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강수량과 기후변수들을 이용한 Copula 기반의 결합가뭄지수 개발 및 

미래 가뭄 전망을 위한 적용

원 정 은

부 경 대 학 교   대 학 원   지 구 환 경 시 스 템 과 학 부

환 경 공 학 전 공

요        약

가뭄 모니터링 분야에서는 가뭄을 강수의 부족으로 해석하고 주로 강수량에 기반

을 두는 가뭄지수들을 이용해왔다. 하지만 이러한 가뭄지수는 기후변화로 인한 기

온의 상승과 같은 다양한 기상변수에 의한 가뭄은 전혀 반영하지 못하는 한계가 존

재한다. 이와 같은 이유로 대기의 수분수요 측면인 잠재증발산량에 대한 관심이 증

가하고 있으며 잠재증발산 기반의 가뭄지수가 개발되었다. 그러나 강수량이나 잠재

증발산만을 고려하는 단일 가뭄지수는 다양한 기후 요인들에 의해 발생하는 가뭄을 

종합적으로 해석하기에는 어렵다. 이에 따라 본 연구는 가뭄이 강수량 부족 또는 

증발산의 증가만으로도 발생 가능한 것으로 해석하고, 두 가지의 기상변수를 함께 

고려하는 가뭄 모니터링 방법을 제안하고자 한다. 이를 위해 강수량만을 고려하는 

표준강수지수(Standard Precipitation Index, SPI)와 잠재증발산 기반의 증발수요 

가뭄지수(Evaporative Demand Drought Index, EDDI)를 결합한 Copula 기반의 

결합가뭄지수(Copula-based Joint Drought Index, CJDI)가 개발된다. Copula를 

적용한 CJDI는 두 가뭄지수 사이의 상관성을 반영하여 보다 객관적이고 종합적인 

가뭄 모니터링이 가능할 것임을 제시한다. 본 연구의 목적은 새롭게 제안된 CJDI

를 기존의 가뭄지수들과 비교하여 CJDI의 적용성을 평가하고, 기후변화 시나리오

를 적용하여 기후변화가 미래 가뭄에 미치는 영향을 살펴보는 것이다. 이를 위해 

SDF(Drought Severity –Duration-Frequency) 곡선을 유도하여 각 가뭄지수가 

전망하는 미래 가뭄의 정량적인 변화를 확인하고자 한다.
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Ⅰ. Introduction

Drought affects socially, economically and environmentally,

depending on the soil moisture deficiency, duration and area of

droughts. Drought is caused by changes in meteorological variables,

such as precipitation deficiency or increase in evapotranspiration, and

can sometimes evolve into extreme events, becoming a serious

disaster that can have a significant impact on communities and

society, such as water resources, environment, and ecology(Sönmez

et al., 2005). Also, because droughts are difficult to predict, among

natural disasters, beginning and end(Mckee et al., 1993), water

management and drought monitoring are very important to cope with

droughts. In other words, in order to effectively cope with droughts,

it is very important to have a system for determining drought

conditions by continuously monitoring various climate variables

related to drought(Moon and Lee, 2012).

In the field of drought monitoring, the drought index is used to

determine the status of drought, and various drought indices have

been developed and used worldwide. Drought index is a quantitative

indicator of the severity and progress of drought(Kang and Moon,

2014). Drought indices based on rainfall have been mainly used in

analyzing droughts(Smakhtin and Hughes, 2007). This is based on

the concept of defining droughts as an abnormally persistent

shortage of precipitation, and in fact many studies of droughts are

interpreting droughts based on the precipitation deficiency(Heim,
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2000; Wilhite et al., 2000; Rossi and Cancelliere, 2002; Cancelliere et

al., 2007). The standard precipitation index(SPI; Mckee et al., 1993), a

drought index mainly used in these studies, has the advantage of

simplicity in calculating because it uses only precipitation, and SPI is

now one of the most widely used drought indexes. Livada et al.

(2007) interpreted the causes of drought as a lack of precipitation

over a period of time and used the SPI to study droughts across

Greece. Naresh Kumar et al. (2009) also judged the rainfall

deficiency as the main cause of meteorological droughts, and used

SPI to assess droughts in two regions where rainfall patterns were

contrasted. Smakhtin and Hughes (2007) also developed software to

calculate various rainfall-based indicators, including SPI, for

quantitative assessment of meteorological droughts. Currently, Korea

Meteorological Administration (KMA) relies heavily on SPI to

monitor drought.

As such, in the field of drought monitoring, droughts have been

expressed mainly by focusing on rainfall, which is the moisture

supply side of the atmosphere. However, like the SPI, the drought

index using only rainfall has a limit that cannot reflect the drought

generated and progressed by various climate variables such as an

increase temperature due to climate change(Mavromatis, 2007;

Kempes et al., 2008; Vicente-Serrano et al., 2010a; Taylor et al.,

2012; Teuling et al., 2013; Zhang and He, 2016). In fact, since there

have been many flash droughts resulting from abnormal rises in

temperature, interpreting drought using only precipitation is unlikely
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to be a reasonable approach in the climate change. Therefore, in the

field of drought monitoring, interest in potential evapotranspiration

(), which is the moisture demand side of the atmosphere, has

increased recently, and many studies have demonstrated the

importance of the evaporation demand of atmosphere in the process

of drought occurrence and deepening(Ciais et al. 2005; Otkin et al.

2016). To reflect the effects of climate change, Vicente-Serrano et al.

(2010b) has developed the Standardized Precipitation

Evapotranspiration Index (SPEI) to monitor droughts based on

differences in precipitation and  , and Hobbins et al. (2016) has

developed a new -baased drought index, the Evaporative Demand

Drought Index (EDDI). EDDI, which is based on  , does not need

to analyse the water availability of the surface separately, and has

the advantage that it is easy to detect the onset of drought with

almost no delay. Therefore, EDDI can be useful for capturing flash

drought caused by meteorological variables that are temporarily

changing strongly. If the flash drought occurs without any portents,

early detection of flash drought is critical because there is

insufficient time to respond to drought(Otkin et al., 2015). Yao et al.

(2018) compared the performance of SPI, SPEI, and EDDI in terms

of identifying past droughts, and positively assessed the applicability

of EDDI to flash drought in China. They suggested that early

warning of the onset of drought, which SPI and SPEI do not

indicate, is possible with EDDI. Won et al. (2018) also compared the

performance of SPI and EDDI using Korea's observed data and
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concluded that EDDI was adequately applicable in dertermining

drought onset and continuous drought conditions.

