

Thesis for the Degree of Doctor of Engineering

Molecular studies on marine fish diversity

in Java and Bali, Indonesia

by

Sapto Andriyono

Interdisciplinary Program of Biomedical, Mechanical

and Electrical Engineering

The Graduate School

Pukyong National University

August 2019

Molecular studies on marine fish diversity in Java and Bali, Indonesia

(인도네시아 자바와 발리의 해양 어류 다양성에 관한

분자생물학적 연구)

Advisor: Prof. Hyun-Woo Kim

by

Sapto Andriyono

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Engineering

in Interdisciplinary Program of Biomedical, Mechanical and Electrical Engineering, The graduate School, Pukyong National University

August 2019

Molecular studies on marine fish diversity in Java and Bali, Indonesia

A dissertation by Sapto Andriyono

Approved by:	NAL UNIL
(Chairman) Won Gyu Park	RSIT
(Member) Young-Mog Kim	(Member) Kyeong Dong Park

(Member) Do-Hyung Kim

(Member) Hyun-Woo Kim

August 23, 2019

CONTENTS

Contents	i
List of Figure	iv
List of Table	vi
Abstract	vii
Chapter 1. General Introduction	1
1.1.Introduction	2
1.2.Barcoding of commercial marine Fish	4
1.3.Complete mitochondrial genome	5
1.4. Tropical marine fish biodiversity assessment through environment DNA	
(eDNA) approach	7

a Z	
Chapter 2. Tropical marine fish DNA barcoding to improve the sequence	1
information of partial ribosomal RNA region and tRNA-Valine in the NC	BI
database	9
2.1. Introduction	10
2.2 Materials and Methods	12
2.3 Results	14
2.4 Discussion	20
2.5 Conclusion	27

Chapter 3. Complete mitochondrial genome and characterization of						
gene arrangement of three snappers to improve the GenBank database						
for environmental DNA metabarcoding study	28					
3.1. Introduction	29					
3.2 Materials and Methods	33					
3.2.1 Sample collection and DNA Extraction	33					
3.2.2 Polymerase Chain Reaction and sequencing of PCR products	33					
3.2.3 Next Generation Sequencing data assembly and complete						
mitochondrial genome analysis	35					
3.2.4 Phylogenetic tree analysis	35					
3.3 Results	36					
3.3.1 Gene organization in the mitochondrial DNA	36					
3.3.2 The protein-coding genes	37					
3.3.3 Transfer RNAs and ribosomal RNAs	38					
3.3.4 Non-coding regions	40					
3.3.5 Phylogenetic tree analysis	41					
3.4 Discussion	42					
3.5 Conclusion	44					

environmental DNA (eDNA) metabarcoding analysis	45
4.1. Introduction	46
4.2 Materials and Methods	51
4.2.1 Sample collection and environmental-DNA extraction	51
4.2.2 Construction of library and MiSeq sequencing	52
4.2.3 Bioinformatics analysis of NGS data	53
4.2.4 Statistical analysis in biodiversity indices	54
4.3 Results	54
4.3.1 Physico-chemical parameters	54
4.3.2 Analysis of fish haplotype obtained by MiFish pipeline	55
4.3.3 Marine fish biodiversity in four station	56
4.3.4 Clustering Analysis	60
4.4 Discussion	64
4.5 Conclusion	79
Appendix	80
References	93
Abstract in Korean Language	116

Chapter 4. Diversity studies on marine fish species in Java and Bali by

LIST OF FIGURES

Figure 2.1. Sampling stations in Java and Bali, Indonesia	13
Figure 2.2. The K2P distance Maximum Likelihood tree obtained from the	
COI and ITS sequences generated from 169 fish samples. Each	
color representative of each order. Phylogenetic tree annotation	
using open source in iTOL (<u>https://itol.embl.de/</u>)	16
Figure 2.3. Alignment on 169 ITS sequences of tropical marine fish from	
Indonesia	25
Figure 3.1. Gene map of three snappers in linear format A) L. vitta, B) L.	
fulviflamma, and C) L. carponotatus	37
Figure 3.2. Prediction of tRNA structure using tRNAscan-SE	39
Figure 3.3. Phylogenetic tree of L. vitta, L. fulviflamma, and L. carponotatus	
within the family Lutjanidae	41
Figure 4.1. Distribution of sampling site in East Java and Bali Island,	
Indonesia	50
Figure 4.2. Box plot chart of average read number (Log) of eDNA	
metabarcoding result by MiFish pipeline from four station	56
Figure 4.3. Shannon-Wiener index during January-June 2018 in four	
sampling site	57

Figure 4.4. Proportion of piscine phyla during January-June 2018 from four	
sampling site. SB: South Bali; NB: North Bali; SJ: South Java;	
NJ: North Java	58
Figure 4.5. Venn diagram of species identified in four sampling site	59
Figure 4.6. Bray-Curtis similarity chart based on four sampling station e-	
DNA metabarcoding using Primer®v7. A) Dendrogram of	
similarity B) Non-metric Multidimentional Scaling analysis	61
Figure 4.7. Shade plot of eDNA metabarcoding result based on top 50	
species in four station	62
Figure 4.8. Phylogenetic tree of representative haplotypes in the eDNA	
metabarcoding analysis for the tropical marine fish	64
Figure 4.9. Temperature distribution during January – June 2015. The red	
square is sampling area in east Java and Bali Island.	
Modification from Siregar et al., 2015	66
Figure 4.10. Salinity distribution during January – June 2015. The yellow	
square is sampling area in east Java and Bali Island.	
Modification from Siregar et al., 2015	67

v

LIST OF TABLES

Table 2.1. Species (including order and family name) and GenBank	
accession number of specimens, with gray color shading	
representing the first entries into the GenBank database for the	
ITS gene region	17
Table 3.1. Summary of complete mitochondrial genome of three snappers	
(Lutjanidae)	40
Table 4.1. Geographical coordinate and average value of phisico-	
chemical parameter measurement	55
Table 4.2. Summary of taxonomic assignment of MiSeq read number	56
Table 4.3. Biodiversity indices in four station of Java and Bali Island	57
Table 4.4. Analysis of Similarity (ANOSIM) pairwise test by Primer®v7	60
Table 4.5. The list of Chaetodontidae as coral reef fish indicator	74
Table 4.6. Comparison of taxonomic system within Perciformes in	
Fishbase, WoRMS, and MitoFish Platform	78

Molecular studies on marine fish diversity in Java and Bali, Indonesia

Sapto Andriyono

Interdisciplinary Program of Biomedical, Mechanical and Electrical Engineering, The Graduate School,

Pukyong National University

Abstract

Marine ecosystem reflects a substantial contribution to genetic biodiversity than the freshwater and terrestrial ecosystem. The economic benefit is also generated from the marine ecosystem with the presence of aquatic biota that is used in fisheries and management of this valuable resources. Furthermore, numerous products are also capable of producing other derivatives those are more beneficial for the human being (e.g., for food and medicine) and for industrial purposes. Fish diversity in the specific marine ecosystem can be reflected in the health condition of the marine ecosystem, thus requiring the regular in monitoring and observation. Indonesia is the center of marine biodiversity which espouses with the extraordinary wealth of coral reef ecosystem.

The previous study recorded 2,057 species in the marine ecosystem of Indonesia; then the latest of the FishBase database had been recorded 3,611 species, which confirms that Indonesia is the wealthiest country for coral reef fisheries. Traditionally, for estimating marine biodiversity has some limitations in a particular area, which uses bottom trawls and rotenone poisoning. Then, the lack of local taxonomist may stymic morphological-based species identification, which ubiquitous faces in developing countries. The previous study,

combining between conventional survey and geographical information system (GIS) techniques, have been performed to comprehend fish distribution and spatial analysis.

Presently, a sophisticated method had been developed to monitor biodiversity in aquatic ecosystems through environmental DNA metabarcoding analysis. The extraction and analysis of genetic materials obtained directly from the environment by collecting these living particles as an alternative approach to monitor and analyze marine fish and performed as time and cost-effective survey method can be applied as the alternative method in biodiversity assessment. The accuracy on detection of some endangered species, invasive species, and marine fish distribution was performed by environmental DNA metabarcoding had been performed by numerous researchers. In this research, environmental DNA metabarcoding had been conducted by marine water sample from Java and Bali Island, Indonesia, by the MiFish pipeline.

The environmental DNA analysis in four sampling locations revealed 333 species in 405 representative haplotype (99-100% identity) and 52 putative species (95-98% identity). Alpha biodiversity in Bali, both south and north part, have higher than Java sampling site. The Shannon-Wiener Index and Margalef Index in north Bali are highest. In this study we found the fish species under the order Perciformes are dominat, we identified 295 haplotypes (72.84%) under this order, followed by Clupeiformes 29 haplotypes (7.16%) and Tetaraodontiformes 19 haplotypes (4.69%). The Perciformes most diverse order than others, with 44 families had been identified by eDNA metabarcoding analysis. The coral reefs, seagrass and mangrove ecosystem in both north Bali and south Bali was supported marine biodiversity on the Bali Island. That result revealed that the surrounding Lovina beach in the northern part has higher biodiversity.

In conclusion, tropical marine fish around the Bali strait provides an overview of the

effectiveness and sensitiveness of the method of environmental DNA metabarcoding in collecting primary data about the fish biodiversity of the given area. The next-generation sequencing (NGS) based tropical marine analysis fish will allow us to apply biodiversity information beside improvement of the GenBank database, especially in cryptic species for coral-reef fish species. Therefore, proper monitoring and regular survey should be taken, which may increase the number of marine fish detection along this region. Biodiversity study in this region is very crucial for the policy makers in sustainable marine water resources management.

Chapter 1 General introduction

1.1 Introduction

Indonesia has a significantly large sea water with approximately seventeenthousand islands scattered in the archipelago region. Being a country of islands, the surrounding marine water has great economic importance of both biological and non-biological values in the maritime sector (Nuryadin et al., 2016). In the biological aspect, Indonesia includes The Indo-Malay-Philippines Archipelago (IMPA) and or Indo-Austalia Archipelago (IAA) has long been considered to be highest marine biodiversity, supporting megabiodiversity (Carpenter and Springer, 2005; Hutama et al., 2017; Roberts et al., 2002). Distributed in tropical regions which have geographic complexity in nearly 2,000 islands, Indonesia is divided into three parts, that includes Sundaland in the West, Wallacea in the middle and Sahul in the East (Hutama et al., 2017).

The Indo-West Pacific (IWP) is one of the centers of maximum marine biodiversity, where many species in this region overlapped by their distribution (Hoeksema, 2007). The Sundaland has an essential contribution to genetic biodiversity even though high exploitation by human also occurred here. The Economic benefits generated from marine ecosystem with the presence of aquatic biota used in fisheries and numerous products that are also capable for producing other important derivatives (Costanza, 1999; FAO, 2016) those are more beneficial for human being (e.g., for food, medicine etc.) and for the industrial purposes (Kadam and Prabhasankar, 2010; Lordan et al., 2011; Ngo et al., 2011). The health of the marine ecosystem can be monitored by estimating the fish diversity; but unfortunately, the presence of these marine fishes subjected to considerable pressure, and the situation has decreased due to excessive human exploitation (Collette et al., 2011; Hutchings, 2000; Jackson et al., 2001; Pauly et al., 2002).

The bottom trawls and rotenone poisoning are a common method for estimating marine biodiversity, which is very limited to certain areas (Lang and Baldwin, 1996). Then, direct observation of the specimen facing difficulties due to several reasons such as anatomic and morphometric analysis from the morphological feature (Teletchea, 2009), and also lack of local taxonomist may stymie morphological-based in fish identification (Hopkins and Freckleton, 2002). However, the conventional method of identification is still carried out even though there are difficulties in some fish groups, both commercial and non-commercial fish groups (Thomsen et al., 2012a), incomplete checklist (Love et al., 2010; Rogers and Ellis, 2000) and leaving databases flawed with errors (Daan, 2001). Currently, the molecular approach is applied in ecology including implementing biodiversity assessment in marine and freshwater ecosystems (de Vargas et al., 2002; Huete-Pérez and Quezada, 2013; Thomsen et al., 2012b).

In this research, the molecular approach has been carried out to assess the marine fish biodiversity in Java and Bali, where the biogeographical similarities of these two islands were clustered into the Sundaland region. This research has been divided into three stages. Initial research focuses on the identification and barcoding of several Indonesian marine fish species that are focused on the accuracy of molecular identification in the Internal Transcribed Spacer (ITS) region and were confirmed by the cytochrome c oxidase subunit I (COI) region. Second, to identify tropical marine fish species, which has not been yet registered their complete mitochondrial DNA

sequences in the GenBank database. In this study, we tried to improve the genetic information deposited in an open source system of the National Center for Biotechnology Information (NCBI). The final stage of this research was the application of environmental DNA metabarcoding approach from seawater samples in Indonesian waters. The steps of the study described in the next sub-chapter.

1.2 Barcoding of Commercial Marine Fish

DNA barcoding, a currently accepted method for identification of terrestrial and aquatic animals and plants, has attracted much attention and numerous advantages. The accuracy of DNA-based identification is nearly 100%, which indicates that this method can prove the identification of specimens under different environmental conditions (Meyer and Paulay, 2005). Identification based on DNA barcode has been accepted globally with various advantages; such as a very simple and useful universal tool that includes all the animals both in the form of fresh and processed products samples (Giusti et al., 2017; Pepe et al., 2007). The barcoding system uses sequences that have a diversity in the single region of mitochondrial DNA, cytochrome c subunit I gene (COI), and then deposited to the GenBank database. The GenBank has become central to deposit diverse taxa from all parts of the world. With the increase of the molecular database, scientists have demonstrated their effectiveness in conducting DNA barcoding from freshwater fish to deep-sea fish (Lakra et al., 2011; Ward et al., 2005). For the specific purposes, beside COI gene region, the ITS fragment is located from small to large subunits of ribosomal RNA and has potentially magnified differences between species

due to the fast rate of evolution (Chow et al., 2009). Recently, ITS region has been adopted for the environmental DNA (eDNA) analysis (Minamoto et al., 2017). In this research, we performed the molecular identification of marine fish species from six sampling sites (Jawa and Bali Island) with COI and ITS gene region to improve the information in the GenBank database, especially on the ITS sequences of Indonesian marine fish species.

1.3 Complete Mitochondrial Genome

Besides the COI and *cyt-b* region, 12S ribosomal RNA is used for identification of species (Jordan et al., 2010). However, there are still many limitations and weaknesses of each fragment. Therefore, some researchers are using other regions of mitochondrial DNA sequence, such as ND1 and D-loop (control region) to conduct the studies (Pourkazemi et al., 1999; Verspoor et al., 1999). Several studies have been carried out for mapping of the complete mitochondrial genome to improve the accuracy in molecular studies.

In vertebrates, the mitochondrial genome is maternally inherited, considered as conservative or lacks recombination, and evolves rapidly. Research on several complete mitochondrial genomes have been able to precisely genes mapping on mammalian (Anderson et al., 1981; Anderson et al., 1982), lampreys (Lee and Kocher, 1995), amphibian (Macey et al., 1997), reptiles (Kumazawa and Endo, 2004; Macey et al., 2004), birds (Quinn and Wilson, 1993) and marsupials (Janke et al., 1994). Additionally, it is found that there is no deviation in the seven species of bony fishes, namely *Crossostoma lacustre* (Tzeng et al., 1992), *Cyprinus carpio* (Chang et al., 1994), *Oncorhynchus mykiss* (Zardoya et al., 1995), *Gadus morhua* (Johansen and

Bakke, 1996), *Protopterus dolloi* (Zardoya and Meyer, 1996), *Polypterus ornatipinnis* (Noack et al., 1996), and *Latimeria menadoensis* (Inoue et al., 2005).

Currently, technology in sequencing is becoming sophisticated and advanced, which is marked by many complete mitochondrial genome sequences are deposited in the GenBank database. Up to the year 2011, based on NCBI Reference Sequences (RefSeq) release-49, it was reported that 16,248 organisms or 18,236,994 sequences had been recorded which increased by 49.7% in the number of organisms and 14.5% in the number of sequences recorded (Pruitt et al., 2011).

The complete mitochondrial genomes are the primary data in genetic information in both plants and animals. This genetic information can be consequently used to further study in genome evolution, genetic structure, phylogenetic relationship, phylogeography, and population genetics (Boore et al., 2004; Ingman and Gyllensten, 2006; Macey et al., 2004). The mitochondrial genome supplies various parts of some protein machinery that is necessary for oxidative phosphorylation by utilizing a series of five multiple-subunit enzymes located within the mitochondrial inner membrane. The mitochondrial DNA of most metazoan species is predominantly inherited maternally (Giles et al., 1980). This clonal inheritance, coupled with a substitution rate in vertebrates is typically 5-10 times more than that of nuclear DNA (Brown et al., 1979). It has made mitochondria an essential source of DNA polymorphism information for the study of genetic population among the broad range of species including fish. In this study, we performed tree Lutjanid species (*Lutjanus vitta, Lutjanus fulviflamma*, and *Lutjanus*

carponotatus) complete mitochondrial genome from Indonesian water.

1.4 Tropical marine fish biodiversity assessment through environment DNA (eDNA) approach

Marine ecosystems make a considerable contribution to biodiversity value (Nielsen, 2012). Furthermore, the economic benefit is also generated from marine ecosystems with the presence of aquatic biota that is used in fisheries and numerous products that are also capable of producing many derivative products (Costanza, 1999; FAO, 2016). These are very beneficial for humans as well as for food, medicine, and other industries (Kadam and Prabhasankar, 2010; Lordan et al., 2011; Ngo et al., 2011).

The current health of the marine ecosystem is monitored by estimating fish biodiversity (Bremner et al., 2003). But unfortunately, the presence of these marine fishes is subjected to considerable pressure, and the condition has been decreased due to the excessive human exploitation (Collette et al., 2011; Hutchings, 2000; Jackson et al., 2001; Pauly et al., 2002). The methods commonly used for estimating marine biodiversity is by a bottom trawls and rotenone poisoning, which is very limited to certain areas (Lang and Baldwin, 1996). At present, the rapid development of technology has also influenced the development of the molecular field. Molecular identification at the species level is experiencing rapid growth. However, the traditional method of identification is still carried out even though there are difficulties in both non-commercial and commercial fish groups (Thomsen et al., 2012a) due to an incomplete checklist (Love et al., 2010; Rogers and Ellis, 2000) and leaving databases flawed with errors (Daan, 2001).

Nowadays, the extraction and analysis of genetic materials are obtained directly from the environment by collecting these living particles as an alternative approach to monitoring marine fish (Taberlet et al., 2012). This approach is first carried out on terrestrial sediment samples that can reveal mammalian, bird, and plant ecosystems (Willerslev et al., 2003) which are extinct and still exist today. Furthermore, the approach successfully revealed information on various taxa, habitats, and weather conditions (Anderson-Carpenter et al., 2011; Taberlet et al., 2012; Willerslev et al., 2004). In this research, we have collected marine water samples from the Java and Bali Islands to identify the biodiversity of marine species in this area. The environmental DNA approach for fish biodiversity study mainly depends on the amplification of sequences of the target gene by PCR, here we used the universal MiFish primer set targeting the mitochondrial 12S rRNA gene (163-185 bp) because this gene contains sufficient information to identify fishes up to species level (Miya et al., 2015a). To our comprehension, we are conducting the environmental DNA metabarcoding approach for the first time by using the MiFish primer to study the marine fish biodiversity in the Indonesian waters. From this research, we found that the MiFish primer set effectively amplified sequences and in most cases these sequences able to differentiate up to the species level.

Chapter 2

Tropical marine fish DNA barcoding to improve the sequence information of partial ribosomal RNA region and tRNA-Valine in the NCBI database

2.1 Introduction

The DNA barcoding is currently widely accepted methods for identification of terrestrial and aquatic animals, and plants have been attracted much attention and numerous advantages. The accuracy of DNA-base identification is near 100% accurate, that indicating this method can able to prove in the identification of specimens under different environmental conditions (Meyer and Paulay, 2005). Identification based on DNA barcode has been agreed globally with various advantages possessed it ss very simple and uses as a universal tool that includes all the animals both in the fresh samples and or processed products (Giusti et al., 2017; Pepe et al., 2007). This barcoding system uses sequences that have diversity in a single region of mitochondrial DNA cytochrome c subunit I gene (COI) and deposited to the GenBank database as central bioinformatics. Scientists have demonstrated their effectiveness in conducting DNA barcoding in freshwater fish and deep-sea fish (Lakra et al., 2011; Ward et al., 2005). Beside COI gene, the other regions for DNA barcoding are 12S and 16S rRNA (Cawthorn et al., 2012), cytochrome b (Sevilla et al., 2007), NADH-5 (Johnson and O'Brien, 1997) and control region (Mitchell and Hellberg, 2016). The Internal transcribed spacer (ITS) fragment is another candidate for DNA barcoding, which has some advantages on delimitation indicator by genetic distance measurement in fungi (Del-Prado et al., 2010) and potentially magnified differences

between species due to faster evolution (Chow et al., 2009). The ITS region is located from the small subunit (SSU) to the large subunit (LSU) of ribosomal RNA and or in another word, it is partial 12S and 16S rRNA including tRNA-valine, which has been used in this study. Recently, the shorth fragment in SSU to LSU was adopted for the environmental DNA (eDNA) analysis (Yamamoto et al., 2017).

The goal of this research is to improve the DNA barcode database for the commercial fish species inhabiting in the tropical coastal and offshore waters around the Java and Bali Islands, Indonesia, which would be useful data for their further molecular analysis. The study area has a high biodiversity potential but very vulnerable due to the many pressures that exist. The increasing population in Java Island causes changes in the land conversions, that impact on changes in natural biodiversity structures in both land, estuary and marine ecosystems. The marine ecosystem in Java Island influenced by two oceanic ecosystems, Java sea in the north and the Indian Ocean in the south (Sharp, 1996). The uniqueness of the two ecosystems makes Java island fascinating characteristics. Compare to the other nation in the Indian Ocean, Indonesia has about 3,215 fishes species, and it is the highest in the number of species than other countries (Wafar et al., 2011). From this study, total of 169 commercial fish specimens have been obtained and their DNA sequences deposited in the GenBank database. To be applicable for both typical

barcoding method and recently adopted NGS analysis, we amplified and used both the typical COI region and Internal transcribed spacer (ITS) region.

2.2 Materials and Methods

Fish samples have been collected from the six stations of Java Island and one sampling station in the Bali Island (Figure 1-1). In Java Island, sample has been taken from the Banten 6°0′50.00″S 106°10′21.00″E (Banten Province), Pelabuhanratu 6°59′20,92″S 106°32′29,91E (West Jawa Province), Pekalongan 6°51′32,10″S 109°41′09,52″E (Central Jawa Province), Malang 8°26′05,65″S 112°40′55,31″E, Gresik 6°52′56,65″S 112°12′15.87″E and Banyuwangi 8°12′07,52″S 114°23′07,18″E (East Jawa Province), and Denpasar 8°45′23″S 115°10′05,68″E (Bali Province). The three sampling sites (Malang, Pelabuhan Ratu, and Bali) are representative of the south coast of Jawa, and another site is the representative of the northern coast of Jawa (DJPT, 2011). The samples have been collected from the local traditional fish markets which were in dead condition upon purchasing time, and no specific permission was required for this study.

Figure 2.1. Sampling stations in Java and Bali, Indonesia

Two sets of universal fish primer targeting the cytochrome c oxidase sub-unit I (COI) region, BCL-BCH (Baldwin et al., 2009; Handy et al., 2011) and ITS primer (Forward F2 5'-CCM YCT AGA GGA GCC TGT YCT RDA A-3'-Reverse R1 5'-CAT GAT GCA AAA GGT AC-3') were used to obtain the partial sequences of each gene, respectively. The ITS gene is targeting around 600 bp sequence. Both the PCR mixture (20μ L) contained 11.2 μ L ultra-pure water, 1 μ L of forward and reversed primer (0.5 μ M), 0.2 μ L Ex Taq DNA polymerase (TaKaRa, Japan), 2 μ L 10X ExTag Buffer, 2 μ L dNTPs (1 μ M, TaKaRa, Japan), and 2 μ L genomic DNA as template. The PCR condition was carried out under the following setting: 95°C for 5 min in initial denaturation, followed by denaturation at 95°C for 30 sec in 40 cycles, 50°C for 30 sec in annealing and 72°C for 45 sec in extension step, and final extension at 72°C

for 5 min. The PCR products were then run in the 1.5% agarose gel electrophoresis and cut the target area from the gel (~600 for both COI and ITS). The gel was purified with the AccuPrep® Gel purification kit (Bioneer, Korea). All sequences were aligned and submitted to the GenBank (Table 2). The pairwise evolutionary distance among the family was determined by Kimura 2-Parameter method. The Maximum Likelihood (ML) tree was constructed, and 1000 bootstrap analysis was carried by Mega 7 (Kumar et al., 2016).

2.3 Results

A total of 169 (COI and ITS) sequences were generated from 169 fish samples representing 136 genera, 50 families, and 12 orders (Table 2.1). The common name, taxonomic assignment, as well as GenBank accession number for all sequences, are shown in Table 2. The new mitochondrial DNA sequences from ITS region were generated for 78 (46.15) of tropical marine commercial fish species from Java and Bali, Indonesia those were registered in the GenBank database. Direct sequencing of the COI gene and ITS gene region produced more than 500bp nucleotide per taxon (607bp for COI and 629bp for ITS region). Un-ambiguity and simplicity were observed among all the sequences, and no stop codon, deletion and insertion were observed in all amplified sequences. The nucleotide frequencies of COI sequences are 29.6%

T(U), 23.9% A, 28.7% C, and 17.8% G than ITS region are 19.4% T(U), 34.7% A, 25% C, and 20.9% G. The average of transitional pairs (si = 62.8) were higher than average of transversion pairs (sv = 37.2), with average ratio is 1.69. The phylogenetic trees were constructed both for COI and ITS sequences of commercial fish species (Figure 2.2), then average K2P distance within taxonomic levels measured only for COI sequences is 0.245.

