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Chapter 1

Introduction and Preliminaries

The purpose of this paper is to give a systematic presentation of the

theory of evolution equation with time delays based on the theory of ana-

lytic semigroups of bounded linear operators and its applications to partial

functional differential equations. The system with delays means that the

future state of given models in engineering, economics and natural sciences

depends on only on the present but on the past state and the derivative of

the past state. Such models that contain past information are called heredi-

tary systems. In this paper, we obtain a number of criteria for controllability

and regularity for various semilinear retarded functional differential control

systems with unbounded principal operators and more general conditions of

parameters in Hilbert spaces. Throughout this paper, we study a class of

abstract retarded equations in some Hilbert spaces.

The paper is organized as follows: In chapter 2, we are concerned with

the global existence of solution for the semilinear impulsive system:


x
′
(t) + Ax(t) = f(t, x(t)) + k(t), t ∈ (0, T ], t 6= tk,

k = 1, 2, · · · ,m,
∆x(tk) = x(t+k )− x(t−k ) = Ik(x(t−k )), k = 1, 2, · · · ,m,
x(0) = x0,

(2.1.1)

where H and V be real Hilbert spaces such that V is a dense subspace in H.

Let A be the operator associated with a sesquilinear form a(·, ·) defined on

V × V satisfying G̊arding’s inequality:

(Au, v) = a(u, v), u, v ∈ V
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where V is a Hilbert space such that V ⊂ H ⊂ V ∗. Then −A generates an

analytic semigroup in both H and V ∗(see [76, Theorem 3.6.1]) and so the

equation (2.1.1) may be considered as an equation in H as well as in V ∗. The

nonlinear operator f from [0, T ]× V to H is assumed to be locally Lipschitz

continuous with respect to the second variable, and k is a forcing term. The

impulsive condition

∆x(tk) = x(t+k )− x(t−k ) = Ik(x(t−k )), k = 1, 2, · · · ,m,

is a combination of traditional evolution systems and short term perturba-

tions whose duration is negligible in comparison with duration of the pro-

cess, such as biology, medicine, bioengineering etc. We propose a different

approach of the earlier works (briefly introduced in [76, 33, 43]) about the

mild, strong, and classical solutions of Cauchy problems. Our approach is

that results of the linear cases of Di Blasio [16] on the L2-regularity remain

valid under the above formulation of the semilinear problem (1.2). Based on

the regularity for (2.1.1), we can apply for the approximate controllability

for (2.1.1). Approximate controllability for semilinear control systems can

be founded in [4, 10-18]. We note that the contents of this chapter have been

published in [39].

In chapter 3, We are concerned with the regularity of the following second-

order semilinear impulsive differential system
w
′′
(t) = Aw(t) +

∫ t
0
k(t− s)g(s, w(s))ds+ f(t), 0 < t ≤ T,

w(0) = x0, w
′
(0) = y0,

∆w(tk) = I1
k(w(tk)), ∆w′(tk) = I2

k(w′(t+k )), k = 1, 2, ...,m

(3.1.1)

in a Banach space X. Here k belongs to L2(0, T ) and g : [0, T ]×D(A)→ X

is a nonlinear mapping such that w 7→ g(t, w) satisfies Lipschitz continuous.

In (3.1.1), the principal operator A is the infinitesimal generator of a strongly

continuous cosine family C(t), t ∈ R. The impulsive condition

∆w(tk) = I1
k(w(tk)), ∆w′(tk) = I2

k(w′(t+k )), k = 1, 2, ...,m

2



is combination of traditional evolution systems whose duration is negligi-

ble in comparison with duration of the process, such as biology, medicine,

bioengineering etc. We allow implicit arguments about L2-regularity results

for semilinear hyperbolic equations with impulsive condition. These conse-

quences are obtained by showing that results of the linear cases [37, 10] and

semilinear case [41] on the L2-regularity remain valid under the above for-

mulation of (3.1.1). Earlier works prove existence of solution by using Azera

Ascoli theorem. But we propose a different approach from that of earlier

works to study mild, strong and classical solutions of Cauchy problems by

using the properties of the linear equation in the hereditary part, which is

seen in [40].

In Chapter 4, we consider the regularity of solutions for an abstract

parabolic type equation involving p-Laplacian:
∂u
∂t

(x, t) +A(x,Dx)u(x, t)− div(|∇u(x, t)|p−2∇u(x, t)) = f(t), (x, t) ∈ Ω× (0, T ],

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ],

u(x, 0) = u0(x), x ∈ Ω,

(4.1.1)

where, Ω be a bounded domain in Rn with smooth boundary ∂Ω. Let

A(x,Dx) be an elliptic differential operator of second order as follows:

A(x,Dx) = −
n∑

i,j=1

∂

∂xj
(ai,j(x)

∂

∂xi
) +

n∑
i=1

bi(x)
∂

∂xi
+ c(x),

where {ai,j(x)} is a positive definite symmetric matrix for each x ∈ Ω,

bi ∈ C1(Ω) and c ∈ L∞(Ω).

If we put Au = −A(x,Dx)u then it is known that A generates an analytic

semigroup in Lp(Ω)(see[1, 67]). In view of Sobolev’s embedding theorem,

we remark that Lp(Ω) ⊂ W−1,p(Ω), where W−1,p(Ω) is the dual space of

W 1,p
′

0 (Ω)(p
′
= p/(p−1)). The spaceW−1,p(Ω) is ζ-convex(as for the definition

and fundamental facts of a ζ-convex space see [18, 38]). Therefore, from the

3



interpolation theory it is easily seen that the operator A generates an analytic

semigroup in both Hp,q ≡ (W 1,p
0 (Ω),W−1,p(Ω))1/q,q and W−1,p(Ω). Hence, we

can investigate the semilinear form (4.1.1) in the space W−1,p(Ω) and apply

the method of [26] to the system (4.1.1) to show the existence and uniqueness

of the solution

u ∈ Lq(0, T ;W 1,p
0 (Ω)) ∩W 1,q(0, T ;W−1,p(Ω)) ⊂ C([0, T ];Hp,q)

for any u0 ∈ Hp,q and f ∈ Lq(0, T ;W−1,p(Ω))(p > 2). These details are

published in [44].

In Chapter 5, we deal with the approximate controllability for semilinear

integro-differential functional control equations in the form{
d
dt
x(t) = Ax(t) +

∫ t
0
k(t− s)g(s, x(s), u(s))ds+Bu(t), 0 < t ≤ T,

x(0) = x0

(5.1.1)

in a Hilbert space H, where k belongs to L2(0, T )(T > 0) and g is a nonlinear

mapping as detailed in Section 2. The principal operator A generates an

analytic semigroup (S(t))t≥0 and B is a bounded linear operator from another

Hilbert space U to H. We want to use a different method than the previous

one. Our used tool is the theorems similar to the Fredholm alternative for
nonlinear operators under restrictive assumption, which is on the solution of

nonlinear operator equations λT (x) − F (x) = y in dependence on the real

number λ, where T and F are nonlinear operators defined a Banach space

X with values in a Banach space Y . In order to obtain the approximate

controllability for a class of semilinear integro-differential functional control

equations, it is necessary to suppose that T acts as the identity operator

while F related to the nonlinear term of (5.1.1) is completely continuous,

whose information is detailed in [50].

In Chapter 6, we deal with the approximate controllability for a semilinear

control system in the form:{
d
dt
x(t) = Ax(t) + f(t, x(t)) + (Bu)(t), 0 < t ≤ T,

x(0) = x0.
(6.1.1)

4



Let V and H be complex Hilbert spaces forming a Gelgand triple

V ↪→ H ≡ H∗ ↪→ V ∗

by identifying the antidual of H with H, where V is a Hilbert space densely

and continously embedded in H. Here, A is the operator associate with

a sesquilinear form satisfying G̊arding’s inequality as detailed in Section 2.

The motivation for the choice of Hilbert spaces setting for System (6.1.1)

is the application to L2-regularity using fact that the principal operator A

generates an analytic semigroup (S(t))t≥0 in both H and V ∗(see Jeong,1999;

Tanabe, 1979). The controller B is a bounded linear operator from another

Hilbert space L2(0, T ;U)(T > 0) to L2(0, T ;U). k belongs to L2(0, T ) and f

is a nonlinear mapping satisfying Lipschitz continuity.

We want to use a new approach by using the surjectivity theorems similar

to the Fredholm alternative for nonlinear operators motivated by the work

Kang and Jeong (2019), which is about the solution of nonlinear operator

equations λB(u) − F (u) = f provided that λB(u) − F (u) 6= 0 for each u.

In order to obtain the approximate controllability for System (6.1.1), it is

necessary to suppose that B acts as an odd homeomorphism operator while

F is odd completely continuous and homogeneous as defined in Section 3.

By using this method, the approximate controllability of System (6.1.1) can

be given as applicable conditions without restrictions such as the inequality

constraints for Lipschitz constant of f or the compactness of S(t). These

contents have been dealt with by International Journal of Control [42].
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Chapter 2

On semilinear impulsive differential equations

with local Lipschitz continuity

2.1 Introduction

In this paper, we are concerned with the global existence of solution and

the approximate controllability for the semilinear impulsive control system:


x
′
(t) + Ax(t) = f(t, x(t)) + k(t), t ∈ (0, T ], t 6= tk,

k = 1, 2, · · · ,m,
∆x(tk) = x(t+k )− x(t−k ) = Ik(x(t−k )), k = 1, 2, · · · ,m,
x(0) = x0.

(2.1.1)

Let H and V be real Hilbert spaces such that V is a dense subspace in

H. Let A be the operator associated with a sesquilinear form a(·, ·) defined

on V × V satisfying G̊arding’s inequality:

(Au, v) = a(u, v), u, v ∈ V

where V is a Hilbert space such that V ⊂ H ⊂ V ∗. Then −A generates an

analytic semigroup in both H and V ∗(see [76, Theorem 3.6.1]) and so the

equation (2.1.1) may be considered as an equation in H as well as in V ∗. The

nonlinear operator f from [0, T ]× V to H is assumed to be locally Lipschitz

continuous with respect to the second variable, and k is a forcing term.

The impulsive condition

∆x(tk) = x(t+k )− x(t−k ) = Ik(x(t−k )), k = 1, 2, · · · ,m,

6



is a combination of traditional evolution systems and short term perturba-

tions whose duration is negligible in comparison with duration of the process,

such as biology, medicine, bioengineering etc.

The existence of solutions for a class of semilinear functional differential
equations has been studied by many authors. Recently, Kobayashi et el.

[51] introduced the notion of semigroups of locally Lipschitz operators which

provide us with mild solutions to the Cauchy problem for semilinear evolu-

tion equations. The regularity for the semilinear heat equations has been

developed as seen in section 4.3.1 of Barbu [10] and [46, 67, 82].

In this paper, we propose a different approach of the earlier works (briefly

introduced in [76, 33, 43]) about the mild, strong, and classical solutions of

Cauchy problems. Our approach is that results of the linear cases of Di Blasio

[16] on the L2-regularity remain valid under the above formulation of the

semilinear problem (1.2). Based on the regularity for (2.1.1), we can apply

for the approximate controllability for (2.1.1). Approximate controllability

for semilinear control systems can be founded in [4, 10-18].

The paper is organized as follows. In section 2, the results of general

linear evolution equations besides notations and assumptions are stated. In

section 3, we will obtain that the regularity for parabolic linear equations can

also be applicable to (2.1.1) with nonlinear terms satisfying local Lipschitz

continuity. The approach used here is similar to that developed in [76, 46]

on the general semilnear evolution equations, which is an important role to

extend the theory of practical nonlinear partial differential equations. In

order to apply control systems, we need some compactness hypothesis. So

we make the natural assumption that the embedding D(A) ⊂ V is compact

instead of the compact property of semigroup used in [23, 80]. Then by virtue

of the result in Aubin [6], we can take advantage of the fact that the solution

mapping u ∈ L2(0, T ;U) 7→ x(T ; f, u) is compact. Finally we give a simple

example to which our main result can be applied.

7



2.2 Regularity for linear equations

If H is identified with its dual space we may write V ⊂ H ⊂ V ∗ densely

and the corresponding injections are continuous. The norm on V , H and V ∗

will be denoted by || · ||, | · | and || · ||∗, respectively. The duality pairing

between the element v1 of V ∗ and the element v2 of V is denoted by (v1, v2),

which is the ordinary inner product in H if v1, v2 ∈ H.

For l ∈ V ∗ we denote (l, v) by the value l(v) of l at v ∈ V . The norm of

l as element of V ∗ is given by

||l||∗ = sup
v∈V

|(l, v)|
||v||

.

Therefore, we assume that V has a stronger topology than H and, for brevity,

we may regard that

||u||∗ ≤ |u| ≤ ||u||, ∀u ∈ V. (2.2.1)

Let a(·, ·) be a bounded sesquilinear form defined in V ×V and satisfying

G̊arding’s inequality

Re a(u, u) ≥ ω1||u||2 − ω2|u|2, (2.2.2)

where ω1 > 0 and ω2 is a real number. Let A be the operator associated with

this sesquilinear form:

(Au, v) = a(u, v), u, v ∈ V.

Then −A is a bounded linear operator from V to V ∗ by the Lax-Milgram

Theorem. The realization of A in H which is the restriction of A to

D(A) = {u ∈ V : Au ∈ H}

is also denoted by A. From the following inequalities

ω1||u||2 ≤ Re a(u, u) + ω2|u|2 ≤ C|Au| |u|+ ω2|u|2 ≤ max{C, ω2}||u||D(A)|u|,

8



where

||u||D(A) = (|Au|2 + |u|2)1/2

is the graph norm of D(A), it follows that there exists a constant C0 > 0

such that

||u|| ≤ C0||u||1/2D(A)|u|
1/2. (2.2.3)

Thus we have the following sequence

D(A) ⊂ V ⊂ H ⊂ V ∗ ⊂ D(A)∗, (2.2.4)

where each space is dense in the next one which continuous injection.

Lemma 2.2.1. With the notations (2.2.3), (2.2.4), we have

(V, V ∗)1/2,2 = H,

(D(A), H)1/2,2 = V,

where (V, V ∗)1/2,2 denotes the real interpolation space between V and V ∗(Section

1.3.3 of [79]).

It is also well known that A generates an analytic semigroup S(t) in both

H and V ∗. For the sake of simplicity we assume that ω2 = 0 and hence the

closed half plane {λ : Reλ ≥ 0} is contained in the resolvent set of A.

If X is a Banach space, L2(0, T ;X) is the collection of all strongly measur-

able square integrable functions from (0, T ) into X and W 1,2(0, T ;X) is the

set of all absolutely continuous functions on [0, T ] such that their derivative

belongs to L2(0, T ;X). C([0, T ];X) will denote the set of all continuously

functions from [0, T ] into X with the supremum norm. If X and Y are two

Banach space, L(X, Y ) is the collection of all bounded linear operators from

X into Y , and L(X,X) is simply written as L(X). Let the solution spaces

W(T ) and W1(T ) of strong solutions be defined by

W(T ) = L2(0, T ;D(A)) ∩W 1,2(0, T ;H),

W1(T ) = L2(0, T ;V ) ∩W 1,2(0, T ;V ∗).

9



Here, we note that by using interpolation theory, we have

W(T ) ⊂ C([0, T ];V ), W1(T ) ⊂ C([0, T ];H).

Thus, there exists a constant M0 > 0 such that

||x||C([0,T ];V ) ≤M0||x||W(T ), ||x||C([0,T ];H) ≤M0||x||W1(T ). (2.2.5)

The semigroup generated by −A is denoted by S(t) and there exists a con-

stant M such that
|S(t)| ≤M, ||s(t)||∗ ≤M.

The following Lemma is from Lemma 3.6.2 of [76].

Lemma 2.2.2. There exists a constant M > 0 such that the following in-

equalities hold for all t > 0 and every x ∈ H or V ∗:

|S(t)x| ≤Mt−1/2||x||∗, ||S(t)x|| ≤Mt−1/2|x|.

Lemma 2.2.3. (a) Aα is a closed operator with its domain dense.

(b) If 0 < α < β , then D(Aα) ⊃ D(Aβ).

(c) For any T > 0, there exists a positive constant Cα such that the

following inequalities hold for all t > 0.

||AαS(t)||L(H) ≤
Cα
tα
, ||AαS(t)||L(H,V ) ≤

Cα
t3α/2

.

Proof. From [1,Lemma 3.6.2] it follows that there exists a positive constant

C such that the following inequalities hold for all t > 0 and every x ∈ H or

V ∗ :

|AS(t)x| ≤ C

t
|x|, ||AS(t)x|| ≤ C

t3/2
|x|.

10



First of all, consider the following linear system{
x
′
(t) + Ax(t) = k(t),

x(0) = x0.
(2.2.6)

By virtue of Theorem 3.3 of [16](or Theorem 3.1 of [46], [76]), we have

the following result on the corresponding linear equation of (2.2.6).

Lemma 2.2.4. Suppose that the assumptions for the principal operator A

stated above are satisfied. Then the following properties hold:

1) For x0 ∈ V = (D(A), H)1/2,2(see Lemma 2.2.1) and k ∈ L2(0, T ;H), T >

0, there exists a unique solution x of (2.2.6) belonging toW(T ) ⊂ C([0, T ];V )

and satisfying

||x||W(T ) ≤ C1(||x0||+ ||k||L2(0,T ;H)), (2.2.7)

where C1 is a constant depending on T .

2) Let x0 ∈ H and k ∈ L2(0, T ;V ∗), T > 0. Then there exists a unique

solution x of (2.2.6) belonging to W1(T ) ⊂ C([0, T ];H) and satisfying

||x||W1(T ) ≤ C1(|x0|+ ||k||L2(0,T ;V ∗)), (2.2.8)

where C1 is a constant depending on T .

Lemma 2.2.5. Suppose that k ∈ L2(0, T ;H) and x(t) =
∫ t

0
S(t − s)k(s)ds

for 0 ≤ t ≤ T . Then there exists a constant C2 such that

||x||L2(0,T ;D(A)) ≤ C1||k||L2(0,T ;H), (2.2.9)

||x||L2(0,T ;H) ≤ C2T ||k||L2(0,T ;H), (2.2.10)

and

||x||L2(0,T ;V ) ≤ C2

√
T ||k||L2(0,T ;H). (2.2.11)

11



Proof. The assertion (2.2.9) is immediately obtained by (2.2.7). Since

||x||2L2(0,T ;H) =
∫ T

0
|
∫ t

0
S(t− s)k(s)ds|2dt ≤M

∫ T
0

(
∫ t

0
|k(s)|ds)2dt

≤M
∫ T

0
t
∫ t

0
|k(s)|2dsdt ≤M T 2

2

∫ T
0
|k(s)|2ds

it follows that

||x||L2(0,T ;H) ≤ T
√
M/2||k||L2(0,T ;H).