However, such a drought index using only one clmate variable is

difficult to describe all of the complex drought evolution processes

caused by various climate factors(Mo, 2008). In fact, because

droughts are caused by a complex interaction of various

meteorological factors, a simple drought index is not sufficient to

characterize such effects(Hao and Singh, 2015). In this study, we

interpreted droughts as being likely to occur only with precipitation

deficiency or an increase in  , and suggested a new method of

drought monitoring that considers the two climate variables. In other

words, we developed a Copula-based Joint Drought Index (CJDI)

combining SPI and EDDI, which are representative drought indices

based on different meteorological variables.

Many studies have been conducted to apply copula in drought

analysis, and in particular, a multivariate drought frequency analysis

with copula has been conducted(Shiau, 2006; Shiau et al., 2007). This

is because copula well reflects the correlation between hydrologic

variables(Ryu et al., 2012). Shiau and Modarres (2009) proposed a

drought severity-duration-frequency (SDF) curve using copula to

correlate drought depth, duration, and frequency. Mirabbasi et al.

(2012) selected the most suitable copula among various copula

functions to construct the joint distribution of drought severity and

duration. Song and Singh (2009) constructed a joint distribution of

drought severity, duration, and time interval of drought using
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elliptical copula, and Xu et al. (2015) analyzed past drought events

spatiotemporally by performing copula-based trivariate frequency

analysis based on drought severity, duration, and area of drought. In

Korea, a number of bivariate frequency analyses using copula were

performed for drought depth and duration(Lee and Son, 2016; Yu et

al., 2016; Yu et al., 2017However, the results of studies conducted in

Korea have exposed the limitations of presenting unrealistic results

that give excessive return period to past droughts. Chun et al. (2015)

performed a copula-based bivariate drought frequency analysis using

meteorological data over a 30-year period to evaluate severity and

duration of drought, but it was analyzed that in past droughts, the

return period exceeded 5,000 years. Kwon et al. (2018) also

conducted the study by comparing the bivariate frequency analysis

using drought severity and duration with the bivariate frequency

analysis using drought severity and low precipitation, but the results

showed that past droughts had too high return period, as in Chun et

al. (2015). In order to use Copula, the number of data should be

large enough. However, these studies showed unrealistic result

because they used less than 30 droughts. That is, the observation

period of the data is not sufficient to apply Copula.

This study is similar to the above studies in terms of using

copula. However, we do not perform multivariate drought frequency

analysis using copula to combine drought characteristics data such

as drought severity and duration. Instead, we will develop a new

drought index that combines two individual drought indices using
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copula. Individual drought indices were expected to be sufficient for

the application of copula because they have a large enough number

of data. Recently, a study has been conducted to determine drought

in various sides by combining drought indices similar to those

proposed in this study. Svoboda et al. (2002) proposed a drought

monitoring across the United States by incorporating various drought

information, and Kao and Govindaraju (2010) applied copula to

express the complex dependence between drought-related variables,

showing in more consistent results by combining SPIs of various

durations. As such, the development of new drought indices using

various climate variables is a research area of great interest.

Nevertheless, many studies still need to be conducted against various

climate conditions. The CJDI suggested in this study is a new joint

drought index that combines SPI describing the moisture supply side

of the atmosphere and EDDI describing the moisture demand side of

the atmosphere using copula. It is expected that it will be possible to

monitor droughts by integrating drought information expressed by

two drought indices. In other words, by combining two drought

indices with different characteristics, the drought conditions

expressed by each drought index could be combined to obtain

complementary information. Therefore, this study attempted to

confirm the reproducibility of past drought events using the CJDI,

and to examine the effects of climate change on drought. Since the

impact of climate change has a significant impact on future water

resources worldwide (Mishra and Singh, 2009; Sivakumar, 2011;
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Yang and Yang, 2012), It is essential to see how the newly proposed

drought index explains the impact of climate change.

To analyze future droughts, it is important to identify quantitative

changes in droughts. Drought frequency analysis can be interpreted

by quantifying the drought severity, duration, and return period.

Therefore, in order to quantitatively compare current and future

droughts, this study tried to use SDF curves. In the case of drought

analysis, it is very important to consider the duration so that the

PDS proposed by Stall (1964) is used to construct the drought

severity time series for frequency analysis and to derive SDF

curves.

The purpose of this study is to evaluate the applicability of CJDI

by comparing with the existing drought indices SPI, EDDI, and

SPEI, and to evaluate and judge various drought conditions using

CJDI. In addition, we will examine the effects of climate change on

future droughts by applying climate change scenarios generated from

various climate models. For this purpose, the SDF curve is derived

using PDS to quantitatively analyze how each drought index

represents future drought.
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Ⅱ. Method and Material

2.1 Derivation of PET

The method of estimating potential evapotranspiration(PET, ) has

been suggested by many studies, simple Thornthwaite

method(Thornthwaite, 1948), Penman method(Penman, 1948),

Penman-Monteith method(Allet et al., 1998) and Hargreaves-Samani

method(Hargreaves and Samani, 1985). In this study, we used

Penman-Monteith(PM) method known as the most accurate and

excellent model for climate conditions around the world by worldwide

studies(Xing et al., 2008; Trajkovic and Kolakovic, 2009; Martinez

and Thepadia, 2010; Azhar and Perera, 2011). The PM method has

been studied to estimate future  and to be appropriate for drought

indices such as EDDI or SPEI using (Dewes et al., 2017). The PM

method requires meteorological data on temperature, humidity,

radiation, and wind speed, and the following equation can be used to

calculate daily  .

 ∆  

∆  


    

················································ (1)

In equation (1),  is the net radiation (MJ m⁻² day⁻¹),  is the soil

heat flux density (MJ m⁻² day⁻¹),  is the mean daily air
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temperature (°C),  is the mean daily wind speed at 2-m height (m

s⁻¹),  is the saturation vapor pressure(kPa),  is the actual vapor

pressure(kPa), ∆ is the slope of the saturation vapor 

pressure-temperature curve (kPa ℃⁻¹), and  is the psychrometric

constant(kPa ℃⁻¹). Also, the value 0.408 used in this equation is a

unit conversion factor for converting MJ m⁻² day⁻¹ into mm day⁻¹.

 and  can be determined by the unit of time and aerodynamic

roughness. In this study, values of 900 and 0.34 were used. The soil

heat flux density(G) is relatively small compared to the net radiation,

so the daily G is negligible.

