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Stochastic Predictions of Ore Production in an Underground

Limestone Mine Using Big Data from ICT System

D a H e e J u n g

Department of Energy Resource Engineering, The Graduate School,

Pukyong National University

Abstract

This study stochastically predicted ore production through discrete event simulation using

four different probability density functions for truck travel times. An underground limestone

mine was selected as the study area. The truck travel time was measured by analyzing the

big data acquired from information and communications technology (ICT) systems in October

2018, and probability density functions (uniform, triangular, normal, and observed probability

distribution of real data) were determined using statistical values. A discrete event simulation

model for a truck haulage system was designed, and truck travel times were randomly

generated using a Monte Carlo simulation. The ore production that stochastically predicted

fifty times for each probability density function was analyzed and represented as a value of

lower 10% (P10), 50% (P50), and 90% (P90). Ore production was underestimated when a

uniform and triangular distribution was used, as the actual ore production was similar to that

of P90. Conversely, the predicted ore production of P50 was relatively consistent with the

actual ore production when using the normal and observed probability distribution of real

data. The root mean squared error (RMSE) for predicting ore production for ten days in

October 2018 was the lowest (24.9 ton/day) when using the observed probability distribution.
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1. Introduction

A mine project generally seeks to maximize production profits by

using minimum capital and operating costs over the mine’s lifetime [1].

Accordingly, mines require optimal operating methods and equipment

utilization strategies to increase productivity and minimize operating

costs. In particular, efforts are being made to efficiently operate a truck

haulage system, which constitutes greater than half of the operating

cost [2]. The efficiency of a truck haulage system varies depending on

the combination of the equipment used and operating patterns [3].

Therefore, it is necessary to operate an optimal truck haulage system

capable of maximizing ore production and minimizing the equipment

delay time [4].

An effective method for operating truck haulage systems is to

simulate a virtual system model, using various optimization techniques.

The input factors of the truck haulage system model include the

system operating parameters (e.g., operating time, number of equipment,

and load capacity) and truck cycle time. The outputs of the model

include the truckload, production rate, equipment utilization, and

equipment latency [4]. For the virtual system model, a simulation

algorithm can be designed based on discrete events comprising truck

haulage operations, such as traveling, spotting, loading, dumping, and

queuing. In addition, mathematical optimization techniques can be

applied to determine an optimal solution for the truck haulage

operations. To date, several algorithms for truck haulage systems have

been developed based on linear programming [5,6,7,8], genetic algorithms

[9], queuing theory [10,11,12,13,14,15], fuzzy logic [16], and deep neural

networks [17,18].

The system operating parameters and truck cycle times are not
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constant or definitive for each haulage operation cycle and frequently

fluctuate according to the working conditions [19]. For instance, the

daily working time and number of dispatched trucks can fluctuate

according to the ore production schedule. The truck cycle time may

vary depending on the equipment breakdown, plant interruption, and

haul road conditions. For these reasons, an uncertainty exists in the

deterministic simulation method, which predicts the truck haulage

system, using constant input values. One method to simulate the

system model considering the variability of input parameters is to apply

the stochastic simulation technique. This method randomly extracts the

input values from the probability distribution of a random variable and

predicts the distribution of the output factors through iterative

simulations [20].

Until recently, several researchers applied stochastic simulation

techniques to analyze optimal equipment combinations and design truck

dispatch scenarios in both open-pit and underground mines

[1,19,21,22,23,24,25,26,27,28,29,30,31,32,33,34]. In these studies, truck cycle

time data were statistically analyzed and a probability density function

was selected using probability distribution models, such as Gaussian,

triangular, Weibull, gamma, lognormal, exponential, Erlang, and uniform

distribution models (Table 1). The optimal probability distribution model

was determined by evaluating the goodness-of-fit using the chi-squared

test [35], Akaike information criterion (AIC) [36], and Kolmogorov

Smirnov tests [37]. The ore production, equipment utilization rate, and

equipment downtime corresponding to the truck-shovel combination

were analyzed probabilistically [25]. In addition, the ore production was

predicted based on the confidence level, using iterative stochastic

simulation [30], and the prediction sensitivity was analyzed by

alternating the probability distribution models of the truck cycle time
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data [32]. However, little attention has been paid to analyze and use the

probability distribution derived from a large amount of truck cycle time

data for stochastic simulations.
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Table 1. Study cases for the stochastic approach-based truck haulage system simulation.

