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Abstract 

 

상처 부위는 박테리아로부터 감염이 되어 질병이나 합병증이 유발되며 

상처치유과정에 부정적인 영향을 미친다. 따라서 항균력을 지닌 창상피복제의 

활용이 중요한 화제가 되고 있다. 항균효능을 갖는 해양 기능성 소재를 

창상피복제에 적용하기 위하여, 해양 갈조류인 Ishige okamurae 로부터 

Diphlorethohydroxycarmalol (DPHC)을 HPLC와 HPCPC를 이용하여 분리하고 Q-TOF-

MS 로 질량을 확인하였다. DPHC 의 항균효능을 알아보기 위해 S. epidermidis, C. 

albicans, S.aureus, 및 P. aeruginosa 에 대해 최소 억제 농도(MIC)와 최소 살균 농도 

(MBC)를 조사하였다. MIC 는 약 128 μg / mL 이며 MBC 는 약 512 μg / mL 의 

결과가 도출되었다. DPHC 는 피부 섬유아세포 (NHDF-neo) 및 각질 형성 세포 

(HaCaT)에서 MTT 분석에 의해 세포독성을 나타내지 않았다. 

하이드로겔은 화학적, 기계적 및 물리적 특성의 정밀한 제어뿐만 아니라 쉽게 

조작할 수 있는 유연성과 같은 많은 이점을 지닌다. 폴리비닐알콜 (PVA)은 친수성, 
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생체 적합성 및 생분해성과 같은 특성으로 인해 약물 전달 시스템 및 다양한 

산업 분야에 널리 응용되는 합성 고분자이다. 제작된 PVA/DPHC 하이드로겔의 

특성을 조사하기 위해 SEM 이미지, 수분 흡수 팽윤 시험, 약물 방출 시험 및 

유변학적 특성을 분석하였다. ASTM E2149 에 의해 그람 양성세균 (S. aureus) 및 

그람 음성균 (P. aeruginosa)에 대하여 PVA/DPHC 하이드로겔의 항균활성을 

시험하였다. PVA/DPHC 하이드로겔의 독성시험은 간접 접촉 테스트, 직접 접촉 

테스트 및 ICR 생쥐에 대한 독성시험으로 평가되었다. PVA/DPHC 하이드로겔은 S. 

aureus 및 P. aeruginosa 에 대해 약 99 %의 생존율을 감소시키는 약물방출 

사멸능력을 가졌으며, MTT 분석과 FDA 형광실험에 의해 NHDF-neo 및 

HaCaT 에서 어떠한 독성 효과도 나타내지 않았다. 또한, PVA/DPHC 하이드로겔은 

ICR 마우스의 비처리군보다 높은 상처 치유 효과를 나타냈다. 이 연구는 

PVA/DPHC 하이드로겔이 상처치유에 도움을 주는 창상피복제의 적용 가능성을 

제시하고 있다  
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1. Introduction 

1.1. Wound healing 

Skin consisted of complex layers such as epidermis, dermis and subcutaneous tissue 

is the most important barrier protecting the body from external factors to prevent toxins 

and infection. Skin is the largest organ in the surface area of body and thick average 

thickness of skin is about 2-3 mm [1]. Epidermis is consisted of outer layer composed 

to dead cells and the other layers consisted of viable cells such as keratinocytes which 

form 95% of all epidermal cells, melanocytes which produce the pigment melanin, and 

Langerhans’s cells which are an immune system [2-5]. The secondary layer of skin is 

called dermis composed of elastin fibers, ground substance and collagen fiber between 

the epidermis and subcutaneous tissues [2].  

Wound is a shape of injury being damaged from dangerous part such as sharp part and 

rough surface. The wound is defined as damage or loss of the anatomical structure and 

function of tissue [6]. Wound healing requires interactions between the cells, the 

extracellular matrix, and the growth factor [7]. The healing adult skin is a complex 

process containing inflammatory stage, epithelializing stage, proliferate stage and 

remodeling stage [8]. It is said the length of time that the wound heals is very long. So 

these days, a number of researchers agonize methods helping wound healing process. 

As advanced researches, one of methods for wound healing is protecting injured parts 

from harmful bacteria. Wound sites can be infected with harmful bacteria easily, as well 

as the main reason protecting bacteria is that they can cause disease or complications [9]. 
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1.2. Bacteria 

Wound are susceptible to microbial contamination from exogenous and endogenous 

sources ,and can provide a good environment for the microbial growth and colonization 

[10, 11]. After microbial colonization in wounds, microorganism can delay and fail to 

the wound healing by producing various substances such toxins, proteases and pro-

inflammatory molecules, and causing an excessive and prolonged inflammatory 

response [12]. Among harmful micro-organism, Bacteria can be classified the gram-

positive and the gram-negative prokaryotic micro-organism [13]. Typically, 

Staphylococcus aureus, a gram-positive bacterium, is the most common pathogen in 

the human body but is investigated that it can lead immoderately to death by inducing 

serious diseases such as abscess, folliculitis, necrotizing fasciitis, myositis, 

osteoarthritis, infectious arthritis and vertebral osteomyelitis [14-18]. Also, 

Staphylococcus epidermidis, a gram-positive bacterium, is less virulent than 

Staphylococcus aureus, but it is a terrible pathogen that causes various inflammation 

and diseases [19]. Candida albicans, a gram-positive bacterium, is usually infected in 

the human skin, causing inflammation in the skin, mouth and esophagus as well as 

inducing various candidiasis [20]. Pseudomonas aeruginosa, a gram-negative 

bacterium, is most closely related to human infectious disease [21]. It is widely 

distributed in nature and is included in the normal bacteria of human intestinal tract, 

and may be found in skin and armpit which is wet especially in the body. It is 

opportunistic pathogen in body weaken the resistance and immune system through 
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disease such as wound, cancer, and so on [22]. Typically, it can cause bedsore, 

pneumonia, bacteremia, septicemia, and meningitis [23, 24]. So many researchers look 

into the possibility of aid to heal wounds by protecting from harmful bacteria 

 