In case of Korea Meteorological Administration, there are

limitations in using the PM method due to the large missing data of

the observed radiation. Allen et al. (1998) proposed a methodology

for estimating the necessary meteorological data using more common

variables such as minimum and maximum temperatures. Kwon and

Choi (2011) estimated the radiation data using the methodology and

evaluated the applicability in Korea. In addition, the PM method was

suggested that it can be reasonably estimated in Korea where data

is limited. Therefore, in this study, we estimated the radiation by the

method proposed Allen et al. (1998). This method estimates the solar

radiation energy() reaching the ground surface using the difference

in temperature.  is calculated in the following.

  m ax m in  ·················································································· (2)
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where,  is the extraterrestrial radiation, which is a well behaved

function of the day of the year, time of day, and latitude. m ax is

the daily maximum air temperature (℃), m in is the daily minimum

air temperature (℃), and  is the empirical coefficient, which can

be calculated as follows:

   


 ·································································································· (3)

In equation (3),  is the mean atmospheric pressure of the site

(kPa),  is the mean atmospheric pressure at sea level (101.3 kPa),

and  is the empirical coefficient equal to 0.17 for interior regions

and equal to 0.20 for coastal regions. Once solar radiation is

estimated, the net radiation can be obtained in the method proposed

by Allen et al. (1998).

2.2 Drought indices

SPI, EDDI, SPEI and CJDI are used in this study. SPI and EDDI

are calculated using the same calculation method. First, the moving

average monthly precipitation or  data is constructed by duration

and the optimal probability distribution of the monthly time series is

estimated. To estimate the SPI and EDDI, we estimate the Bivariate

Gamma distribution with the optimal probability distribution. The

estimated probability distribution is used to calculate the cumulative
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probability value of the given monthly data, and the value obtained

by applying this cumulative probability value to the standard normal

distribution is the drought index. The values represented by the SPI

and EDDI thus calculated represent conceptually opposite moisture

states. Negative values of SPI indicate precipitation deficiency, and

positive values of EDDI indicate excessive increase in . Therefore,

it can be understood that as the SPI has a large negative value and

the EDDI has a large positive value, the drought is intensified. The

drought classification according to drought index is shown in Table

2.1.

Index Range
Drought classifacation

SPI SPEI EDDI CJDI

More than 2.00 Extreme Wet Extreme Dry

1.50 ~ 1.99 Very Wet Severely Dry

1.00 ~ 1.49 Moderately Wet Moderately Dry

-0.99 ~ 0.99 Near Normal Near Normal

-1.49 ~ -1.00 Moderately Dry Moderately Wet

-1.99 ~-1.50 Severely Dry Very Wet

Less than –2.00 Extreme Dry Extreme Wet

Table 2.1 Moisture condition and drought classification

SPEI has the same estimation procedure as the SPI, but with

different probability distributions. Because SPEI uses the difference

from precipitation and  , negative data exists. Since the lower limit

of the variable to apply to the bivariate Gamma distribution is 0, the

monthly time series constructed according to the difference between
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precipitation and  cannot be applied to the bivariate Gamma

distribution. Therefore, Gumbel distribution was selected as the

optimal probability distribution for estimating SPEI through  and

K-S goodness-of-fit tests. SPEI is a measure of drought based on

the amount of moisture retained, which is the difference between

precipitation and evapotranspiration. A negative value of SPEI

indicates a dry state. Therefore SPEI has the same drought

classification as SPI.

The newly proposed CJDI applies the copula theory as a drought

index that combines SPI and EDDI. Although many drought analyzes

using copula have been performed, few studies have combined the

different drought indices as suggested in this study. In Korea, Kim

et al. (2012) studied the joint drought index to simultaneously

consider the SPI of the various durations. In this study, we applied

the empirical copula proposed by Nelsen (2006). If the sample size is

large enough, empirical copula can be used to construct a joint

probability distribution. The -dimensional empirical copula with

sample size  for each variable  is defined by equation (4).

 








  


······················································································ (4)

Where  is the -th rank(in ascending order) of   ,   is the

value of  corresponding to the -th rank, and  is the number of

{} that simultaneously satisfy  ≤   ≤  in
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time series of { }. By applying copula with SPI and EDDI as

variables, the correlation between two drought indices can be

constructed. The empirical Kendall distribution function () is used

to calculate the probability measure of the correlation structure.

 








  


······················································································ (5)

Where  is the number of samples { } with

  ≤ . The Kendall distribution function can be used

to estimate the value of the cumulative probability for a

comprehensive drought condition that takes into account a number of

variables(Kim et al., 2012). The value obtained by applying this

cumulative probability inversely to the standard normal distribution

can be finally expressed in CJDI. SPI and EDDI, which are used as

variables in estimating CJDI, should express the same drought

condition for any value. Therefore, CJDI follows EDDI's drought

classification because CJDI was calculated using negative in SPI and

EDDI.

2.3 Partial Duration Series

In the case of drought analysis, it is very important to consider

the duration. Accordingly, this study analyzed drought with various

durations from 1-month to 12-months. Also, unlike rainfall analysis
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using annual maximum time series, frequency analysis was

performed using PDS. For this purpose, PDS by various durations

were constructed from the time series of the drought index using the

method proposed by Stall (1964), which is applied to the flow

frequency analysis of reservoirs. To create a PDS, we first obtain a

moving-averaged time series of monthly drought index time series

by durations. Among them, the most severe value of drought (SPI

and SPEI are the smallest values, EDDI and CJDI are the largest

values) was selected as the 1st priority, and a new time series is

constructed that eliminates the number of duration month before and

after from the original series including this value. In the new time

series, the most severe value of drought is selected as the second

rank, and the new time series is formed by deleting the value before

and after the number of months. PDS is created by repeating the

same process. The number of PDS cannot exceed the observed

years, and if a value of PDS less than zero is selected, the iteration

process is stopped. That is, the maximum number of PDS is the

number of years of observation, and in the case of a long duration,

the number of PDS may be smaller than the number of years of

observation. In the frequency analysis using the annual maximum

time series, since the same number of data is obtained for each

duration, a separate process is not performed. However, when using

the PDS, the number of data must be taken into account when

calculating the return period of the drought severity. Therefore, in

this study, the return period of drought severity  and duration  in
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the process of frequency analysis was calculated as follows.