From (2.2.3), (2.2.9), and (2.2.10) it holds that

||x||L2(0,T ;V ) ≤ C0

√
C1T (M/2)1/4||k||L2(0,T ;H).

So, if we take a constant C2 > 0 such that

C2 = max{
√
M/2, C0

√
C1(M/2)1/4},

the proof is complete.

2.3 Semilinear differential equations

Let f be a nonlinear mapping from V into H.

Assumption (AF). There exists a function L : R+ → R such that L(r1) ≤
L(r2) for r1 ≤ r2 and

|f(t, x)| ≤ L(r), |f(t, x)− f(t, y)| ≤ L(r)||x− y||

hold for any t ∈ [0, T ], ||x|| ≤ r and ||y|| ≤ r.

Assumption (AI). The functions Ik : V → H are continuous and there

exist positive constants L(Ik) and β ∈ (1/3, 1] such that

|AβIk(x)| ≤ L(Ik)||x||, |AβIk(x)−Ik(y)| ≤ L(Ik)||x−y||, k = 1, 2, · · · ,m

for each x, y ∈ V , and

||x(t−k )|| ≤ K, k = 1, 2, · · · ,m.

12



From now on, we establish the following results on the local solvability of

the following equation;
x
′
(t) + Ax(t) = f(t, x(t)) + k(t), t ∈ (0, T ], t 6= tk,

k = 1, 2, · · · ,m,
∆x(tk) = x(t+k )− x(t−k ) = Ik(x(t−k )), k = 1, 2, · · · ,m,
x(0) = x0.

(2.3.1)

Let us rewrite (Fx)(t) = f(t, x(t)) for each x ∈ L2(0, T ;V ). Then there is a

constant, denoted again by L(r), such that

||Fx||L2(0,T ;H) ≤ L(r)
√
T , ||Fx1 − Fx2||L2(0,T ;H) ≤ L(r)||x1 − x2||L2(0,T ;V )

hold for x1, x2 ∈ Br(T ) = {x ∈ L2(0, T ;V ) : ||x||L2(0,T ;V ) ≤ r}.

Here, we note that by using interpolation theory, we have that for any

t > 0,

L2(0, t;V ) ∩W 1,2(0, t;V ∗) ⊂ C([0, t];H).

Thus, for any t > 0, there exists a constant c > 0 such that

||x||C([0,t];H) ≤ c||x||L2(0,t;V )∩W 1,2(0,t;V ∗). (2.3.2)

Let
0 = t0 < t1 < · · · < tk < · · · < tm = T.

Then by Assumption (AI) and (2.3.1), it is immediately seen that

x ∈ W 1,2(ti, ti+1;V ∗), i = 0, · · · ,m− 1.

Thus by virtue of Assumption (AI) and (2.3.2), we may consider that there

exists a constant C3 > 0 such that

max
0≤t≤T

{|x(t)| : x is a solution of (2.3.1)} ≤ C3||x||L2(0,T :V ). (2.3.3)

From now on, we establish the following results on the solvability of the

equation(2.3.1).

13



Theorem 2.3.1. Let Assumption (AF) be satisfied. Assume that x0 ∈ H,

k ∈ L2(0, T ;V ∗). Then, there exists a time T0 ∈ (0, T ) such that the equation

(2.3.1) admits a solution

x ∈ W1(T0) ⊂ C([0, T0];H). (2.3.4)

Proof. For a solution of (2.3.1) in the wider sense, we are going to find a

local solution of the following integral equation

x(t) = S(t)x0 +

∫ t

0

S(t− s){(Fx)(s) + k(s)}ds+
∑

0<tk<t

S(t− tk)Ik(x(t−k )).

(2.3.5)

To prove a local solution, we will use the successive iteration method. First,

put

x0(t) = S(t)x0 +

∫ t

0

S(t− s)k(s)ds

and define xj+1(t) as

xj+1(t) = x0(t) +

∫ t

0

S(t− s)(Fxj)(s)ds+
∑

0<tk<t

S(t− tk)Ik(xj(t−k )). (2.3.6)

By virtue of Lemma 2.2.4, we have x0(·) ∈ W1(t), so that

||x0(·)||W1(t) ≤ C1(|x0|+ ||k||L2(0,t;V ∗)), (2.3.7)

where C1 is a constant in Lemma 2.2.4. Choose r > C1(|x0|+ ||k||L2(0,t;V ∗)).

Putting p(t) =
∫ t

0
S(t− s)(Fx0)(s)ds, by (2.11) of Lemma 2.2.5, we have

||p||L2(0,t;V ) ≤ C2

√
t||Fx0||L2(0,t;H) ≤ C2L(r)t. (2.3.8)

Putting g(t) := S(t − tk)Ik(x(t−k )), by Assumption (AI) and Lemma 2.2.3,

we have

||g(t)||L2(0,t;V ) ≤ 2(3β)−1/2(3β − 1)−1C1−βKL(Ik)t
3β/2. (2.3.9)
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Put

M1 := max{C2L(r)t, 2(3β)−1/2(3β − 1)−1C1−βKL(Ik)t
3β/2}, (2.3.10)

then for any t satisfying, M1 < r, from (2.3.4) and (2.3.5). so that, from(2.3.7)

and (2.3.8) and (2.3.9),

||x1||L2(0,t;V ) ≤ r+C2L(r)t+2(3β)−1/2(3β−1)−1C1−βK
∑

0<tk<t

L(Ik)t
3β/2 ≤ 3r.

By induction, it can be shown that for all j = 1, 2, ...

||xj||L2(0,t;V ) ≤ 3r, 0 ≤ t ≤M1. (2.3.11)

Hence, from the equation

xj+1(t)− xj(t) =

∫ t

0

S(t− s){f(t, xj(s))− f(t, xj−1(s))}ds

+
∑

0<tk<t

S(t− tk){Ik(xj(t−k ))− Ik(xj−1(t−k )}.

Set

h(t) := S(t− tk){Ik(x1(t−k ))− Ik(x2(t−k ))}.

Then from (2.3.2) and (2.3.3) it follows that

||h||L2(0,T ;V ) = [

∫ T

0

||
∫ t

tk

S
′
(s− tk){Ik(x1(t−k ))− Ik(x2(t−k ))}ds||2dt]1/2

≤ [

∫ T

0

||
∫ t

tk

AS(s− tk){Ik(x1(t−k ))− Ik(x2(t−k ))}ds||2dt]1/2

≤ [

∫ T

0

{
∫ t

tk

C1−β

(s− tk)3(1−β)/2
L(Ik)|(x1(t−k )− x2(t−k ))|ds}2dt]1/2

≤ (3β)−1/22(3β − 1)−1C1−βC3L(Ik)T
3β/2||x1 − x2||L2(0,T ;V ).
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Hence, from the equation

xj+1(t)− xj(t) =

∫ t

0

S(t− s){(Fxj)(s)− (Fxj−1)(s)}ds

+
∑

0<tk<t

S(t− tk){Ik(xj(t−k ))− Ik(xj−1(t−k ))}.

Put

M2 := C2L(3r)
√
t+ (3β)−1/22(3β − 1)−1C1−βC3

∑
0<tk<t

L(Ik)t
3β/2. (2.3.12)

Then from (2.2.11), (2.3.11) and Assumption (AF), we can observe that the

inequality

||xj+1 − xj||L2(0,t;V ) ≤ C2L(3r)
√
t||xj − xj−1||L2(0,t;V )

+ (3β)−1/22(3β − 1)−1C1−βC3

∑
0<tk<t

L(Ik)t
3β/2||xj − xj−1||L2(0,t;V )

≤M2||xj − xj−1||L2(0,t;V )

≤ (M2)j||x1 − x0||L2(0,t;V ).

Choose T0 > 0 satisfying max{M1,M2} < 1. Then {xj} is strongly conver-

gent to a function x in L2(0, T0;V ) uniformly on 0 ≤ t ≤ T0. By letting

j →∞ in (2.3.6) has a unique solution x in W1(T ).

From now on, we give a norm estimation of the solution of (2.3.1) and

establish the global existence of solutions with the aid of norm estimations.

Theorem 2.3.2. Under Assumption (AF) for the nonlinear mapping f ,

there exists a unique solution x of (2.3.1) such that

x ∈ W1(T ) ≡ L2(0, T ;V ) ∩W 1,2(0, T ;V ∗) ⊂ C([0, T ];H), T > 0.

for any x0 ∈ H, k ∈ L2(0, T ;V ∗). Moreover, there exists a constant C4 such

that
||x||W1(T ) ≤ C4(1 + |x0|+ ||k||L2(0,T ;V ∗)), (2.3.13)

where C4 is a constant depending on T .

16



Proof. Let x be a solution of (2.3.1) on [0, T0], T0 > 0 satisfies max{M1,M2} <
1. Here M1 and M2 be constants in (2.3.10) and (2.3.12), respectively. Then

by virtue of Theorem 2.3.1, the solution x is represented as

x(t) = x0(t) +

∫ t

0

S(t− s)(Fx)(s)ds+
∑

0<tk<t

S(t− tk)Ik(x(t−k )).

where

x0(t) = S(t)x0 +

∫ t

0

S(t− s)k(s)ds.

By (2.3.7), we have x0(·) ∈ W1(T0), so that

||x0||W1(T0) ≤ C1(|x0|+ ||k||L2(0,T0;V ∗)),

where C1 is constant in Lemma 2.2.4. Moreover, from (2.3.7)-(2.3.9), it follow

that

||x||W1(T0) ≤ C1(|x0|+ ||k||L2(0,T0;V ∗)) + max{M1,M2}||x||W1(T0). (2.3.14)

Thus, moreover, there exists a constant C4 such that

||x||W1(T0) ≤ C4(1 + |x0|+ ||k||L2(0,T0;V ∗)).

Now from

|S(t)x0+

∫ t

0

S(t−s){(Fx)(s)+k(s)}ds| ≤M |x0|+MtL(r)+M
√
t||k||L2(0,t;H),

and

|
∑

0<tk<t

S(t− tk)Ik(x(t−k ))| ≤MK|A−β|
∑

0<tk<t

L(Ik).

it follow

|x| ≤M |x0|+MT0L(r)+M
√
T0||k||L2(0,T0;H) +MK|A−β|

∑
0<tk<T0

L(Ik) <∞.
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Hence, we can solve the equation in [T0, 2T0] with the initial value x(T0) and

obtain an analogous estimate to (2.3.14). Since the condition (2.3.10),(2.3.12)

is independent of initial value, the solution can be extended to the interval

[0, nT0] for any natural number n, i.e., for the initial u(nT0) in the interval

[nT0, (n+1)T0], as analogous estimate (2.3.14) holds for the solution in [0, (n+

1)T0].

From the following result, we obtain that the solution mapping is contin-

uous, which is useful for physical application of the given equation.

Theorem 2.3.3. Let Assumptions (AF) and (AI) be satisfied and (x0, k) ∈
H × L2(0, T ;V ). Then the solution x of the equation (2.3.1) belongs to x ∈
W1 ≡ L2(0, T ;V ) ∩W 1,2(0, T ;V ∗) and the mapping

H × L2(0, T ;V ∗) 3 (x0, k) 7→ x ∈ W1(T ) (2.3.15)

is continuous.

Proof. From Theorem 2.3.2, it follows that if (x0, k) ∈ H×L2(0, T ;V ∗) then

x belongs to W1(T ). Let (x0i, ki) ∈ H ×L2(0, T ;V ∗) and xi ∈ W1(T ) be the

solution of (2.3.1) with (x0i, ki) in place of (x0, k) for i = 1, 2. Hence, we

assume that xi belongs to a ball Br(T ) = {y ∈ W1(T ) : ||y||W1(T ) ≤ r}.

Let

(pxj)(t) =

∫ t

0

S(t− s)Fxj(s)ds+
∑

0<tk<t

S(t− tk)Ik(xj(t−k )).

Then, by virtue Lemma 2.2.4, we get

||x1 − x2||W1(T ) = C1{|x1 − x2|+ ||k1 − k2||L2(0,T ;V ∗) + ||px1 − px2||L2(0,T ;V ∗)}.
(2.3.16)
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Set ||·||L2(0,T0;V ) = ||·||L2 for brevity, where T0 > 0 satisfiesmax{M1,M2} < 1.

Then, we have

||px1 − px2||L2(0,T0;V ∗) ≤ ||px1 − px2||L2

= ||
∫ t

0

S(t− s){Fx1 − Fx2}ds||L2

+ ||
∑

0<tk<t

S(t− tk){Ik(xi(t−k ))− Ik(x2(t−k ))||L2

≤M2||x1 − x2||L2 . (2.3.17)

Hence, by (2.3.16), (2.3.17), we see that

xn 7→ x ∈ W1(T0) ≡ L2(0, T0;V ) ∩W 1,2(0, T0;V ∗).

This implies that (xn(T0), (xn)T0) 7→ (x(T0), xT0) in H × L2(0, T ;V ∗). Hence

the same argument show that xn 7→ x in

L2(0,min{2T0, T};V ) ∩W 1,2(0,min{2T0, T};V ∗).

Repeating this process, we conclude that xn 7→ x in W1(T ).

Example 2.3.1. Let

H = L2(0, π), V = H1
0 (0, π), V ∗ = H−1(0, π),

a(u, v) =

∫ π

0

du(x)

dx

dv(x)

dx
dx

and

A = −d2/dx2 with D(A) = {y ∈ H2(0, π) : y(0) = y(π) = 0}.

We consider the following retarded functional differential equation

∂
∂t
x(t, y) + Ax(t, y) = f

′
(|x(t, y)|2)x(t, y) + k(t), t ∈ (0, T ], t 6= tk,

k = 1, 2, · · · ,m,
∆x(tk) = x(t+k , y)− x(t−k , y) = Ik(x(t−k )), k = 1, 2, · · · ,m,
x(t, 0) = x(t, π) = 0, t > 0

x(0, y) = x0(y).

(2.3.18)
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The eigenvalue and the eigenfunction of A are λn = −n2 and zn(y) =

(2/π)1/2 sinny, respectively. Moreover, {zn : n ∈ N} is an orthogonal ba-

sis of H and

S(t)x =
∞∑
n=1

en
2t(x, zn)zn, ∀x ∈ H, t > 0.

Moreover, there exists a constant M0 such that ||S(t)||L(H) ≤M0.

Let 0 < α < 1. Then the fractional power Aα : D(Aα) ⊂ H → H of A is

given by

Aαx =
∞∑
n=1

n2α(x, zn)zn, D(Aα) := {x : Aαx ∈ H}.

In particular,

A−1/2x =
∞∑
n=1

1

n
(x, zn)zn, and ||A−1/2|| = 1.

The nonlinear mapping f is a real valued function belong to C2([0,∞)) which

satisfies the conditions

(f1) f(0) = 0, f(r) ≥ 0 for r > 0,

(f2) |f ′(r) ≤ c(r + 1) and |qf ′′(r)| ≤ c for r ≥ 0 and c > 0.

If we present

F (t, x(t, y)) = f
′
(|x(t, y)|2)x(t, y),

Then it is well known that F is a locally Lipschitz continuous mapping from

the whole V into H by Sobolev’s imbedding theorem (see [76, Theorem 6.1.6]).

As an example of q in the above, we can choose q(r) = µ2r + η2r2/2 (µ and

η is constants). It is well known that Assumption (AF) has been satisfied.

Thus, with condition on Assumption (AI) there exists a solution of (2.3.18)

belongs to W1(T ) = L2(0, T ;V )) ∩ W 1,2(0, T ;V ∗) ↪→ C([0, T ];H) for any

(x0, k) ∈ H × L2(0, T ;V ∗).
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Chapter 3

On solutions of semilinear second-order

impulsive functional differential equations

3.1 Introduction

In this paper we are concerned with the regularity of the following second-

order semilinear impulsive differential system
w
′′
(t) = Aw(t) +

∫ t
0
k(t− s)g(s, w(s))ds+ f(t), 0 < t ≤ T,

w(0) = x0, w
′
(0) = y0,

∆w(tk) = I1
k(w(tk)), ∆w′(tk) = I2

k(w′(t+k )), k = 1, 2, ...,m

(3.1.1)

in a Banach space X. Here k belongs to L2(0, T ) and g : [0, T ]×D(A)→ X

is a nonlinear mapping such that w 7→ g(t, w) satisfies Lipschitz continuous.

In (3.1.1), the principal operator A is the infinitesimal generator of a strongly

continuous cosine family C(t), t ∈ R. The impulsive condition

∆w(tk) = I1
k(w(tk)), ∆w′(tk) = I2

k(w′(t+k )), k = 1, 2, ...,m

is combination of traditional evolution systems whose duration is negligi-

ble in comparison with duration of the process, such as biology, medicine,

bioengineering etc.

In recent years the theory of impulsive differential systems has been

emerging as an important area of investigation in applied sciences. The

reason is that it is richer than the corresponding theory of classical differ-

ential equations and it is more adequate to represent some processes arising

in various disciplines. The theory of impulsive systems provides a general

framework for mathematical modeling of many real world phenomena(see
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[54, 72] and references therein). The theory of impulsive differential equa-

tions has seen considerable development. Impulsive differential systems have

been studied in [3, 2, 68, 87], second-order impulsive integrodifferential sys-

tems in [5, 69], and Stochastic differential systems with impulsive conditions

in [4, 9, 36].

In this paper, we allow implicit arguments about L2-regularity results

for semilinear hyperbolic equations with impulsive condition. These conse-

quences are obtained by showing that results of the linear cases [37, 10] and

semilinear case [41] on the L2-regularity remain valid under the above for-

mulation of (3.1.1). Earlier works prove existence of solution by using Azera

Ascoli theorem. But we propose a different approach from that of earlier

works to study mild, strong and classical solutions of Cauchy problems by

using the properties of the linear equation in the hereditary part.

This paper is organized as follows. In Section 2, we give some definition,

notation and the regularity for the corresponding linear equations. In Section

3, by using properties of the strict solutions of linear equations in dealt in

Section 2, we will obtain the L2-regularity of solutions of (3.1.1), and a

variation of constant formula of solutions of (3.1.1). Finally, we also give an

example to illustrate the applications of the abstract results.

3.2 Preliminaries

In this section, we give some definitions, notations, hypotheses and Lem-

mas. Let X be a Banach space with norm denoted by || · ||.

Definition 3.2.1. [77] A one parameter family C(t), t ∈ R, of bounded

linear operators in X is called a strongly continuous cosine family if

c(1) C(s+ t) + C(s− t) = 2C(s)C(t), for all s, t ∈ R,

c(2) C(0) = I,

c(3) C(t)x is continuous in t on R for each fixed x ∈ X.
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If C(t), t ∈ R is a strongly continuous cosine family in X , then S(t), t ∈
R is the one parameter family of operators in X defined by

S(t)x =

∫ t

0

C(s)xds, x ∈ X, t ∈ R. (3.2.1)

The infinitesimal generator of a strongly continuous cosine family C(t), t ∈
R is the operator A : X → X defined by

Ax =
d2

dt2
C(0)x.

