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Chapter 1
Introduction and Preliminaries

The purpose of this paper is to give a systematic presentation of the
theory of evolution equation with time delays based on the theory of ana-
lytic semigroups of bounded linear operators and its applications to partial
functional differential equations. The system with delays means that the
future state of given models in engineering, economics and natural sciences
depends on only on the present but on the past state and the derivative of
the past state. Such models that contain past information are called heredi-
tary systems. In this paper, we obtain a number of criteria for controllability
and regularity for various semilinear retarded functional differential control
systems with unbounded principal operators and more general conditions of
parameters in Hilbert spaces. Throughout this paper, we study a class of
abstract retarded equations in some Hilbert spaces.

The paper is organized as follows: In chapter 2, we are concerned with
the global existence of solution for the semilinear impulsive system:

z'(t) + Az(t) = f(t,z(t)) + k(t), te€(0,T), t#t,
k=1,2,---,m,

Ax(ty) = x(t)) —a(ty) = L(z(t,), k=1,2,---,m,
x(0) = xo,

where H and V' be real Hilbert spaces such that V' is a dense subspace in H.
Let A be the operator associated with a sesquilinear form af(-,-) defined on
V x V satisfying Garding’s inequality:

(Au,v) = a(u,v), u, veVv



where V' is a Hilbert space such that V' C H C V*. Then —A generates an
analytic semigroup in both H and V*(see [76, Theorem 3.6.1]) and so the
equation (2.1.1) may be considered as an equation in H as well as in V*. The
nonlinear operator f from [0,7] x V to H is assumed to be locally Lipschitz
continuous with respect to the second variable, and k is a forcing term. The
impulsive condition

Ax(ty) = a(t]) — o(ty) = I(x(ty)), k=1,2,---,m,

is a combination of traditional evolution systems and short term perturba-
tions whose duration is negligible in comparison with duration of the pro-
cess, such as biology, medicine, bioengineering etc. We propose a different
approach of the earlier works (briefly introduced in [76, 33, 43]) about the
mild, strong, and classical solutions of Cauchy problems. Our approach is
that results of the linear cases of Di Blasio [16] on the L*regularity remain
valid under the above formulation of the semilinear problem (1.2). Based on
the regularity for (2.1.1), we can apply for the approximate controllability
for (2.1.1). Approximate controllability for semilinear control systems can
be founded in [4, 10-18]. We note that the contents of this chapter have been
published in [39].

In chapter 3, We are concerned with the regularity of the following second-
order semilinear impulsive differential system

w” (t) = +f0 (t—s)g(s,w(s))ds+ f(t), 0<t<T,
w(0) = w' (0) = yo, (3.1.1)
Aw(tk) ( (te)), AwW'(ty) = F'(t)), k=1,2,..,m

in a Banach space X. Here k belongs to L*(0,T) and g : [0,T] x D(A) — X
is a nonlinear mapping such that w — ¢(t, w) satisfies Lipschitz continuous.
In (3.1.1), the principal operator A is the infinitesimal generator of a strongly

continuous cosine family C(¢), t € R. The impulsive condition

Aw(ty) = INw(ty), Aw'(t,) = Rw'(t)), k=1,2..m



is combination of traditional evolution systems whose duration is negligi-
ble in comparison with duration of the process, such as biology, medicine,
bioengineering etc. We allow implicit arguments about L2-regularity results
for semilinear hyperbolic equations with impulsive condition. These conse-
quences are obtained by showing that results of the linear cases [37, 10] and
semilinear case [41] on the L2-regularity remain valid under the above for-
mulation of (3.1.1). Earlier works prove existence of solution by using Azera
Ascoli theorem. But we propose a different approach from that of earlier
works to study mild, strong and classical solutions of Cauchy problems by
using the properties of the linear equation in the hereditary part, which is
seen in [40].

In Chapter 4, we consider the regularity of solutions for an abstract
parabolic type equation involving p-Laplacian:

9u(2,t) + Az, Dy)u(z, t) — div(|Vu(z, t) P2 Vu(z, t) = f(t), (z,t) € 2 x (0,77,
u(z,t) =0, (z,t) € 900 x (0,7,
(x,0) = up(z), =€,
(4.1.1)
where, ) be a bounded domain in R™ with smooth boundary 0f2. Let
A(z, D,) be an elliptic differential operator of second order as follows:

0
A(a:,Dw):—Zaxj(a” +Zb 8% o(x),

where {a;;(z)} is a positive definite symmetric matrix for each z € ,
b € CY(Q) and ¢ € L=(Q).

If we put Au = —A(x, D, )u then it is known that A generates an analytic
semigroup in LP(Q2)(see[l, 67]). In view of Sobolev’s embedding theorem,
we remark that LP(Q) C W1(Q), where W~1P(Q) is the dual space of

Wol’p, (Q)(p" = p/(p—1)). The space W~12(Q) is (-convex(as for the definition

and fundamental facts of a (-convex space see [18, 38]). Therefore, from the



interpolation theory it is easily seen that the operator A generates an analytic
semigroup in both H,, = (Wy?(Q), W~#(Q)),/,, and W=12(Q). Hence, we
can investigate the semilinear form (4.1.1) in the space W~1?(Q) and apply

the method of [26] to the system (4.1.1) to show the existence and uniqueness
of the solution

w e L9(0, T WiP(9)) N WH(0, T W2(9)) € C([0,T; Hyy)

for any ug € H,, and f € L9(0,T;W~12(Q))(p > 2). These details are
published in [44].

In Chapter 5, we deal with the approximate controllability for semilinear
integro-differential functional control equations in the form

La(t) = Ax(t) + fot k(t —s)g(s,z(s),u(s))ds + Bu(t), 0<t<T,
z(0) =g

(5.1.1)

in a Hilbert space H, where k belongs to L2(0,T)(T > 0) and g is a nonlinear

mapping as detailed in Section 2. The principal operator A generates an

analytic semigroup (S(t));>0 and B is a bounded linear operator from another

Hilbert space U to H. We want to use a different method than the previous

one. Our used tool is the theorems similar to the Fredholm alternative for
nonlinear operators under restrictive assumption, which is on the solution of

nonlinear operator equations AT (x) — F(x) = y in dependence on the real
number A\, where T" and F' are nonlinear operators defined a Banach space
X with values in a Banach space Y. In order to obtain the approximate
controllability for a class of semilinear integro-differential functional control
equations, it is necessary to suppose that T' acts as the identity operator
while F' related to the nonlinear term of (5.1.1) is completely continuous,
whose information is detailed in [50].

In Chapter 6, we deal with the approximate controllability for a semilinear
control system in the form:

{%x(t) = Ax(t) + f(t,2(t)) + (Bu)(t), 0<t<T, (6.1.1)

z(0) = z.



Let V and H be complex Hilbert spaces forming a Gelgand triple
Ve H=H —V*

by identifying the antidual of H with H, where V is a Hilbert space densely
and continously embedded in H. Here, A is the operator associate with
a sesquilinear form satisfying Garding’s inequality as detailed in Section 2.
The motivation for the choice of Hilbert spaces setting for System (6.1.1)
is the application to L?-regularity using fact that the principal operator A
generates an analytic semigroup (S(t)):>o in both H and V*(see Jeong,1999;
Tanabe, 1979). The controller B is a bounded linear operator from another
Hilbert space L?(0,T; U)(T > 0) to L*(0,T;U). k belongs to L*(0,T) and f
is a nonlinear mapping satisfying Lipschitz continuity.

We want to use a new approach by using the surjectivity theorems similar
to the Fredholm alternative for nonlinear operators motivated by the work
Kang and Jeong (2019), which is about the solution of nonlinear operator
equations AB(u) — F(u) = f provided that AB(u) — F(u) # 0 for each u.
In order to obtain the approximate controllability for System (6.1.1), it is
necessary to suppose that B acts as an odd homeomorphism operator while
F'is odd completely continuous and homogeneous as defined in Section 3.
By using this method, the approximate controllability of System (6.1.1) can
be given as applicable conditions without restrictions such as the inequality
constraints for Lipschitz constant of f or the compactness of S(t). These

contents have been dealt with by International Journal of Control [42].



Chapter 2
On semilinear impulsive differential equations
with local Lipschitz continuity

2.1 Introduction

In this paper, we are concerned with the global existence of solution and
the approximate controllability for the semilinear impulsive control system:

z'(t) + Az(t) = f(t,z(t)) + k(t), t€(0,T), t#ty,

k=12 m, 211)
Az(ty) = z(tf) — z(ty) = L(z(ty)), k=1,2,--- ,m, o
z(0) = xo.

Let H and V be real Hilbert spaces such that /' is a dense subspace in
H. Let A be the operator associated with a sesquilinear form a(-,-) defined
on V x V satisfying Garding’s inequality:

(Au,v) = a(u,v), u, veV

where V' is a Hilbert space such that V" C H C V*. Then —A generates an

analytic semigroup in both H and V*(see [76, Theorem 3.6.1]) and so the

equation (2.1.1) may be considered as an equation in H as well as in V*. The

nonlinear operator f from [0,7] x V to H is assumed to be locally Lipschitz

continuous with respect to the second variable, and k is a forcing term.
The impulsive condition

Ax(ty) = 2(th) —a(t7) = L(a(t7), k=1,2,--m,



is a combination of traditional evolution systems and short term perturba-
tions whose duration is negligible in comparison with duration of the process,
such as biology, medicine, bioengineering etc.

The existence of solutions for a class of semilinear functional differential
equations has been studied by many authors. Recently, Kobayashi et el.

[51] introduced the notion of semigroups of locally Lipschitz operators which
provide us with mild solutions to the Cauchy problem for semilinear evolu-
tion equations. The regularity for the semilinear heat equations has been
developed as seen in section 4.3.1 of Barbu [10] and [46, 67, 82].

In this paper, we propose a different approach of the earlier works (briefly
introduced in [76, 33, 43]) about the mild, strong, and classical solutions of
Cauchy problems. Our approach is that results of the linear cases of Di Blasio
[16] on the L?-regularity remain valid under the above formulation of the
semilinear problem (1.2). Based on the regularity for (2.1.1), we can apply
for the approximate controllability for (2.1.1). Approximate controllability
for semilinear control systems can be founded in [4, 10-18].

The paper is organized as follows. In section 2, the results of general
linear evolution equations besides notations and assumptions are stated. In
section 3, we will obtain that the regularity for parabolic linear equations can
also be applicable to (2.1.1) with nonlinear terms satisfying local Lipschitz
continuity. The approach used here is similar to that developed in [76, 46]
on the general semilnear evolution equations, which is an important role to
extend the theory of practical nonlinear partial differential equations. In
order to apply control systems, we need some compactness hypothesis. So
we make the natural assumption that the embedding D(A) C V is compact
instead of the compact property of semigroup used in [23, 80]. Then by virtue
of the result in Aubin [6], we can take advantage of the fact that the solution
mapping u € L*(0,T;U) — x(T; f,u) is compact. Finally we give a simple
example to which our main result can be applied.



2.2 Regularity for linear equations

If H is identified with its dual space we may write V' C H C V* densely
and the corresponding injections are continuous. The norm on V', H and V*
will be denoted by || - ||, | - | and || - ||+, respectively. The duality pairing
between the element v; of V* and the element vy of V' is denoted by (vq, v),
which is the ordinary inner product in H if vy,v, € H.

For [ € V* we denote (I,v) by the value [(v) of [ at v € V. The norm of
[ as element of V* is given by

()|

o = sh i .
H“* 2 ||U||

Therefore, we assume that V' has a stronger topology than H and, for brevity,
we may regard that

ull« < Jul < lull, Vu e V. (2.2.1)

Let a(-, ) be a bounded sesquilinear form defined in V' x V' and satisfying
Garding’s inequality

Re a(u,u) > wil|u]|* — walul?, (2.2.2)

where w; > 0 and w, is a real number. Let A be the operator associated with
this sesquilinear form:

(Au,v) = a(u,v), u, veV.

Then —A is a bounded linear operator from V to V* by the Lax-Milgram
Theorem. The realization of A in H which is the restriction of A to

DA)={ueV:Aue H}
is also denoted by A. From the following inequalities

willul[* < Rea(u,u) + wslul* < C|Aul [u] + wslul* < max{C, wa}||ul[pealul,



where
lullpeay = (|Aul® + Jul*)"?

is the graph norm of D(A), it follows that there exists a constant Cy > 0
such that
1/2
[[ul] < Collul| gy lul'7>. (2.2.3)

Thus we have the following sequence
D(A)cV CHCV*C DA, (2.2.4)
where each space is dense in the next one which continuous injection.

Lemma 2.2.1. With the notations (2.2.3), (2.2.4), we have
(V7 V*)1/2,2 = H;
(D(A), H) 122 =V,

where (V,V*)1,2,2 denotes the real interpolation space between V. and V* (Section
1.8.3 of [79]).

It is also well known that A generates an analytic semigroup S(t) in both
H and V*. For the sake of simplicity we assume that ws = 0 and hence the
closed half plane {\ : Re A > 0} is contained in the resolvent set of A.

If X is a Banach space, L*(0,T; X) is the collection of all strongly measur-
able square integrable functions from (0,7) into X and W2(0,T; X) is the
set of all absolutely continuous functions on [0, 7] such that their derivative
belongs to L?*(0,T; X). C([0,T]; X) will denote the set of all continuously
functions from [0, 7] into X with the supremum norm. If X and Y are two
Banach space, £(X,Y’) is the collection of all bounded linear operators from
X into Y, and L£(X, X) is simply written as £(X). Let the solution spaces
W(T) and W, (T) of strong solutions be defined by

W(T) = L*(0,T; D(A)) nWH(0,T; H),
Wi(T) = L*(0,T; V) " W20, T; V™).



Here, we note that by using interpolation theory, we have
W(T) c C([0, T}; V), Wi(T)cC C([0,T]; H).
Thus, there exists a constant My > 0 such that
zlloqorivy < Mollzlhway,  lzlleqorsm < Mollz[[wym@)- (2.2.5)

The semigroup generated by —A is denoted by S(t) and there exists a con-

stant M such that
S < M, ||s(t)]]. < M.

The following Lemma is from Lemma 3.6.2 of [76].

Lemma 2.2.2. There exists a constant M > 0 such that the following in-
equalities hold for all t > 0 and every x € H or V*:

|S(t)x| < Mt 12|zl (IS@)2l] < Mt~V?[a.

Lemma 2.2.3. (a) A“ is a closed operator with its domain dense.
(b) If0<a<p, then D(AY) D D(AP).

(¢) For any T > 0, there exists a positive constant C, such that the
following inequalities hold for all t > 0.
C,, N Ca
1A°SOeen = 27 NA"SOllzeryy < o
Proof. From [1,Lemma 3.6.2] it follows that there exists a positive constant

C such that the following inequalities hold for all £ > 0 and every x € H or
V.

C
[AS (el < —lal,  1AS(t)al] <

g1l

10



First of all, consider the following linear system

{ x'(t) + Ax(t) = k(2), (2.2.6)

z(0) = xo.

By virtue of Theorem 3.3 of [16](or Theorem 3.1 of [46], [76]), we have

the following result on the corresponding linear equation of (2.2.6).