   


······················································································· (6)

Where  is the probability of occurrence of PDS, that is, the number

of PDS divided by the number of observed years, and  is the

cumulative probability density function of PDS.

2.4 Data

Observation data and future climate change scenario were used in

this study. The climate variables used are mean temperature,

maximum and minimum temperature, wind speed, relative humidity

for  calculation and precipitation. Observation data was used for

the 1973-2018 period at 56 sites of the KMA’s Automated Synoptic

Observing System(ASOS). Future data are simulated and generated

using the Global Climate Model(GCM) and the Regional Climate

Model(RCM). Because data generated from GCM has limited data

usage due to low resolution and simple physical process, more

detailed climate data from RCM are needed. Therefore, in this study,

we used data from the 2 GCMs(HadGEM2-AO (Hadley Centre

Global Environment Model version 2 - Coupled Atmosphere-Ocean

model) and MPI-ESM-LR(Max Planck Institute Earth System

Model- Low Resolution)) and 4 RCMs(MM5, RegCM, RSM, and
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WRF) as future climate data. In addition, a total of 16 scenarios

were used by applying RCP4.5 and RCP8.5 scenarios for each of the

eight models. Climate model data includes present data from

1981-2010 and future data of RCP4.5 and RCP8.5 from 2021-2050.

For future climate data, bias corrections must be performed because

bias with observed data clearly exists. In general, Quantile Mapping

(QM) is used to calibrate climate model data. QM is a method of

mapping the probability distribution of climate model data to the

observation data by using the cumulative probability distribution of

observation data and climate model data(Hashino, 2007). In this

study, QM was performed in the SDF curve derivation process in

order to reduce the bias of the SDF curve between the observation

and present data of the climate model. Bias correction was performed

for the PDS constructed from observation and climate model data,

and future SDF curves were derived using the corrected PDS.
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Ⅲ. Results and Discussion

3.1 Temporal variation of dought indices

This section examined the applicability of SPI, EDDI, SPEI and

CJDI in Korea. All of these droughts can be calculated from various

durations, which can be useful to indicate droughts in the region if

appropriate duration is selected considering local characteristics. In

this study, we calculated EDDI(EDDI6), SPEI(SPEI6), and

CJDI(CJDI6) of the same duration as the 6-month SPI(SPI6), which

is currently used mainly by the KMA for drought forecasting and

warning. In order to evaluate the reproducibility of past observed

droughts of each drought index, Korea was analyzed by dividing into

six areas by administrative region, such as Fig. 3.1. The 56

meteorological sites under the KMA, which were applied to calculate

the drought index of each region, are shown together, and the

Thiessen method is applied to derive the spatial average of each

region.
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Fig. 3.1 Location of six region and

meteorological stations used in this study.

Fig. 3.2 The temporal variations of 6-month SPI, EDDI, SPEI and

CJDI over 1981-2018. (a) Busan-Ulsan-Gyeongnam, (b)

Daegu-Gyeongbuk, (c) Daejeon-Chungcheong, (d) Gangwon, (e)

Gyeonggi-Seoul-Incheon, (f) Gwangju-Jeolla.
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In Fig. 3.2, the drought events during the 1981-2018 period in each

region and the temporal behavior of the drought indices were

compared. Negative SPI6 and SPEI6 are shown be convenient to

compare with EDDI6 and CJDI6, and this means that the larger the

positive value, the worse the drought. SPI6 and SPEI6 have very

similar time series, but SPEI6 shows more severe drought conditions

than SPI6. This case occurs during the 1994-1995 period in Fig.

3.2(a), (b) and (f). The period was a year of historic heat wave as

well as long-term shortages of rainfall across the country, with the

high  , which led to a severe drought. It can be seen that SPEI6

was affected by excessive increase in  , resulting in more severe

drought than SPI6. However, SPEI6 is not always affected by  .

This can be seen by the fact that SPEI6 does not express drought

at all even when the -based EDDI6 increases rapidly. In the 2013

drought event of Fig. 3.2(a), the SPEI6 is the value of about 1

indicating a weak drought with SPI6, although EDDI6 reached a

severe drought(the value of 2). Also, in 1997-1998 in the rest of the

world except Gyeonggi-Seoul-Incheon(Fig. 3.2(e)), EDDI6 shows a

drought extreme, but SPEI6 shows no drought at all. SPEI6 shows

similar behavior to SPI6, which is mainly influenced by precipitation,

and the effect of  is small. That is, it can be seen that even

though EDDI6 is extremely dry as  increases, SPEI6 does not

show drought because it does not properly reflect information of  ,

a variable related to temperature.

On the other hand, CJDI6 comprehensively reflects the information
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on precipitation and  . The CJDI is not simply a mean of the two

drought indices, but is influenced by the correlation between the

drought indices, so it is possible to comprehensively judge the

drought situation represented by each drought index. If SPI6 and

EDDI6 together represent a drought, CJDI6 represents a more severe

drought reflecting both drought conditions. For example, SPI6 and

EDDI6 have shown high values due to the past severe drought event

in 1994 in the three regions of Fig. 3.2(a), (b) and (f). As a result,

CJDI6 was regarded as a severe drought condition with a

precipitation deficiency and an excessive increase in . In the same

period, drought event in the Gyeonggi-Seoul-Incheon region(Fig.

3.2(e)) show that SPI6 and EDDI6 are close to 1. CJDI6 indicates

extreme drought that exceed the value of 2 as both drought indices

indicate drought together. In addition, CJDI6 showed a high value as

both SPI6 and EDDI6 expressed droughts in spring drought in

southern Korea in 2000(Fig. 3.2 (a), (b) and (f)). However, even if

the two drought indices fail to express the drought together, CJDI6

can properly show the drought. In the case of Gangwon region(Fig.

3.2 (d)), in the drought event in 1996, SPI6 exceeded the drought

reference value of 1, while EDDI6 showed a value near 0 indicating

normal moisture state. In this situation, CJDI6 can detect abnormal

moisture supply of atmosphere according to SPI6 and indicate

drought condition. In addition, in the 1988 drought in Fig. 3.2(f),

EDDI6 did not detect drought, while SPI6 showed extreme droughts

of over 2. During the period, the drought was caused by precipitation
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deficiency, and CJDI6 determined the drought situation through

SPI6's information. The advantages of CJDI6 can be seen in Figs.

3.3-3.4. Fig. 3.3-3.4 show two representative drought events in the

Daejeon-Chuncheong region and the time series of each drought

index.