1.3. Hydrogel 

There are various types of wound dressing applications, but they can be typically 

divided into three major types classified by passive products, interactive materials 

containing polymeric films, and bioactive wound dressing materials [25]. Before 1960s, 

passive products such as gauze for wound dressing was used to have a minimal role as 

a common cover in wound healing, but they are not suitable for acute and chronic 

wounds [26]. Bioactive wound dressing such as collagen and chitosan affect directly to 

wound healing process by delivery of bioactive compounds [27]. Finally, the interactive 

materials dressing provide a beneficial effect including maintaining of moisture 

environment and preventing of excessive heat loss on wound site [25]. Among the 

interactive materials dressing, hydrogel can help fast wound healing by keeping wet 

condition [28]. Generally, gels are very highly utilized materials found all around our 

lives. Also, our tissue and organs is composed various gels. Most gels are composed 

polymers or colloids. They are filled by fluid. Gels are that elastic modulus (G’) is 

greater than loss modulus (G’’) [29]. So, even though gels are soft, gels are solid 

characteristics. Hydrogel is simply gel to interact with water and not to dissolve easily 

due to crosslinking forms as network of chains[30]. Hydrogels offer many advantages, 



5 

 

such as precise control of chemical, mechanical, and physical properties as well as 

flexibility to design features that can be easily manipulated for intended applications 

[31]. Hence earlier mentioned advantages, hydrogels can be applied to biomedical 

fields containing medical device, drug delivery system, and so on. So, many researchers 

consistently study fabricating methods and development of hydrogels based many 

biocompatible resources containing synthetic resource such as polyvinyl alcohol (PVA) 

and polycaprolactone (PCL) as well as natural resource such as pectin, alginate, and 

chitosan [32]. 

 

1.4. Poly (vinyl alcohol) (PVA) 

PVA is a linear synthetic polymer prepared by hydrolysis of poly vinyl acetate as a 

shown in fig. 2. (A) [33]. PVA is water-soluble and hydrophilic polymer having the 

numerous hydroxyl groups on the backbone [34]. Particularly, PVA can offer the 

possibility of attaching monomer such as cell signaling molecules and drugs [35]. Also, 

PVA has harmlessness and non-toxicity, low temperature crystallization ability, high 

tensile strength property and high elongation property [36]. Furthermore, PVA is easily 

physically cross-linked without requiring the use of toxic chemicals by repeated cycles 

of freezing and thawing [37]. PVA hydrogels have the inner network based crystallites 

that occur between the hydroxyl groups of PVA during the freezing-thawing cycles in 

fig. 2. (B), and have forms porous wall containing free water in the inner network [38]. 

Also, PVA hydrogel can be easily crosslinked and fabricated despite blending other 
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resource to improve biological ability. So, this advantage has developed constantly PVA 

hydrogels blended with bioactivity materials to enhance beneficial functions such as 

the cell adhesion, proliferation and mechanical property in recent studies [39, 40] 
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1.5. Diphlorethohydroxycarmalol 

In this study, diphlorethohydroxycarmalol (DPHC) isolated from Ishige okamurae, a 

brown algae of marine, is investigated as a compound to load in PVA hydrogel in order 

to have antibacterial effect. First of all, marine have many merits. Marine takes 

possession about 70% of the Earth’s surface [41]. However, there are many things that 

are yet to be revealed, so the value of the research is even higher. As advanced 

researches, materials from marine organism have high biocompatibility and bioactive 

component. Among materials from marine organism, Phlorotannins isolated a marine 

brown algae are well known as phenolic bioactive agents playing a vital role related to 

assist human health and nutrition such as anti-proliferative activity, antioxidant activity, 

anticancer activity, anti-HIV activity, angiotensin-I-converting enzyme (ACE-I) 

inhibition and so on [42].  Especially, brown algae among marine organism have many 

bioactive component and many researchers have being studied that. I. okamurae have 

effective functionalities such as anti-oxidant, cytoprotective, nitric oxide inhibitory, 

and anti-cancer effect [43, 44]. By these functionalities, there are many fields that use 

I. okamurae. Mainly, medicine, health functional food, cosmetics and medical 

application are corresponded. Also, I. okamurae is grown in warm coasts and easily 

found in Jeju island, Korea [45]. Due to easy harvest, it is commercially valuable. These 

valuable I. okamurae have DPHC as a main compound. The DPHC is consisted of four 

phloroglucinol units and functional hydroxyl groups and have antioxidant effect, anti-

inflammatory effect and inhibitory effect on α-glucosidase and α-amylase [46]. 
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1.6. Goal of study 

This study would like to prove that diphlorethohydroxycarmalol (DPHC) isolated 

from Ishige okamurae, a brown algae of marine, has antibacterial effect by performing 

minimum inhibitory concentration (MIC) and minimum bactericidal concentration 

(MBC) against S. epidermidis, C. albicans, S. aureus, and P. aeruginosa. Also this study 

would like to prove that hydrogel made by blending DPHC and PVA having several 

properties (hydrophilic, biocompatibility and biodegradability) has anti-bacterial effect 

and wound healing ability by investigating in vitro experiment including physical 

characterizations, bacterial inhibition ability and cytotoxicity (in-direct and direct 

contact), and in vivo experiment including wound closure ability and histological test. 

Consequently, based on evaluation of characterization having PVA/DPHC hydrogels in 

vitro and in vivo, this study would like to suggest that PVA/DPHC hydrogels have 

possibility as wound healing application. 
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2. Material and method 

2.1. Materials 

Ishige okamurae was collected from coasts in Jeju island, Korea. 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT) were purchased from 

Sigma-Aldrich, USA. Dulbecco's minimum Eagle's medium (DMEM), 

trypsin/ethylenediaminetetraacetic acid (EDTA), Fetal bovine serum (FBS) and other 

materials used in cell culture experiment were purchased from GIBCO™, Invitrogen 

Corporation, USA. Hoechst 33342 were obtained from Invitrogen Life Technologies 

(Carlsbad, CA, USA). Fluorescein diacetate (FDA) were purchased from Sigma-

Aldrich, USA. All other chemicals and solvents were of analytical grade, and water 

used in experiment was deionized. 
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2.2. Extraction, isolation and purification of DPHC 