Reference

Theoretical Model Representing Probability Distribution

Gaussian Triangular Weibull Gamma Lognormal Exponential Erlang Uniform

1 X X

19 X X X

21 X X

22 X

23 X

24 X X X

25 X X X X

26 X

27 X

28 X

29 X

30 X X X X

31 X

32 X X X X

33

34 X
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The truck cycle time data were collected using the stopwatch method

while boarding the equipment. For this reason, the theoretical

probability distribution model was utilized in the stochastic simulations

instead of the real statistical distribution pattern of the truck cycle time

data. However, this may reduce the accuracy of the outputs from the

truck haulage system simulations. Therefore, to improve the simulation

accuracy, it is necessary to analyze and derive the probability

distribution from a large amount of truck cycle time data collected over

a long period.

Recently, mine safety management systems with information and

communications technology (ICT) have been developed and actively

implemented in mine sites worldwide [38,39,40,41,42,43,44,45]. The

system recognizes the location of the equipment and workers in real

time and monitors the work environment. Equipment location recognition

data are transmitted to a web server through a wireless communication

network and equipment locations are visualized on a dashboard in an

outside office. An outstanding feature of this system is that big data

are generated by continuously accumulating equipment location

recognition data on the web server. Therefore, it is possible to analyze

the long-term truck cycle time by extracting the equipment recognition

time from the big data and calculating the difference in the recognition

time. Baek and Choi [31] processed the big data acquired from a mine

safety management system and statistically analyzed the truck travel

time. In addition, the ore production and equipment utilization rates

were predicted using a discrete event simulation. However, in this

study, the probability distribution of the truck travel time data was

assumed to be a normal distribution, as it was impossible to consider

the exact variability of the truck travel time data.

The objective of the study was to analyze the probability distribution
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of the truck travel time using big data acquired from an ICT-based

mine safety management system, and stochastically predict ore

production through discrete event simulations, using different probability

density functions for truck travel times. An underground limestone mine

was selected as our study area. The probability distribution of the truck

travel time was derived through statistical analysis of the big data

acquired from the study area, and the truck travel time was randomly

generated using Monte Carlo simulations based on four different

probability density functions (uniform distribution, triangular distribution,

normal distribution, and observed probability distribution of real data).

A comparison between each of the stochastically predicted ore

productions was performed to discuss the value of the truck cycle time

data collected by the ICT-based mine safety management system.
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2. Study Area

The Yeongcheon underground mine (37°4′14″, 128°18′46″) of

Baek Kwang Mineral Products Co., located in Danyang-si,

Chungcheongnam-do, South Korea, was selected as the study area (Fig

1.). The mine comprises four levels; the average altitude of Levels 1, 2,

3 were 310, 250, and 280 m, respectively, while the lowest for Level 4

was 220 m. The mining method for room and pillar mining produces

approximately 120 tons of limestone ore per year. The mine consists of

four loading points underground (the IDs of which are 203, 233, 235 and

237) and a dumping area with a crusher on the surface. The ore was

transported, using 30 ton dump trucks. The site’s production manager

assigns trucks to the loading point daily, accounting for the ore

production goals and quality. Next, the truck driver departs to the point

to load the ore. The ore is loaded and subsequently moved to the

dumping area. The truck driver checks the amount of ore accumulated

in the crusher; if the ore quantity does not exceed the crusher capacity,

the ore is unloaded into the crusher, and if it exceeds the capacity, the

ore is unloaded into the yard. This operation is repeated during the

working hours.
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Fig  1. Aerial view of the study area displaying the various facilities. (Image

source: National Geographic Information Institute of South Korea).

The study area was equipped with a mine safety management system

based on ICT. Owing to the installation of a wireless communication

network, it was possible to implement a digital environment to track

the location of equipment in real time, make voice calls, and monitor

the working environment at an underground mine site where

communication was not possible. Through the wireless communication

network, the location of the production equipment in the mine was

received in real time on the dashboard in the office. The data acquired

through the safety management system were stored in real time. In this

study, the location tracking data of the production equipment were used

in the mine safety management system. When the production equipment

passes by a wireless access point (AP) installed in the study area, its

location is tracked and stored as tag-recognition data. Fig 2. shows the

process of a truck being recognized by the wireless APs as it passes

by them while transporting ore in an underground mine. The tag

recognition packet data, stored as the truck passes, includes information
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regarding the data category, presence of an emergency, tag recognition

sequence, ID of the recognized tag, and distance between the wireless

APs and the tag. These data are transmitted once every second, and

approximately 200,000 packets are stored in the web server per month;

the size of the data packet is 20 bytes each.