Lemma 2.2.4. Suppose that the assumptions for the principal operator A
stated above are satisfied. Then the following properties hold:
1) For xg € V = (D(A), H)129(see Lemma 2.2.1) and k € L*(0,T; H), T >
0, there exists a unique solution x of (2.2.6) belonging to W(T') € C([0,T); V)
and satisfying

zllwiry < Cr(llaol | + 1%l L2031, (2.2.7)
where C is a constant depending on T
2) Let xo € H and k € L*(0,T;V*), T > 0. Then there exists a unique
solution x of (2.2.6) belonging to Wy (T) € C([0,T]; H) and satisfying

[zl ) < Crllaol + 1Kll20.1v4), (2.2.8)

where C is a constant depending on T

Lemma 2.2.5. Suppose that k € L*(0,T; H) and x(t) = [ S(t — s)k(s)ds
for 0 <t <T. Then there exists a constant Cy such that

||| L20,7:00a)) < Chl|E|| 220,10 (2.2.9)

||$||L2(0,T;H) S CQTHkHLQ(O,T;H)y (2210)
and

2| 20y < CoVT| k|| 20,701 (2.2.11)

11



Proof. The assertion (2.2.9) is immediately obtained by (2.2.7). Since
T T
ol [Z20zey = Jo |Jo S = s)k(s)dsPdt < M [ ([ [k(s)|ds)?dt
<M [t [0k (s)Pdsdt < MZ [T |k(s)|*ds
it follows that
|2l 2 05y < TN/ MJ2|[K|| L2(0,7:m)-
From (2.2.3), (2.2.9), and (2.2.10) it holds that
12l 2200wy < Cov/CYT(M/2)! | Kl | 20,7:m)-
So, if we take a constant Cy > 0 such that
02 = max{\/ M/2, Co\/ Cl(M/2)1/4},

the proof is complete. n

2.3 Semilinear differential equations

Let f be a nonlinear mapping from V into H.

Assumption (AF). There exists a function L : R, — R such that L(r;) <
L(ry) for r < ry and

[f(E )| < L(r),  [f(tx) = f(t )] < Lir)|le =yl
hold for any ¢ € [0, 7], ||z|| < r and ||y|| < 7.

Assumption (AI). The functions I, : V — H are continuous and there
exist positive constants L(I;) and § € (1/3, 1] such that

(AP T ()] < L)l |APIu(x) = I(y)] < LU e —yll, k=1,2,---,m
for each x,y € V, and
eI < K, k=12 m.

12



From now on, we establish the following results on the local solvability of
the following equation;

o' (t) + Az(t) = f(t,z(t)) + k(t), te€(0,T], t#t,
k=1,2,---,m,

Aw(ty) = x(tf) — x(ty) = L(a(ty)), k=1,2,---,m,

z(0) = xo.

(2.3.1)

Let us rewrite (Fx)(t) = f(t,z(t)) for each z € L?(0,T; V). Then there is a
constant, denoted again by L(r), such that

|1Fel| 2oy < LIOVT,  ||Fay = Fasl| 2 < L(r)| |z — 2ol | 202
hold for 1, z € B,(T) = {z € L*(0,T;V) : ||z||12007v) < 7}

Here, we note that by using interpolation theory, we have that for any
t >0,

L2(0,t; V) N W20, V*) € C([0,t]; H).
Thus, for any t > 0, there exists a constant ¢ > 0 such that
|z lleqoum < cllzllzomvynwr2omv)- (2.3.2)

Let
0=ty <t T uslp<<t,=T.

Then by Assumption (AI) and (2.3.1), it is immediately seen that
$EW1’2(ti,ti+1;V*), Z:O, ,m—l.

Thus by virtue of Assumption (Al) and (2.3.2), we may consider that there
exists a constant C3 > 0 such that

Orgtfggpﬂx(tﬂ : ¢ is a solution of (2.3.1)} < Cs|x||20,7:v)- (2.3.3)

From now on, we establish the following results on the solvability of the

equation(2.3.1).

13



Theorem 2.3.1. Let Assumption (AF) be satisfied. Assume that xy € H,
k € L*(0,T;V*). Then, there exists a time Ty € (0,T) such that the equation
(2.3.1) admits a solution

z € Wi(Ty) € C([0,Ty); H). (2.3.4)

Proof. For a solution of (2.3.1) in the wider sense, we are going to find a

local solution of the following integral equation

2(t) = S(t)zo + /0 S(t— s){(Fx)(s) + k(s)}ds + 3 S(t — ti)Iu(x(t;).

0<tp <t
(2.3.5)

To prove a local solution, we will use the successive iteration method. First,
put

zo(t) = S(t)xo +/0 S(t — s)k(s)ds

and define x;1(t) as

zj1(t) = xo(t) +/0 S(t—s)(Fzj)(s)ds+ Z S(t—te)Ik(z;(ty)). (2.3.6)

0<tp<t

By virtue of Lemma 2.2.4, we have x(-) € Wi (t), so that
lzo(llwaey < Crllzol + [[F]z20.6v)); (2.3.7)

where C| is a constant in Lemma 2.2.4. Choose r > Ci(|xo| + ||k||2(0,6:v+))-

Putting p(t) = fg S(t —s)(Fzo)(s)ds, by (2.11) of Lemma 2.2.5, we have

HpHLQ(O,t;V) S CQ\/%HF.’L'OHL%OJ;H) § CQL(?“)?f (238)

Putting ¢(t) := S(t — t;)Ix(z(t;)), by Assumption (AI) and Lemma 2.2.3,

we have
g (®)|z20,6v) < 2(38)7V2(38 — 1) 'C1_g K L(1;)t*/. (2.3.9)
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Put
My = max{CoL(r)t, 2(38) /2(38 — 1) 'CisKL(L)F?),  (2.3.10)

then for any ¢ satisfying, M, < r, from (2.3.4) and (2.3.5). so that, from(2.3.7)
and (2.3.8) and (2.3.9),

21| r20v) < THCLL(r)t4+2(38) "2 (38—1)1CiopK > LIt/ < 3.

0<trp<t

By induction, it can be shown that for all j = 1,2, ...
il p20,e) < 3r,0 < ¢ < M. (2.3.11)

Hence, from the equation
ria(®) = 2,(8) = [ St =) (ta3(6) ~ (62501 s
+ > St — te){Tlw; (t)) — Inlwja (tr)}-

O<trp<t

Set
h(t) = 8t = te){Un(21(8) — In(za(t))}-
Then from (2.3.2) and (2.3.3) it follows that

Bl = /|| / (s — ti) U u(as (1) — T (ealty ) s [2de] /2

< / I / AS(s — t) (T (7)) — Lu(alty ) s 2de] 2

< [ ) - st )

< (38)7H22(38 — 1)_101_503L(]k)T35/2||x1 — o] 20.12v)-
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Hence, from the equation

zj(t) — z;(t) = /0 St = s){(Fx;)(s) — (Fxj-1)(s)}ds
+ ) S =t { Il (8)) — Ty (8))}-

Put

My := CoL(3r)VE+ (38)7172(38 = 1)"ChpCs Y LI (2:3.12)

0<tp<t

Then from (2.2.11), (2.3.11) and Assumption (AF), we can observe that the

inequality

|2j41 — 5] 204y < CoL(3r)VE |25 — 25112040y

+(38) 7238 = )TC15Cs Y LUI)E |25 — vl o)

0<tp<t
< Msl|z; — zj-allr206v)
< (M) ||1 — @ol| r2(0,45v)-

Choose Ty > 0 satisfying max{My, My} < 1. Then {z;} is strongly conver-
gent to a function x in L2(0,Ty; V) uniformly on 0 < t < Ty. By letting
Jj — oo in (2.3.6) has a unique solution z in Wi (T). O

From now on, we give a norm estimation of the solution of (2.3.1) and
establish the global existence of solutions with the aid of norm estimations.
Theorem 2.3.2. Under Assumption (AF) for the nonlinear mapping f,
there exists a unique solution x of (2.3.1) such that

reW(T) = L*0,T;V)nW0,T;V*) c C([0,T); H), T >0.

for any xo € H, k € L*(0,T;V*). Moreover, there exists a constant Cy such
that
|zl [wi () < Ca(L+ |2o| + |[E[|200v4)); (2.3.13)

where Cy is a constant depending on T .
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Proof. Let x be a solution of (2.3.1) on [0, Ty], Ty > 0 satisfies max{ My, My} <
1. Here M; and M, be constants in (2.3.10) and (2.3.12), respectively. Then
by virtue of Theorem 2.3.1, the solution z is represented as

x(t) = xo(t) + /0 S(t— s)(Fz)(s)ds + Z St —ti) I(z(t})).

0<ty<t
where
zo(t) = S(t)xo + /t S(t — s)k(s)ds.
0
By (2.3.7), we have z((-) € Wi (Ty), so that
ol lwi () < Cullol + [kl L2 0.20:v%))5

where C} is constant in Lemma 2.2.4. Moreover, from (2.3.7)-(2.3.9), it follow
that

|z llwi () < Cr(lol + 1Kl 200,m5v+)) + max{ My, Mo} |[z[bwy (). (2-3.14)
Thus, moreover, there exists a constant Cy such that
|l [wim) < Ca(l + |o| + [[kl|z20m5v+)-

Now from
t

|S(t)x0—|—/ S(t—s){(Fz)(s)+k(s)}ds| < M|x0|+MtL(r)+M\/f||k||L2(0,t;H),
0

and

| Y St —t)Iu(a(ty))] < MEIA™] Y L(Iy).

O<trp<t O<tp<t

it follow

|| < Mlao| + MToL(r) + M~/To| ||| 20,0 + ME[A™?] Y L(I}) < o0.

0<tr<To
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Hence, we can solve the equation in [Ty, 27| with the initial value z(7}) and
obtain an analogous estimate to (2.3.14). Since the condition (2.3.10),(2.3.12)
is independent of initial value, the solution can be extended to the interval
[0,nTp] for any natural number n, i.e., for the initial u(nTp) in the interval
(nTy, (n+1)Tp], as analogous estimate (2.3.14) holds for the solution in [0, (n+
1)To). O

From the following result, we obtain that the solution mapping is contin-
uous, which is useful for physical application of the given equation.

Theorem 2.3.3. Let Assumptions (AF) and (AI) be satisfied and (xq, k) €
H x L*(0,T;V). Then the solution x of the equation (2.3.1) belongs to x €
Wi = L20,T; V)N WY2(0,T;V*) and the mapping

H x L*(0,T;V*) 3 (z0, k) = © € Wy(T) (2.3.15)

18 continuous.

Proof. From Theorem 2.3.2, it follows that if (zo, k) € H x L*(0,T;V*) then
x belongs to Wi (T). Let (zg;, k;) € H x L*(0,T;V*) and x; € Wi (T) be the
solution of (2.3.1) with (x;, k;) in place of (xg, k) for ¢ = 1, 2. Hence, we
assume that z; belongs to a ball B.(T") = {y € Wi(T) : ||y||w, ) <7}

Let

(px;)(t) = /0 S(t — s)Faj(s)ds + > St — tx) I (ty)).

0<tp<t

Then, by virtue Lemma 2.2.4, we get

|21 — $2||W1(T) = C{|xy — x| + ||k1 — k2||L2(0,T;V*) + ||pxy —pr2||L2(0,T;V*)}~
(2.3.16)
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Set ||-||20,1p;v) = ||-|| 2 for brevity, where Ty > 0 satisfies maz{M;, My} < 1.

Then, we have

[[pr1 — P2l L2(0,105v+) < [|[pT1 — P22l L2
¢
= ||/ S(t — s){Fxy — Fry}ds|| 2
0

D S =t {I(ity) — e ()12

0<trp<t

S M2||$1 — ZL’2||L2. (2317)
Hence, by (2.3.16), (2.3.17), we see that
Ty = T E Wl(To) =3 LQ(O, TQ, V) N W1’2<O, To, V*)

This implies that (2,(T0), (z.)7,) = (2(Ty), ) in H x L*(0,T;V*). Hence
the same argument show that z,, — x in

L*(0,min{2Tp, T}; V) N W2(0, min{2Ty, T}; V*).
Repeating this process, we conclude that x,, — x in Wy (T'). a

Example 2.3.1. Let
H=1IL*0,7), V=H;0,7), V*= H*0,n),

and
A=—d*d® with D(A) = {y € H*(0,7) : y(0) = y(r) = O}.
We consider the following retarded functional differential equation
( Dat,y) + Az(t,y) = f |zt y) Pzt y) + k), t€(0,T], t#t,
k= 1727"' , M,
z(t,0) =z(t,7) =0, t>0
\ 1’(0, y) = Zl?()(y)

(2.3.18)
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The eigenvalue and the eigenfunction of A are \, = —n? and z,(y) =

(2/7)Y2sinny, respectively. Moreover, {z, : n € N} is an orthogonal ba-
sis of H and

oo
Ze” T, 2p)2n, V€ H, t>0.

n=1

Moreover, there exists a constant My such that ||S(t)||zmy < M.
Let 0 < a < 1. Then the fractional power A* : D(A*) C H — H of A is
given by

A%z = 3" 0 (2, 20) 20, D(A®) := {w: A% € H}.
In particular,

A-1/2, A ~1/2
Z—xzn zn, and ||AT7%|| =

3

The nonlinear mapping f 18 a real valued function belong to C*([0, 00)) which

satisfies the conditions

(f1)  f(0) =0, f(r) 20 forr >0,
(f2) |f (r) < c(r+1) and |gf"(r)| < ¢ forr >0 and c > 0.

If we present
F(t,x(t,y)) = [ (l=(t.y)P)a(t,y).

Then it is well known that F' is a locally Lipschitz continuous mapping from
the whole V into H by Sobolev’s imbedding theorem (see [76, Theorem 6.1.6]).
As an ezample of q in the above, we can choose q(r) = p*r +n*r?/2 (u and
n is constants). It is well known that Assumption (AF) has been satisfied.
Thus, with condition on Assumption (Al) there exists a solution of (2.5.18)
belongs to Wi (T) = L*(0,T;V)) N Wh2(0,T;V*) < C([0,T]; H) for any
(o, k) € H x L*(0,T;V*).
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Chapter 3
On solutions of semilinear second-order
impulsive functional differential equations

3.1 Introduction

In this paper we are concerned with the regularity of the following second-

order semilinear impulsive differential system

w” (t) = Aw(t) + [3 k(t = 5)g(s,w(s))ds + f(t), 0<t<T,
w(0) =z, w' (0) = yo, (3.1.1)
Aw(ty) =L (w(te))y Aw'(t) = E@'(@)), k= 1,2,.1,m

in a Banach space X. Here k belongs to L*(0,7) and g : [0,T] x D(A) — X
is a nonlinear mapping such that w +— g(¢, w) satisfies Lipschitz continuous.
In (3.1.1), the principal operator A is the infinitesimal generator of a strongly

continuous cosine family C'(¢), ¢t € R. The impulsive condition
Aw(ty) = IHw(ty), Aw'(ty) =FW(t))), k=1,2,...m

is combination of traditional evolution systems whose duration is negligi-
ble in comparison with duration of the process, such as biology, medicine,
bioengineering etc.

In recent years the theory of impulsive differential systems has been
emerging as an important area of investigation in applied sciences. The
reason is that it is richer than the corresponding theory of classical differ-
ential equations and it is more adequate to represent some processes arising
in various disciplines. The theory of impulsive systems provides a general
framework for mathematical modeling of many real world phenomena(see
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[54, 72] and references therein). The theory of impulsive differential equa-
tions has seen considerable development. Impulsive differential systems have
been studied in [3, 2, 68, 87], second-order impulsive integrodifferential sys-
tems in [5, 69], and Stochastic differential systems with impulsive conditions
in [4, 9, 36].

In this paper, we allow implicit arguments about L2-regularity results
for semilinear hyperbolic equations with impulsive condition. These conse-
quences are obtained by showing that results of the linear cases [37, 10] and
semilinear case [41] on the L2-regularity remain valid under the above for-
mulation of (3.1.1). Earlier works prove existence of solution by using Azera
Ascoli theorem. But we propose a different approach from that of earlier
works to study mild, strong and classical solutions of Cauchy problems by
using the properties of the linear equation in the hereditary part.

This paper is organized as follows. In Section 2, we give some definition,
notation and the regularity for the corresponding linear equations. In Section
3, by using properties of the strict solutions of linear equations in dealt in

Section 2, we will obtain the L*regularity of solutions of (3.1.1), and a
variation of constant formula of solutions of (3.1.1). Finally, we also give an
example to illustrate the applications of the abstract results.