Figure 2.2. The K2P distance Maximum Likelihood tree obtained from the a) COI and b) ITS sequences generated from 169 fish samples. Each color representative of each order. Phylogenetic tree annotation using open source in iTOL (https://itol.embl.de/)

Table 2.1. Species (including Order and Family name) and GenBank accession number of specimens, with gray color shading representing the first entries into the GenBank database for the ITS gene region.

		<i>a</i> .	<i>a</i> v	Habitat	GenBank Accession no.	GenBank	accession no.
Order	Family	Species	Common Name	Distribution	for confirmation	COI gene	ITS region
Perciformes	Gerreidae	Gerres erythrourus	Deep-bodied mojarra	Indo-West Pacific	KF714946	MH085827	MH085661
		Gerres filamentosus	Whipfin silver-biddy	Indo Pacific	KF714948	MH085819	MH085624
		Gerres filamentosus			KF714948	MH085820	MH085625
Perciformes	Serranidae	Epinephelus merra	Honeycomb grouper	Indo Pacific	AP005991	MH085799	MH085579
		Epinephelus ongus	White-streaked	Indo-West Pacific	KU668638	MH085802	MH085585
		Epinephelus poecilonotus	Dot-dash grouper	Indo-West Pacific	KU722933	MH085803	MH190799
		Epinephelus coioides	Orange-spotted	Indo-West Pacific	KY849518	MH085801	MH085748
		Epinephelus coioides	grouper		KY849518	MH085800	MH085641
		Epinephelus areolatus	Areolate grouper	Indo Pacific	KU668623	MH190817	MH085713
		Cephalopholis miniata	Coral hind	Indo Pacific	KU668646	MH085805	MH085601
		Cephalopholis sonnerati	Tomato hind	Indo Pacific	KU668634	MH085806	MH190804
		Cephalopholis	Bluespotted hind	Western Pacific	KU668647	MH085804	MH085580
Perciformes	Mullidae	Parupeneus heptacanthus	Cinnabar goatfish	Indo-West Pacific	KJ202184	MH085847	MH085602
		Upeneus sulphureus	Sulphur goatfish	Indo-West Pacific	KP194654	MH085851	MH085617
		Upeneus margarethae	Margaretha's goatfish	Indian Ocean	KC147801	MH085845	MH085724
Perciformes	Scaridae	Scarus vetula	Queen parrotfish	Western Central	FJ584083	MH085809	MH085611
		Scarus niger	Dusky parrotfish	Indo Pacific	KP194654	MH085810	MH085681
Perciformes	Haemulidae	Pomadasys kaakan	avelin grunter	Indo-West Pacific	HQ676796	MH085852	MH085623
	/	Pomadasys hasta	Saddle grunt	Indo-West Pacific	KM522836	MH085853	MH190798
		Diagramma picta	Painted sweetlips	Indo-West Pacific	KF009586	MH085904	MH085606
		Diagramma picta			KJ202150	MH085903	MH085594
	15	Plectorhinchus orientalis	Indian Ocean oriental	Indo-West Pacific	HQ676789	MH085905	MH085596
Perciformes	Drepanidae	Drepane punctata	Spotted sicklefish	Indo-West Pacific	KM273123	MH085841	MH085677
		Drepane punctata			KM079332	MH085842	MH085717
Perciformes	Mugilidae	Moolgarda engeli	Kanda	Indo Pacific	JQ431912	MH085787	MH085620
		Liza macrolepis	Largescale mullet	Indo Pacific	KP128677	MH085900	MH085614
Perciformes	Labridae	Choerodon anchorago	Orange-dotted tuskfish	Indo-West Pacific	KF714916	MH085825	MH085607
		Cheilinus fasciatus	Redbreasted wrasse	Indo Pacific	KF809396	MH085789	MH085608
Perciformes	Acanthurida e	Acanthurus bariene	Black-spot surgeonfish	Indo-West Pacific	KF009560	MH085850	MH085682
Perciformes	Pomacanthi	Pomacanthus annularis	Bluering angelfish	Indo-West Pacific	FJ583876	MH085785	MH085679
	uae	Pomacanthus	Semicircle angelfish	Indo-West Pacific	FJ583886	MH085786	MH085680
Perciformes	Latidae	Psammoperca waigiensis	Waigieu seaperch	Indo-West Pacific	KM079334	MH085775	MH085600
Perciformes	Sphyraenida	Sphyraena putnamae	Sawtooth barracuda	Indo-West Pacific	KC970510	MH085780	MH085664
	e	Sphyraena putnamae			KC970510	MH085781	MH085673
Perciformes	Polynemida	Lentomelanosoma indicum	Indian threadfin	Indo-West Pacific	ME281369	MH085755	MH085650
referiornies	e	Eleutheronema	E	Indo-West Facilie	WE 201307	MI 1005754	MI1085630
D :::	B F - 1	tetradactylum	Fourtinger threadfin	Indo-West Pacific	JF513842	MH085754	MH085639
Perciformes	Balistidae	Sufflamen chrysopterum	Halfmoon triggerfish	Indo-West Pacific	FJ584131	MH085791	MH190805
D :::	Terapontida	Cantniaermis maculata	Rough triggertish	western Pacific	AP009206	MH085790	MH085689
Perciformes	e	Terapon jarbua	Jarbua terapon	Indo Pacific	K1231928	MH085844	MH085657
		Terapon jarbua			KP267659	MH190821	MH086630
		Terapon jarbua			KF999839	MH190822	MH087631
Perciformes	Ephippidae	Platax teira	Longfin batfish	Indo-West Pacific	KJ668153	MH085838	MH085/16
rerenormes	Goondae	A centroachive centro	Tropical sand coby	Indo-West Pasific	K11602204	MH085762	MH085624
		Acentrogobius caninus	Tropical said goby	Indo-west Pacific	KU692204	MH085762	MH085034
	1.0-	Airess o d			A0072204	AII 100J /0J	1111003/4/
able 2	2.1. Cor	itinued					
Order	Family	Snories	Common Name	Habitat	GenBank Accession no.	GenBank access	ion no.
Juci	ranniy	species	Common Manie	Distribution	for confirmation	COI	ITS

Perciformes Gobiic	ae Boleophthalmus boddarti	Boddart's goggle-eyed goby	Indo-West Pacific	KJ013053	MH085792	MH085737
	Ophiocara porocephala	Northern mud gudgeon	Indo-West Pacific	JN021236	MH085797	MH085749
Perciformes Sillagi	nidae Sillago sihama	Silver sillago	Indo-West Pacific	KP112423	MH085788	MH085649
Perciformes Remit	oterida Nemipterus marginatus	Red filament threadfin bream	Western Pacific	KM522839	MH085795	MH085699
	Nemipterus marginatus	orean		JQ681506	MH085796	MH085723
	Pentapodus bifasciatus	White-shouldered	Western Central	KY362916	MH085836	MH085605
Perciformes Trichi	uridae Trichiurus lepturus	Largehead hairtail	Tropical and	KP112479	MH085794	MH085633
	Trichiurus lepturus		subtropical	KP112482	MH085793	MH085725
Perciformes Scomb	oridae Scomber australasicus	Blue mackerel	Indo-West Pacific	KX781882	MH085913	MH085694
	Scomber australasicus			AB102725	MH085914	MH085586
	Scomber australasicus			AB102725	MH085915	MH085745
	Rastrelliger kanagurta	Indian mackerel	Indo-West Pacific	AP012948	MH085911	MH085655
	Sarda orientalis	Striped bonito	Indo Pacific	KX768133	MH085916	MH085692
	Thunnus albacares	Yellowfin tuna	Worldwide	KY984984	MH085917	MH085731
	Euthynnus affinis	Kawakawa	Indo-West Pacific	KX768124	MH085918	MH085691
	Katsuwonus pelamis	Skipjack tuna	Worldwide	KF597042	MH085920	MH085683
	Auxis rochei	Bullet tuna	Atlantic, Indian and Pacific (Western) Atlantic Indian and	KT003827	MH085919	MH085588
	Auxis thazard	Frigate tuna	Pacific (Western central)	KM055419	MH190813	MH190806
	Scomberomorus guttatus	Indo-Pacific king mackerel	Indo-West Pacific	EU871700	MH190912	MH085729
Perciformes Lethri	nidae Lethrinus ornatus	Ornate emperor	Indo-West Pacific	KM079313	MH085817	MH190797
	Lethrinus lentjan	Pink ear emperor	Indo-West Pacific	KF714957	MH085818	MH085612
	Lethrinus mahsena	Sky emperor	Indian Ocean	JF952782	MH085816	MH085728
	Lethrinus semicinctus	Black blotch emperor	Indo-West Pacific	KU944049	MH085815	MH085597
Perciformes Sigani	dae Siganus sutor	Shoemaker spinefoot	Indian Ocean, Indonesia Eastern Indian	KT997958	MH085907	MH085610
	Siganus guttatus	Orange-spotted spinefoot	Ocean and Western Pacific	JN021251	MH085909	MH085578
	Siganus vermiculatus	Vermiculated spinefoot	Indo-West Pacific	KF715018	MH085910	MH085632
	Siganus javus	Streaked spinefoot	Indo Pacific	KT997929	MH085908	MH085658
	Siganus javus			KT997929	MH190823	MH085744
Perciformes Apogo	nidae Archamia bleekeri	Gon's cardinalfish	Indo-West Pacific	AB890029	MH085835	MH085635
	Jaydia novaeguinea		Indo Pacific	KX281185	MH085807	MH085628
Priaca	Jaydia truncata	Flagfin cardinalfish	Indo Pacific	KY371151	MH085808	MH085707
Perciformes e	Priacanthus tayenus	Purple-spotted bigeye	Indo-West Pacific	KT985639	MH085758	MH085654
	Priacanthus tayenus	< I		KT985639	MH085759	MH085676
	Priacanthus macracanthus	Red bigeye	Western Pacific	JQ691316	MH085757	MH085589
Perciformes Sciaer	iidae Otolithes ruber	Tigertooth croaker	Indo-West Pacific	KX778043	MH085760	MH085637
Sector	Nibea soldado	Soldier croaker	Indo-West Pacific	KP722746	MH085761	MH085642
Perciformes ae	Scatophagus argus	Spotted scat	Indo Pacific	KU234319	MH085813	MH085618
	Scatophagus argus			KU234319	MH085814	MH085739
Perciformes Amba	ssidae Ambassis sp.	Glassy fish	Indo-Pacific	KX144849	MH085822	MH085636
Perciformes Caesio	onidae Caesio cuning	fusilier yellowtail	Indo-West Pacific	KX866814	MH085863	MH085726
	Caesio cuning			KP194254	MH085864	MH085653
	Caesio cuning			KF809392	MH085865	MH085710
Perciformes Lutjan	idae Lutjanus erythropterus	Crimson snapper	Indo-West Pacific	KP939271	MH085857	MH085727
	Lutjanus erythropterus			KP939271	MH085858	MH085598
	Lutjanus erythropterus			KP939271	MH085859	MH085669
	Lutjanus gibbus	Humpback red snapper	Indo Pacific	MF409615	MH190812	MH085686

Table 2.1. Continued

Order						Accession no	GenBank accession no.		
	Family	Species	Common Name	Habitat Distribution	for confirmation	соі	ITS		
	Perciformes	Lutjanidae	Lutjanus argentimaculatus	Mangrove red snapper	Indo-West Pacific	JN182927	MH085861	MH085613	
			Lutjanus johnii	John's snapper	Indo-West Pacific	KJ013052	MH085860	MH085646	
			Lutjanus bengalensis	Bengal snapper	Indo-West Pacific	FJ171339	MH085862	MH085668	
			Lutjanus carponotatus	Spanish flag snapper	Indo-West Pacific	KP194641	MH085868	MH085604	

		Lutjanus indicus		Indian Ocean	KF830880	MH085869	MH085621
		Lutjanus fulviflamma	Dory snapper	Indo Pacific	MG002617	MH085867	MH085603
		Lutjanus vitta	Brownstripe red	Indo-West Pacific	EU600101	MH085866	MH085712
		Lutjanus russellii	Russell's snapper	Western Pacific	KJ202173	MH085870	MH085741
		Lutjanus notatus	Bluestriped snapper	Western Indian Ocean	JF483844	MH190812	MH085688
		Scolopsis ciliata	Saw-jawed monocle bream	Indo-West Pacific	KY362946	MH085856	MH085685
		Scolopsis affinis	Peters' monocle bream	Western Pacific	KY362936	MH085837	MH085592
		Symphorichthys spilurus	Sailfin snapper	Western Pacific	FJ584135	MH085855	MH085582
Perciformes	Carangidae	Scomberoides tala	Barred queenfish	Indo-West Pacific	JX261091	MH085839	MH085615
		Scomberoides commersonnianus	Talang queenfish	Indo-West Pacific	JX261017	MH085840	MH085638
		Selaroides leptolepis	Yellowstripe scad	Indo-West Pacific	KM522839	MH085874	MH085700
		Selaroides leptolepis			KM522839	MH085875	MH190807
		Selaroides leptolepis			KM522839	MH085876	MH085714
		Selaroides leptolepis			KM522839	MH085877	MH085732
		Atule mate	Yellowtail scad	Indo Pacific	KU170601	MH085895	MH085672
		Atule mate			KU170601	MH190815	MH085701
		Atule mate			KU170601	MH085896	MH085719
		Selar crumenophthalmus	Bigeye scad	Indo Pacific, East Africa	KY984985	MH085872	MH085591
		Selar crumenophthalmus			KJ984985	MH085873	MH085702
		Selar boops	Oxeye scad	Pacific Ocean	KU535571	MH085871	MH085660
		Decapterus macarellus	Mackerel scad	Western Atlantic, Global	KY371379	MH085882	MH085695
		Decapterus macarellus			KM986880	MH085883	MH085587
		Decapterus macarellus			KM986880	MH085884	MH085715
	/	Decapterus maruadsi	Japanese scad	Indo-West Pacific	KX610924	MH085880	MH085675
	10	Decapterus macrosoma	Shortfin scad	Indo Pacific, Southeast Atlantic	KF841444	MH085881	MH085743
		Alepes vari	Herring scad	Indo-West Pacific	KF714896	MH085897	MH085659
		Alepes melanoptera	Blackfin scad	Indo Pacific	HQ560986	MH085898	MH085704
		Alectis indicus	Indian threadfish	Indo Pacific	NC037050	MH085892	MH085678
		Parastromateus niger	Black pomfret	Indo-West Pacific	KJ192332	MH085885	MH085643
		Parastromateus niger			JX261055	MH190818	MH085718
		Carangoides malabaricus	Malabar trevally	Indo-West Pacific	KJ174514	MH085879	MH085746
	1	Carangoides malabaricus			FJ237668	MH085899	MH085584
		Carangoides armatus	Longfin trevally	Indo-West Pacific	AP004444	MH085893	MH085698
		Carangoides chrysophrys	Longnose trevally	Indo Pacific	HQ560957	MH085878	MH085626
		Caranx sexfasciatus	Bigeye trevally	Indo Pacific	KT805946	MH085890	MH085583
		Caranx sexfasciatus	10	-	KJ202140	MH085891	MH190809
		Megalaspis cordyla	Torpedo scad	Indo-West Pacific	KM522836	MH085886	MH190798
		Megalaspis cordyla	2 4		KM522836	MH085887	MH085705
		Megalaspis cordyla			KM522836	MH085888	MH085706
		Megalaspis cordyla			KM522836	MH085889	MH085647
		Atronus atronos	Cleftbelly trevally	Indo-West Pacific	HO560973	MH085894	MH085738

Table 2.1. Continued

Order	Family	Species	Common Name	Habitat Distribution	GenBank Accession no. for confirmation	GenBank accession no.	
						COI	ITS
Perciformes	Coryphaenidae	Coryphaena hippurus	Common dolphinfish	Atlantic, Indian and Pacific	KF814117	MH085770	MH085599
		Coryphaena hippurus			AP009206	MH085771	MH085696
	Pinguipedidae	Parapercis hexophtalma	Speckled sandperch	Indo Pacific	MF123971	MH085798	MH085687
	Leiognathidae	Gazza achlamys	Smalltoothed ponyfish	Indo-West Pacific	HQ993142	MH085772	MH085663
		Photopectoralis bindus	Orangefin ponyfish	Indo-West Pacific	KY849543	MH085768	MH085674
		Leiognathus equulus	Common ponyfish	Indo-West Pacific	KF714954	MH085773	MH085622
	Eleotridae	Butis amboinensis	Olive flathead- gudgeon	Eastern Indian Ocean	KU692386	MH085812	MH085619
	Lactariidae	Lactarius lactarius	False trevally	Indo-West Pacific	KU535572	MH085843	MH085722

Clupeiforme r	Clupeidae	Hilsa kelee	Kelee shad	Indo-West Pacific	KX786662	MH085830	MH085640
		Sardinella jussieu	Mauritian sardinella	Western Indian Ocean, Vietnam	KY849547	MH085833	MH085833
		Sardinella jussieu			KY849547	MH085832	MH085721
		Sardinella jussieu			KY849547	MH085834	MH085733
		Sardinella jussieu			KY849547	MH085831	MH085734
		Sardinella melanura	Blacktip sardinella	Indo-West Pacific	KX223945	MH085828	MH085627
		Anodontostoma chacunda	Chacunda gizzard shad	Indo-West Pacific	KC466691	MH085829	MH085652
	Eugraulidae	Thryssa kammalensis	Kammal thryssa	Indo-West Pacific	KX223961	MH085765	MH085662
		Thryssa kammalensis			KY849558	MH085766	MH190808
		Thryssa kammalensis			KY849558	MH085767	MH085740
Scorphaenif ormes	Platycephalidae	Platycephalus indicus	Bartail flathead	Indo-West Pacific	KY463442	MH085821	MH085616
		Inegocia japonica	Japanese flathead	Indo-West Pacific	JX488247	MH085779	MH085708
Pleuronectif ormes	Cynoglossidae	Cynoglossus itinus	Speckled tongue sole	Northwest Pacific	KP112240	MH085750	MH085648
Beryciforme s	Holocentridae	Sargocentron diadema	Crown squirrelfish	Indo Pacific	JF494418	MH085901	MH085645
		Sargocentron rubrum	Redcoat	Indo-West Pacific	EU600149	MH190810	MH085651
Siluriformes	Ariidae	Plicofollis argyropleuron	Longsnouted catfish	Indo-West Pacific	KY849545	MH085823	MH085644
		Netuma thalassina	Giant catfish	Indo-West Pacific	KC569771	MH085824	MH085690
Beloniforme s	Belonidae	Tylosurus acus	Agujon needlefish	Western Atlantic	KC970513	MH085782	MH085593
		Tylosurus acus			KC970513	MH085783	MH085684
	Hemiramphidae	Hemiramphus far	Black-barred halfbeak	Indo-West Pacific	KF714951	MH085848	MH085581
Anguillifor mes	Congridae	Conger japonicus	Beach conger	Northwest Pacific	EF607455	MH085764	MH190801
Tetraodontif ormes	Tetraodontidae	Arothron stellatus	Stellate puffer	Indo Pacific	KC409389	MH085811	MH190803
Aulopiform es	Synodontidae	Harpadon nehereus	Bombay-duck	Indo-West Pacific	JX534239	MH085769	MH085656
Myliobatifo rmes	Dasyatidae	Dasyatis zugei	Pale-edged stingray	Indo-West Pacific	KM073022	MH085752	MH190802
		Neotrygon kuhlii	Blue-spotted stingray	Southwest Pacific	KU498012	MH085753	MH085665
Carcharhinif ormes	Carcharhinidae	Rhizoprionodon oligolinx	Grey sharpnose shark	Indo-West Pacific	KM973188	MH085756	MH085709

2.4 Discussion

The molecular approach dependent initial fishery assessment is the DNA barcoding for the commercial marine fish species in Java and Bali water, and it should be developed by the regular evaluation of each region and provinces of Indonesia. This research exceedingly useful and improve current biodiversity information regarding the DNA barcoding and species richness exploited by the Indonesian fishery. This study discussed the results and implications for the biodiversity of commercial marine fish species and then offered the recommendations for further research in the surrounding marine ecosystem.

The DNA barcoding is a part of the effort to gather genetic information to expand the database of Indonesian marine fish. This database can be subsequently used for further study in genetic structure, phylogenetic relationship and phylogeography (Boore et al., 2004; Macey et al., 2004). This report is essential not only for better understanding of genomics and phylogenetics of marine fish species, but also for the practice of molecular ecology and biodiversity management strategies of other fisheries resources. The previous study about the DNA barcoding in Indonesia was successfully documented that 1,172 native freshwater fish species belonging to 79 families and among 1,172 fish species, 630 were endemic species (Hubert et al. 2015). Another researcher reported the DNA barcoding of Indonesian fish only from a particular region, e.g., freshwater fish from Jawa and Bali (Dahruddin et al., 2017), freshwater fish of Lake Laut Aceh (Ariyanti, 2012; Muchlisin et al., 2013), Pogar River Sulawesi Island (Arai et al., 1999), and Lake Matano Sulawesi (Roy et al., 2004).

Several researchers also concern on the certain species including Shark (Prehadi et al., 2015; Sembiring et al., 2015), Orange-Spotted grouper (Antoro et al., 2006), Grouper (Jefri et al., 2015), Seahorse (Lourie and Vincent, 2004), Goby fish species (Winterbottom et al., 2014) and some of coral reef fish species. Beside the COI gene marker for DNA barcode, in this study, we also used the ITS region and we obtained better amplification rate than the COI region. It should also be noted that this research is the first time to result in the ITS region of the commercial marine fish species from Indonesia. Unfortunately, this ITS segment has limited information in the GenBank database. Interestingly, the ITS sequence will be found in the GenBank, those species have the complete mitochondrial DNA sequences, and current study already deposited in the GenBank database of 77 ITS sequences. This result reinforces another study states that ITS database coverage for the marine animal is less than adequate or incomplete than it is for fungi (Croce et al., 2006).

In this study, the ITS primer produced sequences between the 12S rRNA and 16SrRNA gene, including tRNA-Valine. The length of this target sequence is around 600-700bp. Beside for DNA barcoding marker for fungal communities, the ITS region commonly used for characterizing the diversity and composition of genomic information, and this study was able to identify the specimens until species level for marine fishes. This region is a pre-cursor for DNA transcription from 5' to 3' (Das and Deb, 2015). The ITS region also sufficient for easy amplification when only small quantities of DNA are obtained, and it also has a very high variation between closely related species and also commonly used in taxonomy and phylogeny analysis; although currently, COI is a region that has been agreed internationally (Lebonah et al.,

2014).

The ITS region used for identification of cryptic species Tripterygion ripteronotus from the Mediterranean Sea by comparing of COI region and ITS region of genetic divergence and ITS region have lower genetic divergence than COI region (Carreras-Carbonell et al., 2007). Here, the phylogenetic trees can performed species in the same family mostly clustered in same family clade, only a small portion of species not grouped with similar family members. The Clupeiformes are gathered in one clade based on ITS sequences while using COI sequences produce different results. Species Thryssa kammalensis (family Engraulidae) are unrelated from the Sardinella melanura and Hilsa kelee (family Clupeidae) (Figure 2). These results show that ITS sequence able to distinguish between family better than COI sequence. Another research used the 12S rRNA, tRNA Valine, and 16S rRNA for phylogenetic study of Batoidea (rays and skates) which include in elasmobranchs fish species (Douady et al., 2003). This study also proves that elasmobranch groups (shark and ray) can be distinguished both by COI and ITS sequences. In this study, Shark represented by species of *Rhizoprionodon* oligolinx and Rays represented by Dasyatis zugei and Neotrygon kuhlii. Heretofore, minimal molecular studies addressing of ITS region for identification or barcoding has been published, as a result, is finite in the GenBank database for the ITS region.
The ITS region contains some sequences which will be a capable candidate of universal primer for detection of tropical marine fish species by short fragment primer. At least two regions from ITS located in 12S rRNA and tRNA valine (Figure 3). Some environment DNA researchers used the specific primer set for identifying certain species (Wilcox et al., 2013), universal primer set which able to detecting several taxa or specific taxa (Miya et al. 2015), and combination primer set (specific and universal) (Thomsen et al., 2012a; Thomsen et al., 2012b)

In this study, we found that several groups of fish are economic importance, and distributed in several families e.g., Carangidae (19 species), Lutjanidae (13 species), Scombridae (9 species), Serranidae (8 species), Clupeidae (4 species), Lethrinidae (4 species), and Singanidae (4 species). In the Scombridae family, tuna is the most dominant exported commodity which distributed to Europe, USA, and Japan, such as skipjack tuna (*Katsuwonus pelamis*), yellow-fin tuna (*Thunnus albacares*), and big-eye tuna (*Thunnus obesus*) (Comitini and Hardjolukito, 1986). The pelagic fish group is thought to have no genetic differentiation due to the extensive geographical distribution, large populations, and far-reaching potential (NesbÖ et al., 2000). Genetic structure of pelagic fish cannot found by several studies (Kumar et al., 2012; Santos et al., 2010). However, other studies in the Indonesian Archipelago showed that although some fish classified as pelagic fish

(including *Katsuwonus pelamis* and *Rastrelinger kanagurta*) showed variations in the regional genetic differentiation (Jackson et al., 2014).

