher probability of earthquake occurrence in the future, and secondary 

natural disasters are also expected.
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According to the historical records, of the total earthquake occurrences 

in the south-eastern Korean Peninsula, there have been 75 earthquakes in 

Gyeongju, and before the 9.12 Gyeongju Earthquake, there had been 21 

instrumental earthquakes (MPSS, 2017). In total, it is necessary to 

minimize and prevent the spread of secondary damage in case of an 

earthquake by conducting a preliminary preparation based on the 

vulnerability analysis of earthquake disaster in Gyeongju.

Fig. 2. The study area (a) Gyeongju, South Korea; (b) Administrative districts 
within Gyeongju (1: Angang-eup, 2: Gangdong-myeon, 3: Seo-myeon, 4: 

Hyungok-myeon. 5: Cheonbuk-myeon, 6: Geoncheon-eup, 7: Seondo-dong, 8: 
Seonggun-dong; 9: Hwangseong-dong; 10: Yonggang-dong, 11: Jungbu-dong, 

12: Hwangoh-dong, 13: Dongcheon-dong, 14: Hwangnam-dong, 15: 
Wolseong-dong, 16: Bodeok-dong, 17: Bulguk-dong, 18: Yangbuk-myeon, 19: 
Gampo-eup, 20: Sannae-myeon, 21: Naenam-myeon, 22: Oedong-eup eup, 23: 

Yangnam-myeon).
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2.2. 9.12 Gyeongju Earthquake inventory 

The dependent variable used in this study comprised a dataset of the 

3,896 buildings damaged by the 9.12 Gyeongju Earthquake. These 

buildings were converted to 9,847 cells at a spatial resolution of 10 m; 70% 

of the data (6,893) was used as a training dataset to create the model, and 

30% (2,954) was used to test model accuracy. The data were randomly 

sampled; we used the same numbers of undamaged buildings (Fig. 3).

Fig. 3. Training and validation datasets.
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2.3. Spatial database preparation

It was considered that various factors affecting earthquake to assess 

seismic vulnerability. First, five main-indicators were set up, such as 

geotechnical, physical, structural, social, and capacity factors. Next, 18 

sub-indicators were selected, all of which were built as raster-type spatial 

databases with a spatial resolution of 10 m, which were applied to the 

entire building converted into cells and used as an independent variable 

(Fig. 4). The sources of 18 sub-indicators related earthquake are shown in 

Table 1.
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Fig. 4. Sub-indicators related earthquake.
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Table 1. Independent variables for the seismic vulnerability assessment
Main-indicators Sub-indicators Source

Geotechnical

Elevation
NGII1)

Slope

Groundwater level NGIC2)

Physical

Distance to fault KMA3)

Distance to epicenter KIGAM4)

PGA Kim et al. (2016a, b)

Structural

Age of buildings

NSCI5)
Number of floors

Construction materials

Density of buildings

Social

Child population

KOSIS6)Elderly population

Population density

Capacity

Distance to police stations

NGII
Distance to fire stations

Distance to hospitals

Distance to roads

Distance to gas stations ITS7)

1) National Geographic Information Institute
2) National Groundwater Information Center
3) Korea Meteorological Administration
4)Korea Institute of Geoscience and Mineral Resources
5) National Spatial Data Infrastructure Portal
6) Korea Statistical Information Service
7) Intelligent Transport System Standard Node Link
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2.3.1. Geotechnical indicator

Geotechnical indicators are the most influential factors that increase 

urban vulnerability in the event of an earthquake, which must be 

considered in the seismic vulnerability assessment. We considered three 

indicators (slope, elevation, and groundwater level), among which the 

slope and elevation are factors that could increase the probability of falling, 

structures, and ground collapse of rocks along steep slopes and high 

altitudes, resulting in additional disasters (Moustafa et al., 2016).

Groundwater level is an element that influences seismic response in the 

event of a large scale earthquake. Groundwater level data were collected 

by location of tubular well, which was interpolated across the entire region 

in Gyeongju (Thaker et al., 2018).

2.3.2. Physical indicator

The epicenter, or the point on the direct uppermost surface of the 

epicenter, is the most important indicator related to earthquake occurrence; 

the greatest damage often occurs at the epicenter. Therefore, we used 

distance data from earthquake epicenters for January 2015 to April 2018, 

including the 9.12 Gyeongju Earthquake. Next, the peak ground 

acceleration (PGA) is the degree of the ground shakes at the surface 

(MPSS, 2017), which is typically associated with the activity of the fault, 
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and is most important in assessing seismic vulnerabilities (Rezaie and 

Panahi, 2015). In this study, raw data measured at each National Weather 

Services observatory in South Korea were converted to acceleration data 

and interpolated throughout Gyeongju (Kim et al., 2016a; 2016b). Finally, 

the distance from each fault was also reflected in the assessment, as the 

degree of damage may vary depending on the structure type of the fault 

plane.

