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Adminis trat ion of Dye -Loaded Polymer ic Nanopart icles to  the Red Tide 

Dinoflagella tes ,  Akashiwo sanguinea  and Alexandrium pacif icum  

 

Tumpa Naz Fathma  

 

Department o f Chemistry,  The Graduate School,  

Pukyong Nat ional  Universi ty  

 

Abstract  

Dinoflagella te  blooms in water  lands have been increas ingly reported  which 

produce large amount  of toxin compounds.  Here reported engineered 

nanopart ic les consis t  of  two different  rylene der iva tives,  naphthalene  organic  

dye Lumogen violet  and quarterrylene organic near -infrared dye,  IR788,  

encapsulated in polymer ic micelles.  In addit ion,  to  avoid dissocia t ion of polymer ,  

the core of micelle  was stabi l ized via semi -interpenetra t ing ne twork format ion .  

Nanopart icle  uptake and i ts  effec ts were conducted on the marine red t ide 

dinoflage llates,  Akashiwo sanguinea and Alexandrium pacif icum  respec t ive ly.  

Infrared laser  ir radiat ion  was exposed  on the nanopart ic le  treated  Akashiwo 

sanguinea under  di fferent  exposure and nanopart icle  condit ions ,  the result ing 

system showed  reduced  cell  survival  due to  photothermal  effect  stud ies on 

microa lage .  The result s  suggested that  the nanopart icle  ( IR788)  can be applied 

for  potent ial  red t ide a lgal  el iminat ion fur ther,  a l though i t  requires to  determine  

the safety assessment o f  biological  toxic i ty o f the nanopart ic le .  
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적조생물  Akashiwo sanguinea 와  Alexandrium pacificum 에  대한  

염료함유  고분자  나노입자  활용  연구  

 

Tumpa Naz Fathma  

 

Department o f Chemistry,  The Graduate School,  

Pukyong Nat ional  Universi ty  

 

Abstract  

최근  적조현상으로  인한  생물  독성  문제가  지속적으로  보고되고  있다 .  

이에  우리는  적조의  원인이  되는  미세조류  제거를  위하여  유기  근적외

선 (NIR) 염료인  루모젠  IR788 를  포함하는  Pluronic 고분자  기반의  미

셀  나노입자를  제조하였다 . IR788은  근적외선  영역의  빛에  노출되면  열

을  발생시키는  쿼터릴렌  광열  물질로서  소수성의  미셀  코어에서  안정화

되어  수용액상에  분산된다 . 또한  고분자의  농도  및  주변  온도  변화로부

터  미셀의  해리를  방지하기  위해 , 미셀의  코어  부분은  반 -상호  침투  네

트워크 (sIPN)를  형성하여 , 저온에서도  안정적인  구조를  유지할  수  있게  

하였다 .  나노입자의  미세조류로의  섭취  능력  및  광열  효과를  평가하기  

위하여  아카시오  상귀니아 (Akashiwo sanguinea) 및  알렉산드륨  퍼시피

움 (Alexandium pacificum) 2종의  와편모충류  미세조류를  사용하였다 .  

나노입자는  형광  이미징  및  대조군으로서  IR788-sIPN 외에  형광물질

인  루모젠  바이올렛 (LV)를  포함하는  LV-sIPN를  추가적으로  제조하였

다 . 미세조류로의  섭취  능력은  LV-sIPN를  이용하여  형광이  있는  미세

조류를  개수하여  나타냈고 ,  광열  효과는  808 nm 근적외선에  IR788-
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sIPN 및  LV-sIPN을  노출시켰을  때  세포생존율을  통해  평가하였다 .  그  

결과 , 나노입자는  효과적으로  미세조류로  섭취되었으며  IR788-sIPN이  

LV-sIPN과  비교하여  우수한  광열  효과를  가진  것을  확인할  수  있었다 .  

이는  IR788-sIPN 나노입자를  조류  제거에  잠재적으로  이용할  수  있음

을  나타내며  또한 , 이를  위하여  나노입자의  생물학적  독성  평가가  선행

되어야  함을  보여준다 . 
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Ⅰ . Introduction 

 

 

1. Research Overview  

 

Nanotechnology development has significantly increased in different areas 

due to the wide application of nanoparticles (NPs). At least  one dimension 

in the range of 1 to 100 nm are defined as the particles size of 

nanoparticles 1 .  Based on their  chemical composit ion nanoparticles (NPs) 

can be separated into five categories:  nano -oxide, carbon nanomaterials, 

nano-metal ,  quantum dots and other NPs such as organic polymers 2 .  In a  

variety of conventional products nanoparticles (NPs) have been used for 

instance cleaning agents,  clothes, tableware, children ’s toys and domestic 

appliances3 .  Due to their  unique capabil i ties such as their  mechanical 

properties,  contact reactivity, optical properties and electrical 

conductivity Nanoparticles (NPs) have variety of applications in the fields 

of food packaging, texti les,  optoelectronics, biomed icine, cosmetics,  

energy and catalysis 4 - 5 .   

Polymeric micelle composed of amphiphil ic block copolymers have been 

shown to be a promising nano -carrier for tumor imaging and drug delivery 

applications 6 - 8 .  This nanoparticle attracted much  attention because of  i ts 

easily controlled physicochemical properties  (ex: part icle,  charge surface, 

degradation rate) and the surface of  amphiphil ic block copolymer is also  
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easy to be functionalized with  other moieties 9 - 1 0 .  Above their  cri t ical 

micelle temperature (CMT) or  concentration (CMC), the block copolymers  

can be self-assembled into a supramolecular structure composed of a 

hydrophobic core for  loading hydrophobic molecules and hydrophilic shell 

which can provide protection from dissociation in the aqueous 

environment  1 1 - 1 3 .  

Among those, Pluronic block copolymer consisted of  poly (ethylene oxide) 

and poly(propylene oxide) (PEO-b-PPO-b-PEO) has been widely studied 

as a therapeutic agents carrier since i ts  excellent bioavailabil ity 1 4 - 1 6 .  

 In the aqueous environment above i ts  CMT and CMC, Pluronic material 

can be spontaneously formed nanosized  core-shell  micelles having a  

hydrophobic core composed by PPO segments and a shell  dominated by 

PEO segments.  The PEO chain of  Pluronic can form hydrogen bonds with 

aqueous molecules result ing in a tight shell around micellar core which 

prevent the hydrophobic  molecules f rom being removed from the core 1 7 -

2 0 .  