Figure 2.3 Alignment on 169 ITS sequences of tropical marine fish from Indonesia.

Another economical important fish group is Carangidae, which has a size distribution ranging from TL 250 cm to the small size (TL = 16 cm) with diverse body shape from deep and strongly compressed to elongated and fusiform (Randall, 1995). Carangids are an essential source of food for people in Southeast Asia (Mohsin and Ambak, 1996). The groups of marine fishes on average have intraspecific values of K2P genetic distance ranging from 0.24-0.39% (Zhang and Hanner, 2011) which has a lower range when compared with the K2P genetic distance in freshwater fish of 0.3-0.45% (Hubert et al., 2008). This result supported our findings in commercial marine

fish species K2P genetic distance is 0.245. The segment of COI, the Siluriformes fish (Ariidae) had the highest nucleotide composition at 28.8% C followed by 27.5% T(U), 25.2% A and 18.6% G respectively, in an average they have 52.7 % for AT composition (Kartavtsev et al., 2007). In other families mentioned, the A+T percentage ranged between 53-57% and higher than the G+C formation (Cui et al., 2009). Then in the ITS region, nucleotide composition is different from the COI region. In vertebrate, especially for Osteichthyes, the ITS region has an average of 68.0% G+C content, which is higher than the A+T content (Chow et al., 2009).

The Elasmobranchii is one of the major significant from cartilaginous fishes beside another group Holocephalii (Nelson, 1994). It includes rays, shark, and skates, and this is one of the ancient living group, jawed vertebrate diverged from the ancestor of bony vertebrates. In the phylogenetic tree results, Charchanidae (*Rhizoprionodon oligolinx*) and Dasyatidae (*Dasyatis zugei* and *Neotrygon kuhlii*) also diverged in a separate clade from the Actinopterygii. The phylogenetic tree of Elasmobranchii poorly understood, and some of them have commercial and conservation importance. Elasmobranchii has a high compositional nucleotide of 33.6% A, followed by 28.5% C, 20.16% T and 17.6% G on the 12S ribosomal RNA gene, whereas in the COI gene the highest value is 31.8% T followed by 26.01% A, 25.7% C, and 16.3% G, respectively (Pavan-Kumar et al., 2014).

2.5 Conclusion

In conclusion, this study generates the number of COI and ITS sequences and deposited to the GenBank database. We have stored 78 ITS sequences of Indonesian tropical commercial marine fish species, which enriches the database of GenBank of the 12S ribosomal RNA-tRNA Valine-16S ribosomal RNA partial region of the mitochondrial genome. This information will be useful for the molecular identification of fish and the ITS region as well. Further research is essential for completing full mitochondrial genome in the GenBank database for improvement of accuracy in identification based on the different gene markers.

th P.

Chapter 3.

Complete mitochondrial genome and characterization of gene arrangement of three snappers to improve the GenBank database for environmental DNA metabarcoding study

3.1 Introduction

The mitochondrial genome is an essential component in almost all eukaryotes for their life. In vertebrates, mitogenomes are around 16-17 kbp in size, compact and the encoded genes are incredibly conserved. The mitochondrial genome in vertebrate typically encoded the canonical 13 protein-coding genes, 22 transfer RNA (tRNAs) genes, two ribosomal RNAs with two non-coding regions, the origin of light strand replication (O_L) and the control region (Dloop). The arrangement of genes order in the mitochondrial genome also conserved and arranged in the same array in the vertebrates for 37 genes and two non-coding regions from hagfish to eutherian mammals (Anderson et al., 1981; Chang et al., 1994; Roe et al., 1985; Tzeng et al., 1992). Nowadays, the mitochondrial DNA sequence is widely using as a useful tool in population genetics and phylogenetic study analysis in vertebrates (Satoh et al., 2016), which will be helpful to enhance the natural stock assessment, its conservation, breeding, culture and production as well as for the proper development strategy of any species.

Therefore, the increasing research in the molecular field shows a sign in improving databases in the GenBank and other open access resources, especially in the genetic information of mitochondrial DNA sequences. The mitogenome information is one of the essential sources of biological data in metazoans (Gissi et al., 2008). The number of databases that are currently available in GenBank is almost 260,000 (Benson et al., 2012) formally including whole mitochondrial genome. The complete mitochondrial genome was first applied for phylogenetic study for fish at the end of the 20th century (Miya and Nishida, 1999), after that the number of complete mitogenomes deposit in GenBank is increasing sharply, it is also possible for all regions of mitogenome to be used for the identification of animals, such as *Cytochrome b*, 12S ribosomal RNA, and 16S ribosomal RNA. Currently, the most common identification method by using the partial COI region of mitochondrial DNA for official molecular identification has become the standard in animal barcodes, which has been stored in the Barcode of Life project (Ratnasingham and Hebert, 2007).

The use of other regions of mitogenome allows the identification of fast and accurate methods that are very efficient, namely the environmental DNA (eDNA) approach. The platform that has been launched to analyze highthroughput sequencing data is MitoFish pipeline (mitofish.aori.utokyo.ac.jp/mifish). Regarding the pipeline, the primary region used here is the part of the 12S ribosomal gene of mitochondrial DNA. However, MitoFish monthly updates on the complete mitogenome and partial genome databases by incorporating RefSeq which have database centers at NCBI, as well FishBase other database such as many centers as (http://www.fishbase.org/), Integrated Taxonomic Information Systems

(<u>https://www.itis.gov/</u>), and the Catalog of Fishes (Fricke et al., 2018). At present, there are more than 1,000 sequences of fish genomes and they have 17,000 fish species database which was confirmed (Iwasaki et al., 2013), even though still more than half of valid fish species database around the world (Froese and Pauly, 2014; Nelson et al., 2016).

Regarding the importance of the whole genome study, we have conducted several studies on the complete mitogenomes of tropical marine fish from Indonesia. Here, we reported the complete mitogenome of Lutjanus vitta (GenBank No. MH675887), Lutjanus fulviflamma (GenBank No. MH995530), and Lutjanus carponotatus (GenBank No. MK092066) to improve the Lutjanus mitogenome database. Fishes in the genus Lutjanus are usually found in the tropical and subtropical reefs or mangrove forests in the Atlantic, Indian and Pacific Oceans, including the Indo-west Pacific, and the northern Australia (Allen, 1985; Newman et al., 2000), which are primarily inhabitants of shallow coral reef ecosystems (Allen, 1985). Few studies have been conducted on Lutianus fishes about their life cycle, morphology, and molecular characteristics (Chen, 1997; Collins et al., 2001; Li and Chu-Wu, 2007). Among the 73 currently known species in the genus Lutjanus, the brown stripe red snapper (L. vitta), the dory snapper (L. fulviflamma), and the Spanish flag snapper (L. carponotatus) are economically important for artisanal and recreational fisheries. These marine fish species are widely distributed in the western Pacific and Indian Ocean (Iwatsuki et al., 1993; Salini et al., 2006; Williams and Russ, 1997). The L. vitta uses the coral reef as their spawning and feeding ground (Freitas et al., 2011), so its abundance and population structure also affected by the changes of the coral reef ecosystem. As shown in its relatives, L. fulviflamma shows a seasonal migrating pattern in and out of the coral reefs for its reproduction (Grol et al., 2008; Nagelkerken, 2009). To the understanding the *L. fulviflamma* genetic population structure from a variety of its relatives sharing a habitat, molecular identification would be a useful and accurate tool than the traditional identification methods. The Spanish flag snapper, L. carponotatus have potential importance to the commercial fishery (Davis, 1992; Kaunda-Arara and Ntiba, 1997) as valuable sources of food fish, and her sister species from the genus Lutjanus are cultured in the Southeast Asia region (Zhang et al., 2004). This full mitochondrial genome of three Lutjanus species will provide valuable biological information for the genetic diversity study, establishing relevant protective and developmental measures for the coral reef habitat to ensure the stock protection, modern conservation, reasonable exploitation for sustainable of the resources.

3.2 Materials and Methods

3.2.1 Sample collection and DNA Extraction

The complete mitochondrial genome sequence of *Lutjanus* spp. was determined by the next-generation sequencing (NGS) platform. The *L. vitta* was collected from the coastal water in Pekalongan, Central Java, Indonesia (6°51'45" S 109°4'24" E). The *L. fulviflamma* and *L. carponotatus* were collected from the coastal water in Muncar, Banyuwangi, East Java, Indonesia (8°12'07,52"S 114°23'07,18"E). All specimens are deposited at the Universitas Airlangga, Indonesia. The identification of the sample was made by both the morphological characteristics and the sequence identity in partial COI region to the database (GenBank Accession number for *L. vitta* EU600101; *L. fulviflamma* MG002617; *L. carponotatus* KP194641). The mitochondrial DNA was extracted by the mitochondrial DNA isolation kit ab65321 (Abcam, Cambridge, UK) according to the manufacturer's protocol.

3.2.2 Polymerase Chain Reaction and sequencing of PCR products

The purified mitochondrial DNA was further fragmented into smaller sizes (~350 bp) by Covaris M220 Focused-Ultrasonicator (Covaris Inc., USA). A library for sequencing was constructed by TruSeq[®] RNA library preparation kit V2 (Illumina, USA) and its quality and quantity was analyzed by 2100 Bioanalyzer (Agilent Technologies, USA). The TruSeq[®] library performed

end repair, adenylate 3' ends, adaptor ligation, and last step is PCR enrichment. The end repair conducted at 20°C for 30 minutes which contained 5.5 μ L ultrapure water, 5 μ L 10 x T4 DNA ligase buffer (with 10 mM ATP), 2 μ L dNTP mix (10 mM), 2.5 μ L T4 DNA polymerase (3U/ μ L), 0.5 μ L Klenow DNA polymerase (5 U/ μ L), 2.5 μ L T4 PNK (10 U/ μ L), and 47 μ L mitochondrial DNA as template. Then, the second step (Adenylate 3' ends) performed at 37°C for 30 minutes which contained 16 μ L Eluted DNA, 2.5 μ L Klenow buffer (10x NED buffer 2), 5 μ L dATP (1 mM), 1.5 μ L Klenow 3' to 5' exo-(5 U/ μ L). After completing both processes, DNA purification kit (RBC Cat. YDF300) was used for purification following the manufacturer's protocol.

The adaptor ligation was performed at room temperature for one hour contained 10.75µL eluted DNA, 1.5µL 10 x T4 DNA ligase buffer, 1.25µL adaptor oligo mix (Illumina index) and T4 DNA ligase (400 U/µL). Then, the last part for TruSeq® library was PCR enrichment which contained 30µL purified index ligation DNA, 10µL 5X clone Phusion buffer (NEB, #F-530), 1 µL of forward and reverse PCR primer (10 pmol), 1.5µL dNTP (10 mM), 0.5 µL Phusion polymerase (NEB, #F-530), and 6µL ultrapure water. The PCR was conducted under the following condition: the initial denaturation step at 98°C for 30 seconds, followed by 15 cycles of denaturation at 98°C for 15 sec, annealing at 60°C for 30 sec, and extension at 72°C for 30 sec.

The final extension at 72°C for 5 minutes was applied for the final steps. The forward primer 1.1 is 5' AAT GAT ACG GCG ACC ACC GAG AT 3', and the reverse primer 1.1 is 5' CAA GCA GAA GAC GGC ATA CGA 3', and all primer was HPLC purified. Then, all DNA result from library preparation was performed for sequencing by Illumina MiSeq sequencer (2 x 300 bp pair ends).

3.2.3 NGS data assembly and complete mitochondrial genome analysis The raw NGS data was assembled by Geneious ver 11.0.2. The linear gene map of the complete mitochondrial genome was drawn by using OrganellarGenomeDRAW version 1.3.1 (Greiner et al., 2019). The mitogenome structure was determined by sequence comparison with the known full mitochondrial genome of closely related species, including *L*. *russellii* (Guo et al., 2008). All the tRNAs were predicted by ARWEN (Laslett and Canbäck, 2008) and tRNAscan-SE (Lowe and Eddy, 1997). Finally, the complete mitochondrial DNA sequences were deposited into the GenBank database using Sequin v 15.50 (Benson et al., 2012).

3.2.4 Phylogenetic tree analysis

The phylogenetic tree of *L. vitta*, *L fulviflamma*, and *L. carponotatus* complete genome were constructed by MEGA7 software with Minimum Evolution (ME) algorithm with 1000 bootstrap replications (Kumar et al.,

2016). The other Lutjanidae species were downloaded from GenBank database, including *Lutjanus russellii* (NC010963), *Lutjanus bengalensis* (NC011275), *Lutjanus kasmira* (NC011578), *Lutjanus rivulatus* (NC009869), *Lutjanus argentimaculatus* (NC016661), *Lutjanus peru* (NC027950), *Lutjanus guttatus* (NC029353), *Lutjanus erythropterus* (NC031331), *Lutjanus sebae* (NC012736), *Lutjanus malabaricus* (NC012736). Furthermore, one species from the different family, *Thunnus albacares* (NC014061), was used as an outgroup taxon.

3.3 Results

3.3.1 Gene organization in the mitochondrial DNA

The *L.vitta* (MH675887), *L. fulviflamma* (MH995530), and *L.carponotatus* (MK0920066) mitochondrial genomes were registered and stored in the GenBank database. This mitogenome was reported for the first time and their sequences and improved the complete genome database at the NCBI. The overall base composition of three snappers has represented in Table 3.1. The comparison of purine and pyrimidine, the C content of three snappers are relatively highest, and G content is the lowest (Miya et al., 2003). This pattern was almost the similar to the Sinipercidae, which has G composition around 16% (Chen et al., 2012). This study found that G contents are 16.4% (*L. vitta*), 16.2% (*L. fulviflamma*), and 16.2% (*L. carponotatus*).

Figure 3.1. Gene map of three Snapper A) *L. vitta*, B) *L. fulviflamma*, and C) *L. carponotatus*

3.3.2 The protein-coding genes

Total 13 protein-coding genes were identified, in which 12 (COX1, COX2, COX3, ATP6, ATP8, ND1, ND2, ND3, ND4L, ND4, ND5, and *Cyt-b*) were encoded on the H-strand, and only ND6 was encoded on the L-strand. At the COX1 gene, the start codon initiated by GTG, but only in the *L. fulviflamma* was initiated by ATC. All other protein-coding genes began with the typical ATG start codons, but in *L. fulviflamma* the ND2 was initiated by the ATA.

The incomplete stop codons were identified in ND2, COX2, COX3, ND3, ND4, *Cyt-b* genes in all three *Lutjanus* spp., besides these six genes in the APT6 gene was identified the incomplete stop codon in *L. fulviflamma* and *L. carponotatus*. Among the 13 PCGs of three Snapper, overlaps of tree reading frames are identified on the similar strand: ND5 and ND6 overlap by four nucleotides, ND4 and ND4L overlap by seven nucleotides, and ATP6 and ATP8 overlap by ten nucleotides (Table 3.1).

- UNI

3.3.3 Transfer RNAs and ribosomal RNAs

Total 22 tRNA genes ranging from 69-76 bp in length were identified from all three snapper mitogenomes, and tRNA structure was predicted by tRNAscan-SE (Figure 3.2). The shorter tRNA was tRNA-Phe, tRNA-Ser^(TGA), tRNA-His, and tRNA-Glu^(TTC), while the longest tRNA was tRNA-Lys 76bp in length. Eight tRNAs were located on the L-strand, and the remaining 14 tRNAs were on the H-strand (Figure 3.1). Both the 16S and 12S rRNA genes were found on the H-strand in all three mitochondrial genomes. They were located between the tRNA-Phe and tRNA-Leu and were separated by the tRNA-Val. The size of the 16S rRNA was 1050 bp, 1097 bp, 1097 bp and for the 12S rRNA was 946 bp, 950 bp, and 951 bp in *L. vitta, L. fulviflamma* and *L. carponotatus* respectively.

Figure 3.2. Prediction of tRNA structure using tRNAscan-SE

	Lutjanids											
~	Lutjanus vitta				Lutjanus fulviflamma				Lutjanus carponotatus			
Gene	Start codon	tart Stop odon codon		Position		Stop Posi codon		ition Start codor	Start codon	Stop codon	Position	
tRNAPhe			1	-69			1	.70			1	-69
12S-rRNA			70	-1016			71	-1020			70	-1021
tRNA Val			1017	-1089			1021	·1093			1022	-1094
16S-rRNA			1090	-2786			1094	·2790			1095	-2791
tRNALeuUUA			2787	-2860			2791	-2864			2792	-2865
ND1	ATG	TAA	2861	-3835	ATG	TAG	2685	.3839	ATG	TAA	2866	-3840
tRNA Ile			3839	-3908			3843	.3912			3844	-3913
tRNAGln			3908	-3978			3912	-3982			3913	-3983
tRNA Met			3977	-4047			3981	-4051			3982	-4052
ND2	ATG	TA-	4047	-5092	ATA	T	4051	.5095	ATG	TA-	4052	-5097
tRNATrp			5093	-5164			5097	-5168			5098	-5169
tRNA Ala			5164	-5233			5168	-5237			5169	-5238
tRNAAsn			5235	-5307			5239	-5311			5240	-5312
OL			5308	-5339			5312	.5343			5313	-5344
tRNACys			5340	-5410		1.0	5344	.5414			5345	-5416
tRNA Tyr			5410	-5479			5414	.5483			5416	-5486
COX1	GTG	TAA	5472	-7031	ATC	TAG	5891	.7035	GTG	TAG	5488	-7038
tRNASerUAN		/	7034	-7102			7038	.7106			7041	-7109
tRNA Asp		1 Pm	7107	-7178			7111	.7182			7114	-7185
COX2	ATG	T	7186	-7876	ATG	T	7190	.7880	ATG	T	7193	-7883
tRNA Lys	1		7877	-7952	- L .		7881	.7956	1		7884	-7959
ATP8	ATG	TAA	7953	-8120	ATG	TAA	7957	·8124	ATG	TAA	7960	-8127
ATP6	ATG	TAA	8111	-8794	ATG	TA-	8115	.8797	ATG	TA-	8118	-8800
COX3	ATG	TA-	8794	-9578	ATG	TA-	8798	.9582	ATG	TA-	8801	-9585
tRNAGly		-	9579	-9650		-	9583	.9654	1.770		9586	-9657
ND3	ATG	T	9651	-9999	ATA	T	9655	-10003	AIG	T	9658	-10006
tRNAArg	ATC	TAA	9999	-10069	ATC	TAA	10003	-100/3	ATC	TAA	10006	-10076
ND4L ND4	ATC	TAA	10069	-10305	ATC	TAA	100/3	11742	ATC	TAA	10266	-105/2
ADNA His	AIG	1	10559	-11/39	AIG	1	10303	11012	AIG	1	10300	-11/40
tRINA HIS			11/40	11870			11/44	11012		/	11/4/	-11013
tPNAL eu ^{CUA}			11882	11054			11886	11052		/	11888	11060
ND5	ATG	TAA	11955	-13793	ATG	ТАА	11050	.13797	ATG	ΤΔΔ	11961	-13799
ND6	ATG	TAG	13790	-14311	ATG	TAA	13794	.14315	ATG		13796	-14317
tRNAGh	mo	mo	14312	-14380	mo	17171	14316	.14384	mo	1711	14318	-14386
Cvt B	ATG	T	14387	-15533	ATG	Т	14391	15531	ATG	Т	14393	-15533
tRNAThr	1110	1	15528	-15600			15532	-15604	mo		15534	-15606
tRNA Pro			15599	-15668			15603	15672			15605	-15674
D-Loop			15669	-16759		-	15673	16512			15675	-16514

Table 3.1. Summary of Mitochondrial genome of three snappers (Lutjanidae)

Bold text underlining indicates a gene encoded on L-strand

3.3.4 Non-coding regions

There are two non-coding regions; the origin of light strand replication (OL) and the putative control region (D-Loop) in the complete mitochondrial genome of all three Lutjanids in this report. A non-coding region, which related with the putative L-strand replication origin is 32 bp, then heavy

strand control region of mitochondrial DNA (D-loop) was identified between the tRNA^{Pro} and tRNA^{Phe}, and it was 830bp, 840bp, and 840 bp length in L. vitta, L. fulviflamma and L. carponotatus, respectively. The OL was located between the tRNA^{Asn} and tRNA^{Cys}, inside the WANCY cluster of tRNAs was 32 bp long in all three snappers, which is similar to those of its relative Lutjanus russellii (Figure 3.1).

0.020

Figure 3.3. Phylogenetic tree of L. vitta, L. fulviflamma, and L. carponotatus within the family Lutjanidae.

3.3.5 Phylogenetic tree analysis

The phylogenetic relationship of L. vitta, L. fulviflamma, and L. carponotatus complete mitogenome within the family Lutjanidae was analyzed and constructed by MEGA7 software with minimum evolutionary (ME) algorithm (Kumar et al., 2016). The tree topologies performed that *L. carponotatus* was grouped with *L. russelli* (93%), followed *L. fulviflamma* (92%), and *L. vitta* (91%). The phylogenetic tree of three complete mitochondrial genomes in Lutjanidae was constructed by Mega7 using Minimum Evolution (ME) algorithm with 1000 bootstrap replication. The probability of bootstrap at each node and GenBank accession number were shown followed by the scientific name (Figure 3).

3.4 Discussion

The mitogenome of three *Lutjanus* spp. were typically circular molecule and consisted of 13 protein-coding genes (PCGs), 22 tRNA genes, two rRNA genes, and a putative control region. They have similar to the structure of other teleost species (Miya and Nishida, 2000). The heavy strand (H-strand) encoded 23 genes, whereas the light strand (L-strand) encoded the remaining 14 genes. The gene arrangement and order of the 37 genes were utterly identical to those of reported species of Lutjanids such as *Lutjanus russelli* (Guo et al., 2008), *Lutjanus peru, Lutjanus gutattus* (Bayona-Vásquez et al., 2017), and *Lutjanus johnii* (Taillebois et al., 2016).

The tRNAs were clustered in three conserved forms (IQM, WANCY, and HSL) in the mitochondrial genome (Satoh et al., 2016). The IQM (isoleucine,

glutamine, and methionine) cluster was located between ND1 and ND2, the WANCY (tryptophan, alanine, asparagine, cysteine, and tyrosine) cluster was located between ND2 and COX1, and then the HSL (histidine, serine, and leucine) group was located between ND4 and ND5.

This complete mitochondrial genome is the form of baseline for the genetic information, which will be useful for further studies on the population genetics and conservation of coral-reef dependent species in the tropical region. Mitochondrial DNA study is an essential tool in biological evolution. It is due to a relatively fast rate in base substitution (Martin and Palumbi, 1993), maternal inheritance (Birky et al., 1989), and relatively easy of extraction, preservation, and manipulation (Dowling, 1990). For conservation of marine fish resources, mitochondrial DNA has been used in three ways; first, to the analysis of the genetic variation within a population; second, to identify an evolutionarily divergent group of community and also; third, to monitor conservation value of population from phylogenetic or evolutionary views (Moritz, 1994).

The variation of the phylogenetic-based on different genes can be produced (ND4, ND5, COX1, and *cyt-b*) and useful for understanding the evolutionary rate in different species in the different genus. The results suggested that the complete mitochondrial genome could provide reliable information for the molecular-based research including environment DNA (Kelly et al., 2014;

Yamamoto et al., 2017), guts contents analysis (Symondson, 2002), fisheries forensics (Ogden, 2008; Teletchea et al., 2005), and authentication fishery product (Gil, 2007).

3.5 Conclusion

This result is the first complete mitochondrial DNA sequences of three snappers in Lutjanidae, e.g. *L. vitta, L. fulviflamma* and *L. carponotatus* from the tropical region of Indonesia. Comparison of the mitogenome and gene arrangement organization, including the phylogenetic relationship study within the family Lutjanidae has been shown here. This genetic information will be used as new tools and have benefits for further understanding of the evolutionary and phylogenetic classification of Lutjanids species. Furthermore, they could be used for the environmental DNA analysis research by supported in the GenBank database for the tropical marine fish species.

Chapter 4.

Diversity studies on marine fish species in Java and Bali by environmental DNA (eDNA) metabarcoding analysis

4.1 Introduction

The existence of coral reef ecosystems, seagrasses, and mangroves in the shallow water region of Indonesia and thousands of small islands spread from eastern Papua to Sumatra, supporting biodiversity in this area (Hutomo and Moosa, 2005). The latest report on the number of marine fish species identified as living in Indonesia is 3,215 species, which is the highest among countries in the Indian Ocean (Wafar et al., 2011). Specifically, in coral reef ecosystems, (Allen and Adrim, 2003) have conducted surveys in 13 locations of observations for 17 years mentioning in total about 2,057 species of marine fish identified. The point out that Indonesia's biodiversity status still does not have accurate data on the number of marine fish species that live in the territory of Indonesia, both in the shallow water region and offshore Indonesia. The Bali Strait region and is one of the essential areas which is the concentration of Bali sardine Sardinella lemuru fisheries activities that have significant economic value (Sartimbul et al., 2010), whereas the southern region of Bali (Indian Ocean) is more dominated by tuna fisheries activities (Duggan and Kochen, 2016).