We endow with the domain D(A) = {x ∈ X : C(t)x is a twice continuously

differentiable function of t} with norm

||x||D(A) = ||x||+ sup{|| d
dt
C(t)x|| : t ∈ R}+ ||Ax||.

We shall also make use of the set

E = {x ∈ X : C(t)x is a once continuously differentiable function of t}

with norm

||x||E = ||x||+ sup{|| d
dt
C(t)x|| : t ∈ R}.

It is not difficult to show that D(A) and E with given norms are Banach
spaces.

The following Lemma is from Proposition 2.1 and Proposition 2.2 of [54].

Lemma 3.2.1. Let C(t)(t ∈ R) be a strongly continuous cosine family in X.

The following are true :

c(4) C(t) = C(−t) for all t ∈ R,

c(5) C(s), S(s), C(t) and S(t) commute for all s, t ∈ R,

c(6) S(t)x is continuous in t on R for each fixed x ∈ X,
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c(7) there exist constants K ≥ 1 and ω ≥ 0 such that

||C(t)|| ≤ Keω|t| for all t ∈ R,

||S(t1)− S(t2)|| ≤ K
∣∣∣∫ t1

t2

eω|s|ds
∣∣∣ for all t1, t2 ∈ R,

c(8) if x ∈ E, then S(t)x ∈ D(A) and

d

dt
C(t)x = AS(t)x = S(t)Ax =

d2

dt2
S(t)x,

c(9) if x ∈ D(A), then C(t)x ∈ D(A) and

d2

dt2
C(t)x = AC(t)x = C(t)Ax,

c(10) if x ∈ X and r, s ∈ R, then∫ s

r

S(τ)xdτ ∈ D(A) and A(

∫ s

r

S(τ)xdτ) = C(s)x− C(r)x,

c(11) C(s+ t) + C(s− t) = 2C(s)C(t) for all s, t ∈ R,

c(12) S(s+ t) = S(s)C(t) + S(t)C(s) for all s, t ∈ R,

c(13) C(s+ t) = C(t)C(s)− S(t)S(s) for all s, t ∈ R,

c(14) C(s+ t)− C(t− s) = 2AS(t)S(s) for all s, t ∈ R.

The following Lemma is from Proposition 2.4 of [77].

Lemma 3.2.2. Let C(t)(t ∈ R) be a strongly continuous cosine family in X

with infinitesimal generator A. If f : R → X is continuously differentiable,

x0 ∈ D(A), y0 ∈ E, and

w(t) = C(t)x0 + S(t)y0 +

∫ t

0

S(t− s)f(s)ds, t ∈ R,
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then w(t) ∈ D(A) for t ∈ R, w is twice continuously differentiable, and w

satisfies

w
′′
(t) = Aw(t) + f(t), t ∈ R, w(0) = x0, w

′
(0) = y0. (3.2.2)

Conversely, if f : R→ X is continuous, w(t) : R→ X is twice continuously

differentiable, w(t) ∈ D(A) for t ∈ R, and w satisfies (3.2.2), then

w(t) = C(t)x0 + S(t)y0 +

∫ t

0

S(t− s)f(s)ds, t ∈ R.

Proposition 3.2.1. Let f : R → X is continuously differentiable, x0 ∈
D(A), y0 ∈ E. Then

w(t) = C(t)x0 + S(t)y0 +

∫ t

0

S(t− s)f(s)ds, t ∈ R

is a solution of (3.2.2) belonging to L2(0, T ;D(A)) ∩W 1,2(0, T ;E). Moreover,

we have that there exists a positive constant C1 such that for any T > 0,

||w||L2(0,T ;D(A)) ≤ C1(1 + ||x0||D(A) + ||y0||E + ||f ||W 1,2(0,T ;X)). (3.2.3)

3.3 Nonlinear equations

This section is to investigate the regularity of solutions of a second-order

nonlinear impulsive differential system
w
′′
(t) = Aw(t) +

∫ t
0
k(t− s)g(s, w(s))ds+ f(t), 0 < t ≤ T,

w(0) = x0, w
′
(0) = y0,

∆w(tk) = I1
k(w(tk)), ∆w′(tk) = I2

k(w′(t+k )), k = 1, 2, ...,m

(3.3.1)

in a Banach space X.

Assumption (BG) Let g : [0, T ]×D(A)→ X be a nonlinear mapping

such that t 7→ g(t, w) is measurable and
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(bg1) ||g(t, w1)− g(t, w2)||D(A) ≤ L||w1 − w2||,

for a positive constant L.

Assumption (BI) Let I1
k : D(A) → X, I2

k : E → X be continuous and

there exist positive constants L(I1
k), L(I2

k) such that

(bi1) ||I1
k(w1)− I1

k(w2)|| ≤ L(I1
k)||w1 − w2||D(A), for each w1, w2 ∈ D(A)

||I1
k(w)|| ≤ L(I1

k), for w ∈ D(A)

(bi2) ||I2
k(w′1)− I2

k(w′2)|| ≤ L(I2
k)||w′1 − w′2||E, for each w′1, w

′
2 ∈ E

||I2
k(w′)|| ≤ L(I2

k)||, for w′ ∈ E.

For w ∈ L2(0, T : D(A)), we set

F (t, w) =

∫ t

0

k(t− s)g(s, w(s))ds

where k belongs to L2(0, T ). Then we will seek a mild solution of (3.3.1),

that is, a solution of the integral equation

w(t) =C(t)x0 + S(t)y0 +

∫ t

0

S(t− s){F (s, w) + f(s)}ds

+
∑

0<tk<t

C(t− tk)I1
k(w(tk)) +

∑
0<tk<t

S(t− tk)I2
k(w′(t+k )), t ∈ R.

(3.3.2)

Remark 3.3.1. If g : [0, T ]×X → X is a nonlinear mapping satisfying

||g(t, w1)− g(t, w2)|| ≤ L||w1 − w2||

for a positive constant L, then our results can be obtained immediately.
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Lemma 3.3.1. Let w ∈ L2(0, T ;D(A)), T > 0. Then F (·, w) ∈ L2(0, T ;X)

and

||F (·, w)||L2(0,T ;X) ≤ L||k||L2(0,T )

√
T ||w||L2(0,T ;D(A)).

Moreover if w1, w2 ∈ L2(0, T ;D(A)), then

||F (·, w1)− F (·, w2)||L2(0,T ;X) ≤ L||k||L2(0,T )

√
T ||w1 − w2||L2(0,T ;D(A)).

Lemma 3.3.2. If k ∈ W 1,2(0, T ), T > 0, then

A

∫ t

0

S(t− s)F (s, w)ds = −F (t, w) (3.3.3)

+

∫ t

0

(C(t− s)− I)

∫ s

0

d

ds
k(s− τ)g(τ, w(τ))dτ ds

+

∫ t

0

(C(t− s)− I)k(0)g(s, w(s))ds.

Theorem 3.3.1. Suppose that the Assumptions (BG) and Assumption (BI)

are satisfied. If f : R→ X is continuously differentiable, x0 ∈ D(A), y0 ∈ E,
and k ∈ W 1,2(0, T ), T > 0, then there exists a time T ≥ T0 > 0 such that

the functional differential equation (3.3.1) admits a unique solution w in

L2(0, T0;D(A)) ∩W 1,2(0, T0;E).

Proof. Let us fix T0 > 0 so that

C2 ≡ω−1KLT
3/2
0 (eωT0 − 1)||k||L2(0,T0) (3.3.4)

+ {ω−1K(eωT0 − 1) + 1}T 3/2
0 /
√

3L||KeωT0 + 1||||k||W 1,2(0,T0)

+ {ω−1K(eωT0 − 1) + 1}T0/
√

2L||KeωT0 + 1||||k(0)||

+ {w−1K(ewT0 − 1) + 2}
∑

0<tk<t

L(I1
k)KewT0

+ {2w−1K(ewT0 − 1) + 1}
∑

0<tk<t

L(I2
k) < 1
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where K, L, L(I1
k) and L(I2

k) are constants in c(7), (bg1) and Assumption

(BI) respectively. Invoking Proposition 3.2.1, for any v ∈ L2(0, T0;D(A)) we

obtain the equation
w
′′
(t) = Aw(t) + F (t, v) + f(t), 0 < t ≤ T0,

w(0) = x0, w
′
(0) = y0

∆w(tk) = I1
k(v(tk)), ∆w′(tk) = I2

k(v′(t+k )), k = 1, 2, ...,m

(3.3.5)

has a unique solution w ∈ L2(0, T0;D(A))∩W 1,2(0, T0;E). Let w1, w2 be the

solutions of (3.3.5) with v replaced by v1, v2 ∈ L2(0, T0;D(A)), respectively.

Put

J(w)(t) = C(t)x0 + S(t)y0 +

∫ t

0

S(t− s){F (s, v) + f(s)}ds

+
∑

0<tk<t

C(t− tk)I1
k(v(tk)) +

∑
0<tk<t

S(t− tk)I2
k(v′(t+k )).

Then

J(w1)(t)− J(w2)(t) =

∫ t

0

S(t− s){F (s, v1)− F (s, v2)}ds

+
∑

0<tk<t

C(t− tk){I1
k(v1(tk))− I1

k(v2(tk))}

+
∑

0<tk<t

S(t− tk){I2
k(v′1(t+k ))− I1

k(v′2(t+k ))},

=I1 + I2 + I3.

So, from Lemmas 3.3.1, 3.3.2, it follows that for 0 ≤ t ≤ T0,

||
∫ t

0

S(t− s){F (s, v1)− F (s, v2)}ds||

≤ ω−1KLT0(eωT0 − 1)||k||L2(0,T0)||v1 − v2||L2(0,T0;D(A)),
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|| d
dt
C(t)

∫ t

0

S(t− s){F (s, v1)− F (s, v2)}ds||

≤ ||AS(t)

∫ t

0

S(t− s){F (s, v1)− F (s, v2)}ds||

= ||S(t)A

∫ t

0

S(t− s){F (s, v1)− F (s, v2)}ds||,

and

||A
∫ t

0

S(t− s){F (s, v1)− F (s, v2)}ds||

≤ ||
∫ t

0

(C(t− s)− I)

∫ s

0

d

ds
k(s− τ)(g(τ, v1(τ))− g(τ, v2(τ)))dτ ds||

+ ||
∫ t

0

(C(t− s)− I)k(0)(g(s, v1(s))− g(s, v2(s)))ds||

≤ tL||Keωt + 1||||k||W 1,2(0,T0)||v1 − v2||L2(0,T0;D(A))

+
√
tL||Keωt + 1||||k(0)||||v1 − v2||L2(0,T0;D(A)).

Therefore, we have

||I1||L2(0,T0;D(A)) ≤ ω−1KLT
3/2
0 (eωT0 − 1)||k||L2(0,T0)||v1 − v2||L2(0,T0;D(A))

(3.3.6)

+ {ω−1K(eωT0 − 1) + 1}T 3/2
0 /
√

3L||KeωT0 + 1|| ||k||W 1,2(0,T0)||v1 − v2||L2(0,T0;D(A))

+ {ω−1K(eωT0 − 1) + 1}T0/
√

2L||KeωT0 + 1|| ||k(0)|| ||v1 − v2||L2(0,T0;D(A)).

By Assumption (bi1), we obtain

||
∑

0<tk<t

C(t− tk){I1
k(v1(t−k ))− I1

k(v2(t−k ))}|| ≤
∑

0<tk<T0

KewT0L(I1
k)||v1 − v2||D(A),
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|| d
dt
C(t)

∑
0<tk<t

C(t− tk){I1
k(v1)− I1

k(v2)}||

≤ ||AS(t)
∑

0<tk<t

C(t− tk){I1
k(v1)− I1

k(v2)}||

= ||S(t)A
∑

0<tk<t

C(t− tk){I1
k(v1)− I1

k(v2)}||,

and

||A
∑

0<tk<t

C(t− tk){I1
k(v1(t−k ))− I1

k(v2(t−k ))}|| = ||
∑

0<tk<t

C(t− tk)A{I1
k(v1)− I1

k(v2)}||

≤
∑

0<tk<t

Kewt||I1
k(v1)− I1

k(v2)||D(A)

≤
∑

0<tk<t

KewtL(I1
k)||v1 − v2||D(A).

Therefore, we have

||I2||L2(0,T0;D(A)) ≤ {w−1K(ewT0 − 1) + 2}
∑

0<tk<t

L(I1
k)KewT0||v1 − v2||L2(0,T0;D(A)).

(3.3.7)

We also obtain from Assumption (bi2),

||
∑

0<tk<t

S(t− tk){I2
k(v′1(t+k ))− I1

k(v′2(t+k ))}|| ≤
∑

0<tk<T0

Kw−1(ewT0 − 1)L(I2
k)||v1 − v2||D(A),

|| d
dt
C(t)

∑
0<tk<t

S(t− tk){I2
k(v′1)− I1

k(v′2)}||

≤ ||AS(t)
∑

0<tk<t

S(t− tk){I2
k(v′1)− I1

k(v′2)}||

= ||S(t)A
∑

0<tk<t

S(t− tk){I2
k(v′1)− I1

k(v′2)}||,
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and

||A
∑

0<tk<t

S(t− tk){I2
k(v′1(t+k ))− I1

k(v′2(t+k ))}|| = ||
∑

0<tk<t

d

dt
C(t){I2

k(v′1)− I1
k(v′2)}||

≤
∑

0<tk<t

||I2
k(v′1)− I1

k(v′2)||E

≤
∑

0<tk<t

L(I2
k)||v′1 − v′2||E.

Therefore, we have

||I3||L2(0,T0;D(A)) ≤ {w−1K(ewT0 − 1) + 2}
∑

0<tk<t

L(I1
k)KewT0||v1 − v2||L2(0,T0;D(A)).

(3.3.8)

Thus, from (3.3.6),(3.3.7), and (3.3.8), we conclude that

||J(w1)− J(w2)||L2(0,T0;D(A)) (3.3.9)

≤ ω−1KLT
3/2
0 (eωT0 − 1)||k||L2(0,T0)||v1 − v2||L2(0,T0;D(A))

+ {ω−1K(eωT0 − 1) + 1}L||k||L2(0,T0)

√
T0||v1 − v2||L2(0,T0;D(A))

+ {ω−1K(eωT0 − 1) + 1}T 3/2
0 /
√

3L||KeωT0 + 1|| ||k||W 1,2(0,T0)||v1 − v2||L2(0,T0;D(A))

+ {ω−1K(eωT0 − 1) + 1}T0/
√

2L||KeωT0 + 1|| ||k(0)|| ||v1 − v2||L2(0,T0;D(A))

+ {w−1K(ewT0 − 1) + 2}
∑

0<tk<t

L(I1
k)KewT0||v1 − v2||L2(0,T0;D(A))

+ {2w−1K(ewT0 − 1) + 1}
∑

0<tk<t

L(I2
k)||v1 − v2||W 1,2(0,T0;D(A)).

Moreover, it is easily seen that

||J(w1)− J(w2)||L2(0,T0;D(A))∩W 1,2(0,T0;E) ≤ C2||v1− v2||L2(0,T0;D(A))∩W 1,2(0,T0;E).
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So by virtue of the condition (3.3.4) the contraction mapping principle gives

that the solution of (3.3.1) exists uniquely in [0, T0]. 2

Theorem 3.3.2. Suppose that the Assumptions (BG) and (BI) are satisfied.

If f : R → X is continuously differentiable, x0 ∈ D(A), y0 ∈ E, and k ∈
W 1,2(0, T ), T > 0, then the solution w of (3.3.1) exists and is unique in

L2(0, T ;D(A)) ∩W 1,2(0, T ;E), and there exists a constant C3 depending on

T such that

||w||L2(0,T0;D(A))∩W 1,2(0,T0;E) ≤ C3(1 + ||x0||D(A) + ||y0||E + ||f ||W 1,2(0,T ;X)).

(3.3.10)

Proof. Let w(·) be the solution of (3.3.1) in the interval [0, T0] where T0

is a constant in (3.3.4) and v(·) be the solution of the following equation

v
′′
(t) = Av(t) + f(t), 0 < t,

v(0) = x0, v
′
(0) = y0.

Then

(w−v)(t) =

∫ t

0

S(t−s)F (s, w)ds+
∑

0<tk<t

C(t−tk)I1
k(w(tk))+

∑
0<tk<t

S(t−tk)I2
k(w′(t+k )),

and in view of (3.3.9)

||w − v||L2(0,T0;D(A))∩W 1,2(0,T0;E) ≤ C2||w||L2(0,T0;D(A))∩W 1,2(0,T0;E), (3.3.11)

that is, combining (3.3.11) with Proposition 3.2.1 we have

||w||L2(0,T0;D(A))∩W 1,2(0,T0;E) ≤
1

1− C2

||v||L2(0,T0;D(A))∩W 1,2(0,T0;E) (3.3.12)

≤ C1

1− C2

(1 + ||x0||D(A) + ||y0||E + ||f ||W 1,2(0,T0;X)).
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Now from

A

∫ T0

0

S(T0 − s){F (s, w) + f(s)}ds

= C(T0)f(0)− f(T0) +

∫ T0

0

(C(T0 − s)− I)f
′
(s)ds

− F (T0, w) +

∫ T0

0

(C(T0 − s)− I)

∫ s

0

d

ds
k(s− τ)g(τ, w(τ))dτ ds

+

∫ T0

0

(C(T0 − s)− I)k(0)g(s, w(s))ds,

||A
∑

0<tk<t

C(t− tk)I1
k(w1)|| ≤ Kw−1(ewT0−1)KewT0

∑
0<tk<t

L(I1
k)||w(tk)||D(A),

||
∑

0<tk<t

S(t− tk)I2
k(v′1)|| ≤

∑
0<tk<t

L(I2
k)||w′(t+k )||E,

and since

d

dt
C(t)

∫ t

0

S(t−s){F (s, w)+f(s)}ds = S(t)A

∫ t

0

S(t−s){F (s, w)+f(s)}ds,

d

dt
C(t)

∑
0<tk<t

C(t− tk)I1
k(w) ≤ S(t)A

∑
0<tk<t

C(t− tk)I1
k(w).

d

dt
C(t)

∑
0<tk<t

S(t− tk)I2
k(w′) ≤ S(t)A

∑
0<tk<t

S(t− tk)I2
k(w′).