2.3.3. Structural indicator

The 9.12 Gyeongju Earthquake caused 5,368 property damage and later 

highlighted the importance of earthquake-resistant design of buildings.

Since Korea introduced earthquake-resistant designs in 1988, only 

buildings with three or more stories or more are required to be designed 

to withstand earthquakes, and as of November 2016, only 29.9 percent of 

buildings in Seoul and 23.7 percent of non-residential buildings are 

earthquake-resistant (Kang and Kim, 2017). Because there is no guarantee 

that future earthquakes will not exceed the magnitude of the 9.12 

earthquake, most buildings in South Korea are considered highly 

vulnerable. To assess structural vulnerability, we identified four structural 

indicators of seismic vulnerability: age of buildings, number of floors, 

construction materials, and density of buildings. Construction materials 
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included masonry, wood, concrete, steel, and a mixture of concrete and 

steel. 

2.3.4. Social indicator

Social vulnerabilities affect people's ability to prepare for disasters in a 

given environment and to rebuild after a disaster (Chen et al., 2013). Based 

on social factors, the population structure of the city can be identified and 

directly assist in the identification of casualties and relief activities after 

the earthquake. Therefore, in the present study, three indicators were 

selected related to the population affecting social vulnerabilities.

First, the relatively weak age group of children under the age of 15 and 

the number of elderly people over 65 were used as factors for evaluation. 

The population density of Gyeongju City was also considered, judging 

that there is a higher probability of further damage in densely populated 

areas.

2.3.5. Capacity indicator

Since disaster accommodation facilities in urban are not only irregularly 

distributed, not all people have equivalent access, which is difficult to 

predict the scale of damage that may be caused by a disaster that results in 

considerable economic losses. Therefore, the approach is to be identified 
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based on the location of the infrastructure that can help in the event of an 

earthquake and the hazardous facility that can cause significant damage. 

In this study, the degree of accessibility in the event of a disaster was 

assessed by considering the physical distance of a total of five factors, 

including infrastructure, hospitals, fire stations, police stations, road 

networks and gas stations.
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3. Methodology

3.1. Frequency ratio

The frequency ratio (FR) model is a probabilistic model, which 

analyzes the impact of each factor by class through correlative analysis 

between seismic vulnerabilities and earthquake-related factors. The FR 

can easily calculate which class of each impact factor had the greatest 

number of events when the event occurred, thereby quantitatively 

calculating the influence of the factors by class in the area where the event 

occurred (Lee and Kang, 2012).

FR values are greater than 1, it can be considered that the seismic

vulnerability is highly correlated with the corresponding factors, and if it 

is less than 1 it can be estimated to have a lower correlation. The FR can 

be calculated in the following equation (Son, 2017).

�� =
����/���

��/��
(1)

TGFC: Training Grid of Factor Class

WTG: Whole Training Grid

FC: Factor Class Grid

WG: Whole Grid 
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The 'WTG' is the number of cells corresponding to the affected building, 

'TGFC' refers to the number of cells corresponding to the affected building 

in the class, 'WG' refers to the number of cells corresponding to the entire 

building, and 'FC' refers to the number of cells corresponding to the 

building in the class.

Apply the frequency ratio values calculated by the grade of 18 

indicators to the grid format of each factor, and then overlay them all to 

prepare the final seismic vulnerability map.

3.2. Logistic regression

The logistic regression (LR) model which was developed by McFadden 

(1973), is a multivariate regression analysis model that describes the 

relationship between a bivariate dependent variable and several 

independent variables through estimation of an optimal model. The LR 

model estimates the best model to define the relationship between 

dependencies and independent variables. The addition of a link function 

suitable for a general linear regression model allows the parameter type to 

be continuous, discrete, or mixed, which has the advantage of not 

necessarily having a normal distribution. (Colkesen et al., 2016; Lee,

2005). 
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The LR model based on a general linear model can be derived from the 

following equation:

y = �� + ���� + ���� + ���� +⋯+ ���� (2)

� =
��

1 + ��
(3)

where y is the linear logistic model, �� is y-intercept of the model, ��

is the weight of each factor, n is the number of seismic-controlling 

factors, x is the earthquake conditioning factor, and P indicates the 

probability of damage (ranging from 0 to 1) in the event of an earthquake 

(Wang et al., 2016).

3.3. Support vector machine

Support vector machine (SVM) is a supervised-machine-learning 

method performed to solve complex classification and regression 

problems, based on statistical learning theory and the principle of 

minimizing structural risks (Vapnik, 1995; Vapnik, 1998).
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SVM focuses on finding the optimum hyperplane, which is divided into 

two classes, using training dataset. The hyperplane with maximum margin 

between two classes is called optimal hyperplane; the closest point to it is 

called a support vector (Feizizadeh et al., 2017).

Vapnik (1995) explained the nonlinear decision-making border using 

the kernel function K(�� , ��). In SVM, selection of the kernel function is 

very important; generally, four kernel types are used: linear (LN), 

polynomial (PL), radial basis function (RBF), and sigmoid (SIG). The 

formula for each kernel is as follows.