 Although Pluronic has been considered to be a promising drug carrier, 

these micelles which have soft  cores are thermodyna mically unstable than 

other polymeric micelles with solid core (ex:  poly(styrene) -poly (ethylene 

oxide)).  In order to stabil ize Pluronic micelle,  many  stabil ization methods 

2 1  have been conducted by other groups focused on PEO and PPO 

functionalization 2 2 - 2 4 .  Mostly, reported methods required complicated 

organic synthesis route and also those  were known influence the 

micell ization properties of Pluronic  molecules 2 2 .  The innovative method 
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to stabil ize Pluronic micelle has  been developed by Petrov et al  2 5  via 

formation of semiinterpenetrating network (sIPN) in the core of Pluronic 

F-68 using PETA (pentaerythritol  tetraacrylate) as a cross-l inker.  The 

interpenetrating networks of poly(PETA) and polyether chains were  

stabilized Pluronic micelle from degradation below its CMC or CMT.  

An alternative to be considered as a photostable dye under intense 

irradiation is rylene-based dye, a polycyclic dye with exceptional 

photophysical  properties such as high photostabil ity and intense 

absorption2 6 .  Rylene dye with high number of naphthalene units are known 

to be able to absorb wavelength up unti l  1,000 nm 2 7 .  Process of loading 

hydrophobic dyes has been widely done using polymeric micelles 2 8 .  

Cyanobacterial  and Dinoflagellate  blooms in water lands  have been 

increasingly reported 2 9 - 3 0 .  Accumulated cyanobacterial cells produce 

large amount of toxin compounds 3 1  that  are poisoning to human being and  

organisms 3 2 - 3 3 .  Moreover, Dinoflagellate  blooms induce brevetoxins and 

ichthyotoxins  of the water leading to fish ki l ls and degradation of  water 

recreational value 3 4 .  Several  treatments include flocculation, f il trat ion, 

clay minerals ,  ultrasonic ,  biological  methods  such as cyanophage etc.  were 

applied to Dinoflagellate  marine microalgal blooms (red t ides).  However, 

most methods are immobile  therefore low effective when applied in large 

scale waters such as lakes and reservoirs.  Also Most of the previous 

studies of nontoxicity thus far conducted have evaluated the toxicity of 

nanoparticles themselves, but there  has been very l i t t le study thus far 

conducted on the toxicity of NPs  exposed to IR l ight  or sunlight in a 
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natural  environment.  

In this present work, polymeric nanoparticles (NPs) were loaded with 

two types of quarterrylene dye and stabil ized to avoid dissociation of the 

polymer. Pluronic®  F127, a tr iblock copolymer consisted of hydrophobic 

poly(propyleneoxide) (PPO) and hydrophilic  poly(ethyleneoxide) (PEO) 

chain (PEO-b-PPO-b-PEO), was used as a  base for the polymeric micelle 

with Lumogen®  IR788 (a quarterrylene dye)  and Lumogen Violet  as 

loaded moiety3 5 - 3 8 .  Those photothermal dye-loaded NPs were further 

stabilized via semi -interpenetrating network (sIPN) within the core of the 

micelle using a crosslinker,  PETA (pentaerythritol  tetraacrylate). A UV 

irradiation was used to promote the network formation of crosslinker,  

holding the PPO core within micelle 2 5 .  The effects of IR788-sIPN NPs and 

LV-sIPN NPs on two Dinoflagellate species  Akashiwo sanguinea, 

Alexandrium pacif icum were evaluated after applying NPs in the algal 

media and later Akashiwo sanguinea species was selected for  Infrared 

(808nm) laser irradiation treatment under different exposure conditions. 

Algal media without NPs were  used as a control  compared to media 

contained NPs.  Algae were selected as the test  species owing to their 

importance as a primary producer in  the aquatic environment. The other  

objective of this study was to  obtain a better understanding of the toxicity 

difference of photothermal dye-loaded IR788-sIPN NPs and LV-sIPN NPs.  
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2. Literature Review  

 

2.1.  Rylene Dyes   

 

Rylene is a polycyclic hydrocarbon constructed of naphthalene units as 

a base connected in peri -posit ion. Rylenes in form of rylene diimide (RD), 

which contains two diimide  ring at  the terminal naphthalene, are 

commonly used as pigment,  semiconductor,  or dye due to their  strong 

fluorescence, large absorption coefficient, and superior thermal and 

photostabil ity4 2 , 4 3 .  Rylene derivatives have different photophysical  and 

photothermal characteristics depending on the size of i ts core, as shown 

from a study of lower-ring rylene compounds 4 4 - 4 6 .   

One of the derivatives of the rylene diimides is the quarterrylenediimide 

(QDI) group, which is an expanded-core derivative of RD with an intense 

absorption at  especially 808 nm wavelength,  thus making i t  a promising 

material  for deep-penetrating photothermal material 4 7 .  An example of QDI 

is the Lumogen IR788, a quarterrylenetetra  carboxylic diimide 4 8 .  Despite 

the superior characterist ics,  QDI has poor solubili ty in water and high 

tendency to form an aggregate because of i ts r igid structure and 

nonpolarity4 2 , 4 9 .  Structure of Lumogen violet  and IR788 are shown in 

Figure 1 .  
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Figure 1.  Chemical  structure o f rylene ,  Lumogen IR788  and Lumogen violet   

 

2.2.  Polymeric Micelles, Nanoparticles and Semi-

Interpenetrating Network  

 

Nanotechnology development has significantly increased in different areas 

due to the wide application of nanoparticles (NPs). At least  one dimension 

in the range of 1 to 100 nm are defined as the particles size of 

nanoparticles 1 .   In recent years’ polymeric micelles have known to attract 

huge interest for pharmaceutical  applications as gene and drug delivery 

system, and as a carrier for contrasting agent in drug diagnostic 

imaging7 , 8 , 3 9 .  The reason for this popularity is due to the core-shell 

structure of the micelles.  A combination of hydrophobic micelle core, 

suitable for loading or encapsulation for various therapeutic agent,  with a 

hydrophilic micelle shell ,  ensures improved solubili ty of the agent,  while 

also gives protection from undesired pharmacokinetics due to the aqueous 
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environment surrounding i t 1 6 , 2 0 , 3 9 .  This kind of core-structure can be seen 

in an amphiphil ic copolymer. A known type of copolymer with these 

properties is Pluronic, which consist  of hydrophobic propylene ox ide (PO) 

and hydrophilic ethylene oxide (EO) in an arrangement of PEO -b-PPO-b-

PEO (Figure 2) .   

 

 

Figure 2 .  Chemical  structure o f p luronic F127  

 

Micelle formation from Pluronics in aqueous solution is highly 

influenced by concentration of the Pluronics  and surrounding temperature. 

These terms are usually addressed as crit ical micelle temperature (CMT) 

and cri tical  micelle concentration (CMC) 4 0 .  When both conditions are 

fulfil led, Pluronic unimer will  self -assemble to form a micelle.  On the 

other hand, i f  at  any given t ime either concentration or temperature drops 

below the CMC and CMT, i t  will  dissociate back into unimer, releasing 

any loaded molecule within the core of the micelle 3 5 - 3 8 .  