It is well known that the marine ecosystem in East Java and Bali islands as the hotspot of biodiversity, where Pacific and Indian waters meet together forming the excellent fishing grounds several economic importance fish species. Around Bali water, Bali sardine (*Sardinella lemuru*) is the main target for small-scale fisheries (Pet et al., 1997), then another fisherman with equipment correctly pick out the most economic importance marine species including skipjack (*Katsuwonus pelamis*), yellowfin tuna (*Thunnus albacares*), bigeye tuna (*Thunnus obesus*), albacore (*Thunnus alalunga*), and some neritic tuna species including Indo-pacific king mackerel (*Scomber gutatus*), frigate tuna (*Auxis thazard*), bullet tuna (*Auxis rochei*) and longtail tuna (*Thunnus tonggol*) (Duggan and Kochen, 2016; Ridha et al., 2013). However, over the last several decades, marine ecosystem has suffered significant impacts from both local and global stressors, which including overfishing (Ramenzoni, 2013), pollution (Edinger et al., 1998), tourism (Van der Duim and Caalders, 2002), and global climate change (Hoegh-Guldberg et al., 2007).

But unfortunately, the presence of these marine fishes subjected to considerable pressure, and the situation has decreased due to excessive human exploitation (Pauly et al., 2002). As the result, evidences of declining the fish stocks in those region are being reported (Collette et al., 2011; Hutchings, 2000; Jackson et al., 2001). For example, catch of *Sardinella lemuru* in Bali strait has been dwindling in a significant rate from 108.772 tons in 2006 to 19,663 tons in 2012 (Sartimbul et al., 2018). While for tuna production, in 2004 it reached 400 tons which then experienced a significant decline with a production value of around 100 tons (2006), and until 2009 it still experienced

a downward trend of approximately 60 tons (Nugraha, 2016).

To understand and predict the changes in fish stocks, their continuous surveys along the Bali trait are required. The conventional fish biodiversity surveys are conducted by the direct morphological observation of the specimen caught by a trawl (Lang and Baldwin, 1996). However, those traditional surveys convey several potential problems. One of the major weak points of the trawl surveys is challenging to implement (Demestre et al., 2015) with captured non-selective species (Niamaimandi et al., 2018). Additionally, different survey results often obtained by the different trawling methods (Zimmermann, 2003) and some demersal trawls may destruct the marine ecosystem (Petovic and Markovic, 2013). This species identification is also dependent on the highly trained specialists judged from the anatomic and morphometric characteristic for each species (Teletchea, 2009), which requires considerable observation times and efforts (Thomsen et al., 2012a). We also cannot exclude the potential errors caused by human researchers (Hopkins and Freckleton, 2002), incomplete checklist (Love et al., 2010; Rogers and Ellis, 2000), and leaving databases flawed with errors (Daan, 2001).

Recently, a new method has been introduced to monitor fish biodiversity by analyzing the DNAs extracted directly from the water samples, so-called environmental DNA or eDNA metabarcoding (Stoeckle et al., 2017; Taberlet et al., 2012; Thomsen et al., 2012a). This eDNA method is now widely used for its short times and relatively low cost for the analysis (Kelly et al., 2014; Shaw et al., 2016; Stoeckle et al., 2017; Yamamoto et al., 2017). The eDNA analysis also has been effective in detecting the endangered species (Laramie et al., 2015; Thomsen et al., 2012b), invasive species (Ardura et al., 2015; Cai et al., 2017; Clusa et al., 2017; Dejean et al., 2012; Klymus et al., 2017; Takahara et al., 2013; Williams et al., 2018), and distribution of a fish species (Yamamoto et al., 2017; Yamamoto et al., 2016).

The eDNA metabarcoding analysis is currently dependent on the PCR amplification by the taxon-specific universal primer set to minimizing biases (Taberlet et al., 2012). Now, the specific primer designed for salmonids (Wilcox et al., 2012). Now, the specific primer designed for salmonids (Wilcox et al., 2013), frog (Ficetola et al., 2008), and degenerated fish primers set targeting in *Cyt-b* (Minamoto et al., 2012; Thomsen et al., 2012a). Among them, Mifish primer is one of the most widely used primers set for its high taxon coverage and short amplicon length (~170 bp) with higher detection capacity (Miya et al., 2015b; Yamamoto et al., 2017). Notebly, a web-based bioinformatics tool, the MitoFish pipeline, has been launched recently (<u>http://mitofish.aori.u-tokyo.ac.jp/mifish/</u>), which has changed the paradigm in processing NGS data to be very simple and allows users to analyze fish biodiversity through environment DNA metabarcoding which is user-friendly (Sato et al., 2018).

In this study, we applied eDNA metabarcoding using MiFish pipeline to

estimate the marine fish biodiversity for the first time in Bali Strait. Our objectives were (1) to identify species detected by MiFish metabarcoding without traditional surveillance, and (2) to examine marine fish biodiversity based on eDNA metabarcoding. These approaches will allow us to the identification of local fish genotype (tropical fish) and clarify of eDNA metabarcoding efficiency for regular surveillance in Indonesian marine ecosystem.

Figure 4.1. Distribution of sampling site in East Java and Bali Island, Indonesia

4.2 Materials and Methods

4.2.1 Sample collection and environmental-DNA extraction

The eDNA water samples were collected from four stations in Java Island (Gresik and Banyuwangi) and Bali Island (Kedunganan and Lovina) on January-June 2018 (Figure 4.1). Five liters of water samples were pooled and immediately stored in ice until brought to the laboratory, at Universitas Airlangga and Udayana University for filtration. Every single filter 0.45 µm pore-sized GN-6 membrane (PALL Life sciences, Mexico) for one liter of the water sample, then the filters were kept and mixed into 2.0 ml tubes with lysis buffer for further analysis. Prevention the cross-contamination in all steps were conducted by washed up with 10% commercial bleach and 70% ethanol for all filtration equipment. The membrane filters DNeasy® Blood, and Tissue Kit (Qiagen, Germany) was used for genomic DNA extraction process, according to the company's guideline. Homogenizing of the membrane filters by TissueLyser II motorized homogenizer (QIAGEN, Hilden, Germany), the quantification of the extracted genomic DNA was measured by using ND-1000 NanoDrop (Thermo Scientific, Waltham, MA, USA). The water temperature, pH value, and TDS were measured by a conductivity meter (CD-4307SD, LUTRON), then salinity was measured by refractometer manual (ATAGO).

4.2.2 Construction of Library and MiSeq sequencing

The MiFish universal primer sets were used to construct the amplicon libraries of partial 12S rRNA marker (Miya et al., 2015a). The total PCR mixture volume was 20 µL, which contained 1.0 µL of MiFish primers (5 pmol each), 2.0 µL dNTPs (2.5mM), 2.0 µL of 10X EX Tag buffer, 0.6 µL DMSO (3%), 0.2 µL of EX Taq Hot Start (TaKaRa Bio Inc. Japan) and 9.20 μ L of ultra-pure water. Here, we used 4.0 μ L template due to the low genomic DNA concentration that less than 50 ng/µL. The PCR setting condition followed the MiFish primer protocol (Miya et al., 2015b). The gel electrophoresis (1.5% agarose) was performed, and the expected size (250 bp~350 bp) was purified by the AccuPrep® Gel Purification Kit (Bioneer, Republic of Korea). Purified amplicons were pass through the second PCR with the corresponding Nextera XT index (Illumina, San Diego, USA) at the end of each amplicon. The total volume for second PCR mixture was 20 µL which contain 1 μ L of a couple of index primers (10 pmol), 0.5 μ L dNTPs (10 mM), 4 µL 5X Phusion HF Buffer, 8.3 µL ultrapure water, and 0.2 µL Phusion Hot Start Flex DNA polymerase (New England Biolabs, Hitchen, UK), and including 5 µL amplicons result from the first PCR. The second PCR setting conditions began with 94°C for 5 min for initial denaturation, followed by 15 cycles of 94°C for 30 sec for denaturation, 55°C for 30-sec annealing, and 72°C for 30 sec for the extension, and an additional 5 min at

72 °C for the final extension. The gel electrophoresis and purification were performed similar with the first PCR process, then PCR products with the expected sizes were analyzed by qubit dsDNAHS Assay Kit (Invitrogen, Carlsbad, CA, USA) for quantification of amplicons concentration. The next-generation sequencing was applied using the MiSeq platform (2 X 300 bp).

4.2.3 Bioinformatics analysis of NGS data

Before uploaded NGS raw data to the MiFish pipeline, Phyton27 (an open source software) was used to make the pairing of both reverse and forward sequences with the specific script (Zhang, 2015). In MiFish pipeline, the raw reads by MiSeq sequencing run FASTQC, which will be trimming for the low-quality tail of reads (QV ≤ 20). After that, several steps include assembled paired-end reads and followed by removed N-containing reads, filtered reads by length (~229 bp), run the Usearch (0.99 for clustering of identity, and 10 for minimum read size for filtering), BLASTN based on GenBank database, and then created multi-FASTA files for each samples. The next step is run MAFFT, run the Morphy for each sample, run the Morphy against merged sample, run BLASTN, and finalization of the last process by BLASTN. The entire sequences stipulated to representative genotype by compared to the GenBank database, then the sequences were ascertained as 'species', 'genus', and 'unknown or unidentified' level if the sequence identity more than or similar to 99%, 97-98%, and less than 97%, respectively. The

distribution for each species was confirmed by the FishBase (<u>http://www.fishbase.org/</u>) then taxonomic nomenclature was approved under the World Register of Marine Species, WORMS (<u>http://www.marinespecies.org/</u>).

4.2.4 Statistical Analysis in biodiversity indices

The measurements of alpha biodiversity were carried out for the average read number data in each sampling location. Analyses of the index on alpha diversity include the index of Shannon-Wiener (H'), which informs of heterogeneity diversity or total species richness in certain areas (Gray, 2000; Magurran, 1988) and Margalef diversity index (d). The H' index, Margalef index (d), the Pielou's evenness index, and Bray-Curtis similarity analysis was calculated using PRIMER7® software v7 (Clarke and Gorley, 2015).

4.3 Results

4.3.1 Physico-chemical parameters

Water salinity of the sample range from 31 psu in North Java on January-February 2018) to 34 psu started from March in South Bali to June in all station. The lowest salinity in North Java due dilution from Brantas River in the northern part of Java. The temperature of samples ranges from 26°C to 28°C, then pH of the samples ranges from 7.9-8.0 (Table 4.1).

H ot in

	Sampling Site											
Month	North Bali			South Bali		North Java			South Java			
	(Lovina)			(Kedunganan)			(Gresik)			(Banyuwangi)		
	8°09'31''S			8°45'46''S			6°53'43"S			8°12'09''S		
	115°01'19"E			115°09'35"E			112°29'21"E			114°23'28"E		
	pН	Temp	Salinity	pН	Temp	Salinity	pН	Temp	Salinity	pН	Temp	Salinity
Jan	8.0	26	32	8.0	26	33	7.8	26	31	7.8	26	33
Feb	8.0	26	33	8.0	26	33	7.8	26	31	7.9	26	34
Mar	7.9	27	32	8.0	26	34	7.9	27	32	8.0	26	34
Apr	7.9	27	33	7.9	27	34	8.0	27	33	8.0	26	33
May	8.0	28	34	8.0	27	34	8.0	26	34	8.0	27	34
Jun	7.9	27	34	8.0	28	34	8.0	27	34	8.0	28	34
Average	7.9	26.8	33.0	7.98	26.7	33.7	7.9	26.5	32.5	7.9	26.5	33.7

Table 4.1. Geographical coordinate and average value of phisico-chemical parameter measurement.

4.3.2 Analysis of fish haplotype obtained by MiFish pipeline

After clustering and trimming the raw reads (1,948,177) from the MiFish platform, 1,850,348 merged reads (94.98%), and 405 representative haplotypes were assigned from the four sampling stations for six-month monitoring. Total 1,588,953 reads (81%) were assigned into 333 species, and the remaining 162,180 and 99,215 reads were mapped into 27 genera and 25 unidentified genera level, respectively. After the taxonomic assignment, 97,829 reads (5.02%) were discarded which have lower identity between 80-95% identity (Table 4.2). Station-wise average merged reads r (log normalization) shown that north Bali (2.6626) is higher than south Bali (2.2671) followed by South Java and North Java which have similar mean reads is 2.2355 (Figure 4.2).

Figure 4.2. Box plot chart of average reads (Log) of eDNA metabarcoding result by MiFish pipeline from four station.

5	South Bali	North Bali	South Java	North Java
Raw reads	643747	735363	323011	384293
Merged reads	617796	705999	309223	361900
Read number (99-100% identity)	451753	629045	304144	350693
- Haplotypes	242	224	169	94
- Species	224	198	158	85
Read number (95-98% identity)	166043	76954	5079	11207
- Haplotypes	47	57	18	14
- Genera and unidentified genera	44	52	16	11

Table 4.2. Summary of taxonomic assignment of MiSeq reads number

4.3.3 Marine fish biodiversity in four station

Regarding the environmental DNA metabarcoding analysis using MiFish platform, alpha biodiversity indices in four sampling site have been analyzed by Primer v7. The fluctuation of diversity index during from January to June was observed (Figure 4.3). The North Java region has the lowest average in

Shannon-Wiener index (2.9474) compared to the others, which shows this region to be in the moderate category of alpha diversity index for marine fish species. Wheras the southern and northern part of Bali has the highest average value (3.4426 and 3.4403, respectively), and the South Java (3.011). Another diversity index, Margalef diversity index also showed the same pattern in those regions (Table 4.3). While in general, the distribution of biota in the area is estimated to be evenly distributed with a value of 1 point in all sampling site.

Figure 4.3. Shannon-Wiener index during January-June 2018 in four sampling site.

Table 4.3. Biodiversity Indices in four station of Java and Bali Island

Index	Sampling Sites							
Index	North Bali	North Bali South Bali		South Java				
Shannon-Wiener (H')	3.4403	3.4426	2.9474	3.5385				
Margalef (d)	10.3273	12.2959	7.2461	10.8962				

The highest number of species were identified in the Order Perciformes (285) followed by Clupeiformes (24), Tetraodontiformes (19), and Scorpaeniformes (14), and remaining order small number of representative haplotypes. The order Perciformes have 43 family includes Carangidae (36), Lutjanidae (28), Serranidae (26), Achanthuridae (16) and Scombridae (16). The highest species numbers within the Perciformes were identified in the genus *Lutjanus* (17), *Epinephelus* (17), *Lethrinus* (12) and *Acanthurus* (8).

Figure 4.4. Proportion of piscine phyla during January-June 2018 from four sampling site. SB: South Bali; NB: North Bali; SJ: South Java; NJ: North Java

In this study, the Perciformes orders are the most dominant order identified in all study areas, then followed by Clupeiformes and Tetraodontiformes, respectively. The proportion of Perciformes during January-June 2018 shown dominance in all sampling site (Figure 4.4). Even though between the southern parts of Java and South Bali was separated by the Bali Strait which had a reasonably strong current, this location had almost the same of the oceanography characteristics. However, the southern region of Bali and South Java (Banyuwangi) also shared species identified in this region (Figure 4.5).

Figure 4.5. Venn diagram of species identified in four sampling site.
4.3.4 Clustering Analysis

Groups	R Statistic	Significance level (%)	Actual Permutations
South Bali, North Bali	0.087	18.2	462
South Bali, South Java	0.757	0.2	462
South Bali, North Java	0.957	0.2	462
North Bali, South Java	0.778	0.2	462
North Bali, North Java	0.656	0.2	462
South Java, North Java	0.913	0.2	462

Table 4.4. Analysis of Similarity (ANOSIM) pairwise test by Prime v7

From the analysis of similarity (ANOSIM) pairwise test by Primer v7 showed that except South Bali-North Bali combination was not significantly different. The ANOSIM showed that the average of R statistical value is 0.723 (Table 4.4). In this study, we have detected pelagic species (12.346) and also coral reef fish associated (87.654%). The proportion of coral reef fishes in all sampling site was dominated than non-coral reef fish species, and 73.33% coral reef fish identified at South Java is higher than other sampling sites. Based on Bray-Curtis Similarity analysis showed that South Java was clustered with both North and South Bali. However, North Bali shared species with North Java (Figure 4.6). In this study, we have identified *Kyphosus vaigiensis, Siganus argenteus, Spratelloides gracilis,* and *Mulloidichthys flavolineatus* are found exclusively in South Bali. Meanwhile, *Thunnus tongol, Liza macrolepis, Rhinogobius* sp., and *Platax teira* are found solely

found in North Bali. In North Java, seven species were exclusively found in this region such as *Pseudogobius javanicus*, *Nurchequula flavaxille*, *Stethijulis quinqueradiata*, *Dendrophysa russeli*, *Setipinna taty*, and *Ellochelon vaigiensis*. The *Siganus fuscescens* is the most common fish in all region during January-June 2018 (Figure 4.7).

Figure 4.6. Bray-Curtis similarity chart based on four sampling station e-DNA metabarcoding using Primer®v7. A) Dendrogram of similarity B) Non-metric Multidimentional Scaling analysis.

Figure 4.7. Shade plot of eDNA metabarcoding result based on top 50 species in four station

In this study by using Mega v.7.0 program with Maximum Likelihood algorithm, we found the Perciformes showed dominance in this study. There are several order grouping all the members in one cluster, e.g., Anguilliformes and Siluriformes, however, the other orders were split into two groups such as Tetraodontiformes, Clupeiformes, and Beloniformes (Figure 4.8). Here, MiFish primer is not able to distinguish the *Thunnus* spp species (Miya et al., 2015b), and five *Thunnus* species were in one clade group with shallow average genetic distance (0.071). Furthermore, in other Scombridae groups

such as *Sarda* spp., *Euthynnus* spp., *Katsuwonus* sp., *Auxis* spp., and *Acanthocybium* sp., which also faced similar things like *Thunnus* spp. Besides Scombridae, here we found some species under Carangidae cannot be distinguished within her genus. For instance, the species *Caranx* spp (0.037) and *Carangoides* spp (0.037) failed distinguished within her genera. Likewise, *Pterocaesio* spp (0.011) also difficult to distinguished using MiFish primer. Three species *Pterocaesio digramma*, *Pterocaesio marri*, and *Pterocaesio tessellate* in the same line on the phylogenetic tree. Another species *Achanthurus* spp failed distinguished within Siganidae (0.034). Average genetic distance for all 12S short sequence in this research based on MiFish primer is 0.171 (range 0.010-0.391). The low of genetic distance effected to the reposition species in a similar line of the phylogenetic tree.

S CH OL Y

Figure 4.8. Phylogenetic tree of representative haplotypes in the eDNA metabarcoding analysis for the tropical marine fish.

4.4 Discussion

We have demonstrated that environment DNA metabarcoding of marine fish species from the Java and Bali Island by using the MiFish pipeline is an efficient tool for fish biodiversity analysis in Java and Bali Island water. We were able to detect 333 species belonging to 78 families and 16 orders. This result is only about 10.36% of the total fish in the South China Sea (3,215 fish species) and 16.19% of the coral reef fish (2,057 fish species) in Indonesia.

The previous study in Natuna Island and Anambas Island waters has been carried out for 10 days with a relatively complete of equipment and a number of experts in Ichthyology (Ng et al., 2004), while coral-reef fish compilation data in Indonesia has been conveyed for 27 years (1974-2001) by researchers from more than 13 observation locations in Indonesia (Allen and Adrim, 2003). Here, our study shows that environmental DNA metabarcoding can produce data in a relatively short time with a cost-effective compared to conducting traditional surveys to estimate species in waters (Smart et al., 2016; Thomsen et al., 2012a).

Several previous diversity studies in Indonesia, using different methods, such as netting/seining (Unsworth et al., 2007) and Underwater Visual Census, UVC (Abrar, 2017). The UVC method is the most common method in collecting marine fish biodiversity information at the time, and the application of environmental DNA metabarcoding is an initial study in Indonesia. The previous research in the Thousand Islands of Jakarta found about 216 species of coral reef fish in 2011, or 6 more species higher than 2004 (Madduppa et al., 2013). While in the Togean Islands of Sulawesi, about 266 species (Allen and Werner, 2002). This current study was contrasted with the previous researches, which is we were able to identify 333 species within 405 haplotypes.

In the present study, water samples have been collected from the four different

sites, e.g., two locations in Java Island and two locations in Bali Island, which is the representative of varying condition. The measurement of physicochemical parameters shows that distribution is typical in the waters of the Java Sea. Siregar et al. (2015) reported that during January to June 2015, the temperature distribution in the Java Sea ranged from 26-32°C, and this also congruent in sampling locations on Java and Bali (Figure 4.9). Meanwhile, the distribution of salinity in the period January-June 2015 is also still measured in the same way as the results of measurements in the current study, which range from 31-34 PSU (Figure 4.10).

Figure 4.9. Temperature distribution during January – June 2015. The red square is sampling area in east Java and Bali Island. Modification from Siregar et al., 2015

Figure 4.10. Salinity distribution during January – June 2015. The yellow square is sampling area in east Java and Bali Island. Modification from Siregar et al., 2015

In the South Java, samples were collected from the waters of Banyuwangi due to this region was at the eastern end of Java Island and at the same time was very close to the Indian Ocean. The Bali Strait, that separates Java and Bali Island, which is productive waters and many traditional fishing activities operate in this area, especially the Bali sardine (*Sardinella lemuru*) fishery (Purwaningsih, 2015). Several studies in this region are actively monitoring seasonal plankton distribution (Khasanah et al., 2013), abundance of Bali sardine *Sardinella lemuru* (Simbolon et al., 2011; Susilo, 2015), and water quality parameters (Megawati et al., 2014) in the Bali Strait waters.

The northern region of Java Island chosen in this research is Gresik, which is about 22 km far from the Surabaya city (capital of East Java Province). This region is one of the centers of traditional fisheries activities that are quite active in supporting the supply of capture fisheries products in East Java. The Gresik region faces the Java Sea directly with the characteristics of the waters that have low waves (Bird and Ongkosongo, 1980). The Java Sea in the middle of the Indonesian archipelago is a part of the Southeast Asian waters with the western region limited by the Sumatra Island, Kalimantan Island on the north side, and Sulawesi Island on the east side (Wei et al., 2016; Wyrtki, 1961). During the south-east monsoon (June-August), surface current direction comes from the western side to the east side, then during the northwest monsoon (December-February) is vice versa (Siswanto, 2008). It means that the Java Sea in the Java Island shares nutrient and fisheries resources with Bali Island.

Between the two locations in Java Island, species detection by eDNA approach is showing an exciting result, from the South Java, we have found 189 representative haplotypes, 158 species (\geq 99-100% identity) within 49 families and 12 orders, while from the North Java region found 108 representative haplotype, 85 species (\geq 99-100% identity) within 40 families and 11 orders. Even though some studies explained that northern Java is facing overfishing problem due to the excess fisheries activities in this region

(Fauzi and Anna, 2010; Squires et al., 2003; Triarso, 2012), but in this study, we identified some pelagic and demersal species are still diversity and require periodically survey to ensure the marine fishes abundance and biomass. The characteristics of the Indian Ocean and the Java Sea also allow for the differences in fisheries resources in the south of this region (Lumban-Gaol et al., 2015; Syamsuddin et al., 2016). Pelagic and demersal fish resources have been detected in this study, providing biodiversity information in the waters of Java and Bali. Artisanal fisheries in the southern region of Java are entirely developed with the use of ornamental fish as a fishery commodity and other species for domestic consumption. The exploitation of coral-reef fish for aquarium fish was growing intensively (Idris et al., 2013). The lack of study on biodiversity of marine fish both in the South and North of Java was occured, primarily through molecular approaches. It should be noted that this study of eDNA metabarcoding is the first time to be carried out with the samples collected from the Indonesian water. However, the results of this study still need to be developed in the broader Java region and even become a routine survey agenda in conducting monitoring through the environmental-DNA metabarcoding approach.

Bali Island has received considerable attention in managing the area with the support of highly developed cultural and tourism activities. Also, Bali is a part of the coral triangle research center, so that several studies on biodiversity are carried out in this region (Green and Mous, 2008; Hoeksema, 2007). The previous survey obtained data about the diversity of coral reef fish that is fascinating, as many as 977 species of fish have been identified, which consists of 320 genera in 88 families in Bali waters (Allen and Erdmann, 2012).

In this study, Kedunganan is located in the southern region of Bali directly facing the Indian Ocean, while in the northern part of Bali, it has been carried out in the Lovina Beach, which is directly facing the Java Sea. The environmental DNA metabarcoding approach successfully detected 231 representatives of haplotypes, 206 species (99-10% identity) which were belonging to 53 families and 12 orders from the South Bali, while 230 identified haplotypes, 196 species 99-100% identity (56 families and 14 orders) were determined from the North Bali. This research reinforces the findings of the previous study which states that Bali Island has a remarkable characteristic of biodiversity in coral reef fish of Indo-Pacific species (56.4%), western Pacific (25.3), Indian Ocean (3%), and Indonesian endemics (3.3%) (Allen and Erdmann, 2013). This condition is supported by the existence of a suitable seagrass and coral-reef ecosystem (Ginting et al., 2015; Hoeksema and Putra, 2000), so that the abundance and biodiversity of marine fish are still quite high. In Bali, more coral reef fish had been detected than the sampling sites of Java.

