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Chapter 1

Introduction

Geometric Function Theory means the theory of conformal mappings which is
induced by analytic functions. Historically, complex analysis and geometrical
function theory have been concentrically developed from the beginning of the
twentieth century. In the last years the theory of holomorphic mappings on com-
plex spaces has been studied by many mathematicians with many applications to
nonlinear analysis, functional analysis, differential equations, classical and quan-

tum mechnics.

These mappings are mainly understood as univalent (or schlicht) mappings.
The study of univalent functions dating from the early years of the twentieth
century and is one of the popular areas of research in complex analysis. Initiated
by the work of Bieberbach and his contemporaries, the famous conjecture of 1916
became one of the most celebrated problems in mathematics. The eventual solu-
tion of the Bieberbach conjecture by de Branges in 1984 employed nonelementary
methods from several branches of analysis. Other interesting problems for univa-

lent functions have also been raised, explored and solved. And lots of properties



for these functions were obtained, but at the same time many unsolved problems
remains still now. It is helpful to read books, such as Duren [16], Goluzin [21],
Goodman [22], Graham and Kohr [26], Pommerenke [55] and Schober [60] for

looking around the basics of univalent function theory.

In the present thesis, we introduce new subclasses of analytic functions de-
fined by multiplier transformations and investigate properties of them. These
classes are closely related to the class of univalent functions. And we will solve
problems such as argument estimates, radius problems, majorization problems
and subordination problems for functions in these classes. The following sections

contain concepts related to this thesis.

1.1 Analytic functions and univalent functions

Let C be the planar complex plane, and let U, = {z € C: |z| < r}. In particular,
we put U = U;. Let H = #H(U) denote the class of analytic functions in the
open unit disk

U={z€C:|z| <1}
Fora e Cand n e N={1,2,---}, let

Hla,n|={f € H: f(2) =a+ap2" + ap 12" +---}.

Let A be the class of functions f € H satisfying the normalized condition
f(0)=0= f'(0) — 1. Therefore, if f € A then f has its representation

f2) =2+ anz" (1.1.1)

A single-valued function f is said to be univalent in a domain D C C if

it never takes the same value twice; that is, if f(z1) # f(z2) for all points z

2



and z in D with z; # z3. Denote by S the class of all functions in A which
are univalent in U. The leading example of a function of class S is the Koebe

function

k(z) =2(1—2)?%= an"

Theorem 1.1.1. [16, p. 32| For each f € S,

2f"(z2) 2r? 4r
f(z)  1—=r2| = 1—¢2 [ =r<1.
Theorem 1.1.2. [16| p. 32| For each f € S,
¥ % 1+7r
<If < — = ¥
e 2O LT

For each z € U, z # 0, equality occurs if and only if f is a suitable rotation of
the Koebe function.

Theorem 1.1.3. [16 p. 33| For cach f € S,

< |f(2)] < m7

(1 4+%)%4%
For each z € U, z # 0, equality occurs if and only if f is a suitable rotation of

|2t =% 1

the Koebe function.

1.2 Subclasses of S

Definition 1.2.1. A set D in the plane is called convezx if for every pair of points
wy and wy in the interior of D, the line segment joining wy and wy is also in
the wnterior of D. If a function f maps U onto a convex domain, then f s

called a convex function. We shall denote the class of convex functions in A by

K.



Definition 1.2.2. A set D in the plane is said to be starlike with respect to wq
and interior point of D if each ray with initial point wqy intersects the interior
of D in a set that is either a line segment of a ray. If a function f maps U
onto a domain that is starlike with respect to wq, then we say that f is starlike
with respect to wqy. In the special case that wy = 0, we say that f is a starlike

function. We shall denote the class of starlike functions in A by S*.

The analytic conditions for convexity and starlikeness were stated by Study

[65] and Nevanlinna [45] as follows:

Theorem 1.2.1. Let f € A. Then f belongs the class K if and only if

2f"(2)
f'(2)
Theorem 1.2.2. Let f € A. Then f belongs the class S* if and only if

m{?&?}>m 2 eU.

Definition 1.2.3. A function f € A is said to be close-to-convex if there is a

m{md}>m 2 eU.

9%{1+ } pd 150N (1.2.1)

g € K such that

g'(2)
We shall denote by C the class of functions f € A satisfying the above condition.
It is known |16, p. 47] that f is close-to-convex if and only if the image of
|z| = r has no large hairpin turns, which means that there are no sections of

the curve f(C,) in which the tangent vector turns backward through an angle

greater than 7. More precisely, we have

Theorem 1.2.3. [16, p. 48] Let f € A and f'(z) # 0 in U. A necessary and
sufficient condition that f € C is that for every r in (0,1) and every pair 0y, 0o

4



with 0 < 0y — 0, < 27, we have

02 rel® f (ret)
/91 %{1—{— —f/(reie) }d@ > —TT.

In view of (1.2.1)), it is trivial that every convex function is close-to-convex.
More generally, every starlike function is close-to-convex. Also, it is known [16,
Theorem 2.17] that every close-to-convex function is univalent. These facts are

summarized by the chain of inclusions

K8 S C CC*SY

Now we give generalized concepts of the convex and starlike functions.

Definition 1.2.4. Let 0 < a < 1 and f € A. Then we say that f € K(«) if f

satisfies

R {1 2 Z;/;S)} Sa, zel. (1.2.2)

And the function f € A satisfying (1.2.2)) is called by a convex function of order

«.

Definition 1.2.5. Let 0 < a <1 and f € A. Then we say that f € S*(«) if f

satisfies

%{Z}f(/iz))} >a, zeU. (1.2.3)

And the function f € A satisfying (1.2.3)) is called by a starlike function of order

a.
We remark that
(i) Taking a =0 in K(a) and S*(«) reduces the class K and S*, respectively;
(i) S*(a) € §* and K(a) C K hold for all 0 < a < 1;

5



(iii) K C 8*(1/2) (see |41}, p. 9)).

Let T denote the subclass of functions of S consisting of functions of the

form

flz)=2— Zanz" (a, > 0; 2z € ). (1.2.4)

n=2
The class T was introduced by Silverman [61]. We denote by 7*(a) and C(«)
denote the class of functions of the form ({1.2.4)) which are, respectively, starlike

of order «v and convex of order @ with 0 < o < 1.

Theorem 1.2.4. [61, Corollary 1] Let f € T be of the form (1.2.4). Then f is
in T*(«) if and only if

o0

Z(n —a)la,| <1—a.

n=2
Theorem 1.2.5. [61, Corollary 2] Let f € T be of the form (1.2.4). Then f is
in C(a) if and only if

> n(n—a)la,| <1-a.

n=2

1.3 Meromorphic functions
Let 3 denote the class of functions of the form [9):
TCRETS yP
2) =~ 2 anz",

which are analytic in the annulus U* = U\{0} with a simple pole at origin

with residue one there. The set ¥ is the subset of functions in > for which

6



ap = 0. Let ¥* denote the class of univalent functions f € ¥ in U*. We also set

35 =Y¥°N%y. Then the transformation

which takes each g in & into a function in Xj.

1.4 Multivalent functions

A function f analytic in D C C is called multivalent (p-valent) function, p € N
in D if for every complex number w, the equation f(z) = w does not have more
than p roots in D and there exists a complex number w, such that the equation

f(2) = wo, has exactly p roots in D (see [29]).

Now, for p € N, let A, be the set of functions f of the form

o
f(z) =2+ Z Anyp2™ P,
n=1

which are analytic and p-valent in U. For p = 1 we obtain the class A discussed

earlier.

Definition 1.4.1. A function f(z) € A,, belongs to the class CV(p) of p-valent

convex functions if and only if

Re(ij;—i))y)>0 z e U.

A function f(z) € A,, belongs to the class ST (p), of p-valent starlike functions,

iof and only of
Zf’(2)>
Re(pf(z) >0 zel.




Definition 1.4.2. A function f(z) € A, is said to be p-valent convex of order
B, 0< B <p if and only if
(2f'(2))

Re(W)>B z e U.

Such class of functions shall be denoted by CV(p,(). Further a function

f(z) € A,, is said to be p-valent starlike of order B, 0 < B < p, if and only
if

Re <;§/((ZZ>)> >0 zel.

Such a class of functions shall be denoted by ST (p, ).

Interesting results can be found in [19,35,54]. For 5 = 0, we obtain the classes
CV(p) and ST (p) of p-valent starlike and convex functions with respect to the
origin [25], and for p =1 the class CV and ST are obtained.

1.5 Subordination and Majorization

Let f and F be members of H. The function f is said to be subordinate to
F, or F is said to be superordinate to f [41, p. 4], if there exists a function w

analytic in U, with w(0) =0 and |w(z)| <1 for z € U, such that
f(z) = F(w(z)) (z€U).
In such a case, we write

f<F or f(2)<F(z) (z€l).

8



If the function F' is univalent in U, then we have (cf. [41])
f<F <= f(0)=F(0) and f(U)c F(U).

Definition 1.5.1. [41, p. 16] Let ¢ : C> — C and let h be univalent in U. If p

1s analytic in U and satisfies the differential subordination

Y(p(2), 2p'(2)) < h(2), (1.5.1)

then p is called a solution of the differential subordination. The univalent function

q s called a dominant of the solutions of the differential subordination, or more

simply a dominant if p < q for all p satisfying (1.5.1). A dominant § that
satisfies ¢ < q for all dominants q of (1.5.1)) is said to be the best dominant.

Definition 1.5.2. [41, p. 16| Let ¢ : C* — C and let h be analytic in U. If p

and p(p(z), zp'(2)) are univalent in U and satisfy the differential superordination

p(p(2), 20 (2)) < h(z), (1.5.2)

then p is called a solution of the differential superordination. An analytic function
q 1s called a subordinant of the solutions of the differential superordination, or
more simply a subordinant if ¢ < p for all p satisfying . A univalent
subordinant ¢ that satisfies q < ¢ for all subordinants q of 15 said to be

the best subordinant.

Lemma 1.5.1. [40] Let h be convex univalent in U and w be analytic in U with

Re w(z) > 0. If p is analytic in U and p(0) = h(0), then
p(z) + w(z)zp'(z) < h(z) (2 €0)

implies

p(z) < h(z) (2 €0).



A function L(z,t) defined on Ux [0, c0) is the subordination chain (or Léwner
chain [12, p. 136)) if L(-, ) is analytic and univalent in U for all ¢ € [0, 00), L(z, )

is continuously differentiable on [0, 00) for all z € U and

L(z,5) < L(z,t) (z€U; 0<s<t).
Lemma 1.5.2. [55] The function
L(z,t) = ai(t)z+ - -

with
a(t) #0 and tlim lai(t)| = oo.
—00

Suppose that L(:,t) ia analytic in U for all t >0, L(z,-) is continuously differ-
entiable on [0,00) for all z € U. If L(z,t) satisfies

20L(z,t)
m{ oy } >0 (2€TU; 0<t<00)

ot

and

|L(z,t)] < Kolax(t)] (2| <ro <15 021 < 00))
for some positive constants Ko and ro, then L(z,t) is a subordination chain.

Definition 1.5.3. |22, p. 178] For f and g analytic in U, we say that f is
magjorized by g in U,, and write f(z) < g(z), z € U, (or, f < g in U, ), if

there exists a function ¢, analytic in U, such that
[¢(2)] <1 and  f(z) = ¢(2)g9(2), z € U,.

We now look at some of the relations between f(z) < F'(z) and f(2) < F(2).

Lewandowski [31] has introduced a pair of symbols for these relations that are

10



quite convenient. As usual we assume that all of the functions involved are regular
in U. Then Lewandowski writes (f, F, Ry) if f(z) < F(z) for |z] < Ry <1 and
he writes |f, F, Ro| if f(z) < F(z) for |z| < Ry < 1.