Fig. 3.3 The temporal variations of 6-month SPI, EDDI,

CJDI at Daejeon–Chungcheong for 1994 and 1995.

Fig. 3.4 The temporal variations of 6-month SPI, EDDI,

CJDI at Daejeon–Chungcheong for 2008 and 2009.
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Fig. 3.3 shows the time series of each drought index for drought

events in 1994 to 1995. EDDI6 has been detecting drought since July

1994, while SPI6 is above the value of 1, alternating between weak

drought and normal state. CJDI6 reflects the extreme drought

condition of EDDI6 and shows a continuous drought. However, the

drought of CJDI6 was ended by EDDI6, which has declined sharply

since January 1995, but CJDI6 has indicated immediately drought by

the rising SPI6.

Fig. 3.4 shows the drought event from the end of 2008 to the

beginning of 2009. SPI6 expresses the drought that EDDI6 did not

detect. Accordingly, CJDI6 also reflects drought information of SPI6,

indicating drought. As such, CJDI6 can properly represent droughts

in situations where drought indices suggest different drought

conditions. However, CJDI6 does not always make the right decision

under the conflicting drought indices. This is clear from the drought

events in the southern region of Korea in the 1980s. SPI6 reproduces

the droughts that occurred in the 1980s, while EDDI6 did not detect

drought at all. In this case, CJDI6 is affected by EDDI6, not SPI6,

and thus shows no drought. Nevertheless, CJDI6 still shows

relatively high observed drought reproducibility compared to other

drought indices. In order to confirm this quantitatively, the hit ratio

of drought index to observed drought is shown in Table 3.1. Hit

ratio was estimated that the value of the drought index indicated the

drought during the actual drought events occurring in each region.

The reference value for drought is more than 1.0 for EDDI6 and
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CJDI6 and less than -1.0 for SPI6 and SPEI6. The hit rate was

calculated as a percentage of the number of months the drought

index hit during the drought period for the total number of months

in which actual drought events occurred by region.

SPI6 EDDI6 SPEI6 CJDI6

Busan-Ulsan-Gyeongnam 50.0 40.7 55.6 51.9

Daegu-Gyeongbuk 50.9 30.2 45.3 47.2

Daejeon-Chungcheong 47.6 38.0 66.7 76.2

Gangwon 55.6 59.3 59.3 77.9

Gyeonggi-Seoul-Incheon 52.6 47.4 52.6 68.4

Gwangju-Jeolla 43.8 21.9 45.3 51.6

Table 3.1 Hit ratio of drought indices in six region

CJDI6 has the highest hit ratio in four regions except

Busan-Ulsan-Gyeongnam and Daegu-gyeongbuk. This is confirmed

by the fact that CJDI6 also had a lower hit rate as EDDI6 could not

catch the drought of the 1980s in the southern region. However,

CJDI6 has a particularly good hit ratio in Daejeon-Chuncheong and

Gangwon. EDDI6 has a relatively low hit rate compared to other

drought indices. However, in most regions, SPEI6 has a higher hit

ratio than SPI6 and CJDI6's excellent hit rate suggests that  plays

an important role in drought analysis. In other words, it is clear that

drought monitoring is important for analysis including  .
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3.2 SDF curves

In this section, we derives and analyzes the observed SDF curve

of each drought index. SDF curves were derived at three sites in

Korea(Busan, Chuncheon, and Daejeon), shown in red circles in Fig.

3.1. A total of 46 years of observed data from 1973 to 2018 was

used to extract PDS by sites for the frequency analysis of four

drought indices. PDS results of Chuncheon site is shown in Fig. 3.5.

Fig. 3.5 Partial duration series of drought indices using

observation data(1973-2018) at Chuncheon site.
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In general, PDS is less numerous and lower drought severity with

longer duration. Fig. 3.5 shows that CJDI6 constitutes a higher PDS

than other drought indices. This is because, as previously analyzed,

CJDI6 has characteristics that indicate higher values when SPI6 and

EDDI6 express drought together. Similarly, SPEI6 has a PDS similar

to SPI6 because it has a time series similar to that of SPI6, but has

a higher drought severity than SPI6 under the influence of  . This

characteristic of drought indices can also be clearly seen in the SDF

curve. Figs. 3.6-3.9 show the observed SDF curves for three sites of

each drought index and were derived for various durations and

return periods. The SDF curve is a curve representing the

relationship between drought severity, duration, and frequency, which

enables quantitative assessment of drought and can be a useful tool

for determining drought characteristics by regions.
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Fig. 3.6 SDF curves of -SPI6 derived from the observation

data(1973-2018) at (a) Busan, (b) Chuncheon, (c) Daejeon.
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Fig. 3.7 SDF curves of EDDI6 derived from the observation

data(1973-2018) at (a) Busan, (b) Chuncheon, (c) Daejeon.
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Fig. 3.8 SDF curves of -SPEI6 derived from the observation

data(1973-2018) at (a) Busan, (b) Chuncheon, (c) Daejeon.
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Fig. 3.9 SDF curves of CJDI6 derived from the observation

data(1973-2018) at (a) Busan, (b) Chuncheon, (c) Daejeon.

The SDF curve is a common form in which drought severity

decreases with longer duration. However, the SDF curve derived

from this study has some inversion at high return period. In

constructing a PDS, there may be a value that is greater than or

nearly similar to a short duration time series in a long duration time

series. In this case, the long-duration time series has a relatively

larger variance, and the probability drought severity of long-duration

at the same return period is higher than the short-duration,
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depending on the upper tail characteristic of the cumulative

probability distribution.

SPEI6 represent an SDF curves similar to that of SPI6, but with a

more severe drought severity. SPEI6 is an index for expressing

drought based on the moisture retention estimated by the difference

between precipitation and . It can express more intensive than

SPI6 due to the influence of . CJDI6 also has a higher drought

depth than other drought indices because it can express severe

droughts by reflecting droughts of SPI6 and EDDI6. Observed SDF

curves represent different probability drought severity by the drought

index at the same site. Since different SDF curves may appear at

the same site according to the characteristics of each region and the

drought index, it is important to select the appropriate drought index

for each region to understand the drought characteristics of the

region.