Fig  2. Diagram showing the sequence of wireless APs in the underground

mine; W01 (W02): 1st (2nd) wireless access point (AP) installed underground.
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3. Methods

Big data collected for the location tracking of production equipment in

the mining safety management systems were analyzed to compare and

predict the ore production based on probability density functions. For

the simulation, time and simulation parameters were received as input

variables, and ore production was obtained as a probability distribution.

Through big data analysis, the truck cycle time (TCT), which is the

time parameter, was acquired. We designed a stochastic simulation

model to fit the truck haulage system of the underground mine selected

as the study area. Uniform, triangular, normal, and observed probability

distributions were generated by measuring the truck travel time. Travel

times and ore production rates were predicted by the Monte Carlo

simulation (by applying the probability density functions) and stochastic

simulation model, respectively (Fig 3.).
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Fig  3. Study process of truck-haulage system stochastic simulation using the

proposed method.Aerial view of the study area (Gakbuk-myeon, Cheongdo-gun,

Gyeongsangbuk-do, Korea)

3.1 Measuring Truck Travel Times from Big Data

The truck travel time was measured through the following process

using big data. In this study, truck tag recognition packet data were

extracted from big data for October 2018. The truck tag recognition

packet data store approximately 200,000 packets per month. Among the

packet data properties, tag recognition time, the IP address of wireless

APs, and distance packet information were considered and classified

according to the truck workplace. The study area consists of four loading

points and four routes were identified. If all the wireless AP recognition

data of the identified route do not exist and there are missing data, the
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data are deleted. By calculating the difference in the recognition time of

the wireless APs, we obtained the truck travel time between each

wireless AP. If the trucks remained in the recognized range for a

considerable amount of time, the distance packet information was used to

extract the tag recognition time, which is the minimum distance between

the wireless APs and the truck. The difference in tag recognition time of

the APs was calculated to measure the truck travel time. The types of

truck travel times are as follows: the time lapsed when the truck moves

from the portal to the loading point in an empty state (TEu); the time

needed to load ore into the truck (LT); the time needed to transport the

ore from the loading point to the portal with the ore loaded (TLu); the

transport time from the portal to the dumping area and the unloading time

in the dumping area (TLs); and the time to return to the portal (TEs)

(Fig 4.).

Fig  4. An illustration of the process of classifying the truck tag recognition

packet data and measuring the five types of truck travel time: TEs1—empty

truck surface travel time; TEu2—empty truck underground travel time; LT3—

loading time; TLu4—loaded truck underground travel time; TLs5—loaded truck

surface travel time.

3.2. Design of a Truck Haulage System Model for

Stochastic Discrete Event Simulation

A simulation model of a truck haulage system was designed to fit the
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study area (Fig 5.). When the truck moves to the loading point, it

determines whether a loader is available. If a loader is available, the truck

loads the ore and proceeds to the dumping area. If another truck is

loading, the truck waits for the job to be completed, loads the ore, and

subsequently, proceeds to the dumping area. The trucks move to the

dumping area and unload at the crusher or loading dock. If the simulation

is not completed, the truck returns to the underground loading point. At

the end of the simulation, the rate of ore production is predicted.

Fig  5. Flow chart displaying procedures for implementing the truck haulage

simulation algorithm.
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The truck haulage system simulation algorithm was modified for the

measured truck travel time based on the TCT theory proposed by

Suboleski [46]. TCT consists of the time a truck requires to travel from

the portal to the loading point (TEu), the time a truck requires to load the

ore at the loading point (LT), the time a truck needs to move to the

portal from the loading point (TLu), the time taken by a truck to move to

the dumping area (TLs), the time the truck needs to remain at the

dumping area for the ore unloading process and the time needed to return

to the portal (TEs) (see Equation (1)).

           ··························(1)

Table 2. lists the input and output values of the truck haulage system

simulations. The input data include time parameters that control the TCT

(which can control the truck operating time) and simulation parameters

(which can control the operating facility or operating time). Time

parameters were generated through Monte Carlo simulations and used as

the input for the simulation model. The simulation parameters can be set

as the conditions to be simulated. The simulation result is the rate of ore

production.
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Table 2.  Description of the input and output parameters of the truck haulage

system simulation.