It was Biernacki [5,/6] who first examined relations between (f, F, Ry) and
|f, F, Ro|. He proved that there is a number Ry such that whenever (f, F,1) and
F isin S, then |f, F, Ry|, and Ry is in the interval (1/4,1).

Of course, the problem is to find the largest R, in this situation and to
examine the relation for other sets of functions. Further, Lewandowski was the
first to call attention to, and to make a contribution to, the inverse problem. For
a given set M find the largest R such that |f, F, 1| implies (f, F, R) for every F
in M. Here f(z) may be subject to some additional restrictions such as being

univalent in U.

Let us introduce the following results of Biernacki [6]:

(i) If f and F are both univalent in U, then (f, F,1) implies |f, F, R|, where
R =~ 0.390 is the least positive root of

In(1+2) —In(l —x) + 2arctanz = 7/2.

(ii) If f isin &* and F is a starlike function, then (f, F,1) implies |f, F, R,
where R =2 — 1.

(iii) If f isin K and F is a convex function, then (f, F,1) implies |f, F, R,

where R &~ 0.543 is the least positive root of

arcsin x 4+ 2 arctanz = /2.

11



1.6 Carathéodory functions

Let N be the class of all functions which are analytic in the open unit disk U
with p(0) = 1. We say that p € N is a Carathéodory function [38,48] if it
satisfies the condition Re p(z) >0 in U.

Lemma 1.6.1. [68] Let p be analytic in U with p(0) = 1 and p(z) # 0 for all

z € U. If there exist two points z1,z3 € U such that

— 50 = arg{p(=1)} < ang{p(2)} < avg{p(22)} = 50 (1.6.1)

for some 61 and 62 (01,92 > 0) and for all z (|z| < |z1] = |22]), then

ap'(z) =—g (61 + 52m) and 2p/(2) = <51 0 52m) (1.6.2)
p(21) 2 p(22) 2 i -
where
1 —1b] 1 TR0,
> — — . 1.6.
m_1+’b| and b ztan4(62+51> (1.6.3)

1.7 Multiplier transformations

For functions
fi(z) =2"+ Zak+p,jzk+p (J=12z€0)
k=1

in the class A,, we define the convolution of f; and f, by

o0

(frxfo)(2) = 2"+ D apepiarap2z™™ (2 €U).

k=1

12



As a similar way, for functions

" .
fi(z) = ;+Z_;amz (1=1,2,z€D)

in the class ¥, we define the convolution of f; and f5 [1] by
(fi* == + Zanlanzz (z € D). (1.7.1)

Making use of the convolution given by (1.7.1]), we now define the following

convolution operator D% by

1

D*f(z) = P!

* ol 2 ) anllongme —1; f € 252'c/)] (1.7.2)
Then it follows from that
2(D%f(2)) =(a + 1)D*" f(2) — (o + 2) D* f(2). (1.7.3)

For @ = n € N, the operator D® is introduced and studied by Ganigi and
Uralegaddi [1§] (see, also [69}70]). Also, the operator D® is closely related to
Ruscheweyh derivative [58] for analytic functions defined in U, which was ex-

tended by Goel and Sohi [19].

Now we define the ¢,(a, c;z) by

—~

(l

e
CLCZ E

k=0

where (z); is the Pochhammer symbol(or the shifted factorial) defined by

+p 0#07_17_27'“)7

C

—~

(2), = rz+D)(z+2)--(x+k—1), ?kaGN:{l,Q,---}, (1.7.4)
1 if k=0,

13



Let f € A,. Denote by L,(a,c) : A, — A, the operator defined by

Ly(a,c)f(z) = ¢pla,c;2) = f(2) (2 € U),

where the symbol (*) stands for the Hadamard product (or convolution). We

observe that

Ly(p+1,p)f(2) = 2f'(2)/p and Ly(n+p,1) f(z) = D™~ f(2),

where n is any real number greater than —p, and the symbol D" is the
Ruscheweyh derivative [58] (also, see [19]) for n € Ny = NU {0}. The oper-
ator L,(a,c) was introduced and studied by Saitoh [59]. This operator is an
extension of the familiar Carlson-Shaffer operator L(a,c) which has been used
widely on the space of analytic and univalent functions in U ( see, for details [§];

see also [63}64]).
Corresponding to the function ¢,(a,c; z), let gzﬁL(a, ¢;z) be defined such that

Zp
(1= 2)Mr

Analogous to Ly(a,c), we now define a linear operator Z)(a,c) on A as follows:

b0, 5 2) % 9 (a, 05 2) = > —p).

Izj\(a,c)f(z) = gb;f,(a,c; 2)* f(z) (a,c#0,—-1,=2,---; A\>—p; z € U). (1.7.5)

— _ ') : :
We note that Z)(p + 1,1)f(2) = f(2) and Z)(p,1)f(2) = o= It is easily

verified from the definition of the operator Z)(a, c) that

z(ZI’)\(a +1,0)f(2)) = aZI’,\(a, o)f(z) = (a— p)I;,‘(a +1,¢)f(2) (1.7.6)

14



and

z(IZ;\(a, o)f(2) =+ p)II’,\“(a, c)f(z) — )\Ilj\(a, o) f(z2). (1.7.7)

In particular, the operator Z{(p + 2,1) (A > —1, u > —2) were introduced by
Choi, Saigo and Srivastava [10] and they investigated some inclusion properties of
various classes defined by using the operator Z{(u+2,1). For a = n+1(n € Ny)
and ¢ = A = 1, we also note that the operator Z}(a,c)f is the Noor integral
operator of nth order of f studied by Liu [33] (also, see [34,/4647]). Also, let
I =1,

Let F(a,b;c; z) be the Gaussian hypergeometric function defined by

F(a,b;c;z) = 2%;—7 (a,6€C; ¢c#0,—1,-2,---; z€U) (1.7.8)
where (), is the Pochhammer symbol (or the shifted factorial) defined by (1.7.4).

Then we see that the well-known formula

I(c—a—0b)(c)
T(c=a)l'(c—=1b)

We also recall (see [37]) that the function F'(a, b; c; z) is bounded if Re{c—a—b}) > 0,

F(a,b;c;1) = (Re(¢ —a —b) > 0) (1.7.9)

and has a pole at z =1 if Re{c —a — b} <O0.

For f € A, we define the operator I,;..f by
Lopef(2) = 2F(a,b; c; 2) * f(2), (1.7.10)

where * denotes the usual Hadamard product (or convolution) of power series.

1.8 Synopsis of the thesis

Now we give the outline of the thesis.

15



Chapter 2, is to obtain some interesting subordination properties by [§-convex
functions in the open unit disk associated with the Choi-Saigo-Srivastva operator.

Moreover, applications for integral operators are also considered.

In chapter 3, we investigate majorization properties for p-valent functions

defined by the linear operator.

Chapter 4, is to investigate argument properties of Carathéodory functions
applying the recent result obtained by Nunokawa et al. [68]. We also obtain some

geometric properties of analytic functions as special cases.

In chapter 5, we introduce a convolution operator for functions f belonging
to the class ¥ and we obtain some mapping properties and argument estimates
for meromorphic functions associated with this convolution operator.

Chapter 6, is to derive some argument properties of multiplier transforma-
tions in the open unit disk defined by the inverse of a linear operator. We also
investigate their integral preserving property in a sector.

In chapter 7, we obtain inclusion and mapping properties related to uniformly
convex and uniformly starlike functions for a linear operator defined by means of

Hadamard product (or convolution) with the Gaussian hypergeometric function.

16



Chapter 2

Subordination implications for
certain analytic functions defined

by convolution

2.1 Introduction

Let Q be the class of functions f that are analytic and injective on U\E(f),

where

B(1) = {¢ € 0t 7(2) = oo}

and are such that f'(¢) # 0 for ¢ € JU\E(f).

In the present paper, making use of the principle of subordination, we inves-
tigate the subordination properties by certain univalent function for the linear

operator Izj\(a, ¢) defined by (1.7.5). We also consider interesting applications to

17



the integral operator.

The following lemmas will be required in our present investigation.

Lemma 2.1.1. [40] Let p € Q with p(0) = a and let
o) =ata +

be analytic in U with
q(z) Za and ne€N.

If q is not subordinate to p, then there exist points
2 =re? €U and (€ U\E(f),
for which
q(Ur,) C p(U), q(z0) =p(Go) and = 20q (20) = mCop'(Go) (m > n).

A functions ¢ € ‘H with ¢(0) = 0 and ¢/(0) # 0 is said to be an [-convex

function (not necessary normalized), if it satisfies the following condition:

#|a-n2E s (1428

q(2) q(2)

and we denote this class by M. The class of f-convex functions was introduced

>0 (feR; ze€l)

by Mocanu [43]. We also note [42] that all S-convex functions univalent and

starlike, and

MyC MMy (0<—<1)

Moreover, we note that M7 is the class of normalized convex functions in U.
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2.2 Main Results

Firstly, we begin by proving the following subordination theorem involving the

multiplier transformation I;‘(a, c¢) defined by ([1.7.5).

Theorem 2.2.1. Let f,g € A, and suppose that

o Lla0g(2) 2 (Zy(a,0)9(2)) = (p— )T (a,)g(2) (a—1)
9{{<1 B)Ig(a—i—l,c)g(z) Z(Ilg\(a+1,c)g(z))/— (p— 1)Ilg\(a—|—1,c)g(z)} ~ a

(6>0; a>1; z€ ).
(2.2.1)

Then the following subordination relation:

a + l,c)f(z)] ™

zp—1

z;<a,c>f<z>r

zp—1

implies that

I;‘(a+1,c)f(z) sz‘(a+1,c)g(z)

g < g (z€U).
Proof. Let us define the functions F' and G by
IMa+1,¢)f(z IMa+1,¢)g(z
F(z) = p! 215 and G(z):= p! porm J92) (f,ge A, z€ ).

zp—1

(2.2.3)

By using the equation (1.7.6) to (2.2.3) and also, by a simple calculation, we have

Z)(a,0)g(z) _ (a—1)G(2) +2G'(2) (2.2.4)
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Hence, combining ([2.2.3)) and -, we obtain

Iy(a+1, c)g(z)] o I)(a, 0)9(2)] ’

_ (7”8
i_iiJ&L] (2.2.5)

zp—1 zp—1 a

=G(z) [

Thus, from ([2.2.5)), we need to prove the following subordination implication:

B
< G(z)

_1+Z (2)

G“] (2 €U)

=1 Flepk G(z)(2.€ U).

-1+

F(z)

a a

(2.2.6)

Since G € M7, without loss of generality, we can assume that G satisfies the

conditions of Theorem 2.2.1] on the closed disk U and
GQ)#0 (Ceauy).
If not, then we replace F' and G by
F.(z) = F(rz) and, G.(z) = G(rz),

respectively, where 0 < r < 1 and then G, is univalent on U. Since

B O G, (z) | ———=| (2 €U,
a a

F.(z)

where

F.(2)=F(rz) (0<r<1; zel),
we would then prove that
F.(2) <G.(2) (0<r<1; z€l),
and by letting r — 17, we obtain
F(z) < G(z) (z€l).
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If we suppose that the implication is not true, that is,
F(z) AG(z) (2€0),
then, from Lemma [2.1.1] there exist points
20 €U and (,€dU
such that
F(z) = G(¢o) and 2zF'(20) =m{G' (&) (m > 1). (2.2.7)
To prove the implication , we define the function

L:Ux[0,00) — C

L(z,t) =G(z)

2G’ B
gl ate (Ll g(g?]