Diphlorethohydroxycarmalol (DPHC) was isolated by Ishige okamurae Yendo. Briefly, 

the dried Ishige okamurae was extracted with 70% ethanol and filtered using Whatman 

filter papers. The filtered extracts was evaporated at 40°C to remove ethanol completely 

and freezed-dried under vacuum. The extracts were suspended in distilled water and 

partitioned with n-Hexane, chloroform (CHCl3), and ethyl acetate (EtOAc) by solvent 

fractionation methods. The EtOAc fractions, polyphenol-rich components, was 

separated frations by using two-phase solvent system of centrifugal partition 

chromatography (CPC) (System Instruments Co, CPC 240). The DPHC-rich fractions 

obtained from the EtOAc fractions were purified by high performance liquid 

chromatography (HPLC) using a Thermo Fisher Scientific HPLC system equipped with 

Ultimate 3000 UV detector (Variable Wavelength Detector, VWD-3400) and Atlantis 

® dC18 (3 µm, 4.6×150 mm; Waters). by stepwise elution with acetonitrile–water 

gradient (UV range: 230 nm, flow rate: 0.2 ml/min). Finally, the molecular weight of 

the DPHC was identified by an ultra-performance liquid chromatography quadrupole 

time-of-flight mass spectrometry (UPLC-Q-Tof MS) (Bruker, maXis-HD) based 

metabolomic technique. 
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2.3. In vitro cell experiments 

2.3.1. Cell culture 

Cell culture experiments were performed by using normal human dermal fibroblast-

neonatal (NHDF-neo) and human keratinocyte (HaCaT) in DMEM supplemented with 

10% FBS and 1% antibiotic/antimycotic solution in an incubator with a humidified 

atmosphere of 5% CO2 at 37 °C. To detach NHDF and HaCaT, trypsin/EDTA solutions 

were added into cell culture plate. After centrifugation, only cell pallets performed by 

centrifugation were cultured in other sterilized cell culture plate. 

 

2.3.2. Cytotoxicity evaluation 

Cell viability was determined by the MTT assay to estimate the reduction of yellow 

tetrazolium salt in MTT into purple formazan crystals performed by the dehydrogenase 

enzymes secreted by mitochondria. NHDF-neo and HaCaT cells were seeded in each 

96 well plates. The DPHC was treated by concentration in 96 well plate seeded cell. 

After 24 hours, MTT solution (1 mg/mL in PBS) was treated in 96 well plate seeded 

cell treated DPHC. After 4 hours, the solution was aspirated and re-incubated with 

DMSO at 37 °C for 30 min. After 30 min, the absorbance at 570 nm was measured 

using a microplate reader (Gen 5™ ELISA BioTek, USA) [47, 48]. 
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2.4. Antibacterial activity 

2.4.1. Bacterial strains and culture conditions  

The test microbial strains were obtained from the Korean Collection for Type Cultures 

(KCTC; Daejeon, Korea) and the American Type Culture Collection (ATCC; Manassas, 

VA, USA); S. aureus KCTC 1927, S. epidermidis ATCC 14990, C. albicans KCTC 

7965, P. aeruginosa KCTC 1637. Four of P. aeruginosa clinical isolates were provided 

by the Gyeongsang National University Hospital (Jinju, Korea), a member of the 

National Biobank of Korea. S. aureus, S. epidermidis, C. albicans and P. aeruginosa 

strains were grown at 37°C in tryptic soy broth (TSB; Difco Inc., Detroit, MI).  

 

2.4.2. Determination of minimum inhibitory concentration (MIC) and minimum 

bactericidal concentration (MBC) 

Minimum inhibitory concentration (MIC) is the method of evaluating the antimicrobial 

activity quantitatively. It is defined as the lowest concentration of crude extract that 

inhibit the visible growth of a microorganism after 20-24 h of incubation at 37℃ for 

bacterial strains (Grierson and Afolayan, 1999). The experiment procedures were 

followed by the guideline of Clinical and Laboratory Standards Institute (CLSI, 2012). 

MIC assay was performed using serial two-fold dilution method with Mueller–Hinton 

broth (MHB; Difco Inc.) and 96-well microtiter plates (with clear flat bottoms). Once 

suspension culture had done, MIC values were determined by reading the plates 
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visually. This test was repeated three times. 

Minimum bactericidal concentration (MBC) is the lowest concentration of an 

antibacterial agent required to kill a particular bacterium (Amyes et al., 1996). It can 

be determined from broth dilution minimum inhibitory concentration (MIC) tests by 

sub-culturing to agar plates that do not contain the test agent. The MBC is identified by 

determining the lowest concentration of antibacterial agent that reduces the viability of 

the initial bacterial inoculum by ≥99.9%. 

 

2.5. Fabrication of hydrogels containing DPHC 

PVA hydrogels blended with DPHC were fabricated by a freezing-thawing method. 

Aqueous 10 wt% PVA solutions were prepared by dissolving PVA powders into 1% 

PBS solution boiling 70°C for 2 hours and cooling aqueous 10 wt% PVA solution at 

room temperature. 0.025 wt%, 0.05 wt%, 0.1 wt%, and 0.2 wt% DPHC solutions were 

prepared by dissolving DPHC powders into 1% PBS solution at room temperature. PVA 

solutions and DPHC solutions were mixed at a ratio of 1:1 each depending on each 

concentrations. After mixing, PVA/DPHC mixtures were stabilized at room 

temperature in a dark. After stabilizing, each mixture was poured into 24 well plates 

and underwent repeated freezing-thawing cycles per 3 times, consisting of 18 h freezing 

at -80 °C and 6 h thawing at room temperature. Consequently, a pure 5 wt% PVA 

hydrogel (PPVA), 5 wt% PVA hydrogel containing 0.0125 wt% DPHC (PVA/DPHC-
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I), 5 wt% PVA hydrogel containing 0.025 wt% DPHC (PVA/DPHC-II), 5 wt% PVA 

hydrogel containing 0.05 wt% DPHC (PVA/DPHC-III), and 5 wt% PVA hydrogel 

containing 0.1 wt% DPHC (PVA/DPHC-IV) were fabricated. 
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2.6. Characterization of hydrogels 

2.6.1. Microstructural evaluation 

The structural morphology of PVA/DPHC hydrogels were examined by magnifying 

the hydrogel 1,500 and 3,000 diameters using scanning electron microscopy (SEM) 

(Tescan, Czech, VEGA II LSU) at 5 kV. The porous structures of PVA/DPHC hydrogels 

were confirmed from the SEM image using image analysis software (Image J, National 

Institutes of Health, USA). 