We have

||w(T0)||D(A) = ||C(T0)x0 + S(T0)y0 +

∫ T0

0

S(T0 − s){F (s, w) + f(s)}ds

+
∑

0<tk<t

C(t− tk)I1
k(w) +

∑
0<tk<t

S(t− tk)I2
k(w′)||D(A)
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≤ (ω−1K(eωT0 − 1) + 1){KeωT0||x0||D(A) + ||y0||E + T0L||k||L2(0,T0)||w||L2(0,T0;D(A))

+ ||KeωT0f(0)||+ ||f(0)||+ ||K(eωT0 + 1)
√
T0||f ||W 1,2(0,T ;X)

+ tL||Keωt + 1|| ||k||W 1,2(0,T0)||w||L2(0,T0;D(A))

+
√
tL||Keωt + 1|| ||k(0)||||w||L2(0,T0;D(A))}

+ {2 +Kw−1(ewT0 − 1)}
∑

0<tk<t

KewT0L(I1
k)

+ {1 + 2Kw−1(ewT0 − 1)}
∑

0<tk<t

L(I2
k).

Hence, from (3.3.12), there exists a positive constant C > 0 such that

||w(T0)||D(A) ≤ C(1 + ||x0||D(A) + ||y0||E + ||f ||W 1,2(0,T0;X)).

Since the condition (3.3.4) is independent of initial values, the solution of

(3.3.1) can be extended to the interval [0, nT0] for every natural number

n. An analogous estimate to (3.3.12) holds for the solution in [0, nT0], and

hence for the initial value (w(nT0), w
′
(nT0)) ∈ D(A) × E in the interval

[nT0, (n+ 1)T0]. 2

Example. We consider the following partial differential equation

w
′′
(t, x) = Aw(t, x) + F (t, w) + f(t), 0 < t, 0 < x < π,

w(t, 0) = w(t, π) = 0, t ∈ R
w(0, x) = x0(x), w

′
(0, x) = y0(x), 0 < x < π

∆w(tk, x) = I1
k(w(tk)) = (γk||w′′(tk, x)||+ tk), 1 ≤ k ≤ m,

∆w′(tk, x) = I2
k(w′(tk)) = δk||w′(tk, x)||,

(BE)

where constants γk and δk(k = 1, · · · ,m) are small.

Let X = L2([0, π];R), and let en(x) =
√

2
π

sinnx. Then {en : n = 1, · · · }

is an orthonormal base for X. Let A : X → X be defined by

Aw(x) = w′′(x),
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where D(A) = {w ∈ X : w, w
′

are absolutely continuous, w
′′ ∈ X, w(0) =

w(π) = 0}. Then

Aw =
∞∑
n=1

−n2(w, en)en, w ∈ D(A),

and A is the infinitesimal generator of a strongly continuous cosine family

C(t), t ∈ R, in X given by

C(t)w =
∞∑
n=1

cosnt(w, en)en, w ∈ X.

The associated sine family is given by

S(t)w =
∞∑
n=1

sinnt

n
(w, en)en, w ∈ X.

Let g1(t, x, w, p), p ∈ Rm, be assumed that there is a continuous ρ(t, δ) :

R× R→ R+ and a real constant 1 ≤ δ such that

(bf1) g1(t, x, 0, 0) = 0,

(bf2) |g1(t, x, w, p)− g1(t, x, w, q)| ≤ ρ(t, |w|)|p− q|,

(bf3) |g1(t, x, w1, p)− g1(t, x, w2, p)| ≤ ρ(t, |w1|+ |w2|)|w1 − w2|.

Let

g(t, w)x = g1(t, x, w,Dw,D2w).

Then noting that

||g(t, w1)− g(t, w2)||20,2 ≤ 2

∫
Ω

|g1(t, x, w1, p)− g1(t, x, w2, q)|2dx

+ 2

∫
Ω

|g1(t, x, w1, q)− g1(t, x, w2, q)|2dx
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where p = (Dw1, D
2w1) and q = (Dw2, D

2w2), it follows from (bf1), (bf2)

and (bf3) that

||g(t, w1)− g(t, w2)||20,2 ≤ L(||w1||D(A), ||w2||D(A))||w1 − w2||D(A)

where L(||w1||D(A), ||w2||D(A)) is a constant depending on ||w1||D(A) and ||w2||D(A).

We set

F (t, w) =

∫ t

0

k(t− s)g(s, w(s))ds

where k belongs to L2(0, T ). Then, from the results in section 3, the solution

w of (BE) exists and is unique in L2(0, T ;D(A)) ∩W 1,2(0, T ;E), and there

exists a constant C3 depending on T such that

||w||L2(0,T ;D(A)) ≤ C3(1 + ||x0||D(A) + ||y0||E + ||f ||W 1,2(0,T ;X)).
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Chapter 4

Regularity for semilinear differential

equations with p-Laplacian

4.1 Introduction

This paper is concerned with the regularity of solutions for an abstract

parabolic type equation involving p-Laplacian:
∂u
∂t

(x, t) +A(x,Dx)u(x, t)− div(|∇u(x, t)|p−2∇u(x, t)) = f(t), (x, t) ∈ Ω× (0, T ],

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ],

u(x, 0) = u0(x), x ∈ Ω.

(4.1.1)

Let Ω be a bounded domain in Rn with smooth boundary ∂Ω. Let

A(x,Dx) be an elliptic differential operator of second order as follows:

A(x,Dx) = −
n∑

i,j=1

∂

∂xj
(ai,j(x)

∂

∂xi
) +

n∑
i=1

bi(x)
∂

∂xi
+ c(x),

where {ai,j(x)} is a positive definite symmetric matrix for each x ∈ Ω,

bi ∈ C1(Ω) and c ∈ L∞(Ω).

If −A is the infinitesimal generator of an analytic semigroup in a complex

Banach space X, we find that in general it is false that the following abstract

linear problem {
du(t)/dt+ Au(t) = f(t), t ∈ (0, T ]

u(0) = u0

(4.1.2)
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has a solution u ∈ W 1,q(0, T ;X) ∩ Lq(0, T ;D(A)) in case f ∈ Lq(0, T ;X)

for any 1 < q < ∞. As in Prato and Grisvard [21](also see [56, 16]), we

can obtain L2- regularity for the strong solutions, while in the Hilbert space

setting. Moreover as the better result in Dore and Venni [26], ifX is ζ-convex,

we also obtain Lq-regularity results for solution of (4.1.2).

The background of these variational problems are physics, especially in

solid mechanics, where nonconvex and multi-valued constitutive laws lead

to differential inclusions. We refer to [66, 65] to see the applications of dif-

ferential inclusions. Recently, much research has many researches have been

devoted to the study of a class of semilinear differential equations [52, 31, 20].

Especially, [14, 15, 32] showed the existence of infinitely many solutions for

fractional p-Laplacian equations, and [17] discussed upper semicontinuity of

attractors and continuity of equilibrium sets for parabolic problems with

degenerate p-Laplacian. Most of them considered the existence of weak solu-

tions for differential inclusions of various forms by using the Faedo-Galerkin

approximation method. In Yang et al.[84] proved that the existence of global

attractors in W 1,p
0 (Ω) and Lq(Ω) for the following p-Laplacian equation:{

du(t)/dt− div(|∇u|p−2∇u) + f(u(t)) = g(t), 0 < t,

u(0) = u0.

If we put Au = −A(x,Dx)u then it is known that A generates an analytic

semigroup in Lp(Ω)(see[1, 67]). In view of Sobolev’s embedding theorem,

we remark that Lp(Ω) ⊂ W−1,p(Ω), where W−1,p(Ω) is the dual space of

W 1,p
′

0 (Ω)(p
′
= p/(p−1)). The spaceW−1,p(Ω) is ζ-convex(as for the definition

and fundamental facts of a ζ-convex space see [18, 38]). Therefore, from the

interpolation theory it is easily seen that the operator A generates an analytic

semigroup in both Hp,q ≡ (W 1,p
0 (Ω),W−1,p(Ω))1/q,q and W−1,p(Ω). Hence, we

can investigate the semilinear form (4.1.1) in the space W−1,p(Ω) and apply
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the method of [26] to the system (4.1.1) to show the existence and uniqueness

of the solution

u ∈ Lq(0, T ;W 1,p
0 (Ω)) ∩W 1,q(0, T ;W−1,p(Ω)) ⊂ C([0, T ];Hp,q)

for any u0 ∈ Hp,q and f ∈ Lq(0, T ;W−1,p(Ω))(p > 2).

For the basic of our study, some variational of constant formula of so-

lutions are established considering as an equation in Lp(Ω) as well as in

W−1,p(Ω). Thereafter, by showing that the nonlinear mapping of p-Laplacian

term is Lipschitz continuous, we will obtain the existence for solutions of

semilinear equation (4.1.1) by converting the problem into the contraction

mapping principle and the norm estimate of a solution of the above nonlinear

equation on L2(0, T ;W 1,p
0 (Ω))∩W 1,2(0, T ;W−1,p(Ω))∩C([0, T ];Hp,q) as seen

in [4]. Consequently, in view of the properties of p-Laplacian term, we show

that the mapping

Hp,q × Lq(0, T ;W−1,p(Ω)) 3 (x0, f) 7→ u ∈ Lq(0, T ;W 1,p
0 (Ω)) ∩C([0, T ];Hp,q)

is continuous.

4.2 Notations

Let Ω be a region in an n-dimensional Euclidean space Rn and closure Ω.

For an integer m ≥ 0, Cm(Ω) is the set of all m-times continuously differential

functions on Ω. Cm
0 (Ω) will denote the subspace of Cm(Ω) consisting of these

functions which have compact support in Ω. For 1 ≤ p ≤ ∞, Wm,p(Ω) is

the set of all functions f = f(x) whose derivative Dαf up to degree m in

distribution sense belong to Lp(Ω). As usual, the norm is then given by

||f ||m,p = (
∑
α≤m

||Dαf ||pp)
1
p , 1 ≤ p <∞

||f ||m,∞ = max
α≤m
||Dαf ||∞,
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where D0f = f . In particular, W 0,p(Ω) = Lp(Ω) with the norm || · ||p. Let

p
′
= p/(p− 1), 1 < p <∞. W−1,p(Ω) stands for the dual space W 1,p

′

0 (Ω)∗ of

W 1,p
′

0 (Ω) whose norm is denoted by || · ||−1,p.

For a closed linear operator of A in some Banach space, ρ(A) denotes the

resolvent set of A.
If X is a Banach space and The notation (·, ·)X∗,X is the duality pairing

between X∗ and X.
Lp(0, T ;X) is the collection of all strongly measurable functions from

(0, T ) into X the p-th powers of norms are integrable. Cm([0, T ];X) will

denote the set of all m-times continuously differentiable functions from [0, T ]

into X.
If X and Y are two Banach spaces, B(X, Y ) is the collection of all

bounded linear operators from X into Y , and B(X,X) is simply written

as B(X). The intersection X ∩ Y is a Banach spaces with the norms

||a||X∩Y = max {||a||X , ||a||Y }, ∀a ∈ X ∩ Y.

For an interpolation couple of Banach spaces X0 and X1, (X0, X1)θ,p and

[X0, X1]θ denote the real and complex interpolation spaces between X0 and

X1, respectively.

4.3 Elliptic boundary value problem in W−1,p(Ω)

Let Ω be a bounded domain in Rn with smooth boundary ∂Ω. Con-

sider the following elliptic differential operator of second order with real and

smooth coefficients:

A(x,Dx) = −
n∑

i,j=1

∂

∂xj
(ai,j(x)

∂

∂xi
) +

n∑
i=1

bi(x)
∂

∂xi
+ c(x),
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where {ai,j(x)} is a positive definite symmetric matrix for each x ∈ Ω. The

operator

A′(x,Dx) = −
n∑

i,j=1

∂

∂xj
(ai,j(x)

∂

∂xi
)−

n∑
i=1

∂

∂xi
(bi(x)·) + c(x)

is the formal adjoint of A.

For 1 < p < ∞, we denote the realization of A in Lp(Ω) under the

Dirichlet boundary condition by Ap:

D(Ap) = W 2,p(Ω) ∩W 1,p
0 (Ω), (4.3.1)

Apu = Au for u ∈ D(Ap).

For p
′

= p/(p − 1), we can also define the realization A′ in Lp
′
(Ω) under

Dirichlet boundary condition by A
′

p′
:

D(A
′

p′
) = W 2,p

′

(Ω) ∩W 1,p
′

0 (Ω),

A
′

p′
v = A′v for v ∈ D(A

′

p
′ ).

It is known that the adjoint operator of Ap considered as a closed linear

operator in Lp(Ω) coincide with A
′

p′
:

A∗p = A
′

p′

and−Ap and−A′
p′

generate analytic semigroups in Lp(Ω) and Lp
′
(Ω), respectively[[67],

section 7.3]. For the sake of simplicity we assume that the closed half

plane {λ : Reλ ≤ 0} is contained in ρ(Ap) ∩ ρ(A
′

p′
), hence in particular

0 ∈ ρ(Ap) ∩ ρ(A
′

p′
), by adding some positive constant to A if necessary.

In what follows, we make D(Ap) and D(A
′

p′
) Banach space endowing them

with graph norm of Ap and A
′

p′
, respectively. Since D(A

′

p′
) and W 1,p

′

0 (Ω) are

dense subspaces of W 1,p
′

0 (Ω) and Lp
′
(Ω), respectively, we may consider that

D(Ap) ⊂ W 1,p
0 (Ω) ⊂ Lp(Ω) ⊂ W−1,p(Ω) ⊂ D(A

′

p′
)∗.
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Lemma 4.3.1. Let (A
′

p′
)′ be the adjoint operator A

′

p′
. Then (A

′

p′
)′ is an

isomorphism from Lp(Ω) to D(A
′

p′
)∗, and the restriction of (A

′

p′
)′ to D(Ap)

coincides with Ap.

Proof. For any f ∈ Lp(Ω) and v ∈ D(A
′

p′
), we have

((A
′

p′
)′f, v)(D(A

′
p
′ )
∗,D(A

′
p
′ ))

= (f, A
′

p′
v)

(Lp(Ω),Lp
′
(Ω))

.

So, due to 0 ∈ ρ(A
′

p′
), we have that (A

′

p′
)′ is an isomorphism from Lp(Ω) to

D(A
′

p′
)∗. If f ∈ Lp(Ω) and v ∈ D(A

′

p′
), then

((A
′

p′
)′f, v)(D(A

′
p
′ )
∗,D(A

′
p
′ ))

= (f, A
′

p′
v)

(Lp(Ω),Lp
′
(Ω))

= (Apf, v)(D(A
′
p
′ )
∗,D(A

′
p
′ ))
.

This implies that the restriction of (A
′

p′
)′ to D(Ap) coincides with Ap. 2

Lemma 4.3.2. Let Ã be the restriction of (A
′

p′
)
′

to W 1,p
0 (Ω). Then the

operator Ã is an isomorphism from W 1,p
0 (Ω) to W−1,p(Ω). Similarly, we

consider that the restriction Ã′ of (Ap)
′ ∈ B(Lp

′
(Ω), D(Ap)

∗) to W 1,p
′

0 (Ω) is

an isomorphism from W 1,p
′

0 (Ω) to W−1,p
′
(Ω).

Proof. From the result of Seeley [74] (see also Triebel [[79], p. 321], [55]),

we obtain that

[D(Ap), L
p(Ω)]1/2 = W 1,p

0 (Ω), (4.3.2)

[D(A
′

p′
), Lp

′

(Ω)]1/2 = W 1,p
′

0 (Ω). (4.3.3)

Regarding the dual spaces, from (4.3.3) it follows that

[Lp(Ω), D(A
′

p′
)∗]1/2 = [D(A

′

p′
), Lp

′

(Ω)]∗1/2 = W−1,p(Ω).
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This, together with 0 ∈ ρ(A
′

p′
), implies that the operator Ã is an isomorphism

from W 1,p
0 (Ω) to W−1,p(Ω) by the interpolation theory. 2

It is not difficult to see that, for u ∈ W 1,p
0 (Ω) and v ∈ W 1,p

′

0 (Ω), Ãu = Au

and Ã′v = A′v, both understood in the distribution sense, and

(Ãu, v) = a(u, v) = (u, Ã′v), (4.3.4)

where a(u, v) is the associated sesquilinear form:

a(u, v) =

∫
Ω

{
n∑

i,j=1

(ai,j(x)
∂u

∂xi

∂v

∂xj
+

n∑
i=1

bi(x)
∂u

∂xi
v + c(x)uv

}
dx.

The following results are from Section 3 in Jeong [38].

Lemma 4.3.3. The operators −Ã and −Ã′ generate analytic semigroups in

W−1,p(Ω) and W−1,p
′
(Ω), respectively. Furthermore, the inequality

||(Ã)is||B(W−1,p(Ω)) ≤ Ceγ|s|, −∞ < s <∞ (4.3.5)

holds for some constants C > 0 and γ ∈ (0, π/2).

For any q ∈ (1,∞), we set

Zp,q = (D(Ap), L
p(Ω))1/q,q, Hp,q = (W 1,p

0 (Ω),W−1,p(Ω))1/q,q. (4.3.6)

Remark 4.3.1. Concerning ζ-convex Banach space, we recall that every

Hilbert space is ζ-convex. Cartesian products and quotients of ζ-convex spaces

are ζ-convex. If (X, Y ) is an interpolation couple spaces of ζ-convex spaces,

(X, Y )θ,p with 1 < p < ∞, and [X, Y ]θ are ζ-convex. Moreover, if X is

ζ-convex and 1 < p < ∞ then every Lp space of X-valued functions is ζ-

convex(see [21, 18] and the bibliography therein). Since Ã is an isomorphism

from W 1,p
0 (Ω) onto W−1,p(Ω) and W 1,p

0 (Ω) and W−1,p(Ω) are ζ-convex spaces.

From the interpolation theory and definitions of the operator Ã, it is easily

seen that Hp,q and Zp,q are also ζ-convex.
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Proposition 4.3.1. The operators −Ã and −Ã′ generate analytic semi-

groups in Hp,q and Hp′ ,q′ , respectively.

Proof. By lemma 4.3.3, since −Ap and −Ã generate analytic semigroup

in Lp(Ω) and W−1,p(Ω), respectively, there exists an angle γ ∈ (0, π
2
) such

that

Σ = {λ : γ ≤ arg λ ≤ 2π − γ} ⊂ ρ(Ap) ∩ ρ(Ã), (4.3.7)

||(λ− Ap)−1||B(Lp(Ω)) ≤ C/|λ|, λ ∈ Σ, (4.3.8)

||(λ− Ã)−1||B(W−1,p(Ω)) ≤ C/|λ|, λ ∈ Σ. (4.3.9)

In view of (4.3.8)

||Ap(λ− Ap)−1u||p = ||(λ− Ap)−1Apu||p ≤
C

|λ|
||Apu||p,

for any u ∈ D(Ap), we have

||(λ− Ap)−1||B(D(Ap)) ≤
C

|λ|
. (4.3.10)

From (4.3.8) and (4.3.10) it follows that

||(λ− Ã)−1||B(W 1,p
0 (Ω)) ≤

C

|λ|
(4.3.11)

and hence, from (4.3.10), (4.3.11) and the definition of the space Hp,q, we

have that

||(λ− Ã)−1||B(Hp,q) ≤
C

|λ|
.