Stabil ization of Pluronic micelle using semi-interpenetrating network 

(sIPN) have been studied and yielded nice results 2 5 .  In a sIPN, a l inear or 

branched polymer penetrates a network made usually by a crosslinker 4 1 .  

One reported a method to stabil ize Pluronic micelle using pentaerythritol 
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tetraacrylate (PETA) shown in Figure 3  as a crosslinker.  

 

 

Figure 3 .  Chemical  structure o f PETA  

 

PETA is polymerized within the micelle core via UV irradiat ion at  an 

elevated temperature above 50°C to help promote internalization into the 

core. The resulting sIPN showed improved stabili ty,  able to maintain the 

micellar structure under CMC and CMT 2 5 .  Figure 4  shows a simple 

visualization on how sIPN can help stabil ize a polymeric micelle.  
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Figure 4 .  I l lus trat ion of  sIPN role to  s tabil ize a  polymeric micel le  

 

2.3.  Heat Conversion Efficiency of Photothermal Material  

 

Heat at  a certain level can induce death of both for animal and algae 

cell  specially dinoflagellate .  At temperature above 30°C, damage on cell 

will  occur as a result of an unwanted product from chemical reactions  

specially for dinoflagellate algae cell .  These facts lead to a conclusion 

that  heat  can be used to eliminate red t ides (Occur by dinoflagellate algae).  

NIR laser irradiation has been studied in order to induce heat and radiation 

from this source are less harmful since i t  is  less absorbed by biological  

t issues, but when coupled with a NIR absorber agent,  i t  can generate heat 

with high enough level to induce heat .  Also, the characterist ics of NIR 
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laser ensures deeper penetration into biological  t issues 5 0 - 5 3 .   

 

2.4.  Water Discoloration and Pollution Due to Red Tide  

 

The discoloration in the water happens due to algal  pigments,  so red 

pigment containing a lgae 's  bloom named as red -tide which is a common 

name for algal  blooms,  which are large concentrations of aquatic 

microorganisms,  such as protozoans and unicellular algae (e.g.  

dinoflagellates and diatoms). The most conspicuous effects of red t ides 

are the associated wildlife mortali t ies and harmful human exposure. The 

production of natural toxins such as brevetoxins and ichthyotoxi ns are 

harmful to marine l ife and b looms which can injure animals or the ecology 

are called Harmful Algal Blooms (HABs) 2 - 4 .   Red tide species can be 

found in oceans, bays, and estuaries,  but they cannot thrive in freshwater 

environments  and certain species of phytoplankton and dinoflagellates 

found in red tides contain photosynthetic pigments that  vary in color from 

brown to red 5 4 .  When the algae are present in high concentrations, the 

water may appear to be discolored or murky. The most conspicuous effects 

of red t ides are the associated wildlife mortali t ies and harmful human 

exposure and the production of natural  toxins such as brevetoxins and 

ichthyotoxins are harmful to marine l ife.  Blooms which can injure animals  

or the ecology are called "Harmful Algal Blooms" (HABs) 5 4 .  Akashiwo 

sanguinea and  Alexandrium pacificum are two species of marine 

dinoflagellates well  known for forming blooms that  result  in red tides due  
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to red pigments on their  body. The below Table1  represents some of the 

characterist ics which differentiate red t ide dinoflagellates Akashiwo 

sanguinea and  Alexandrium pacif icum .   

 

Table 1 .  Differentiat ion of red t ide dinoflage lla tes Akashiwo sanguinea and  

Alexandrium paci f icum .  

Characterist ics  Akashiwo sanguinea  Alexandrium pacif icum  

Cel l  shape and outer  

layer  

Oval  and unarmed ( lack 

of thick cellulose wall)  

Round and covered wi th  

ornamented ce llulose 

wall  named ‘theca’  

Favorab le 

temperature  

20°C-26°C  20°C-24°C  

Figure  

  

Toxin/Bioactive 

Compound  

Surfac tants  Saxitoxins  

Human Health Effects 

or  Syndrome  

Suspected respira tory 

ir r i tant  

Respiratory paralys is,  

death (Paralyt ic  Shell fi sh 

Poisoning or  PSP)  

Impacts to  wi ldl ife  or  

domestic  animals  

Migra tory b ird  deaths,  

inc lud ing protec ted 

species  

Fish and shell f ish 

morta l i ty,  Marine 

mammal deaths  

Cel l  up take abil i ty    High   Low  
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2.5.  Nanoparticles for the Removal of Harmful Algal  

Species  

 

Toxicities of ZnO, TiO 2  and CuO nanoparticles to  microalgae  were 

conducted and algal  growth inhibit ion test taking in acco unt potential 

shading of l ight,  results showed that  the shading effect  by nanoparticles 

was negligible and ZnO nanoparticles were most toxic followed by nano 

CuO and nano TiO 2  
5 5 .  Several  treatments include flocculation, f i ltrat ion, 

clay minerals ,  ultrasonic ,  biological  methods  such as cyanophage etc.  were 

applied to Dinoflagellate  marine microalgal blooms (red t ides).  However, 

most methods are immobile  therefore low effective  when applied in large 

scale waters such as lakes and reservoirs.  

 

2.6.  Light Irradiation on Algal Species  

 

A study was evaluated to determine the ecotoxic  effects of zinc oxide 

nanoparticles and t i tanium dioxide nanoparticles to a green alga under 

visible,  UVA, and UVB irradiation conditions and algal  growth was found 

to be inhibited as the nanoparticle concentration increased and ZnO NPs 

caused destabil iza tion of the cell  membranes 5 6 .  Another research was 

conducted to determine the effects of UV -C irradiation on algal  growth 

and cell integrity were investigated to develop a potential  method for 

preventing cyanobacterial  blooms suggested the potential  applic ation of 

sub-lethal  UV-C irradiation for cyanobacterial bloom control with a 
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predictable low ecological  risk 5 7 .   