2.6.2. Water swelling analysis 

Dried hydrogels was initially weighed and immersed in DW at 37 °C until reaching 

the equilibrium state for water-uptake measurements. The dry weight (Wd) of 

hydrogels was determined by lyophilizing, and the swollen weight (Ws) of hydrogels 

was determined by blotting the surface water with blotting paper. The swelling ratio of 

hydrogels was calculated using the following formula: 

Swelling ratio (%) = [((Ws-Wd))/Wd] × 100 

2.6.3. Drug release test 

The release test of DPHC from hydrogels (PPVA, PVA/DPHC-I, PVA/DPHC-I, 

PVA/DPHC-II, PVA/DPHC-III, and PVA/DPHC-IV) was performed by Folin-

Ciocalteu method. The hydrogel was submerged in 2ml of 1x PBS and incubated at 37°

C to maintain a similar condition of human body temperature. At certain time points (1, 
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2, 4, 6, 12, 24, 48, and 72 hours), the released solutions from hydrogels were calculated 

the percentage of the released total DPHC contents using the standard curve based the 

absorbance at 730 nm using a microplate reader (Gen 5™ ELISA BioTek, USA). 

2.6.4. Gel fraction analysis 

 The PVA/DPHC hydrogels were prepared by freezing-drying methods under vacuum 

and weighted (Wo). The dried hydrogels were soaked in 1x PBS by time. At certain 

time points (6, 12, 24, 48, and 72 hours), the soaked hydrogels were freezed-dried again 

to remove the soluble parts. The hydrogels dried after soaking were weighted (We). 

The Gel fraction ratio of PVA/DPH hydrogels was calculated as follows equation: 

Gel fraction (%) = [We/Wo] x 100 

2.6.5. Rheological properties 

The dynamic mechanical analysis was performed by Discovery HR-2 Hybrid 

Rheometer with 8 mm parallel plate geometry (TA Instruments, USA). Hydrogels 

loaded with a static load of 0.05 N at 25 °C and deformed at constant amplitude over a 

range of frequencies (0.1 Hz–10 Hz) to measure storage modulus (G´). 

2.6.6. Thermogravimetric analysis 

 Thermogravimetric analysis (TGA) of the PVA/DPHC hydrogels were performed 

using a Pyris 1 TGA analyzer (Perkin-Elmer TGA-7, Waltham, MA, USA) with a scan 

range from 50 to 700 °C and a constant heating rate of 10 °C/min under continuous 

nitrogen 
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2.7. Indirect contact and direct contact test on cell  

The cytotoxicity of PVA hydrogels containing DPHC was evaluated on NHDF-neo and 

HaCaT cell according to International Organization for Standardization (ISO) 10993–

5 [49]. The PVA hydrogels containing DPHC sterilized by UV irradiation for 1 hour 

were immersed in culture medium for 24 hours and 72 hours at 37 °C to obtain extract 

medium. NHDF-neo and HaCaT cells were seeded in each 96 well plates at adensity of 

1×104 and incubated with extracted medium and flesh medium for 24 h. Cell viability 

was determined by MTT assay [50]. Also, direct contact test was evaluated by 

immersing PVA hydrogels containing DPHC sterilized by UV irradiation on NHDF-

neo and HaCaT cell in fresh medium for 24 hours and investigated by fluorescein 

diacetate (FDA) for live cell and heochst 33342 for nuclear staining.  

 

2.8. Bacterial inhibition test of PVA/DPHC hydrogels 

The antimicrobial activity of PVA/ DPHC hydrogels against the Gram-positive 

bacterium S. aureus and the Gram-negative bacterium P. aeruginosa was assessed by a 

viable cell-counting method. Upon appropriate dilution with sterilized 0.9% saline 

solution, a culture of about 105 CFU/mL and 107 CFU/mL was prepared and used for 

antimicrobial testing. The S. aureus suspension and the P. aeruginosa suspension were 

incubated in the presence of the fibrous mats at 37 °C. At various exposure times (0, 

30, 60, 180, and 360 min) aliquots were taken from the bacterial suspension and several 

decimal dilutions were made. The several decimal dilutions were quickly spread on the 
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nutrient agar and incubated at 37 °C for 24 h. The surviving microorganisms were 

counted by the spread-plate method in triplicate for each experiment. The number of 

the surviving cells was determined as colony forming units (CFU). 

2.9. In vivo animal experiments 

2.9.1. Wound healing animal models 

Male ICR mice were housed under conditions of a light/dark cycles (12/12 hours). ICR 

mice were investigated wound healing ability after acclimatization period of 7 days 

[51]. The wound healing ability of the PVA hydrogels containing DPHC was 

investigated wound closure ability for 14 days after performing scratch wound 5mm in 

diameter on the 8‐week‐old ICR mouse. The wounded mice were investigated wound 

healing ability into 6 mice per group; (1) control group (non- treated), (2) Epi-Derm 

Silicon Gel Sheeting (1.8 mm thick, Biodermis, Las Vegas, USA), (3) PVA hydrogel 

group and (4) PVA/DPHC-IV. The wound closure was pictured at 0, 2, 4, 7, and 14 day. 

The averages of opened wound area were measured by image program and plotted as 

relative % of original wound.  

2.9.2. Histological examination and staining 

 Tissues were fixed in formalin for 48 hours. The fixed tissues of excised wound site 

were dehydrated using alcohol and distilled water, embedded in paraffin and cut into 6 

µm sections by microtome. The sections were gradually put into the xylene for 20 

minutes, 100% alcohol for 5 minutes, 95% alcohol for 2 minutes, 80% alcohol for 2 
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minutes, distilled water for 5 minutes and hematoxylin to stain nuclear for 5 min. After 

washing to remove excess hematoxylin in distilled water, the sections were put into 

eosin to stain extracellular matrix for 2 minutes. In reverse, the sections were gradually 

put into distilled water for 5 minutes, 80% alcohol for 2 minutes, 95% alcohol for 2 

minutes, 100% alcohol for 5 minutes, xylene for 10 minutes and covered finally the 

section using neutral resin [52]. Photographs were taken with Leica microscope (Leica 

Microsystems UK Ltd, Milton Keynes, UK). 
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3. Result 