Therefore, we have shown that −Ã generates an analytic semigroup in Hp,q.
2
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Proposition 4.3.2. There exists a constant C > 0 such that

||Ãis||B(Hp,q) ≤ Ceγ|λ|, s ∈ R,

where γ is the constant in (4.3.7).

Proof. From Theorem 1 of Seeley [73] and Proposition 3.2 of Jeong [38]

there exists a constant C > 0 such that

||(Ap)ε+is||B(Lp(Ω)) ≤ Ceγ|s|, (4.3.12)

||Ãε+is||B(W−1,p(Ω)) ≤ Ceγ|s| (4.3.13)

for any s ∈ R and ε > 0. From (4.3.12) it follows

||(Ap)ε+is||B(D(Ap)) ≤ Ceγ|s|, (4.3.14)

and hence, from (4.3.12) and (4.3.14) we obtain

||Ãε+is||B(W 1,p
0 (Ω)) ≤ Ceγ|s|. (4.3.15)

Hence from (4.3.5), (4.3.14) and (4.3.15) we have shown that

||Ãε+is||B(Hp,q) ≤ Ceγ|s|.

So the proof is complete. 2

Remark 4.3.2. Propositions 4.3.1, 4.3.2 say that −Ã generates analytic

semigroup {etÃ : t ≥ 0} in Hp,q as well as in W−1,p(Ω). Hence, we may

assume that there is a constant M0 > 0 such that

||etÃ||B(Lp(Ω)) ≤M0, ||etÃ||B(Hp,q) ≤M0, ||etÃ||B(W−1,p(Ω)) ≤M0.
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From now on, in virtue of Proposition 4.3.1, 4.3.2, we study such a simple

initial value problem in W−1,p(Ω) or in Hp,q as{
u′(t) + Ãu(t) = f(t), t > 0,

u(0) = u0.
(LE)

Remark 4.3.3. If −A is the infinitesimal generator of an analytic semi-

group in a complex Banach space X, we find that in general it is false that

problem (LE) has a solution u ∈ W 1,p(0, T ;X) ∩ Lp(0, T ;D(A)) in case

f ∈ Lp(0, T ;X). As in Da Prato and Grisvard [21](also see [56, 16], section

5.5 of [76]), we can obtain L2- regularity for the strong solutions, while in the

Hilbert space setting. Moreover, as the better result in [26], if X is ζ-convex,

we also obtain Lp(p > 1)-regularity results for solution of (LE) mentioned

above.

From Theorem 3.5.3 of Butzer and Berens [19] we obtain the following

result.

Lemma 4.3.4. For any 1 < p and q ∈ (0,∞), we have

Zp,q = (D(Ap), L
p(Ω))1/q,q = {x ∈ Lp(Ω) :

∫ T

0

||ÃetÃx||qpdt <∞},

and

Hp,q = (W 1,p
0 (Ω),W−1,p(Ω))1/q,q = {x ∈ W−1,p(Ω) :

∫ T

0

||ÃetÃx||q−1,pdt <∞}.

In order to prove the solvability of the initial equation (LE), we estab-

lish necessary estimates applying the result of [26] to (LE) considered as an

equation in Hp,q as well as in W−1,p(Ω).
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Proposition 4.3.3. Suppose that Ã is defined as in Lemma 4.3.2. Then the

following results hold:

1) Let 1 < p, q < ∞, Then for any u0 ∈ Hp,q and f ∈ Lq(0, T ;W−1,p(Ω)),

there exists a unique solution u of (LE) belonging to

W ≡ Lq(0, T ;W 1,p
0 (Ω))

⋂
W 1,q(0, T ;W−1,p(Ω)) ⊂ C([0, T ];Hp,q), (4.3.16)

and satisfying

||u||W ≤ C1(||u0||p,q + ||f ||Lq(0,T ;W−1,p(Ω))), (4.3.17)

where C1 is a constant depending on T .

2) Let u0 ≡ 0 and f ∈ Lq(0, T ;Hp,q), T > 0. Then there exists a unique

solution u of (LE) belonging to

W0 ≡ Lq(0, T ;W 2,p(Ω) ∩W 1,p
0 (Ω))

⋂
W 1,q(0, T ;Hp,q),

and satisfying

||u||W0 ≤ C1||f ||Lq(0,T ;Hp,q),

where C1 is a constant depending on T .

Proof. In virtue of Remark 4.3.2 the mild solution of (LE) is represented

by

u(t) = e−tÃu0 +

∫ t

0

e−(t−s)Ãf(s)ds, t ≥ 0.

If t 7→ f(t) belongs to Lq(0, T ;X) we set ||f(t)||Lq
t (0,T ;X) = ||f ||Lq(0,T ;X).

Analogous notations, we are used when Lq(0, T ;X) is replaced by another

Banach space of functions. For the sake of simplicity, we may consider

||v||−1,p ≤ ||v||p,q, v ∈ Hp,q.

Now, to prove that

||e−tÃu0||Lq
t (0,T ;W 1,p

0 (Ω)) ≤ c0||u0||p,q
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for some c0 > 0, it is sufficient to observe that by Lemma 4.3.4 and Remark

4.3.2,

||e−tÃu0||Lq
t (0,T ;W 1,p

0 (Ω)) ≤
(∫ T

0

||etÃu0||qdt
)1/q

+

(∫ T

0

||ÃetÃu0||q−1,pdt

)1/q

≤ ||etÃu0||W 1,q
t (0,T ;W−1,p(Ω)) ≤ c0||u0||p,q.

For any f ∈ Lq(0, T ;W−1,p(Ω)), set

(e−Ã ∗ f)(t) =

∫ t

0

e(t−s)Ãf(s)ds, 0 ≤ t ≤ T.

Since −Ã generates an analytic semigroup {e−tÃ : 0 ≤ t < ∞} in W−1,p(Ω)

and applying Theorem 4.3.2 of [26] to the equation (LE), we have (4.3.17)(see

Theorem 2.3 of [16]) and

e−Ã ∗ f ∈ Lq(0, T ;W 1,p
0 (Ω))

⋂
W 1,q(0, T ;W−1,p(Ω)).

The last inclusion relation of (4.3.16) is well known and is an easy conse-

quence of the definition of real interpolation space by the trace method.

The proof of 2) is obtained by applying the argument of 1) term by term

to the equation (LE) due to (4.3.1) in the space Hp,q. 2

Remark 4.3.4. By terms of Proposition 4.3.3, the result of [[26], Theorem

2.1] implies that if u0 ∈ (D(A), Lp(Ω))1/q,q ≡ Zp,q and f ∈ Lq(0, T ;Lp(Ω)),

then there exists a unique solution u of (LE) belonging to

W1 ≡ Lq(0, T ;D(A))
⋂

W 1,q(0, T ;Lp(Ω)) ⊂ C([0, T ];Zp,q), (4.3.18)

and satisfying

||u||W1 ≤ C1(||u0||Zp,q + ||f ||Lq(0,T ;Lp(Ω))), (4.3.19)

where C1 is a constant depending on T .
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4.4 Existence of solutions in the strong sense

This section is to investigate the regularity of solutions for an abstract

parabolic type equation (4.1.1) involving p-Laplacian in the strong sense in

case for any u0 ∈ Hp,q(2 ≤ p, 1 < q <∞) and f ∈ Lq(0, T ;W−1,p(Ω)). Now,

we put that

Au = A(x,Dx)u i.e., A = Ã (4.4.1)

which was defined in the previous section, and A(x,Dx) is restriction to

W 1,p
0 (Ω) with real coefficients:

A(x,Dx) = −
n∑

i,j=1

∂

∂xj
(ai,j(x)

∂

∂xi
) +

n∑
i=1

bi(x)
∂

∂xi
+ c(x),

where aij = aji ∈ C1(Ω̄) and {aij(x)} is positive definite uniformly in Ω, i.e.,

there exists a positive number c1 such that

n∑
i,j=1

aij(x)ξiξj ≥ c1|ξ|2 (4.4.2)

for all x ∈ Ω̄ and all real vectors ξ, bi ∈ C1(Ω), and c ∈ L∞(Ω). On the other

hand, by this hypothesis, there exists a certain K such that |bi(x)| ≤ K and

|c(x)| ≤ K hold almost everywhere.

We denote the pairings between Lp
′
(Ω) and Lp(Ω), W−1,p(Ω) andW 1,p

′

0 (Ω),

and D(A
′

p′
)∗ and D(A

′

p′
) all by (·, ·) with no fear of confusion. In what follows

this section, the norms on Lp(Ω), W 1,p
0 (Ω), and W−1,p(Ω) will be denoted by

|| · ||, || · ||1, and || · ||−1, respectively.

We may consider that there exists a constant C0 such that for any u ∈
W 1,p

0 (Ω)

||u||1 ≤ C0||u||1/2D(A)||u||
1/2. (4.4.3)
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For u ∈ Lq(0, T ;W 1,p
0 (Ω)), we set

B(u(t)) = −div(|∇u(t)|p−2∇u(t)). (4.4.4)

Now we recall that the operator B is hemicontinuous,

(B(u(t)), u(t)) = ||∇u(t)||p,

and monotone, i.e., when p ≥ 2, there exists a positive constant δ such that

(B(u1(t))−B(u2(t)), u1(t)− u2(t)) ≥ δ||u1(t)− u2(t)||p1

(cf. [56]). Moreover, we have obtain the following results.

Lemma 4.4.1. The operator B defined as (4.4.4) is locally Lipschitz con-

tinuous, i.e., for p > 2 and r > 0, there exists a number L(r) > 0 such

that
||(Bu1)(t)− (Bu2)(t)||−1 ≤ L(r)||u1(t)− u2(t)||1,

holds with ||u1(t)||1 < r, ||u2(t)||1 < r. Let u1, u2 ∈ Lq(0, T ;W 2,p(Ω) ∩
W 1,p

0 (Ω)) with ||u1|| < r, ||u2|| < r. Then

||Bu1 −Bu2||Lq(0,T0;Lp(Ω)) ≤ L(r)||u1 − u2||Lq(0,T0;W 1,p
0 (Ω)). (4.4.5)

Proof. Let u1(t), u2(t) ∈ W 1,p
0 (Ω). For any z(t) ∈ W 1,p

0 (Ω), considering

the boundary value condition, we have

|((Bu1)(t)− (Bu2)(t), z(t))|

= −
(
div(|∇u1(t)|p−2∇u1(t))− div(|∇u2(t)|p−2∇u2(t)), z(t)

)
≤
(
(|∇u1(t)|p−2 − |∇u2(t)|p−2)∇u1(t),∇z(t)

)
+ |∇u2(t)|p−2(∇u1(t)−∇u2(t)),∇z(t)).

So, if p > 2, there exists a function L : R+ → R such that L(r1) ≤ L(r2) for

r1 ≤ r2 and

||(Bu1)(t)− (Bu2)(t)||−1 ≤ L(r)||u1(t)− u2(t)||1
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holds with ||u1(t)||1 < r, ||u2(t)||1 < r. The proof of the second paragraph

(4.4.5) is similar. 2

From now on, we establish the following results on the local solvability of

the following equation;{
du(t)/dt+ Au(t) +B(u(t)) = f(t), t ∈ (0, T ]

u(0) = u0.
(4.4.6)

Theorem 4.4.1. For any p > 2, and q > 1, assume that u0 ∈ Hp,q,

f ∈ Lq(0, T ;W−1,p(Ω)). Then, there exists a time T0 ∈ (0, T ) such that

the equation (4.4.6) admits a unique solution

u ∈ Lq(0, T0;W 1,p
0 (Ω)) ∩W 1,q(0, T0;W−1,p(Ω)) ⊂ C([0, T0];Hp,q). (4.4.7)

Proof. Let α = ( p
p+q

)1/q and let the constant T0 satisfy the following

inequality:

αC0C1L(r)T
p+q
pq

0 < 1, (4.4.8)

where C0, C1, and L(r) are given by (4.4.3), Proposition 4.3.3, and (4.4.5), re-

spectively. LetBr be the ball of radius r centered at zero of Lq(0, T0;W 1,p
0 (Ω)),

i.e., Br = {v ∈ Lq(0, T0;W 1,p
0 (Ω)) : ||v|| ≤ r}. Invoking Proposition 4.2.1, for

a given w ∈ B1, the problem{
du(t)/dt+ Au(t) +B(w(t)) = f(t), t ∈ (0, T0]

u(0) = u0

(4.4.9)

has a unique solution u ∈ Lq(0, T ;W 1,p
0 (Ω)) ∩ W 1,q(0, T0;W−1,p(Ω)). To

prove the existence and uniqueness of solutions of semilinear type (4.4.6), by

virtue of Proposition 4.3.3, we are going to show that the mapping defined by

w 7→ u maps is strictly contractive from the ball Br into itself if the condition
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(4.4.8) is satisfied. Let u1, u2 be the solutions of (4.4.9) with w replaced by

w1, w2 ∈ Br. Then from Remark 4.3.4, it follows

||u1 − u2||Lq(0,T0;D(A))∩W 1,q(0,T0;Lp(Ω)) ≤ C1||Bw1 −Bw2||Lq(0,T0;Lp(Ω))

≤ C1L(r)||w1 − w2||Lq(0,T0;W 1,p
0 (Ω)).

Noting that

||u1 − u2||Lq(0,T0;Lp(Ω)) =

{∫ T0

0

||u1(t)− u2(t)||qdt
}1/q

(4.4.10)

≤
{∫ T0

0

||
∫ t

0

(u̇1(s)− u̇2(s))ds||qdt
}1/q

≤
{∫ T0

0

tq/p
∫ t

0

||u̇1(s)− u̇2(s)||qdsdt
}1/q

≤ αT
p+q
pq

0 ||u1 − u2||W 1,q(0,T0;Lp(Ω))),

and in view of (4.4.3), we have

||u1 − u2||Lq(0,T0;W 1,p
0 (Ω)) ≤ C0||u1 − u2||1/2Lq(0,T0;D(A))||u1 − u2||1/2Lq(0,T0;Lp(Ω))

≤ C0||u1 − u2||1/2Lq(0,T0;D(A))(
p

p+ q
)1/qT

p+q
pq

0 ||u1 − u2||1/2W 1,q(0,T0;Lp(Ω))

≤ αC0T
p+q
pq

0 ||u1 − u2||Lq(0,T0;D(A))∩W 1,q(0,T0;Lp(Ω))

≤ αC0C1L(r)T
p+q
pq

0 ||w1 − w2||Lq(0,T0;W 1,p
0 (Ω)). (4.4.11)

So by virtue of (4.4.11), the mapping defined by w 7→ u maps is strictly

contractive from Br into itself. Therefore, the contraction mapping principle

gives that the equation (4.4.6) has a unique solution in [0, T0]. Since Ã is an

isomorphism from W 1,p
0 (Ω) onto W−1,p(Ω) by Lemma 4.3.1, the solution of

(4.4.6) belongs to W 1,q(0, T0;W−1,p(Ω)). The last inclusion relation (4.4.7) is

well known and is an easy consequence of the definition of real interpolation

spaces by the trace method. 2
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Theorem 4.4.2. For any p > 2, q > 1, and T > 0, assume that u0 ∈ Hp,q,

f ∈ Lq(0, T ;W−1,p(Ω)). Then, the solution u of (4.4.6) exists and is unique

in

W ≡ Lq(0, T ;W 1,p
0 (Ω))

⋂
W 1,q(0, T ;W−1,p(Ω)) ⊂ C([0, T ];Hp,q), (4.4.12)

and satisfying

||u||W ≤ C2(||u0||p,q + ||f ||Lq(0,T ;W−1,p(Ω))), (4.4.13)

where ||·||p,q is the norm as an element of Hp,q, and C2 is a constant depending

on T and W.

Proof. Let x be a solution of (4.4.6) and let w be the solution of the

following linear functional differential equation parabolic type;{
dw(t)/dt+ Aw(t) = f(t), t ∈ (0, T0].

w(0) = u0.

Then we have{
d(u− w)(t)/dt+ A((u− w)(t)) = −B(u(t)), t ∈ (0, T0].

(u− w)(0) = 0.

Suppose that x and y belong to Br. In view of (4.3.1) and (4.3.19), we have

||u− w||Lq(0,T0;D(A))∩W 1,q(0,T0;Lp(Ω)) ≤ C1||Bu||Lq(0,T0;Lp(Ω))

≤ C1L(r)||u||Lq(0,T0:W 1,p
0 (Ω))

≤ C1L(r)(||u− w||Lq(0,T0:W 1,p
0 (Ω)) + ||w||Lq(0,T0:W 1,p

0 (Ω))).

Thus arguing as in the proof of (4.4.11)

||u− w||Lq(0,T0;W 1,p
0 (Ω)) ≤ αC0T

p+q
pq

0 ||u− w||Lq(0,T0;D(A))∩W 1,q(0,T0;Lp(Ω))

≤ αC0C1L(r)T
p+q
pq

0 (||u− w||Lq(0,T0;W 1,p
0 (Ω)) + ||w||Lq(0,T0;W 1,p

0 (Ω))).
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Therefore, we have

||u− w||Lq(0,T0;W 1,p
0 (Ω)) ≤

αC0C1L(r)T
p+q
pq

0

1− αC0C1L(r)T
p+q
pq

0

||w||Lq(0,T0;W 1,p
0 (Ω))},

and hence, with the aid of 1) of Proposition 4.3.3

||u||Lq(0,T0;W 1,p
0 (Ω)) ≤

1

1− αC0C1L(r)T
p+q
pq

0

||w||Lq(0,T0;W 1,p
0 (Ω))

≤ C1

1− αC0C1L(r)T
p+q
pq

0

(||u0||p,q + ||f ||Lq(0,T0;W−1,p(Ω))). (4.4.14)

We know that there exists a positive constant M0 such that for any v ∈ Lp(Ω)

||v||−1,p ≤M0||v||p. (4.4.15)

On the other hand, using Proposition 4.3.3, Remark 4.3.4, and (4.4.15) we

get

||u||Lq(0,T0;W 1,p
0 (Ω))∩W 1,p(0,T0;W−1,p(Ω))

≤ C1(||u0||p,q + ||Bu+ f ||Lq(0,T0;W−1,p(Ω)))

≤ C1(||u0||p,q +M0||Bu||Lq(0,T0;Lp(Ω)) + ||f ||Lq(0,T0;W−1,p(Ω)))

≤ C1(||u0||p,q + ||f ||Lq(0,T ;W−1,p(Ω)) +M0L(r)||u||Lq(0,T0;W 1,p
0 (Ω))). (4.4.16)

Combining (4.4.14) and (4.4.16) we obtain

||u||Lq(0,T0;W 1,p
0 (Ω))∩W 1,q(0,T0;W−1,p(Ω)) ≤ C(||u0||p,q + ||f ||Lq(0,T ;W−1,p(Ω)))

(4.4.17)

for some constant C. Now from Theorem 4.4.1 it follows that

||u(T0)||p,q ≤ ||u||C([0,T0];Hp,q) ≤ C2(||u0||p,q + ||f ||L2(0,T0;W−1,p(Ω))). (4.4.18)

So, we can solve the equation in [T0, 2T0] and obtain an analogous estimate

to (4.4.17). Since the condition (4.4.8) is independent of initial values, the
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solution of (4.4.6) can be extended the internal [0, nT0] for a natural number

n, i.e., for the initial u(nT0) in the interval [nT0, (n + 1)T0], as analogous

estimate (4.4.17) holds for the solution in [0, (n + 1)T0]. Furthermore, the

estimate (4.4.13) is easily obtained from (4.4.17) and (4.4.18). 2

The following inequality is refereed to as the Young inequality.