 

2.7.  Natural Infrared 

 

Sunlight,  at  an effective temperature of 5780  kelvins  (5510  °C, 9940  °F) ,  

is  composed of near-thermal-spectrum radiation that  is sl igh tly more than 

half  infrared.  At solar  zenith angle, sunlight provides an  irradiance  of just 

over 1  kilowatt  per square meter at sea level and o f this energy, 527 watts 

is infrared radiation 5 8 .  Nearly all  the infrared radiation in sunlight is near 

infrared and infrared radiation is popularly known as "heat radiation, but  

l ight and electromagnetic waves of any frequency will  heat  surfaces that 

absorb them5 8 .  Infrared l ight from the Sun accounts for 49% 5 8  of the 

heating of Earth. The  International Commission on Il lumination  (CIE) 

recommended the division of infrared radiation into the follow ing three 

bands:  Infrared-A: 700  nm to 1,400  nm,  Infrared-B: 1,400  nm to 3,000  nm,  

Infrared-C: 3,000  nm to 1  mm. The amount of solar radiation received by  

Earth is maximum 1413 W/m2  to minimum 1321 W/m2  (1  W/m2  =  

0.0001  W/cm2) .   

 

 

 

 

 

https://en.wikipedia.org/wiki/Kelvin
https://en.wikipedia.org/wiki/Irradiance
https://en.wikipedia.org/wiki/Kilowatt
https://en.wikipedia.org/wiki/Infrared#cite_note-23
https://en.wikipedia.org/wiki/International_Commission_on_Illumination
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Ⅱ . Lumogen Violet and IR788 sIPN 

Nanoparticles Formation and Algae Species 

Collection and Culture 

 

 

This chapter describes formation of sIPN nanoparticles (NPs) at  the core 

of a polymeric micelle containing Lumogen violet(LV) and IR788 dye,  

with several  experiments to confirm the sIPN NPs formation. Two marine 

microalgal species  i .e.  Akashiwo sanguinea and  Alexandrium pacif icum 

which are well  known for making red t ide on marine water body, there 

cultures and culturing conditions were also describe in this chapter.  

 

 

1. Methodology 

 

1.1.  Materials  

 

Lumogen violet  and IR788 were kindly provided by BASF AG 

(Germany). Lumogen violet  and IR788 were kindly provided by BASF AG 

(Germany). Pluronic F127 (Mn 12,600) and PETA were purchased from 

Sigma Aldrich (Korea).  Chloroform (99.8%, HPLC grade) was purchased 

from Samchun (Korea) and Acetone (99.9%) was purchased from DUKSAN 

(Korea),  Mili -Q water was obtaining from NCHM laboratory.   
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Three (3) species of dinoflagellates  were kindly provided by Marine 

Protistan Ecophysiology Laboratory, Pukyong National University, Busan . 

Lugol solution applied for cell  staining and algae cells were fixed using 

glutaraldehyde C 5H8O2 .  Steri l ized sea water (30% salinity)  was used for 

algae cell  dilution.  

 

1.2.  Instruments  

 

Shaking of solutions was carried out using Lab Companion SKF 2050 

Shaker (Jeio Tech), while for UV irradiation, OmniCure  series 2000 

(Lumen Dynamics, Canada) was uti l ized. For CMT test ,  incubation and 

centrifugation of solution at  low temperature was done using R17 Micro 

Refrigerated Centrifuge (Hanil  Science Industrial) .  Separation of 

supernatant and precipitate was perfor med using 0.2 µm syringe fi lter 

(Ministart® Sartorius Stedium). Sample s were stored inside a 20-mL glass  

vial .  Absorption spectra was recorded using SpectraMax M2 (Molecular 

Devices, U.S.A.) in a  quartz cuvette with a 10 x 10 mm light path (Hellma 

Analytics).  Sample was put in a 2-mL microcentrifuge tubes and irradiated 

with 808 nm Laser (Changchun New Industr ies,  China) for photostabil ity 

evaluation. Laser power were adjusted using a radiometer (R2000 from 

Omnicure, Canada).  

Sterilization of algal  culture media were done with Spiri t -lamp, algal  

cell  samples were placed in Sedgwick Rafter chamber (SR chamber) for 

counting under light microscopy (With fluorescence l ight -DAPI Mode), 
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irradiation experiment was conducted applying Laser source/machine 

(PSU-H-LED) (808 nm wavelength) on algae cell .  

 

1.3.  Species Collection  

 

Two species of dinoflagellate marine microalgae Akashiwo  

sanguinea  (Strain AS-USA) and Alexandrium pacif icum  (Strain AP-

LOHABEE04) were obtained by pipett ing single cells from seawater 

samples collected during blooms from Chesapeake Bay (2015), Masan 

(June 2, 2016) and Yongho (Busan -July 19, 2018) respectively.  

 

1.4.  Algal Cell Culturing  

 

Akashiwo sanguinea  (Strain AS-USA),  Alexandrium pacif icum  (Strain 

AP-LOHABEE04) isolated single cells were transferred to polystyrene cell 

culture plates containing steri le f /2 -SE culture medium under an inverted 

microscope. Identification of all  clonal isolates of  Akashiwo sanguinea  

and Alexandrium pacificum  have been confirmed with large subun it  (LSU) 

rDNA sequencing.  Cells were cultured in sterile f /2-SE medium with a 

salinity of 27.5 for  Akashiwo sanguinea ,  30 for Alexandrium pacif icum  

made with autoclaved and 0.2 μm  f i l tered seawater.  The cultures were 

maintained at  20°C in an incubator with a 14 h l ight:10 h dark cycle.  
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2. Experimental  

 

2.1.  Preparation of Lumogen Violet sIPN Nanoparticle  

 

Two stock solution were prepared: (1) Pluronic F127 (100 mg/mL) in 

CHCl3 ;  (2) PETA (100 mg/mL) in acetone. First ,  PETA film was prepared 

by deposit ing 0.125 mL of the PETA stock solution onto one clean vial  and 

evaporating the solvent at  ambient temperature in a fuming hood. In 

another vial  to form micelle loaded with lumogen violet  (LV), F127 (5 mL 

of the stock solution) and lumogen violet  (sock l iquid, 10 μL for 0.002% 

lumogen violet  (LV)  ratio based on F127) were mixed then CHCl 3  was 

evaporated using a rotary evaporator under reduced pressure, hydrated 

with 4.5 mL ultrapure (18 MΩ) water,  and agitated using an orbital  shaker 

(200 rpm) at  r. t .  overnight.  Water color  (transparent) on (F127 10 wt%) 

was added to the PETA film prepared  and further agitated under the same 

condition. Argon gas was added to the solution before UV irradiation. The 

agitated solution was irradiated using UV il luminator at  1.5 W/cm 2  for 10 

min at  50°C to promote crosslinking of PETA in the micelle core. LV sIPN 

Nanoparticle (NP)  was obtained followed by fi l tration of the solution 

through a 0.2 µm syringe fi l ter  to remove residual impurit ies.  Scheme for  

the LV sIPN NP preparation is visualized by Figure 5 .  
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Figure 5.  Preparation scheme of Lumogen violet -sIPN nanopart icle  

 

2.2.  Preparation of IR788 sIPN Nanoparticle  

 