3.1. Characterization of DPHC 

3.1.1. Extraction, isolation and purification of DPHC 

DPHC derived from brown algae, Ishige okamurae, has polar property based hydrogen 

and hydroxyl group. Ethanol extraction was frequently used to obtain phenolic 

compounds. Yield of 70% ethanol extraction was 4.7% from Ishige okamurae. Also, 

ethanol extracts was separated the material with different polarity into fractions using 

different degrees of unsaturation by liquid-liquid solvent fractionation with two liquid 

having different polarity [53]. Solvent fractionation has advantages that fraction 

separation can be achieved efficiently and the filtration is easier [54]. As results of 

fractionation using n-Hexane, CHCl3 and EtOAc with distilled water, Ethanol extracts 

(100%) was separated 3.5% n-Hexane fraction, 39.5% CHCl3 fraction and 11.8 % 

EtOAc fraction in fig. 9. It is investigated that EtOAc fraction included rich DPHC by 

HPLC. So, EtOAc fraction was separated again by using CPC to obtain compound 

having more rich DPHC. Finally, fraction containing rich DPHC from CPC was 

purified by HPLC in fig. 10. (A). As a previous study, DPHC has about 512 molecular 

weight. So, DPHC was identified by evaluating molecular weight of DPHC using ultra-

performance liquid chromatography–quadrupole time-of-flight mass spectrometry in 

fig. 10. (B). 
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3.1.2. Cytotoxicity of DPHC 

 To investigate the cytotoxic potential of DPHC in NHDF-neo and HaCaT cells, the 

MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was 

performed to investigate cell viability after 24 hours treatment with DPHC. As a shown 

in fig. 11. (A), NHDF-neo cells were investigated to show non-cytotoxicity against 

different DPHC concentrations comparing non-treated DPHC group (0 µg/ml). Also, 

as a shown in fig. 11. (B), HaCaT cells were investigated to show non-cytotoxicity 

against different DPHC concentrations (6.25, 12.5, 25, 50, 100 µg/ml).  

 

3.2. The antibacterial activity of DPHC 

The DPHC from Ishige okamurae exhibited the bacteria inhibition activity against 

cutaneous pathogens such as the gram positive bacterium Candida albicans, 

Staphylococcus epidermidis, Staphylococcus aureus and the gram negative bacterium 

Pseudomonas aeruginosa. As a shown in table. 1, the antibacterial activity of the 

DPHC was quantitatively evaluated by the MIC and MBC assay. The MIC values of 

the DPHC against cutaneous pathogens were investigated 128 μg/mL against C. 

albicans, 64 μg/mL against S. epidermidis, 128 μg/mL against S. aureus and 128 

μg/mL against P. aeruginosa. Also, the MBC values of the DPHC against cutaneous 

pathogens were investigated 512 μg/mL against C. albicans, 128 μg/mL against S. 

epidermidis, 512 μg/mL against S. aureus and 256 μg/mL against P. aeruginosa.  
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3.3. Physical properties of the PVA/DPHC hydrogels 

3.3.1. Hydrogel morphological analysis 

 The PVA hydrogels were crosslinked by freezing-thawing methods at -80 °C and room 

temperature in 24 well plate and confirmed in fig. 7 that it successfully maintained a 

constant morphology even if DPHC was blended in the PVA hydrogel. The preparation 

condition of PVA/DPHC hydrogels was shown in fig. 7. The PVA/DPHC hydrogels 

could be confirmed that they showed rich in brown color as a concentration-dependence 

of DPHC and expected visually that the DPHC was regularly districted in hydrogel. 

The surface morphologies of the PVA/DPHC hydrogels were investigated by scanning 

electron microscopy (SEM). As shown in fig. 12. (A) and (B), the morphology of all 

hydrogels was porous and interconnected. It was analyzed x1500 and x3000 

magnification. The porous surface of hydrogels could be confirmed that the pore was 

larger as a concentration-dependence of DPHC. Whereas the PPVA was shown 

regularly porous structure, PVA/DPHC-I, PVA/DPHC-II, PVA/DPHC-III, and 

PVA/DPHC-IV were shown irregularly distributed holes and gradually lager holes as a 

concentration-dependence of DPHC. As shown in fig. 12. (C), quantification of the 

pore size were investigated by image analysis software in surface area of hydrogels. 

The PPVA was consisted generally porous area of 10~30 µm2 size and the PVA/DPHC-

IV hydrogel was consisted 40% porous area of 10~30 µm2 size, 20% porous area of 

40~60 µm2 size, 20% porous area of 70~90 µm2 size, and 16% porous area of 100~120 

µm2 size in total porous area. In short, a hydrogel gradually had a lager pore size as the 
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concentration of DPHC increased in hydrogel. 
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3.3.2. Rheological properties 

 The relative mechanical properties of hydrogels were investigated by rheology test, 

as shown in fig. 13. (A). The storage modulus (G’) and the loss modulus (G’’) were 

affected the gelation time of hydrogel. The hydrogel network was collapsed and turned 

to be a sol state after G′′ was higher than G′. This assay investigated the change in 

viscoelastic property against the changing frequency to test the stability of the 

mechanical properties. The G’ investigated that the PVA/DPHC-IV was about 40 Pa 

lower than PPVA hydrogels and the G’’ investigated that the PVA/DPHC-IV was about 

10 Pa higher than PPVA hydrogels. As a dose-dependent DPHC, the G’ and G’’ values 

slightly were changed. The higher the DPHC concentration of PVA hydrogels, the 

lower G’’ against frequency could be shown and the higher G’’ against frequency could 

be shown. But the altered difference of G’ and G’’ values didn’t be large dramatically 

relating to the error value. 