3.2 Preliminaries

In this section, we give some definitions, notations, hypotheses and Lem-
mas. Let X be a Banach space with norm denoted by | - ||.

Definition 3.2.1. [77] A one parameter family C(t), t € R, of bounded
linear operators in X is called a strongly continuous cosine family if

c(1) C(s+1t)+C(s—t)=2C(s)C(t), foralls, teR,
c(2) C(0)=1,

c(8) C(t)xr s continuous in t on R for each fized x € X.
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If C(t), t € Risastrongly continuous cosine family in X , then S(¢), t €
R is the one parameter family of operators in X defined by

t
S(t)r = / C(s)xds, z € X, t€R. (3.2.1)
0

The infinitesimal generator of a strongly continuous cosine family C'(t), t €
R is the operator A : X — X defined by

d2
Ax = — :
T = C(0)z

We endow with the domain D(A) = {z € X : C(t)z is a twice continuously

differentiable function of ¢} with norm

d
[zl peay = [|2{] + Sup{H%C(t)xH :t € R} + |[Az]],
We shall also make use of the set

E ={z € X :C(t)x is a once continuously differentiable function of ¢}
with norm
d
12]le = Il + supfl|- C(B)e]| : # € R}.

It is not difficult to show that D(A) and E with given norms are Banach
spaces.

The following Lemma is from Proposition 2.1 and Proposition 2.2 of [54].

Lemma 3.2.1. Let C(t)(t € R) be a strongly continuous cosine family in X .
The following are true :

c(4) C(t)=C(=t) forallt € R,
c(5) C(s),S(s),C(t) and S(t) commute for all s,t € R,
c(6) S(t)x is continuous in t on R for each fized v € X,
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c(7)

c(8)

¢(9)

c(10)

¢(11)
¢(12)
¢(13)
c(14)

there exist constants K > 1 and w > 0 such that

IC@®)|| < Ke?'! for all t € R,

t1
|w@g—5@mfyz/ lds| for all 11,1, € B,

to

if v € E, then S(t)x € D(A) and

%C’(t)a: = AS(t)x = S(t)Ax = d—25<t)$=

if v € D(A), then C(t)x € D(A) and

d2
T5C(H)z = AC(t)x = C(t)As,

ifx € X andr,s € R, then

/S S(r)zdr € D(A) and A(/s S(m)zdr) = C(s)x — C(r)z,

C(s+1t)+C(s=1t) =2C(s)C(t) for all s,t € R,
S(s+1t) = S(s)C(t) + S(t)C(s) for all s,t € R,
C(s+1t)=C(t)C(s) — S(t)S(s) for all s,t € R,

C(s+t)—C(t—s)=2A5(t)S(s) for all s,t € R.

The following Lemma is from Proposition 2.4 of [77].

Lemma 3.2.2. Let C(t)(t € R) be a strongly continuous cosine family in X

with infinitesimal generator A. If f : R — X is continuously differentiable,
xo € D(A), yo € E, and

w(t) = C(t)xo + S(t)yo + /Ot S(t—s)f(s)ds, teR,
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then w(t) € D(A) fort € R, w is twice continuously differentiable, and w

satisfies

’

w' (t) = Aw(t) + f(t), t € R, w(0) =z, w (0) =y (3.2.2)

Conversely, if f: R — X is continuous, w(t) : R — X is twice continuously
differentiable, w(t) € D(A) fort € R, and w satisfies (3.2.2), then

w(t) = C(t)xo + S(t)yo + /Ot S(t—s)f(s)ds, teR.

Proposition 3.2.1. Let f : R — X is continuously differentiable, o €
D(A), yo € E. Then

w(t) = C(t)zg+ SH)yo + /Ot S(t—s)f(s)ds, teR

is a solution of (3.2.2) belonging to L*(0,T; D(A)) N"W2(0,T; E). Moreover,

we have that there exists a positive constant Cy such that for any T > 0,

W] z20,7:00a)) < C1(1 + [|mo][peay + llvolle + || fllwr20,1:x))- (3.2.3)

3.3 Nonlinear equations

This section is to investigate the regularity of solutions of a second-order
nonlinear impulsive differential system

(t) —i—fo (t—s)g(s,w(s))ds+ f(t), 0<t<T,
) =z, w'(0) = yo, (3.3.1)
Aw(ty) = LHw(ty)), Aw'(ty) = F(W'(t))), k=1,2,...,m

in a Banach space X.

Assumption (BG) Let ¢ : [0,7] x D(A) — X be a nonlinear mapping
such that t — ¢(t,w) is measurable and
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(bgl) |lg(t,w1) — g(t, w2)l|peay < Lijwy — wel,

for a positive constant L.

Assumption (BI) Let I} : D(A) — X, I? : E — X be continuous and
there exist positive constants L(I}), L(I?) such that

(bil) [[L(w1) = Iy (wa)[] < L{Ip)[Jwr — wallp(a), for each wy, wy € D(A)
17z (w)[| < L(Iy), for w € D(A)

(bi2) [|7i(w) — I3 (wy)]| < LUIF)|lwy — wh]|e, for each wy, wh € E
17E @) < L), for w' € E.

For w € L*(0,T : D(A)), we set

¢
refl £ / 5 — O &) ds
0
where k belongs to L?(0,T). Then we will seek a mild solution of (3.3.1),
that is, a solution of the integral equation
¢
w(t) =C(t)xo + S(t)yo + / S(t —s){F(s,w) + f(s)}ds
0

+ > Clt—t)L(wt) + Y St —t)(w'(t)), teR.

0<tp<t 0<tr<t

(3.3.2)

Remark 3.3.1. If¢g:[0,T] x X — X is a nonlinear mapping satisfying

llg(t, w1) — g(t, w2)|| < Ll|wy — wy|

for a positive constant L, then our results can be obtained immediately.
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Lemma 3.3.1. Let w € L*(0,T; D(A)), T > 0. Then F(-,w) € L*(0,T; X)
and

1EC w200 < LIk 200 VT wl| 202004 -
Moreover if wy, wy € L?(0,T; D(A)), then

HF(7 wl) - F('an)HLQ(O,T;X) < LHkHL2(O,T)\/THw1 - ’LUQHL?(O,T;D(A))-

Lemma 3.3.2. If k€ W'2(0,T), T > 0, then

A/t S(t—s)F(s,w)ds=—F(t,w) (3.3.3)
+/0 (C(t—s)—1) /OS %k(s —7)g(m,w(T))dr ds

4 / (C(¢t — 5) = DR(O)g(s, w(s))ds.

Theorem 3.3.1. Suppose that the Assumptions (BG) and Assumption (BI)
are satisfied. If f : R — X is continuously differentiable, v € D(A), yo € E,
and k € WY2(0,T), T > 0, then there exists a time T > Ty > 0 such that

the functional differential equation (3.53.1) admits a unique solution w in

L2(0, Ty; D(A)) N W20, Ty; E).
Proof. Let us fix Ty > 0 so that
Cy =w 'K LT (e — 1)[|k| 120.m0) (3.3.4)
+{w K (4T — 1) + 1YT3? /VBL|| K ™ + 1| [kl lw2(0,m)
+ {w K (T — 1) + 1}y /V2L| | K™ + 1]|||k(0)]]

+{w K (" —1)+2} Y L(I})Ke"™

0<tp <t

+{2w T K (e — 1)+ 1} Y L) <1

0<trp<t
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where K, L, L(I}) and L(I?) are constants in ¢(7), (bgl) and Assumption
(BI) respectively. Invoking Proposition 3.2.1, for any v € L*(0,Ty; D(A)) we

obtain the equation

w” (t) = Aw(t) + F(t,v) + f(t), 0<t<Ty,
w(0) =z, w'(0) = yo (3.3.5)
Aw(ty) = INo(t), Aw'(ty) = 2W(), k=1,2,...,m

has a unique solution w € L?(0, Ty; D(A))NW12(0,Ty; E). Let wy, ws be the
solutions of (3.3.5) with v replaced by vy, v, € L*(0,Ty; D(A)), respectively.
Put

J(w)(t) = C (80 + S(B)o + /0 S(t— $){F(s.v) + £(s)}ds

+ > Ct-t)I; + ) St =) R ().

0<trp<t 0<trp<t

Then
J(wy)(t) — J(we)(t) :/0 S(t— s){F(s,v1) — F(s,vs)}ds
+ > Clt =t {Li (nntr) — T (va(th))}

O<tr<t
+ Y St =t R () — Ti(va(6)},
0<trp<t
~L + L+ I,
So, from Lemmas 3.3.1, 3.3.2, it follows that for 0 <t < Tj,
t
| [ 8= {F(s0) ~ Fls,eaas]

0

< W K LTy(eo ™ — DEN 220,m0) [v1 = V2l L2(0,10:0(4)) 5
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15C0) [ 80— 9{F(s.00) = Fs,va)bas|
< ||AS(1€)/O S(t— s){F(s,v1) — F(s,vz)}ds||

:ﬂwwAAsa—wwwwn—F@w»mm
and

||A/0 S(t— s){F(s,v1) — F(s,v2)}ds||
< H/o (C(t=s)—=1) /OS %kj(s — 1) (g(T,01(7)) = g(7,v2(7)))dT ds|

t
+ 1| /0 (C(t —s) = DK(0)(g(s,v1(s)) — g(s,v2(s)))ds||
< ¢L||Ke* + 1| |k|lwr2010) [ |v1 = vallz2(0,19:0(4))

+ VLI Ke" + L[|k )]llor — wallz20,75:0a-

Therefore, we have

] 220.20m0ay) < @ K LT (€™ = D)1k 20.10) | [01 — vall22(0.10:0(4))
(3.3.6)

+{w K (T — 1) + 13T VBLI K™ + 1| |[Fllwaao ) [or = vall 20 10:000)
+{w K (T — 1) + 1} To/ V2L Ke™ + 1] |[K(O)] [Jor = 21205000

By Assumption (bil), we obtain

1Y) Ot =t {Li(on(t;) = L) < Y0 Ke ™ L)l Jor — va[pay,

0<tp<t 0<tr<To
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Lo Y - (I — 1)}

< [1AS(6) Y Ot = ti){Li(vr) = Li(v)}|
= [IS(t)A Y Clt = ti){Li(v1) — T (v2) ],

and

14 Y Clt =t {Li () = LoD =11 ) Ot = ) A{Li(v1) — Li(v2)} ]

0<tp<t 0<tp<t
< Y Ke"||Ii(vr) = I(v)lIpay
0<tp<t
= Z Ke™ L(IY)||v1 — val|pay
0<tp<t

Therefore, we have

1 12| 220,10, p(a)) < {w ' K (e¥T0 = 1) + 2} Z (I)K e ™||vy — vallr2(0,m:0(4))-
0<trp<t

(3.3.7)

We also obtain from Assumption (bi2),

1Y S =t @) = LN < Y Ko™ (™ = 1) LI)|lor — vl pea,

0<tp<t 0<tr<To

) > St —t){IE(v) = L)}

0<trp<t
<[|AS(8) D St —te){Li(v) — LWy} ]
0<tp<t
= [1S()A > S(t—t){ L (v]) — L (v5)}],
0<tp<t
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and

1A Y St = t){IRLE)) = Bt =11 Y %C(t){fi(vi)—f%(vé)}ll

o<ty <t 0<tp<t

< 37 IR - @)l

O<trp<t

< D LU~ vl

0<tp<t

Therefore, we have

3]l 2000001 < {w™ K (e"™ —1) 42} Z L) Ke“™||v1 — va| 12(0,1:0(4))-
O<tp<t

(3.3.8)

Thus, from (3.3.6),(3.3.7), and (3.3.8), we conclude that
|[J(w1) — J(w2)||2(0,10;D(4)) (3.3.9)
< w‘lKLTS’/Q(e‘”TO o 1)||l€||L2(o,To)||U1 = U2||L2(0,TO;D(A))
+ {w T K (e¥T — 1) + 1}L||k||L2(O,T0)\/jTO||Ul — val|p2(0,m;0(4))
1) + 1375 VBLIKe™ + 1Kl w20 101 — val |20 m00(a)
)

1) + 1} To/V2LI| Ke™ + 1] Ik(O)]| o1 = va 120500 a)

(

+{w K (¥ —

+{w K (¥ —
(

+{w T K (e = 1) +2} Y L) Ke ™ ||or — val|z20zp0a)

O<tr<t

+ {20 K (e = 1) + 13 Y L)1 — vallwrzmspiay)-

0<trp<t

Moreover, it is easily seen that

[ (w1) = J(w2) || £2(0,10: 040w 2(0,10:8) < Col[vr — val| L2001 D04)) w1 2(0,10; ) -
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So by virtue of the condition (3.3.4) the contraction mapping principle gives
that the solution of (3.3.1) exists uniquely in [0, Tp). O

Theorem 3.3.2. Suppose that the Assumptions (BG) and (BI) are satisfied.
If f: R — X is continuously differentiable, zo € D(A),yo € E, and k €
Wh2(0,T), T > 0, then the solution w of (3.3.1) exists and is unique in
L2(0,T; D(A)) NW12(0,T; E), and there exists a constant C3 depending on
T such that

|[wl[£2(0.10: D) w12 0,1058) < C3(1 + ||l pay +1lwolle + [ fllwr207,x))-
(3.3.10)

Proof. Let w(-) be the solution of (3.3.1) in the interval [0, Tj] where Tj

is a constant in (3.3.4) and v(-) be the solution of the following equation

v (t) = Av(t) + f(t), 0<t,

v(0) = zp, v (0) = yo.

Then

(w—v)(t):/OtS(t—s)F(s wyds+ Y Clt=t) L (wt))+ > St—t) R(w'(t])),

0<tp<t 0<tp<t
and in view of (3.3.9)
Hw - U|‘L2(O,TO;D(A))QWL?(D,TO;E) < C2|’w"LQ(O,TO;D(A))ﬂWL?(O,To;E)7 (3-3-11)

that is, combining (3.3.11) with Proposition 3.2.1 we have

1
[l 2202050 (a) w2 (0,m0:8) < 1_ 02||U||L2(o,To;D(A))mWM(o,TO;E) (3.3.12)

Cy
1-0Cq

< (1 + [[zollpeay + l1%oll2 + [ fllwr20m0:x)):
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Now from

A /0 " S(Ty — $){F(s,w) + f(s)}ds

:oawﬂm—fm»+A (C(Ty — ) — I)f (s)ds

— F(To,w) + /0 O(C’(TO —s)—1) /OS diik‘(s —7)g(r,w(T))dr ds

+/O O(C(To —s)—1)k(0)g(s,w(s))ds,

14 Y Clt—ti)Li(w)|| < Kw™ (e ) Ke™ Y LI Jw(t)l pea

0<trp<t 0<trp<t

1Y SE =t LRI < Y LI ()]s,

O<tr<t O<trp<t

and since

GO0 [ S={Pls0)+ FHs = SOA [ Stt=5){F(s.w)+ ()}ds,

) Y Clt—t)lp(w) S SHA Y C(t — ty) [ (w).

0<trp<t 0<tp<t

) Y St—ty)R(w) < SHA Y St —t) (W)

0<tp <t 0<trp<t

We have

To

[lw(To)llpeay = [IC(To)zo + S(To)yo + /0 S(To = s){F (s, w) + f(s)}ds

+ > Clt—t) L)+ Y S(t—t) (W)l

0<trp<t 0<trp<t
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< (WK (e — 1) + 1){K6”T°||xo||D(A) + yolle + ToL||K|| L2 0,m0) | W] 220,050 (4))
+ K e FO)|| + £ O] + 1K (€™ + D)v/Tollfllwr20.r:x)
+ LK e + 1| [[kl[w2(0/m) [0 £2(0/10:004))
+ VL[ K e + 1| |[k(0)|[l[w] p2(0m:p0an }

+{2+ Kw ' ("™ - 1)} Y Ke"™L(I})

O<trp<t

+{l+2Kw ("™ = 1)} > L(I}).