Two stock solution were prepared: (1) Pluronic F127 (100 mg/mL) in 

CHCl3 ;  (2) PETA (100 mg/mL) in acetone. First ,  PETA film was prepared 

by deposit ing 0.125 mL of the PETA stock solution onto one clean vial  and 

evaporating the solvent at  ambient temperature in a fuming hood. In 

another vial  to form micelle loaded with IR788, F127 (5 mL of the stock 

solution) and IR788 (solid,  15 mg for 3% IR788 ratio based on F127) were 

mixed then CHCl 3  was evaporated using a rotary evaporator under reduced 

pressure, hydrated with 4.5 mL ultrapure (18 M Ω) water, and agitated 

using an orbital  shaker (200 rpm) at  r. t .  overnight.  The dark green aqueous 

solution (F127 10 wt%) was added to the PETA film prepared and furt her 
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agitated under the same condition. Argon gas was added to the solution 

before UV irradiation. The agitated solution was irradiated using UV 

il luminator at 1.5 W/cm 2  for 10 min at  50°C to promote crosslinking of 

PETA in the micelle core. IR788 sIPN was obtained followed by fi ltration 

of the solution through a 0.2 µm syringe fi l ter  to remove residual 

impurit ies.  Scheme for the IR788 sIPN preparation is visualized by Figure 

6 .  

 

 

Figure 6 .  Preparation scheme of IR788 sIPN nanopart icle  

 

2.3.  Critical Micelle Temperature  Test  

 

Both Lumogen violet  and IR788 sIPN nanoparticles  were incubated at 

4°C, below the CMT (17°C, 10 wt% F127) for overnight,  followed by 10 -

minute centrifugation at  4°C on 13,  475 RCF. The supernatants  of LV-sIPN 
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and IR788-sIPN NPs were separated and the absorption spectra before and 

after CMT test  were recorded at  300-430 nm and 550 – 900 nm respectively. 

The supernatants  of LV-sIPN NP was separated and the fluorescence 

spectra before and after CMT test  were recorded a t  375-560 following 360 

nm as excitation wavelength.  

 

2.4.  Nanoparticle Characterization   

 

The Lumogen Viole t -sIPN NPs and IR788-sIPN NPs were prepared in 

NanoChemistry & Hybrid Materials laboratory and final  products were in 

l iquid form of watery and dark-green color respectively. LV -sIPN NPs and 

IR788-sIPN NPs sizes  were 15.21 nm and 25.58 nm ,  respectively. The 

particle size distribution of nanoparticle detected by using dynamic l ight 

scattering (DLS, Zetasizer Nano User,  Malvern) .  
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3. Results and Discussion  

 

3.1.  CMT Test to Confirm Lumogen Violet and IR788 sIPN 

Nanoparticle  Formation  

 

The CMT (cri tical  micelle temperature) test  was done by  incubating of 

samples (sIPN NPs) at  the temperature below its  CMT for overnight then 

followed by centrifugation at  4 °C for 10 min  on 14000 rpm. The 

supernatant was transferred into a clean tube for  further characterization.  

CMT test  was done to evaluate the sIPN formation in t he core of micelle.  

The values of CMT varies depending on temperature and concentration of 

amphiphil ic polymers,  and the CMT for given concentration of F127 in 

H2O (10% wt) was 17°C. Both sample i .e.  LV-sIPN and IR788-sIPN NPs 

were incubated for overnight  at  4°C,  a temperature way below CMT. 

Figure 7  and Table 2  shows that  absorption and fluorescence spectra for 

0.002% LV-sIPN NP and absorption spectra for both IR788 3% micelle and 

IR788 3% sIPN which had a  significant difference before and after CMT 

test .   
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Figure 7 .  Absorption and fluorescence spectra  o f 0 .002% Lumogen v iole t -sIPN 

NP, absorption spectra  o f IR788 sIPN NP and IR788 micel le  at  3% IR788  

concentra t ion before and after  CMT test .  

 

The formation of sIPN NPs in the core of micelle was evaluated by 

stabili ty test  at  a temperature below its CMT. At the given concentration 

(10%), CMT of Pluronic F127 is 17 °C. Before the CMT test  we can 

observe that  IR788 3% micelle has 25% higher maximum O.D. value  at  the 

peak compared to IR788 3% sIPN. This is due to the shrinking of the 

micelle core in IR788 3% sIPN as an effect  of semi-interpenetrating 

network formation, causing reduced loading capacity of the micelle.  After 

CMT test ,  though, i t  became apparent that  the O.D. value of IR788 3% 

micelle drastically decreased up to 91% because of the dissociation of 
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micelle into unimers under CMT, releasing most of the loaded dyes in the 

process. This release of  dye was not observed in IR788 3% sIPN, as proven 

by an O.D. decrease of only 0.6%, owing to the structurally fixed core of 

the sIPN.  As writ ten in the Table 2 , after CMT test , the obtained result 

revealed that  both F127 sIPN nanoparticles i.e.  LV-sIPN and IR788-sIPN 

NPs can maintain their  mice llar structure (not dissociated to unimers) at  

temperature below the CMT. The absorption and fluorescence intensity of 

LV-sIPN nanoparticle and absorption spectra of IR788-sIPN nanoparticle 

sIPN are depicted in the Figure 7 and the related data is presented in the 

Table 2 .  

 

Table 2 .  Absorbance of Lumogen v iolet -sIPN and IR788-sIPN nanopart icle  

samples before and af ter  CMT test  

Sample  

Absorbance  of  sample stored at  Ratio  intensity  

(4°C/ 25°C)  25°C (RT)  4°C(CMT)  

0.002% Lumogen 

viole t -sIPN NP 

Micel le  

0.5569 (377 nm)  0.5454(378nm)  0.979  

IR788 3% sIPN 

NP  

2.3330 (716nm)  2.2490 (716nm)  0.964  
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3.2.  Particle Size Distribution of Nanoparticle s  

 

Lumogen Viole t -sIPN NPs and IR788-sIPN NPs sizes were 20 .21 nm and 

25.58 nm ,  respectively.  Polydispersity Index (Pdi) for LV-sIPN NPs was 

0.683 and IR788-sIPN NPs was 0.462.  Figure 8  showed the size 

distribution of both LV-sIPN NPs and IR788-sIPN NPs .  The particle size 

for IR788-sIPN nanoparticles were comparatively bigger than LV-sIPN 

nanoparticles because IR788 dye from IR788-sIPN have high tendency to 

form an aggregate because of i ts r igid structure and nonpolari ty.   

 

 

Figure 8.  Part icle  s ize d istr ibut ion of Lumogen viole t -sIPN and IR788-sIPN 

nanopart ic les  
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Ⅲ . Nanoparticles Uptake of Red Tide 

Dinoflagellate Species and Laser Irradiation 

with Near-Infrared Light  

 

 

This chapter describes the thorough experimental  and analysis of LV-

sIPN and IR788 sIPN nanoparticle as uptake material  for dinoflagellate 

marine microalgal species which are specially well  known for producing 

red-tide on marine water,  which mainly focused on the uptake of  

fluorescence dye based nanoparticle i .e.  LV-sIPN NP by two red-tide 

species i .e.  Akashiwo sanguinea  and Alexandrium pacificum  effect  of 

IR788 sIPN NP on a specified red-tide species  i .e.  Akashiwo sanguinea  

when irradiation was exposed with NIR -808 on IR788-sIPN NP uptake 

cells with various sets of irradiation parameters  and t ime.  