Type Data Unit

Input

Time

parameters

Travel time of the

empty truck

TEu Minutes

TEs Minutes

Travel time of the

loaded truck

TLu Minutes

TEs Minutes

Loading time LT Minutes

Simulation

parameters

Daily working time Minutes

Number of trucks Numbers

Capacity of a truck Tons

Number of

simulations
Numbers

Output
Total amount of the

loaded ore
Tons

3.3 Generation of Truck Travel Times

In this study, we compared the simulation results of instances

wherein different probability density functions of the measured truck

travel time were used as the input variables. The simulation results

were compared by creating five temporal elements of the TCT with the

Monte Carlo simulation, using the uniform, triangular, normal, and

observed probability distributions derived from actual truck travel time

data. The uniform, triangular, normal, and observed probability

distributions were used in this study because they are widely used as

probability density functions and can be defined using the big data of

an ICT system. It should be noted that the uniform, triangular and

normal distributions are theoretical probability density functions defined

mathematically; however, the observed probability distribution is an
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empirical one. The uniform and triangular distributions were generated

by considering the maximum and minimum values. The normal

distribution was generated by considering the mean and standard

deviation (STD), and the observed probability distribution was obtained

using actual accumulated data (Fig 6.).

Fig  6. Probability density functions of the truck travel time for loading point 203.

(a) Uniform distribution, (b) triangular distribution, (c) normal distribution, (d)

observed probability distribution.

Considering the measured truck travel time, a random variable for

truck travel time was created based on a Monte Carlo simulation. A

Monte Carlo simulation is a numerical, experimental method to obtain

the output variable value of the system calculation model by

considering the statistical value of the input variable. The values of the

input random variable were sampled based on the statistical distribution,

and the output variable was calculated using a computational model

[47]. To use the Monte Carlo simulation, a cumulative relative

frequency graph of the TCT was created.
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The class width and relative frequency are required to generate the

cumulative relative frequency graph of the TCT. Using the statistical

analysis results, the class width required to create a cumulative relative

frequency graph was calculated (Equation (2)). The frequency of each

class was calculated according to the data, and the relative frequency of

each class was calculated by dividing the total data recorded (Equation

(3)). The cumulative relative frequency was calculated using the relative

power of each class, as shown in Equation (4):

 

  
·················(2)


  


······················································(3)


  

  




 ····················································(4)

Using the cumulative relative frequency graph based on the

probability function distribution, a random variable for truck travel time

was created by Monte Carlo simulation, as follows: the cumulative

relative frequency graph F(x) represents the probability P that the truck

travel time X is less than or equal to x (Equation (5)). Because F(x) is

a probability, it possesses a value from 0 to 1. Thus, we can determine

the inverse function of F(x), where G(F(x)) is the inverse function of

F(x), and r is any real number between 0 and 1. In this study, we

generated the actual number between 0 and 1 and subsequently

assumed each generated actual number as the y value of the

cumulative relative frequency graph and predicted the trucking time by

determining the x value corresponding to the y value (Equation (6)).

   ≤  ··············································(5)
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     ············································(6)

3.4 Setting Simulation Parameters

To perform the simulation, we set the simulation parameters, which

consisted of the daily working time, number of trucks, capacity of a

truck, and number of simulations. The simulation parameters were set

using the operational parameters analyzed from the big data. On the

morning of 16 October in the study area, two 30 ton trucks were used

at the loading point 237 from 7:00 a.m. to 12:50 p.m. The simulation

was performed by setting the following parameters: operating time as

350 min, two trucks, a truck capacity of 30 tons, and simulation

iterations as fifty times (Table 3).

Table 3.  The value of the simulation parameters used for truck haulage system

simulation.

Simulation Parameters Value

Daily working time (min) 350

Number of trucks 2

Capacity of a truck (ton) 30

Number of simulations 50
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4. Results

4.1 Statistical Characteristics of Truck Travel Times

Measured from Big Data

In the study area, the TCT was analyzed using big data recorded in

October 2018 (Table 4). Fig 7. shows the cumulative relative

distributions of TEu, TEs, TLu, TLs, and LT at each of the four

loading points. Loading point 203 required the least time with an

average of approximately 22.74 min for a single haulage cycle; loading

point 235 required the most time with an average of approximately

34.07 min. Loading point 203 was located closest to the portal, resulting

in an average difference of approximately 11.33 min in TCT.

Fig  7. Histogram and cumulative relative frequency graphs of the truck travel

time for each loading point.
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Table 4.  Results of the statistical analysis of the truck travel time measured using the big data.