—an(t)z

and we will show that L(z,t) is a subordination chain. At first, we note that
L(z,t) is analytic in |z| < r < 1, for sufficient small » > 0 and for all t > 0. We
also have that L(z,t) is continuously differentiable on [0, co) for each |z| < r < 1.

A simple calculation shows that

Hence we obtain
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ar(t) #0 (t=0)

and also we can see that

lim |aq(t)| = 0.
t—»00

While, by a direct computation of L(z,t), we have

ZaL—(Z’t) a — Z/Z Z”Z
%{éﬁ;)}: 51+K1;wm{u—ﬁ)gé£+ﬁ(y+é;;»].@2&

ot

By using the assumption of Theorem condition § > 0 to ([2.2.8)), we obtain

OL(z,t)

20L(z,t)
9%{ 0z }>0 (z€elU; 0<t < 00),
ot

which completes the proof of the first condition of Lemma [1.5.2l Moreover, we

have

L(z,t) 1/B _ G(2) Ubla—1+(1+1t) Zgég)
a(t) G'(0) a+t
|G| (a1 14t]2G() (2.2.9)
~ |G'(0) a+t a+t| G(z)
r

e a—1 1+r
(1—r)? a 1—r)

Since G is univalent in U, We have the following sharp growth and distortion

results [55]:
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T <|G(7)| < (e (Jz] =r < 1) (2.2.10)
and
ﬁ <|G(2)] < (11_%7;3 (lz2] =r<1) (2.2.11)

Hence, by applying the equations (2.2.10) and (2.2.11)) to (2.2.9)), we can find
easily an upper bound for the right-hand side of ([2.2.9). Thus the function
L(z,t) satisfies the second condition of Lemma|1.5.2) which proves that L(z,t) is

a subordination chain. In particular, we note from the definition of subordination

chain that

L(z,0) < L(2,t) (2€U; t>0). (2.2.12)

Now, by using the definition of L(z,t) and the relation (2.2.7]), we obtain

L(Co,t) = G(Co) =l

(o =141 + )87
a }

_ / 8
a — 1 + z0F"'(z0)
= () - F(z0)

TNa+1, C)f(zO)] o
zp—1

I;}(a, C)f(zo)r € L(U,0)

by virtue of the subordination condition ([2.2.2). This contradicts the above

observation that

L(Co, 1) & L(U, 0).
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Therefore, the subordination condition (2.2.2) must imply the subordination

given by (2.2.6). This evidently completes the proof of Theorem [2.2.1]

Next, we give another subordination property by using the equation (|1.7.6))

in Theorem [2.2.2 below.

Theorem 2.2.2. Let f,g € A, and suppose that

m{ = ()@ 9(2) = (= VT (@ )g(2) } SN > 1, 2eU)
P (I;‘(a + 1,c)g(Z)> - (p— 1)I (@+ Iye)g(2) :
(2.2.13)
Then the following subordination relation:
BM ¥ ﬁ)IA(a J;pl 1c)f( 2) 512(C;p0)19(2)+(1_6)12(a J;pl_’lcm(z) 0<B<1; z€)
implies that
B+ 10 Blatlon) o

2Pl 2p~1
Proof. Let us define the functions F' and G as and by using the equation
(L.7.6) to (2-2.3), we have (2.2.4).
Hence, combining ([2.2.3]) and ( -, we obtain

. 2G'(2)
ﬂ[a 1+ G

Loiss
(2.2.14)
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Thus, from ([2.2.14)), we need to prove the following subordination implication:

§lo—1+58] ple—1+58
Dl i1-8) <6 ©)

a a

F(z) ]—1-1—5 (z € U)

= F(z) <G(z) (€ D).
(2.2.15)

Without loss of generality as in the proof of Theorem [2.2.1] we can assume that

(G satisfies the conditions of Theorem m on the closed disk U and

G'(¢Q)#0 (¢eaU.

To prove the implication ([2.2.15)), we consider the function

L:Ux[0,00) — C

ﬁ[a—l+(1+t)%

a

+1-8

L(z,t) = G(z)

= a1 (t)z 4,

and we want to prove that L(z,t) is a subordination chain. But, the remaining
part of the proof in Theorem is similar to that of Theorem and so we
omit the detailed proof.

If we take
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a=p, c=A=1land f=1

in Theorem and Theorem [2.2.2] respectively, then we have the following

result.

Corollary 2.2.1. Let f,g € A, and suppose that
- { z ((Zg/(Z))' —(p—1)g'(2)
= /
p\ 29'(z) = (p=1)g(2)
Then we have the following implication:

) ()

pzH = pop-l

>}>0 (a >p; z€U).

(2€U0) = f(z)<¥(zel[})

By using the same techniques as in the proof of Theorem with the

equation ((1.7.7)), we have the following result.

Theorem 2.2.3. Let f,g € A, and suppose that

o DLMaez) |2 (3 (a,0)g(2) = (0 = DI a,e)g(z) | A+p—1
9%{(1 p) 0. 9(2) + 5 2 (D (@ 0)9(2)) — (0 — DTN @ 0)g(2) } ~ a1y
(8>0; A\>0; z€ )
(2.2.16)

Then the following subordination relation:

=

zp—1 zp—1

I)(a, c)f(z)] R EAC c)f(Z)] ’

Iﬁ(a,cm(z)] o

26



implies that

L@l  B@deE) g

prl prl
The proof of Theorem below is much akin to that of Theorem [2.2.3] and

so the details may be omitted.

Theorem 2.2.4. Let f,g € A, and suppose that

—

N { L (a,0)9()) — (p - 1>I$“<a70)9<2>} >2TP2L (>0 e ),

2 (T)(a,0)9(2)) = (p — )T} (a,0)g(2) A+p
(2.2.17)

Then the following subordination relation:

o A\ A+1 2y
gl M gyl p BRI 5 200 g <p<ize)

implies that

L@l L) g

Zp—l zp_l

Next, we consider the generalized Libera integral operator F, (v > —p) de-

fined by (cf. [4,19,35,52])

F(f)(z) = L2 /0 U (dt (f € A R{v} > 1) (2.2.18)

Zl/
Now, we obtain the following subordination property involving the integral

operator defined by ([2.2.18)).
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Theorem 2.2.5. Let f,g € A, and suppose that

. {(1 5 I (a,c)g(2) 2 (Z)(a, )g(2)) — (p — 1)Z)(a,c)g(2) } _vtp- 1

La,c)F(9)(z) 2 (T)(a, ) Fu(9)(2)) = (p = DT (a, ) Fu(g) () vEp

Then the following subordination relation:

(a, c)F,,<f><z>] 7

zp—1

I,?(mc)f(z)] "

zp—1

implies that

L@ )R (NE) | L(adR9)()

zP=1 zp~1

(z € U).

Proof. Let us define the function F' and G' by

F(z):= L(@,9R)) and G(z) = L(@,909)(2) (f,ge Ay z€ ).

zp—1 zp—1
(2.2.19)

From the definition of the integral operator F, defined by ([2.2.18)), we obtain

2Ly (a, )P (f)(2)) = v +p)I)(a,0) f(z) —vI)(a,0)F,(f)(z)  (2.2.20)

Hence, by using (2.2.19)), (2.2.20]) and the same method as in the proof of Theorem

2.2.1] we can prove Theorem [2.2.5] and so we omit the details involved. O]
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Finally, we obtain the following Theorem below by using a similar
method as in the proof of Theorem or Theorem [2.2.4]

Theorem 2.2.6. Let f,g € A, and suppose that

" { 2 (L)(0.9)9() ~ (0 = VT (e, gl2) } AT Tk S
(L@ )FE) — - DR@AR@E [~ v
Then the following subordination relation:
L (ZL—@lf(Z)Hl—B)I? 4, CZ)pFllm(z) < BI;(ZC)?(Z)Hl—B)I;(a’ ZFZ(Q)<Z) (0<B<L zel)
implies that
L(@IEN@) Ll

zp—1 zp—1

If we take

a=p+1, c=A=1land =1

Theorem [2.2.5( or Theorem then we have the following result.

Corollary 2.2.2. Let f,g € A, and suppose that

2/(2) — (0~ Dg(2) vip-1 o
i)ﬁi{z(Fy(g)(Z))'—(p—l)Fy(g)(Z)} > v+ p (v>0; ze€U).
Then we have the following implication:
I8 een = SO0 B ey

29



Theorem 2.2.7. Let f,g € A,. suppose that the condition (2.2.1)) is satisfied

and the function

Na+1, c)f(z)] v

zp—1

z;<a,c>f<z>r

zp—1

is univalent. Then the following subordination relation:

T, (a,0)f(2)

zp—1

Na+ l,c)g(z)] 0 {zg(a, c>g(z)r <

zp—1 zp—1

Ta+ 1,c)f(z)] 0

zp—1

B
] (z € )

implies that

Do+ 1,09(:)  Bla+1,IfE)
zp—1 zp—1

(z € U).

Theorem 2.2.8. Let f,g € A,. suppose that the condition (2.2.13)) is satisfied

and the function

ﬁzg(a, ) f(z) e B)I;m +1,0)f(2)

zp—1 zp—1

is univalent. Then the following subordination relation:

Tha+1.0() | BN o Tt LOSC)

PEAGLEIC I (- )

zP zP zP

implies that

IXa+1,¢)g(z) ZIa+1,¢)f(2)
<
zp—1 zp—1

(z € U).
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Theorem 2.2.9. Let f,g € A,. suppose that the condition (2.2.16)) is satisfied

and the function

TX(a, c)f(Z)] v

zp—1

I;“(a,c)f(z)r

zp—1

is univalent. Then the following subordination relation:

L) (a, ) f(2)

zp—1

(a, c>g<z>] o

zp—1

L c>g<z>] 1

zp—1

7(a, c)f(Z)] ol

zp—1

B
] (z € )

implies that

)0, 99z) _ Ba,e)f(2)

zp—1 zp=1

(z€U).

Theorem 2.2.10. Let f,g € A,. suppose that the condition (2.2.17) is satisfied

and the function

612“(;,_ cl)f G 5)12(2; fi)lf(z)

is univalent. Then the following subordination relation:

513“(5_01)9(2) e B)Iﬁ(?p (i)lg(Z) . 612“(;,_ cl)f(Z) (-8 IQ(CZD C—>1f<2)

implies that

Z0.0(2) _ B

zp—1 zp—1

(z € ).
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A
Theorem 2.2.11. Let f, g, € Ay,(k =1,2). with Ip(aj—,lf)gk € M. suppose that

P

Na+1, c)f(Z)] Y

zp—1

z;<a,c>f<z>r

zp—1

and

I a+1,¢)f(z)

-1

zp

are univalent in U. Then the following subordination relation:

123 1-8 18
Iy(a+1,0)gi(2) Z,(a,c)g(2) (e +1,0)f(2) Zy(a, ) f(2)
2Pt B ! ~p—1 2p—1
A 1=8 11 18
Ip (a’+ 1?6)92(2) Ip (CL,C)QQ(Z)
B ot 21
(z € U).
implies that
TMa +1, TNa + 1, TMa + 1,
Yot 1dn)  Batlafe) Blatrldne) |
zP ~p—1 »p—1

A a C
Theorem 2.2.12. Let f, g, € A,(k =1,2). with W € M. suppose that

I (a+1,¢)f(z)
zp—1

ﬁIp (a,0)f (%)

zp—1

+(1-5)

and




are univalent in U. Then the following subordination relation:

s (a;pC)lgl(Z) a-ph 4;101,16)91(2) . ﬁfﬁ(c:p C)lf @) - phle ;1710)]’ (2)
517?(@;)102(»2) o /B)Iﬁ(a 2375)92(2)
(z € U).

implies that

IMa+1,001(2) DXa+1,0)f(2) - IXa+1,¢)g(z)
< <
Zp—l zp—l zP—l

(z € U).