Linear: K (�� , ��) = ��
���,

Polynomial: K (�� , ��) = (γ��
��� + �)� , � > 0,

Radial basis function: K (�� , ��) = ���(�����)
�
, � > 0,

Sigmoid: K (�� , ��) = tanh(γ��
��� + �)         (4)

Cost (C) is the reciprocal of the normalization parameter �, which is a 

common parameter applied to all functions. For each controlling factor, 

higher C values correspond to less influence. The γ term controls the 

width of the Gaussian kernel, and is present in all functions except the 

linear function, � is a degree term that applies only to the polynomial 
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function, and �, a bias term in the polynomial and sigmoid functions, is 

entered manually to improve the accuracy of SVM.

3.4. Random forest

Random forest (RF) is a powerful ensemble technique proposed by 

Breiman (2001), which can be applied to classification, regression and 

non-supervised learning, showing good performance in various researches 

(Liaw and Wiener, 2002).

The RF method generates a random binary tree based on a bootstrap 

sample, using a random subset of variables selected on each node through 

the classification and regression trees (CART) procedure. In this study, a 

regression algorithm for RF was used. This produces an estimate of the 

dependent variable based on the average of the results. The RF model is 

an appropriate way to analyze the hierarchical interactions and 

nonlinearities of large data sets, since it does not require assumptions 

about the relationship between the description and response variables

(Kim et al., 2018).

To generate the RF model, two parameters should be defined: number 

of trees (ntree) and number of variables (mtry) to be used on each node.

Although increasing the value of ntree does not necessarily increase the 
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accuracy of the model, it is necessary to test the ntrees in a number of 

cases and set them high enough to collect errors. (Taalab et al., 2018).
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4. Results

4.1. Validation of model

The seven models produced based on the four methodologies were 

verified using the relative operating characteristic (ROC) curve methods.

The ROC curve evaluates the accuracy of the model by calculating the 

area under the receiver operator mechanical curve (AUC) values, which 

the AUC's value is accuracy, and the closer it is to 1, the better the model 

is (Pradhan, 2013).

Through this process, the accuracy of the model (the success rate), and 

the predictive accuracy rate were calculated. The y-axis of the ROC curve 

graph represents the positive rate correctly classified as sensitivities, and 

the x-axis, 1-Specificity, means the correct classified negative rate (Fig. 5, 

6).

We then used IBM SPSS Statistics software (version 25) to create 

models for FR and LR models, and SVM and RF models created using 

RStudio software (version 3.6.0). All of models verified using SPSS 

software.

The success rate of FR was 0.661 and the prediction rate was 0.655, and 

the success rate of LR was 0.634 and the prediction rate was 0.648. Next, 
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the SVM adjusted the C and gamma values for all kernel models, while 

the degree and � applied default values. The optimal parameters derived 

for each model are as shown in Table 2.

The success rates of the models based on the four kernel types using the 

training dataset (LN-SVM, PL-SVM, RBF-SVM, and SIG-SVM models) 

were 0.633, 0.862, 0.980, and 0.617, respectively. The prediction rates 

using test dataset for the LN-SVM, PL-SVM, RBF-SVM, and SIG-SVM 

models were 0.642, 0.825, 0.890, and 0.621, respectively. 

Next, the RF model also created an optimal model by adjusting the ntree 

and mtry values based on the training database. The highest accuracy was 

shown when the ntree was 8000 and the mtry was 6 and the success rate 

was 1.000 and the prediction rate was 0.949 for the highest performance.

Table 2. Optimal parameters of kernels

Model C gamma

LN-SVM 2��� -

PL-SVM 0.5 1

RBF-SVM 10 1

SIG-SVM 0.125 2���
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Fig. 5. ROC curve (Success rate)
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Fig. 6. ROC curve (Prediction rate)
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4.2. Importance factor

In order to analyze using the frequency ratio (FR) model, 18 factors 

were divided into six classes using natural breaks method. Sub-indicators 

classified into six classes calculated FR values based on the number of 

pixels corresponding to the general building in each section and the 

number of pixels corresponding to the damaged building (Table 3).