Lemma 4.4.2. (Young inequality) Let a > 0, b > 0 and 1/p+1/q = 1 where

1 ≤ p,∞ and 1 < q <∞. Then for every λ > 0 one has

ab ≤ λpap

p
+

bq

λqq
.

Theorem 4.4.3. For any p ≥ 2, q > 1, and T > 0, assume that (u0, f) ∈
Zp,q × Lq(0, T ;Lp(Ω)) where Zp,q ≡ (D(A), Lp(Ω))1/q,q. Then the solution u

of the equation (4.4.6) belongs to u ∈ Lq(0, T ;D(A))∩W 1,q((0, T );Lp(Ω)) ⊂
C([0, T ];Zp,q) and the mapping

Zp,q × Lq(0, T ;Lp(Ω)) 3 (u0, f) 7→ u ∈ Lq(0, T ;D(A)) ∩W 1,q((0, T );Lp(Ω))

is Lipschitz continuous.

Proof. It is easy to show that if u0 ∈ Zp,q and f ∈ Lq(0, T ;Lp(Ω)),

then u belongs to Lq(0, T ;D(A))∩W 1,q(0, T ;Lp(Ω)). Let (u0i, fi) ∈ Zp,q ×
Lq(0, T ;Lp(Ω)) and ui ∈ Br ⊂ Lq(0, T ;D(A)) be the solution of (4.4.6) with

(u0i, fi) in place of (u0, f) for i = 1, 2. Then in view of Proposition 4.3.3,

we have

||u1 − u2||Lq(0,T ;D(A))∩W 1,q(0,T ;Lp(Ω)) (4.4.19)

≤ C1{||u01 − u02||Zp,q + ||Bu1 −Bu2||Lq(0,T ;Lp(Ω)) + ||f1 − f2||Lq(0,T ;Lp(Ω))}

≤ C1{||u01 − u02||Zp,q + L(r)||u1 − u2||Lq(0,T :W 1,p
0 (Ω)) + ||f1 − f2||Lq(0,T ;Lp(Ω))}.

Since

u1(t)− u2(t) = u01 − u02 +

∫ t

0

(u̇1(s)− u̇2(s))ds,
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and, by (4.4.10) we get

||u1 − u2||Lq(0,T ;Lp(Ω)) ≤
q
√
T ||u01 − u02||p + αT

p+q
pq ||u1 − u2||W 1,q(0,T ;Lp(Ω)).

Hence, by Lemma 4.4.2 and regarding as || · ||p ≤ || · ||Zp,q , we get

||u1 − u2||Lq(0,T ;W 1,p
0 (Ω)) ≤ C0||u1 − u2||1/2Lq(0,T ;D(A))||u1 − u2||1/2Lq(0,T ;Lp(Ω))

(4.4.20)

≤ C0||u1 − u2||1/2Lq(0,T ;D(A)){T
1/(2q)||u01 − u02||1/2Zp,q

+ (αT
p+q
pq )1/2||u1 − u2||1/2W 1,q(0,T ;Lp(Ω))}

≤ C0T
1/(2q)||u01 − u02||1/2Zp,q

||u1 − u2||1/2Lq(0,T ;D(A))

+ C0

√
αT

p+q
2pq ||u1 − u2||Lq(0,T ;D(A))∩W 1,q(0,T ;Lp(Ω))

≤ 1

4
α−1/2C0T

p−q
2pq ||u01 − u02||Zp,q + 2C0

√
αT

p+q
2pq ||u1 − u2||Lq(0,T ;D(A))∩W 1,q(0,T ;Lp(Ω)).

Combining (4.4.19) with (4.4.20) we obtain

||u1 − u2||Lq(0,T ;D(A))∩W 1,q(0,T ;Lp(Ω)) (4.4.21)

≤ C1{||u01 − u02||Zp,q + ||f1 − f2||Lq(0,T ;Lp(Ω))}+ C0C1
1

4
α−1/2T

p−q
2pq ||u01 − u02||Zp,q

+ 2C0C1

√
αT

p+q
2pq L(r)||u1 − u2||Lq(0,T ;D(A))∩W 1,q(0,T ;Lp(Ω)).

Suppose that (u0n, fn) → (u0, f) in Zp,q × L2(0, T ;H), and let un and u be

the solutions (4.4.6) with (u0n, fn) and (u0, f) respectively. Let 0 < T1 ≤ T

be such that

2C0C1

√
αT

p+q
2pq L(r) < 1.

Then by virtue of (4.4.21) with T replaced by T1 we see that

un → u in L2(0, T1;D(A)) ∩W 1,2(0, T1;Lp(Ω)).

This implies that un(T1) 7→ u(T1) in Zp,q. Hence the same argument shows

that un → u in

Lq(T1,min{2T1, T};D(A)) ∩W 1,q(T1,min{2T1, T};Lp(Ω)).
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Repeating this process we conclude that un → u in Lq(0, T ;D(A)) ∩W 1,q(0, T ;Lp(Ω)).
2

Remark 4.4.1. The result of Theorem 4.4.3 is important to apply for the

control problems and the optimal control theory for technologically given cost

functions. In particular, by the similar way to Theorem 4.4.3 we have that

if (u0, f) ∈ Hp,q × Lq(0, T ;W−1,p(Ω)) for any p > 2, q > 1, and T > 0.

Then the solution u of the equation (4.4.6) belongs to u ∈ Lq(0, T ;V ) ∩
W 1,q(0, T ;W−1,p(Ω)) ⊂ C([0, T ];H), and the mapping

Hp,q×Lq(0, T ;W−1,p(Ω)) 3 (u0, f) 7→ u ∈ Lq(0, T ;W 1,p
0 (Ω))∩W 1,q(0, T ;W−1,p(Ω))

is continuous.
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Chapter 5

Approximate controllability for semilinear

integro-differential control equations in

Hilbert spaces

5.1 Introduction

In this paper, we deal with the approximate controllability for semilinear

integro-differential functional control equations in the form{
d
dt
x(t) = Ax(t) +

∫ t
0
k(t− s)g(s, x(s), u(s))ds+Bu(t), 0 < t ≤ T,

x(0) = x0

(5.1.1)

in a Hilbert space H, where k belongs to L2(0, T )(T > 0) and g is a nonlinear

mapping as detailed in Section 2. The principal operator A generates an

analytic semigroup (S(t))t≥0 and B is a bounded linear operator from another

Hilbert space U to H.

The controllability problem is a question of whether is possible to steer

a dynamic system from an initial state to an arbitrary final state using the

set of admissible controls. Naito [64] was the first to deal with the range

condition argument of controller in order to obtain the approximate control-

lability of a semilinear control system. In [22, 46, 81, 85], they have studied

continuously about controllability of semilinear systems dominated by linear

parts(in case g ≡ 0) by assuming that S(t) is compact operator for each t > 0

as matters connected with [64]. Another approach used to obtain sufficient

conditions for approximate solvability of nonlinear equations is a fixed point

theorem combined with technique of operator transformations by configuring

the resolvent as seen in [8]
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The controllability for various nonlinear equations has been studied by

many authors, for example, see [28, 29, 61] for local controllability of neu-

tral functional differential systems with unbounded delay, [53, 70] for neutral

evolution integrodifferential systems with state dependent delay, and [68] for

impulsive neutral functional evolution integrodifferential systems with infi-

nite delay. Moreover, the approximate controllability for semi-linear retarded

stochastic systems has been studied by [60, 62, 63].

Sukavanam and Tomar [75] studied the approximate controllability for

the general retarded initial value problem by assuming that the Lipschitz

constant of the nonlinear term is less then 1, and Wang [81] for general

retarded semilinear equations assuming the growth condition of the nonlinear

term and the compactness of the semigroup.

In this paper, authors want to use a different method than the previous

one. Our used tool is the theorems similar to the Fredholm alternative for
nonlinear operators under restrictive assumption, which is on the solution of

nonlinear operator equations λT (x) − F (x) = y in dependence on the real

number λ, where T and F are nonlinear operators defined a Banach space

X with values in a Banach space Y . In order to obtain the approximate

controllability for a class of semilinear integro-differential functional control

equations, it is necessary to suppose that T acts as the identity operator

while F related to the nonlinear term of (5.1.1) is completely continuous.

In Section 2, we introduce regularity properties for (5.1.1). Since we

apply the Fredholm theory in the proof of the main theorem, we assume

some compactness of the embedding between intermediate spaces. Then by

virtue of Aubin [6], we can show that the solution mapping of a control space

to the terminal state space is completely continuous. Based on Section 2, it

is shown the sufficient conditions on the controller and nonlinear terms for
approximate controllability for (5.1.1) by using the Fredholm theory. Finally,

a simple example to which our main result can be applied is given.
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5.2 Semilinear functional equations

Throughout this Chapter, as seen in Section 2.2, V , H and V ∗ are complex

Hilbert spaces forming a Gelgand triple

V ↪→ H ≡ H∗ ↪→ V ∗.

Moreover, A in System (6.1.1) is also the operator in place of −A in Section

2.2. It is known that A is a bounded linear operator from V to V ∗, and A

generates an analytic semigroup S(t)(t ≥ 0) in both of H and V ∗(see [76]).

Consider the following initial value problem for the abstract semilinear

parabolic equation{
d
dt
x(t) = Ax(t) +

∫ t
0
k(t− s)g(s, x(s), u(s))ds+Bu(t),

x(0) = x0.
(5.2.1)

Let U be a Hilbert space and the controller operator B be a bounded

linear operator from U to H.

Let g : R+×V ×U → H be a nonlinear mapping satisfying the following:

Assumption (DF).

(i) For any x ∈ V , u ∈ U the mapping g(·, x, u) is strongly measurable;

(ii) There exist positive constants L0, L1, L2 such that

(a) u 7→ g(t, x, u) is an odd mapping (g(·, x,−u) = −g(·, x, u));

(b) for all t ∈ R+, x, x̂ ∈ V , and u, û ∈ U ,

|g(t, x, u)− g(t, x̂, û)| ≤ L1||x− x̂||+ L2||u− û||U ,

|g(t, 0, 0)| ≤ L0.
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For x ∈ L2(0, T ;V ), we set

f(t, x, u) =

∫ t

0

k(t− s)g(s, x(s), u(s))ds

where k belongs to L2(0, T ).

Lemma 5.2.1. Let Assumption (DF) be satisfied. Assume that x ∈ L2(0, T ;V )

for any T > 0. Then f(·, x, u) ∈ L2(0, T ;H) and

||f(·, x, u))||L2(0,T ;H) ≤ L0||k||L2(0,T )T/
√

2

+ ||k||L2(0,T )

√
T (L1||x||L2(0,T ;V ) + L2||u||L2(0,T ;U)). (5.2.2)

Moreover if x, x̂ ∈ L2(0, T ;V ), then

||f(·, x, u)− f(·, x̂, û)||L2(0,T ;H)

≤ ||k||L2(0,T )

√
T (L1||x− x̂||L2(0,T ;V ) + L2||u− û||L2(0,T ;U)). (5.2.3)

Proof. From Assumption (DF), and using the Hölder inequality, it is easily

seen that

||f(·, x, u)||L2(0,T ;H) ≤ ||f(·, 0, 0)||+ ||f(·, x, u)− f(·, 0, 0)||

≤
(∫ T

0

|
∫ t

0

k(t− s)g(s, 0, 0)ds|2dt
)1/2

+

(∫ T

0

|
∫ t

0

k(t− s){g(s, x(s), u(s))− g(s, 0, 0)}ds|2dt
)1/2

≤ L0||k||L2(0,T )T/
√

2 + ||k||L2(0,T )

√
T ||g(·, x, u)− g(·, 0, 0)||L2(0,T ;H)

≤ L0||k||L2(0,T )T/
√

2 + ||k||L2(0,T )

√
T (L1||x||L2(0,T ;V ) + L2||u||L2(0,T ;U)).

The proof of (5.2.3) is similar.

By virtue of Theorem 2.1 of [45], we have the following result on (5.2.1).
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Proposition 5.2.1. Let Assumption (DF) be satisfied. Then there exists a

unique solution x of (5.2.1) such that

x ∈ L2(0, T ;V ) ∩W 1,2(0, T ;V ∗) ⊂ C([0, T ];H)

for any x0 ∈ H. Moreover, there exists a constant C3 such that

||x||L2(0,T ;V )∩W 1,2(0,T ;V ∗) ≤ C3(|x0|+ ||u||L2(0,T ;U)). (5.2.4)

Corollary 5.2.1. Assume that the embedding D(A) ⊂ V is completely con-

tinuous. Let Assumption (DF) be satisfied, and xu be the solution of equation

(5.2.1) associated with u ∈ L2(0, T ;U). Then the mapping u 7→ xu is com-

pletely continuous from L2(0, T ;U) to L2(0, T ;V ).

Proof. If u ∈ L2(0, T ;U), then in view of Lemma 2.2.4

||xu||L2(0,T ;V )∩W 1,2(0,T ;V ∗) ≤ C3(|x0|+ ||B|| ||u||L2(0,T ;U)). (5.2.5)

Since xu ∈ L2(0, T ;V ), we have f(·, xu, u) ∈ L2(0, T ;H). Consequently

xu ∈ L2(0, T ;D(A)) ∩W 1,2(0, T ;H).

Hence, with aid of Lemma 2.2.4, (5.2.2) and (5.2.4),

||xu||L2(0,T ;D(A)∩W 1,2(0,T ;H) ≤ C1(||x0||+ ||f(·, xu, u) +Bu||L2(0,T ;H))

≤ C1{||x0||+ L0||k||L2(0,T )T/
√

2

+ ||k||L2(0,T )

√
T (L1||x||L2(0,T ;V ) + L2||u||L2(0,T ;U)) + ||Bu||L2(0,T ;H)}

≤ C1

[
||x0||+ L0||k||L2(0,T )T/

√
2

+ ||k||L2(0,T )

√
T
{
L1C3(|x0|+ ||u||L2(0,T ;U)) + L2||u||L2(0,T ;U)

}
+ ||Bu||L2(0,T ;H)

]
.

Thus, if u is bounded in L2(0, T ;U), then so is xu in L2(0, T ;D(A)) ∩
W 1,2(0, T ;H). Since D(A) is compactly embedded in V by assumption, the

embedding

L2(0, T ;D(A)) ∩W 1,2(0, T ;H) ⊂ L2(0, T ;V )

is completely continuous in view of Theorem 2 of [6], the mapping u 7→ xu is

completely continuous from L2(0, T ;U) to L2(0, T ;V ).
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5.3 Approximate controllability

Throughout this section, we assume that D(A) is compactly embedded

in V . Let x(T ; f, u) be a state value of the system (5.2.1) at time T corre-

sponding to the nonlinear term f and the control u. We define the reachable

sets for the system (5.2.1) as follows:

RT (f) = {x(T ; f, u) : u ∈ L2(0, T ;U)},

RT (0) = {x(T ; 0, u) : u ∈ L2(0, T ;U)}.

Definition 5.3.1. The system (5.2.1) is said to be approximately controllable

in the time interval [0, T ] if for every desired final state x1 ∈ H and ε > 0

there exists a control function u ∈ L2(0, T ;U) such that the solution x(T ; f, u)

of (5.2.1) satisfies |x(T ; f, u) − x1| < ε, that is, if RT (f) = H where RT (f)

is the closure of RT (f) in H, then the system (5.2.1) is called approximately

controllable at time T .

Let us introduce the theory of the degree for completely continuous per-

turbations of the identity operator, which is the infinite dimensional version

of Borsuk’s theorem. Let 0 ∈ D be a bounded open set in a Banach space X,

D its closure and ∂D its boundary. The number d[I − T ;D, 0] is the degree

of the mapping I − T with respect to the set D and the point 0 (see Fučik

et al. [27] or Lloid [57]).

Theorem 5.3.1. (Borsuk’s theorem) Let D be a bounded open symmetric

set in a Banach space X, 0 ∈ D. Suppose that T : D → X be odd completely

continuous operator satisfying T (x) 6= x for x ∈ ∂D. Then d[I − T ;D, 0]

is odd integer. That is, there exists at least one point x0 ∈ D such that

(I − T )(x0) = 0.

Definition 5.3.2. Let T be a mapping defined by on a Banach space X with

value in a real Banach space Y . The mapping T is said to be a (K,L, α)-

homeomorphism of X onto Y if
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(i) T is a homeomorphism of X onto Y ;

(ii) there exist real numbers K > 0, L > 0, and α > 0 such that

L||x||αX ≤ ||T (x)||Y ≤ K||x||αX , ∀x ∈ X.

Lemma 5.3.1. Let T be an odd (K,L, α)-homeomorphism of X onto Y and

F : X → Y a continuous operator satisfying

lim sup
||x||X→∞

||F (x)||Y
||x||αX

= N ∈ R+.

Then if |λ| /∈ [N
K
, N
L

] ∪ {0} then

lim
||x||X→∞

||λT (x)− F (x)||Y =∞.

Proof. Suppose that there exist a constant M > 0 and a sequence {xn} ⊂ X

such that
||λT (xn)− F (xn)||Y ≤M (5.3.1)

as xn →∞. From (5.3.1) it follows that

λT (xn)

||xn||αX
− F (xn)

||xn||αX
→ 0.

Hence, we have

lim sup
n→∞

|λ|||T (xn)||Y
||xn||αX

= N,

and so, |λ|K ≥ N ≥ |λ|L. It is a contradiction with |λ| /∈ [N
K
, N
L

].

Proposition 5.3.1. Let T be an odd (K,L, α)-homeomorphism of X onto

Y and F : X → Y an odd completely continuous operator. Suppose that for

λ 6= 0,

lim
||x||X→∞

||λT (x)− F (x)||Y =∞. (5.3.2)

Then λT − F maps X onto Y .
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Proof. We follow the proof Theorem 1.1 in Chapter II of Fučik et al. [27].

Suppose that there exists y ∈ Y such that λT (x) = y. Then from (5.3.2) it

follows that FT−1 : Y → Y is an odd completely continuous operator and

lim
||y||Y→∞

||y − FT−1(
y

λ
)||Y =∞.