A a,Cc
Theorem 2.2.13. Let f,gr € A,(k =1,2). with % € M. suppose that

zp—1 zp—1

T, c)f(zTﬂ :f;“(a,c)f(z)r

and

T, (a,0)f(2)

zp—1

are univalent in U. Then the following subordination relation:

Iﬁ(a,@gl(z)]” :f;“(a,c)gl(z)r< Iﬁ(a,c)f(Z)rﬂ L (a.0f()]
T)(a, c)gg(z)] o > a, c)gg(z)_ g
(z € ).
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implies that

II;\(CL, C)gl(z) I]i\(aac)f(z) I?(Q’C)QQ(Z)
prl = prl = ZPfl

(z € D).

A a,c
Theorem 2.2.14. Let f, g, € A,(k =1,2). with I”ip’,l)g’“ € Mj. suppose that

L Rk

and

Z,(a,0)f(2)

~P-1

are univalent in U. Then the following subordination relation:

R
e BI];\—’_I(:I;_CBQQ(Z) (1 e 6)1—;\(01;;_)?2(’2)
(z € V).
implies that
T (a,¢)g1(2) ) INa, ) f(2) . Zy(a,c)ga(2) (ze).

zp—1 zp—1 zp—1

Zp (a,0) Fy (g) (=

Theorem 2.2.15. Let f,g; € A,(k =1,2). with p— ) ¢ M. suppose

that

zp—1 zp—1

I;?(mc)Fu(f)(Z)r_ﬂ I;<a,c>f<z>r
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and

T a, ) F(f)(2)

zp—1

are univalent in U. Then the following subordination relation:

Na, ) F,(f)(2)] "

zp=1

I,?(a,c)FV(gl)(z)] o

zp—1

Z)(a, c>gl<z>] |

zp—1

Iﬁ(a,C)f(z)] ’

zp—1

| |

EAT C)FV(QQ)(z)] Iz <a,c>gz<z>r
(z € U).
implies that
LwAR@)E) L dk()E)  LEoke)E)

zp—1 zp—1 zp=l

A
Theorem 2.2.16. Let f,g; € A,(k =1,2). with Lol o)) M. suppose

zp—1

that

6:[;\(@2;,0)1]0(2) + (1 . B)I;\(av CZ)pFll(f)(Z)

and

Iy (a, 0)F(f)(2)

zp—1

are univalent in U. Then the following subordination relation:
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TXMa,c)gi(2) (-8 I (a,¢)F,(g1)(2) ~ ﬁIﬁ(a,c)f(z)

~p—1 + (1 N ﬁ)

~p—1 zp—1 Z1
I (a, ¢)ga(2) Z)(a, ) F,(92)(2)
< B—Zp_l + (1 - 5) =
(z € U)

implies that

Z,(a,0)F,(g1)(2) <Iﬁ(a,C)Fu(f)(Z) <Iﬁ(a70)Fu(Q2)(2)

»p—1 ~p—1 ~p—1

(z € U).
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Chapter 3

Majorization properties for
certain analytic functions defined

by convolution

3.1 Introduction

In this chapter, we investigate majorization properties for p-valent functions de-
fined by the linear operator I;‘(a,c). More precisely, we will find radii R for

which satisfy the following implications:
A TN a+1,6)f(2), Ta+1,0)g(2),1] implies [T)(a, c) f(2), T (a, )g(2), I;
B. 6T} (a,)f(2), T (a, c)g(2), 1] implies [T (a, ¢) £(2), T2 (a, g (=), B,

where f, g€ A, and 6 € U:={z € C:|z| < 1} is a given constant.
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We recall that for f € A,, the following equality holds:

Ji(A +p k
I;(a c)f(z) =2"+ Z on 2P (3.1.1)

where (a)j is the Pochhammer symbol defined by ((1.7.4). In particular, by using
(13.1.1]), we easily obtain the identities

Iy (A +p. 1) f(2) = f(2)

and
1
1 I B
Z,(p,1)f(2) = Z;Zf’(Z)
Also, we remark that the following recurrence equations hold for the operator

Z)(a,c):

AT a+ 1,01 (2) = aT)(a, ) f(z) ~ (a— p)T}(a+1.0)(2)

and

2Ty (a, ) f(2)" = (Xt p)T " (a,0) f(2) — AT (a, c) f(2).

3.2 Main Results

At first, we give a radius for which satisfies the condition A.

Theorem 3.2.1. Let 6 € C with |0] < 1, and let a € R with p < a < 2p. Let
fe A, and T)(a+1,c)g(z) € S;. Suppose that L) (a+1,¢) f(z) < I (a+1,¢)g(2)
in U.
(1) If |0 = 1, then II;\(a,c)f(z) < I?(a,c)g(z) in U. In fact, we have
T)(0,0f(2) = (@, g(=) in U;
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(2) If |0| < 1, then 0Z)(a,c)f(2) < I)(a,c)g(z) in U,,, where

 l4p—/1+a®+2p—2ap+ p?
- :

(3.2.1)

To

Proof. I. Let [0| = 1. Since 6Z)(a + 1,¢)f(2) < Z}(a + 1,¢)g(z) in U,
there exists an analytic function ¢ with |¢(z)] < 1, z € U, such that
0Ly (a + 1,¢)f(2) = ¢(2)I)(a + 1,¢)g(z). Since both I)(a + 1,¢)f(z) and
I (a+1,¢)g(2) are in A,, we have

P zP

/e, (3.2.2)

and 1 = |0] = [¢(0)]. Since [p(z)] < 1 for all z € U, it follows from
Maximum-Modulus Theorem that ¢ is constant in U. Thus, from (3.2.2), we
have ¢(z) = ¢(0) =, z € U. Thus we have Z)(a+ 1,¢)f(2) = I, (a+1,¢)g(2).

So, we get

IT. Now, let |§] < 1, and
0Ty (a+1,0)f(2) = ()T (a+1,c)g(2)

for some ¢ : U — C analytic and satisfying |¢(z)| < 1, for z € U.

By a simple calculation, we have

[2¢/(2)Z; (a + 1,0)9(2) + d(2)2(Z) (a + 1, ¢)g(2))'].

AT a+1,0f(2)) = %
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Also, since

ALy (a+1,0)f(2)) = aZy(a.c) f(2) = (a = p)T)(a+1,c) f(2)

= aZ)(a,0)f(2) = AT (a+1,c)g(2),

we easily get the following identity:

1

0Z,(a,c) f(2) = azcb'(Z)Iﬁ(a +1,0)9(2) + ¢(2)Z, (a,c)9(2).

Since Z)(a + 1,¢)g(z) € Sy, it holds that

z(I];\(a +1,0)9(2))
TXa+1,¢)g(z)

p(1=lz|)
1+ 1z

Let z € U with |z] < (2p — a)/a. Then, by the triangle inequality, we obtain

Z,(a,c)g(2)
I)a+1,c)9(2)

B Ineey L
B 2P e T o
a a(l+7)

z(I;‘(a +1,¢0)g9(2))
I (a+1,c)9(2)

1
a

(3.2.3)

Now we put |z| =7 and |¢(2)| = p. Using (3.2.3]) and the well-known inequality
1¢'(2)] < (1 —p?)/(1 —7r?) yields that
) (3.2.4)

r(l—p°) )
p(l—r)2p—a—ar) )’

[011Z5 (@, ) f(2)]

< [T (a,€)g(2)][6(2)] <1 2 Tla+1,c)g(2)

Z(a, c)g(2)

2¢/(2)
¢(2)

< |Z,(a,¢)g(2)| D1,

where

Dy = Di(r,p) :=p (1 +
Since p < 1, the inequality Dy < 1 is equivalent to that

(14 p)
(1—7r)2p—a—ar) = L
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And, this inequality holds for r satisfying

= r)@;r_ S (3.2.5)

Now, it is easy to see that (3.2.5) is true for r < rg, where rqg is given by (3.2.1)).
Consequently, for r < o, we have D; < 1, which implies, by (3.2.4)), that

167, (a,0)f ()| < T3 (a,0)9(2)], |2l =7 <.

That is, 027 (a, ¢) f(z) < I (a,c)g(z) in |z| < ro, as we asserted. O

By taking A =1, a = p and ¢ =1 in Theorem [3.2.1] we obtain the following

result.

Corollary 3.2.1. Let 6 € C with [6] < 1. Let f € A, and g € S;. Suppose
that 0f(z) < g(z) in U.

(1) If |6] = 1, then zf'(2) < z¢'(z) in U. In fact, we have f'(z) = ¢'(z) in U;

(2) If |6] < 1, then 0zf'(2) < zg/(z) in U,,, where ro =(1+p—+/1+2p)/p.

Next, we give a radius for which satisfies the condition B.

Theorem 3.2.2. Let § € C with |6| <1, and let A € R with A <p. Let f € A,
and I (a,c)g(z) € Si. Suppose that 6I)(a,c)f(z) < I)(a,c)g(z) in U.

(1) If 6| = 1, then Z;H(a,c)f(z) < I;H(a, ¢)g(z) in U. In fact, we have
I3 (a,¢) f(2) = )" (a,¢)g(z) in U;

(2) If |6| < 1, then 0I)" (a,c) f(2) < Iy (a,c)g(z) in U,,, where

Cl+p—/1+X2+2p

To A—l—p

(3.2.6)
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Proof. L. Let || = 1. Since 0Z)(a, ¢) f(2) < I, (a,c)g(z) in U, there exists an an-
alytic function ¢ with |¢(z)| < 1, z € U, such that 6Z)(a,c) f(z) = ¢(2)Z)(a, c)g(z).
Since both Z>(a, ¢) f(2) and Z)(a,c)g(z) are in A,, we have

BEOfE) B0

zP 2P
and 1 = |§] = |¢(0)]. Since |p(z)] < 1 for all z € U, it follows from
Maximum-Modulus Theorem that ¢ is constant in U. Thus, from , we
have ¢(z) = ¢(0) = 0, z € U. Thus we have Z)(a,¢)f(z) = I (a,c)g(z). So, we

, z€el, (3.2.7)

get

I (a, ) f(2) = [2(Z)(a,0)f (2)) + AT (a, ¢) f(2)]
i .
5

—T)*(a,c)g(2).

[2(Z)(a, )g(2))" + AT, (a, )g(2)]

IT. Now, let |§] <1, and

0L, (a;c)f(2) = ¢(2)Z)(a, )g(2)
for some ¢ : U — C analytic and satisfying |¢(2)] < 1, for z € U.

By a simple calculation, we have

HTH0,0) () = 52/ (2)T (@, (=) + 6(2)2(T) (@ g (=)'
Also, since
A0, ) = O+ P)T) (00 () — AT, (2
= A+ DT @0 f(2) — 6T, (),

we easily get the following identity:

1
A+p

0L, (a,0)f(2) = 20/ (2)Z;(a, 0)g(2) + 6(2)L " (a, 0)g(2).
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Since I (a,c)g(z) € Sy, it holds that
2(Zy(a,0)g(2))’
Z(a, c)g(2)
Let z € U with |z| < (p—A)/(p+A). Then, by the triangle inequality, we obtain

I, (a,c)g(2) 2(Z)(a,0)g(2))"| A _p(l—1) = A1 +7)
X (a,c)g(2) Z)(a,c)g(2) Atp = (A+p)(L+r)

e
1+ 2]

1

> 0.
T A+p

(3.2.8)
Now we put |z| =7 and |¢(2)| = p. Using (3.2.8) and the well-known inequality
|¢'(2)] < (1 = p?)/(1 —r?) yields that

[611Zy* (a, ) f ()]

gﬂfﬂmwmmwwﬂﬁ+,ipzzg>;ﬁﬁfﬁ;g) 3.29)
< 12 (0l )g(2)| D
where
_ . r(1—p?)
D”‘%“W”‘po+pu—m@—x—@+xw0'

Since p < 1, the inequality Dy < 1 is equivalent to that

r(1+p)
(1—r)2p—a—ar) s L

And, this inequality holds for r satisfying

2r <1 3.2.10
= A ran = o210

Now, it is easy to see that (3.2.10)) is true for r < rg, where rq is given by ([3.2.6)).
Consequently, for r < o, we have Dy < 1, which implies, by (3.2.9), that

6 (a,¢) f(2)] < [T (a,¢)g(2)], |2 =7 < 0.