First, in sub-indicators of geotechnical factor, the ratio of elevation was 

1.23 at 86.061-138.262 (m), the ratio of slope was 1.11 at 1.716-4.291 

(degree), and the ratio of groundwater level was 1.47 at 21.047-37.061 

(m). Next, In the case of relationship between seismic vulnerability and 

physical factor, the ratio was 1.26 for distance to fault in the range 6.124-

7.946 (km), the ratio of distance to epicenter was 1.24 at 0.028-3.183 (km),

and the ratio of PGA was 1.24 at 0.244-0.288(g). The relationships 

between seismic vulnerability and structural factor, the ratio was 1.38 for 

age of buildings in the range 33-59 (years), the ratio was 1.53 for building 

density in the range 949.480-1,169.540, the ratio was highest (1.53) when 

number of floors was 5-7 (floors), and the ratio of construction materials 

was mixed concrete and steel type (1.44). The relationships between 

seismic vulnerability and social factor, the FR value was 1.21 for people 

under 15 years old at 1,020-1,279 (people), 1.94 for people over 65 at 526
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(people), and 1.76 for population density at 201.359-586.957. Finally, the 

distance from the police stations of capacity factor was 1.18 in the range 

0.000-1.205 (km), distance to fire stations was 1.16 in the range 0.000-

1.43 (km). The ratio of distance to hospitals (4.216-5.646 (km)) and gas

station (0.000-0.680 (km)) was 1.16, and distance of roads was 1.05 at 

0.000-0.116 (km).

Next, LR can check the importance of the factor based on the 

significance coefficient values (Table 4). Significance coefficient below 

0.05 can be considered to have less impact on seismic vulnerabilities.

Factors with a significance coefficient over 0.05 are elevation, slope, 

age of buildings, children population, elderly population, population 

density, and distance to roads, which are 0.458, 0.362, 0.568, 0.508, 0.924, 

0.359, and 0.080. The factors were found to be inadequate for the analysis 

of seismic vulnerabilities. Also, construction materials are deemed to be 

inadequate as the p values are over 0.05 in all categories.
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Table 3. Frequency ratio of each factors

Class
No. of pixel 
inbuilding

Building 
(%)

No. of pixel 
in damage 
building

Damage
building

(%)

Frequency 
ratio

Elevation
(m)

1.545 -46.289 40,284 43.96 4,221 42.87 0.98

46.289 -86.061 24,840 27.11 2,399 24.36 0.90

86.061 -138.262 17,421 19.01 2,308 23.44 1.23

138.262 -220.292 6,468 7.06 746 7.58 1.07

220.292 -366.952 1,787 1.95 164 1.67 0.85

366.952-635.414 842 0.92 9 0.09 0.10

Slope
(degree)

0 –1.716 47,128 51.43 5,278 53.60 1.04

1.716–4.291 23,371 25.50 2,778 28.21 1.11

4.291–7.725 13,189 14.39 1,264 12.4 0.89

7.725–12.016 5,533 6.04 380 3.86 0.64

12.016–18.597 1,996 2.18 113 1.15 0.53

18.597-72.959 425 0.46 34 0.35 0.74

Groundwater
level
(m)

0.346 –7.377 30,754 33.56 2,399 24.36 0.73

7.377–12.845 39,133 42.70 4,469 45.38 1.06

12.845–21.047 15,209 16.60 2,080 21.12 1.27

21.047–37.061 5,153 5.62 813 8.26 1.47

37.061–83.346 1,075 1.17 73 0.74 0.63

83.346-99.947 318 0.35 13 0.13 0.38

Distance of 
faults
(km)

0 –1.973 25,199 27.50 2,825 28.69 1.04

1.973–3.947 29,228 31.89 3,021 30.68 0.96

3.947 –6.124 15,147 16.53 1,376 13.97 0.85

6.124–7.946 10,904 11.90 1,479 15.01 1.26

7.946–9.768 6,947 7.58 758 7.70 1.02
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9.768 –12.906 4,217 4.60 389 3.95 0.86

Distance of 
epicenters

(km)

0.028–3.183 17,765 19.39 2,368 24.05 1.24

3.183–6.112 35,244 38.46 4,529 45.99 1.20

6.112–10.731 21,506 23.47 1,931 19.61 0.84

10.731–16.590 5,767 6.29 686 6.97 1.11

16.590–21.886 9,184 10.02 326 3.31 0.33

21.886 –28.758 2,176 2.37 7 0.07 0.03

PGA
(g)

0.045-0.182 12,241 13.36 536 5.44 0.41

0.182-0.244 23,945 26.13 2,985 30.31 1.16

0.244-0.288 38,745 42.28 4,878 49.54 1.17

0.288-0.371 14,222 15.52 1,187 12.05 0.78

0.371-0.510 1,966 2.15 236 2.40 1.12

0.510-0.705 523 0.57 25 0.25 0.44

Age of 
buildings

(year)