 

 

1. Methodology 

 

1.1.  Materials  

 

All materials used in this chapter were the same with materials used for 

earl ier sets of experiments  done in chapter II .  
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1.2.  Instruments  

 

Instruments  used in this chapter  for nanoparticles preparation and algal  

cell  counting were the same with instruments  used for earl ier sets of 

experiments  done in chapter II.  Irradiation was carried out using 808 nm 

Laser (Changchun New Industries,  Korea) with the sample put inside a 1 -

mL microcentrifuge tubes. Laser power were adjusted using a radiometer  

(R2000 from Omnicure, Canada). Irradiation applying t imes were counted 

using stop watch.  

 

 

2. Experimental  

 

2.1.  Settling Assay of Nanopart icles Uptake by Dinoflagellate 

Species  

 

Select  dinoflagellate marine red-tide species i .e.  Akashiwo sanguinea ,  

Alexandrium pacificum  bloom containing culture media and open part  of 

media was steri l izing with spirit -lamp f lame also make sure zero 

contamination of species containing media. Each 1 ml of sample from red -

tide species bloom containing culture media transfer to 1.5 ml tube then 

10μL of Lugol (red color) was add with each 1 ml sample . Three (3) 

Sedgwick Rafter chamber (SR chamber) were prepared and place each 

Lugol solution mix 1 ml sample to SR chamber. Then 5 l ine from each SR 
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chamber was counted under l ight microscopy (10x) .  Right after counting 

8 ml of solution containing red-tide species and sea water  together  (depend 

on cells init ial  counting) (2500 cells /  ml) were added to each 6 well  plate. 

2μL of nanoparticle  (LV-sIPN) containing each 3 plates of 6 well -plate  

marked as experimental  plate  and other 3 plate without nanoparticles 

considered as control  plate.  After sett l ing well  plates,  at  t ime 0 hour 1ml 

cells sample from each experimental  and control  plates placed in SR 

chamber and glutaraldehyde was used to fixed algae cells for cell  counting 

at  0 hour. Then the 6-well  plate was set  to dark for 24 h after cell  counting  

at  0 hour. At t ime 24 hours same method was followed for cell  counting 

as l ike 0-hour cell  counting. For uptake confirmation of nanoparticles, 

cells were observed under fluorescence l ight  while number of al ive cells 

were counted under light microscopy.  

 

Figure 9.  General  scheme of nanopart ic les uptake experiment  
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2.2.  Laser Irradiation Under Near-Infrared Light  

 

6-Well  plate set  up after init ial  counting and counting within time all 

were the same with the methods used for earl ier sets of experiments done 

in sub-chapter 2.1. under chapter III .  Both LV-sIPN and IR788-sIPN 

nanoparticles were selected as NP material  and only one kind of 

dinoflagellate marine microalgal species i .e.  Akashiwo sanguinea  was used 

as algae cell  sample .  Ir radiation experiment was conducted applying Laser 

source/machine (PSU-H-LED) (808 nm wavelength) on algae  (Akashiwo 

sanguinea)  cell .  

 

2.2.1.  Laser Power Variation  

Different Laser power were  performed for the treatment of nanoparticles 

uptake algae cells  with fixed solution. LV-sIPN and 3% IR788 sIPN 

nanoparticle (2μL NP in 8ml algae solution) were used while the laser 

power was 1.5 W/cm2 ,  again only IR788 sIPN nanoparticle (2μL NP in 8ml 

algae solution) was applied for the treatment of nanoparticles uptake algae 

cells  while varying the laser power i .e.  1.0 and 0.5 W/cm2  as because our 

future goal is to expose nanoparticle uptake algae cell  ( Akashiwo 

sanguinea)  under sunlight for natural  irradiation. 1.5 W/cm 2  power is too 

intense, so 1.0 and 0.5 W/cm 2  power are two better option for comparison 

if  in future we expose nanoparticle uptake algae cell  ( Akashiwo sanguinea )  

under sunlight.   
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2.2.2.  Irradiation Time Variation  

LV-sIPN and 3% IR788-sIPN nanoparticle uptake algae samples were 

irradiated using an 808 nm laser when laser power was 1.5 W/cm2  and 

again only IR788 sIPN nanoparticle uptake algae samples were irradiated 

using an 808 nm laser with 1.0 and 0.5 W/cm2  laser power. Irradiation was 

done inside a makeshift  cold chamber,  and irradiation t imes were set 

depends on laser power i .e.  for 1.5 W/cm 2  ir radiation times were 15, 20, 

30 minute, for both 1.0 W/cm 2  and 0.5 W/cm2  laser power  irradiation t imes 

were 10, 30, 45, 60 minute.  

 

 

Figure 10.  General  scheme of laser  ir radiat ion experiment  
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3. Results and Discussion  

 

3.1.  Nanoparticles Uptake by Dinoflagellate Species  

 

Uptake of Lumogen violet -sIPN nanoparticle by i .e.  Akashiwo 

sanguinea  and Alexandrium pacif icum  were observed with l ight 

microscope under fluorescence  condition after kept LV-sIPN NP (2μL for 

each 8 ml solution)  containing all algal  solution i .e. experimental  plate 

under 24-hour l ight -dark condition. Control  plate cells were used as 

representative of live cell  condition after 24 -hour l ight–dark condition.  As 

three (3) Sedgwick Rafter chamber (SR chamber) were prepared and then 

5 l ine from each SR chamber was counted under  l ight microscopy (10x), 

the absolute cell  number for each SR chamber was range from 200 to 400 

cells per sl ide.   

 

3.1.1.  Lumogen Violet-sIPN Nanoparticle Uptake of Akashiwo sanguinea   

Uptake of LV-sIPN nanoparticle by Akashiwo sanguinea  was observed with 

l ight microscope under fluorescence, UV excitation (wavelength)  

condition (40x magnif ication).  LV-sIPN NP was uptake by almost 95%  

Akashiwo sanguinea cell .  Algae cell  number also decreased after 24h 

period of time compares to cell  number at 0 hour and the number was 

counted using l ight microscope under optical  light condition (10x 

magnification).  Figure 11  Shows Akashiwo sanguinea  image on different 

conditions.  Akashiwo sanguinea  cell  number decreased and at  0-hour total  
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0% LV-sIPN NP was on uptake by the algae (Akashiwo sanguinea )  cell 

while after 24-hour 95%  Akashiwo sanguinea  cell  uptake LV-sIPN NP. 