That is, 0Z)(a, ¢) f(z) < I} (a,¢)g(2) in |z| < 7o, as we asserted. O
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Chapter 4

Argument estimates for

Carathéodory functions

4.1 Introduction

Recently, Nunokawa et al. [68] investigated an argument property of p € N at
extremal points on the boundary of the circle |z| = r < 1, which is the more

extened one of the result earlier studied by Nunokawa [49].

In the present paper, we give some applications of the result obtained by
Nunokawa et al. [68], which contain argument properties of Carathéodory func-
tions. We also improve the results by Darus and Thomas [14], Nunokawa [49|

and Nunokawa and Thomas [51] with some special cases.
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4.2 Main results

To prove the main theorems, we need the following lemma due to Nunokawa et

al. [68].

Lemma 4.2.1. Let p € N and p(z) # 0 in U. If there exist two points z1, 22 € U

such that
T

—ga= argp(z1) < argp(z) < argp(z2) = gﬁ (4.2.1)

for some «, B(a, 5 > 0) and for all z(|z| < |z1] = |22|), then we have

avla) <O‘+B) (1+52>m (4.2.2)
p(z1) 2 25 o
and
2P () (a+ B\ (1+F
. i ( 5 > ( 7 ) m, (4.2.3)
where
p(zl)% = —isexp (zg (i 1 g)) (s >0) (4.2.4)
and
p(zg)ﬁ = it exp (zg <§_Tg>> (t>0) (4.2.5)
when
1—|al . m (-«
mzl—l—]a\’ a_ltanZ(a—i—ﬁ)' (4.2.6)

At first, with the help of Lemma we obtain the following result.

Theorem 4.2.1. Let k € N = {1,2,---}, n € [0, 1] and o, > 0 with
(a+ B)(k—1) < 2. If a function p € N satisfies the condition

! n
_gcl(a,k‘,a,ﬁ,n) < arg {p(z) (1+?;—8) } < gCQ(a,k‘,a,ﬁ,n)
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where

o (a+ )1~ |a]) cos a(k — 1)
ci(a, k,a, B,m) = OH‘? tan {2(1 + |a|)d(k, o, B) + (o + B)(f— la]) sin Fa(k — 1) }
(4.2.7)
and
B 2n (a+B)(1 —|a|)cos 5B(k —1)
cala, @ fym) = G470 tan {2(1 T Jal)d(k, @ B) + (o + B)(1 — [a]) sin ZA(k — 1) }
(4.2.8)
when a s given by and
2+(a+§)(k71) 27(a+§)(k71)

I

(4.2.9)

i.0) = (142D

) (1- B 1)

2

then

—ga < arg p(z) < gﬁ.

Proof. We note that p(z) # 0 for 2 € U. Otherwise, p(z) = (2—z1)'p1(2) (2 € U)
for some [ > 1 and z; € U, where p; is an analytic function in U such that

p1(z1) # 0. Then
2p'(2) 1 ( lz N (2 — 21)2p1(2)

N P (2) P (z)

PE(z) (2 — zp)l- D1
and so the above expression has a pole at the point z;. This contradicts the

) ev),

assumptions of the theorem.

If there exist two points 21,22 € U such that the condition (4.2.1)) is satisfied,

then (by Lemma[4.2.1]) we obtain (4.2.2)) and (4.2.3]) under the restrictions (4.2.4))
and (4.2.5)), respectively.

At first, we suppose that

p(22) 77 = it exp (zg (ﬁ;g)) (t>0).
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Then, using (4.2.3)), we have
/ "
p(22) (1 + Zbz2) (2’2)) .

(VB

6 (1 4 meis-80-1) (a+8)A+)\"
m @EB) (1) 1 .

Let

(a+B)(1 +t%)
r(t) = (@t B)(h—1)
At 5 +1

Noting that (a+ 5)(k —1)/2 < 1, we can observe that the function r attains its

minimum value r(ty) = (o + 5)/2d(k, o, B), where d(k,a, 8) is given by
and to =+/(2+ (a4 B)(k—1))/(2— (a+ B)(k — 1)). Hence we obtain

200/ (22) \ " m a\ mr(to) cos ZB(k — 1)
e oten (14 3]} = oo | S )

{ (1~ lal)r (to) cos TA(k — 1) }

L+ |a| 4 (1 — |a|r(ty) sin 5 5(k — 1)

(t>0).

[\

> 58+ ntan”!

T 02<a7 ka «, Ba T]):
where ¢y(a, k, o, 5,7) is given by (4.2.8]). This contradicts the assumption of the
theorem.
Next, we suppose that

p(21)7F = —isexp <zg <@ - O‘)) (s> 0),

a+p

applying the same method as the above and using (4.2.2) and (4.2.6]), we have
: ! 1—lapr(ty) cos Talk — 1
arg {p(21) (]. + 21p (Zl>> } S _za _ ntan—l { ( | ‘) ( 0) 2 ( ) }

pF(21) 2 L+ la| + (1 —|a|r(to) sin Fa(k — 1)

= _Cl(aakaaaﬂan)a

where ¢ (a, k, a, B,m) is given by (4.2.7), which contradiction to the assumption
of the theorem. Therefore we complete the proof of Theorem [4.2.1} m

If we let @ = 3 in Theorem [4.2.1], then we see easily the following corollary.
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Corollary 4.2.1. Let k € N, n € [0, 1] and o > 0 with a(k — 1) < 1. If a

function p € N satisfies the condition

arg {p(z) (1+;il—((§)))n}’ < gc(k,a,n)

where

2n acosZa(k —1)
C(k‘, «, 77) = a+— tan™' Tfa(k—1) 2 T_a(k_1) :

d (I4+ak-1)"=2 (I-ak—-1)" 2z  +asinfalk—1)
then

m
|arg p(2)| < Sa.

Remark 4.2.1. For k =2 and n =1, Corollary [{.2.1] is the result obtained by
Nunokawa and Thomas [51].

Taking p(z) = zf'(2)/f(2) in Theorem we have

Corollary 4.2.2. Let k € N, n € [0, 1] and o, > 0 with (a4 5)(k—1) < 2.
If a function f € A satisfies the conditon

I ek a arg 4 ) FEONT (A AN
5 (a ko, B,m) < g{ ) <1+(zf’(z)> (1+ ) e )) }

< gc2(a7 k7aaﬁ7n)7

where ¢1(a, k, o, 8,n) and cy(a, k, o, B,n) are given by (4.2.7) and (4.2.8), respec-
tively, then

z2f'(z) T

T
——a < arg < =p.

2 f(2) 2
Remark 4.2.2. (i) If we take k = 2 and a = 3 in Corollary [{.2.9, we have

the corresponding result obtained by Darus and Thomas |14]. (ii) For the case of
k=2 n=1and a =0, Corollary is the result studied by Nunokawa [49].
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Letting p(z) = f(2)/z in Theorem |4.2.1} we have the following result.

Corollary 4.2.3. Let k € N, n € [0, 1] and o, > 0 with (a+ S)(k —1) < 2.
If a function f € A satisfies the condition

om0 (o () (29 ))

02(a7 k? a, ﬁa 77)7

a,k,a, B,n) are given by [4.2.7) and ([#.2.8)), respec-

<

bo |

—~

where ci(a, k, o, 5,1) and ¢,

tively, then
T f(2) T

—§Oé <arg 7 < §ﬁ

Setting p(z) = f'(z) in Theorem we have the following corollary.

Corollary 4.2.4. Let k € N, n € [0, 1] and o, 8 > 0 with (a+ [)(k —1) < 2.
If a function f € A satisfies the condition

_gcl(a, k.o, B,n) < arg {f’(z) (1 + &{;/Z()Z))k)n} < g@(a, k.o, B,m),

where ¢1(a, k, o, B,n) and ¢1(a, k, o, B,n) are given by (4.2.7) and (4.2.8), respec-
tively, then

—ga <arg f'(z) < gﬁ.

By using the similar method as in the proof of Theorem [4.2.1] we have the
following three theorems below. The proof is much akin to that of Theorem

and so the details may be omitted.

Theorem 4.2.2. Let o, 5 € (0,1]. If a function f € A satisfies the condition

2f'(2) L (a+B)(A —al)
f(2) 21+ laf) -

arg

‘<tan
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where a 1is given by (4.2.6), then
f(2)

T < < 7r6
—— ar _— — 0.
2 &~ 2

Remark 4.2.3. For the case o = 3, Theorem is the result obtained by

Nunokawa and Thomas [51].

Theorem 4.2.3. Let o, 5 € (0,1/2]. If a function f € A satisfies the condition

L (a4 B)(1 — a]) @) ') 1 (a+B)(A —al)
—ma — tan 20 + Ja]) < arg N7 < 70+ tan 20 +la)
where a s given by , then
—ga < arg @ < gﬁ.

Theorem 4.2.4. Let o, 5 € (0,1). If a function f € A satisfies the condition
—gdl(a,a,ﬁ) < arg {% (1 + %g)} < gdg(a,a,ﬂ),

where

(a + B)(1 — |a]) cos G

2
di(a, o, B) = = tan ™" 3tatp 2=a—5
21+ o)) (1+57) * (1-2%) ' +(a+P)(1~la)singa

and

(a+B)(A — |a]) cos 55

2
do(a,a, ) = = tan™!

2ta+pB 2—a—f
m 2(1+ la)) (1427 (1—-2) "7 4 (a+B)(1—|a])sinZj
when where a is given by (4.2.6)), then
T z2f'(z) T
——a < T < SR
2a arg ) 25

Taking o« = [ in Theorem [4.2.4] we have the following result.
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Corollary 4.2.5. Let a € (0,1). If a function f € A satisfies the condition

e {5 (1 T < { o F T a} |

then
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Chapter 5

Properties of Meromorphic
Functions Defined by a

Convolution Operator

5.1 Introduction

In the present paper, we shall derive certain interesting properties of the convo-
lution operator D* defined by (1.7.2]). We note that the contents of this chapter
have been published by Nonlinear Functional Analysis and Applications [2].

5.2 Main Results

To prove our results, we need the following lemmas.
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Lemma 5.2.1. [28] Let h be analytic and convex in U with h(0) = a, v # 0,
Re{y} > 0. If p € H[a,n] and

zp/(2)
p(z) + i h(z),
then
p(z) < q(z) < h(2),
where

and q 1s the best dominant.

Lemma 5.2.2. [40] Let Q2 be a set in the complex plane C and let b be a complex
number with Re{b} > 0. Suppose that the function
Yp:C?*xU—C

satisfies the condition:

Y(iz,y; 2) € Q,

for all real x,y > —|b—ix|*/(2Re{b}) and all z € U. If the function p is analytic
in U with p(0) =b and if

Y(p(2), 20 (2);2) € Q,
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then

Re{p(2)} >0 (z€U).