1 –17 36,688 40.03 3,606 36.62 0.91

18–32 34,320 37.45 3,584 36.40 0.97

33–59 13,275 14.49 1,964 19.95 1.38

60–98 6,243 6.81 569 5.78 0.85

99–172 1,050 1.15 119 1.21 1.05

173–562 66 0.07 5 0.05 0.71

Number of 
floors

1-2 72,680 79.31 7,121 72.32 0.91

3-4 12,901 14.08 1,870 18.99 1.35

5–7 3,967 4.33 651 6.61 1.53

8-12 1,071 1.17 128 1.30 1.11

13-16 786 0.86 62 0.63 0.73

17-20 237 0.26 15 0.15 0.59

Masonry 17,578 19.18 1,642 16.68 0.7



35

Construction 
materials

Concrete 27,048 29.51 3,684 37.41 1.27

Wood 11,096 12.11 1,258 12.78 1.06

Steel 35,262 38.48 3,167 32.16 0.84

Concrete + Steel 621 0.68 96 0.97 1.44

Etc 37 0.04 0 0.00 0.00

Density of 
buildings

0.476-156.351 65,002 70.93 6,401 65.00 0.92

156.351 -376.410 10,396 11.34 914 9.28 0.82

376.410 -596.469 3,409 3.39 412 4.18 1.23

596.469-770.682 4,205 4.59 675 6.85 1.49

770.682-949.480 4,586 5.00 732 7.43 1.49

949.480-1,169.540 4,344 4.74 713 7.24 1.53

Child 
population
(age<15)

93 -183 7,735 8.44 868 8.81 1.04

183-329 15,254 16.65 1,823 18.51 1.11

329 -603 14,290 15.59 1,431 14.53 0.93

603 -1,020 8,821 9.63 944 9.59 1.00

1,020 -1,279 20,238 22.08 2,628 26.69 1.21

1,279 -4,944 25,304 27.61 2,153 21.86 0.79

Elderly 
population

(age≥65)

526 2,414 2.63 503 5.11 1.94

526 -1,553 23,499 25.64 1,441 14.63 0.57

1,553 -2,032 23,470 25.61 3,026 30.73 1.20

2,032 -2,432 10,406 11.36 1,354 13.75 1.21

2,432 -3,951 27,009 29.47 3,410 34.63 1.17

3,951 -6,118 4,844 5.29 113 1.15 0.22

Population 
density

23.390 -82.713 16,580 18.09 1,414 14.36 0.79

82.713 -201.358 41,645 45.44 3,256 33.07 0.73

201.358 -586.957 11,329 12.36 2,138 21.71 1.76
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586.957 -2,603.934 2,674 2.92 40 4.09 1.40

2,603.93-5,599.74 10,414 11.36 1,065 10.82 0.95

5,599.74-7,587.06 9,000 9.82 1,571 15.95 1.62

Distance to 
police stations

(km)

0 –1.205 36,638 39.98 4,626 46.98 1.18

1.205–2.458 19,864 21.68 2,006 20.37 0.94

2.458–3.807 17,359 18.96 1,468 14.91 0.79

3.807–5.350 10,379 11.33 1,201 12.20 1.08

5.350–8.145 6,883 7.51 540 5.48 0.73

8.145–12.291 519 0.57 6 0.06 0.11

Distance to 
fire stations

(km)

0 –1.431 34,930 38.12 4,363 44.31 1.16

1.431–2.766 22,245 24.27 2,233 22.68 0.93

2.766–4.102 14,318 15.62 1,357 13.78 0.88

4.102–5.533 12,231 13.35 1,212 12.31 0.92

5.533–8.204 7,425 8.10 670 6.80 0.84

8.204–12.164 493 0.54 12 0.12 0.23

Distance to 
hospitals

(km)

0 –0.828 35,977 39.26 4,115 41.79 1.06

0.828–1.919 20,364 22.22 1,976 20.07 0.90

1.919–3.011 15,086 16.46 1,637 16.62 1.01

3.011–4.216 10,804 11.79 1,044 10.60 0.90

4.216 –5.646 6,744 7.36 840 8.53 1.16

5.646 –9.599 2,667 2.91 235 2.39 0.82

Distance to 
roads
(km)

0 –0.116 54,351 59.31 6,110 62.05 1.05

0.116 –0.311 22,932 25.02 2,371 24.08 0.96

0.311 –0.610 9,430 10.29 993 10.08 0.98

0.610 –1.025 2,706 2.95 258 2.62 0.89

1.025 –1.609 1,674 1.83 103 1.05 0.57
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1.609 –3.310 549 0.60 12 0.12 0.20

Distance to 
gas stations

(km)

0 –0.680 47,099 51.39 5,860 59.51 1.16

0.680 –1.391 19,988 21.81 2,006 20.37 0.93

1.391 –2.195 13,483 14.71 1,158 11.76 0.80

2.195 –3.091 6,706 7.32 571 5.80 0.79

3.091 –4.390 3,363 3.67 216 2.19 0.60

4.390 –7.884 1,003 1.09 36 0.37 0.33
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Table 4. Logistic regression between seismic vulnerability and related indicators

Sub-indicators
Logistic regression 

coefficient

Significance

coefficient

Elevation 0.0003 0.458

Slope -0.0005 0.362

Groundwater level -0.0088 0.001

Distance to faults 0.0000 0.004

Distance to epicenters 0.0001 0.000

PGA 0.0087 0.001

Age of buildings -0.0005 0.568

Number of floors -0.0292 0.004

Construction materials

Materials1 (masonry) 0.7526 0.608

Materials2 (concrete) 0.5296 0.718

Materials3 (wood) 0.7093 0.629

Materials4 (steel) 0.8158 0.578

Materials5 (concrete + steel) 0.1529 0.918

Density of buildings -0.0004 0.000

Child population 0.0000 0.508

Elderly population 0.0000 0.924

Population density 0.0000 0.359

Distance to police stations 0.0001 0.000

Distance to fire stations -0.0001 0.001

Distance to hospitals -0.0002 0.000

Distance to roads 0.0001 0.080

Distance to gas stations 0.0002 0.000

Constant -0.7536
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The RF models identify the importance of predictors through %IncMSE 

and IncNodePurity during regression tree analysis.