For quantification of biodiversity measurement, here, alpha biodiversity used the Shannon-Weiner Diversity Index (H'). The H' value range was 2.94 (North Java) to 3.44 (North Bali). This H' index value is higher than previous studies that have been done using the UVC method; 1.8-2.5 in the Thousand Islands, Jakarta (Dhahiyat et al., 2017; Madduppa et al., 2013), 1.36-3.23 in Kendari, Sulawesi (Adrim et al., 2012), 1.4 in Wakatobi, Sulawesi (Caras and Pasternak, 2009), and 2.183- 2.425 in Karimun Jawa, Central Java (Utomo and Ain, 2013). This biodiversity parameter confirmed that the eDNA metabarcoding could detect not only coral-reef fish (demersal fish), but also can identify pelagic migratory fish species. In the Serranidae group (32 haplotypes, 25 species) which are demersal fish and also coral reef ecosystem associated, but this group can be detected here even though water samples were collected from the surface area. One of the groupers is endangered, namely Epinephelus akaara (He et al., 2011). Moreover, the eDNA metabarcoding can also able to detect pelagic fish that may migrate and spawn (Bylemans et al., 2017) in broad range areas e.g., Scombridae family (Beardsley Jr, 1969). In this study, we identified the Order Carangidae (35 haplotypes, 32 species) and Scombridae (20 haplotypes, 18 species). The combination of echo sounding technique and environmental DNA can identify the distribution of Japanese jack mackerel in Maizuru Bay, Japan (Yamamoto et al., 2016).

Moreover, the commercial fish as the target fishery is also very diverse. Based on Bray-Curtis similarity analysis, three station observations cluster in one group except for North Java station, which is different from all stations. This condition clarifies the role of oceanographic parameters in the use of environmental DNA is essential. In this research, we performed sampling from surface water that is quickly displaced by the presence of surface currents generated from the difference in the direction of wind every season. In January, the north-west monsoon season, wind and sea surface currents move towards the north-west, while in June, when the south-east monsoon wind begins to change towards the south-east (Siswanto, 2008). With this change, it is possible for North Java and North Bali to have similarities in terms of fishery resources in the Java Sea.

Meanwhile, in the southern side of Bali, the seasons also affect the movement of seawater that passes through the Bali Strait which effects to the fisheries resources in South Bali and Banyuwangi (South Java) almost similar. Changes in the tides that pass through the Bali Strait allow an exchange of water from the North Bali region to the south of Bali. The Bray-Curtis analysis showed that South Java clustered with two stations in South and North Bali (Figure 4.3).

The results from this current research demonstrated that the Perciformes and Clupeiformes are identified to be quite dominant, and these fish groups are economically significant that are a mainstay of fisheries activities to the coastal communities in Indonesia. In Perciformes, the grouper (Epinephelus spp.), the rabbit fish (Siganus spp.), the snapper (Lutjanus spp.), scad (Selar spp.), and the trevally (*Carangoides* spp) are the most common species caught in the northern region of the Java Sea (Badrudin et al., 2016). Besides the order Perciformes, the Clupeiformes group like the sardine (Sardinella spp.), the anchovies (Stolephorus spp. and Engraulis spp.), and the shad (Anodontostoma sp.) are the standard type of fishery catch in this area (Atmadja et al., 2003). Here, the species under the Chaetodontidae family were found in three locations, except for the North Java. The species identified in the family Chatodontidae included Chaetodon adiergastos, Chaetodon auriga, Chaetodon kleinii, Chaetodon vagabundus, and Heniochus varius (Table 4.6). The species of Chaetodontidae are indicator species for coral reef ecosystem health, which can live only in a healthy and protected coral reef ecosystem (Hourigan et al., 1988; Reese, 1981). So, it can be concluded that in the three sampling locations, there are still excellent coral reef conditions. The existence of coral reef ecosystems in Bali is supported by the awareness of the community in maintaining the ecosystem (Trialfhianty, 2017).

Location	Species Name	% identity	Read numbers
North Bali	Chaetodon kleinii	100	817
	Chaetodon vagabundus	100	404
	Heniochus varius	100	125
South Bali	Chaetodon auriga	100	12
	Chaetodon kleinii	100	18
North Java	-	-	-
South Java	Chaetodon adiergastos	100	37
	Chaetodon kleinii	100	99

Table 4.5. The list of fish species under the family Chaetodontidae identified in this study

The environment DNA metabarcoding is useful for detecting invasive species (Clusa et al., 2017; Williams et al., 2018), migratory species (Goldberg et al., 2015), and biological sewage from fisheries industry and domestic consumption. In this study, we identified three Sardinella species (S. albella, S. hualiensis, and S. lemuru), but the Sardinella hualiensis not reported from the Indonesian water. The S. hualiensis is commonly known as Taiwan sardine. distributed in South China to Hong Kong (http://www.fishbase.se/Country), but this species has been detected in all the study areas. The Taiwan sardine was reportedly identified in the Philippines (Willette et al., 2011; Willette et al., 2014) and the Vietnam waters (Van Quang, 2013). There are two possibilities, firstly, the S. hualiensis is migrating to the Java Sea, and their genetic materials are flowing through the Java Sea. Secondly, the DNA of S. hualiensis coming from the contamination, that is mixing to the water from the residential areas and or from the fish

processing factories. Some of the sardine canning industry around Banyuwangi are importing raw materials from Taiwan (Ginoga, 2017). Another species, Siganus woodlandi has identified in this study, but this species reported from Indonesian yet. The first report of this species is from New Caledonia (Randall and Kulbicki, 2005), which required further research. We were able to identify deep water marine fish and rare marine species. For example, silver light fish, Maurolicus muelleri were identified from South Bali, North Bali, and North Java, then Hypoatherina celebesensis was identified South Bali. The M. muelleri, identified in the central and northwestern tropical waters of the Pacific (Wan and Bian, 2012), carried out vertical migration to feeding activity at night and return to the ocean depth during the day time as part of a strategy to avoid predators (Staby and Aksnes, 2011). The phenomenon of upwelling and down-welling around the Java Sea and the Indian Ocean also observed and contributed to eDNA flow from deep water to the surface. During northwest monsoon, upwelling was found in the Java Sea, and down-welling was shown in the Indian Ocean. During southeast monsoon, upwelling was shown in the Indian ocean, and low intensity of upwelling happen in Java sea (Siswanto, 2008). The Sulawesi silverside Hypoatherina celebesensis is a unique species which is a new record was confirmed in 2012 (Sasaki and Kimura, 2012) and has limited distribution in Singapore, Indonesia, and Palau. Report on this eDNA is fascinating, which

allows the discovery of other rare species by increasing the intensity and range in collecting seawater samples (Jerde et al., 2011).

The environemental DNA metabarcoding application is still experiencing difficulties in distinct cryptic species. Previous research by eDNA analysis mentioned due to the short length of MiFish primer, some close related fish like Sebastes spp and Takifugu spp cannot distinguish by using MiFish universal primer sets (Yamamoto et al., 2017). Here, we got *Cantherhines* spp and Gerres spp which are not inhabit in Indonesia water. For instance, the American white spotted filefish, Cantherhines macrocerus was identified from North and South Bali, but these species inhabit around Florida, Bermuda to Sao Paulo and Eastern Atlantic (Lubbock and Edwards, 1981), however her sister Chantherines dumerilii found in the Indo-Pacific region (Hutchins and Randall, 1982). Also, Gerres microphthalmus was identified from North Bali, North Java, and South Java, and this fish has limited distribution around Southern Japan (Iwatsuki et al., 2002). Previous taxonomic study on Gerres explained that in the Indo-West Pacific had disclosed several of similar clusters (complexes); Gerres filamentosus complex (Iwatsuki et al., 1998). Here, Gerres oyena was identified from South Bali, which is a native fish from the Indo-West Pacific (Iwatsuki et al., 1999).

We suppose, with the short sequence of 12S rRNA region of the MiFish primer, eDNA metabarcoding result failed to distinguish closely related congeners of *Thunnus* (Miya et al., 2015b). Here, beside *Thunnus* spp., another Scombridae includes *Katsuwonus* spp., *Auxis* spp., and *Euthynnus* spp. also failed to distinguish from her group. Some species *Acanthurus* spp. cannot be separated with *Ctenochaetus* spp.; furthermore, *Siganus* spp. has similarly faced the same condition. Secondly, the MiFish pipeline also using their taxonomical system (Table 4.7) based on the MitoFish (Mitochondrial Genome Database of Fish), which is sometimes different from the FishBase and WoRMS (World Register of Marine Species) taxonomical system (Sato et al., 2018).

Increasing the molecular information database is very fundamental, especially in the 12S rRNA segment, which is the target sequence in the MiFish primer. More profound research on universal primers that produce longer sequences will further improve the accuracy of species detection in cryptic species such as the coral-reef fish in the tropical region. Also, the use of the same taxonomy system is expected to be agreed globally.

FishBase		١	WoRMS	MitoFish		
Order	Family	Order	Family	Order	Family	
Perciformes	Acanthuridae	Perciformes	Acanthuridae	Acanthuriformes	Acanthuridae	
	Acropomatidae		Acropomatidae	Pempheriformes	Acropomatidae	
	Ambassidae		Ambassidae	nd	Ambassidae	
	Apogonidae		Apogonidae	Kurtiformes	Apogonidae	
	Blenniidae		Blenniidae	Blenniiformes	Blenniidae	
	Caesionidae		Caesionidae	nd	Caesionidae	
	Carangidae		Carangidae	Carangiformes	Carangidae	
	Centrogenyidae		Centrogenyidae	nd	nd	
	Chaetodontidae		Chaetodontidae	Chaetodontiformes	Chaetodontidae	
	Cirrhitidae		Cirrhitidae	Centrarchifromes	Cirrhitidae	
	Drepaneidae		Drepaneidae	nd	nd	
	Eleotridae	571	Eleotridae	Gobiiformes	Eleotridae	
	Ephippidae		Ephippidae	Ephippiformes	Ephippidae	
	Gempylidae		Gempylidae	Scombriformes	Gempylidae	
	Gerreidae		Gerreidae	Gerreiformes	Gerreidae	
	Gobiidae	-	Gobiidae	Gobiiformes	Gobiidae	
	Haemulidae		Haemulidae	Lutjaniformes	Haemulidae	
	Istiophoridae		Istiophoridae	Pristiophoriformes	Istiophoridae	
	Kyphosidae		Kyphosidae	Centrarchiformes	Kyphosidae	
	Labridae		Labridae	Labriformes	Labridae	
	Leiognathidae		Leiognathidae	Chaetodontiformes	Leiognathidae	
	Lethrinidae		Lethrinidae	Spariformes	Lethrinidae	
	Lobotidae		Lobotidae	Lobotiformes	Lobotidae	
	Lutjanidae		Lutjanidae	Lutjaniformes	Lutjanidae	
	Monodactylidae		Monodactylidae	nd	Monodactylidae	
	Mullidae		Mullidae	Syngnathiformes	Mullidae	
	Pempheridae	3	Pempheridae	Pempheriformes	Pempheridae	
	Pinguipedidae	1	Pinguipedidae	nd	nd	
	Polynemidae	0	Polynemidae	nd	Polynemidae	
	Pomacanthidae		Pomacanthidae	nd	Pomacanthidae	
	Priacanthidae		Priacanthidae	Priacanthiformes	Priacanthidae	
	Scaridae		Scaridae	nd	nd	
	Scatophagidae		Scatophagidae	nd	Scatophagidae	
	Sciaenidae		Sciaenidae	nd	Sciaenidae	
	Scombridae		Scombridae	Scombriformes	Scombridae	
	Serranidae		Serranidae	Perciformes	Serranidae	
	Siganidae		Siganidae	nd	Siganidae	
	Sillaginidae		Sillaginidae	nd	Sillaginidae	
	Sphyraenidae		Sphyraenidae	nd	Sphyraenidae	
	Terapontidae		Terapontidae	Centrarchiformes	Terapontidae	
Mugiliformes	Mugilidae	Perciformes	Mugilidae	nd	Mugilidae	

Table 4.6. Comparison of Taxonomic system within Perciformes in Fishbase, WoRMS, and MitoFish Platform

nd : no data

4.5 Conclusion

The present study provided information regarding the biodiversity of the tropical marine ecosystem using the environmental DNA metabarcoding method from Indonesian water. The environmental DNA analysis in four sampling locations revealed 333 species in 405 representative haplotype (99-100 % identity) and 52 putative species (95-98% identity). The alpha biodiversity in Bali, both in South and North part, have higher than the Java sampling site. The biodiversity Shannon-Wiener Index and Pielou's Evenness Index in north Bali is highest. The Perciformes (72.84%) dominated in this study, followed by Clupeiformes (7.16%) and Tetaraodontiformes (4.69%). The Perciformes most diversity than others order, with 44 families had been identified by eDNA metabarcoding analysis. We performed the marine fish assessment efficiently and cost-effectively by using the eDNA metabarcoding approach from six-months monitoring during January-June 2018. Therefore, proper monitory and regular surveillance should be taken, which may increase the number of marine fish detection in this region. The biodiversity assessment in this region is very crucial to the policy-makers and biologists for sustainable coastal resources management.

Appendix

NIA	Species Nome	Identity		Reads numb	er station-wi	se
1 NO.	Species Name	(%)	North Bali	South Bali	North Java	South Java
1	Abudefduf bengalensis	100	0	0	16	0
2	Abudefduf sordidus	100	0	0	0	741
3	Abudefduf vaigiensis	100	255	208	0	1437
4	Acanthocybium solandri	100	1038	337	0	55
5	Acanthogobius flavimanus	100	0	0	0	38
6	Acanthurus dussumieri	100	0	213	0	0
7	Acanthurus lineatus	100	11615	6541	0	443
8	Acanthurus nigricauda	100	1925	1115	0	0
9	Aeoliscus strigatus	100	429	0	0	0
10	Aethaloperca rogaa	100	0	11	0	0
11	Alectis ciliaris	100	553	53	0	0
12	Alectis indica	100	0	0	12	0
13	Alepes djedaba	100	227	0	61	0
14	Alepes kleinii	100	0	0	91	0
15	Aluterus monoceros	100	0	25	0	0
16	Amatitlania nigrofasciata	100	218	0	0	0
17	Amblygaster sirm	100	0	1337	0	122
18	Amblyglyphidodon aureus	100	0	0	0	21
19	Ammodytes personatus	100	2817	3210	52	1400
20	Amphiprion ephippium	100	0	51	0	0
21	Anguilla marmorata	100	0	1373	0	0
22	Anodontostoma chacunda	100	0	0	0	157
23	Aphareus rutilans	100	388	21	0	0
24	Aplocheilus panchax	100	132	1787	0	0
25	Apogon crassiceps	100	0	0	0	18
26	Aprion virescens	100	810	116	0	0
27	Arctoscopus japonicus	100	0	0	744	0
28	Arothron manilensis	100	0	138	0	0
29	Arothron mappa	100	0	- 0	0	83
30	Arothron nigropunctatus	100	113	0	0	0
31	Atherinomorus aetholepis	100	606	0	0	0
32	Atherinomorus cf	100	0	0	21	0
33	Atherinomorus forskalii	100	297	121	0	0
34	Atherinomorus lacunosus	100	34417	48125	0	1216
35	Atherinomorus sp	100	400	0	0	0
36	Aurigequula fasciata	100	2199	911	466	65
37	Auxis rochei	100	28461	12099	1357	0
38	Balistapus undulatus	100	444	196	0	0
39	Bathygobius sp	100	0	0	0	160
40	Bolinichthys indicus	100	0	0	0	181
41	Butis koilomatodon	100	0	0	144	0
42	Caesio caerulaurea	100	565	14	0	1848
43	Caesio cuning	100	1493	751	0	592
44	Calotomus spinidens	100	113	0	0	0
45	Cantherhines macrocerus	100	387	179	0	0
46	Canthigaster solandri	100	0	75	16	1121
47	Carangichthys dinema	100	0	0	0	32

Appendix 1. Summary of merged reads degenerated by MiFish pipeline were identified on species (99-100% identity)

NI-	CN	Identity	I	Reads numb	er station-wi	ise
NO.	Species Name	(%)	North Bali	South Bali	North Java	South Java
48	Carangichthys oblongus	100	126	0	0	0
49	Carangoides chrysophrys	100	598	20	0	0
50	Carangoides coeruleopinnatus	100	115	23	0	0
51	Carangoides ferdau	100	608	0	0	0
52	Carangoides praeustus	100	0	0	337	0
53	Caranx bucculentus	100	227	49	0	0
54	Caranx heberi	100	196	27	0	0
55	Caranx ignobilis	100	5964	560	0	14
56	Caranx melampygus	100	0	277	0	117
57	Caranx tille	100	0	211	0	0
58	Cephalopholis argus	100	0	917	0	0
59	Cephalopholis cyanostigma	100	0	46	0	0
60	Cephalopholis sexmaculata	100	0	211	0	0
61	Cephalopholis sonnerati	100	574	20	0	0
62	Chaetodon adiergastos	100	0	0	0	37
63	Chaetodon auriga	100	0	12	0	0
64	Chaetodon kleinii	100	817	18	0	99
65	Chaetodon vagabundus	100	404	0	0	0
66	Chanos chanos	100	0	21	0	0
67	Cheilopogon cyanopterus	100	11105	975	0	0
68	Chelon subviridis	100	813	28	7693	930
69	Chelonodon patoca	100	843	99	0	0
70	Chirolophis japonicus	100	0	40	0	0
71	Cirrhitichthys oxycephalus	100	0	0	0	80
72	Congresox talabonoides	100	0	0	32	26
73	Ctenochaetus striatus	100	571	476	0	131
74	Cypselurus heterurus	100	4845	1092	0	533
75	Cypselurus starksi	100	4572	1623	0	32
76	Decapterus macarellus	100	118	0	0	162
77	Decapterus macrosoma	100	18048	12709	0	276
78	Decapterus russelli	100	49704	26325	0	699
79	Dendrochirus zebra	100	0	0	0	46
80	Dendrophysa russelii	100	0	0	119	0
81	Deveximentum indicum	100	0	12	0	0
82	Diagramma picta	100	1103	444	0	0
83	Diodon hystrix	100	266	115	0	0
84	Diodon liturosus	100	0	0	0	19
85	Doryrhamphus naia	100	0	24	0	0
86	Drepane punctata	100	355	264	0	0
87	Echidna nebulosa	100	172	0	0	0
88	Elagatis bipinnulata	100	2392	845	0	0
89	Encrasicholina devisi	100	0	0	0	241
90	Encrasicholina heteroloba	100	0	0	0	80
91	Encrasicholina punctifer	100	0	0	769	2210
92	Engraulis japonicus	100	402	35	25384	15151
93	Epinephelus areolatus	100	1409	562	0	0
94	Epinephelus bontoides	100	123	0	0	51
95	Epinephelus chlorostigma	100	163	0	0	0
96	Epinephelus epistictus	100	0	34	0	0

NI-	C	Identity		Reads number	station-wise	
INO.	Species Name	(%)	North Bali	South Bali	North Java	South Java
97	Epinephelus fasciatus	100	0	90	0	0
98	Epinephelus maculatus	100	0	104	0	0
99	Epinephelus merra	100	0	315	0	0
100	Epinephelus ongus	100	211	0	0	0
101	Epinephelus polyphekadion	100	0	37	0	0
102	Epinephelus quoyanus	100	124	0	0	0
103	Epinephelus septemfasciatus	100	1114	0	302	332
104	Epinephelus sexfasciatus	100	0	0	66	0
105	Erisphex pottii	100	0	346	0	0
106	Escualosa thoracata	100	9192	1313	32991	3128
107	Eubleekeria splendens	100	0	784	0	0
108	Eubleekeria splendens	100	0	0	0	341
109	Euthynnus affinis	100	2210	914	0	46
110	Fistularia commersonii	100	139	0	0	0
111	Gazza minuta	100	1500	3022	1151	0
112	Gerres microphthalmus	100	773	0	4425	221
113	Gerres oyena	100	0	20	0	0
114	Gnathanodon speciosus	100	2797	459	0	0
115	Grammatorcynus bilineatus	100	0	297	0	0
116	Gymnothorax chilospilus	100	0	0	0	1087
117	Gymnothorax flavimarginatus	100	1106	113	0	128
118	Gymnothorax richardsonii	100	1117	336	0	12
119	Hemigymnus melapterus	100	0	241	0	0
120	Hemiramphus lutkei	100	123	0	0	0
121	Heniochus varius	100	125	0	0	0
122	Herklotsichthys quadrimaculatus	100	0	11128	0	2669
123	Hexagrammos stelleri	100	149	0	225	0
124	Hilsa kelee	100	0	0	65	79
125	Hypoatherina celebesensis	100	0	101	0	0
126	Hypoatherina lunata	100	66044	36698	0	906
127	Hypoatherina temminckii	100	0	21	0	0
128	Inimicus sinensis	100	170	0	0	0
129	Istigobius ornatus	100	0	0	0	16
130	Katsuwonus pelamis	100	6539	1144	0	3201
131	Konosirus punctatus	100	0	0	23936	115
132	Kyphosus cinerascens	100	837	628	0	0
133	Kyphosus cinerascens	100	0	0	0	900
134	Kyphosus vaigiensis	100	0	8867	0	0
135	Lactoria cornuta	100	181	41	0	0
136	Lampadena luminosa	100	0	0	0	1014
137	Lateolabrax japonicus	100	0	0	0	1039
138	Lateolabrax maculatus	100	0	0	0	466
139	Leptoscarus vaigiensis	100	493	7255	0	33
140	Lethrinus atkinsoni	100	0	143	0	0
141	Lethrinus cf	100	486	102	0	0
142	Lethrinus erythracanthus	100	1102	163	0	0
143	Lethrinus genivittatus	100	1050	154	0	0

|--|

Na	Crasica Norra	Identity]	Reads number	station-wise	
INO.	Species Name	(%)	North Bali	South Bali	North Java	South Java
144	Lethrinus harak	100	2728	530	0	213
145	Lethrinus obsoletus	100	2520	1011	0	16
146	Lethrinus ravus	100	0	31	0	0
147	Lethrinus reticulatus	100	356	136	0	0
148	Lethrinus rubrioperculatus	100	0	365	0	0
149	Liza macrolepis	100	10436	0	0	0
150	Liza macrolepis	100	0	0	0	51292
151	Lobotes surinamensis	100	150	23	0	0
152	Lobotes surinamensis	100	0	0	0	0
153	Lutjanus argentimaculatus	100	648	541	38	5018
154	Lutjanus bengalensis	100	544	0	0	0
155	Lutjanus bohar	100	3214	1822	0	57
156	Lutjanus decussatus	100	0	1487	0	35
157	Lutjanus erythropterus	100	282	55	0	0
158	Lutjanus fulviflamma	100	1303	5741	0	52
159	Lutjanus fulvus	100	0	137	0	0
160	Lutjanus gibbus	100	0	0	0	67
161	Lutjanus johnii	100	0	49	0	0
162	Lutjanus johnii	100	582	0	0	0
163	Lutjanus lutjanus	100	1214	1361	38	136
164	Lutjanus malabaricus	100	4591	2289	0	58
165	Lutjanus rivulatus	100	0	0	0	38
166	Lutjanus rufolineatus	100	542	139	0	0
167	Lutjanus russellii	100	0	0	4198	0
168	Lutjanus sebae	100	313	0	0	0
169	Lutjanus vitta	100	383	70	0	0
170	Macolor macularis	100	147	397	0	0
171	Macolor niger	100		22	0	0
172	Maurolicus muelleri	100	12366	19432	1808	0
173	Melichthys vidua	100	392	0	0	0
174	Micropterus salmoides	100	0	24	0	0
175	Monodactylus argenteus	100	0	1450	0	0
176	Monotaxis grandoculis	100	0	12	0	0
177	Mugil cephalus	100	439	126	1150	2440
178	Mulloidichthys flavolineatus	100	151	2103	0	0
179	Myripristis berndti	100	0	0	0	124
180	Naso lopezi	100	0	355	0	0
181	Naso mcdadei	100	313	474	0	172
182	Naso thynnoides	100	37	35	0	0
183	Naso vlamingii	100	395	17	0	0
184	Neopomacentrus cyanomos	100	0	0	0	1107
185	Nuchequula flavaxilla	100	0	0	281	0
186	Nuchequula longicornis	100	150	0	1035	0
187	Nuchequula nuchalis	100	0	0	0	907
188	Nuchequula sp	100	157	0	1025	0
189	Odontanthias borbonius	100	0	197	0	0
190	Odonus niger	100	0	0	0	1025