3.3 Change in future drought

The four drought indices examined in the observed SDF curves

have different probability drought severity at the same site,

depending on their characteristics. Therefore, in order to forecast and

prepare for future droughts, it is necessary to quantitatively

understand the changes in future droughts represented by each

drought index. In this section, future SDF curves are derived using

climate change scenario data generated from various climate models.
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To derive the future SDF curve, the bias correction was performed

by comparing the PDS of the present data with that of the observed

data. To confirm the bias correction results, the bias (%) of the

present SDF curves corrected for the observed SDF curves is shown

in Fig. 3.10. The bias was calculated as the difference between the

probability drought severity of the present and observed SDF curve

by return periods and durations. In Fig. 3.10, the results of the

Chuncheon site are representatively shown, and the results of eight

models by return period and duration are shown as box plots.

Fig. 3.10 Bias of the SDF curves derived from the

corrected present data for the observed SDF curves at

Chuncheon site. (a) -SPI, (b) EDDI, (c) -SPEI, (d) CJDI.
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The present SDF curves at short-term duration show a bias close

to 0 %, indicating that the bias correction is well performed.

However, the long-term duration has a relatively high bias (%), and

some models have more than 20%. For long durations, the number

of PDS data is varied. In order to take into account the difference in

the number of data, the process of Equation (6) in Section 2.3 is

used and the corrected return period is used instead of the same

return period. Therefore, the observed and present drought severity

may be different. However, most of the bias (%) is within 10%, it

can be confirmed that the bias correction is performed well.

Although the results of Chuncheon of the three sites were presented,

it was confirmed that the bias correction was well performed at the

other sites.

The future SDF curve was derived using the future data corrected

with the present data, and the rate of change in future drought

severity was analyzed to identify the quantitative change in future

drought. The rate of change was calculated as the change of the

future drought severity of the RCP4.5 and RCP8.5 scenarios for the

present severity by durations for each of the eight models. The rate

of change is based on 0%, the higher the value means the increase

of the drought severity, the lower the value means the decrease. Fig.

3.11 shows the rate of change of future probable drought severity

for each sites of SPI6. The results of eight models of RCP4.5 and

RCP8.5 are shown in a box plot.
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Fig. 3.11 Rate of change in future SDF curves of –SPI6 by

RCP4.5(blue box plot) and RCP 8.5(red box plot) scenario

at (a) Busan, (b) Chuncheon, (c) Daejeon.

SPI6 represents a different future drought prospect for three sites.

Future droughts at the Busan site(Fig. 3.11(a)) are expected to be

less than present. The results of some models suggest that future

drought severity may be reduced by about 40% from the present.

Also at the Daejeon site(Fig. 3.11(c)), most models insist on

mitigating future droughts. On the other hand, at the Chuncheon



- 34 -

site(Fig. 3.11(b)), various drought projection results are shown for

each model, and there are many models that expect the future

drought to intensify. Eight models suggest drought mitigation and

deepening. Since the eight models represent a wide range of different

rates of change, there is a great deal of uncertainty between the

climate models. The SPI6 at the Chuncheon shows different

prospects for future droughts by model, so we cannot be sure of the

future drought. As such, future droughts through SPI6 show some

uncertainty, but most are expected to mitigate. This is because it is

predicted that the occurrence of extreme rainfall events will increase

in the climate change scenarios.
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Fig. 3.12 Rate of change in future SDF curves of EDDI6 by

RCP4.5(blue box plot) and RCP 8.5(red box plot) scenario

at (a) Busan, (b) Chuncheon, (c) Daejeon.

EDDI6, on the other hand, is confident that future droughts will

intensify. As shown in Fig. 3.12, EDDI6 shows the result that the

future drought is intensified in contrast to SPI6, and none of the

eight models alleviates the future drought. EDDI6 in all climate

models suggests a moere sever future drought, which covers all

three sites. A change rate of more than 100 % is present, and some
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models are well over 200%. In other words, some models predict that

future droughts can be three times more severe than today. EDDI6

predicted that the future drought would be deepen for all climate

models, but there is a problem with the large variation between

models. The high uncertainty of the future EDDI6 is due to the

estimation of  using various climate variables.  estimated by

various climate variables has caused high uncertainty among climate

models because the variables produced in the climate models have

each uncertainty. EDDI6 also simulates the future drought so

severely that doubts arise about whether it is a reasonable drought

prospect.

As such, future droughts analyzed from two different sides using

SPI6 and EDDI6 show opposite trends. Since precipitation and  are

major climate variables affecting drought, it is important to consider

two climate variables together rather than one to analyze future

droughts.
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Fig. 3.13 Rate of change in future SDF curves of -SPEI6 by

RCP4.5(blue box plot) and RCP 8.5(red box plot) scenario

at (a) Busan, (b) Chuncheon, (c) Daejeon.

Fig. 3.13 is an analysis of future drought changes in SPEI6 that

consider both climate variables together. However, SPEI6, which is

affected by  , appears to mitigate future droughts, mostly similar to

SPI6. In case of the Busan(Fig. 3.13(a)) and Daejeon(Fig. 3.13(c)),

most models show a lowwer future drought severity than the

present. In the Chuncheon(Fig. 3.13(b)), there is a contradictory
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future projection between the models, which is similar to SPI6.

However, as with SPI6, the results of various drought projections

between models are not convinced of the deepening or mitigation of

droughts. As such, SPEI6 is affected by  , but it does not certainly

deepen future drought like EDDI6, and shows a similar drought trend

as SPI6. These results suggest that SPEI6 does not properly reflect

the increase in temperature due to climate change in the prospect of

future droughts.
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Fig. 3.14 Rate of change in future SDF curves of CJDI6 by

RCP4.5(blue box plot) and RCP 8.5(red box plot) scenario

at (a) Busan, (b) Chuncheon, (c) Daejeon.

CJDI6, like SPEI6, is a drought index affected by precipitation and

 . In Fig. 3.14, unlike SPEI6, we can clearly see the characteristics

of CJDI6 that properly reflect the effects of precipitation and  . The

future droughts examined through CJDI6 show that the droughts are

intensifying. Each RCP scenario shows an increase in drought at all

sites except for some models. However, it does not forecast the
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drought to be as severe as EDDI6. CJDI6 is a drought index

consisting of a combination of SPI6 and EDDI6. It provides a

comprehensive assessment of the future behavior of the precipitation

and  . CJDI6, like SPI6, admits that extreme rainfall events will

increase in the future, but nonetheless argue that the drought due to

increased temperatures will increase and intensify. This suggests

that the rate of change is mostly high in the RCP8.5 scenario where

higher temperature rises are expected, suggesting that CJDI6 can

adequately reflect the increase in temperature. At the Busan(Fig.