Figure 12 representing the mean cell  number of Akashiwo sanguinea  

during treated with LV-sIPN nanoparticle at  0-hour and 24-hour under 

l ight -dark condition.  

 

Figure 11.  Akashiwo sanguinea  image on di fferent  condi t ions ,  (A) normal 

cel l  under  optical  condi t ion,  (B)  normal cel l  under  fluorescence condit ion ,  (C)  

fluorescence image of uptake cell  and (D) fluorescence image after  ce l l  b last  
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Figure 12 .  Mean cel l  number  o f Akashiwo sanguinea  aga inst  t ime and 

nanopart ic le  uptake percentage (%) against  t ime  

 

3.1.2.  Lumogen Violet-sIPN Nanoparticle Uptake of Alexandrium 

pacif icum   

Uptake of LV-sIPN nanoparticle by Alexandrium pacificum  was observed 

under the same condition used for earlier sets of method done in sub 

chapter 3.1.1 with Akashiwo sanguinea .  Where 7% of Alexandrium 

pacif icum  cell  uptake nanoparticle though uptake percentage was lower 

but algae cell  number decreased after 24h period of time compares to cell 

number at  0 hour .  Figure 13  Shows Alexandrium pacif icum  image on 

different conditions.  Alexandrium pacif icum  cell  number decrease and at 

0-hour total  0% LV-sIPN NP was uptake by algae (Alexandrium pacif icum ) 

cell  while after 24-hour 7%  Alexandrium pacif icum  cell  uptake LV-sIPN 
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NP. Figure 14 representing the mean cell  number of Alexandrium 

pacif icum  during treated with LV-sIPN nanoparticle at  0-hour and 24-hour 

under l ight-dark condition.  

 

 

Figure 13.  Alexandrium pacif icum  image on di fferent  condi t ions,  (A) normal 

cel l  under  optical  condi t ion,  (B)  normal cel l  under  fluorescence condit ion and 

(C) f luorescence image after  NP uptake by ce ll  
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Figure 14 .  Mean cel l  number  o f Alexandrium pacif icum  agains t  t ime and  

nanopart ic le  uptake percentage (%) against  t ime  

  

3.1.3.  Nanoparticle Uptake Comparison of Dinoflagellate Species 

Akashiwo sanguinea and Alexandrium pacificum   

The changing in cell  number for Akashiwo sanguinea  and Alexandrium 

pacif icum  and cell  total  NPs uptake percentage  were showed in Figure 15 .  

Control  plates cell  number increased but LV-sIPN nanoparticle contain 

plates showed decreased in number with t ime Figure 15 and Akashiwo 

sanguinea  experimental  plate have  higher  cell  decrease compare to 

Alexandrium pacif icum  experimental  plates.  Under fluorescence Akashiwo 

sanguinea  Showed higher uptake abil i ty 95.06% whereas  Alexandrium 

pacif icum cells have lower NP (LV-sIPN NP) uptake 7.93% due to 

ornamented theca on cell  outer layer.  
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Figure 15.  Changes o f cel l  number  aga ins t  t ime and nanopart icle  up take  

comparison of d inoflage llate  species  Akashiwo sanguinea and Alexandrium 

pacif icum 

 

From Table 3  the observed results showed that  Akashiwo sanguinea  

experimental  plate have  higher cell  decrease compare to Alexandrium 

pacif icum .  After 24-hour with NP under l ight -dark condition 64% 

Akashiwo sanguinea cells were alive while Alexandrium pacif icum  al ive 

cells were 94%, whereas uptake abil i ty for both sample species were  95.06% 

and 7.93% respectively.  
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Table 3 .  Changes in ce l l  number  agains t  t ime and nanopart icle  up take 

percentage of a thecate d inoflage llate  ( Akashiwo sanguinea) and theca te 

dinoflage llate  (Alexandrium pacif icum )  

Microalgae  

Number of  al ive ce l l  

(%)  

NP uptake (%) by 

algae (at  24 hour of  

l ight-dark)  0 hour  24 hour  

Akashiwo sanguinea  100%  64%  95.06%  

Alexandrium paci f icum  100%  94%  7.93%  

 

Cell  uptake experiments on various (2  species) red-tide microalgae were 

carried out with Lumogen violet -sIPN nanoparticle to investigate whether 

cell  uptake the nanoparticle or not.  LV-sIPN was used as an ideal 

component for uptake experiment due to easy detection under fluorescence 

l ight.  The main goal of this experiment was to confirm the uptake of 

nanoparticle by red-tide algal  cell  and investigate which red-tide algae 

have higher nanoparticle(NP) uptake abil ity,  so that  further experiment  

(laser treatment) can be carry-out.  Why we check NP uptake of red-tide 

algae because, i f  the cell  uptake LV-sIPN (NP) then that  surely will  happen 

with other type of NP i .e.  IR788 -sIPN (Infra-red dye loaded sIPN or NP).  

According to this experiment  results 2 types red-tide microalgal species 

NP uptake abil i ty was 95.06% and 7.93% for Akashiwo sanguinea  and 

Alexandrium pacificum  respectively .  We select  Akashiwo sanguinea  for 

further laser treatment investigation due to higher NP uptake abil i ty.  
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3.2.  Irradiation Effect of Near-Infrared Laser Light on 

Dinoflagellate Species  

 

3.2.1.  Irradiation of Nanoparticles Uptake Algae Under 1.5 W/cm2  Power 

at  Different Irradiation Time  

After finding out that  Akashiwo sanguinea  has better NP uptake abil ity ,  

LV-sIPN and IR788-sIPN NPs were applied on Akashiwo sanguinea and 

exposed  for 15 min, 20 min, 30 min laser (Infrared-808) irradiation under 

1.5 W/cm2  laser power. In all  cases, algal  cell  number decreased with 

increasing laser l ight exposed time. Figure 16  showed growth rate of  

nanoparticle uptake and control  (without NP)  Akashiwo  sanguinea  cell  

and effect  of laser irradiation on Akashiwo sanguinea  including cell  

decrease percentage at  different irradiation time .  Table 4  showed decrease 

percentage at  different irradiation t ime . Cell  number decreased with 

increasing irradiation t ime up to 30 min under same cell  concentration. 

Significant differences in algal  cell  numbers were observed for irradiation 

conditions and t imes with different NPs uptake cell .   

The highest  number of cell  decreased for control  plate (without NP) 

was 7%, spotted with 30 min of irradiation time  while for 15 and 20 min 

irradiation decrease percentage were only 3% and 4% respectively .  