3.3.3. Thermogravimetric analysis 

 The thermal degradation percentage of the DPHC and PVA/DPHC hydrogels was 

evaluated by thermogravimetric analysis, as shown in fig. 13. (B). The TGA data for 

DPHC investigated that the starting temperature of the degradation was 50 °C and that 

the DPHC weight gradually decreased about 48% until 700 °C. The TGA data for 

PVA/DPHC hydrogels investigated that the degradation of hydrogels was not shown at 

50-200 °C and shown high weight loss ratio at 260-400 °C. Especially, the largest gap 

of weight loss percentage between the PVA/DPHC-I and the PVA DPHC-IV 
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investigated the gap of about 11% at 350 °C. After 400 °C, the TGA data for 

PVA/DPHC hydrogels investigated that the weight of the hydrogels gradually 

decreased. The higher the DPHC concentration of PVA hydrogels, the stronger stability 

against fever could be shown 
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3.3.4. The swelling 

The timed water absorption percentage was shown in fig. 14. (B). All of the 

hydrogels showed fast absorption ability for 6 hours, and gradually increased after 6 

hours. Also, after 24 hours, they did not show conspicuously the difference in the 

degree of water absorption percentage. As the concentration of DPHC in hydrogels 

increases, the swelling behavior of PVA/ DPHC hydrogels was showed higher 

abilities as compared to PPVA hydrogels. There were 600 wt% in PPVA hydrogels, 

680 wt% in PVA/DPHC hydrogels-I, 725wt% in PVA/DPHC hydrogels-II, 700 wt% 

in PVA/DPHC hydrogels-III and 930 wt% in PVA/DPHC hydrogels-IV at 72 hours as 

compared dried hydrogels. In case of PVA/DPHC hydrogel-IV, it was confirmed that 

the water absorption percentage was increased approximately 1.5 times as compared 

with PPVA hydrogel at 72 hours. Other hydrogels increased the water absorption 

percentage as the concentration of DPHC in hydrogels increases. 

 

3.3.5. Drug release analysis 

Drug delivery characterization are very vital for drug carriers and should be evaluated. 

The released behavior of DPHC from PVA/DPHC hydrogels was shown in fig. 14. (A). 

All of the hydrogels showed fast release ability for 6 hours, and gradually increased 

after 6 hours. Also, after 24 hours, they did not show conspicuously the difference in 

the degree of DPHC released percentage. The higher the DPHC concentration of the 

soaking solution, the more DPHC could be loaded. The in virto release behavior of 
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DPHC from PVA/DPHC hydrogels was controlled by the loaded amount of the DPHC. 

The amount of the released DPHC was shown that the PVA/DPHC hydrogel-IV is 2 

times higher than the PVA/DPHC-I at 12 hours. 

3.3.6. Gel fraction analysis 

 The timed gel fraction of hydrogels was shown in fig. 14. (C). All of the hydrogels 

showed fast gel fraction for 6 hours, and gradually increased after 6 hours. As the 

concentration of DPHC in hydrogels increases, the gel fraction of PVA/ DPHC 

hydrogels was showed higher weight loss abilities as compared to PPVA hydrogels. 

The PVA/DPHC-IV was 3% more lose than PPVA hydrogel at 6 hours and 72 hours. 

As a dose-dependent DPHC, the gel fraction of PVA/DPHC hydrogel against solution 

slightly were changed. The higher the DPHC concentration of PVA hydrogels, the 

lower weight loss ability could be shown. 
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3.4. Indirect contact and direct contact test on cell 

 The cytotoxicity of the extractability and leachability of hydrogels were confirmed by 

indirect and direct contact test on NHDF-neo and HaCaT cell according to ISO 10993-

5. In order to investigate cell viability against low concentration and high concentration 

of the extracts, all hydrogels were immersed for 1 day and 3 days in culture media. As 

a shown in fig. 15. (C), the cell viability against the extracts was investigated numerical 

values by MTT assay at 540 nm absorbance. The NHDF-neo and HaCaT cell viability 

of the control was set 100%, and the NHDF-neo and HaCaT cell viabilities of the 

extracts of all hydrogel groups were not investigated below 70% non-toxic limited 

values according to ISO 10993-5. As a shown in fig. 15. (A) and (B), the NHDF-neo 

and HaCaT cell viabilities contacted hydrogels directly were investigated by Hoechst 

33342 and FDA assay indicating to visible data. The cell viability was monitored by 

observation in bright field as well with FDA fluorescent reagent to stain only living 

cells comparing with hoechst 33342 staining nucleic acid of cell spreading widely on 

cell plate in fluorescence microscopy. The NHDF-neo and HaCaT cells contacted 

directly hydrogels were generally alive comparing Hoechst staining and FDA staining. 
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3.5. Bacterial inhibition test of PVA/DPHC hydrogels 

Antibacterial activity of hydrogels against the Gram positive bacterium S. aureus and 

the Gram negative bacterium P. aeruginosa was investigated by ASTM e2149. ASTM 

e2149 was suitable to evaluate release-killing ability of hydrogel [55]. Bacterial 

inhibition activity was evaluated by counting the viable microorganisms present after 

incubating hydrogels for 0, 30, 60, 180, 360 minutes in bacteria suspension. Fig. 16. 

(A) and (B) and fig. 17. (A) and (B) were shown the bacterial viability for each 5 log 

bacteria normal density and 7 log bacteria high density of S. aureus and P. aeruginosa 

against the control, PPVA and PVA/DPHC-IV.  

As a shown in fig. 16. (A), the control and PPVA were not shown bacterial reduction 

ability against S. aureus in 5 logs for 360 minutes, whereas the bacterial reduction 

ability of the PVA/DPHC-IV against S. aureus was investigated about 90% bacterial 

reduction at 60 minutes and almost bacteria killed after 180 minutes in 5 logs. Also, as 

a shown in fig. 16. (B), the control and PPVA were not shown bacterial reduction ability 

against S. aureus in 7 logs for 360 minutes, whereas the bacterial reduction ability of 

the PVA/DPHC-IV against S. aureus was investigated about 99% bacterial reduction 

for 360 minutes in 7 logs.  

As a shown in fig. 17. (A), the control and PPVA were not shown bacterial reduction 

ability against P. aeruginosa in 5 logs for 360 minutes, whereas the bacterial reduction 

ability of the PVA/DPHC-IV against P. aeruginosa was investigated about 90% 

bacterial reduction at 180 minutes and almost bacteria killed at 360 minutes in 5 logs. 
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Also, as a shown in fig. 17. (B), the control and PPVA were not shown bacterial 

reduction ability against P. aeruginosa in 7 logs for 360 minutes, whereas the bacterial 

reduction ability of the PVA/DPHC-IV against P. aeruginosa was investigated about 

99% bacterial reduction for 360 minutes in 7 logs.  