Let y0 ∈ Y . There exists r > 0 such that

||y − FT−1(
y

λ
)||Y > ||y0||Y ≥ 0

for each y ∈ Y satisfying ||y||Y = r. Let Yr = {y ∈ Y : ||y||Y < r} be a open

ball. Then by view of Theorem 5.3.1, we have d[y−FT−1( y
λ
);Yr, 0] is an odd

number. For each y ∈ Y satisfying ||y||Y = r and t ∈ [0, 1], there is

||y − FT−1(
y

λ
)− ty0||Y ≥ ||y − FT−1(

y

λ
)||Y − ||y0||Y > 0

and hence, by the homotopic property of degree, we have

d[y − FT−1(
y

λ
);Yr, y0] = d[y − FT−1(

y

λ
);Yr, 0] 6= 0.

Hence, by the existence theory of the Leray-Schauder degree, there exists a

y1 ∈ Yr such that

y1 − FT−1(
y1

λ
) = y0.

We can choose x0 ∈ X satisfying λT (x0) = y1, and so, λT (x0)− F (x0) = y0.

Thus, it implies that λT − F is a mapping of X onto Y .

Combining Lemma 5.3.1 and Proposition 5.3.1, we have the following

results.
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Corollary 5.3.1. Let T be an odd (K,L, α)-homeomorphism of X onto Y

and F : X → Y an odd completely continuous operator satisfying

lim sup
||x||X→∞

||F (x)||Y
||x||αX

= N ∈ R+.

Then if |λ| /∈ [N
K
, N
L

]∪{0} then λT −F maps X onto Y . Therefore, if N = 0,

then for all λ 6= 0 the operator λT − F maps X onto Y .

First we consider the approximate controllability of the system (5.2.1) in

case where the controller B is the identity operator on H under Assumption

(DF) on the nonlinear operator f in Section 5.2. Hence, noting that H = U ,

we consider the linear system given by{
d
dt
y(t) = Ay(t) + u(t),

y(0) = x0,
(5.3.3)

and the following semilinear control system{
d
dt
x(t) = Ax(t) + f(t, x(t), v(t)) + v(t),

x(0) = x0.
(5.3.4)

Theorem 5.3.2. Assume that

lim sup
||u||→∞

||f(·, xu, u)||L2(0,T ;H)

||u||L2(0,T ;H)

< 1. (5.3.5)

Under the Assumption (DF) we have

RT (0) ⊂ RT (f).

Therefore, if the linear system (5.3.3) with f = 0 is approximately control-

lable, then so is the semilinear system (5.3.4).
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Proof. Let x(t) be solution of (5.3.4) corresponding to a control u. First, we

show that there exist a v ∈ L2(0, T ;H) such that{
v(t) = u(t)− f(t, x(t), v(t)), 0 < t ≤ T,

v(0) = u(0).

Let us define an operator F : L2(0, T ;H)→ L2(0, T ;H) as

Fv = −f(·, xv, v).

Then by Corollary 5.2.1, F is a compact mapping from L2(0, T ;H) to itself,

and we have
lim
||v||→∞

||λI(v)− F (v)||L2(0,T ;H) =∞,

where the identity operator I on L2(0, T ;H) is an odd (1, 1, 1)-homeomorphism.

Thus, from (5.3.5) and Corollary 5.3.1, if λ ≥ 1 then λI−F maps L2(0, T ;H)

onto itself. Hence, we have showed that there exists a v ∈ L2(0, T ;H) such

that v(t) = u(t) − f(t, y(t), v(t)). Let y and x be solutions of (5.3.3) and

(5.3.4) corresponding to controls u and v, respectively. Then, equation (5.3.4)

is rewritten as

d

dt
x(t) = Ax(t) + f(t, x(t), v(t)) + v(t), 0 < t ≤ T

= Ax(t) + f(t, x(t), v(t)) + u(t)− f(t, y(t), v(t))

= Ax(t) + u(t)

with x(0) = x0, which means

x(t) =S(t)x0 +

∫ t

0

S(t− s){f(s, x(s), v(s)) + v(s)}ds

=S(t)x0 +

∫ t

0

S(t− s)u(s)ds = y(t),

where y be solution of (5.3.3) corresponding to a control u. Therefore, we

have proved that RT (0) ⊂ RT (f).
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Corollary 5.3.2. Let us assume that

||k||L2(0,T )

√
T
(
L1C3 + L2

)
< 1,

where C3 is the constant in Proposition 5.2.1. Under the Assumption (DF),

we have
RT (0) ⊂ RT (f)

in case where B ≡ I.

Proof. By Lemma 5.2.1 and Proposition 5.2.1, we have

||Fu||L2(0,T ;H) = ||f(·, xu, u)||L2(0,T ;H)

≤ L0||k||L2(0,T )T/
√

2 + ||k||L2(0,T )

√
T (L1||x||L2(0,T ;V ) + L2||u||L2(0,T ;U))

≤ L0||k||L2(0,T )T/
√

2 + ||k||L2(0,T )

√
T
{
L1C3

(
|x0|+ ||u||L2(0,T ;U)

)
+ L2||u||L2(0,T ;U)

}
.

Hence, we have

lim sup
||u||→∞

||F (u)||L2(0,T ;H)

||u||L2(0,T ;U)

≤ ||k||L2(0,T )

√
T
(
L1C3 + L2

)
.

Thus, from Theorem 5.3.2, it follows that if λ ≥ 1 then λI − F maps

L2(0, T ;H) onto itself, and so, by the same argument as in the proof of

theorem it holds that RT (0) ⊂ RT (f).

From now on, we consider the initial value problem for the semilinear

parabolic equation (5.2.1). Let U be some Hilbert space and the controller

operator B be a bounded linear operator from U to H.

Assumption (DB) There exists a constant β > 0 such that R(f) ⊂ R(B)

and

||Bu|| ≥ β||u||, ∀u ∈ L2(0, T ;U).

Consider the linear system given by{
d
dt
y(t) = Ay(t) +Bu(t),

y(0) = x0.
(5.3.6)
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Theorem 5.3.3. Under the Assumptions (5.3.5), (DB) and (DF), we have

RT (0) ⊂ RT (f).

Therefore, if the linear system (5.3.6) with f = 0 is approximately control-

lable, then so is the semilinear system (5.2.1).

Proof. Let y be a solution of the linear system (5.3.6) with f = 0 correspond-

ing to a control u, and let x be a solutions of the semilinear system (5.3.4)

corresponding to a control v. Set v(t) = u(t) − B−1f(t, x(t), v(t)). Then,

system (5.2.1) is rewritten as

d

dt
x(t) = Ax(t) + f(t, x(t), v(t)) +Bv(t), 0 < t ≤ T

= Ax(t) + f(t, x(t), v(t)) +Bu(t)− f(t, x(t), v(t))

with x(0) = x0. Hence, we have

x(t) =S(t)x0 +

∫ t

0

S(t− s){f(s, x(s), v(s)) + v(s))}ds

=S(t)x0 +

∫ t

0

S(t− s)u(s))ds = y(t).

Thus, we obtain that RT (0) ⊂ RT (f).

Example. We consider the semilinear heat equation dealt with by Zhou

[85], and Naito [64]. Let

H = L2(0, π), V = H1
0 (0, π), V ∗ = H−1(0, π),

a(u, v) =

∫ π

0

du(x)

dx

dv(x)

dx
dx

and

A = d2/dx2 with D(A) = {y ∈ H2(0, π) : y(0) = y(π) = 0}.
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We consider the following retarded functional differential equation
d
dt
y(x, t) = Ay(x, t) +

∫ t
0
k(t− s)g(s, x(s), u(s))ds+Bu(t),

y(t, 0) = y(t, π) = 0, t > 0,

y(0, x) = φ0(x), y(x, s) = φ1(x, s), −h ≤ s < 0,

(5.3.7)

where k belongs to L2(0, T ). The eigenvalue and the eigenfunction of A are

λn = −n2 and φn(x) = sinnx, respectively. Let

U = {
∞∑
n=2

unφn :
∞∑
n=2

u2
n <∞},

Bu = 2u2φ1 +
∞∑
n=2

unφn, for u =
∞∑
n=2

un ∈ U.

It is easily seen that the operator B is one to one and R(B) is closed. It

follows that the operator B satisfies hypothesis as in Theorem 5.3.3. We can

see many examples which satisfy Assumption (DB) as seen in [85, 86].

For any x =
∑∞

n=1 xnφn ∈ L2(0, π), consider the nonlinear term g given

by

g(t, x, u) =
∞∑
n=1

(sinxn)φn(x) +
n
√
||u||φ2(x)

u
, n > 2.

It is easily seen that Assumption (DF) is satisfied. For x ∈ L2(0, T ;V ) and

k ∈ L2(0, π), we set

f(t, x, u) =

∫ t

0

k(t− s)g(s, x(s), u(s))ds.

Then

||f(·, x, u)||L2(0,T ;H) =

{∫ T

0

|
∫ t

0

k(t− s)
( ∞∑
n=1

(sinxn)φn(x) +
√
||u||φ2(x)

)
ds|dt

}1/2

≤
√
T ||k||L2(0,π)

( ∞∑
n=1

| sinxn|2 + n
√
||u||2

)
.
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Hence, we have

lim sup
||u||→∞

||f(·, x, u)||L2(0,T ;H)

||u||L2(0,T ;H)

= 0.

and R(g) ⊂ R(B). From Theorem 5.3.3 it follows that the system of (5.3.7)

is approximately controllable. Therefore, we obtain the approximate control-

lability of (5.3.7) without restrictions such as the uniform boundedness and

inequality constraints for Lipschitz constant of f or compactness of S(t).
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Chapter 6

Controllability for abstract semilinear control

systems with homogeneous properties

6.1 Introduction

In this paper, we deal with the approximate controllability for a semilinear

control system in the form:{
d
dt
x(t) = Ax(t) + f(t, x(t)) + (Bu)(t), 0 < t ≤ T,

x(0) = x0.
(6.1.1)

Let V and H be complex Hilbert spaces forming a Gelgand triple

V ↪→ H ≡ H∗ ↪→ V ∗

by identifying the antidual of H with H, where V is a Hilbert space densely

and continously embedded in H. Here, A is the operator associate with

a sesquilinear form satisfying G̊arding’s inequality as detailed in Section 2.

The motivation for the choice of Hilbert spaces setting for System (6.1.1)

is the application to L2-regularity using fact that the principal operator A

generates an analytic semigroup (S(t))t≥0 in both H and V ∗(see Jeong,1999;

Tanabe, 1979). The controller B is a bounded linear operator from another

Hilbert space L2(0, T ;U)(T > 0) to L2(0, T ;U). k belongs to L2(0, T ) and f

is a nonlinear mapping satisfying Lipschitz continuity.

There are various approaches to obtain the sufficient conditions for ap-

proximate controllability of semilinear control equations; the range condi-

tion argument of controller as seen in Zhou (1983, 1984), the controllability

of semilinear systems dominated by linear parts as in Dau er and Mahmu-

dov(2002), Jeong and Kang (2018), Naito (1987) and Radhakrishnan and
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Balachandran (2012). Another approach is to use a fixed point theorem

combined with technique of operator transformations in Balachandran and

Dauer (2002); Wang(2009). Recently, similar considerations of semilinear

neutral equations have been studied by many authors(see Ren, Hu, and Sak-

thivel, 2011; Fu, Lu, and You, 2014; Jothimani, Mokkedem and Fu, 2017;

Valliammal, and Ravichandran, 2018; Dhayal, Malik, and Abbas, 2019) as a

continuous study. Moreover, Kang and Jeong (2019) dealt with the approx-

imate controllability for System (6.1.1) assuming

lim sup
|||u||L2(0,T ;H)→∞

||f(·, u)||L2(0,T ;H)

||u||L2(0,T ;H)

6= 1

by using so called Fredholm theory: (λI−F )(u) = f for a given f is solvable

in L2(0, T ;H).

In this paper, authors want to use a new approach by using the surjectivity

theorems similar to the Fredholm alternative for nonlinear operators moti-

vated by the work Kang and Jeong (2019), which is about the solution of non-

linear operator equations λB(u)−F (u) = f provided that λB(u)−F (u) 6= 0

for each u. In order to obtain the approximate controllability for System

(6.1.1), it is necessary to suppose that B acts as an odd homeomorphism op-

erator while F is odd completely continuous and homogeneous as defined in

Section 3. By using this method, the approximate controllability of System

(6.1.1) can be given as applicable conditions without restrictions such as the

inequality constraints for Lipschitz constant of f or the compactness of S(t).

Section 2 gives some properties of the strict solutions of System (6.1.1)

and the continuity of the solution mapping on a control space with value

in the terminal state space. In Section 3, in order to apply the surjective

theory to the proof of the main theorem, we deal with the equation λB(u)−
F (u) = f is solvable provided that λ 6= 0 is not an eigenvalue for the couple

(T, F )(see Definition 6.3.3), which is equivalent that the nonlinear inverse

considered as a multivalued mapping is bounded. Based on results in Section

3, we obtain the sufficient conditions for the approximate controllability of
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semilinear systems when the corresponding linear system is approximately

controllable. Finally, a simple example to which our main result can be

applied is given.

6.2 Semilinear functional equations

Throughout this paper, as seen in Section 2.2, V , H and V ∗ are complex

Hilbert spaces forming a Gelgand triple

V ↪→ H ≡ H∗ ↪→ V ∗.

Moreover, A in System (6.1.1) is also the operator in place of −A in Section

2.2. It is known that A is a bounded linear operator from V to V ∗, and A

generates an analytic semigroup S(t)(t ≥ 0) in both of H and V ∗(see [76]).

Let f : R+ × V → H be a nonlinear mapping satisfying the following:

Assumption (EF).

(i) For any x ∈ V , the odd mapping f(·, x) is strongly measurable;

(ii) There exist positive constants L0, L such that for all t ∈ R+, x, x̂ ∈
V ,

|f(t, x)− f(t, x̂)| ≤ L||x− x̂||,

|f(t, 0)| ≤ L0.

Consider the following abstract semilinear system with initial values with

the forcing term g;{
d
dt
x(t) = Ax(t) + f(t, x(t) + g(t), 0 < t ≤ T, ,

x(0) = x0

(6.2.1)

By virtue of Theorem 3.1 of Jeong, Kwun, and Park (1999), we have the

following result on System (6.2.1).
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Proposition 6.2.1. Let Assumption (EF) be satisfied.

1) Assume that for (x0, g) ∈ V ×L2(0, T ;H). Then there exists a unique

solution x of System (6.2.1) such that

x ∈ L2(0, T ;D(A)) ∩W 1,2(0, T ;H) ⊂ C([0, T ];V ),

and there exists a constant C1 such that

||x||L2(0,T ;D(A))∩W 1,2(0,T ;H) ≤ C1(||x0||+ ||g||L2(0,T ;H)). (6.2.2)

2) Assume that for (x0, g) ∈ H×L2(0, T ;V ∗). Then there exists a unique

solution x of System (6.2.1) such that

x ∈ L2(0, T ;V ) ∩W 1,2(0, T ;V ∗) ⊂ C([0, T ];H),

and there exists a constant C1 such that

||x||L2(0,T ;V )∩W 1,2(0,T ;V ∗) ≤ C1(|x0|+ ||g||L2(0,T ;V ∗)). (6.2.3)

We refer to Theorem 3.3 of Di Blasio, Kunisch, and Sinestrari (1984) as

for the similar result for the regularity of linear case. Let U be a Hilbert space

and the controller operator B be a bounded linear operator from L2(0, T ;U)

to L2(0, T ;H).

Now, we consider the semilinear control system (6.1.1) with Bu in place

of g in System (6.2.1) as follows.

Corollary 6.2.1. Assume that the embedding D(A) ⊂ V is completely con-

tinuous. Let Assumption (EF) be satisfied, and xu be the solution of System

(6.1.1) associated with u ∈ L2(0, T ;U). Then the mapping u 7→ xu is com-

pletely continuous from L2(0, T ;U) to L2(0, T ;V ).

Proof. If u ∈ L2(0, T ;U), then in view of (6.2.3) in Proposition 6.2.1

||xu||L2(0,T ;V )∩W 1,2(0,T ;V ∗) ≤ C1(|x0|+ ||B|| ||u||L2(0,T ;U)).
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Since xu ∈ L2(0, T ;V ), we have f(·, xu) ∈ L2(0, T ;H). Consequently, by 1)

of Proposition 6.2.1, we have

xu ∈ L2(0, T ;D(A)) ∩W 1,2(0, T ;H).

Hence, with aid of (6.2.2) and (6.2.3) of Proposition 6.2.1,

||xu||L2(0,T ;D(A))∩W 1,2(0,T ;H) ≤ C1(||x0||+ ||f(·, xu) +Bu||L2(0,T ;H))

≤ C1

[
||x0||+

{
L||xu||L2(0,T ;V ) + L0

√
T
}

+ ||Bu||L2(0,T ;H)

]
≤ C1

[
||x0||+

{
C1L

(
|x0|+ ||Bu||L2(0,T ;V ∗)

)
+ L0

√
T
}

+ ||Bu||L2(0,T ;H)

]
.

Thus, if u is bounded in L2(0, T ;H), then so is xu in L2(0, T ;D(A)) ∩
W 1,2(0, T ;H). Since D(A) is compactly embedded in V by assumption, the

embedding

L2(0, T ;D(A)) ∩W 1,2(0, T ;V ) ⊂ L2(0, T ;V )

is completely continuous in view of Theorem 2 of Aubin (1997), therefore, the

mapping u 7→ xu is completely continuous from L2(0, T ;U) to L2(0, T ;V ).

6.3 Nonlinear operator equations

Let X and Y be Banach spaces with the norm ‖·‖X and ‖·‖Y , respectively.

Lemma 6.3.1. Let T be an odd (K,L, α)-homeomorphism of X onto Y (see

Definition 5.3.2) and F : X → Y an odd completely continuous operator.

Suppose that for λ 6= 0,

lim
||x||X→∞

||λT (x)− F (x)||Y =∞. (6.3.1)

Then λT − F maps X onto Y .
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Proof. We follow the proof Theorem 1.1 in Chapter II of Fučik, Nečas,

Souček, and Souček (1973). Suppose that there exists y ∈ Y such that

λT (x) = y. Then from (6.3.1) it follows that FT−1 : Y → Y is an odd

completely continuous operator and

lim
||y||Y→∞

||y − FT−1(
y

λ
)||Y =∞.

Let y0 ∈ Y . There exists r > 0 such that

||y − FT−1(
y

λ
)||Y > ||y0||Y ≥ 0

for each y ∈ Y satisfying ||y||Y = r. Let Yr = {y ∈ Y : ||y||Y < r} be a open

ball. Then by view of Lemma 6.3.1, we have d[y − FT−1( y
λ
);Yr, 0] is an odd

number. For each y ∈ Y satisfying ||y||Y = r and t ∈ [0, 1], there is

||y − FT−1(
y

λ
)− ty0||Y ≥ ||y − FT−1(

y

λ
)||Y − ||y0||Y > 0

and hence, by the homotopic property of degree, we have

d[y − FT−1(
y

λ
);Yr, y0] = d[y − FT−1(

y

λ
);Yr, 0] 6= 0.