3.14(a)) and Chuncheon(Fig. 3.14(b)), some models show drought

mitigation, but most models claim to have drought severity. Indicates

deepening. While some models indicate drought mitigation, most of

the models claim to increase drought, and in the RCP8.5 scenario,

there is a clear increase in drought severity. The Daejeon site is

also expected to intensify future droughts and is expected to increase

about 40% on average over long-term durations. What can be seen

from CJDI6 is that the rate of change at all sites is mostly high

over long durations. In other words, CJDI6 suggests that long-term

droughts may occur more severely.

3.4 Discussion

The future droughts seen through the four drought indices are

diverse. We can expect future precipitation and temperature to

increase from the forecast results of drought indices based on
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different climate variables. In particular, an increase in temperature

causes an excessive increase in evapotranspiration, and future

drought analysis using only  shows unrealistic disasters in Korea.

EDDI suggests that future droughts will be very serious because

rising temperatures can significantly worsen the severity and impact

of droughts(Allen et al., 2010; Mcdowell and Allen, 2015; Allen et al.,

2015). On the contrary, the increase in precipitation soon mitigated

future droughts. Future droughts identified through the SPI suggest

alleviating. These results are also found in several studies that

conducted future drought analysis on Korea using SPI(Sohn et al.,

2014; Kim et al., 2016a). Under this climate change scenario of

predicting the increase of precipitation and temperature, we can see

that we need to analyze the future drought by considering both

climate variables together.

However, since  is estimated from various climate variables, 

in future is highly uncertain. The behavior of  for the RCP

scenario can exacerbate uncertainty because it appears in many

different forms in different climate models(Ainsworth and Rogers,

2007; Dijkstra et al., 2010; Milly and Dunne, 2016; Swann et al.,

2016). The drought index, which is based on  , has a high level of

uncertainty between models, because drought changes due to rising

temperatures vary from region to region and can be very

uncertain(Ault et al., 2016; Hessl et al., 2018). Nevertheless, as global

warming progresses,  must be considered as an important factor

that cannot be ignored in drought(Cook et al., 2014; Karnauskas et
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al., 2016). Therefore, future analysis using SPEI, which is one of the

drought indices considering precipitation and  , was performed

together. The results of SPEI in this study are very similar to those

of SPI, and this can be found in various studies(Labudová et al.,

2017; Yao et al., 2018). SPEI showed greater drought when SPI

showed drought due to the effect of increasing  . This is explained

by the fact that when  demands evaporation demand for water, the

impact is felt even more in a moisture shortage

condition(Tirivarombo et al. 2018). Although SPEI tends to simulate

drought more seriously than SPI, nevertheless, SPEI has also

resulted in mitigating future droughts. As the -based EDDI

simulated severe drought in future, it can be seen that the SPEI did

not properly reflect the effects of  . CJDI, on the other hand,

presented results that properly consider the effects of precipitation

and . CJDI has been evaluated for its applicability as a new

drought index because of its excellent reproducibility to observed

droughts in Korea. When the SPI or EDDI presents contradictory

results on drought events in Korea, CJDI shows drought to reflect

the drought expressed by one drought index. In other words, the

biggest advantage of CJDI is that it is possible to monitor drought

appropriately by comprehensively determining drought caused by

changes in two climate variables. Drought does not always occur

due to precipitation deficiency, but because  may be a major cause

of drought(van der Schrier et al., 2013), it is possible to judge

CJDI's superiority in the characteristics of drought. CJDI more
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reasonably suggests future drought projections. SPI and SPEI clearly

indicate the mitigation of future droughts, which is inconsistent with

a number of studies that suggest the possibility of deepening

droughts due to global warming(Solomon et al., 2007; Jentsch et al.,

2007; Sterl et al., 2008). In other words, CJDI's future drought seems

to provide reliable results when the risk of future drought is

sufficiently predicted. However, because CJDI is also a drought index

based on  , there are also results with high uncertainty between

models. It is necessary to select an appropriate estimation

methodology or climate model that best simulates  to reduce the

uncertainty of  in future climates.
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Ⅳ. Application

4.1 Drought severity map

In this section, Korea drought severity map is written as one of

the drought analysis applied with CJDI6. Drought severity map can

be used to assess potential drought hazards by region, especially

where droughts are vulnerable. The Drought severity map is

prepared by deriving the observed SDF curves using observation

data of 1973-2018 at 56 locations in Korea and plotting spatially

drought severity by return period and duration. Figs. 4.1-4.2 show

the drought severity map for different durations of 10 and 30 years

return period.

Fig. 4.1 Drought severity map of CJDI6 for 10-year frequency in

Korea.
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Fig. 4.2 Drought severity map of CJDI6 for 30-year frequency in

Korea.

In general, short-term droughts are caused by rapidly changing

climate variables, resulting in high drought severity and narrow

range of effects. In contrast, long-term droughts occur over a long

period of time, resulting in low average drought severity and a wide

range of occurrence. The drought map analyzed by CJDI6 expresses

the these characteristics of droughts. The 3-month drought, which is

a short-term drought, suggests a higher and variety of drought

severity in different regions than the 6- and 12-month droughts. The

drought condition in Korea, which is examined through the drought

map, shows that the drought severity in the southern region is

higher than in other regions. In the case of a 3-month drought in

Fig. 4.1, which is 10-year, the central region shows a drought

severity of about 2-2.2, but in some areas of the southern region

there is a high drought depth of 2.4. Similarly, a 6-month duration

of drought has a drought severity of about 1.8 in the same area.

Drought of 12-month duration shows similar drought severity across
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the country. In the 30-year return period (Fig. 4.2), the severity and

range of droughts are higher than those of the 10-year drought.

Also, similar to the result of 10-year of return period, high drought

severity is expressed in southern region. There is a high drought

severity of about 3 for a 3-month drought, about 2.6 for a 6-month

drought, and about 2 for a 12-month drought in southern region.

The region has a particularly high drought depth in Korea and can

be judged to be a region with high risk of drought.

4.2 Drought condition analysis

It is very important to determine the situation of drought for

drought monitoring. In order to analyze how drought occurs, this

section analyzes the behavior of CJDI6 for the past drought event.

We selected a severe drought that occurred during the 1994-1995

period in Korea and conducted an analysis in Busan of the southern

region, where the drought was particularly severe. The time series

by duration of the CJDI6 (Fig. 4.3) and the return period

corresponding to the drought severity represented by CJDI6 (Fig. 4.4)

are shown.
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Fig. 4.3 Time series of CJDI6 for 1994-1996 at Busan site.