Fig. 17. (C) was visual data counting the viable gram positive bacterium S. aureus and 

gram negative bacterium P. aeruginosa present after incubating in 5 log bacteria density.  
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3.6. In vivo experiment 

3.6.1. Wound closure ability 

To investigate the wound healing ability of the PVA hydrogels containing DPHC in 

vivo, the 8‐week‐old ICR mice were created skin incisions 5mm in diameter on the 

back of mice. The wound closure was pictured at 0, 2, 4, 7, and 14 day. Comparing 

control group, Epi-Derm silicon gel sheeting, PPVA and PVA/DPHC-IV, wound areas 

of all groups were reduced to the wound center performing the growth of new epidermis 

in all wound lesions. But the wound closure abilities of all groups relatively were 

different per 0, 2, 4, 7, and 14 day as a shown in fig. 18. (B). The control group were 

shown a low wound closure ability cured about 15% for 4 days, whereas the control 

groups were shown a wound closure ability cured about 60% at 7days. The PVA groups 

were shown a wound closure ability cured about 25% for 4 days, and the control groups 

were shown a wound closure ability cured about 65% at 7days. Whereas, The 

PVA/DPHC-IV groups and Epi-Derm groups were shown a high wound closure ability 

cured about 35% for 4 days, and the PVA/DPHC-IV groups and Epi-Derm groups were 

shown a high wound closure ability cured about 75% and 85% at 7days. Finally, all 

treated groups were investigated that their wounds almost were closured at 14 days. 

Consequentially, the wound closure ability was resulted that Epi-Derm and 

PVA/DPHC-IV had a high wound closure ability comparing with control groups. 
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3.6.2. Histological property 

Histology of wound areas cured for 14 days was shown in fig. 19 and it was shown that 

representative images of H&E stained histopathological sections of granulation/healing 

tissues of normal, control, Epi-Derm, PVA and PVA/DPHC-IV groups treated on the 

back of ICR mouse (40x magnification and scale bar 50 μm). Comparing with normal 

tissue of ICR mouse, all treated groups were investigated to perform re-epithelialization 

by observing features of wound healing such as sebaceous gland, hair follicle, fibroblast 

and keratinocyte. Generally all treated groups distinctly were shown proliferation and 

differentiation of the epidermis and dermis. Epi-Derm groups were shown a mature 

sebaceous gland, whereas the control, PVA, and PVA/DPHC-IV groups were shown an 

immature sebaceous gland. But PVA/DPHC-IV group was shown a numerous hair 

follicle comparing with other groups. Consequentially, although the control and PVA 

groups were investigated a good re-epithelialization effect, they were investigated less 

features of wound healing such as sebaceous gland and hair follicle. Also, Epi-Derm 

groups were investigated to perform rapidly mature sebaceous gland and PVA/DPHC-

IV group was investigated to perform rapidly hair follicle. 
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4. Discussion 

Phlorotannins isolated a marine brown algae are well known as phenolic bioactive 

agents playing a vital role related to assist human health and nutrition such as 

antioxidant activity, anticancer activity, anti-HIV activity, angiotensin-I-converting 

enzyme (ACE-I) inhibition and so on. The isolated and characterized phlorotannins 

from marine brown algae are representative compounds such as phloroglucinol, eckol, 

dieckol, fucodiphloroethol G, phlorofucofuroeckol A, 7-phloroeckol, and 6,6′-bieckol 

[56]. These phenolic compounds have a potential antimicrobial ability based their 

ability to denature proteins, characterization of compound classified as surface-active 

agents [57]. The MIC value for eckol from a brown algae, Echklonia cava, investigates 

antibacterial activity in range of 125-250 µg/ml against the gram-positive bacterium S. 

aureus [58]. Also, the MIC value for dieckol investiges antibacterial activity in range 

of 32-64 µg/ml against the gram-positive bacterium S. aureus [59]. As a similar, the 

DPHC has the antibacterial activity in range 64-128 µg/ml against the gram positive 

bacterium C. albicans, S. epidermidis and S. aureus. Also, the DPHC has the 

antibacterial activity in range 128 µg/ml against the gram negative bacterium P. 

aeruginosa. As a result, the DPHC has a potential to be used as ingredient having a 

good antibacterial effects against the gram-positive and negative bacterium.  

One of the main purpose of wound dressing application is to protect the wound cites 

from external factor because wounds are easily infected and contaminated by external 

factors. Bacteria, one of the external factors, causes complications by permeating into 
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wound. Thus, antibacterial research consistently was performed for wound dressing. 

As a wound dressing application, hydrogels offer many advantages, such as precise 

control of chemical, mechanical, and physical properties as well as flexibility to design 

features that can be easily manipulated for intended applications. Among hydrogels, 

PVA hydrogel can be crosslinked physically undamaging other materials added to the 

PVA hydrogel as well as indicates fast wound healing by keeping wet condition. So this 

study utilizes the PVA hydrogel to contain the DPHC stably because the DPHC 

consisted of four phloroglucinol units and functional hydroxyl groups could be easily 

broken a linking chain by factors such as heat, pressure, ion charge, organic solvent and 

so on [60]. The PVA hydrogel can be fabricated and crosslinked by the freezing-

thawing methods [40]. The more abundant the PVA hydrogels have crystallites that 

occur between the hydroxyl groups of PVA during the freezing-thawing method, the 

higher the PVA hydrogels have high mechanical strength [61]. But investigating 

different microstructural evaluation as a dose-dependent DPHC contained the PVA 

hydrogels in fig. 12 was that the DPHC was slightly interrupted to perform crystallites 

by interfering with the encounter of hydroxyl groups [62]. The porosity of the PVA 

hydrogel containing DPHC investigated larger comparing PPVA as a dose-dependent 

DPHC for such a reason. The rheological characterization was determined to indicate 

mechanical properties of physically cross-linked hydrogels relating G’ rheological 

value [29]. Rheological properties expectably investigated lower G’ value as a dose-

dependent DPHC due to lager porosity and interruption to perform crystallites. The 

more crosslinking PVA hydrogel was performed, the less water-content PVA hydrogel 
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was investigated [63]. Thus, due to increase space where water can be contained by 

having lager porosity, water swelling ability was improved as a dose-dependent DPHC 

of the PVA hydrogels. Also, the course of degradable ability and chain scission in the 

PVA hydrogel is due to oxidative degradation from the presence of residual oxygen 

[64]. So, gel fraction ability of the PVA hydrogel containing DPHC was investigated 

higher ratio as a dose-dependent DPHC due to have greater effect from increased water 

content. Whereas, organic structure having aromatic ring of phloroglucinol unit has 

good thermal degradation behaviors and flame-retarding performances [65]. Although 

the mechanical properties is lower depending the DPHC amount, the thermal 

degradation ratio was decreased by increasing the amount of DPHC loaded in the PVA 

hydrogels. The DPHC released amounts were increased as a dose-dependent DPHC in 

the PVA hydrogels containing DPHC. So, the PVA hydrogels were controlled amount 

of DPHC needed for wound by measuring amount of DPHC loaded in the PVA 

hydrogels. 