Theorem 5.2.1. Let a > —1, 0< A< 1 and y> 1. If f € X, then

DG DG i
Re{(l A) Do 7(2) +)\Da+1f(z)} <7 (2€D)

implies that

Re{D;:;JgS)} <B (z€eUy),

where B € (1,00) is the positive root of the equation:
2(a+ 1)1 =) +2X(a+1)z* + (3X = 2y(a+2))x — A = 0.
Proof. Let

| Dotf(2)
P = 5+ 1(B Daf(z)) (= € ).

(5.2.1)

(5.2.2)

(5.2.3)

(5.2.4)

Then p is analytic in U and p(0) = 1. Differentiating (5.2.4]) and using (1.7.3)),

we obtain

Dot (2 D2 f(z
=4 D‘*f(i)> e ;

(2
A1+ (a+1)5)

= (1-MNB+ AMa+1)(6 —

a2 a+ 2
A(B = 1)2p'(2)

(a+2)(B—(8—1)p(2))
= Y(p(2), 20 (2)),

((1—A><5—1>+

o4

1)) p(z)



where

A1+ (a+1)p)

P(rs) = (1=XN)B+

o+ 2 a+2
B AB—1)s
(@+2)(B—-(B—-1r)
(5.2.5)
By virtue of and , we have
{W(p(2),2p'(2) : 2 € U} Cc Q ={w € C: Re{w} <7}
Now for all real z,y < —(1 + 2?)/2, we have
Refw(ia,)} = (1- g+ LI SO0
A1+ (a+1)8) AXB—1)B(1 + 2?)
2 (RN S 20 12)(F — (617
e +a<i; =L Q)Ec(xﬁJr_Ql))ﬁ -

where [ is the positive root of the equation ([5.2.3)). Note that, if

g(x) = (2(1 = \) + 2\ (a+ 1))2® + (2A — 2y(a + 2))z — A,

then g(0) = —A <0 and g(1) = —2((« + 1)(y — A) + (v — 1)) < 0. This shows
that 5 € (1,00). Hence for each z € U, ¥(ixz,y) ¢ 2. Therefore, by Lemma

Re{p(z)} > 0 for z € U, which proves (5.2.2)). O

Theorem 5.2.2. Let A>0, v>1 and 0 < < 1. Suppose also that
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D%(z) ,
Re{DaTg(z)} >3 (geX;zel).

If f € X satisfies

re{i- N 2L IO (e,
then
Df(z) _ la+ 1)+
4 { Deg(z) } 2+ 1)+ Ao (=€),
Proof. Let
_ 2y(a+ 1) +Ad
-y

and

_ I~ BR¥ (N
p(z) = 51 (5 Dg(2) > (z € ).

Then the function p is analytic in U and p(0) = 1. Setting

B(z) = Dg(z)

= Darig(s) (g e ¥;zel),

by assumption, we have

Re{B(2)} > (z€U).

Differentiating ([5.2.9)) and using ((1.7.3)), we have

o6

(5.2.6)

(5.2.7)

(5.2.8)

(5.2.9)



Df(z) D' f(2)
Deg(z) ~ Detlg(z)

(1=2)

AB—1)B(2)2p'(2)
a+1 '

=1+ 2)8 = (8 —1)p(z) -

Letting

AB —1)sB(z)

P(r,s) = (14 da)f—(B=1r — —

(= €U),

we deduce from ([5.2.7)) that

{(p(2),2p'(2);2 € U} € Q ={w € C : Re{w} < 7}

Now for all real z,y < —(1 + 2?)/2, we have

Re{v:(ie,y)} = 8 — 20— Vperpa))

a+1
-
AMB—-1)
Zﬁ‘i‘m—%

Hence for each z € U, ¥(ixz,y) ¢ Q. Thus by Lemma [5.2.2) Re{p(z)} > 0 for
z € U. Therefore we complete the proof of Theorem [5.2.2] m

Theorem 5.2.3. Let « > —1, 5 >1 and v> 0. If f € X, then

DL f(2) a+1+7y
Re{ Do 7(2) } < ] (z € U) (5.2.10)

implies that
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Re {(zDaf(z))’l/Z’BV} > 27 Y8 (e ).

The bound 2=Y/8 is the best possible.

Proof. From (|1.7.3) and (5.2.10]), we have

R{M} <-l4q (z€U).

De f(z)
That is,
L (D)) :
ﬁ( Df(2) H) I <
Let

p(z) = (zD*f(2))T"" (2 € ).

Then (5.2.12)) may be written as

z

z(logp(2)) < 2z <log 1i ) (z € U).

By using the well-known result [67] to (5.2.13)), we obtain

pe) < (zel),

that is, that

1

W)l/ﬁ (z €l),

(2D f(2)) 72" = (1 0

o8

(5.2.11)

(5.2.12)

(5.2.13)

(5.2.14)



where w is analytic function in U, w(0) = 0 and |w(z)| < 1 for z € U. According

to Re{t'/#} > (Re{t})'/? for Re{t} >0 and 3 > 1, (5.2.14)) yields

Re{(zDa {f(z))—l/zwﬁ} > <Re{%w(z)})w

> 278 (2 el).

To see that the bound 2-/# cannot ne increased, we consider the function

g € X such that

2D%(2) = (1+2)2 (2€U).

It is not so difficult to show that g satisfies ([5.2.10|) and

Re {(zDa {g(z))—l/m} NSV

as z = Re{z} — 17. Therefore the proof of Theorem is complete.

O
Theorem 5.2.4. Let a« > —1, A >0 and 0 < 41,0, < 1. If f € X satisfies
m a a+1 m
- 551 <arg{(1 = N)zDf(2) + \z2D" f(2)} < 552, (5.2.15)
then
™ N T
—5m <arg{zD"f(2)} < 5 (5.2.16)

where 1y and 1y are the solutions of the equations:
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51 = m + > arctan { Al + 12) (1 - |a|> } (5.2.17)
m

2(a+1) \1+|q
and
2 A +m2) (1 —]al
0y = — arct 5.2.18
2 n2+7rarcan{2(oz+1) 1+ |al ’ ( )
when
a:itan{m_m}.
N2+ m
Proof. Let

p(z) = 2D%f(2) (2 €D).
Then by using (|1.7.3), we have

A
z
a—+1 p

(1= X)2D*f(2) + XzD**t f(2) = p(2) + '(2). (5.2.19)

Let h be the function which maps U onto the angular domain {w € C: —md; /2 < arg{w} < mds/2}

with h(0) = 1. Then from (5.2.15) and (5.2.19)), we get

p(z) + 2p'(2) < h(2).

a+1
Therefore an application of Lemma yields Re{p(z)} > 0 for z € U and
hence p(z) # 0 for z € U.

Suppose that there exists two points z1, 2o € U such that the condition (|1.6.1))
is satisfied. Then by Lemma we obtain ([1.6.2)) under the restriction (1.6.3]).

Therefore we have
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)\ /
arg {P(z1) tar 1Z1p'(21)} = arg {p(z1)} + arg {a L1 A%z(f)l)}

= _Zm-l-arg O‘+1—iwm
’ 2

< —Zm — arctan A +mn2) (1 —|al
’ 2(a+1) \1+|d]
™

=75
2 1

and

A / T A +m2) (11— |al
> — t
arg {p(ZQ) + . 122p (zz)} > 2771 + arc an{ 2o +1) \1T]al
T

—
9 2,

which contradict the assumption (5.2.15). Therefore we have the assertion
(5.2.16)). O

For 6; = 05 = 0 in Theorem [5.2.4] we have the following result.

Corollary 5.2.1. Let a > —1, A>0 and 0 < < 1. If f € ¥ satisfies

[arg{(L = X)zD*f(2) + A=D**' f(2)}] < 56,

then

o T
Jarg{=D" f(2)}] < 3.
where 1 is the solutions of the equation:
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) —I—2 t A
= —arctan{ —— p .
" T a+1

Now we consider the following integral operator F, ( see [3,20,41,44]) defined
by

C

R = 25 [ H0ra Refe} 20) (5.2.20)

Theorem 5.2.5. Let > —1, ¢ >0 and 0 < 61,00 < 1. If f € X satisfies

—%51 < arg{zD*f(2)} < 352,

then

T T
—57)1 < arg{zDF.(z)} < 5772,

where F,. is the integral operator defined by (5.2.20), and n and ny are the
solutions of the equations ((5.2.17) and (5.2.18)) with a =c—1 and A = 1.

Proof. Let

p(z) = 2DF.(2) (z €T).

From the definition of F., it can be verified that

2(DF.(2)) = cD*f(2) — (c+ 1)D*F.(z). (5.2.21)

Therefore, using (5.2.21)) and (1.7.3) for F., we have
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2D°(2) = p(2) + 20 (2).

The remaining part of the proof is similar to that of Theorem.2.4] and so we

omit for details. O
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Chapter 6

Argument estimates of multiplier
transformations defined by a

linear operator

6.1 Introduction

In the present paper, we give some argument properties of certain class of analytic
functions in A, involving the linear operator Z,(a,c) defined by (1.7.5). An
application of a certain integral operator is also considered. The results obtained
here besides extending the works of Cho et. al. |[11] and Fukui, Kim and Srivastava

[17] yields a number of new results.
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6.2 Main Results

Now we derive

Theorem 6.2.1. If f € A, satisfies

Z,(a+1,¢)f(2) le(a,c)f(z)
Iy(a+1,0)9(z)  Zy(a,c)g(2)

—gél < arg {(1—[)

—5} < g52

(a>0;1>0;, 0<p<1; 0<61,00<1; 2€D)

for some g € A, satisfying the condition

L(o,0glz) | 1+ 4z

= <P =1
Z(a+1,¢)g(z) 1+ Bz (51 FER S L 2D,

then

S EO&Q (Z € U),

us
——ap < arg 5

2

(Bl L))

where a; and a2(0 < aq, a9 < 1) are the solutions of the equations :

2 1 (a1+a2)l(1=[b]) cos 5t1
aq + = tan - or B #£ —1
=4 {“TwwwwMM1wm% for B =1,
aq for B =—1,
and
2 _1 (a1+a2)l(1—]b]) cos Tt
oo + = tan or B —1
Gy=d T {Mﬁ%ﬁwﬂmwwu%mmyl Jor B -1,

Qg for B=—1,

when b is given by (1.6.3)) and

2. (A-B
T E \i—aB)
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(6.2.3)
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Proof. Let
Z(a+1,0)f(2)
Iy(a+1,¢)g(2)

=B+ -5a(2).

(6.2.5)

Then ¢ is analytic in U with ¢(0) = 1. On differentiating both sides of ([6.2.5))

and using the identity (1.7.6]) in the resulting equation, we deduce that

Ly(a+1,0)f(2) | Tp(a,c)f(2)
Ly(a+1,0)9(z)  Ip(a,c)g(2)

1) ~5=-p){a)+

where

- Dledaz)
To(a+ Ime)g(2)

While, by using the result of Silverman and Silvia [62], we have

1-AB A-B
r(z)—1_32 15 (2€U; B#-1)
and
-
Re{r(z)} > i (z€eU; B=-1).