NI-	S	Identity]	Reads number	station-wise	
INO.	Species Name	(%)	North Bali	South Bali	North Java	South Java
191	Oedalechilus labiosus	100	0	0	0	6023
192	Omobranchus zebra	100	343	0	792	0
193	Ophieleotris sp	100	125	0	0	0
194	Ophiocara porocephala	100	150	728	0	0
195	Ostorhinchus fasciatus	100	0	0	299	0
196	Ostorhinchus moluccensis	100	894	4482	0	0
197	Ostorhinchus pleuron	100	0	0	0	29
198	Oxyporhamphus convexus	100	837	0	0	321
199	Paracaesio stonei	100	0	356	0	0
200	Paralichthys olivaceus	100	207	0	82	6134
201	Paramonacanthus otisensis	100	476	0	0	0
202	Parapterois heterura	100	0	0	0	883
203	Parexocoetus mento	100	0	0	0	23
204	Parupeneus barberinoides	100	291	0	0	0
205	Parupeneus heptacanthus	100	0	0	73	103
206	Parupeneus indicus	100	2591	1398	0	131
207	Parupeneus multifasciatus	100	0	123	0	0
208	Pempheris schwenkii	100	0	297	0	13
209	Pempheris vanicolensis	100	117	0	0	65
210	Petroscirtes breviceps	100	1323	733	0	32
211	Pholis nebulosa	100	0	0	0	40
212	Pinjalo pinjalo	100	370	57	0	0
213	Platax orbicularis	100	930	249	0	570
214	Platax pinnatus	100	0	18	0	0
215	Platax teira	100	14088	0	0	194
216	Plectorhinchus chaetodonoides	100	0	0	0	19
217	Plectorhinchus gibbosus	100	79	0	0	0
218	Plectroglyphidodon lacrymatus	100	0	70	0	0
219	Plectropomus areolatus	100	158	0	0	0
220	Plectropomus leopardus	100	233	0	0	0
221	Plotosus lineatus	100	195	476	0	0
222	Polydactylus plebeius	100	256	606	0	0
223	Pomacanthus semicirculatus	100	1599	0	0	44
224	Pomacentrus coelestis	100	0	0	0	194
225	Pomacentrus tripunctatus	100	1772	317	6017	1768
226	Pomadasys kaakan	100	882	37	307	0
227	Priacanthus hamrur	100	0	26	0	0
228	Pristiapogon exostigma	100	127	0	0	0
229	Pristipomoides filamentosus	100	576	17	0	0
230	Pristipomoides multidens	100	742	999	0	34
231	Pristipomoides typus	100	0	872	290	16
232	Protonibea diacanthus	100	122	0	0	0
233	Psettodes erumei	100	414	46	0	0
234	Pseudaesopia japonica	100	0	0	0	1419
235	Pseudobalistes flavimarginatus	100	1953	2296	0	2280

NI-	SN	Identity	Re	eads number	r station-wise	e
INO.	Species Name	(%)	North Bali	South Bali	North Java	South Java
236	Pseudogobius javanicus	100	927	0	0	0
237	Pseudopleuronectes yokohamae	100	0	0	0	737
238	Pseudorasbora parva	100	0	89	0	0
239	Pterocaesio digramma	100	117	0	0	0
240	Pterocaesio digramma	100	0	0	0	708
241	Pterocaesio marri	100	0	0	0	72
242	Pterocaesio tessellata	100	0	0	0	301
243	Pterois antennata	100	0	37	0	0
244	Pterois volitans	100	0	0	20	0
245	Rastrelliger brachysoma	100	0	20	0	0
246	Rastrelliger kanagurta	100	3943	1496	676	418
247	Rhinecanthus verrucosus	100	1447	138	0	0
248	Rhinogobius sp	100	0	31	0	0
249	Sarda orientalis	100	3027	352	0	0
250	Sardinella albella	100	0	3456	55	0
251	Sardinella hualiensis	100	779	17	1129	136
252	Sardinella lemuru	100	392	438	0	0
253	Sargocentron rubrum	100	0	0	23	0
254	Scarus ghobban	100	116	0	0	0
255	Scatophagus argus	100	1271	426	0	1293
256	Scomber japonicus	100	658	469	895	31
257	Scomber scombrus	100	0	0	18	453
258	Scomberoides lysan	100	166	70	0	0
259	Scomberoides tol	100	0	54	0	0
260	Scomberomorus niphonius	100	127	0	0	0
261	Scomberomorus sinensis	100	0	0	0	77
262	Scorpaena neglecta	100	0	0	71	0
263	Scorpaenodes guamensis	100	0	121	0	227
264	Sebastes zacentrus	100	0	0	0	824
265	Secutor hanedai	100	265	0	0	0
266	Secutor megalolepis	100	231	0	0	0
267	Selar boops	100	355	940	0	34797
268	Selar crumenophthalmus	100	587	499	73	112
269	Selaroides leptolepis	100	460	51	0	0
270	Seriola rivoliana	100	0	853	0	36
271	Setipinna taty	100	1470	31	268	43
272	Siganus argenteus	100	2440	14137	0	0
273	Siganus canaliculatus	100	11464	1010	64579	4379
274	Siganus fuscescens	100	20542	5824	92201	7265
275	Siganus punctatus	100	414	0	0	0
276	Siganus spinus	100	190	0	0	0
277	Siganus vermiculatus	100	1834	115	0	1391
278	Sillago japonica	100	460	0	661	52
279	Sphyraena jello	100	926	1169	0	183
280	Sufflamen fraenatum	100	0	14	0	0
281	Taeniamia fucata	100	0	247	0	87
282	Terapon jarbua	100	8056	2200	34736	3313

No	Spacing Name	Identity		Reads number	station-wise	
190.	Species Name	(%)	North Bali	South Bali	North Java	South Java
283	Terapon theraps	100	171	539	0	0
284	Tetrapturus sp	100	19709	6433	0	1011
285	Thryssa baelama	100	353	1093	0	38
286	Thryssa setirostris	100	0	0	31	0
287	Thunnus maccoyii	100	183	0	0	0
288	Thunnus obesus	100	77342	94408	2130	0
289	Thunnus thynnus	100	0	0	564	0
290	Thunnus tonggol	100	20	237	0	0
291	Trachinotus baillonii	100	1300	330	0	0
292	Trachinotus blochii	100	1258	17	0	0
293	Tribolodon hakonensis	100	0	0	0	209
294	Trichopodus trichopterus	100	249	0	0	0
295	Tridentiger obscurus	100	211	0	0	0
296	Tylosurus acus	100	171	127	0	0
297	Tylosurus crocodilus	100	1264	28236	0	599
298	Ulua mentalis	100	0	69	0	0
299	Upeneus guttatus	100	0	0	0	95
300	Upeneus sulphureus	100	371	282	2772	5772
301	Upeneus tragula	100	0	292	0	39
302	Upeneus vittatus	100	0	26	0	0
303	Variola albimarginata	100	0	16	0	0
304	Xiphias gladius	100	721	0	0	0
305	Ablabys taenianotus	99	122	0	0	0
306	Abudefduf sordidus	99	0	0	0	631
307	Acanthurus bariene	99	0	207	0	123
308	Acanthurus lineatus	99	0	0	0	529
309	Acanthurus mata	99	512	31	0	1049
310	Acanthurus xanthopterus	99	2391	1598	0	49156
311	Acentrogobius pflaumii	99	0	66	0	192
312	Acheilognathus intermedia	99	0	0	31	0
313	Acheilognathus signifer	99	603	0	0	0
314	Acreichthys tomentosus	99	0	0	17	0
315	Acropoma japonicum	99	0	99	0	0
316	Ammodvtes personatus	99	0	0	0	577
317	Anodontostoma chacunda	99	0	0	53	0
318	Arctoscopus japonicus	99	109	0	0	0
319	Arius oetik	99	0	0	150	170
320	Arothron hispidus	99	277	256	0	0
321	Atherinomorus lacunosus	99	0	0	0	470
322	Atherinomorus sp	99	1117	1002	Õ	0
323	Aurigequula fasciata	99	125	0	0	0
324	Auxis thazard	99	2923	613	Õ	11630
325	Bathygobius sp	99	0	0	26	264
326	Benthosema pterotum	99	365	Ő	0	0
327	Bregmaceros arabicus	99	173	Õ	Õ	0
328	Caesio caerulaurea	99	0	0 0	ů 0	105
329	Calotomus spinidens	99	11172	214	Ő	0
547	Sanstoning spiniterity	,,		-17	0	5

No	Succion Name	Identity	-	Reads numbe	er station-wise	
190.	Species Name	(%)	North Bali	South Bali	North Java	South Java
330	Caranx ignobilis	99	0	60	0	0
331	Caranx tille	99	140	0	0	0
332	Centrogenys vaigiensis	99	350	0	0	0
333	Cephalopholis sexmaculata	99	135	0	0	0
334	Channa striata	99	0	85	0	0
335	Chelon subviridis	99	1453	66	0	0
336	Clarias sp	99	174	29	0	0
337	Clupea pallasii	99	0	0	0	1062
338	Ctenochaetus binotatus	99	0	0	0	50
339	Culter dabryi	99	0	0	0	468
340	Decapterus macarellus	99	0	16	0	0
341	Decapterus macrosoma	99	932	0	0	0
342	Decapterus russelli	99	676	0	0	0
343	Dendrophysa russelii	99	156	0	0	0
344	Ditrema viride	99	0	0	1337	0
345	Echidna nebulosa	99	0	0	0	340
346	Ellochelon vaigiensis	99	0	0	341	94
347	Engraulis japonicus	99	7182	16421	173	0
348	Engraulis mordax	99	0	0	77	0
349	Epinephelus akaara	99	0	0	148	47
350	Epinephelus awoara	99	722	27	0	0
351	Epinephelus chlorostigma	99	0	33	0	0
352	Epinephelus fuscoguttatus	99	265	155	0	0
353	Epinephelus malabaricus	99	173	21	0	90
354	Epinephelus ongus	99	0	305	0	0
355	Epinephelus quoyanus	99	0	150	0	0
356	Escualosa thoracata	99	0	31	0	0
357	Eubleekeria splendens	99	0	111	0	0
358	Gazza rhombea	99	408	17	90	0
359	Gerres decacanthus	99	0	0	38	0
360	Gymnothorax chilospilus	99	934	0	0	0
361	Gymnothorax flavimarginatus	99	0	0	579	0
362	Hemibarbus umbrifer	99	1949	0	0	0
363	Hemiramphus lutkei	99	811	497	0	0
364	Herklotsichthys quadrimaculatus	99	742	0	0	0
365	Hexagrammos stelleri	99	0	0	0	20
366	Hilsa kelee	99	293	74	351	0
367	Hyporhamphus sajori	99	0	0	0	217
368	Istiblennius edentulus	99	0	0	0	1012
369	Kyphosus cinerascens	99	3751	0	0	0
370	Kyphosus pacificus	99	140	0	0	0
371	Lepidocybium flavobrunneum	99	4509	445	0	0
372						17
	Lethrinus cf	99	4357	802	331	17
373	Lethrinus cf Lethrinus harak	99 99	4357 196	802 0	331 0	0
373 374	Lethrinus cf Lethrinus harak Lethrinus lentjan	99 99 99	4357 196 254	802 0 545	331 0 0	17 0 16

No	Species Name	Identity	Reads number station-wise				
N0.		(%)	North Bali	South Bali	North Java	South Java	
376	Maurolicus japonicus	99	1857	96	508	180	
377	Maurolicus muelleri	99	245	0	12	28532	
378	Megalaspis cordyla	99	0	41	0	0	
379	Mugil cephalus	99	159	0	2067	0	
380	Muraenesox bagio	99	2132	0	0	0	
381	Myripristis murdjan	99	0	0	0	565	
382	Naso unicornis	99	630	1213	0	28	
383	Naso vlamingii	99	0	732	0	0	
384	Nematalosa come	99	9161	4963	0	142	
385	Neopomacentrus azysron	99	0	0	0	781	
386	Neopomacentrus cyanomos	99	0	0	0	1431	
387	Nuchequula longicornis	99	0	0	0	186	
388	Nuchequula nuchalis	99	0	24	0	0	
389	Odontobutis platycephala	99	193	0	0	0	
390	Oedalechilus labiosus	99	0	0	0	479	
391	Omobranchus punctatus	99	592	380	790	116	
392	Omobranchus zebra	99	0	0	0	19	
393	Opsariichthys uncirostris	99	121	0	80	0	
394	Ostorhinchus cookii	99	672	0	0	4527	
395	Ostorhinchus moluccensis	99	225	114	0	233	
396	Ostorhinchus taeniophorus	99	194	0	0	0	
397	Otolithes ruber	99	0	0	18	0	
398	Oxyurichthys sp	99	369	0	0	0	
399	Paracaesio stonei	99	0	18	0	0	
400	Paramonacanthus otisensis	99	2225	2409	66	212	
401	Platax teira	99	0	49	263	0	
402	Plectorhinchus gibbosus	99	0	18	0	0	
403	Plectropomus oligacanthus	99	622	34	0	0	
404	Pleuronectes pinnifasciatus	99	0	0	0	18	
405	Plotosus canius	99	0	0	12	0	
406	Pomacanthus semicirculatus	99	902	0	0	0	
407	Pomacentrus moluccensis	99	0	0	0	1229	
408	Pomacentrus nagasakiensis	99	0	0	0	68	
409	Pomacentrus tripunctatus	99	283	0	0	0	
410	Pseudaesopia japonica	99	0	0	109	0	
411	Pseudanthias squamipinnis	99	0	0	0	659	
412	Pseudobalistes flavimarginatus	99	0	0	0	1152	
413	Pseudorasbora parva	99	391	0	0	0	
414	Pterocaesio digramma	99	0	0	0	627	
415	Rastrelliger kanagurta	99	3932	0	18	0	
416	Rhinogobius sp	99	1499	0	0	0	
417	Sarda chiliensis	99	155	23	0	0	
418	Sardinella albella	99	0	0	142	0	
419	Sardinella hualiensis	99	0	152	167	0	
420	Sargocentron rubrum	99	0	0	0	168	

No	Species Name	Identity	Reads number station-wise			
NO.		(%)	North Bali	South Bali	North Java	South Java
421	Scatophagus argus	99	293	0	873	0
422	Scomberoides lysan	99	0	17	0	0
423	Scomberoides tol	99	0	0	38	0
424	Scomberomorus sinensis	99	2203	1607	0	38
425	Scorpaena miostoma	99	0	729	0	0
426	Scorpaenopsis ramaraoi	99	152	0	0	0
427	Selar boops	99	2922	0	488	0
428	Seriola quinqueradiata	99	205	0	10229	0
429	Setipinna taty	99	129	0	0	0
430	Siganus woodlandi	99	0	19	0	0
431	Sphyraena jello	99	0	365	0	0
432	Spratelloides delicatulus	99	197	0	0	0
433	Spratelloides gracilis	99	2729	5347	0	18
434	Squalidus japonicus	99	0	0	70	0
435	Stethojulis interrupta	99	0	0	5664	0
436	Stolephorus brachycephalus	99	186	707	0	0
437	Strongylura incisa	99	0	0	0	44
438	Syngnathoides biaculeatus	99	0	12	0	0
439	Taeniamia fucata	99	137	0	0	0
440	Terapon jarbua	99	459	831	0	0
441	Thunnus maccoyii	99	0	170	0	0
442	Thunnus orientalis	99	238	795	0	0
443	Thunnus thynnus	99	79	256	0	0
444	Thunnus tonggol	99	42	0	0	0
445	Thryssa baelama	99	798	0	413	178
446	Trachinotus blochii	99	535	159	0	0
447	Tridentiger obscurus	99	2141	0	0	0
448	Tylosurus crocodilus	99	1954	256	8657	630
448	Upeneus vittatus	99	156	561	0	2075
449	Yongeichthys criniger	99	0	28	0	0
	1.50	7 [10	y		
		-				

		Identity	Reads number station-wise			
No.	Species name	(%)	North	South	North	South
		(70)	Bali	Bali	Java	Java
1	Acanthurus sp.	98	0	0	0	12
2	Atherinomorus sp.	98	36400	89729	0	31
3	Barbodes sp.	98	533	32	0	0
4	Bathygobius sp.	98	0	0	0	701
5	Cantherhines sp.	98	869	0	0	0
6	Carangoides sp.	98	116	0	0	0
7	<i>Caranx</i> sp.	98	0	482	0	0
8	Chelon sp.	98	0	1792	0	0
9	Ctenochaetus sp.	98	0	0	0	40
10	Decapterus sp.	98	132	23	0	0
11	Eleotris sp.	98	158	253	0	0
12	Eleutheronema sp.	98	0	0	139	0
13	Engraulis sp.	98	1578	0	0	0
14	Epinephelus sp.	98	191	93	0	0
15	Euthynnus sp.	98	134	0	0	0
16	Gazza sp.	98	0	0	1112	0
17	Glaucosoma sp.	98	381	0	0	Õ
18	Liza sp	98	0	1254	0	Ő
19	Lutianus sp	98	633	187	0	102
20	Moolgarda sp	98	136	28	33	1066
21	Myersing sp	98	0	0	0	216
21	Oedalechilus sp	98	1752	0	0	0
22	Parascornagna sp	08	0	36	0	0
23	Pampharis sp.	98	0	83	0	0
24	Plactorhinchus sp	98	243	21	0	0
25	Seeleenehelw sp	98	120	21	0	0
20	Stolenkorus sp.	98	120	0	143	0
21	There is the second	90	4070	216	143	0
20	Thunnus thynnus	98	32	210	0	0
29	A surface and set of the set of t	98	0	81	0	0
30	Acantnurus sp.	97	0	0	0	024
31	Caranx sp.	97	576	0	0	0
32	Epinephelus sp.	97	0	19	0	0
33	Eubleekeria sp.	97	0	0	1/1	0
34	Gazza sp.	97	0	0	149	0
35	Herklotsichthys sp.	97	3442	7229	0	0
36	Hirundichthys sp.	97	233	0	0	0
37	Istiblennius sp.	97	0	58	0	0
38	Lates sp.	97	112	0	0	0
39	Lethrinus sp.	97	129	191	0	0
40	<i>Lutjanus</i> sp.	97	0	430	0	0
41	Maurolicus sp.	97	0	745	0	0
42	Ostorhinchus sp.	97	404	0	0	1330
43	Pempheris sp.	97	168	19	0	111
44	Pinjalo sp.	97	0	62	0	0
45	Siganus sp.	97	0	0	22	0
46	Sphyraena sp.	97	0	517	0	0
47	Stolephorus sp.	97	0	30	118	0
48	Ambassis sp. (unidentified)	96	0	47	80	0
49	Anyperodon sp. (unidentified)	96	428	49	0	0
50	Atherinomorus sp (unidentified)	96	112	0	0	0

Appendix 2. Summary of merged reads generated by MiFish pipeline were identified on putative species (95-98% identity)

No.	Species name	Identity (%)	Reads number station-wise			
			North	South	North	South
			Bali	Bali	Java	Java
51	Carangoides sp. (unidentified)	96	113	100	0	0
52	Echidna sp. (unidentified)	96	0	45	0	0
53	Eubleekeria sp. (unidentified)	96	8363	58619	0	0
54	Gerres sp. (unidentified)	96	1123	290	0	0
55	Jaydia sp. (unidentified)	96	526	0	636	0
56	Lethrinus sp. (unidentified)	96	1935	1434	0	970
57	Liza sp. (unidentified)	96	4785	489	0	0
58	Nemipterus sp. (unidentified)	96	0	15	0	0
59	Neopomacentrus sp. (unidentified)	96	0	0	0	36
60	Ostorhinchus sp. (unidentified)	96	139	0	0	0
61	Ostorhinchus sp. (unidentified)	96	217	0	0	0
62	Parascorpaena sp. (unidentified)	96	0	0	66	0
63	Parupeneus sp. (unidentified)	96	0	23	0	0
64	Pinjalo sp. (unidentified)	96	366	0	0	0
65	Platycephalus sp. (unidentified)	96	0	0	0	142
66	Prognichthys sp. (unidentified)	96	119	0	0	0
67	Pseudochromis sp. (unidentified)	96	268	0	0	0
68	Scartelaos sp. (unidentified)	96	242	747	8427	171
69	Scomberoides sp. (unidentified)	96	181	0	0	0
70	Sebastapistes sp. (unidentified)	96	14	0	0	0
71	Sphyraena sp. (unidentified)	96	2118	693	107	13
72	Stolephorus sp. (unidentified)	96	450	0	0	0
73	Synodus sp. (unidentified)	96	122	0	0	0
74	Taeniamia sp. (unidentified)	96	0	803	0	0
75	Arctoscopus sp. (unidentified)	95	0	0	0	160
76	Auxis sp. (unidentified)	95	143	0	0	0
77	Equulites sp. (unidentified)	95	1126	108	0	0
78	Hyporhamphus sp. (unidentified)	95	124	0	0	0
79	Myctophum sp. (unidentified)	95	121	0	0	0
80	Parapercis sp. (unidentified)	95	0	0	0	167
81	Parascorpaena sp. (unidentified)	95	172	0	0	0
82	Scartelaos sp. (unidentified)	95	200	0	0	0
83	Sphyraena sp. (unidentified)	95	0	0	0	735
84	Sphyraena sp. (unidentified)	95	0	67	0	0
85	Stolephorus sp. (unidentified)	95	0	0	27	0
86	Taeniamia sp. (unidentified)	95	350	263	0	0
87	Taenioides sp. (unidentified)	95	0	0	0	26
88	Thryssa sp. (unidentified)	95	0	0	57	0
89	Thunnus maccoyii	95	0	312	0	0

References

Abrar, M.A., 2017. Diversity of reef fish fungsional groups in terms of coral reef resiliences. Indonesian Fisheries Research Journal 22, 109-122.

Adrim, M., Harahap, S.A., Wibowo, K., 2012. Struktur Komunitas Ikan Karang di Perairan Kendari (Community Structure of Coral Reef Fishes at Kendari Waters). ILMU KELAUTAN: Indonesian Journal of Marine Sciences 17, 154-163.

Allen, G.R., 1985. Review of the snappers of the genus Lutjanus (Pisces: Lutjanidae) from the Indo-Pacific, with the description of a new species. Indo-Pacific Fish. 11, 1-87.

Allen, G.R., Adrim, M., 2003. Coral reef fishes of Indonesia. ZOOLOGICAL STUDIES-TAIPEI- 42, 1-72.

Allen, G.R., Erdmann, M.V., 2012. Reef Fishes of the East Indies: Andaman Sea, Myanmar, Thailand, Indonesia, Christmas Island, Singapore, Malaysia, Brunei, Philippines, Papua New Guinea, Solomon Islands. Tropical Reef Research.

Allen, G.R., Erdmann, M.V., 2013. Reef Fishes of Bali, Indonesia. Bali Marine Rapid Assessment.

Allen, G.R., Werner, T.B., 2002. Coral reef fish assessment in the 'coral triangle' of southeastern Asia. Environmental Biology of Fishes 65, 209-214.

Anderson-Carpenter, L.L., McLachlan, J.S., Jackson, S.T., Kuch, M., Lumibao, C.Y., Poinar, H.N., 2011. Ancient DNA from lake sediments: bridging the gap between paleoecology and genetics. BMC evolutionary biology 11, 30-45.

Anderson, S., Bankier, A.T., Barrell, B.G., de Bruijn, M.H., Coulson, A.R., Drouin, J., Eperon, I.C., Nierlich, D.P., Roe, B.A., Sanger, F., 1981. Sequence and organization of the human mitochondrial genome. Nature 290, 457.

Anderson, S., De Bruijn, M., Coulson, A., Eperon, I., Sanger, F., Young, I., 1982. Complete sequence of bovine mitochondrial DNA conserved features of the mammalian mitochondrial genome. Journal of molecular biology 156, 683-717.

Antoro, S., Na-Nakorn, U., Koedprang, W., 2006. Study of genetic diversity of orange-spotted grouper, Epinephelus coioides, from Thailand and Indonesia using

microsatellite markers. Marine Biotechnology 8, 17-26.

Arai, T., Aoyama, J., Limbong, D., Tsukamoto, K., 1999. Species composition and inshore migration of the tropical eels Anguilla spp. recruiting to the estuary of the Poigar River, Sulawesi Island. Marine Ecology Progress Series, 299-303.

Ardura, A., Zaiko, A., Martinez, J.L., Samulioviene, A., Semenova, A., Garcia-Vazquez, E., 2015. eDNA and specific primers for early detection of invasive species–a case study on the bivalve Rangia cuneata, currently spreading in Europe. Marine Environmental Research 112, 48-55.

Ariyanti, Y., 2012. Aplikasi DNA Barcode pada Penentuan Spesies Ikan Danau Laut Tawar, Nangroe Aceh Darussalam.

Atmadja, S., Nugroho, D., Suwarso, T.H., 2003. Mahisworo. 2003. Pengkajian stok ikan di Wilayah Pengelolaan Perikanan (WPP) Laut Jawa, Prosiding forum pengkajian stok ikan laut di perairan Indonesia, 23-24.

Badrudin, B., Aisyah, A., Ernawati, T., 2016. Kelimpahan stok sumber daya ikan demersal di perairan sub area Laut Jawa. Jurnal Penelitian Perikanan Indonesia 17, 11-21.

Baldwin, C.C., Mounts, J.H., Smith, D.G., Weigt, L.A., 2009. Genetic identification and color descriptions of early life-history stages of Belizean Phaeoptyx and Astrapogon (Teleostei: Apogonidae) with comments on identification of adult Phaeoptyx. Zootaxa 2008, 1-22.

Bayona-Vásquez, N.J., Hernández-Álvarez, C.A., Glenn, T., Domínguez-Domínguez, O., Uribe-Alcocer, M., Díaz-Jaimes, P., 2017. Complete mitogenome sequences of the pacific red snapper (Lutjanus peru) and the spotted rose snapper (Lutjanus gutattus). Mitochondrial DNA Part A 28, 223-224.

Beardsley Jr, G.L., 1969. Proposed migrations of albacore, Thunnus alalunga, in the Atlantic Ocean. Transactions of the american fisheries society 98, 589-598.

Benson, D.A., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., Sayers, E.W., 2012. GenBank. Nucleic acids research 41, D36-D42.

Bird, E.C.F., Ongkosongo, O.S., 1980. Environmental changes on the coasts of Indonesia. UNU.

Birky, C., Fuerst, P., Maruyama, T., 1989. Organelle gene diversity under migration, mutation, and drift: equilibrium expectations, approach to equilibrium, effects of heteroplasmic cells, and comparison to nuclear genes. Genetics 121, 613-627.

Boore, J.L., Medina, M., Rosenberg, L.A., 2004. Complete sequences of the highly rearranged molluscan mitochondrial genomes of the scaphopod Graptacme eborea and the bivalve Mytilus edulis. Molecular Biology and Evolution 21, 1492-1503.