Loading Point Statistics
Truck Travel Time

TEu TLu TLs TEs LT

203

Mean (min) 0.93 1.10 5.55 7.58 7.58

Min (min) 0.57 0.75 4.02 2.72 3.58

Max (min) 2.27 1.95 8.98 44.37 21.95

STD (min) 0.27 0.23 0.92 9.82 3.73

Kurtosis 7.14 4.33 3.70 7.09 3.19

233

Mean (min) 9.47 10.17 5.48 3.75 4.25

Min (min) 5.52 8.05 4.03 2.43 2.08

Max (min) 23.08 11.85 8.18 6.55 20.55

STD (min) 3.32 0.79 0.77 0.92 2.57

Kurtosis 4.46 0.23 4.01 2.18 26.67

235

Mean (min) 7.20 10.97 5.52 4.63 5.75

Min (min) 5.77 9.57 4.78 3.07 0.63

Max (min) 13.62 14.25 8.00 11.32 19.17

STD (min) 1.85 1.32 0.63 2.07 3.95

Kurtosis 28.00 28.00 27.00 23.00 28.00

237

Mean (min) 6.52 7.98 5.30 3.50 5.52

Min (min) 4.72 6.42 4.72 2.70 3.53

Max (min) 11.30 9.23 6.43 6.23 16.57

STD (min) 1.27 0.62 0.42 0.68 3.38

Kurtosis 7.90 0.23 0.90 10.47 4.18
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The uniform and triangular distributions of the truck travel time were

set using the minimum and maximum values of the measured TCT. A

normal distribution was simulated using the mean and standard

deviation of the TCT. The cumulative distribution was simulated by

calculating Equations (3)–(5), using actual data. For loading point 203,

the difference between the maximum and minimum classes of TEu,

TLu, and TLs, which are truck travel time elements, was 1.52, 1.10 and

4.40 min, respectively, whereas LT and TEs, which are the time

required to load or unload ore, were 18.10 and 34.53 min, respectively,

and exhibited additional differences than other factors. Loading point 233

exhibited significant differences in class at 17.30 and 18.40 min,

respectively, for TEu and LT. Loading point 235 displayed a difference

between the maximum and minimum classes at 7.80 min and 14.25 min

for TEs and LT, and for loading point 237, at 11.65 min for LT. The

comparison proved the existence of a significant time lag when working

with ores. The TCTs were predicted using a Monte Carlo simulation.

The generated times were used for simulations to predict ore production

rates.

4.2 Predictions of Ore Productions by Stochastic Discrete

Event Simulation

The actual production in the field and the simulation results were

compared. In the designated study area, the simulation parameters were

set and simulations with two 30 ton trucks and an operating time of

350 min were conducted, as shown in the data for 16 October. The

TCT was used as the input in the Monte Carlo simulation as the time

obtained for each uniform distribution, that is, triangular, normal, and

observed probability distribution.

The simulation results indicated the production volumes of P10, P50
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and P90. P10 represents the value of the lower 10% ore production, P50

represents a production rate lower than 50%, and P90 represents a

simulated rate lower than 90%. If we cross-check the results with the

P10 values, we can conclude that the ore production is low, while P50

and P90 are the average and high production volumes, respectively. In

all four probability density functions, we confirmed that the actual field

data are located within the range of the simulation results. The uniform

and the triangular distribution models exhibited similar results for the

actual and simulated results of P90. The overall prediction result was

lower than that of the actual data. It was determined that the truck

cycle time was generated longer than the actual truck cycle time owing

to the distribution of the probability density function when the truck

cycle time was generated. Conversely, the normal distribution and

observed probability distribution models displayed results similar to that

of the actual values and P50 as a result of the simulation (Fig 8.).
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Fig  8. Comparison of the simulation and haulage operations results (observed)

obtained on 16 October 2018 for (a) uniform distribution, (b) triangular

distribution, (c) normal distribution, and (d) observed probability

distribution.Histogram and cumulative relative frequency graphs of the truck travel

time for each loading point.
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5. Discussion

The truck haulage operations in the mine are not constant at each

loading and unloading cycle and vary from time to time depending on

the working conditions [19]. Therefore, the simulation results for each

day were compared using data from October 2018 for long-term

simulations. Time parameters were created by the Monte Carlo

simulation for each loading point and the simulation parameters were

set according to the date (Table 5). The truck capacity was set to 30

tons, and fifty iterations of the simulation were run. The ore production

predictions achieved as a result of the simulation were expressed as

P10, P50, and P90.