0<trp<t

Hence, from (3.3.12), there exists a positive constant C' > 0 such that
[w(To) I pay < C(1+ |zol|pay + llwolle + [|fllw20.1:x))-

Since the condition (3.3.4) is independent of initial values, the solution of
(3.3.1) can be extended to the interval [0,nT;] for every natural number
n. An analogous estimate to (3.3.12) holds for the solution in [0,nTp], and
hence for the initial value (w(nTp),w (nTy)) € D(A) x E in the interval
(nTy, (n + 1)Tp]. O

Example. We consider the following partial differential equation

([ w'(t,2) = Aw(t,z) + Fit,w)+ f(t), 0<t, O0<z<m,

w(t,0) =w(t,m)=0, teR

w(0,2) = xo(x), w'(0,2) =yo(z), O<w<n7 (BE)
Aw(ty, z) = Li(wty)) = (wllw" (e, 2)|| +t), 1<k <m,
Aw'(t, x) = I (w'(tr)) = Okl |[w'(t, ),

\

where constants v, and (k= 1,--+ ,m) are small.
Let X = L?([0, 7];R), and let e, (z) = \/gsinnx. Then {e, :n=1,---}
is an orthonormal base for X. Let A : X — X be defined by

Aw(z) = w"(z),
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where D(A) = {w € X : w, w’ are absolutely continuous, w” € X, w(0) =
w(m) = 0}. Then

Aw = Z —n*(w, ey)en, w € D(A),
n=1

and A is the infinitesimal generator of a strongly continuous cosine family
C(t), t € R, in X given by

Ctyw = Zcos nt(w,en)e,, w e X.

n=1

The associated sine family is given by

oo . t
S(tyw = Z sn;ln (wienlen, w € X.
n=1

Let g1(t,z,w,p), p &€ R™, be assumed that there is a continuous p(t,0) :
R x R — R™ and a real constant 1 < ¢ such that

(bfl) gl<t7x70a O) o 07
(bf2) |gl(t,x,w,p) - gl<t7x7w’Q)| < p(t, |w|)|p - q|7
(bf?)) |gl<tax7w17p) - gl(tax7w27p>| S p<t7 ’w1| + |w2|)|w1 — We|.

Let
g(t,w)x = g (t, z,w, Dw, D*w).

Then noting that

gt wn) — glt, wa) |2y < 2 / g1(t, 2, w1, ) — gu(t, 2, wn, )
Q

+2/ |gl(tax7w17Q> —gl(t,I,UJQ,Q)FdI‘
Q
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where p = (Dwy, D*w;) and q = (Dwsg, D*ws), it follows from (bfl), (bf2)
and (bf3) that

g(t, wi) — g(t, w2)|[5 2 < L([Jwi|peay, lwal|peay)|wr — ws| peay

where L(||wi||p(ay, ||w2|| pay) is a constant depending on ||w1||peay and ||wa||p(a)-
We set

F(t,w) = /0 E(t — s)g(s,w(s))ds

where k belongs to L?(0,T). Then, from the results in section 3, the solution
w of (BE) exists and is unique in L*(0,T; D(A)) N W2(0,T; E), and there
exists a constant C3 depending on T such that

lwllz20m5(a)) < Cs(L+ [[@ollpay + llyolle + [ fllwrz,r:x))-
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Chapter 4
Regularity for semilinear differential
equations with p-Laplacian

4.1 Introduction

This paper is concerned with the regularity of solutions for an abstract
parabolic type equation involving p-Laplacian:

%(m,t) + A(z, D)u(z, t) —div(|Vu(z, t)[P2Vu(z, b)) = f(t), (x,t) € Q x (0,77,
u(z,t) =0, (z,t) € 9N x (0,T],
u(x,0) = ug(x), = €.
(4.1.1)
Let ©Q be a bounded domain in R™ with smooth boundary 0€). Let
A(z, D,) be an elliptic differential operator of second order as follows:

Aw.D) ==Y gl E Y il + o).

1,j=1

where {a;;(z)} is a positive definite symmetric matrix for each x € €,
b € CY(Q) and ¢ € L=(Q).

If —A is the infinitesimal generator of an analytic semigroup in a complex
Banach space X, we find that in general it is false that the following abstract
linear problem

{ du(t)/dt + Au(t) = f(t), t€ (0,T] (4.1.2)

u(0) = ug
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has a solution v € W4(0,7; X) N L%0,T; D(A)) in case f € L%(0,T;X)
for any 1 < ¢ < co. As in Prato and Grisvard [21](also see [56, 16]), we
can obtain L2- regularity for the strong solutions, while in the Hilbert space
setting. Moreover as the better result in Dore and Venni [26], if X is (-convex,
we also obtain Li-regularity results for solution of (4.1.2).

The background of these variational problems are physics, especially in
solid mechanics, where nonconvex and multi-valued constitutive laws lead
to differential inclusions. We refer to [66, 65] to see the applications of dif-
ferential inclusions. Recently, much research has many researches have been
devoted to the study of a class of semilinear differential equations [52, 31, 20].
Especially, [14, 15, 32] showed the existence of infinitely many solutions for
fractional p-Laplacian equations, and [17] discussed upper semicontinuity of
attractors and continuity of equilibrium sets for parabolic problems with
degenerate p-Laplacian. Most of them considered the existence of weak solu-
tions for differential inclusions of various forms by using the Faedo-Galerkin

approximation method. In Yang et al.[84] proved that the existence of global
attractors in W, ?(Q) and L%(Q) for the following p-Laplacian equation:

{ du(t)/dt — div(|VuP~2Vu) + f(u(t)) = g(t), 0<t,
u(0) = uy.

If we put Au = —A(x, D, )u then it is known that A generates an analytic
semigroup in LP(2)(see[l, 67]). In view of Sobolev’s embedding theorem,
we remark that LP(Q) C W1?(Q), where W~1P(Q) is the dual space of

Wy (Q)(p = p/(p—1)). The space W~17(Q) is (-convex(as for the definition
and fundamental facts of a (-convex space see [18, 38]). Therefore, from the
interpolation theory it is easily seen that the operator A generates an analytic

semigroup in both H,, = (W, *(Q), W="?(Q))1 44 and W=12(Q). Hence, we
can investigate the semilinear form (4.1.1) in the space W~1?(Q) and apply
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the method of [26] to the system (4.1.1) to show the existence and uniqueness
of the solution

w e LU0, T; Wy P(Q)) nWha(0, T; WP(Q)) € C([0,T]; Hp,)

for any ug € H,, and f € L0, T; W=12(Q))(p > 2).

For the basic of our study, some variational of constant formula of so-
lutions are established considering as an equation in LP(£2) as well as in
W=Lr(Q). Thereafter, by showing that the nonlinear mapping of p-Laplacian
term is Lipschitz continuous, we will obtain the existence for solutions of
semilinear equation (4.1.1) by converting the problem into the contraction
mapping principle and the norm estimate of a solution of the above nonlinear
equation on L*(0,T; Wy () nWh2(0, T; W=L(Q))nC([0, T); H,.,) as seen
in [4]. Consequently, in view of the properties of p-Laplacian term, we show
that the mapping

H,, x LU0, T; W1P(Q)) 3 (x0, f) — u € LU0, T; Wy P () N C([0,T); Hy,)

1s continuous.

4.2 Notations

Let  be a region in an n-dimensional Euclidean space R" and closure 2.
For an integer m > 0, C™((2) is the set of all m-times continuously differential
functions on Q. C§*(£2) will denote the subspace of C™(f2) consisting of these
functions which have compact support in Q. For 1 < p < oo, W™P(Q) is
the set of all functions f = f(x) whose derivative D*f up to degree m in

distribution sense belong to LP(2). As usual, the norm is then given by

1 llmp = (O IDfIB)7, 1 <p<oo

am

[ f[lm,00 = max |[ D f|[oc,
a<m
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where D°f = f. In particular, W%?(Q) = L?(Q) with the norm || - ||,. Let
p =p/lp—1), 1 <p<oo. W P(Q) stands for the dual space Wy? (Q)* of

W, 7 (Q) whose norm is denoted by || - [|_1,,.
For a closed linear operator of A in some Banach space, p(A) denotes the

resolvent set of A.
If X is a Banach space and The notation (-,-)x+ x is the duality pairing

between X* and X.
LP(0,T; X) is the collection of all strongly measurable functions from

(0,7) into X the p-th powers of norms are integrable. C™([0,7]; X) will
denote the set of all m-times continuously differentiable functions from [0, T’

into X.
If X and Y are two Banach spaces, B(X,Y) is the collection of all

bounded linear operators from X into Y, and B(X, X) is simply written
as B(X). The intersection X NY is a Banach spaces with the norms

llal[xny = max {||al|x, lally}, Vae XNY.

For an interpolation couple of Banach spaces X, and X, (Xo, X)s, and
[ X0, X1]g denote the real and complex interpolation spaces between X, and
X1, respectively.

4.3 Elliptic boundary value problem in W~1r(Q)

Let © be a bounded domain in R™ with smooth boundary 9. Con-
sider the following elliptic differential operator of second order with real and
smooth coefficients:

Alw.D.) = = Y2 - laiy(e)50) + S bla) g +clo),

v i=1
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where {a, ;(x)} is a positive definite symmetric matrix for each z € Q. The
operator

Z 8903 (a:;(x 8@ Z 8902 )+ clz)

7,7=1

is the formal adjoint of A.
For 1 < p < oo, we denote the realization of A in LP(2) under the
Dirichlet boundary condition by A,:

D(A,) = W2P(Q) N W, 7(Q), (4.3.1)
Ay u=2uy rlorp ju € PL4,).

For p = p/(p — 1), we can also define the realization A  in L (2) under
Dirichlet boundary condition by A;,:

D(A) = W2? () nWa” (9),
A;),v —Av for wve D(A;,).
It is known that the adjoint operator of A, considered as a closed linear
operator in LP()) coincide with A;D/:
Ap = Ap,

and —A, and —A;), generate analytic semigroups in LP(Q2) and 7 (Q), respectively|[67],
section 7.3].  For the sake of simplicity we assume that the closed half

plane {A : ReA < 0} is contained in p(A4,) N p(A;J,), hence in particular
0€p(4,)N ,O(A;),), by adding some positive constant to A if necessary.
In what follows, we make D(A,) and D(A ) Banach space endowing them

with graph norm of A, and A’ v Tespectively. Since D(A ) and Wlp (Q) are
dense subspaces of W, i (Q2) and v (), respectively, we may consider that
D(A,) C Wy™(Q) C LP(Q) C WHP(Q) C D(A )",
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Lemma 4.3.1. Let (A;,)’ be the adjoint operator A;),. Then (A;),)’ is an
isomorphism from LF(Q) to D(A;?,)*, and the restriction of (A;),)/ to D(Ap)
coincides with A,.

Proof. For any f € LP(Q2) and v € D(A ,), we have

p
/ / o I
((Ap’) fa U)(D(A;,)*,D(A;,)) - (fv Aplv)(Lp(Q)7Lpl Q)"

So, due to 0 € p(A ), we have that (A;),)’ is an isomorphism from L?(Q) to

p
D(A,)". If f € LP(Q) and v € D(A)), then

/

’
p

((A) ) o ey = Ay ) ey 1 ) = Aefs0) o’ o’ ))-

P P p p

This implies that the restriction of (A;),)’ to D(A,) coincides with 4,. O

Lemma 4.3.2. Let A be the restriction of (A;),)/ to WyP(2). Then the
operator A is an_isomorphism. from WaP(Q) to W=1#(Q).  Similarly, we
consider that the restriction A’ of (4,) € B(Lp,(Q), D(A,)*) to Wol’p/ (Q) s
an isomorphism from Wol’p,(Q) to W‘l’pl(Q).

Proof. From the result of Seeley [74] (see also Triebel [[79], p. 321], [55]),

we obtain that

[D(A,), ()12 = Wy (), (4.3.2)

’ /

D(A), 7 (e = We™ (). (4.33)

P

Regarding the dual spaces, from (4.3.3) it follows that

!

D L Q)i = WH(Q).

’ !

[LP(92), D(A) 12 = [D(A]
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This, together with 0 € ,O(A;,), implies that the operator A is an isomorphism
from W, (Q) to W~?(Q) by the interpolation theory. O

It is not difficult to see that, for u € W, ?(Q) and v € Wol’p,(Q), Au = Au

and A'v = A’ v, both understood in the distribution sense, and

(Au,v) = a(u,v) = (u, A'v), (4.3.4)

(x)u }dm.

Lemma 4.3.3. The operators A and —A generate analytic semigroups in

where a(u,v) is the associated sesquilinear form:

& au o [ e
a(u,v) :/Q{Z(a 83318.7:] Z:b

=i

The following results are from Section 3 in Jeong [38].

W=12(Q) and W‘l’p,(Q), respectively. Furthermore, the inequality
(A || sow=10(@) < Ce™l —00 < 5 < 00 (4.3.5)
holds for some constants C > 0 and v € (0,7/2).

For any ¢ € (1, 00), we set
Zpg = (D(Ap>> LP(Q>>1/q7q7 Hyq = (W&’p<9)a Wﬁl’p(Q»l/q,q' (4.3.6)

Remark 4.3.1. Concerning (-convexr Banach space, we recall that every
Hilbert space is (-convex. Cartesian products and quotients of -convex spaces
are C-convez. If (X,Y) is an interpolation couple spaces of (-convex spaces,
(X,Y)p, with 1 < p < o0, and [X,Y]y are (-convex. Moreover, if X is
(-convexr and 1 < p < oo then every LP space of X-valued functions is (-
convex(see [21, 18] and the bibliography therein). Since A is an isomorphism
from W, P(Q) onto W=2(Q) and W,y P(Q) and W—P(Q) are ¢-conves spaces.
From the interpolation theory and definitions of the operator fT, it is easily
seen that H,, and Z,, are also -convexz.
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Proposition 4.3.1. The operators “A and —A generate analytic semi-

groups in Hy, . and Hy /. respectively.

Proof. By lemma 4.3.3, since —A, and —A generate analytic semigroup
in LP(Q) and W~P(Q), respectively, there exists an angle v € (0,%) such
that

Y={N:1y<arg <21 — 7} C p(4,) Np(A), (4.3.7)
1A = Ap) " Hlpwe@) < C/IAl, A€, (4.3.8)
1= D lpgroimay < C/M, A€ S, (13.9)

In view of (4.3.8)

4

HAP()\ - Ap)ilqu =||(A = Ap)ilApqu < A

[ Apul]p,

for any u € D(A,), we have

4

[[(A = Ap)_lHB(D(Ap)) 3 A (4.3.10)
From (4.3.8) and (4.3.10) it follows that
~ C
(A —4) ||B(W01‘p(Q)) < W (4.3.11)

and hence, from (4.3.10), (4.3.11) and the definition of the space H,,, we
have that

C

Al

Therefore, we have shown that —A generates an analytic semigroup in H,,.
O

1A = A) M5 <
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Proposition 4.3.2. There exists a constant C' > 0 such that
A5, ) < CeM™, s € R,

where 7 is the constant in (4.3.7).