2
Then, from (6.2.6) and (6.2.7), we obtain

i/2
r(z) = pe"®/?,
where
1—-A 1+A4
-8 < P < 1B

—tl < ¢ < tl forB;é—l,
when t; is given by (6.2.4)), and
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1-A
- < p <X

-1 < ¢ < 1 for B=-1.
Let h be the function which maps onto the angular domain {w : —(7/2)d; < arg{w} < (7/2)d2}
with 2(0) = 1. Applying Lemma [L.5.] for this h with w(z) = [/(ar(z)), we see
that Re {¢(2)} > 0 in U and hence ¢(z) # 0 in U.
If there exist two points 21, 29 € U such that the condition ((1.6.1)) is satisfied,

then (by Lemma we obtain (1.6.2) under the restriction ((1.6.3)). At first, for
the case B # —1, we obtain

ar L Zy(a+1,¢)f(=1) Ty(a,e)f(21) N
{402 e e )

— arg {q(zl) + ﬁzld(m)}

l .
= —goq + arg {1 i, —; a2ﬂ(pez2¢)_1}

T 3 (1 + ag)lmsin 5(1 —¢)
< ——qp — tan
2 2ap + (o + ag)lmcos (1 — ¢)

< -2, —tan™! (o + az)l(1 — [b]) cos 5t
5 200D 1 (o + a)l(1 — [b]) sin Ity
™

T
9 1,

and

CwDla+10)f(z2) | Ta,c)f(z)
o {010 e )

> T o+ tan—t (a1 + a2)l(1 — |b]) cos Tt
=27 2a(1+A)(1+]b]) —
=5 t (a1 +ap)l(1 - [b]) sin 5t
T
=—0
2%
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where we have used the inequality ((1.6.3), and d;, d, and ¢; are given by ((6.2.2)),
(6.2.3) and (6.2.4)), respectively. Similarly, for the case B = —1, we have

_ Ip(& + 1, C)f(zl) Ip(a7 C)f(zl) N _Ea
arg {(1 Z)Ip(a+ 1,¢)g(z1) Jrle(a,C)g(zl) ﬁ} = 21
and
Bt L) | @Al () ) T
ws {002 S R o "} 27

These are contradictions to the assumption of Theorem Therefore we com-

plete the proof of Theorem [6.2.1 O

If we take a =p, ¢ =1 and é; = d in Theorem we have

Corollary 6.2.1. If f € A, satisfies

NI MO
arg {(1 e~ 5}

(1>0,0<B8<1;0<06<1; z€ U)

@ =0

N

for some g € A, satisfying the condition

2g'(2) - 1+ Az
pg(2) 14+ Bz

(-1<B<A<1; zel),

then

< ga (z €U,

where a(0 < a < 1) is the solution of the equation :
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p(1+A) T
“T5 +al sin st

5 a—l—%tan_l{Lsgtl} for B # —1,
o for B=—1,

when ty is given by (6.2.4)

Letting B — A (A < 1) and g(z) = 2P in Corollary [6.2.1} we get

Corollary 6.2.2. If f € A, satisfies

arg {(1 e l)% +ZM —B}

pzP1

™

-0
d’
(>0, 0<8<1;,0<6<1; ze),

then

< ga (z € U),

" 10~

where a (0 < o < 1) is the solution of the equation :

2 l
5:04~|——tan_1{—a}.
m p

Remark 6.2.1. Taking | =1 and 8 = 0 in Corollary[6.2.3, we get the corre-

sponding result obtained by Cho et al. [11].

Theorem 6.2.2. If f € A, satisfies

2P

T Z,(a,c)f(z) T
—551 < arg {— _B} < 552

<O§ﬁ<1, 0<d1,00 <15 Z€U>,
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then

- {Ip(a,C)Fu(f)(Z) _5} < T

2P

where F), is the integral operator defined by

R = BN =122 [ oar = —pzew)  (628)

it

and, a; and oy (0 < ay, a9 < 1) are the solutions of the equations :

_p (1 + ag)(1 = ]b])
2(1 +[0) (1 + p)

oy (a1 +ag)(1 = [B])
2(1 + [b]) (1 + p)

2 2
01 = a1 + — tan and 0y = ap + — tan
T T

when b is given by (1.6.3)

Proof. Consider the function ¢ defined in U by

Z,(a, C)Fu<f)(z)

zp

=B+ 1=p)a(z). (6.2.9)

Then ¢ is analytic in U with ¢(0) = 1. Differentiating both sides of (6.2.9)) and
simplifying, we get

BOAE - fae + 242

2P H+Dp
Now, by using Lemma and a similar method as in the proof of Theorem
6.2.1) we get Theorem [6.2.2 [

Taking a = p,c=1,8 = p/p and 0; = 3 = 1 in Theorem we have
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Corollary 6.2.3. If f € A, satisfies

Re{fgq > p (0<p<p; z€l)

zp

then

2p~1 ’

[\

- {(Fu(f)(Z))’_p}‘ T

where F,, is given by (6.2.8)) and o (0 < a < 1) is the solution of the equation :

2 1{ a }
o+ — tan =1.
T n+p

By using the same mathod as in the proof of Theorem [6.2.2) we have

Theorem 6.2.3. If f € A, satisfies

s \grnors )

(>0, 0<p<1;,0<6<1; z€0)

T
< =0
2

then

2P

arg {Ip(a +1, c)f(z)}

<g@(Z€U%

where a (0 < o < 1) is the solution of the equation :

(s:;tan—l{ﬁ}.
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Letting a = p,c=1,8 = p/p and § =1 in Theorem we have

Corollary 6.2.4. If f € A, satisfies

() N
Re{f(z) } > p (0<p<p; z€)

then

e {fij)}

where a (0 < o < 1) is the solution of the equation :

2
Z tan ! {L} = 1,
™ p—p

Theorem 6.2.4. Let f € A, and suppose that

<3 ga (z € U),

p(1 - B)

A< B+ (a>0; - 1<B<A<L1).

If

T Z,(a,c)f(z) (Zy(a,c)f(2)) T
_561 < g {(1 B Z)Ip(a +1,0)9(2) Z(Ip(a +1,0)9(2)) B ﬁ}

(1>0;,0<8<1;0<8,00<1; z€l),

for some g € A, satisfying the condition

Tia,dgz) 1+ A:
Z,(a+1,¢)g(2) 1+ Bz

( € L),
then

72



T Z,(a,c)f(z) T
—5041 < arg {Ip(a—l—l,c)g(z)_ﬁ} < 5042 (z € 1),

where ay and ay (0 < aq,as < 1) is the solutions of the equations :

2 1 (a1+a2)l(1—|b|)cos th
o + = tan T — or B # —1
5 = ™ {2W(I+|b)+(a1+a2)l(l|b|)s1n2t2 f 7 -1
aq for B=—1,
and
o + gtan_l (a1 +a2)l(1—|b]) cos St2 fOT’ B % 1
s,=4 7 2 PEBEE BT (1 b))+ (a1 -+aa i 1—[b]) sin 52 ’

Q9 for B=—1,

when b is given by (1.6.3]) and

= E sin™t oA — B)
= <@—@u—mwﬂm—Am>'

Proof. Letting

Zy(a, ) f(2)
Z,(a+1,¢)g(2)

Zy(a,c)9(2)

= B (1= B)a(z) and (z) = 2P,

we have

Zy(a, ) f(2) Zp(a,0)f(2)" . Z l2q'(2)
(1_Z)Ip(a + 1,c)g(z)+l(Ip(a +1,0)9(2)) f=01-p) {q( )+ ar(z) +p — a} '

The remaining part of the proof of Theorem [6.2.4] is similar to that of Theorem

[6.2.1] So we omit the details. O
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Putting a =p, c=1,1=1, A=n/p, B=0 and & = &, in Theorem [6.2.4]

we have

Corollary 6.2.5. If f € A, satisfies

arg {—@;/((5))) _5}‘ < ga 0<B<p 0<i<1; 2€0)

for some g € A, satisfying the condition

—-p| < n (0<n<p; z€l),

then

< ga (z € U),

"t ()

where a(0 < a < 1) is the solution of the equation :

2 asin (T —sin™t
5:oz—|——tan_1{ (2 7}/]7) }

T p+n+acos (% —sin"'n/p)

Lemma 6.2.1. Let

§

=&+ —F
n=¢ p+p+al

0<(a—1)Ja<&<n<]). (6.2.10)
If g € A, satisfies

Zy(a,c)g(2)
Z,(a+1,¢)g(z)

-1 < n (z€0), (6.2.11)

then
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Ly(a, ) Fu(9)(2)
Ty(a+1,¢)Fu(g)(2)

where F,(g) be defined by for u> (a&®+(p+1—a)—p)/(1=¢).

-1 < ¢ (z€D).

Proof. Defining the function w by

Zy(a,c)F.(9)(2)
Zy(a+1,0)F.(9)(2)

we see that w is analytic in U with w(0) = 0. Now, using the identities

=1+ cw(z), (6.2.12)

2(Ip(a+1,c)Fu(9))'(2) = aLy(a, c)Fu(g)(2) = (a=p)L(a+1,c)Flu(g)(z) (6.2.13)

and

2(Ip(a+1,0)Fu(9)) () = (ptp)ILpla+1,6)9(z) — pLy(a+1,c)Fu(g)(z) (6.2.14)

in (6.2.12)), we get

Llat+LoFulg)(z) _  p+p
Z,(a+1,¢)9(z) e+ p+adw(z)

Making use of the logarithmic differentiation of both sides of (6.2.15]) and using
the identity (6.2.13)) for both g and f in the resulting equation, we deduce that

(6.2.15)

I /
Z,(a+1,¢)g(2) p+p+ alw(z)
Let us assume that there exists a point 2y € U such that maxj.|«|.,| [w(2)| = |w(z)| = 1.

Then by Jack’s Lemma [30], we have zow'(zy) = kw(zo)(k > 1). Letting

w(zy) = €, and applying this result to w(z) at z € U, we get
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k.
w4 p+ ae®
. [(M+p+k:)2+2a§(,u+p+/€)C059+(a{)Q :
B (1 + p)? + 2a& (1 + p) cos 0 + (a€)? '

Ip(a7 C)g(zﬁ)
Ip(a’ + 17 C)g(ZO)

—4:§P+

(6.2.16)

Since the right side of ((6.2.16)) is decreasing for 0 < 0 < 27 and p > {a&?+(p+1—a)é—p}/(1-E),

we obtain

2

Zy(a,¢)g(0) _1‘> §(utp+1+af)
Ip(a+1,c)g(20) ft+p+ak

which contradicts our hypothesis and hence we get

1 Ip(aaC)Fu(g)(Z) ‘
w(z)] = = —1| < 1 (z€0).
OIS T L OB @ o,
This completes the proof of Lemma [6.2.1] O]

Remark 6.2.2. We note that for a« = ¢ = p = 1, Lemma yields the

corresponding result obtained by Fukui, Kim and Srivastava [17].