- 25 -

Table 5.  The value of the simulation parameters used for truck haulage system simulation.

Simulation parameters
Date

10/12 10/13 10/15 10/16 10/19 10/22 10/24 10/26 10/29 10/30 10/31

Loading point

203

Daily working times

(min)
400 100 355 55 385

Number of trucks 1 1 2 1 2

Loading point

233

Daily working times

(min)
330 80 40 445 290 280

Number of trucks 2 2 2 1 2 1

Loading point

235

Daily working times

(min)
245 370

Number of trucks 2 2

Loading point

237

Daily working times

(min)
270 40 115

Number of trucks 2 1 3
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The observed probability distribution model was used to predict the

actual field data in the distribution of the simulation results (Fig 9.);

the TCT generated was higher than the actual TCT. The actual field

data were not included in the distribution of the results of the

simulation model that generated the TCT by providing a uniform

distribution as the input to the Monte Carlo simulation. In the triangular

distribution model, only one day—that is, 16 October—was included. In

the simulation model that used the normal distribution, the results for

three days were not included in the ore production simulation

distribution. To quantify the simulation results, we calculated the root

mean square error (RMSE, ton/day) of the P50 results of each

simulation result and the actual data (Fig 10.). The observed probability

distribution model achieved the lowest value at 24.9 ton/day.

Fig  9. Comparison of the simulation and haulage operation results (observed)

for ten days (Month/Day) in October 2018 for (a) uniform distribution, (b)

triangular distribution, (c) normal distribution, and (d) observed probability

distribution.
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Fig  10. Results of the correlation analysis between the predicted and observed

ore productions for ten days in October 2018 for (a) uniform distribution, (b)

triangular distribution, (c) normal distribution, and (d) observed probability

distribution.

The results indicate that the case using observed probability

distribution based on the big data of an ICT system showed the best

performance for ore prediction. This demonstrates the value and

importance of the data collected by an ICT system in the mining site

from a practical point of view.
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6. Conclusions

This study stochastically predicted ore production through discrete

event simulation, using four different probability density functions for

truck travel times, and compared the simulation results for the four

cases. The TCT was measured by dividing it based on the four loading

points, using the truck tag recognition time record big data obtained

through the mine safety management system based on a wireless

communication network for an underground limestone mine. The

discrete simulation model was designed to stochastically predict ore

production in the designated study area. The uniform, triangular,

normal, and observed probability distribution obtained using the

measured truck driving time were fed into the Monte Carlo simulation

to generate the respective TCTs. The generated TCTs were input into

a discrete simulation model. The results of the ore production prediction

were validated using field data of the morning of 16 October. As a

result of the verification, the data on 16 October 2018 included all four

models in the distribution of the simulation results. The uniform and

triangular distribution models predicted relatively lower ore production

than the actual production because the results of P90 and the field data

were similar. The normal distribution and observed probability

distribution models were similar to the P50 results and the field data.

Because the working conditions at the mine site changed regularly,

the stochastic simulation model was used in the short term as well as

in the long term in various ways. Therefore, we performed a simulation

with ten days of valid data for October 2018. Simulated with data for

the month of October, the RMSE of the observed probability

distribution model was the lowest at 24.9 ton/day. The comparison
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results prove that the developed observed probability distribution model

can predict the rate of total ore production within the range of actual

values.

To use the observed probability distribution, the truck travel time

data must be recorded. Simulation results of higher accuracy can be

derived, such as that of the simulation of the observed probability

distribution models used, by processing stored data. If the ICT-based

mine safety management systems are introduced at various sites,

simulations of higher accuracy can be achieved. It was possible to

consider time through a Monte Carlo simulation using the data stored

in the field without excluding various events occurring in the field.

Thus, it is possible to obtain the resulting distribution of various ore

productions. Because the stochastic simulation result is displayed as a

distribution rather than a single value, various statistical values, such

as the maximum and minimum, were confirmed in the field. It will be

helpful for managers to use simulation results to set up or modify work

plans according to desired production goals or perspectives.

Delay time is an important indicator for evaluating the performance of

mining operation. This study did not use the delay time as an input or

output parameter of the simulator; however, the delay time was

considered during the simulation process. In future work, it would be

interesting to stochastically estimate the delay time with simulation

output to make decisions for maximizing ore production.
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