Proof. From Theorem 1 of Seeley [73] and Proposition 3.2 of Jeong [38]
there exists a constant C' > 0 such that

1(Ap) || pery < CeM, (4.3.12)

A gy < Ce (4.3.13)
for any s € R and € > 0. From (4.3.12) it follows
1(Ap) T B Agyy < cesl, (4.3.14)
and hence, from (4.3.12) and (4.3.14) we obtain
A2 | gy = Ce™. (4.3.15)
Hence from (4.3.5), (4.3.14) and (4.3.15) we have shown that
|1 4545 5, pu< €2

So the proof is complete. O

Remark 4.3.2. Propositions 4.3.1, 4.3.2 say that —A generates analytic

semigroup {4 : t > 0} in H,, as well as in W~5P(Q). Hence, we may

assume that there is a constant My > 0 such that

e pre@) < Mo, e p,,) < Mo, ||| pw-1r@) < Mo.
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From now on, in virtue of Proposition 4.3.1, 4.3.2, we study such a simple
initial value problem in W~1?(Q) or in H,, as

"(t) + Au(t) = f(t), t>0

{ w/(6) + Au(t) = f(t), >0, (LE)

Ugp-

Remark 4.3.3. If —A is the infinitesimal generator of an analytic semi-
group in a complex Banach space X, we find that in general it is false that
problem (LE) has a solution w € WP(0,T; X) N LP(0,T; D(A)) in case
feLr0,T;X). As in Da Prato and Grisvard [21](also see [56, 16], section
5.5 of [16]), we can obtain L*- reqularity for the strong solutions, while in the
Hilbert space setting. Moreover, as the better result in [26], if X is (-convex,
we also obtain LP(p > 1)-reqularity results for solution of (LE) mentioned

above.

From Theorem 3.5.3 of Butzer and Berens [19] we obtain the following
result.

Lemma 4.3.4. For any 1 < p and q € (0,00), we have
Ll
Zya = (D), D@ ga = o € /) 5 [ (1 Ac ezt < oc),
0
and
T
Hy, = (W()LP(Q)a Wﬁl’p(Q))l/q,q ={z € Wﬁl’p(Q) : / ||A€tAxHq—1,pdt < oo}
0
In order to prove the solvability of the initial equation (LE), we estab-

lish necessary estimates applying the result of [26] to (LE) considered as an

equation in H,, as well as in W~17(Q).
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Proposition 4.3.3. Suppose that A is defined as in Lemma 4.3.2. Then the
following results hold:
1) Let 1 < p, q < oo, Then for any ug € H,, and f € L9(0,T; W~1?(Q)),

there exists a unique solution u of (LE) belonging to
W = L9(0,T; Wo () [\ W40, T; W()) € C([0,T; Hyyg), (4.3.16)

and satisfying

ullw < Ci(l|uollpg + 1 fllzo.w-10))); (4.3.17)

where C1 is a constant depending on T.
2) Let up = 0 and f € L0,T;H,,), T > 0. Then there exists a unique
solution u of (LE) belonging to

Wo = L0, T; WP (Q) n Wy P(Q)) (| W"(0,T; H,,),
and satisfying
ullwe < Cillfllzao,r:m,.0)5

where C is a constant depending on T

Proof. In virtue of Remark 4.3.2 the mild solution of (LE) is represented
by

~ i ~
u(t) = e Hug + / e f(s)ds, t>0.
0

If ¢ — f(t) belongs to L9(0,T; X) we set |[f(t)l|rs0mx) = |[fllLo0rx)-
Analogous notations, we are used when L?(0,7; X) is replaced by another

Banach space of functions. For the sake of simplicity, we may consider
oll-1p < [0llpgs v € Hpg.

Now, to prove that

e uoll g o rawprieyy < colluollpg
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for some ¢y > 0, it is sufficient to observe that by Lemma 4.3.4 and Remark
4.3.2,

i T 1/q T 14
||€_tAuo|’L3(o,T;W3m(Q)) < (/0 HetAUqudt) i (/o HAemuqul’pdt)

< Jle"M ol oo -1 < ol tollpg-

For any f € L0, T; W~=5P(Q)), set
t _
(e™ % f)(t) = / =) f(s)ds, 0<t<T.
0

Since —A generates an analytic semigroup {e‘tg 10 <t <oo}in W™P(Q)
and applying Theorem 4.3.2 of [26] to the equation (LE), we have (4.3.17)(see
Theorem 2.3 of [16]) and

e~ x f € L0, T; Wo () () WH4(0, T; W~1#(9)).

The last inclusion relation of (4.3.16) is well known and is an easy conse-

quence of the definition of real interpolation space by the trace method.
The proof of 2) is obtained by applying the argument of 1) term by term

to the equation (LE) due to (4.3.1) in the space H, . O

Remark 4.3.4. By terms of Proposition 4.3.3, the result of [[26], Theorem
2.1] implies that if ug € (D(A), LP(Q))1/qq = Zpq and f € L(0,T; LP(S2)),

then there ezists a unique solution u of (LE) belonging to
Wi = LU(0,T; D(A) (YW(0,T; L (Q)) € C([0,T]; Z,4),  (4.3.18)

and satisfying

ullw, < Ci([|uollz,, + 1 fllza@rr@)), (4.3.19)
where C1 is a constant depending on T .
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4.4 Existence of solutions in the strong sense

This section is to investigate the regularity of solutions for an abstract
parabolic type equation (4.1.1) involving p-Laplacian in the strong sense in
case for any up € H,,(2 <p, 1 < g < o0)and f € L10,T; W~7(Q)). Now,
we put that

Au= A(x,D)u ie, A=A (4.4.1)

which was defined in the previous section, and A(x, D,) is restriction to
W,y (Q) with real coefficients:
—IN 0 - 0
A(z,D,) = — Z a—%(ai,j(a;)a—%) +) bi(x) 5o+ o(),

=1

3,0=1

where a;; = aj; € C'(Q) and {a;;(z)} is positive definite uniformly in €, i.e.,

there exists a positive number ¢; such that

D> ai(0)6g = alel (4.4.2)

ij=1

for all z € Q and all real vectors &, b; € C(2), and ¢ € L>(£2). On the other
hand, by this hypothesis, there exists a certain K such that |b;(z)| < K and
le(x)| < K hold almost everywhere.

We denote the pairings between r () and LP(Q2), W1P(Q) and Wol’pl (),
and D(A;,)* and D(A;?,) all by (-, -) with no fear of confusion. In what follows
this section, the norms on LP(Q), Wy (), and W~'?(Q) will be denoted by
-1, || - ll1, and || - || -1, respectively.

We may consider that there exists a constant Cjy such that for any u €
W ()

1/2
[[ulls < Collul [13¢ay Il /2. (4.4.3)
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For u € L4(0,T; W, 7(Q)), we set
B(u(t)) = —div(|Vu(t)|P"2Vu(t)). (4.4.4)
Now we recall that the operator B is hemicontinuous,
(B(u(t)), u(t)) = [[Vu(®)]]",
and monotone, i.e., when p > 2, there exists a positive constant ¢ such that
(B(ua(t)) = Blua(t)), ur(t) — ua(t)) = 0l|us(t) — ua(£)[If
(cf. [56]). Moreover, we have obtain the following results.

Lemma 4.4.1. The operator B defined as (4.4.4) is locally Lipschitz con-
tinuous, i.e., for p > 2 and r-> 0, there exists a number L(r) > 0 such

that
[(Buy)(t) — (Bua)(®)||-1 < L(1)[|ua (t) — wa(®)]]1,

holds with |lur(t)||x < 7, |lua(®)|s < 7. Let uy, us € LI(0,T;W2P(Q) N
WaP(Q)) with |Jus| < r, ||ug|| < 7. Then

|Buy = Bus||Laomir ) < L(r)[[ur — | oo wie - (4.4.5)

Proof. Let uy(t), us(t) € Wy?(Q). For any z(t) € W,P(Q), considering
the boundary value condition, we have

|[(Bu)(t) — (Bup)(t), 2(t))|

= — (div(|Vur () P72 Vur () — div(|Vus ()P Vus(t)), 2(t))

< (V)72 = [Vua () )V (t), V(1))
Vs (8) P2 (Vua (t) = Vus(L)), V2(2).

So, if p > 2, there exists a function L : Ry — R such that L(r;) < L(ry) for
r1 < re and

[[(Bua)(t) = (Buz)(#)[| -1 < L(r)[ua(t) — ua ()]s
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holds with [|uy(t)||1 < 7, |Jua(t)||1 < r. The proof of the second paragraph
(4.4.5) is similar. O

From now on, we establish the following results on the local solvability of
the following equation;

(4.4.6)

{ du(t)/dt + Au(t) + B(u(t)) = f(t), t € (0,T]
u(0) = wuo.

Theorem 4.4.1. For any p > 2, and ¢ > 1, assume that vy € Hp,,
f € LU0, T;W~=tP(Q)). Then, there exists a time Ty € (0,T) such that

the equation (4.4.6) admits a unique solution
u € LU0, To; Wy P (Q)) N Whe(0, Ty; W-P(Q)) € C([0, To); Hpy).  (4.4.7)

Proof. Let a = (ﬁ)l/ 7 and let the constant T} satisfy the following

inequality:
ptq
OéC()ClL(?”)TOM - AR (448)

where Cy, Cy, and L(r) are given by (4.4.3), Proposition 4.3.3, and (4.4.5), re-
spectively. Let B, be the ball of radius r centered at zero of L7(0, To; VVO1 P(Q)),
ie., B, = {v e LI(0, To: Wy (Q)) : ||v|| < r}. Invoking Proposition 4.2.1, for
a given w € By, the problem

{ du(t)/dt + Au(t) + B(w(t)) = f(t), t€ (0,Ty) (4.4.9)

u(0) = g

has a unique solution u € L7(0,T; Wy*()) N Wha(0, To; W17(Q)). To
prove the existence and uniqueness of solutions of semilinear type (4.4.6), by
virtue of Proposition 4.3.3, we are going to show that the mapping defined by
w +— w maps is strictly contractive from the ball B, into itself if the condition
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(4.4.8) is satisfied. Let uy, us be the solutions of (4.4.9) with w replaced by
wy, we € B,. Then from Remark 4.3.4, it follows

w1 — ual|Lao, 1 D(a)) w01 Lr ) < Chl|Bwi — Bwal|La0,m;00))

< CLL(r)||wy — w2||Lq(o,To;W3”’(ﬂ))'

Noting that

To 1/q
[lur — ua|| Loz () = {/ [ (t) — U2(t)||th} (4.4.10)
0

Oz “2<8>>dsuth}l/q
kel = uz<s>||wsdt}1/q

ptq
< oAy ||ur — gl lwra, ;0 @)))

A

IN

and in view of (4.4.3), we have

1/2 1/2
s = w2l pago mywir iy < Collua — “2||L/q(o,To;D(A)>““1 - “2||L/q(o,To;LP<Q)>
1/2 p % 1/2
< Collur — “2”L/q(o,To;D<A>>( p+ q)l/qT0 1 = 9] |vélﬂ(o,To;Lp(m>

ptg
< aGoTy™ |Jur — || pa(o,10;:p(A) AW (0,70 27(2))

ptq

< aCoCrL(r)To™ |Jwr — wQHLLI(o,TO;WOl’p(Q))' (4.4.11)

So by virtue of (4.4.11), the mapping defined by w +— u maps is strictly
contractive from B, into itself. Therefore, the contraction mapping principle
gives that the equation (4.4.6) has a unique solution in [0, 7p]. Since A is an
isomorphism from W, ?(Q) onto W~1?(Q) by Lemma 4.3.1, the solution of
(4.4.6) belongs to W14(0, To; W=1P(Q)). The last inclusion relation (4.4.7) is

well known and is an easy consequence of the definition of real interpolation
spaces by the trace method. O
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Theorem 4.4.2. For anyp > 2, q > 1, and T > 0, assume that uy € H,

p,q>
f e LY0, T;W=tP(Q)). Then, the solution u of (4.4.6) exists and is unique
m

W = L0, T; Wy P (Q)) [\ WH(0, T; WH(Q)) € C([0,T); Hpy), (4.4.12)
and satisfying

ullw < Ca(l|uollpg + [ fllza.rw-10)), (4.4.13)

where ||-||p.q s the norm as an element of H, ,, and Cs is a constant depending

onT and W.

Proof. Let z be a solution of (4.4.6) and let w be the solution of the

following linear functional differential equation parabolic type;

dw(t)/dt + Aw(t) = f(t), t e (0,Tp).
w(0) = up.

Then we have

{ d(u—w)(t)/dt + A((u —w)(t)) = —B(u(t)), te (0,Tp).
(u —w)(0) = 0.

Suppose that = and y belong to B,. In view of (4.3.1) and (4.3.19), we have
[lu = wl| Laozpipannwra e ) < CrllBullpaomize @)
< ClL(T)||u||LQ(07TO;W01*p(Q))

< CiL(r)(lfu — w||Lq(o,TO;W(}vP(Q)) + ||w||Lq(o,To;Wg»P(Q)))-

Thus arguing as in the proof of (4.4.11)

ptg
|l — wl |L¢I(07TO;W01’1"(Q)) < aCoTy™ |[u — wl| a1 DAY AW (0,10 L0(0)

ptq
< aCoCy L(r)To" ([Ju — wHLQ(O,TO;WOl”’(Q)) + HwHLQ(O,TO;W(}’p(Q)))'
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Therefore, we have

ptaq

OCC()ClL(T)TOpq
< 7z Wl oo i e b
1-— OéC(]ClL(T)TOpq

|Ju — w| |L‘1(0,T0;W01'p(9))

and hence, with the aid of 1) of Proposition 4.3.3

1
<

||U||Lq(o,TO;W(}»P(Q)) ptq [|w] |L‘Z(0,T0;W§”’(Q))

1-— aC’oClL(r)TOPq

C
< Pta (|uollpq + ||f||Lq(O,T0;W*1vP(Q)))- (4.4.14)
1— OZC()ClL(T’)TOpq

We know that there exists a positive constant My such that for any v € LP(2)
loll-1p < Mool (4.4.15)

On the other hand, using Proposition 4.3.3, Remark 4.3.4, and (4.4.15) we
get

[l |Lq(07T0§Wol’p(9))mwl”’(07T0§W_1’p(9))

< Ci(l[uollp.g + [[Bu A+ fl|Laom0w-10@)))

< Ci(J|uollpg + Mol|Bul| pao,zp;r)) + [ lzao,mow10()))

< Ciluollpg + [1f oo rw -1y + MoL(r)||ull oo mywi v (o)) (44.16)

Combining (4.4.14) and (4.4.16) we obtain

||u||Lq(O,TO;WOLP(Q))OWW(O,TO;W*LP(Q)) < C(HUOHp,q + ||f||L4(0,T;W*1vP(Q)))
(4.4.17)
for some constant C'. Now from Theorem 4.4.1 it follows that

u(To)lp.g < Nulleqom)m,.g) < Callluollpg + 11 fllz20mmmw-1r@)))  (4.4.18)

So, we can solve the equation in [Tp, 27p] and obtain an analogous estimate
to (4.4.17). Since the condition (4.4.8) is independent of initial values, the
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solution of (4.4.6) can be extended the internal [0, n7}] for a natural number
n, i.e., for the initial u(nTp) in the interval [nTy, (n + 1)7Tp], as analogous
estimate (4.4.17) holds for the solution in [0, (n + 1)7,]. Furthermore, the
estimate (4.4.13) is easily obtained from (4.4.17) and (4.4.18). O

The following inequality is refereed to as the Young inequality.
Lemma 4.4.2. (Young inequality) Let a > 0, b > 0 and 1/p+1/q = 1 where
1<p,ooandl < q<oo. Then for every A > 0 one has

APaP b4

b < -
= P g

Theorem 4.4.3. For anyp > 2, ¢ > 1, and T > 0, assume that (ug, f) €
Zpq x L0, Ty LP(SY)) where Z, 4 = (D(A), LP(2))1/q,4- Then the solution u
of the equation (4.4.6) belongs to u € L1(0,T; D(A)) N Wh4((0,T); LP(Q)) C
C([0,71); Z,4) and the mapping

Zpa % L0, T; 17(9) 3 (g, f) = u & LI(0,T; D(A) N WH((0,T); L7(2)
1s Lipschitz continuous.