The PVA hydrogels containing DPHC was investigated cytotoxicity and antibacterial 

activity through in vitro test to present possibility prior to apply for the human wound. 

During the skin regeneration process, fibroblasts performed to produce extracellular-

matrix components and stimulate angiogenesis, myo-fibroblast proliferation and 

activation [66]. Keratinocytes are typical cells constituting the epidermis and these 

produce pro-inflammatory mediators to prevent invasion of pathogens [67]. For such a 

reason, The PVA hydrogel containing DPHC was investigated that the hydrogels did 
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not affect fibroblast and keratinocyte that perform many biological functions in the skin 

and blood during the skin regeneration process. Although the hydrogels did not affect 

cells, they affect bacterial grow and death. When the antibacterial effect of the 

hydrogels was estimated by the ASTM E2149 antimicrobial test, the bacterial reduction 

ability of the PVA/DPHC-IV against S. aureus and P. aeruginosa was investigated 

about 99% bacterial reduction related to the released amounts of hydrogels for 360 

minutes.  

In this study, animal experiments were performed to investigate in depth the effect 

and stability of hydrogels. An effect observed in vitro experiment cannot be assured 

that it definitely is observed in vivo experiment. Thus, in vivo experiments were 

performed on genetically similar mouse for human. In the skin, re-epithelialization is 

most important in wound healing process because of covering the wound, restoring 

functions and reconstitution of an epithelium by the migration of epidermal cells [68]. 

As a shown in fig. 18, PVA/DPHC-IV was investigated a rapid re-epithelialization 

effect comparing to the control and PPVA groups. According to previous study, the 

DPHC had anti-inflammatory effect reducing strongly the production of interleukin 6 

(IL-6) through downregulation of the NF-κB and Jak2-STAT5 pathway and 

upregulation of SOCS1 [69]. Also, the DPHC had anti-oxidant effect relating radical 

scavenging activity [70]. The antioxidant activity in wound dressing has been enhanced 

on the wound healing process due to their regulation of the overproduction of ROS as 

inflammatory mediator under pathological conditions. So, the DPHC having anti-
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oxidant and anti-inflammatory activities could enhance the wound healing process by 

controlling inflammation period and regulation of the overproduction of ROS. 

Moreover, PVA/DPHC-IV IV group was investigated to perform rapidly hair follicle 

because the DPHC have effect performing to increase prostaglandin (PG) E2 involved 

in hair growth by stimulating COX expression in keratinocyte [71]. These results 

suggest that the DPHC was applied to the fabricated of PVA hydrogel without loss of 

antimicrobial activity and wound healing activity for use as wound dressing. 
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5. Conclusion 

In this study, we could isolate and purify diphlorethohydroxycarmalol (DPHC), 

phlorotannin compound derived from brown alga Ishige okamurae, by performing 

EtOH extraction, solvent fractionation, HPLC and HPCPC. First of all, the antibacterial 

activity of DPHC has not been revealed until now but this study demonstrates the fact 

that DPHC has antibacterial effect helping wound healing process against 

Staphylococcus aureus, Staphylococcus epidermidis, Candida albicans and 

Pseudomonas aeruginosa from MIC and MBC test. To use wound dressing application 

protecting the wound cites from external factor, polyvinyl alcohol (PVA), 

biocompatible polymer, hydrogel containing DPHC could be fabricated by performing 

freezing-thawing method. Also, PVA/DPHC hydrogels could be demonstrated 

antibacterial ability and wound healing ability by performing microstructural 

evaluation, rheological test, thermogravimetric analysis, swelling test, release test, gel 

fraction test, cytotoxicity test, bacteria-killing test, histological test and wound closure 

test in vivo. Based data in this study, this study can be suggested that PVA/DPHC 

hydrogels have possibility of wound dressing by bio-application. 
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해양에 대한 지식과 인생의 선배로 많은 조언을 주시는 허수진 박사님께 진심을 다해 

감사의 글을 올립니다. 항상 밝은 미소와 위트로 격려하여 주시며, 발표에 대한 조언과 

용기를 심어주신 강도형 박사님께 진심을 다해 감사의 글을 올립니다. 진로의 고민에 대해 

항상 격려와 조언을 주시며 관심과 믿음을 주시는 김길남 박사님께 진심을 다해 감사의 

글을 올립니다. 학회에서 많은 조언과 실험의 팁을 알려주시며 따듯하게 반겨주시는 

이승홍 교수님께 진심을 다해 감사의 글을 올립니다. 

 

실험에 많은 도움을 주시고 고생하신 장유미 선생님, 김보금 선생님께 감사의 인사를 
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사랑하는 ‘실험실원’들께 감사의 글을 올립니다. 조금 더 일찍 태어났더라면 엄청난 
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선생님께 감사의 글을 올립니다. 옆에서 항상 도움을 주는 김태희, 밝고 위트한 김근형, 

얼굴과 다르게 엉뚱한 김세창, 곰 같지만 조신한 조민웅, 우리 귀여운 막둥이 정인혜에게 

감사의 글을 남깁니다. 실험실을 졸업하고 사회에서 헌신중인 박현호, 정민선, 정영동 

선생님께도 감사의 글을 남깁니다. 

마지막으로 가족들께 감사의 글을 올립니다. 언제나, 어디서나, 옆에서 저의 편으로 서서 

지켜봐 주시는 부모님께 정말 감사 드립니다. 부족한 아들에게 항상 용기를 북돋아주시는 

사랑하는 아버지, 김건우께 감사의 글을 올립니다. 항상 걱정해주시며 응석을 받아주시며 

사랑으로 키워주신 사랑하는 어머니, 김노숙께 감사의 글을 올립니다. 그리고 저의 인생의 

멘토이자 롤모델인 사랑하는 누나, 김민정께 감사의 글을 올립니다. 다들 감사드립니다. 

ㅡ 김민성 올림 
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