% increase in mean squared error (%IncMSE) means an increase in the 

percentage of mean square error (MSE), which results in the greatest 

increase in error value when the most important variable in the model is 

removed. Increase in node purity (IncNodePurity) is a measure of the 

reduction in the Gini coefficient and includes the reduction of the model's 

agreement on the square of residuals. The Gini coefficient is a 

homogeneity measure of the three nodes of an RF model, meaning that the 

higher the value, the more important the variable is (Paul et al., 2019).

Table 5 shows that Distance to epicenters is the highest value in terms 

of %IncMSE, and is an important variable in the order of Distance to fire 

stations, PGA. In the order of Distance to epicenters, PGA, and Elevation, 

it was found that the most important criteria were the IncNodePurity. In 

common, Distance to epicenters and PGA have been identified as the

factors that have the greatest impact on seismic vulnerabilities.
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Table 5. Importance variables of random forest
Sub-indicators %IncMSE IncNodePurity

Elevation 284.749 253.147

Slope 267.526 158.825

Groundwater level 232.894 244.861

Distance to faults 286.345 229.250

Distance to epicenters 332.423 288.229

PGA 315.220 271.325

Age of buildings 298.413 223.064

Number of floors 165.124 95.954

Construction materials

Materials1 (masonry) 122.533 21.600

Materials2 (concrete) 69.515 21.038

Materials3 (wood) 87.179 13.428

Materials4 (steel) 119.914 46.754

Materials5 (concrete + steel) 39.538 2.169

Materials6 (Etc) 1.000 0.050

Density of buildings 289.661 202.302

Child population 125.958 62.316

Elderly population 113.949 81.016

Population density 170.006 114.353

Distance to police stations 310.752 201.540

Distance to fire stations 324.077 207.242

Distance to hospitals 290.231 204.810

Distance to roads 286.129 156.594

Distance to gas stations 306.848 199.011
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4.3. Seismic vulnerability map

The seismic vulnerability maps were constructed by applying the best 

model of each methodology to a total of four maps. The SVM applied the 

RBF kernel-based model with the highest accuracy.

The FR map was applied to each sub-indicator divided into six classes, 

and 18 sub-indicators with FR values were overlaid to produce the final 

seismic vulnerability map.

LR map = −0.7536 + (0.0003 × Elevation) + (−0.0005 × Slope)

+ (−0.0088 × Groundwater level)

+ (0.0000 × Distance to faults)

+ (0.0001 × Distance to epicenters)

+ (0.0087 × PGA) + (−0.0005 × Age of buildings)

+ (−0.0292 × Number of floors)

+ (0.7526 × Materials1) + (0.5296 × Materials2)

+ (0.7093 × Materials3) + (0.8158 × Materials4)

+ (0.1529 × Materials5)

+ (−0.0004 × Density of buildings)

+ (0.0000 × Child population)

+ (0.0000 × Elderly population)

+ (0.0000 × Population density)

+ (0.0001 × Distance to police stations)

+ (−0.0001 × Distance to fire stations)

+ (−0.0002 × Distance to hospitals)

+ (0.0001 × Distance to roads)

+ (0.0002 × Distance to gas stations) (5)
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LR map was produced by applying the logistic coefficient. The seismic 

vulnerability maps based RBF-SVM and RF models are constructed by 

the model's predicted values, and maps are classified into five classes (safe, 

low, moderate, high, and very high). The values of each map were 

normalized from 0 to 1 and then divided into five equal intervals to apply 

grades 1 to 5.

We compared the percentages of buildings assigned to each grade in the 

vulnerability maps. In the FR map, the buildings in “safe” class among the 

total 71,888 buildings were 589 (0.82%), those in “low” class were 9,999

(13.91%), those in “moderate” class were 36,172 (50.32%), those in “high” 

class were 21,299 (29,63%), and those in “very high” class were 3,829

(5.33%). In the LR map, the buildings in “safe” class were 3,232 (4.50%),

those in “low” class were 12,254 (17.05%), those in “moderate” class were 

21,868 (30.42%), those in “high” class were 28,786 (40.04%), and those 

in “very high” class were 5,748 (8.00%) In the RBF-SVM map, the 

buildings in “safe” class were 434 (0.60%), those in “low” class were 

31,171 (43.36%), those in “moderate” class were 31,466 (43.77%), those 

in “high” class were 8,662 (12.05%), and those in “very high” class were 

155 (0.22%), whereas in the RF map, the buildings in “safe” class were 

23,803 (33.11%), those in “low” class were 26,429 (36.76%), those in 

“moderate” class were 13,669 (19.01%), those in “high” class were 6,548
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(9.11%), and those in “very high” class were 1,439 (2.00%) (Table 6). The 

result of mapping produced by five grades is shown in Fig. 7.
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Table 6. Distribution of building by five classes