Proof. It is easy to show that if uy € Z,, and f € L(0,T; LP(Q2)),
then u belongs to L1(0,T; D(A))NWh4(0,T; LP(Q)). Let (ug;, fi) € Zpq X
L9(0,T; LP(§2)) and u; € B, C L%(0,T; D(A)) be the solution of (4.4.6) with
(woi, fi) in place of (ug, f) for i = 1, 2. Then in view of Proposition 4.3.3,

we have
[y = usl| a0, r:D(A) AW La (0,717 (2)) (4.4.19)
< Ci{luor — uo2l|z,, + [|Bur — Bua||paorre ) + |1f1 = fallraorr@) }

< Ci{luor = wo2|lz,, + L(r)|Jus — uZHLQ(O,T:WOl”’(Q)) + /v = Felleaomizr @) }-

Since

() — un(t) = oy — gy + / (i (s) — tn(s))ds,
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and, by (4.4.10) we get

ptgq
||y — ua| | oo rizry) < VT ||uor — uoallp + T e [Jur — sl lwraorio))-

Hence, by Lemma 4.4.2 and regarding as || - |[, < || - ||z,.,, We get

||u1 — uQHLq(O,T;WOLP(Q)) S COHUI u2||L¢1(0TD(A) ||u1 u2||Lq(0TLP(Q))

(4.4.20)
< Collur — U2||Lq 0,7:D(A {Tl/(2q)||U01 - U02||lzfq + (QTPTJ;Z)IMHUI - u2||{1/[//?vtI(0,T;LP(Q))}
< CoT D Jugy — woa|| 7, [ = wal|foto 7ipayy
+ CO\/ET% |1 —ua||Lao,r; DAy AW a0, 0 ()

1 _ P=9q ptq
< ZOé 1/200T 2pa HU01 7 UOQHZM ar 200\/5T 2pq Hul - U2|’L‘I(O,T;D(A))QWLQ(O,T;LP(Q))-

Combining (4.4.19) with (4.4.20) we obtain
|[ur = usl[Lao,m;p(a)) W ra(0r; Lo () (4.4.21)
1/ - p=g
< Ci{luor — wo2llz,, + |1f1 = follpaomser@) } + Coclza Y2120 (Jugy — uo2l|z,,

ptag
+ 20001\/5T 2pq L(T)Hul o U2||Lq(o,T;D(A))mWLq(o,T;LP(Q))-

Suppose that (uon, fn) = (uo, f) in Zp, x L*(0,T; H), and let u,, and u be
the solutions (4.4.6) with (ugy,, f,) and (ug, f) respectively. Let 0 < T} < T
be such that

20,Ci/aT %4 L(r) < 1.
Then by virtue of (4.4.21) with T replaced by T} we see that

u, —u in L*(0,Ty; D(A)) N W20, Ty; LP(€2)).

This implies that u,(71) — u(1}) in Z,,. Hence the same argument shows
that u,, — v in

LY(Ty, min{2T},T}; D(A)) N Wh(Ty, min{2T}, T'}; LP()).
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Repeating this process we conclude that u,, — win L¢(0,T; D(A)) N"W1e(0,T; LP(2)).
O

Remark 4.4.1. The result of Theorem 4.4.3 is important to apply for the
control problems and the optimal control theory for technologically given cost
functions. In particular, by the similar way to Theorem 4.4.3 we have that
if (uo, f) € Hpy x L0, T;W=L2(Q)) for any p > 2, ¢ > 1, and T > 0.
Then the solution w of the equation (4.4.6) belongs to uw € L9(0,T;V) N
Wha(0, T, W-t(Q)) C C([0,T]; H), and the mapping

H, < L0, T; W=P(Q)) 3 (ug, f) — u € LU0, T; W,y P (Q)NWh(0, T; W=1#(Q))

1S continuous.
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Chapter 5
Approximate controllability for semilinear
integro-differential control equations in
Hilbert spaces

5.1 Introduction

In this paper, we deal with the approximate controllability for semilinear
integro-differential functional control equations in the form
La(t) = Ax(t) + fg k(t — s)g(s,z(s),u(s))ds + Bu(t), 0<t<T,
z(0) =g
(5.1.1)
in a Hilbert space H, where k belongs to L?(0,T)(T > 0) and g is a nonlinear
mapping as detailed in Section 2. The principal operator A generates an
analytic semigroup (S(t));>0 and B is a bounded linear operator from another
Hilbert space U to H.
The controllability problem is a question of whether is possible to steer
a dynamic system from an initial state to an arbitrary final state using the
set of admissible controls. Naito [64] was the first to deal with the range
condition argument of controller in order to obtain the approximate control-
lability of a semilinear control system. In [22, 46, 81, 85], they have studied
continuously about controllability of semilinear systems dominated by linear
parts(in case g = 0) by assuming that S(¢) is compact operator for each ¢ > 0
as matters connected with [64]. Another approach used to obtain sufficient
conditions for approximate solvability of nonlinear equations is a fixed point
theorem combined with technique of operator transformations by configuring

the resolvent as seen in [§]

58



The controllability for various nonlinear equations has been studied by
many authors, for example, see [28, 29, 61] for local controllability of neu-
tral functional differential systems with unbounded delay, [53, 70] for neutral
evolution integrodifferential systems with state dependent delay, and [68] for
impulsive neutral functional evolution integrodifferential systems with infi-
nite delay. Moreover, the approximate controllability for semi-linear retarded
stochastic systems has been studied by [60, 62, 63].

Sukavanam and Tomar [75] studied the approximate controllability for
the general retarded initial value problem by assuming that the Lipschitz
constant of the nonlinear term is less then 1, and Wang [81] for general
retarded semilinear equations assuming the growth condition of the nonlinear
term and the compactness of the semigroup.

In this paper, authors want to use a different method than the previous

one. Our used tool is the theorems similar to the Fredholm alternative for
nonlinear operators under restrictive assumption, which is on the solution of

nonlinear operator equations AT(x) — F(x) = y in dependence on the real
number A\, where T" and F' are nonlinear operators defined a Banach space
X with values in a Banach space Y. In order to obtain the approximate
controllability for a class of semilinear integro-differential functional control
equations, it is necessary to suppose that T acts as the identity operator
while F' related to the nonlinear term of (5.1.1) is completely continuous.
In Section 2, we introduce regularity properties for (5.1.1). Since we
apply the Fredholm theory in the proof of the main theorem, we assume
some compactness of the embedding between intermediate spaces. Then by
virtue of Aubin [6], we can show that the solution mapping of a control space
to the terminal state space is completely continuous. Based on Section 2, it

is shown the sufficient conditions on the controller and nonlinear terms for
approximate controllability for (5.1.1) by using the Fredholm theory. Finally,

a simple example to which our main result can be applied is given.
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5.2 Semilinear functional equations

Throughout this Chapter, as seen in Section 2.2, V', H and V* are complex
Hilbert spaces forming a Gelgand triple

Vs H=H <—=V*

Moreover, A in System (6.1.1) is also the operator in place of —A in Section
2.2. It is known that A is a bounded linear operator from V to V*, and A
generates an analytic semigroup S(¢)(t > 0) in both of H and V*(see [76]).

Consider the following initial value problem for the abstract semilinear
parabolic equation

{%ﬁgw = A2(0)+ Jy bt = 2)ggpale) u)ds £ Bu), (o, )

Let U be a Hilbert space and the controller operator B be a bounded
linear operator from U to H.
Let g : Rt x V x U — H be a nonlinear mapping satisfying the following;:
Assumption (DF).
(i) For any x € V, u € U the mapping ¢(-, z,u) is strongly measurable;
(ii)) There exist positive constants Lg, L1, Lo such that
(a) wwr g(t,z,u) is an odd mapping (g(-, z, —u) = —g(-, z,u));
(b) forallt e R", 2,2 €V, and u,a € U,
lg(t, x,u) — g(t, &,0)| < Lillz — ]| + Lo||u — i,

19(¢,0,0)] < Lo.
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For x € L?(0,T;V), we set

ft,x,u) = /Ot k(t — s)g(s,z(s),u(s))ds
where k belongs to L*(0,T).

Lemma 5.2.1. Let Assumption (DF) be satisfied. Assume that z € L*(0,T;V)
for any T > 0. Then f(-,z,u) € L*(0,T; H) and

Hf(',%u))HH(o,T;H) < L()||]€HL2(0,T)T/\/§
+ (|l 20y VT (Lal 2] | 200y + Lallull 200 (5.2.2)

Moreover if x, & € L*(0,T;V), then

Hf('?'xa u) = f('ai'a a)HLQ(O,T;H)
<|lkll2n VT (Lallz = 2l 202y + Lollu = il 2020)- — (5:23)

Proof. From Assumption (DF), and using the Holder inequality, it is easily
seen that

||f(‘7x=u)||L2(0,T;H) < ||f(7070)|| i ||f<7$7u) i f(,0,0)H

< (/OT|/Otk;(t—s)g(s,O,O)ds|2dt)1/2

+ (/OT ] /Ot k(t —s){g(s,z(s),u(s)) — g(saoao)}ds]th) 1/2

< LoH/fHLZ(o,T)T/\/iﬂL Hka(o,T)\/THg(',% U) - g('a 0, O)HLQ(O,T;H)

< Lol 20T/ V2 + |kl 20y VT (La||2|| 220,y + Ll [ull 20,70
The proof of (5.2.3) is similar. O

By virtue of Theorem 2.1 of [45], we have the following result on (5.2.1).
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Proposition 5.2.1. Let Assumption (DF) be satisfied. Then there exists a
unique solution x of (5.2.1) such that

r € L*0,T;V)NWY(0,T;V*) c C([0,T); H)
for any xo € H. Moreover, there exists a constant Cs such that
|’x‘|L2(O,T;V)mW1a2(O,T;V*) < C'3(|£150\ + ||UHL2(0,T;U))- (5-2-4)

Corollary 5.2.1. Assume that the embedding D(A) C V' is completely con-
tinuous. Let Assumption (DF) be satisfied, and x, be the solution of equation
(5.2.1) associated with w € L*(0,T;U). Then the mapping u — , is com-
pletely continuous from L*(0,T;U) to L*(0,T;V).

Proof. If w € L*(0,T;U), then in view of Lemma 2.2.4
|zl 200 mv)nwr2 0, < Cs(lzol + || Bl| [|ullz200m09)- (5.2.5)
Since z,, € L*(0,T; V), we have f(-,x,,u) € L*(0,T; H). Consequently
z, € L*(0,T; D(A) N W0, T; H).

Hence, with aid of Lemma 2.2.4, (5.2.2) and (5.2.4),
2l | 20,7500y w12 0,1m) < Cr(||zol| + || (5 2wy w) 4+ Bul|r200,7mm))

< CflJwol| + Lollkll 20T/ V2

+ (|l 20 VT (Ll 20.my + Eallullzzoz0) + |1 Bull 20 }

< Gy [llzoll + Lollkll 20T/ V2

+ 1| 20,0y VT { L1 Cs (|| + [l r20,r.0) + Lol 20,000 } + | Bul| 2o s -

Thus, if u is bounded in L?(0,T;U), then so is z, in L?(0,T;D(A)) N
W12(0,T; H). Since D(A) is compactly embedded in V' by assumption, the
embedding

L*(0,T; D(A)) nW'2(0,T; H) C L*(0,T; V)
is completely continuous in view of Theorem 2 of [6], the mapping u — z,, is
completely continuous from L2(0,T;U) to L*(0,T;V). O
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5.3 Approximate controllability

Throughout this section, we assume that D(A) is compactly embedded
in V. Let (T f,u) be a state value of the system (5.2.1) at time 7" corre-
sponding to the nonlinear term f and the control u. We define the reachable
sets for the system (5.2.1) as follows:

Rr(f) = {a(T; f,u) s u € L*(0, T5 U)},
Rp(0) = {2(T;0,u) : u € L*(0,T;U)}.

Definition 5.3.1. The system (5.2.1) is said to be approzimately controllable
in the time interval [0, T) if for every desired final state x1 € H and ¢ > 0
there exists a control function w € L*(0,T;U) such that the solution x(T'; f,u)

of (5.2.1) satisfies |x(T; f,u) — x1| < €, that is, if Rr(f) = H where Rr(f)
is the closure of Ry(f) in H, then the system (5.2.1) is called approximately

controllable at time T

Let us introduce the theory of the degree for completely continuous per-
turbations of the identity operator, which is the infinite dimensional version
of Borsuk’s theorem. Let 0 € D be a bounded open set in a Banach space X,
D its closure and 9D its boundary. The number d[I — T'; D, (] is the degree
of the mapping I — T with respect to the set D and the point 0 (see Fucik
et al. [27] or Lloid [57]).

Theorem 5.3.1. (Borsuk’s theorem) Let D be a bounded open symmetric
set in a Banach space X, 0 € D. Suppose that T : D — X be odd completely
continuous operator satisfying T(x) # x for x € dD. Then d[I — T; D, 0|

1s odd integer. That is, there exists at least one point xy € D such that
(I —T)(xg) =0.

Definition 5.3.2. Let T' be a mapping defined by on a Banach space X with
value in a real Banach space Y. The mapping T is said to be a (K, L,«)-
homeomorphism of X onto'Y if
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(i) T is a homeomorphism of X onto Y;
(i1) there exist real numbers K >0, L > 0, and o > 0 such that

Lljz[|x < [T()lly < Kll#[l%, Ve e X.

Lemma 5.3.1. Let T be an odd (K, L, «)-homeomorphism of X onto Y and
F: X —Y a continuous operator satisfying

F
s LE@

lellx—oo  1Z]]%

=N eR".

Then if |A| ¢ [%, ] U{0} then

lim ||AT(z) — F(x)||y = 0.

||| x —o0

Proof. Suppose that there exist a constant M > 0 and a sequence {z,} C X
such that
AT (z0) — F(zn)|ly £ M (5.3.1)

as x, — 0o. From (5.3.1) it follows that

AT (z,)  Flxy)

= — ).
lznllk  Haall%
Hence, we have
MIT (x,
s PTGl _
oo [all%
and so, [\|K > N > |X|L. It is a contradiction with || ¢ [X, &]. O

Proposition 5.3.1. Let T be an odd (K, L, «)-homeomorphism of X onto
Y and F : X — Y an odd completely continuous operator. Suppose that for
A# 0,

lim ||A\T(z) — F(x)||y = 0. (5.3.2)

[lz]|x =00

Then XT'— F maps X onto Y.
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Proof. We follow the proof Theorem 1.1 in Chapter II of Fucik et al. [27].
Suppose that there exists y € Y such that A\T'(z) = y. Then from (5.3.2) it
follows that F'T~!: Y — Y is an odd completely continuous operator and

lim ly = FT'(3)ly = oc.

Ilylly =0

Let yo € Y. There exists r > 0 such that
1Y
ly — FT (X)HY > [lyol[y = 0

for each y € Y satisfying ||y|ly = 7. Let Y. ={y € Y : ||y|ly < r} be a open
ball. Then by view of Theorem 5.3.1, we have dly — FT~'(%);Y;,0] is an odd
number. For each y € Y satisfying ||y||y = r and ¢ € [0, 1], there is

{ -1Y
\ly — FT 1(X)—tyoHyZIIy—FT 1(X)Ily—|lyolly>0

and hence, by the homotopic property of degree, we have

dly = FT™(5): Yoywol = dly — FT(5): Y501 £0.

>

Hence, by the existence theory of the Leray-Schauder degree, there exists a
y1 € Y, such that

Y1 — FT_I(%) = Yo-

We can choose zg € X satistying AT (xg) = y1, and so, AT (xo) — F(zo) = yo.
Thus, it implies that AT — F' is a mapping of X onto Y. n

Combining Lemma 5.3.1 and Proposition 5.3.1, we have the following

results.
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Corollary 5.3.1. Let T be an odd (K, L,«)-homeomorphism of X onto Y
and F': X =Y an odd completely continuous operator satisfying

F
lim sup —H (x)aHY
lellx—oe  |T|[%

=N eR".