Hence, there exists a y1 ∈ Yr such that

y1 − FT−1(
y1

λ
) = y0.

We can choose x0 ∈ X satisfying λT (x0) = y1, and so, λT (x0)− F (x0) = y0.

Thus, it implies that λT − F is a mapping of X onto Y .

Definition 6.3.1. Let F be mapping defined by on a Banach space X with

value in a real Banach space Y and b > 0 a real number. F is said to be

b-homogeneous if

tbF0(u) = F0(tu)

holds for each t ≥ 0 and all u ∈ X.
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Example 6.3.1. Set X = Y = R and

F (u) =
αu3

(1 + β)|u|
,

where α, β are positive numbers. Then F is said to be 2-homogeneous.

Definition 6.3.2. Let X and Y be two Banach spaces, T : X → Y , F :

X → Y operators and λ 6= 0 a real number. λ 6= 0 is said to be an eigenvalue

for the couple (T, F ) if there exists u0 ∈ X such that

λT (u0)− F (u0) = 0.

If the operator T is a-homogeneous and the operator F is b-homogeneous,

we are going to prove the existence of a solution of the equation

λT (x)− F (x) = y

for each y ∈ Y provided λ 6= 0 with a = b.

Theorem 6.3.1. Let X and Y be two Banach spaces. Let T be an odd

(K,L, a) - homeomorphism of X onto Y which is a-homogeneous. Let F :

X → Y be an odd completely continuous a-homogeneous operator. Suppose

λ 6= 0 is not an eigenvalue for the couple (T, F ). Then the operator λT − F
maps X onto Y .

Proof. In virtue of Lemma 6.3.1, it suffices to show that

lim
||x||X→∞

||λT (x)− F (x)||Y =∞.

Suppose that a constant M > 0 and a sequence {xn}, xn ∈ X, ||xn||X →∞
such that

||λT (xn)− F (xn)||Y ≤M

for each positive integer n. Here, we use symbols ”→ ” to denote the strong

convergence. Set
xn
||xn||X

= vn.
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Then we have

λT (xn)− F (xn)

||xn||aX
=
λT (||xn||vn)

||xn||aX
− F (||xn||vn)

||xn||aX
= λT (vn)− F (vn)→ 0.

The complete continuity of the operator F implies that there exists a subse-

quence {vnk
} ⊂ {vn} and v0 ∈ X such that

F (vnk
)→ λT (v0) ∈ Y.

Hence,

λT (vnk
)→ λT (v0) ∈ Y.

and since T is homeomorphic

vnk
→ v0.

We have ||v0|| = 1 and

λT (v0)− F (v0) = 0.

Thus λ is the eigenvalue number for the couple (T, F ), which is a contradic-

tion.

The following shows that if λ 6= 0 is not an eigenvalue for the couple (T, F )

if and only the nonlinear inverse (λT − F )−1 considered as a multivalued

mapping is bounded.

Corollary 6.3.1. Suppose that assumptions of T and F in Theorem 6.3.1

are satisfied. Then if λ 6= 0 is not an eigenvalue for the couple (T, F ) if and

only (λT − F )(X) = Y and for each L > 0 there exists r > 0 such that

||x||X ≤ r for all x ∈ X with ||λT (x)− F (x)||Y ≤ L.

Proof. Let λ 6= 0 be not an eigenvalue for the couple (T, F ). Suppose that

there exists a sequence {xn} ⊂ X, ||x||X = 1 such that

λT (xn)− F (xn)→ 0.
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The complete continuity of F implies that there exists a subsequence {xnk
} ⊂

{xn} and x0 ∈ X such that

F (xnk
)→ λT (x0) ∈ Y.

Hence,

λT (xnk
)→ λT (x0) ∈ Y.

and since T is homeomorphic,

xnk
→ x0.

We have ||x0|| = 1 and

λT (x0)− F (x0) = 0.

This is a contraction proving

inf
||x||X=1

||λT (xn)− F (xn)||Y = c > 0

and hence,

||λT (xn)− F (xn)||Y ≥ c||x||X

for each x ∈ X. The assertion of (λT − F )(X) = Y is from Theorem 6.3.1.

The proof of the converse is obvious.

6.4 Surjectivity theory for controllability

As seem in Section 5.3, the reachable sets for System (6.1.1) are repre-

sented as

RT (f) = {x(T ; f, u) : u ∈ L2(0, T ;U)},

RT (0) = {x(T ; 0, u) : u ∈ L2(0, T ;U)}.

For yg be the solution of System (6.2.1) with B ≡ I, we have

yg(t) =

∫ t

0

S(t− s){f(s, yg(s)) + g(s)}ds.
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By using the Krasnosel’skii theorem(see Aubin and Ekeland, 1984), we can

define an operator F : L2(0, T ;H)→ L2(0, T ;H) as

F (g) = −f(·, yg). (6.4.1)

We shall make use of the following assumption:

Assumption (EA). The embedding D(A) ⊂ V is completely continuous.

Assumption (EF1). F is 1-homogeneous, and satisfies Assumption (EF)

stated in Section 2.

Theorem 6.4.1. Let Assumptions (EA), and (EF1) be satisfied, and let

F (g) 6= g for every g 6= 0. Then if the linear system (6.1.1) with f ≡ 0 is

approximately controllable, then so is the semilinear system (6.1.1).

Proof. Let η ∈ L2(0, T ;D(A)). Then there exists p ∈ C1(0, T ;X) such that

η =

∫ T

0

S(T − s)p(s)ds,

for instance, p(s) = (η + sAη)/T . Since the linear system (6.1.1) with f ≡ 0

is approximately controllable, that is,

RT (0) = H,

for any ε > 0, there exists v ∈ L2(0, T ;U) such that

|η −
∫ T

0

S(T − s)(Bv)(s)ds| ≤ ε. (6.4.2)

Let

N = {q ∈ L2(0, T ;H) :

∫ T

0

S(T − s)q(s)ds = 0}

and denote by N⊥ be the orthogonal complement of N in L2(0, T ;H). We

denote the range of the operator B by HB. In view of (6.4.2) we have

L2(0, T ;H) = HB +N , where HB is the closure of HB in L2(0, T ;H).
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For u ∈ N⊥, let Pu be the unique minimum norm element of {u+N}∩HB.

Then the proof of Lemma 1 of Naito (1987) can be applied to show that P

is a linear and continuous operator from N⊥ to HB. Let Ỹ = L2(0, T ;H)/N

be the quotient space and the norm of a coset ũ = u + N ∈ Ỹ is defined of

||ũ|| = inf{|u+ f | : f ∈ N}.
We define by Q the isometric isomorphism from Ỹ onto N⊥, that is, Qũ

is the minimum norm element in ũ = {u+ f : f ∈ N}. Let

F ũ = F (PQũ) +N

for ũ ∈ Ỹ . Then F is a compact mapping from Ỹ to itself.

We are going to show that η ∈ RT (f)
V

, where RT (f)
V

is the closure of

RT (f) in V . In the sense of Corollary 6.2.1, from Assumption (EF1), we

get that F defined by (6.4.1) is also a completely continuous mapping from

L2(0, T ;H) to itself. Since the identity operator I on Ỹ is an odd (1, 1, 1)-

homeomorphism and 1-homogenous, and F (g) 6= g for every g 6= 0, we know

that λ = 1 is not an eigenvalue for the couple (I,F). Hence, from Theorem

6.3.1, it follows that that I − F maps Ỹ onto itself. Let z = Bv, where v

is the control in (6.4.2). Then z̃ = z + N ∈ Ỹ , and there exists ũ ∈ Ỹ such

that
z̃ = ũ−F ũ.

Put u = Qũ and uB = PQũ. Then we have that uB = Pu and u − uB =

u− Pu ∈ N . Hence

z̃ = u− F (uB) +N = uB − F (uB) +N.

Therefore,

η =

∫ T

0

W (T − s){−F (uB)(s) + uB(s)}ds

=

∫ T

0

W (T − s){f(s, yuB) + uB(s)})ds.
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Since uB ∈ HB, there exists a sequence {vn} ∈ L2(0, T ;U) such that Bvn 7→
uB in L2(0, T ;H). Then by the last part of Corollary 6.2.1, we have that

x(·; g, vn) 7→ yuB in L2(0, T ;D(A0))∩W 1,2(0, T ;H) ⊂ C([0, T ];V ), and hence

x(T ; g, vn) 7→ yuB(T ) = η in V . Thus we conclude η ∈ RT (g)
V

.

Assumption (EB). There exist positive constants β, γ such that

β‖u‖ ≤ |Bu| ≤ γ‖u‖, ∀u ∈ L2(0, T ;U).

Corollary 6.4.1. Let Assumptions (EA), (EF1), and (EB) be satisfied. Sup-

pose that λ = 1 is not an eigenvalue for the couple (B,F ). Then the semi-

linear control system (6.1.1) is approximately controllable.

Proof. SinceB is an odd (γ, β, 1)- homeomorphism of L2(0, T ;U) onto L2(0, T ;H),

From Theorem 6.4.1, it follows that then B − F maps L2(0, T ;U) onto

L2(0, T ;H) for any λ 6= 0.

Example 6.4.1. We consider the semilinear heat equation dealt with by

Naito (1987); Zhou (1983, 1984). Let

H = L2(0, π), V = H1
0 (0, π), V ∗ = H−1(0, π),

a(u, v) =

∫ π

0

du(x)

dx

dv(x)

dx
dx

and

A = d2/dx2 with D(A) = {y ∈ H2(0, π) : y(0) = y(π) = 0}.

The eigenvalue and the eigenfunction of A are λn = −n2 and φn(x) = sinnx,

respectively. Moreover, by the result known as Sobolev’s imbedding theorem,

the embedding D(A) ⊂ V is completely continuous. Let

U = {
∞∑
n=2

unφn :
∞∑
n=2

u2
n <∞},

Bu = 2u2φ1 +
∞∑
n=2

unφn, for u =
∞∑
n=2

un ∈ U.
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Now we can define bounded linear operator B̂ from L2(0, T ;U) to L2(0, T ;H)

by (B̂u) = Bu(t), u ∈ L2(0, T ;U). It is easily known that the operator B̂ is

one to one and satisfies Assumption (EB). We can see many examples which

satisfy Assumption (EB) as seen in Zhou (1983, 1984). Moreover, the linear

system of (6.1.1) with f ≡ 0 is approximately controllable. The nonlinear

term is given by

f(t, x) =
xφ1

1 + α(t)
+ σxφ2, σ > 0, α(t) ∈ C[0, T ]

It is easily seen that Assumption (EF1) is satisfied. Therefore, from Theorem

6.4.1 or Corollary 6.4.1, it follows that the system of (6.1.1) is approximately

controllable.

Example 6.4.2. Let Ω be a bounded domain in Rn with smooth boundary ∂Ω.

Let A(x,Dx) be an elliptic differential operator of second order in L2(Ω)(see

Yamamoto and Park, 1990):

A(x,Dx) = −
n∑

i,j=1

∂

∂xj
(ai,j(x)

∂

∂xi
)) +

n∑
i=1

bi(x)
∂

∂xi
+ c(x).

We consider a diffusion and reaction process differential equation defined as

Au = −A(x,Dx)u:
x
′
(t, ξ) = Ax(t, ξ) + f(t, x(t, ξ) + (Bu)(t)

x|∂Ω = 0,

x(ξ, t) = x0,

(6.4.3)

where the controller B is defined by Example 6.4.1. We define the following
spaces:

H1(Ω) =

{
x : x,

∂x

∂xi
∈ L2(Ω), i = 1, 2, · · · , n

}
,

H2(Ω) =

{
x : x,

∂x

∂xi
,

∂2x

∂xi∂xj
∈ L2(Ω), i, j = 1, 2, · · · , n

}
,

H1
0 (Ω) = {x : x ∈ H1(Ω), x|∂Ω = 0} = the closure of C∞0 (Ω) in H1(Ω),
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where ∂/∂ξix and ∂2/∂ξi∂ξjx are the derivative of x in the distribution sense.

The norm of H1
0 (Ω) is definued by

||x|| =
{∫

Ω

n∑
i=1

(∂x(x)

∂xi

)2
dx

}1/2

.

Hence H1
0 (Ω) is a Hilbert space. Let H−1(Ω)=H1

0 (Ω)∗ be a dual space of

H1
0 (Ω). For any l ∈ H−1(Ω) and v ∈ H1

0 (Ω), the notation (l, v) denotes the

value l at v. In what follows, we consider the regularity for given equations

in the spaces

V = H1
0 (Ω) = {x ∈ H1(Ω);x = 0 on ∂Ω}, H = L2(Ω), and V ∗ = H−1(Ω)

as introduced in Section 6.2. We deal with the Dirichlet condition’s case as
follows.

Assume that aij = aji are continuous and bounded on Ω and {aij(x)} is

positive definite uniformly in Ω, i.e., there exists a positive number δ such

that
n∑

i,j=1

aij(x)ξiξj ≥ δ|ξ|2, ∀ξ ∈ Ω̄. (6.4.4)

Let

bi ∈ L∞(Ω), c ∈ L∞(Ω) and βi =
n∑
j=1

∂aij/∂xj + bi.

For each x, y ∈ H1
0 (Ω), let us consider the following sesquilinear form:

a(x, y) =

∫
Ω

{ n∑
i,j=1

aij
∂x

∂ξi

∂y

∂ξj
+

n∑
j=1

βi
∂x

∂ξi
y + cxy

}
dx.

Since {aij} is real symmetric, by (6.4.4) the inequality

n∑
i,j=1

aij(x)ξiξ̄j ≥ δ|ξ|2
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holds for all complex vectors ξ = (ξ1, · · · , ξn). By hypothesis, there exists a

constant K such that |βi(x)| ≤ K and c(x) ≤ K hold a.e., hence

Re a(x, x) ≥
∫

Ω

δ
n∑
i=1

| ∂x
∂ξi
|2dx−K

∫
Ω

n∑
i=1

| ∂x
∂ξi
||x|dx−K

∫
Ω

|x|2dx

≥ δ

∫
Ω

n∑
i=1

| ∂x
∂ξi
|2dx−K

∫
Ω

n∑
i=1

( ε
2
| ∂x
∂ξi
|2 +

1

2ε
|x|2
)
dx−K

∫
Ω

|x|2dx

= (δ − ε

2
K)

n∑
i=1

∫
Ω

| ∂x
∂ξi
|2dx−

(nK
2ε

+K
) ∫

Ω

|x|2dx.

By choosing ε = δK−1, we have

Re a(x, x) ≥ δ

2

n∑
i=1

∫
Ω

| ∂x
∂ξi
|2dx−

(nK2

2δ
+K

) ∫
Ω

|x|2dx

=
δ

2
||x||21 −

(nK2

2δ
+K +

δ

2

)
||x||2.

By virtue of Lax-Milgram theorem, we know that for any y ∈ V there exists

f ∈ V ∗ such that

a(x, y) = (f, y).

Therefore, we know that the associated operator A : V → V ∗ defined by

(Ax, y) = −a(x, y), x, y ∈ V

is a bounded linear operator from V to V ∗, and A generates an analytic semi-

group S(t)(t ≥ 0) in both of H and V ∗(see [76]), which satisfies conditions

mentioned as Section 2.
We introduce a nonlinear mapping f : [0, T ]× V → H defined by

f(t, x) =

∫ t

0

k(t− s)
∫ s

0

n∑
i=1

∂

∂ξi
σi(τ,∇x(τ, ξ))dτds,
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where k belongs to L2(0, T ), and

g(t, x(t, ξ)) =

∫ t

0

n∑
i=1

∂

∂ξi
σi(s,∇x(s, ξ))ds.

We assume the following:

Assumption (EF2).

(i) The partial derivatives σi(s, x), ∂/∂t σi(t, x) and ∂/∂ξj σi(s, x) exist

and continuous for i = 1, 2, j = 1, 2, · · · , n;

(ii) t 7→ σi(s, x) is odd mapping (σi(s,−x) = −σi(s, x), and 1-homogeneous

(σi(·, tx) = tσi(·, tx));

(iii)

|σi(s, x)− σi(s, x̂)| ≤ L|x− x̂|

where | · | denotes the norm of L2(Ω).

For instance, we can give

σi(s, x) =
α|x|2

(1 + β)x
,

where, α, β are positive numbers. Then σi satisfies Assumption (EF1).

Lemma 6.4.1. If Assumption (EF1) is satisfied, then the mapping t 7→ g(t, ·)
is continuously differentiable on [0, T ] and x 7→ g(·, x) is Lipschitz continuous

on V .

Proof. Put

g1(s, x) =
n∑
i=1

∂

∂ξi
σi(s,∇x).
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Then we have g1(s, x) ∈ H−1(Ω). For each z ∈ H1
0 (Ω), we satisfy the follow-

ing that

(g1(s, x), z) = −
n∑
i=1

(σi(s,∇x),
∂

∂xi
z).

The nonlinear term is given by

g(t, x) =

∫ t

0

g1(s, x)ds.

For any z ∈ H1
0 (Ω), if x and x̂ belong to H1

0 (Ω), by Assumption (EF1) we

obtain
|(g(t, x)− g(t, x̂)), w| ≤ LT ||x− x̂|| ||z||.

Now in virtue of Lemma 6.4.1, we can apply the results of Theorem 6.4.1

as follows.

Theorem 6.4.2. Let Assumptions (EA), and (EF2) be satisfied, and let

F (g) 6= 0 for every g 6= 0, where F is defines as (6.4.1). Then if the lin-

ear system (6.4.3) with f ≡ 0 is approximately controllable, then so is the

semilinear system (6.4.3).

6.5 Conclusions

We have dealt with the approximate controllability of abstract semilinear

functional control equations by solving nonlinear operator equations. The

nonlinear equation is given as λB(x) − F (x) = y in dependence on the

real number λ, where B is a given controller operator and F is a nonlinear

operator. Similar results in linear functional analysis are well known and

they are sometimes called Fredholm theorems. To thes end, we have proved

that λB − F maps for any λ 6= 0 provided that B is an odd (K,L, a)-
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homeomorphism and a-homogeneous, F an odd completely continuous b-

homogeneous operator. Suppose that a = b, λB(u) 6= F (u) for every u,

that is, λ 6= 0 is not an eigenvalue for the couple (T, F ). Then the operator

λB−F maps X onto Y . Based on this consideration, we have established the

approximate controllability for a class of abstract semilinear control systems.

But, in the case where a 6= b, it seems to be unsolved up on our terms to

this time in infinite dimensional space. We shall prove the similar assertion

under the assumption a 6= b in a forthcoming work.
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