Model Safe Low Moderate High Very high Sum

FR

Number of buildings 589 9,999 36,172 21,299 3,829 71,888

Ratio 0.82 13.91 50.32 29.63 5.33 100.00

LR

Number of buildings 3,232 12,254 21,868 28,786 5,748 71,888

Ratio 4.50 17.05 30.42 40.04 8.00 100.00

SVM

(RBF)

Number of buildings 432 31,171 31,466 8,662 155 71,888

Ratio 0.60 43.36 43.77 12.05 0.22 100.00

RF

Number of buildings 23,803 26,429 13,669 6,548 1,439 71,888

Ratio 33.11 36.76 19.01 9.11 2.00 100.00
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Fig. 7. Seismic vulnerability maps (a) FR map; (b) LR map; (c) RBF-SVM map; 
(d) RF map.
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4.4. Building class distribution by Gyeongju districts

We examined the seismic vulnerability distribution of building located 

with the 23 administrative districts of Gyeongju. The distribution of 

buildings by grade within the administrative region is as shown in Fig. 8.

Based on the FR map, the regions most vulnerable to earthquake (i.e., 

high and very high classes) were Jungbu-dong, Hwangoh-dong, 

Hwangseong-dong, Seonggun-dong, and Wolseong-dong; based on the 

LR map, they were Jungbu-dong, Hwangoh-dong, Dongcheon-dong, 

Hwangnam-dong, and Seonggun-dong; based on the RBD-SVM map, 

they were Hwangnam-dong, Seondo-dong, Wolseong-dong, Geoncheon-

eup, Bulguk-dong; based on the RF map, Hwangnam-dong, Seondo-dong, 

Wolseong-dong, Bulguk-dong, and Hwangoh-dong.

The safest regions (i.e., safe and low classes) based on the FR map were 

Gangdong-myeon, Yangnam-myeon, Angang-eup, Sannae-myeon, and 

Yangbuk-myeon; based on the LR map, they were Angang-eup, 

Gangdong-myeon, Sannae-myeon, Gampo-eup, and Hyungok-myeon.; 

based on the RBD-SVM map, they were Gangdong-myeon, Yangnam-

myeon, Angang-eup, Yangbuk-myeon, and Cheonbuk-myeon; based on 

the RF map, Gangdong-myeon, Yangbuk-myeon, Gampo-eup, Gampo-

eup, and Cheonbuk-myeon.
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Fig. 8. Ratio of vulnerable buildings of Gyeongju districts by each model.
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5. Discussion

We compared the model and prediction accuracy to see the differences 

in function. The LN-SVM, SIG-SVM, FR, and LR models were very 

similar in terms of success and prediction rates, as having slightly higher 

predictive with the exception of FR. The negligible difference in accuracy 

between the training and verification datasets may indicate underfitting 

problems for these two models, such that they are too simplistic to extract 

data diversity. Therefore, the LN-SVM, SIG-SVM, FR, and LR models 

may be inappropriate for predicting seismic vulnerability. The PL-SVM, 

RBF-SVM, and RF models showed high accuracy with 86.2% and 98.0%, 

and 100.0%, with a predication rate of 82.5%, 89.0%, and 94.9%, 

respectively. The PL-SVM and RBF-SVM models as nonlinear SVM 

kernels, and would therefore be useful for creating complex decision-

making borders, even with small numbers of features, and are 

advantageous in that they operate smoothly for various datasets. These 

two models showed high accuracy using the training and validation 

datasets, and are therefore considered reliable. For the RF model, it 

complements the disadvantages of a single tree and works well with large 

datasets. Therefore, based on the relatively large data set used in this study, 

a model with high performance appears to have been created, which is 
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considered most suitable for predicting buildings vulnerable to 

earthquakes.

Finally, the RF model appeared as the best performance model, and the

RBF-SVM model showed the next best performance. The SIG-SVM 

model has been identified as the lowest predictive efficiency model, 

indicating that it is most unsuitable for assessing seismic vulnerability.