Bremner, J., Frid, C., Rogers, S.I., 2003. Assessing marine ecosystem health: the long-term effects of fishing on functional biodiversity in North Sea benthos. Aquatic Ecosystem Health & Management 6, 131-137.

Brown, W.M., George, M., Wilson, A.C., 1979. Rapid evolution of animal mitochondrial DNA. Proceedings of the National Academy of Sciences 76, 1967-1971.

Bylemans, J., Furlan, E.M., Hardy, C.M., McGuffie, P., Lintermans, M., Gleeson, D.M., 2017. An environmental DNA-based method for monitoring spawning activity: a case study, using the endangered Macquarie perch (Macquaria australasica). Methods in Ecology and Evolution 8, 646-655.

Cai, W., Ma, Z., Yang, C., Wang, L., Wang, W., Zhao, G., Geng, Y., Douglas, W.Y., 2017. Using eDNA to detect the distribution and density of invasive crayfish in the Honghe-Hani rice terrace World Heritage site. PloS one 12, e0177724.

Caras, T., Pasternak, Z., 2009. Long-term environmental impact of coral mining at the Wakatobi marine park, Indonesia. Ocean & Coastal Management 52, 539-544.

Carpenter, K.E., Springer, V.G., 2005. The center of the center of marine shore fish biodiversity: the Philippine Islands. Environmental biology of fishes 72, 467-480.

Carreras-Carbonell, J., Pascual, M., Macpherson, E., 2007. A review of the Tripterygion tripteronotus (Risso, 1810) complex, with a description of a new species from the Mediterranean Sea (Teleostei: Tripterygiidae). Scientia Marina 71, 75-86.

Cawthorn, D.-M., Steinman, H.A., Witthuhn, R.C., 2012. Evaluation of the 16S and 12S rRNA genes as universal markers for the identification of commercial fish species in South Africa. Gene 491, 40-48.

Chang, Y.-s., Huang, F.-l., Lo, T.-b., 1994. The complete nucleotide sequence and
gene organization of carp (Cyprinus carpio) mitochondrial genome. Journal of Molecular Evolution 38, 138-155.

Chen, D.-X., Chu, W.-Y., Liu, X.-L., Nong, X.-X., Li, Y.-L., Du, S.-J., Zhang, J.-S., 2012. Phylogenetic studies of three sinipercid fishes (Perciformes: Sinipercidae) based on complete mitochondrial DNA sequences. Mitochondrial DNA 23, 70-76.

Chen, G., 1997. Studies on age, growth and life-history pattern of Lutlanus russelli Bleeker. Shuichan xuebao 21, 6-12.

Chow, S., Ueno, Y., Toyokawa, M., Oohara, I., Takeyama, H., 2009. Preliminary analysis of length and GC content variation in the ribosomal first internal transcribed spacer (ITS1) of marine animals. Marine biotechnology 11, 301-306.

Clarke, K., Gorley, R., 2015. Getting started with PRIMER v7. PRIMER-E: Plymouth, Plymouth Marine Laboratory.

Clusa, L., Miralles, L., Basanta, A., Escot, C., García-Vázquez, E., 2017. eDNA for detection of five highly invasive molluscs. A case study in urban rivers from the Iberian Peninsula. PloS one 12, e0188126.

Collette, B., Carpenter, K., Polidoro, B., Juan-Jordá, M., Boustany, A., Die, D., Elfes, C., Fox, W., Graves, J., Harrison, L., 2011. High value and long life—double jeopardy for tunas and billfishes. Science 333, 291-292.

Collins, L.A., Fitzhugh, G.R., Mourand, L., Lombardi-Carlson, L., 2001. Preliminary results from a continuing study of spawning and fecundity of the Red Snapper (Lutjanidae: Lutjanus campechanus) from the Gulf of Mexico, 1998-1990.

Comitini, S., Hardjolukito, S., 1986. Economic benefits and costs of alternative arrangements for tuna fisheries development in the exclusive economic zone: The case of Indonesia. Ocean management 10, 37-55.

Costanza, R., 1999. The ecological, economic, and social importance of the oceans. Ecological economics 31, 199-213.

Croce, O., Lamarre, M., Christen, R., 2006. Querying the public databases for sequences using complex keywords contained in the feature lines. BMC bioinformatics 7, 45.

Cui, Z., Liu, Y., Li, C.P., You, F., Chu, K.H., 2009. The complete mitochondrial

genome of the large yellow croaker, Larimichthys crocea (Perciformes, Sciaenidae): unusual features of its control region and the phylogenetic position of the Sciaenidae. Gene 432, 33-43.

Daan, N., 2001. The IBTS database: a plea for quality control. Unknown Publisher.

Dahruddin, H., Hutama, A., Busson, F., Sauri, S., Hanner, R., Keith, P., Hadiaty, R., Hubert, N., 2017. Revisiting the ichthyodiversity of Java and Bali through DNA barcodes: Taxonomic coverage, identification accuracy, cryptic diversity and identification of exotic species. Molecular ecology resources 17, 288-299.

Das, S., Deb, B., 2015. DNA barcoding of fungi using Ribosomal ITS Marker for genetic diversity analysis: a review. Int. J. Pure Appl. Biosci 3, 160-167.

Davis, T.L., 1992. Growth and mortality of Lutjanus vittus(Quoy and Gaimard) from the North West Shelf of Australia. Fishery bulletin 90, 395-404.

de Vargas, C., Bonzon, M., Rees, N.W., Pawlowski, J., Zaninetti, L., 2002. A molecular approach to biodiversity and biogeography in the planktonic foraminifer Globigerinella siphonifera (d'Orbigny). Marine Micropaleontology 45, 101-116.

Dejean, T., Valentini, A., Miquel, C., Taberlet, P., Bellemain, E., Miaud, C., 2012. Improved detection of an alien invasive species through environmental DNA barcoding: the example of the American bullfrog Lithobates catesbeianus. Journal of applied ecology 49, 953-959.

Del-Prado, R., Cubas, P., Lumbsch, H.T., Divakar, P.K., Blanco, O., de Paz, G.A., Molina, M.C., Crespo, A., 2010. Genetic distances within and among species in monophyletic lineages of Parmeliaceae (Ascomycota) as a tool for taxon delimitation. Molecular Phylogenetics and Evolution 56, 125-133.

Demestre, M., Muntadas, A., de Juan, S., Mitilineou, C., Sartor, P., Mas, J., Kavadas, S., Martín, J., 2015. The need for fine-scale assessment of trawl fishing effort to inform on an ecosystem approach to fisheries: Exploring three data sources in Mediterranean trawling grounds. Marine Policy 62, 134-143.

Dhahiyat, Y., Sinuhaji, D., Hamdani, H., 2017. STRUKTUR KOMUNITAS IKAN KARANG DIDAERAH TRANSPLANTASI KARANG PULAU PARI, KEPULAUAN SERIBU [Community Structure of Coral Reef Fish in the Coral Transplantation Area Pulau Pari, Kepulauan Seribu]. Jurnal Iktiologi Indonesia 3, 87-94.

DJPT, 2011. Statistika Perikanan Tangkap Indonesia 2010. Kementrian Kelautan dan Perikanan. Jakarta.

Douady, C.J., Dosay, M., Shivji, M.S., Stanhope, M.J., 2003. Molecular phylogenetic evidence refuting the hypothesis of Batoidea (rays and skates) as derived sharks. Molecular phylogenetics and evolution 26, 215-221.

Dowling, T., 1990. Nucleic acide II. Restriction site analysis. Molecular systematics, 250-319.

Duggan, D.E., Kochen, M., 2016. Small in scale but big in potential: Opportunities and challenges for fisheries certification of Indonesian small-scale tuna fisheries. Marine Policy 67, 30-39.

Edinger, E.N., Jompa, J., Limmon, G.V., Widjatmoko, W., Risk, M.J., 1998. Reef degradation and coral biodiversity in Indonesia: effects of land-based pollution, destructive fishing practices and changes over time. Marine Pollution Bulletin 36, 617-630.

FAO, 2016. Aquaculture Department (2010) The state of world fisheries and aquaculture. Food and Agriculture Organization of the United Nations, Rome.

Fauzi, A., Anna, Z., 2010. The Java Sea Small-Scale Fisheries in Changing Environment: Experiences From Indonesia.

Ficetola, G.F., Miaud, C., Pompanon, F., Taberlet, P., 2008. Species detection using environmental DNA from water samples. Biology letters 4, 423-425.

Freitas, M.O., De Moura, R.L., Francini-Filho, R.B., Minte-Vera, C.V., 2011. Spawning patterns of commercially important reef fish (Lutjanidae and Serranidae) in the tropical western South Atlantic. Scientia Marina 75, 135-146.

Fricke, R., Eschmeyer, W., Van Der Laan, R., 2018. Catalog of fishes: genera, species, references. California Academy of Sciences, San Francisco, CA, USA <u>http://researcharchive</u>. calacademy. org/research/ichthyology/catalog/fishcatmain. asp.

Froese, R., Pauly, D., 2014. FishBase. Available at: http.

Gil, L.A., 2007. PCR-based methods for fish and fishery products authentication. Trends in Food Science & Technology 18, 558-566.

Giles, R.E., Blanc, H., Cann, H.M., Wallace, D.C., 1980. Maternal inheritance of human mitochondrial DNA. Proceedings of the National academy of Sciences 77, 6715-6719.

Ginoga, A.N., 2017. Analysis of the Behavioral Structure and Performance of Canned Fish Processing Industry in Indonesia (Period 1990-2014). Undergraduate Thesis, 1-47.

Ginting, I.Y.B., Restu, I.W., Pebriani, D.A.A., 2015. Kualitas Air dan Struktur Komunitas Plankton di Perairan Pantai Lovina Kabupaten Buleleng Provinsi Bali. Journal of Marine and Aquatic Sciences 5, 109-118.

Gissi, C., Iannelli, F., Pesole, G., 2008. Evolution of the mitochondrial genome of Metazoa as exemplified by comparison of congeneric species. Heredity 101, 301.

Giusti, A., Armani, A., Sotelo, C.G., 2017. Advances in the analysis of complex food matrices: Species identification in surimi-based products using Next Generation Sequencing technologies. PloS one 12, 1-18.

Goldberg, C.S., Strickler, K.M., Pilliod, D.S., 2015. Moving environmental DNA methods from concept to practice for monitoring aquatic macroorganisms. Biological Conservation 183, 1-3.

Gray, J.S., 2000. The measurement of marine species diversity, with an application to the benthic fauna of the Norwegian continental shelf. Journal of experimental marine biology and ecology 250, 23-49.

Green, A., Mous, P.J., 2008. Delineating the Coral Triangle, its ecoregions and functional seascapes, Report on an expert workshop, held at the Southeast Asia Center for Marine Protected Areas, Bali, Indonesia (April 30–May 2, 2003). Version.

Greiner, S., Lehwark, P., Bock, R., 2019. OrganellarGenomeDRAW (OGDRAW) version 1.3. 1: expanded toolkit for the graphical visualization of organellar genomes. bioRxiv, 545509.

Grol, M.G., Dorenbosch, M., Kokkelmans, E.M., Nagelkerken, I., 2008. Mangroves and seagrass beds do not enhance growth of early juveniles of a coral reef fish. Marine Ecology Progress Series 366, 137-146.

Guo, Y., Wang, Z., Liu, C., Liu, Y., 2008. Sequencing and analysis of the complete

mitochondrial DNA of Russell's snapper (L. russellii). Progress in Natural Science 18, 1233-1238.

Handy, S.M., Deeds, J.R., Ivanova, N.V., Hebert, P.D., Hanner, R.H., Ormos, A., Weigt, L.A., Moore, M.M., Yancy, H.F., 2011. A single-laboratory validated method for the generation of DNA barcodes for the identification of fish for regulatory compliance. Journal of AOAC International 94, 201-210.

He, Q., Lu, G., Che, K., Zhao, E., Fang, Q., Wang, H., Liu, J., Huang, C., Dong, Q., 2011. Sperm cryopreservation of the endangered red spotted grouper, Epinephelus akaara, with a special emphasis on membrane lipids. Aquaculture 318, 185-190.

Hoegh-Guldberg, O., Mumby, P.J., Hooten, A.J., Steneck, R.S., Greenfield, P., Gomez, E., Harvell, C.D., Sale, P.F., Edwards, A.J., Caldeira, K., 2007. Coral reefs under rapid climate change and ocean acidification. science 318, 1737-1742.

Hoeksema, B., Putra, K., 2000. The reef coral fauna of Bali in the centre of marine diversity, Proceedings 9th International Coral Reef Symposium, 173-178.

Hoeksema, B.W., 2007. Delineation of the Indo-Malayan centre of maximum marine biodiversity: the Coral Triangle, Biogeography, time, and place: distributions, barriers, and islands. Springer, 117-178.

Hopkins, G., Freckleton, R.P., 2002. Declines in the numbers of amateur and professional taxonomists: implications for conservation. Animal Conservation 5, 245-249.

Hourigan, T.F., Timothy, C.T., Reese, E.S., 1988. Coral reef fishes as indicators of environmental stress in coral reefs, Marine organisms as indicators. Springer, 107-135.

Hubert, N., Hanner, R., Holm, E., Mandrak, N.E., Taylor, E., Burridge, M., Watkinson, D., Dumont, P., Curry, A., Bentzen, P., 2008. Identifying Canadian freshwater fishes through DNA barcodes. PLoS one 3, e2490.

Huete-Pérez, J.A., Quezada, F., 2013. Genomic approaches in marine biodiversity and aquaculture. Biological research 46, 353-361.

Hutama, A.A., Hadiaty, R.K., Hubert, N., 2017. BIOGEOGRAPHY OF INDONESIAN FRESHWATER FISHES: CURRENT PROGRESS. TREUBIA 43,

17-30.

Hutchings, J.A., 2000. Collapse and recovery of marine fishes. Nature 406, 882.

Hutchins, J.B., Randall, J.E., 1982. Cantherhines longicaudaus, A New Filefish from Oceania, with a Review of the Species of the C. fronticinctus Complex.

Hutomo, M., Moosa, M.K., 2005. Indonesian marine and coastal biodiversity: Present status.

Idris, I., Setyawan, E., Mardesyawati, A., 2013. STATUS PENANGKAPAN IKAN HIAS DI KEPULAUAN SERIBU TAHUN 2007-2009 (The Status of Ornamental Reef Fish Catch in Seribu Islands (2007-2009)). Marine Fisheries: Journal of Marine Fisheries Technology and Management 2, 155-164.

Ingman, M., Gyllensten, U., 2006. mtDB: Human Mitochondrial Genome Database, a resource for population genetics and medical sciences. Nucleic acids research 34, D749-D751.

Inoue, J.G., Miya, M., Venkatesh, B., Nishida, M., 2005. The mitochondrial genome of Indonesian coelacanth Latimeria menadoensis (Sarcopterygii: Coelacanthiformes) and divergence time estimation between the two coelacanths. Gene 349, 227-235.

Iwasaki, W., Fukunaga, T., Isagozawa, R., Yamada, K., Maeda, Y., Satoh, T.P., Sado, T., Mabuchi, K., Takeshima, H., Miya, M., 2013. MitoFish and MitoAnnotator: A mitochondrial genome database of fish with an accurate and automatic annotation pipeline. Molecular biology and evolution 30, 2531-2540.

Iwatsuki, Y., Akazaki, M., Yoshino, T., 1993. Validity of a lutjanid fish, Lutjanus ophuysenii (Bleeker) with a related species, L. vitta (Quoy et Gaimard). Japanese Journal of Ichthyology 40, 47-59.

Iwatsuki, Y., Kimura, S., Yoshino, T., 1998. Redescription of Gerres erythrourus (Bloch, 1791), a senior synonym of G. abbreviatus Bleeker, 1850 (Teleostei: Perciformes: Gerreidae). Copeia, 165-172.

Iwatsuki, Y., Kimura, S., Yoshino, T., 1999. Redescriptions of Gerres baconensis (Evermann & Seale, 1907), G. equulus Temminck & Schlegel, 1844 and G. oyena (Forsskål, 1775), included in the "G. oyena complex", with notes on other related species (Perciformes: Gerreidae). Ichthyological research 46, 377-395.

Iwatsuki, Y., Kimura, S., Yoshino, T., 2002. A new species: Gerres microphthalmus (Perciformes: Gerreidae) from Japan with notes on limited distribution, included in the "G. filamentosus complex". Ichthyological Research 49, 133-139.

Jackson, A.M., Erdmann, M.V., Toha, A.H.A., Stevens, L.A., Barber, P.H., 2014. Phylogeography of commercial tuna and mackerel in the Indonesian Archipelago. Bulletin of Marine Science 90, 471-492.

Jackson, J.B., Kirby, M.X., Berger, W.H., Bjorndal, K.A., Botsford, L.W., Bourque, B.J., Bradbury, R.H., Cooke, R., Erlandson, J., Estes, J.A., 2001. Historical overfishing and the recent collapse of coastal ecosystems. science 293, 629-637.

Janke, A., Feldmaier-Fuchs, G., Thomas, W.K., Von Haeseler, A., Pääbo, S., 1994. The marsupial mitochondrial genome and the evolution of placental mammals. Genetics 137, 243-256.

Jefri, E., ZAMANI, N.P., Subhan, B., Madduppa, H.H., 2015. Molecular phylogeny inferred from mitochondrial DNA of the grouper Epinephelus spp. in Indonesia collected from local fish market. Biodiversitas Journal of Biological Diversity 16.

Jerde, C.L., Mahon, A.R., Chadderton, W.L., Lodge, D.M., 2011. "Sight-unseen" detection of rare aquatic species using environmental DNA. Conservation Letters 4, 150-157.

Johansen, S., Bakke, I., 1996. The complete mitochondrial DNA sequence of Atlantic cod (Gadus morhua): relevance to taxonomic studies among codfishes. Molecular marine biology and biotechnology 5, 203-214.

Johnson, W.E., O'Brien, S.J., 1997. Phylogenetic reconstruction of the Felidae using 16S rRNA and NADH-5 mitochondrial genes. Journal of Molecular Evolution 44, S98-S116.

Jordan, L.G., Steele, C.A., Thorgaard, G.H., 2010. Universal mtDNA primers for species identification of degraded bony fish samples. Molecular ecology resources 10, 225-228.

Kadam, S., Prabhasankar, P., 2010. Marine foods as functional ingredients in bakery and pasta products. Food Research International 43, 1975-1980.

Kartavtsev, Y.P., Jung, S.-O., Lee, Y.-M., Byeon, H.-K., Lee, J.-S., 2007. Complete

mitochondrial genome of the bullhead torrent catfish, Liobagrus obesus (Siluriformes, Amblycipididae): Genome description and phylogenetic considerations inferred from the Cyt b and 16S rRNA genes. Gene 396, 13-27.

Kaunda-Arara, B., Ntiba, M., 1997. The reproductive biology of Lutjanus fulviflamma (Forsskål, 1775)(Pisces: Lutjanidae) in Kenyan inshore marine waters. Hydrobiologia 353, 153-160.

Kelly, R.P., Port, J.A., Yamahara, K.M., Crowder, L.B., 2014. Using environmental DNA to census marine fishes in a large mesocosm. PloS one 9, e86175.

Khasanah, R.I., Sartimbul, A., Herawati, E.Y., Veteran, J., Veteran, J., 2013. Kelimpahan dan keanekaragaman plankton di perairan Selat Bali. Ilmu Kelautan 18, 193-202.

Klymus, K.E., Marshall, N.T., Stepien, C.A., 2017. Environmental DNA (eDNA) metabarcoding assays to detect invasive invertebrate species in the Great Lakes. PloS one 12, e0177643.

Kumar, G., Kunal, S.P., Menezes, M.R., 2012. Low genetic variation suggest single stock of kawakawa Euthynnus affinis (Cantor, 1849) along the Indian Coast. Turkish Journal of Fisheries and Aquatic Sciences 12.

Kumar, S., Stecher, G., Tamura, K., 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular biology and evolution 33, 1870-1874.

Kumazawa, Y., Endo, H., 2004. Mitochondrial genome of the Komodo dragon: efficient sequencing method with reptile-oriented primers and novel gene rearrangements. DNA research 11, 115-125.

Lakra, W., Verma, M., Goswami, M., Lal, K.K., Mohindra, V., Punia, P., Gopalakrishnan, A., Singh, K., Ward, R.D., Hebert, P., 2011. DNA barcoding Indian marine fishes. Molecular Ecology Resources 11, 60-71.

Lang, M., Baldwin, C., 1996. The Diving for Science... 1996," Methods and Techniques of Underwater Research".

Laramie, M.B., Pilliod, D.S., Goldberg, C.S., 2015. Characterizing the distribution of an endangered salmonid using environmental DNA analysis. Biological Conservation 183, 29-37.

Laslett, D., Canbäck, B., 2008. ARWEN: a program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. Bioinformatics 24, 172-175.

Lebonah, D., Dileep, A., Chandrasekhar, K., Sreevani, S., Sreedevi, B., Pramoda Kumari, J., 2014. DNA barcoding on bacteria: A Review. Advances in Biology 2014.

Lee, W.-J., Kocher, T.D., 1995. Complete sequence of a sea lamprey (Petromyzon marinus) mitochondrial genome: early establishment of the vertebrate genome organization. Genetics 139, 873-887.

Li, L., Chu-Wu, L., 2007. Genetic diversity and molecular markers of five snapper species. Chinese Journal of Agricultural Biotechnology 4, 39-46.

Lordan, S., Ross, R.P., Stanton, C., 2011. Marine bioactives as functional food ingredients: potential to reduce the incidence of chronic diseases. Marine drugs 9, 1056-1100.

Lourie, S.A., Vincent, A.C., 2004. A marine fish follows Wallace's Line: the phylogeography of the three-spot seahorse (Hippocampus trimaculatus, Syngnathidae, Teleostei) in Southeast Asia. Journal of Biogeography 31, 1975-1985.

Love, M.S., Lenarz, B., Snook, L., 2010. A survey of the reef fishes, purple hydrocoral (Stylaster californicus), and marine debris of Farnsworth Bank, Santa Catalina Island. Bulletin of Marine Science 86, 35-52.

Lowe, T.M., Eddy, S.R., 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic acids research 25, 955-964.

Lubbock, R., Edwards, A., 1981. The fishes of Saint Paul's rocks. Journal of Fish Biology 18, 135-157.

Lumban-Gaol, J., Leben, R.R., Vignudelli, S., Mahapatra, K., Okada, Y., Nababan, B., Mei-Ling, M., Amri, K., Arhatin, R.E., Syahdan, M., 2015. Variability of satellite-derived sea surface height anomaly, and its relationship with Bigeye tuna (Thunnus obesus) catch in the Eastern Indian Ocean. European Journal of Remote Sensing 48, 465-477.

Macey, J.R., Larson, A., Ananjeva, N.B., Fang, Z., Papenfuss, T.J., 1997. Two novel gene orders and the role of light-strand replication in rearrangement of the

vertebrate mitochondrial genome. Molecular biology and evolution 14, 91-104.

Macey, J.R., Papenfuss, T.J., Kuehl, J.V., Fourcade, H.M., Boore, J.L., 2004. Phylogenetic relationships among amphisbaenian reptiles based on complete mitochondrial genomic sequences. Molecular phylogenetics and evolution 33, 22-31.

Madduppa, H.H., Subhan, B., Suparyani, E., Siregar, A.M., Arafat, D., Tarigan, S.A., ALIMUDDIN, A., KHAIRUDI, D., RAHMAWATI, F., BRAHMANDITO, A., 2013. Dynamics of fish diversity across an environmental gradient in the Seribu Islands reefs off Jakarta. Biodiversitas Journal of Biological Diversity 14.

Magurran, A.E., 1988. Ecological diversity and its measurement. Princeton university press.

Martin, A.P., Palumbi, S.R., 1993. Body size, metabolic rate, generation time, and the molecular clock. Proceedings of the National Academy of Sciences 90, 4087-4091.

Megawati, C., Yusuf, M., Maslukah, L., 2014. Sebaran kualitas perairan ditinjau dari zat hara, oksigen terlarut dan pH di perairan selat bali bagian selatan. Journal of Oceanography 3, 142-150.

Meyer, C.P., Paulay, G., 2005. DNA barcoding: error rates based on comprehensive sampling. PLoS biology 3, e422.

Minamoto, T., Uchii, K., Takahara, T., Kitayoshi, T., Tsuji, S., Yamanaka, H., Doi, H., 2017. Nuclear internal transcribed spacer-1 as a sensitive genetic marker for environmental DNA studies in common carp Cyprinus carpio. Molecular Ecology Resources 17, 324-333.

Minamoto, T., Yamanaka, H., Takahara, T., Honjo, M.N., Kawabata, Z.i., 2012. Surveillance of fish species composition using environmental DNA. Limnology 13, 193-197.

Mitchell, J.K., Hellberg, R.S., 2016. Use of the mitochondrial control region as a potential DNA mini-barcoding target for the identification of canned tuna species. Food Analytical Methods 9, 2711-2720.

Miya, M., Nishida, M., 1999. Organization of the mitochondrial genome of a deepsea fish, Gonostoma gracile (Teleostei: Stomiiformes): first example of transfer RNA gene rearrangements in bony fishes. Marine Biotechnology 1, 416-426.

Miya, M., Nishida, M., 2000. Use of mitogenomic information in teleostean molecular phylogenetics: a tree-based exploration under the maximum-parsimony optimality criterion. Molecular phylogenetics and evolution 17, 437-455.