Then if |\| ¢ [X, X]u{0} then NXT — F maps X onto Y. Therefore, if N = 0,

K' L
then for all X # 0 the operator NXT' — F' maps X onto Y.

First we consider the approximate controllability of the system (5.2.1) in
case where the controller B is the identity operator on H under Assumption
(DF) on the nonlinear operator f in Section 5.2. Hence, noting that H = U,

we consider the linear system given by

du(t) = Ay(t) +u(t),
{y - (5.3.3)

and the following semilinear control system

{ix)zzwﬂjwﬂmdm+ﬂﬁ (5.3.4)

Theorem 5.3.2. Assume that

lim sup Hf(a xU7u)||L2(O,T;H)
[ufl 00 |Jwll 2 (0,7:0)

<1. (5.3.5)

Under the Assumption (DF) we have
Ry (0) C Rr(f).

Therefore, if the linear system (5.3.8) with f = 0 is approzimately control-

lable, then so is the semilinear system (5.3.4).
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Proof. Let x(t) be solution of (5.3.4) corresponding to a control u. First, we
show that there exist a v € L?(0,T; H) such that

{uo = u(t) — f(t,z(t),v(t)), 0<t<T,
u(0).

Let us define an operator F': L?(0,T; H) — L?(0,T; H) as

<
—~
=
S~—
|

Fv=—f(-,z,0).

Then by Corollary 5.2.1, F is a compact mapping from L?(0,T; H) to itself,

and we have
lim |[A(v) — F(v)||r20,:m) = 00,

|lv]|—o0

where the identity operator I on L?(0,7T’; H) is an odd (1, 1, 1)-homeomorphism.
Thus, from (5.3.5) and Corollary 5.3.1, if A > 1 then A\ — F maps L*(0,T; H)
onto itself. Hence, we have showed that there exists a v € L*(0,7; H) such
that v(t) = w(t) — f(t,y(t),v(t)). Let y and x be solutions of (5.3.3) and
(5.3.4) corresponding to controls u and v, respectively. Then, equation (5.3.4)

1s rewritten as

d

() = Az} f(¢t,2(t), v(t)) +0(t), 0t < T

= Az(t) + f(t, z(t), v(t) + u(t) — f(t,y(?), v(t))
= Ax(t) + u(t)

with x(0) = xy, which means
z(t) =S(t)xo + /0 S(t— s){f(s,z(s),v(s)) +v(s)}ds

5 (t)wo + / S(t — s)u(s)ds = y(t).

where y be solution of (5.3.3) corresponding to a control u. Therefore, we
have proved that Ry (0) C Ry(f). O

67



Corollary 5.3.2. Let us assume that
||k||L2(0,T)ﬁ(L103 -+ LQ) < 17

where C3 is the constant in Proposition 5.2.1. Under the Assumption (DF),

we have

Ry (0) C Re(f)
in case where B = I.
Proof. By Lemma 5.2.1 and Proposition 5.2.1, we have
||FUHL2(07T;H) = ||f('7xu’u)||L2(O,T;H)
< Lol [kl 20T/ V2 + |kl |20 VT (L ||| L2 vy + Lollul | 20.0))

< Lollk||z20.0yT/ V2 + ||| 20,0 VT { L1 Cs (|o| + |l z20.709 ) + Lol |ul| 200 }-

Hence, we have

i [ F(w)l|z2 (0,7
im sup
lufl=oo  |ullz20,m0)

) < HkHLz(o,T)ﬁ(Lng + L,).

Thus, from Theorem 5.3.2, it follows that if A > 1 then A\ — F maps
L?(0,T; H) onto itself, and so, by the same argument as in the proof of
theorem it holds that Rr(0) € Re(f). O

From now on, we consider the initial value problem for the semilinear
parabolic equation (5.2.1). Let U be some Hilbert space and the controller
operator B be a bounded linear operator from U to H.

Assumption (DB) There exists a constant 5 > 0 such that R(f) C R(B)

and
|Bul| = Bul|, Yue L*(0,T;U).

Consider the linear system given by

() = Ay(t) + Bu(t),
{y(()) o (5.3.6)
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Theorem 5.3.3. Under the Assumptions (5.53.5), (DB) and (DF), we have

RT(O) C RT(f) .

Therefore, if the linear system (5.3.6) with f = 0 is approzimately control-

lable, then so is the semilinear system (5.2.1).

Proof. Let y be a solution of the linear system (5.3.6) with f = 0 correspond-
ing to a control u, and let x be a solutions of the semilinear system (5.3.4)
corresponding to a control v. Set v(t) = wu(t) — B~ f(t,z(t),v(t)). Then,

system (5.2.1) is rewritten as

d

78(0) =Az(t) + f(t,2(t), v(8)) + Bu(t), 0<t<T

= Az(t) + f(t;2(t), () + Bu(t) — f(t,2(1),0(t))

with z(0) = xo. Hence, we have
£(t) =S(t)zo + /0 S ) R, 5(5)) + () s
=5 (t)xo + /0 S(t—s)u(s))ds = y(t).

Thus, we obtain that Rr(0) C Rr(f). O

Example. We consider the semilinear heat equation dealt with by Zhou
[85], and Naito [64]. Let

H=L*0,m), V=Hy0,7), V*=H'0,7),

a(u,v) = /OTr dZix Z(xx)dx

~—
QU

and

A=d?/dz* with D(A)={y e H*0,7):y(0) =y(x) = 0}.
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We consider the following retarded functional differential equation
%y(x,t) = Ay(x,t) + fg E(t —s)g(s,z(s),u(s))ds + Bu(t),

y(t,0) =y(t,m) =0, t>0, (5.3.7)
y(O,ZL‘) = ¢0($)7 y(x73) = ¢1(17, 8)7 —h < s <0,

where k belongs to L?*(0,T). The eigenvalue and the eigenfunction of A are

A\, = —n? and ¢, (z) = sinnx, respectively. Let
U={) tnpn: Y ul< oo},
n=2 =2
Bu =2us¢1 + Zungbn, for--r = Zun eU.
n=2 n=2

It is easily seen that the operator B is one to one and R(B) is closed. It
follows that the operator B satisfies hypothesis as in Theorem 5.3.3. We can
see many examples which satisfy Assumption (DB) as seen in [85, 86].

For any © = Y o x,¢, € L*(0,7), consider the nonlinear term g given
by

g(t,z,u) = Zsmanﬁn 'Hu iy n > 2.

n=1

It is easily seen that Assumption (DF) is satisfied. For z € L*(0,T;V) and
ke L*(0,7), we set

flt,x,u) = /0 k(t — s)g(s,z(s),u(s))ds.

Then

o0

1/2
Gy u)llpeor.m = {/ / (t—s)( Z sin @) on () + /||ul|p2(x )ds|dt}
< VT[E] 200 (D Isinza|* + 3/][ul]?).
n=1

70



Hence, we have

i £z, u)] 20, m)
im sup

luflwoo  [ullz2(0.1:m)

=0.

and R(g) € R(B). From Theorem 5.3.3 it follows that the system of (5.3.7)
is approximately controllable. Therefore, we obtain the approximate control-
lability of (5.3.7) without restrictions such as the uniform boundedness and

inequality constraints for Lipschitz constant of f or compactness of S(t).
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Chapter 6
Controllability for abstract semilinear control
systems with homogeneous properties

6.1 Introduction

In this paper, we deal with the approximate controllability for a semilinear
control system in the form:

{%x(zﬁ) = Az(t) + f(t;2(t) +(Bu)(t), 0<t<T, (6.1.1)

z(0)Y ¥ %o
Let V and H be complex Hilbert spaces forming a Gelgand triple

Ve H=H V"

by identifying the antidual of H with H, where V is a Hilbert space densely
and continously embedded in H. Here, A is the operator associate with
a sesquilinear form satisfying Garding’s inequality as detailed in Section 2.
The motivation for the choice of Hilbert spaces setting for System (6.1.1)
is the application to L?-regularity using fact that the principal operator A
generates an analytic semigroup (S(t)):>o in both H and V*(see Jeong,1999;
Tanabe, 1979). The controller B is a bounded linear operator from another
Hilbert space L?(0,T;U)(T > 0) to L?(0,T;U). k belongs to L*(0,T) and f
is a nonlinear mapping satisfying Lipschitz continuity.

There are various approaches to obtain the sufficient conditions for ap-
proximate controllability of semilinear control equations; the range condi-
tion argument of controller as seen in Zhou (1983, 1984), the controllability
of semilinear systems dominated by linear parts as in Dau er and Mahmu-
dov(2002), Jeong and Kang (2018), Naito (1987) and Radhakrishnan and
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Balachandran (2012). Another approach is to use a fixed point theorem
combined with technique of operator transformations in Balachandran and
Dauer (2002); Wang(2009). Recently, similar considerations of semilinear
neutral equations have been studied by many authors(see Ren, Hu, and Sak-
thivel, 2011; Fu, Lu, and You, 2014; Jothimani, Mokkedem and Fu, 2017;
Valliammal, and Ravichandran, 2018; Dhayal, Malik, and Abbas, 2019) as a
continuous study. Moreover, Kang and Jeong (2019) dealt with the approx-

imate controllability for System (6.1.1) assuming

imsup O llzorm
Ml 220,71y =00 HUHLQ(O,T;H)

21

by using so called Fredholm theory: (A — F')(u) = f for a given f is solvable
in L?(0,T; H).

In this paper, authors want to use a new approach by using the surjectivity
theorems similar to the Fredholm alternative for nonlinear operators moti-
vated by the work Kang and Jeong (2019), which is about the solution of non-
linear operator equations AB(u) — F'(u) = f provided that AB(u) — F'(u) # 0
for each u. In order to obtain the approximate controllability for System
(6.1.1), it is necessary to suppose that B acts as an odd homeomorphism op-
erator while F'is odd completely continuous and homogeneous as defined in
Section 3. By using this method, the approximate controllability of System
(6.1.1) can be given as applicable conditions without restrictions such as the
inequality constraints for Lipschitz constant of f or the compactness of S(t).

Section 2 gives some properties of the strict solutions of System (6.1.1)
and the continuity of the solution mapping on a control space with value
in the terminal state space. In Section 3, in order to apply the surjective
theory to the proof of the main theorem, we deal with the equation AB(u) —
F(u) = f is solvable provided that A # 0 is not an eigenvalue for the couple
(T, F)(see Definition 6.3.3), which is equivalent that the nonlinear inverse
considered as a multivalued mapping is bounded. Based on results in Section
3, we obtain the sufficient conditions for the approximate controllability of
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semilinear systems when the corresponding linear system is approximately
controllable. Finally, a simple example to which our main result can be
applied is given.

6.2 Semilinear functional equations

Throughout this paper, as seen in Section 2.2, V', H and V* are complex
Hilbert spaces forming a Gelgand triple

Vo H=H" V"

Moreover, A in System (6.1.1) is also the operator in place of —A in Section
2.2. It is known that A is a bounded linear operator from V to V* and A
generates an analytic semigroup S(¢)(t > 0) in both of H and V*(see [76]).

Let f: Rt x V — H be a nonlinear mapping satisfying the following:
Assumption (EF).
(i) For any « € V, the odd mapping f(-, ) is strongly measurable;

(ii) There exist positive constants Lg, L such that for allt € RY x, & €
v,

[f(t,2) — f(t2)] < Lz — 2],
[£(2,0)] < Lo.

Consider the following abstract semilinear system with initial values with
the forcing term g;

{%I(t) = Az(t)+ f(t,=(t) +9(t), 0<t<T, (6.2.1)

By virtue of Theorem 3.1 of Jeong, Kwun, and Park (1999), we have the
following result on System (6.2.1).

74



Proposition 6.2.1. Let Assumption (EF) be satisfied.
1) Assume that for (xg,g) € V x L*(0,T; H). Then there exists a unique
solution x of System (6.2.1) such that

v € L*(0,T; D(A)) nW"*(0,T; H) € C([0,T]; V),
and there exists a constant Cy such that
||z 20, 2:p0nnw 20y < Crlllzoll + [1gl|L2075m))- (6.2.2)

2) Assume that for (g, g) € H x L2(0,T;V*). Then there exists a unique
solution x of System (6.2.1) such that

x € L2(0,T;V)NnW2(0,T; V*) c C([0,T); H),
and there exists a constant C such that
Hx"L2(0,T;V)OWL2(O,T;V*) < Cy(Jwo| + HQHLQ(O,T;V*))~ (6.2.3)

We refer to Theorem 3.3 of Di Blasio, Kunisch, and Sinestrari (1984) as
for the similar result for the regularity of linear case. Let U be a Hilbert space
and the controller operator B be a bounded linear operator from L?(0,T;U)
to L2(0,T; H).

Now, we consider the semilinear control system (6.1.1) with Bu in place

of g in System (6.2.1) as follows.

Corollary 6.2.1. Assume that the embedding D(A) C V' is completely con-
tinuous. Let Assumption (EF) be satisfied, and x, be the solution of System
(6.1.1) associated with v € L?(0,T;U). Then the mapping u — , is com-
pletely continuous from L*(0,T;U) to L*(0,T;V).

Proof. If uw € L*(0,T;U), then in view of (6.2.3) in Proposition 6.2.1

Hmu"LQ(O,T;V)HWLQ(O,T;V*) < Cl(’xt)’ + HBH HUHLQ(O,T;U))-
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Since x, € L*(0,T;V), we have f(-,z,) € L*(0,T; H). Consequently, by 1)
of Proposition 6.2.1, we have

z, € L*(0,T; D(A)) NnW2(0,T; H).
Hence, with aid of (6.2.2) and (6.2.3) of Proposition 6.2.1,
[ Tullr20.10a)0wr20mm) < Cilllxol| + (£ (- ) + Bul|r20.7,m))
<G [||$0|| + {L||xu||L2(0,T;V) + Loﬁ} + HBUHLQ(O,T;H)}
< Ch[|lwoll + {CLL(|wo] + ||Bul|202:v+) + LoVT} + || Bullr20/75m)) -
Thus, if u is bounded in L*(0,T; H), then so is x, in L*(0,T;D(A)) N
Wh2(0,T; H). Since D(A) is compactly embedded in V by assumption, the

embedding
L*(0,T; D(A)) nW2(0,T; V) .C L*(0,T;V)

is completely continuous in view of Theorem 2 of Aubin (1997), therefore, the
mapping u + 1, is completely continuous from L?(0,T;U) to L*(0,T;V).
]

6.3 Nonlinear operator equations

Let X and Y be Banach spaces with the norm ||-||x and ||- ||y, respectively.

Lemma 6.3.1. Let T be an odd (K, L, «)-homeomorphism of X onto Y (see
Definition 5.3.2) and F : X — Y an odd completely continuous operator.
Suppose that for X\ # 0,

lim [[\T'(x) — F(z)||ly = oo. (6.3.1)

l|z]|x =00

Then XT'— F maps X onto Y.
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Proof. We follow the proof Theorem 1.1 in Chapter II of Fucik, Necas,
Soucek, and Soucek (1973). Suppose that there exists y € Y such that
AT (z) = y. Then from (6.3.1) it follows that FT~' : Y — Y is an odd

completely continuous operator and

lim ly = FT'(3)ly = oc,

|lylly—o0

Let yo € Y. There exists r > 0 such that
~1/Y
ly — FT (X)HY > [yolly =0

for each y € Y satistying ||y||ly = 7. Let Y, ={y € Y : |Jy||ly <7} be a open
ball. Then by view of Lemma 6.3.1, we have d[y — FT~'(%);Y,,0] is an odd
number. For each y € Y satisfying ||y||yy = and ¢ € [0, 1], there is

1, Y —1/Y
ly = FT7H(3) = tyolly = lly — FT()ly — llgolly >0
and hence, by the homotopic property of degree, we have

dly = FT7(3): Yrogo] = dly — FT ™' (3);Y,, 0 # 0.