Theorem 6.2.5. Let n be as given in (6.2.10) and p* > max {W%H, a& —p} .
If f € A, satisfies

Zy(a,c)f(z)
Z,(a+1,¢)g(z)

(0<B<1;0<,00<1; z€),

T 7
—551 < arg { —5} < 552

for some f € A, satisfying the condition (6.2.11)), then
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< gaQ (z € 1),

T . Ip(a, o) Fe(f)(2)
g1 = e {Ip(aJrLC)Fm(g)(Z) ﬁ}

where the operator F« is defined by (6.2.8) for p*, and a; and o (0 < a1, a9 < 1)

are the solutions of the equations :

(51 = o + —tan~
s

1{2( (00 + 2) (1 — [b]) cos 5t }

e+ p £ af)(L+bf) + (a1 + az)(1 — [b]) sin 515

and

52 = Qg + —tan™
™

J { (o1 4 ag)(1 — [b]) cos T3 }
201+ p+ a&)(1+ [b]) + (a1 + a2) (1 — [b]) sin 5t

when b is given by (1.6.3]) and

2
t3: —Sin_1< a€ >
™ w+p

Proof. Consider the function ¢ defined in U by

Zy(a,c)Fu(f)(2)
I(a+1,0)F(9)(2)

Then ¢ is analytic in U with ¢(0) = 1. Taking logarithmic differentiation on
both sides of (6.2.17) and using the identity (6.2.13)) in the resulting equation,

we get

=06+ (1—p)q(=). (6.2.17)

2(Zp(a, ) (1)) _ 0 T(a ) F(9)(2) B 2q'(2)
L@oFe (NG 7T " Llar LOE- ) v 5)5+(1 _(g)zqug))



From the definition of F,-(f), we have

(1" +p)Tp(a, o) f(2) = 2(Tp(a, ) Fue ()(2)) + 1 Tp(a, ) Fe (f)(2). - (6.2.19)

Again, from (6.2.13)) and (6.2.14)), it follows that

(" +p)Ty(a+1,0)g(2) = aZ,(a,c)Fu-(9)(2) + (p + 1" = a)Z,(a + 1,¢) Fu- (g)(2).
(6.2.20)

Thus, by using (6.2.19) and (6.2.20) followed by (6.2.18]), we obtain

_’[p(a7 C)f(Z) — B (1 _ 5) {q(z) + aﬂ“(z) Zq’(Z) } )

Z,(a+1,09(2) T rp—g

where

By using Lemma [6.2.1} we have

r(z) <1+&z (2 € U),

where ¢ is given by (6.2.10]). Letting

ar(z) + " +p —a = pe™/?

and using the techniques of Theorem [6.2.1} the remaining part of the proof of
Theorem [6.2.5] follows. O
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Remark 6.2.3. We easily find the following :

2a—1
2a

a& — p, if“T_1<§<
2(a—p)—1 : _ 2a—1
R e

al’+(ptl—a)—p ¢ 2a-1
T , i = << L

Taking a = p, ¢ =1 and ¢; = d5 in Theorem [6.2.5] we get

Corollary 6.2.6. Let

L .
p* 4 p(L+ &)

where p* > max{(p€? + & —p)/(1 = &),p(§ —1)}. If f € A, satisfies

n # &gt (gl /9e< € < &),

arg {Z;ng)—ﬁ}‘<g5 0<B<p, 0<6<1; z€U)

for some g € A, satisfying the condition

then

N EGRIIE
ve { Fo(9)(2)

where a(0 < a < 1) is the solution of the equation :

—5}' < g(x (z € 1),

. - .1 pt
2 Q S1In <§ — Sin T)
§=a+ —tan! P

™ * s in—1 _pg
U +p(1—|—§)+acos<§—s1n M*er)
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Chapter 7

Properties of hypergeometric
functions related to uniformly
convex and uniformly starlike

functions

7.1 Introduction

A function f € A is said to be in the class R*(A, B) if

Jz) -1 | |
AT BT <! (LsB<A<LicC\{0}zel) (711

The class R'(A, B) was introduced by Dixit and Pal [15]. By giving specific
values to t,A and B in (7.1.1)), we obtain the following subclasses studied by

various researchers in earlier works [7,(13}27,53],56].
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A functions f of the form ((1.2.4) is said to be in UCT («) if it satisfies the

condition

N |2
7 ) 2%

A functions f of the form (1.2.4]) is said to be in USTN («) if it satisfies the

Re{l +

‘(0420; zeU).

condition

f2) = 16
Rel 2 570

The classes UCT () and USTN («) were introduced in [66]. We note that
UCT (1) (resp., USTN(0) is the subclasses of uniformly convex (resp., uniformly

}Za(Ogagl; z,£ € U).

starlike) functions in U defined by Goodman [23,24]. On later, the classes of
uniformly convex and uniformly starlike functions have been extensively studied
by Ma and Minda [36] and R¢nning [57].

The object of the present paper is to give some applications of hypergeometric
functions related to the classes UCT () and USTN (). We also investigate a
distortion theorem for the operator I,;.(f) when a function f belongs to the

class UCT («). Furthermore, we consider the relationships among the classes

UCT (o), T*(a) and C(c).

Now we introduce several lemmas which are needed for the proof of our main
results.
Lemma 7.1.1. [15] Let a function f of the form (1.1.1]) be in R'(A, B). Then

(A= B)lt|

la,| <
n
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The result is sharp for the function

f@):/j(uw)dz (n>2 2€l)

1+ Bzl

Lemma 7.1.2. [56]

(i) For a,b € C\{0,1} and c € C\{1} with ¢ > max{0,a+b— 1}

(@) 1 llc+l—a—-bl'(c) .
2.7 c)n1n+1 (a—l)(b—l)( Te—al(e—p 1))'

n=0

(i1) For a,b € C\{0} with a >0 and b>0 and ¢ >a+b+1,

= n+1 (@)n(b)n ab I'(c—a—0b)(c)
Z (€)n(1), _<c—a—b—1+1)F(c—a)F(c—b)’

n=0

Lemma 7.1.3. [61] A function f of the form (1.2.4) is in T*(«) if and only if

i(”—a)anél—a 0<a<l)

n=2

and is in C(«) if and only if
Znn—a n<l—a (0<a<l).
n=2

Lemma 7.1.4. [66] A function [ of the form (1.2.4)) is in UCT («) if and only
if
Zn (a+1)—a)a, <1 (a>1)

and in USTN () if and only if

[e.e]

S (B-ayn-2a, <1-a (0<a<l)

n=2
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7.2 Main Results

Theorem 7.2.1. Let a,b > 0, ¢ > a+ b+ 1 and let function f of the form

(1.2.4) be in R*(A,B). If

(=B [t ne (L2 ) ] <1 @z g2

then I p.f € UCT ().

Proof. We note that

= (a n—1(0)n-1 By
y S - Z ﬁanz

n=2

in A. Then by Lemma [7.1.4], we need only to show that

Sy =; Zn(n(a +1)— a)%an <1 (7.2.2)

Since f € RY(A, B), from Lemma[7.1.1} we have

(A= B)lt|

an <

n
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By using the formula (1.7.9)), (7.2.1)) and (i) of Lemma [7.1.2) we have

(A= B S fn(o+ 1) e e
2 (n+ 1)(a),(b), 2 (a)n(b),
g BW'[(@*”Z}( (ERTR O o
(14 1)(@)a()n . (@)alb)n
=B+ n(3 =g g - (X g )]
— (4= B (o D (e (1) - 1)

B (F(c—a—b)f‘(

- -2l Zonge oo o o)

Therefore ((7.2.2) holds. Therefore we conclude that the function I, ;..f € UCT («).
[l

Theorem 7.2.2. Let a,b > 0, ¢ > max{0,a +b— 1} with a # 1, b # 1 and
c# 1 and a function [ of the form (1.2.4) be in R*(A, B). If

I'(c—a—b)'(c) 2(c—a—10) 2(c—1)
A= B F =T —0) (30~ (a—l)(b—l)) e ne-n T
<l—-a (0<a<),
(7.2.3)
then Iop.f € USTN (o).
Proof. By Lemma [7.1.4] it is sufficient to show that
Sy =; i(@ —a)n — 2)%% <1-o. (7.2.4)

n=2



By using Lemma [7.1.1] (1.7.9)), (7.2.3)) and (ii) of Lemma[7.1.2] we have

SQS(A—B)]t|[(3_a)ZM_QZM}

(C n—l(l)n

— (A B [(3 )
2 <F(c—a—b+1)F(c)_(C_l)_1>]

“(a—1(b-1)\ T(c—a)l(c—Db)
B ['(c—a=bI(c) 2(c—a—10) 2(c—1)
= (A= Bl [F(c— OR(C—5) (3-a- T 1)) @11
<1l-a.
Therefore holds. This completes the proof of Theorem m

Next, we prove the following properties for the operator I,..f, when a func-

tion f belongs to the class UCT ().

Theorem 7.2.3. Let a,b>0, ¢ > max{0,a+b—1,(1/2)(ab+a+b—1)} and
let a function f of the form (1.2.4) be in UCT («). Then

ab 9 ab 9
— - < |, pee < _— 7.2.5
and
D < Lo ) < 1+ (726)
C(a+2>z_ abef(2))] < C<a+2)z. 2.
The results are sharp.
Proof. We note that
Lopef (2) = (2F(abi¢:2) = ) (2) = 2= > @(n)an2",
n=2
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where

(@)n-1(0)n—
(©)n—a (D
> 2

) under the assumption for ¢. Since f € UCT (),

d(n) = (a,b>0; n>2)

and 0 < ®(n+1) < &(n) (n
by Lemma [7.1.4] we have
2(a+2) Zan Zn (a+1)—a)a, <1. (7.2.7)

n=2 n=2

Therefore, by using ([7.2.7]), we obtain

oA S 2l + Y ®m)an|2|"

< |z| + <I>(2)|z|22an
n=2

ab

R
20(a+2)|z|

<|z| +

and

o) 2 |2l = Y @(n)anl2|"

> [2] = (2)|2* Y an
n=2

ab 9
> |z = o———=5 2"
2¢(a+ 2)
From (7.2.7)), we note that
inan L (7.2.8)
- T a+2
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By using ((7.2.8)), we obtain (7.2.6)). The results are sharp for the function

Finally, Now we find the order 5 (0 < < 1) for which the operator I, .. f
belongs to the classes T*(5) and C(f) when a function f belongs to the class
UCT (o).

Theorem 7.2.4. Let a,b > 0, max{a+b—1,(1/2)(ab+a+b—1)} < c < ab and
let a function f of the form (1.2.4)) be in UCT (a). Then L pcf € C(B), where

B_c(a+2)—2ab
~ ela +2) — ab

(a>0) (7.2.9)

Proof. Let UCT (). Consider the operator

Lpef(2) =2+ Z d(n)a,z",
n=2

where

. (a)n—1<b>n—1
) = D

Since ®(n) is decreasing function for n, by Lemma [7.1.3, we need to find
B (0 < <1) that

(a,b>0; n>2).



Since f € UCT («), by Lemma [7.1.4] we have

Zn(n(a +1) —a)a, < 1.

From ([7.2.10)), we obtain

where

B (o | e o
9(n) = nla+1) — (a+ 9(2))

(7.2.10)

(7.2.11)

By the assumption of the theorem, it is easy to see that g(n) is an increasing

function for n (n > 2). Setting n = 2 in ([7.2.11)), we have (7.2.9). Therefore we

complete the proof of Theorem [7.2.4]

O

Taking a = b = ¢ =1 and using Lemma and Lemma [7.1.3[in Theorem

we have the following result [66]

Corollary 7.2.1.
UCT (a) C Cla/(a+ 1)) (a>0).

Theorem 7.2.5. Let a,b > 0, ¢ > max{ab/2,a+b—1,(1/2)(ab+a+b—1)}
and let a function f of the form (1.2.4) be in UCT («). Then Lopc(f) € T*(5),

where
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5= 2c(a 4+ 2) — 2ab
"~ 2c(a+2)—ab

(a > 0) (7.2.12)

Proof. Let f € UCT (a) and let

@(2)2?:?% <1,

n=2
because ®(n) is decreasing function for n (n > 2). Since f € UCT («a), by
Lemma we have

NE

n(n(a+1) —a)a, < 1.

[l
N

n

Therefore it suffices to find S such that

n—p
1—p

Solving ([7.2.13)), we have

®(2) < n(n(a+1) - a). (7.2.13)

B < h(n),

where

~ n*(a+1) —n(a+ 0(2))

M) = e T a5 (7.2.14)
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By a simple calculation, we can see that h(n) is an increasing function for

n (n > 2). Setting n = 2 in ([7.2.14)), we have (7.2.12)) and hence the result
follows. O

Taking a = b= c =1 in Theorem [7.2.5] we have the following result.

Corollary 7.2.2.

UCT (o) € T*((2a+ 2)/(2a + 3)) (&> 0)
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