Miya, M., Sato, Y., Fukunaga, T., Sado, T., Poulsen, J.Y., Sato, K., Minamoto, T., Yamamoto, S., Yamanaka, H., Araki, H., 2015a. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species. Royal Society open science 2, 150088.

Miya, M., Sato, Y., Fukunaga, T., Sado, T., Poulsen, J.Y., Sato, K., Minamoto, T., Yamamoto, S., Yamanaka, H., Araki, H., Kondoh, M., Iwasaki, W., 2015b. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species. Royal Society Open Science 2.

Miya, M., Takeshima, H., Endo, H., Ishiguro, N.B., Inoue, J.G., Mukai, T., Satoh, T.P., Yamaguchi, M., Kawaguchi, A., Mabuchi, K., 2003. Major patterns of higher teleostean phylogenies: a new perspective based on 100 complete mitochondrial DNA sequences. Molecular phylogenetics and evolution 26, 121-138.

Mohsin, A.K.M., Ambak, M.A., 1996. Marine fishes and fisheries of Malaysia and neighbouring countries.

Moritz, C., 1994. Applications of mitochondrial DNA analysis in conservation: a critical review. Molecular Ecology 3, 401-411.

Muchlisin, Z.A., Thomy, Z., Fadli, N., Sarong, M.A., Siti-Azizah, M.N., 2013. DNA barcoding of freshwater fishes from Lake Laut Tawar, Aceh Province, Indonesia. Acta ichthyologica et piscatoria 43.

Nagelkerken, I., 2009. Evaluation of nursery function of mangroves and seagrass beds for tropical decapods and reef fishes: patterns and underlying mechanisms, Ecological connectivity among tropical coastal ecosystems. Springer, 357-399.

Nelson, J., 1994. Fishes of the world 3rd edn. John Wiley and Sons Inc. Newyork, USA, ISBN 831014144, 234.

Nelson, J.S., Grande, T.C., Wilson, M.V., 2016. Fishes of the World. John Wiley & Sons.

NesbÖ, C.L., Rueness, E.K., Iversen, S.A., Skagen, D.W., Jakobsen, K.S., 2000. Phylogeography and population history of Atlantic mackerel (Scomber scombrus L.): a genealogical approach reveals genetic structuring among the eastern Atlantic stocks. Proceedings of the Royal Society of London B: Biological Sciences 267, 281-292.

Newman, S.J., Cappo, M., Williams, D.M., 2000. Age, growth and mortality of the stripey, Lutjanus carponotatus (Richardson) and the brown-stripe snapper, L. vitta (Quoy and Gaimard) from the central Great Barrier Reef, Australia. Fisheries Research 48, 263-275.

Ng, P.K., Illaude, A., Sivasothi, N., Yeo, D.C., 2004. Expedition Anambas: an overview of the scientific marine exploration of the Anambas and Natuna Archipelago, 11–22 March 2002. The Raffles Bulletin of Zoology 11, 1-17.

Ngo, D.-H., Wijesekara, I., Vo, T.-S., Van Ta, Q., Kim, S.-K., 2011. Marine foodderived functional ingredients as potential antioxidants in the food industry: An overview. Food Research International 44, 523-529.

Niamaimandi, N., Valinassab, T., Daryanabard, R., 2018. Biodiversity of Demersal Species from Trawl Surveys in the Iranian Waters of the Persian Gulf. Turkish Journal of Fisheries and Aquatic Sciences 18, 1345-1353.

Nielsen, C., 2012. Animal evolution: interrelationships of the living phyla. Oxford University Press on Demand.

Noack, K., Zardoya, R., Meyer, A., 1996. The complete mitochondrial DNA sequence of the bichir (Polypterus ornatipinnis), a basal ray-finned fish: ancient establishment of the consensus vertebrate gene order. Genetics 144, 1165-1180.

Nugraha, B., 2016. PRODUKTIVITAS PERIKANAN TUNA LONGLINE DI BENOA (STUDI KASUS: PT. PERIKANAN NUSANTARA)(Tuna Lingline Fisheries Productivity in Benoa (Case study: PT. Perikanan Nusantara)). Marine Fisheries: Journal of Marine Fisheries Technology and Management 3, 135-140.

Nuryadin, D., Syaifudin, N., Handika, R., Setyobudi, R.H., Udjianto, D.W., 2016. The Economic of Marine Sector in Indonesia. Aquatic Procedia 7, 181-186.

Ogden, R., 2008. Fisheries forensics: the use of DNA tools for improving compliance, traceability and enforcement in the fishing industry. Fish and fisheries 9, 462-472.

Pauly, D., Christensen, V., Guénette, S., Pitcher, T.J., Sumaila, U.R., Walters, C.J., Watson, R., Zeller, D., 2002. Towards sustainability in world fisheries. Nature 418, 689.

Pavan-Kumar, A., Gireesh-Babu, P., Babu, P.S., Jaiswar, A., Krishna, V.H., Prasasd, K.P., Chaudhari, A., Raje, S., Chakraborty, S., Krishna, G., 2014. Molecular phylogeny of elasmobranchs inferred from mitochondrial and nuclear markers. Molecular biology reports 41, 447-457.

Pepe, T., Trotta, M., Di Marco, I., Anastasio, A., Bautista, J.M., Cortesi, M.L., 2007. Fish species identification in surimi-based products. Journal of agricultural and food chemistry 55, 3681-3685.

Pet, J., Van Densen, W., Machiels, M., Sukkel, M., Setyohadi, D., Tumuljadi, A., 1997. Catch, effort and sampling strategies in the highly variable sardine fisheries around East Java, Indonesia. Fisheries research 31, 121-137.

Petovic, S., Markovic, O., 2013. Degradation of benthic communities using demersal trawling. Poljoprivreda i Sumarstvo 59, 157.

Pourkazemi, M., Skibinski, D.F., A. Beardmore, J., 1999. Application of mtDNA d-loop region for the study of Russian sturgeon population structure from Iranian coastline of the Caspian Sea. Journal of Applied Ichthyology 15, 23-28.

Prehadi, P.S., Andrianus, Kurniasih, E.M., Rahmad, R.A., Dondy, Subhan, B., Maddupa, H.H., 2015. DNA barcoding and phylogenetic reconstruction of shark species landed in Muncar fisheries landing site in comparison with Southern Java fishing port. Biodiversitas Journal of Biological Diversity 16.

Pruitt, K.D., Tatusova, T., Brown, G.R., Maglott, D.R., 2011. NCBI Reference Sequences (RefSeq): current status, new features and genome annotation policy. Nucleic acids research 40, D130-D135.

Purwaningsih, R., 2015. Analisis Nilai Tambah Produk Perikanan Lemuru Pelabuhan Muncar Banyuwangi. Jurnal Ilmiah Teknik Industri 14, 13-23.

Quinn, T.W., Wilson, A.C., 1993. Sequence evolution in and around the mitochondrial control region in birds. Journal of molecular evolution 37, 417-425.

Ramenzoni, V.C., 2013. Endenese fisheries: exploratory findings on environmental perceptions, fish effort, and overfishing in eastern indonesia. Ethnobiology Letters

4, 39-51.

Randall, J.E., 1995. Coastal fishes of Oman. University of Hawaii Press.

Randall, J.E., Kulbicki, M., 2005. Siganus woodlandi, new species of rabbitfish (Siganidae) from New Caledonia. Cybium 29, 185-189.

Ratnasingham, S., Hebert, P.D., 2007. BOLD: The Barcode of Life Data System (<u>http://www</u>. barcodinglife. org). Molecular ecology notes 7, 355-364.

Reese, E.S., 1981. Predation on corals by fishes of the family Chaetodontidae: implications for conservation and management of coral reef ecosystems. Bulletin of Marine Science 31, 594-604.

Ridha, U., Hartoko, A., Muskanonfola, M.R., 2013. Analisa sebaran tangkapan ikan lemuru (Sardinella lemuru) berdasarkan data satelit suhu permukaan laut dan klorofil-a di perairan Selat Bali. Management of Aquatic Resources Journal 2, 53-60.

Roberts, C.M., McClean, C.J., Veron, J.E., Hawkins, J.P., Allen, G.R., McAllister, D.E., Mittermeier, C.G., Schueler, F.W., Spalding, M., Wells, F., 2002. Marine biodiversity hotspots and conservation priorities for tropical reefs. Science 295, 1280-1284.

Roe, B.A., Ma, D.-P., Wilson, R., Wong, J., 1985. The complete nucleotide sequence of the Xenopus laevis mitochondrial genome. Journal of Biological Chemistry 260, 9759-9774.

Rogers, S., Ellis, J., 2000. Changes in the demersal fish assemblages of British coastal waters during the 20th century. ICES Journal of Marine Science 57, 866-881.

Roy, D., Docker, M., Hehanussa, P., Heath, D., Haffner, G., 2004. Genetic and morphological data supporting the hypothesis of adaptive radiation in the endemic fish of Lake Matano. Journal of Evolutionary Biology 17, 1268-1276.

Salini, J., Ovenden, J., Street, R., Pendrey, R., 2006. Genetic population structure of red snappers (Lutjanus malabaricus Bloch & Schneider, 1801 and Lutjanus erythropterus Bloch, 1790) in central and eastern Indonesia and northern Australia. Journal of Fish Biology 68, 217-234.

Santos, M.D., Lopez, G.V., Barut, N.C., 2010. A pilot study on the genetic variation of eastern little tuna (Euthynnus affinis) in Southeast Asia. Philippine Journal of Science 139, 43-50.

Sartimbul, A., Erfan, R., Ikhsani, S.N., Listiyaningsih, D., 2018. Morphometric and meristic variations among five populations of Sardinella lemuru Bleeker, 1853 from waters of Bali Strait, northern and southern-east Java and their relation to the environment 1,2. AACL Bioflux 11.

Sartimbul, A., Nakata, H., Rohadi, E., Yusuf, B., Kadarisman, H.P., 2010. Variations in chlorophyll-a concentration and the impact on Sardinella lemuru catches in Bali Strait, Indonesia. Progress in Oceanography 87, 168-174.

Sato, Y., Miya, M., Fukunaga, T., Sado, T., Iwasaki, W., 2018. MitoFish and MiFish pipeline: a mitochondrial genome database of fish with an analysis pipeline for environmental DNA metabarcoding. Molecular biology and evolution 35, 1553-1555.

Satoh, T.P., Miya, M., Mabuchi, K., Nishida, M., 2016. Structure and variation of the mitochondrial genome of fishes. Bmc Genomics 17, 719-738.

Sembiring, A., Pertiwi, N.P.D., Mahardini, A., Wulandari, R., Kurniasih, E.M., Kuncoro, A.W., Cahyani, N.D., Anggoro, A.W., Ulfa, M., Madduppa, H., 2015. DNA barcoding reveals targeted fisheries for endangered sharks in Indonesia. Fisheries Research 164, 130-134.

Sevilla, R.G., Diez, A., Norén, M., Mouchel, O., Jérôme, M., VERREZ-BAGNIS, V., Van Pelt, H., FAVRE-KREY, L., Krey, G., CONSORTIUM, T.F., 2007. Primers and polymerase chain reaction conditions for DNA barcoding teleost fish based on the mitochondrial cytochrome b and nuclear rhodopsin genes. Molecular Ecology Notes 7, 730-734.

Sharp, G.D., 1996. Oceanography of the Indonesian Archipelago and adjacent areas. Baseline Studies of Biodiversity: The Fish Resources of Western Indonesia ICLARM Stud Rev 321.

Shaw, J.L.A., Clarke, L.J., Wedderburn, S.D., Barnes, T.C., Weyrich, L.S., Cooper, A., 2016. Comparison of environmental DNA metabarcoding and conventional fish survey methods in a river system. Biological Conservation 197, 131-138.

Simbolon, D., Wiryawan, B., Wahyuningrum, P.I., Wahyudi, H., 2011. Tingkat

pemanfaatan dan pola musim penangkapan Ikan Lemuru di Perairan Selat Bali. Buletin PSP 19.

Siswanto, S., 2008. Seasonal Pattern of Wind Induced Upwelling over Java–Bali Sea Waters and Surrounding Area. International Journal of Remote Sensing and Earth Sciences (IJReSES) 5.

Smart, A.S., Weeks, A.R., Rooyen, A.R., Moore, A., McCarthy, M.A., Tingley, R., 2016. Assessing the cost-efficiency of environmental DNA sampling. Methods in Ecology and Evolution 7, 1291-1298.

Squires, D., Omar, I.H., Jeon, Y., Kirkley, J., Kuperan, K., Susilowati, I., 2003. Excess capacity and sustainable development in Java Sea fisheries. Environment and Development Economics 8, 105-127.

Staby, A., Aksnes, D.L., 2011. Follow the light—diurnal and seasonal variations in vertical distribution of the mesopelagic fish Maurolicus muelleri. Marine Ecology Progress Series 422, 265-273.

Stoeckle, M.Y., Soboleva, L., Charlop-Powers, Z., 2017. Aquatic environmental DNA detects seasonal fish abundance and habitat preference in an urban estuary. PLOS ONE 12, e0175186.

Susilo, K., 2015. Variabilitas faktor lingkungan pada habitat ikan lemuru di Selat Bali menggunakan data satelit oseanografi dan pengukuran insitu. Omni Akuatika 14, 13-22.

Syamsuddin, M., Saitoh, S.-I., Hirawake, T., Syamsudin, F., Zainuddin, M., 2016. Interannual variation of bigeye tuna (Thunnus obesus) hotspots in the eastern Indian Ocean off Java. International Journal of Remote Sensing 37, 2087-2100.

Symondson, W., 2002. Molecular identification of prey in predator diets. Molecular ecology 11, 627-641.

Taberlet, P., Coissac, E., Hajibabaei, M., Rieseberg, L.H., 2012. Environmental DNA. Molecular ecology 21, 1789-1793.

Taillebois, L., Crook, D., Saunders, T., Ovenden, J., 2016. The complete mitochondrial genome of the golden snapper Lutjanus johnii (Perciformes: Lutjanidae). Mitochondrial DNA Part A 27, 819-820.

Takahara, T., Minamoto, T., Doi, H., 2013. Using environmental DNA to estimate the distribution of an invasive fish species in ponds. PloS one 8, e56584.

Teletchea, F., 2009. Molecular identification methods of fish species: reassessment and possible applications. Reviews in Fish Biology and Fisheries 19, 265.

Teletchea, F., Maudet, C., Hänni, C., 2005. Food and forensic molecular identification: update and challenges. Trends in biotechnology 23, 359-366.

Thomsen, P.F., Kielgast, J., Iversen, L.L., Møller, P.R., Rasmussen, M., Willerslev, E., 2012a. Detection of a diverse marine fish fauna using environmental DNA from seawater samples. PLoS one 7, e41732.

Thomsen, P.F., Kielgast, J., Iversen, L.L., Wiuf, C., Rasmussen, M., Gilbert, M.T.P., Orlando, L., Willerslev, E., 2012b. Monitoring endangered freshwater biodiversity using environmental DNA. Molecular ecology 21, 2565-2573.

Trialfhianty, T.I., 2017. The role of the community in supporting coral reef restoration in Pemuteran, Bali, Indonesia. Journal of coastal conservation 21, 873-882.

Triarso, I., 2012. Potensi dan peluang pengembangan usaha perikanan tangkap di pantura Jawa Tengah. SAINTEK PERIKANAN: Indonesian Journal of Fisheries Science and Technology 8, 65-73.

Tzeng, C.-S., Hui, C.-F., Shen, S.-C., Huang, P., 1992. The complete nucleotide sequence of the Crossostoma lacustre mitochondrial genome: conservation and variations among vertebrates. Nucleic Acids Research 20, 4853-4858.

Unsworth, R.K., Wylie, E., Smith, D.J., Bell, J.J., 2007. Diel trophic structuring of seagrass bed fish assemblages in the Wakatobi Marine National Park, Indonesia. Estuarine, Coastal and Shelf Science 72, 81-88.

Utomo, S.P.R., Ain, C., 2013. Keanekaragaman Jenis Ikan Karang di Daerah Rataan dan Tubir pada Ekosistem Terumbu Karang di Legon Boyo, Taman Nasional Karimunjawa, Jepara. Management of Aquatic Resources Journal 2, 81-90.

Van der Duim, R., Caalders, J., 2002. Biodiversity and tourism: Impacts and interventions. Annals of tourism research 29, 743-761.

Van Quang, V., 2013. A CHECKLIST OF THE HERRINGS (ORDER: CLUPEIFORMES) IN THE VIETNAMESE MARINE WATERS. Vietnam Journal of Marine of Science and Technology 13, 335-341.

Verspoor, E., McCarthy, E.M., Knox, D., Bourke, E.A., Cross, T.F., 1999. The phylogeography of European Atlantic salmon (Salmo salar L.) based on RFLP analysis of the ND1/16sRNA region of the mtDNA. Biological Journal of the Linnean Society 68, 129-146.

Wafar, M., Venkataraman, K., Ingole, B., Khan, S.A., LokaBharathi, P., 2011. State of knowledge of coastal and marine biodiversity of Indian Ocean countries. PLoS one 6, e14613.

Ward, R.D., Zemlak, T.S., Innes, B.H., Last, P.R., Hebert, P.D., 2005. DNA barcoding Australia's fish species. Philosophical Transactions of the Royal Society of London B: Biological Sciences 360, 1847-1857.

Wei, Z., Fang, G., Susanto, R.D., Adi, T.R., Fan, B., Setiawan, A., Li, S., Wang, Y., Gao, X., 2016. Tidal elevation, current, and energy flux in the area between the South China Sea and Java Sea. Ocean Science 12, 517-531.

Wilcox, T.M., McKelvey, K.S., Young, M.K., Jane, S.F., Lowe, W.H., Whiteley, A.R., Schwartz, M.K., 2013. Robust detection of rare species using environmental DNA: the importance of primer specificity. PloS one 8, e59520.

Willerslev, E., Hansen, A.J., Binladen, J., Brand, T.B., Gilbert, M.T.P., Shapiro, B., Bunce, M., Wiuf, C., Gilichinsky, D.A., Cooper, A., 2003. Diverse plant and animal genetic records from Holocene and Pleistocene sediments. Science 300, 791-795.

Willerslev, E., Hansen, A.J., Poinar, H.N., 2004. Isolation of nucleic acids and cultures from fossil ice and permafrost. Trends in Ecology & Evolution 19, 141-147.

Willette, D., Santos, M., Aragon, M., 2011. First report of the Taiwan sardinella Sardinella hualiensis (Clupeiformes: Clupeidae) in the Philippines. Journal of fish biology 79, 2087-2094.

Willette, D.A., Carpenter, K.E., Santos, M.D., 2014. Evolution of the freshwater sardinella, Sardinella tawilis (Clupeiformes: Clupeidae), in Taal Lake, Philippines and identification of its marine sister-species, Sardinella hualiensis. Bulletin of Marine Science 90, 455-470.

Williams, D.D., Russ, G.G., 1997. Review of data on fishes of commercial and recreational fishing interest on the Great Barrier Reef. Great Barrier Reef Marine Park Authoirity Research Report No. 33. Vol. I. 1-113.

Williams, K.E., Huyvaert, K.P., Vercauteren, K.C., Davis, A.J., Piaggio, A.J., 2018. Detection and persistence of environmental DNA from an invasive, terrestrial mammal. Ecology and evolution 8, 688-695.

Winterbottom, R., Hanner, R.H., Burridge, M., Zur, M., 2014. A cornucopia of cryptic species-a DNA barcode analysis of the gobiid fish genus Trimma (Percomorpha, Gobiiformes). ZooKeys, 79.

Wyrtki, K., 1961. Physical oceanography of the Southeast Asian waters.

Yamamoto, S., Masuda, R., Sato, Y., Sado, T., Araki, H., Kondoh, M., Minamoto, T., Miya, M., 2017. Environmental DNA metabarcoding reveals local fish communities in a species-rich coastal sea. Scientific Reports 7, 40368.

Yamamoto, S., Minami, K., Fukaya, K., Takahashi, K., Sawada, H., Murakami, H., Tsuji, S., Hashizume, H., Kubonaga, S., Horiuchi, T., 2016. Environmental DNA as a 'snapshot'of fish distribution: A case study of Japanese jack mackerel in Maizuru Bay, Sea of Japan. PLoS One 11, e0149786.

Zardoya, R., Garrido-Pertierra, A., Bautista, J.M., 1995. The complete nucleotide sequence of the mitochondrial DNA genome of the rainbow trout, Oncorhynchus mykiss. Journal of Molecular Evolution 41, 942-951.

Zardoya, R., Meyer, A., 1996. The complete nucleotide sequence of the mitochondrial genome of the lungfish (Protopterus dolloi) supports its phylogenetic position as a close relative of land vertebrates. Genetics 142, 1249-1263.

Zhang, J.-B., Hanner, R., 2011. DNA barcoding is a useful tool for the identification of marine fishes from Japan. Biochemical Systematics and Ecology 39, 31-42.

Zhang, J., Huang, L., Huo, H., 2004. Larval identification of Lutjanus Bloch in Nansha coral reefs by AFLP molecular method. Journal of experimental marine biology and ecology 298, 3-20.

Zhang, Y., 2015. An Introduction to Python and computer programming, An Introduction to Python and Computer Programming. Springer, 1-11.

Zimmermann, M., 2003. Calculation of untrawlable areas within the boundaries of a bottom trawl survey. Canadian Journal of Fisheries and Aquatic Sciences 60, 657-669.

Molecular studies on marine fish diversity in Java and Bali, Indonesia

인도네시아 자바와 발리의 해양 어류 다양성에 관한 분자생물학적 연구

SAPTO ANDRIYONO

부경대학교 의생명기계전기융합공학협동과정

요약

해양생태계는 유전적 생물다양성에 있어서 담수 및 육지생태계보다 상당한 기여를 하고 있다. 수산업 및 수산관리자원 등 해양생태계의 생물군으로부터 경제적 이익 또한 창출된다. 뿐만 아니라, 해양생태계에서 유래한 다수의 제품들 또한 인간에게 유용한 것(예를 들어, 식품 및 의약품) 및 산업적 소재로 이용된다. 특정 해양생태계의 어류 다양성은 그 생태계 건강성을 나타내는 것으로 정기적인 관찰이 필요하다. 인도네시아는 엄청난 양의 산호초생태계를 자랑하는 해양생물 다양성의 중심지이다.

이전 연구에서 인도네시아의 해양생태계 생물종은 2057 종으로 알려졌었다. 최신의 어류 데이터베이스에서도 3611 종으로 기록되어 인도네시아가 산호초 어업에 있어서 가장 어류자원이 풍부한 나라임을 알 수 있다. 전통적으로, 해양 생물다양성을 추정하기 위해서 바닥 트롤과 로테논 중독 (rotenone poisoning)을 사용하였는데, 이는

특정 지역에 몇 가지 제한이 있습니다. 그러나, 개발도상국이 처한 현실은 지역 분류학자의 부족으로 형태학적 종 규명이 어렵다. 기존의 조사와 지리정보 시스템 기술을 결합한 이전 연구는 어류 분포 및 공간 분석을 이해하기 위해 수행되었다. 현재, 환경 DNA 메타바코딩 분석을 통해 수생생태계의 생물다양성을 모니터링하는 정교한 방법이 개발되어 있다. 해양환경에서 직접 수집한 생물입자의 유전물질 추출 및 분석을 통해 해양어류의 모니터링 및 연구는 시간과 비용을 절약하는 생물다양성 평가에 있어 효과적인 대안이다. 수많은 연구자가 일부 멸종 위기종, 칩입종 및 해양어류 분포의 탐지연구를 위해 환경 DNA 메타바코딩을 사용하여 정확도를 입증하였다. 이 연구에서 환경 DNA 메타바코딩은 MiFish 파이프라인 데이터를 이용하여 인도네시아 발리섬의 해양채집 샘플에 의해 수행되었다. 4개 채집정점의 환경 DNA 분석은 405개의 haplotype(99-100% 정확도)에서 333 종과 52 개의 추정종(95~98%)을 발견하였다. 발리의 남부와 북부 모두 알파 다양성이 자바섬보다 높았다. 발리 북부의 Shannon-Wiener Index 와 Margalef Index 가 가장 높았다. 이 연구에서 농어목이 295 haplotypes(72.84%)으로 가장 많은 부분을

차지했고, 청어목 29 haplotypes(7.16%), 복어목 19 haplotypes(4.69%) 순으로 나타났다. 농어목이 환경 DNA 메타바코딩을 통해 44 속으로 확인되어 다른 어류목보다 가장 다양성이 높게 나타났다. 발리섬 북부와 남부의 산호초, 해초 및 맹그로브 생태계가 발리섬의 해양생물다양성을 뒷받침하고 있다. Lovina 해변의 북측부분이 가장 생물다양성이 높은 것으로 이번 연구결과를 통해 나타났다. 결론적으로, 발리해협 주변의 환경 DNA 메타바코딩을 통해 그 지역 열대해양어류의 종다양성을 효과적이고 정확도가 높게 확인할 수 있었다. NGS 기반 열대해양어류 연구 특히 산호초어류에서 미확인된 종 연구에서 GenBank 데이터베이스의 개선과 더불어 더 정확한 종 확인이 이루어 질 수 있을 것이다. 따라서 적절한 모니터링 및 정기적인 조사가 이루어진다면, 이 지역에서 확인할 수 있는 해양어류 종 수가 늘어날 것이다. 이 지역의 생물다양성 연구는 연안 자원 유지관리 정책 입안자에게 중대한 자료를 제공할 것이다.