>

Hence, there exists a y; € Y, such that

Y1 — FT_l(%) = Yo-

We can choose =g € X satisfying AT (xo) = y1, and so, AT (xo) — F(zq) = yo.
Thus, it implies that AT" — F' is a mapping of X onto Y. O

Definition 6.3.1. Let F' be mapping defined by on a Banach space X with
value in a real Banach space Y and b > 0 a real number. F' is said to be
b-homogeneous if

tbFo(u) = Fo(tu)
holds for each t > 0 and all u € X.
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Example 6.3.1. Set X =Y =R and

au’

B = G mm

where o, B are positive numbers. Then F is said to be 2-homogeneous.

Definition 6.3.2. Let X and Y be two Banach spaces, T : X — Y, F :
X = Y operators and X\ # 0 a real number. \ # 0 is said to be an eigenvalue
for the couple (T, F) if there exists ug € X such that

If the operator T is a-homogeneous and the operator F' is b-homogeneous,
we are going to prove the existence of a solution of the equation

A(x) — F(z) =y
for each y € Y provided A # 0 with a = b.

Theorem 6.3.1. Let X and Y be two Banach spaces. Let T be an odd
(K, L,a) - homeomorphism of X onto Y which is a-homogeneous. Let F' :
X — Y be an odd completely continuous a-homogeneous operator. Suppose
A # 0 is not an eigenvalue for the couple (T, F'). Then the operator N\T — F
maps X onto Y.

Proof. In virtue of Lemma 6.3.1, it suffices to show that

lim ||A\T(z) — F(x)||y = oc.

[|z|| x —o0

Suppose that a constant M > 0 and a sequence {z,}, z, € X, ||z,||x — o0

such that
[N () — F(x,)|ly <M

for each positive integer n. Here, we use symbols 7 — 7 to denote the strong

convergence. Set
Tn

= Up.
||allx
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Then we have

AT (2n) = Flan) _ AT(||l2nllvn) — F(llza]lva) _ AT (v,) — F(vy,) — 0.

lzallle  Mlzallg [lnl[%

The complete continuity of the operator F' implies that there exists a subse-
quence {v,, } C {v,} and vy € X such that

F(v,,) — AT(vo) € Y-

Hence,
AT (vp, ) = AT (vg) € Y.

and since 7' is homeomorphic
Up,, — Vo-
We have ||vg|| = 1 and
/\T(UQ) 5 F(U()) = 0.

Thus A is the eigenvalue number for the couple (7', F'), which is a contradic-
tion. [

The following shows that if A # 0 is not an eigenvalue for the couple (7', F')

if and only the nonlinear inverse (AT — F)~! considered as a multivalued
mapping is bounded.

Corollary 6.3.1. Suppose that assumptions of T and F in Theorem 6.3.1
are satisfied. Then if X # 0 is not an eigenvalue for the couple (T, F) if and
only (NT' — F)(X) =Y and for each L > 0 there exists r > 0 such that
l|z||x <7 for all x € X with ||NT(x) — F(z)||ly < L.

Proof. Let A # 0 be not an eigenvalue for the couple (T, F'). Suppose that

there exists a sequence {x,} C X, ||z||x = 1 such that

M (z,) — F(z,) — 0.
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The complete continuity of F' implies that there exists a subsequence {xz,, } C
{z,} and zy € X such that

F(x,,) = A\T(x) €Y.

Hence,
AT (2y,, ) = AT'(20) €Y.

and since 1" is homeomorphic,

Ly, — .

We have ||zo|| = 1 and
)\T({EQ) . F(l’o) =),

This is a contraction proving

inf ||A\T'(z,,) — F(xp)|ly =¢c>0

[l | x =1

and hence,
IXT(zn) — F(za)lly = cfz]|x

for each x € X. The assertion of (\T' — F)(X) =Y is from Theorem 6.3.1.
The proof of the converse is obvious. O

6.4 Surjectivity theory for controllability

As seem in Section 5.3, the reachable sets for System (6.1.1) are repre-

sented as
Ry (f) = {2(T; f,u) s w e L*0,T; U)},
Rp(0) = {x(T;0,u) : w € L*(0,T;U)}.

For y, be the solution of System (6.2.1) with B = I, we have
t
wlt) = [ (= 5){f(s.(5) + 9(5)}ds.
0
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By using the Krasnosel’skii theorem(see Aubin and Ekeland, 1984), we can
define an operator F : L?(0,T; H) — L*(0,T; H) as

F(g) = —f(,yy)- (6.4.1)

We shall make use of the following assumption:
Assumption (EA). The embedding D(A) C V' is completely continuous.
Assumption (EF1). F is 1-homogeneous, and satisfies Assumption (EF)
stated in Section 2.

Theorem 6.4.1. Let Assumptions (EA), and (EF1) be satisfied, and let
F(g) # g for every g #£ 0. Then if the linear system (6.1.1) with f =0 is

approximately controllable, then so is the semilinear system (6.1.1).

Proof. Let n € L?(0,T; D(A)). Then there exists p € C*(0,T; X) such that

¥ / S(T - s)p(s)ds,

for instance, p(s) = (n + sAn)/T. Since the linear system (6.1.1) with f =0
is approximately controllable, that is,

RT(O) = H,

for any € > 0, there exists v € L*(0,T;U) such that

I — /0 S(T — 5)(Bv)(s)ds| < e. (6.4.2)
Let
N={qe L*0,T;H) : /0 S(T — s)q(s)ds = 0}

and denote by N+ be the orthogonal complement of N in L*(0,T; H). We
denote the range of the operator B by Hp. In view of (6.4.2) we have

L*(0,T;H) = Hg + N, where Hp is the closure of Hp in L*(0,T; H).
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For u € N*, let Pu be the unique minimum norm element of {u+N}NH 3.
Then the proof of Lemma 1 of Naito (1987) can be applied to show that P
is a linear and continuous operator from N* to Hg. Let Y = L*(0,T; H)/N
be the quotient space and the norm of a coset & = u+ N € Y is defined of
||| = inf{|u+ f|: f € N}.

We define by @ the isometric isomorphism from Y onto N+, that is, Q@

is the minimum norm element in & = {u+ f : f € N}. Let
Fi = F(PQi) + N

for @ € Y. Then F is a compact mapping from Y to itself.

We are going to show that n € Ry(f) , where Rp(f) is the closure of
Rr(f) in V. In the sense of Corollary 6.2.1, from Assumption (EF1), we
get that F defined by (6.4.1) is also a completely continuous mapping from
L2(0,T; H) to itself. Since the identity operator I on Y is an odd (1,1,1)-
homeomorphism and 1-homogenous, and F(g) # g for every g # 0, we know

that A = 1 is not an eigenvalue for the couple (I, F). Hence, from Theorem
6.3.1, it follows that that I — F maps Y onto itself. Let z = Bv, where v

is the control in (6.4.2). Then 2 = z + N € Y, and there exists & € Y such

that
zZ=u— Fu.

Put v = Qu and ug = PQu. Then we have that ug = Pu and u — ug =
u— Pu € N. Hence

2IU—F(UB>+NIUB—F<UB)+N.

Therefore,
n= / W(T — 8){~F(up)(s) + up(s)}ds

- / W(T — $){f (5, yup) + us(5)})ds.
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Since up € Hp, there exists a sequence {v, } € L?(0,T;U) such that Buv,
up in L*(0,T; H). Then by the last part of Corollary 6.2.1, we have that
2(+; g, Un) = Yup, in L2(0,T; D(A))NW12(0,T; H) € C([0,T]; V), and hence

x(T;9,vn) — Yuy(T) =n in V. Thus we conclude 1 € RT(g)V. O

Assumption (EB). There exist positive constants 3, v such that
Bllull < |Bul < yllull, Vu e L2(0,T;U).

Corollary 6.4.1. Let Assumptions (EA), (EF1), and (EB) be satisfied. Sup-
pose that A = 1 is not an eigenvalue for the couple (B, F). Then the semi-

linear control system (6.1.1) is approximately controllable.

Proof. Since B is an odd (v, 3, 1)- homeomorphism of L(0,T; U) onto L?(0,T; H),
From Theorem 6.4.1, it follows that then B — F maps L?(0,T;U) onto
L*(0,T; H) for any \ # 0. O

Example 6.4.1. We consider the semilinear heat equation dealt with by
Naito (1987); Zhou (1983, 1984). Let

Hee= F2(0, T/ "=0H, (P 5= H~'(0,7),

aling) S /0” du(z) dv(m)dx

Tt
and
A=d?/dz* with D(A)={ye H*(0,n):y(0)=y(x) =0}
The eigenvalue and the eigenfunction of A are \, = —n? and ¢,(z) = sinnz,

respectively. Moreover, by the result known as Sobolev’s imbedding theorem,
the embedding D(A) C V' is completely continuous. Let

U= {iun(bn : iui < 0o},
n=2 n=2
Bu = 2us¢1 + iungbn, for u= iun eU.
n=2 n=2
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Now we can define bounded linear operator B from L2(0,T;U) to L*(0,T; H)
by (Bu) = Bu(t), uw € L*(0,T;U). It is easily known that the operator B is
one to one and satisfies Assumption (EB). We can see many examples which
satisfy Assumption (EB) as seen in Zhou (1983, 1984). Moreover, the linear

system of (6.1.1) with f = 0 is approximately controllable. The nonlinear
term 1s given by

f(t,z) = 7 —fil(t) +oxpe, o>0, aft) e C[0,T]

It is easily seen that Assumption (EF1) is satisfied. Therefore, from Theorem
6.4.1 or Corollary 6.4.1, it follows that the system of (6.1.1) is approzimately
controllable.

Example 6.4.2. Let ) be a bounded domain in R™ with smooth boundary OS).
Let A(x, D,) be an elliptic differential operator of second order in L*(2) (see
Yamamoto and Park, 1990):

n

Ae,D2) = = 32 gl g)) 4 D oble) g +clo)

=

ij=1

We consider a diffusion and reaction process differential equation defined as

Au= —A(z, Dy)u:

z'(t,6) = Ax(t, &) + f(t, x(t,€) + (Bu)(t)
z[oq = 0, (6.4.3)

z(&,t) = xo,

where the controller B is defined by Example 6.4.1. We define the following
spaces:

H'(Q) = {x ca,

833'1'

Ox 0*x
2 _ . 2 4=
H*(Q) = {m ST, 5 Omdz, € L (Q), i,7=1,2, ,n},

H}(Q) ={z:2 € H(Q), z|sq = 0} = the closure of C;°(Q) in H' (),

GLQ(Q>7 L= 1727"' 7n}7
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where 0/0&x and 0% /0&,0¢;x are the derivative of x in the distribution sense.
The norm of H}(Q) is definued by

o= { [, ()

Hence H(Y) is a Hilbert space. Let H-Y(Q)=H()* be a dual space of
H}(Q). For anyl € H Q) and v € H}(Q), the notation (I,v) denotes the

value | at v. In what follows, we consider the regqularity for given equations

i the spaces
V=HyQ)={ze H(Q);x=0 on 0Q}, H=L*Q), and V*=H'(Q)

as introduced in Section 6.2. We deal with the Dirichlet condition’s case as
follows.

Assume that a;; = aj; are continuous and bounded on Q and {a;;(z)} is

positive definite uniformly in ), i.e., there exists a positive number § such
that

n

> al@)és; > 8P, vEe Q. (6.4.4)

ij=1
Let

bi € L¥(Q), c€L®(Q) and B =) 0da;/dz;+ b
j=1

For each x,y € H}(Q), let us consider the following sesquilinear form:
- ox dy " Ox
= i i__ Y rdx.
a(a.) /Q{ijzzlaja&afj # D bigg 7 e
Since {a;;} is real symmetric, by (6.4.4) the inequality
> ai(2)&; > 61¢”
ij=1
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holds for all complex vectors &€ = (&1, -+ ,&,). By hypothesis, there ezists a
constant K such that |5;(x)| < K and ¢(x) < K hold a.e., hence

Rea(x,x) /(5Z|85\dx— /Z] H:U]dx—K/|x\dx
>5/Z|a§z|dx—K/Z (5] gg %\xﬁ)dw—[{/ﬂmzdm
Z/%yd - —+K /|x\dx

By choosing e = 6K, we have

KZ
Rea(z, x) Z/|a€2d—n—+K/]x}dx

) nk? )
= 2l ~ (G + B+ 2) il

By virtue of Laz-Milgram theorem, we know that for any y € V' there exists
f € V* such that

a(z,y) = (f,y).
Therefore, we know that the associated operator A :' V' — V* defined by

(A'Tvy) :—&(.T,y), .CI?,yGV

is a bounded linear operator from'V to V*, and A generates an analytic semi-
group S(t)(t > 0) in both of H and V*(see [16]), which satisfies conditions

mentioned as Section 2.
We introduce a nonlinear mapping f : [0,T] x V. — H defined by

f(t,x):/ (t—s) / Za@ (7, V(7. ) )drds,
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where k belongs to L*(0,T), and

g(t,a(t,€)) = / Za%m-(&w(s,é))d&

We assume the following:
Assumption (EF2).

(i) The partial derivatives o;(s,x), 0/0to;(t,x) and 0/0; 0;(s,x) exist
and continuous for1=1,2, j=1,2,--- 'n;

(i)t o;(s,x) is odd mapping (o;(s, —x) = —oy(s, x), and 1-homogeneous
(0i(+, tx) = toy(-, tx));

(iii)
loi(s, z) — 0:(s,Z)| < L|z — 7|

where | - | denotes the norm of L*(Q).

For instance, we can give

Gilsim) = _ofef

(1+p8)z’
where, a, B are positive numbers. Then o; satisfies Assumption (EF1).

Lemma 6.4.1. If Assumption (EF'1) is satisfied, then the mappingt — g(t,-)
is continuously differentiable on [0, T] and x — g(-, ) is Lipschitz continuous
onV.

Proof. Put
"0
g1(s,x) = lzl 8_&%(8’ V).

87



Then we have g (s,z) € H (). For each z € H} (), we satisfy the follow-
ing that

n

(g1(s,7),2) = =) (04(s, V), aiz).

i=1 v

The nonlinear term is given by

g(t,x) = /Ot g1(s, x)ds.

For any 2z € H(Q), if x and Z belong to H}(Q), by Assumption (EF1) we
obtain
(g(t, 2) = g(t, 7)), w| < LT||z — Z|| |[2]].

[]

Now in virtue of Lemma 6.4.1, we can apply the results of Theorem 6.4.1
as follows.

Theorem 6.4.2. Let Assumptions (EA), and (EF2) be satisfied, and let
F(g) # 0 for every g # 0, where F is defines as (6.4.1). Then if the lin-
ear system (6.4.8) with f = 0 is approzimately controllable, then so is the

semilinear system (6.4.3).

6.5 Conclusions

We have dealt with the approximate controllability of abstract semilinear
functional control equations by solving nonlinear operator equations. The
nonlinear equation is given as AB(z) — F(xz) = y in dependence on the
real number A\, where B is a given controller operator and F' is a nonlinear
operator. Similar results in linear functional analysis are well known and
they are sometimes called Fredholm theorems. To thes end, we have proved
that AB — F maps for any A # 0 provided that B is an odd (K, L,a)-
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homeomorphism and a-homogeneous, F' an odd completely continuous b-
homogeneous operator. Suppose that a = b, AB(u) # F(u) for every u,
that is, A # 0 is not an eigenvalue for the couple (7, F'). Then the operator
AB— F maps X onto Y. Based on this consideration, we have established the
approximate controllability for a class of abstract semilinear control systems.
But, in the case where a # b, it seems to be unsolved up on our terms to
this time in infinite dimensional space. We shall prove the similar assertion
under the assumption a # b in a forthcoming work.
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