Fig. 4.4 return period of drought severity

for 1994-1996 at Busan site.

In Fig. 4.3, short-term CJDI6 immediately expresses drought in

mid-1994 when the drought onset, and long-term CJDI6 shows a

gradually changing form of drought. The late 1994, when CJDI6

expresses extreme dryness, is a period during which the drought had
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sustained extremely. Short-term CJDI6 ended the drought in early

1995, while long-term CJDI6 maintained the drought well and lasted

weak until 1996.

Fig. 4.4 shows the return period according to CJDI6 by duration. It

can be seen that CJDI6, which shows a drought of 6-months

duration, has the highest return period of about 60 years. The

3-month duration of CJDI6 represents a return period of about 30

years. In addition, CJDI6 with a long duration(9-months and

12-months) has a frequency of nearly 40 years. On the other hand,

1-month duration of CJDI6 has a frequency of 10 years, despite high

drought severity. Even in the same drought event, it can be seen

that it is very different to express drought according to duration. It

is analyzed that the drought event is severe when analyzed for

6-months duration, but it is difficult to say that it is severe drought

in the 1-months duration. Also, it can be regarded as an extreme

drought in the 3-, 9- and 12- months duration. The drought event

of the 1994-1995 period is drought that maintained for a long time,

and it is not reasonable to analyze the drought event for a

short-term duration. As the drought analysis is different according to

the duration, it can be seen that it is very important to determine

drought through various durations in drought monitoring.

4.3 Climate change adaptation

In Section 3.3, we applied the climate change scenarios to derive
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the SDF curve and quantitatively analyze changes in future droughts.

In this section, we tried to examine the most severe drought events

in the future using CJDI6. To this end, the most extreme drought

events by duration were extracted from the PDS prepared for each

future climate change scenarios. The most severe value for each

duration is selected from the PDS of each scenarios. The worst

drought severity values selected from eight models by RCP scenarios

are plotted and shown along with the observed SDF curve(Fig. 4.5).

Comparing with the observed SDF curves, we can determine if the

most severe drought events in the future by climate change

scenarios are drought with the observed years of return period.

Some models of the RCP8.5 scenario project that the worst droughts

can occur in all duration, over the current 100-year frequency. In

particular, this possibility is most likely at the Daejeon site (Fig. 4.5

(c)). At the Daejeon site, most models of RCP4.5 and RCP8.5

express drought events over the current 100-year frequency. Some

models suggest drought events of lower return period, but the

drought events are also about 50 years current. In the case of the

Busan site (Fig. 4.5 (a)), some durations of the RCP4.5 scenario

show various results for each model, but for long-term durations,

the frequency ranges from about 50 to 100 years. It is predicted that

severe long-term droughts will occur in the future. In addition, most

models in the RCP 8.5 scenario suggest that droughts corresponding

to the current 100-year frequency will be occurred. At the

Chuncheon site (Fig. 4.5 (b)), the worst drought events predicted by
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climate models appear to be in excess of the current 30-year

frequency. Some models also have drought events that correspond to

100-year frequency.

Fig. 4.5 Comparison of observed SDF curve and drought

severity of the most extreme drought Event of RCP4.5

scenario(blue box plot) and RCP8.5 scenario(red box plot)

at (a) Busan, (b) Chuncheon, (c) Daejeon.

The most severe drought in the future, shown in Fig. 4.5, is more

likely to severly occur than the current 100-year frequency of

drought. This can be expected to be more severe than the long-term
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drought event in 1994, which was a drought of 70-year frequency in

Figs. 4.3-4.4.
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Ⅴ. Conclusion

The climate change scenario predicts an increase in precipitation,

anticipating an increase in extreme rainfall event in the future.

However, not only these extreme rainfall events but also the increase

in temperature due to climate change are clearly forecasted. The

increase in temperature leads to an increase in evapotranspiration,

which in turn leads to the occurrence of drought. In these results, a

drought index based on one climate variable suggests different future

outcomes depending on which drought index is chosen. Therefore, in

this study, we developed a drought index that interprets the moisture

supply and demand sides of the atmosphere together and compared

drought index developed with the existing drought index.

For SPI using only precipitation, future droughts were similar to or

rather likely to be mitigated from current droughts. In the RCP8.5

scenario, the SPI proposed mitigation of future droughts. In contrast,

EDDI has been shown to deepen future droughts. The prospect for

future droughts presented by the SPI are somewhat unsuitable for

applying to the pre-response to droughts, and are the result of

conflicting opinions that anticipate the deepening drought in future.

In this regard, EDDI, which certainly deepens future droughts, can

be usefully applied in taking proactive measures to climate change.

EDDI, however, had a very severe future droughts, and some models

presented unrealistic results. EDDI predicted extreme drought than

other drought indices because it only considers  and estimates
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drought with an increase in temperature. In addition, the uncertainty

between climate models was very large because EDDI uses a variety

of climate variables generated from climate models to calculate .

The results of these drought indices(SPI and EDDI) clearly show

that when analyzing future droughts, two climate variables should be

considered together, rather than taking into account only precipitation

or  . However, SPEI, which considers precipitation and  together,

provided similar results to SPI in future drought analysis. Since

SPEI is mainly influenced by precipitation rather than  , future

drought analysis using SPEI did not seem to fully reflect the

increase in temperature. On the contrary, the CJDI proposed in this

study reflects the effects of rainfall and  , and shows that the

drought represented by the two climate variables is comprehensively

judged. Since CJDI adequately reflects precipitation and  , it showed

better reproducibility of observed drought events than existing

drought indices. The future drought projected using CJDI suggests

that it is likely to intensify. Unlike EDDI, CJDI also considers the

increase in precipitation, and thus shows more realistic drought

prospect without suggesting extreme drought events as EDDI. In the

same analysis, CJDI provides more reliable forecasts among the

drought indices that provide various future drought outcomes.

Therefore, in this study, CJDI was selected as a suitable drought

index for drought analysis and applied to various analyzes.

The results of this study suggest that it is more reasonable to

analyze and predict droughts by taking together precipitation and  ,
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the main variables associated with droughts. Because drought is a

complex natural phenomenon caused by various climate variables, it

is important to comprehensively express the drought situation by

two weather variables, not only one. In this regard, it is deemed that

the CJDI proposed in this study can be fully utilized as a drought

index to analyze drought.
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