The results of the present study are consistent with those of previous 

studies. We looked at studies comparing the accuracy of the SVM's kernel-

specific models. Xu and Xu (2012) compared SVM's Kernel-specific 

performance as a study to generate a spatial prediction model for 

earthquake-causing landslides. As a result, the RBF (0.8434) kernel 

function showed the highest model accuracy, and the higher accuracy was 

calculated in the order of the PL (0.8373), LN (0.8009), and SIG (0.652) 

kernels. Xu et al. (2016) produced the ANN model and SVM model by 

kernel, the RBF (0.821) and PL (0.881) kernels showed similar levels of 

accuracy, followed by models of higher accuracy in the order ANN 

(0.8641), LN (0.7952), and SIG (0.5019). Feizizadeh et al. (2017) assessed 

the accuracy of each kernel of the SVM for landslide usability mapping, 

the RBF (0.893) kernel function was evaluated as the most suitable model 

for assessing the landscape usability, and the SIG (0.828) function showed 

the lowest accuracy. We found that the SVM model based on the RBF 
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kernel showed the most predictive accuracy, based on the SVM's Kernel-

specific model performance

We looked at studies comparing the performance of different 

methodological models. Merghadi et al. (2018) compared their predictive 

abilities using several machine learning methods for landslide 

susceptibility mapping. Based on each methodology of RF, SVM, LR, 

gradient boosting machine (GBM), and artificial neural network (NNET), 

it was found that the optimal model was created with high predictability 

in the order of GBM, RF, NNET, SVM, and LR models. RF (0.8957) and 

SVM (0.8818) and LR (0.8575) were both shown to be over mid-80% 

accuracy. Kavzoglu et al. (2019) used the machine learning method 

Bagging, Rotation Forest (RotFor), RF, SVM and statistical-based LR 

models to select models suitable for landslide usability mapping. The 

results yielded the predicted accuracy of RF (0.963), Rotfor (0.959), SVM 

(0.955), Bagging (0.931), and LR (0.868), and showed high performance 

in tree-lined methodologies during machine learning. The results yielded 

the predicted accuracy of RF (0.963), Rotfor (0.959), SVM (0.955), 

Bagging (0.931), and LR (0.868), and showed high performance in 

methodologies of tree type during machine learning. Garosi et al. (2019) 

generated and analyzed the accuracy of machine learning methodology 

RF, SVM, generalized additive model (GAM), and naïve bayes (NB) 
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models to predict the usability of gully erosion. As a result, high accuracy 

models were created in the order RF (0.9236), SVM (0.9087), NB 

(0.8987), and GAM (0.8715). Xiao et al. (2019) predicted the landside 

usability region using the machine learning method RF and statistical-

based FR certainty factor (CF), index of entropy (IOE) methodology. As 

a result, RF (0.801) showed the highest performance, followed by IOE 

(0.738), CF (0.732), and FR (0.728).

A literature review showed that machine learning-based models 

performed better than statistics and probability-based methodologies, 

among which the tree type methods were suitable for analysing 

vulnerabilities. And among the four kernel of the SVM, the performance 

of the RBF kernel was the highest, so we could see that we adopted a 

model that was created based on that kernel.

Next, we compared seismic vulnerability maps based on the four 

models. The RBF-SVM and RF models based on machine learning 

showed vulnerable and safe regions almost identically.

And the safety zones of the RBF-SVM and the FR have also been 

identified with similar trends.

Finally, we examined the distribution of vulnerability grades by 

administrative district. The FR and LR maps indicated that the center of 

the city, RBF-SVM map indicated southwestern, and RF map showed 
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south region was vulnerable. Whereas FR and LR maps showed that the 

north and outer areas of Gyeongju, RBF-SVM map indicated north and 

west coastal regions, and RF map showed west region were safe.
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6. Conclusions

In this paper, the seismic vulnerability of Gyeongju was assessed by 

applying 18 earthquake sub-indicators related to geotechnical, physical, 

structural, social, and capacity indicators as independent variables, and 

buildings damaged during the 9.12 Gyeongju Earthquake as dependent 

variables. We generated 7 models using the FR, LR, SVM (including the 

four kernel of the SVM; LN, PL, RBF, and SIG), and RF methodologies.

The four seismic vulnerability maps, based on the most accurate models 

od each methodology, constructed and a comparative analysis was 

performed. The model and prediction accuracy of RF were shown high 

performance, with 100.0% and 94.9%, respectively, followed by RBF-

SVM, FR, and LR. The most vulnerable areas derived from three of the 

four maps as Hwangnam-dong (LR, RBF-SVM, and RF map) and 

Wolseong-dong (FR, RBF-SVM, and RF map) should be managed first.

In further studies, independent variables are reconstructed and analyzed 

according to the importance of independent variables evaluated in this 

study, which is judged to help predict seismic vulnerabilities more 

accurately. In additional, it is also considered that additional identification 

and analysis of factors affecting seismic vulnerabilities will help predict 

seismic vulnerabilities.
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The seismic vulnerability maps produced in this study have the 

advantage of easy to identify intuitively vulnerable areas, and can provide 

considerable assistance in environmental, land, buildings and facility 

management in advance in preparation for possible future earthquakes. It 

can also be used as an important basic data in the policy establishment 

related to earthquake disasters, and it is expected that this will reduce 

damage caused.
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