Irradiation had no significant effect  on control  plate cell  due to NPs 

absence. NPs have toxicity and control  cells  were free from NP uptake , so 

compare to NPs uptake cell control  plate cells were enough potential to 

survive under infrared laser.   
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When 1.5 W/cm² laser ir radiation exposed to LV-sIPN nanoparticle 

uptake Akashiwo  sanguinea  the highest  number of cell  decreased was 14%, 

spotted with 30 min of irradiation t ime  while for 15 and 20 min irradiation 

decrease percentage were  7% and 9% respectively. LV-sIPN NP may had 

toxicity, so after NPs accumulation and due to l ight -dark condition (24-

hour)  algal  cells were infirm against  infra red laser light.  

IR788-sIPN NPs showed highest  number of cell  decreased compare to 

both control  and LV-sIPN nanoparticle which was  32%, spotted with 30 

min of irradiation t ime, even for 15 and 20 min irradiation  decrease 

percentage were also higher i .e.  16% and 22% respectively compare to 

both control  and LV-sIPN nanoparticle.  IR788 dye is an infra red dye which 

generate heat when it  exposes to light also IR788-sIPN NP may had toxic 

effect  on cell ,  after NP uptake  and due to l ight -dark condition algal  cells 

were infirm and when cell  exposed to infra red (808nm) laser l ight IR788 

increased heat inside  and on the outer layer of the cell  resulted cell  blast .  

Compare to LV-sIPN nanoparticle ,  IR788-sIPN nanoparticle  uptake 

algae cell  blast occurred with increasing laser irradiation exposed t ime.  

Nanoparticles  toxicity difference correlates with the particle size, 

structure and NP dispersion preparation method.  IR788 is a near  infrared 

(NIR) dye with heat generation ab ili ty in the presence of l ight.  Significant 

differences in algal  growth inhibit ion were observed, regardless of  

irradiation exposed t ime conditions.  
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Figure 16.  Effect  o f laser  ir radiat ion (1.5 W/cm²) on  Akashiwo sanguinea  

and cel l  decrease percentage at  different  i r radia t ion t ime  
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Table 4 .  Akashiwo  sanguinea  cel l  decrease percentage after  laser  i r radia t ion 

(1.5 W/cm²)  at  d ifferent  i r radiat ion t ime    

Experiment  Irradiation Time  

Cell  decrease 

percentage   

Control (Without NP)  

15min  3%  

20min  4%  

30min  7%  

LV-sIPN NP  

15min  7%  

20min  9%  

30min  12%  

IR788-sIPN NP  

15 min  16%  

20min  22%  

30min  33%  

 

3.2.2.  Irradiation of IR788-sIPN Nanoparticle  Uptake Algae Under 1.0 

W/cm2  and 0.5 W/cm2  Power at  Different Irradiation Time  

After finding out ,  compare to LV-sIPN nanoparticle IR788-sIPN 

nanoparticle had effectively higher impact on Akashiwo sanguinea  cell  at 

different laser irradiation t ime , so IR788-sIPN NP was appl ied on 

Akashiwo sanguinea for further findings .  IR788-sIPN NP uptake Akashiwo 

sanguinea  cells were exposed  for 10 min, 30 min, 45 min, 60 min  laser 

(Infrared-808) irradiation under 1.0 W/cm2  and 0.5 W/cm2  laser power 

separately. In all  cases, algal  cell  number decreased with increasing laser 

l ight exposed t ime gradually i .e.  0 min > 10 min > 30 min > 45 min > 60 
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min,  afterwards for both IR788-sIPN nanoparticle uptake and control 

(without nanoparticle) Akashiwo  sanguinea  cell  under both 1.0  W/cm2  and 

0.5 W/cm2  laser power.  Figure 17 showed the effect  of laser irradiation 

under 1.0 W/cm2  power on both nanoparticle uptake and control  (without 

NP) Akashiwo  sanguinea  cell  including cell  decrease percentage at  

different irradiation time. Table 5  showed decrease percentage at  different 

irradiation t ime.  

 

Figure 17.  Effect  o f laser  ir radiat ion  (1.0 W/cm²)  on  Akashiwo sanguinea  

and cel l  decrease percentage at  different  i r radia t ion t ime  

 

The highest  number of cell  decreased for control  plate (without NP) 

was 8%, spotted with 60 min (1 hour)  of irradiation t ime while for 10, 30 

and 60 min irradiation decrease percentage were only 1%, 3% and 5% 

respectively. Irradiation had no significant effect  on control  plate cell  due 
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to NPs absence. NPs have toxicity and control  cells  were free from NP 

uptake, so compare to NPs uptake cell  control  plate cells were enough 

potential  to survive under infra red laser.   

IR788-sIPN NPs showed highest  number of cell  decreased compare to 

control  which was 28%, spotted with 60 min (1 hour) of irradiation t ime,  

even for 45 min cell  decrease was 15% which was also higher then control 

plate,  afterwards even for 10 and 30 min irradiation decrease percentage 

were also higher i .e.  2% and 6% respectively compare to control . IR7 88 

dye is an infrared dye which generate heat when i t  exposes to l ight also 

IR788-sIPN NP may had toxic effect  on cell,  after NP uptake  and due to 

l ight -dark condition algal  cells were infirm and when cell  exposed to 

infrared (808nm) laser l ight IR788 increased heat inside and on the outer 

layer of the cell  resulted cell  blast .  
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Table 5 .  Akashiwo  sanguinea  cel l  decrea se percentage after  laser  i r radia t ion 

(1.0 W/cm²) at  d ifferent  i r radiat ion t ime   

Experiment  Irradiation Time  

Cell  decrease 

percentage   

Control (Without NP)  

10 min  1%  

30min  3%  

45 min  5%  

60min  8%  

IR788-sIPN NP  

10 min  2%  

30min  6%  

45 min  15%  

60min  28%  
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Figure 18 showed the effect  of laser irradiation under 0.5 W/cm2  power  

on both nanoparticle uptake and control  (without NP) Akashiwo  

sanguinea  cell  including cell  decrease percentage at  different irradiation 

t ime. Table 6  showed decrease percentage at different irradiation t ime .  

 

Figure 18.  Effect  o f laser  ir radiat ion  (0.5 W/cm²) on  Akashiwo sanguinea  

and cel l  decrease percentage at  different  i r radia t ion t ime  

 

The highest  number of cell  decreased for control  plate (without NP) 

was 4%, spotted with 60 min (1 hour)  of irradiation t ime while for 10, 30 

and 60 min irradiation decrease  percentage were only 0.2%, 1% and 2% 

respectively. Irradiation had no significant effect  on control  plate cell  due 

to NPs absence. NPs have toxicity and control  cells  were free from NP 

uptake, so compare to NPs uptake cell  control  plate cells were enough 

potential  to survive under infra red laser.   
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IR788-sIPN NPs showed highest  number of cell  decreased compare to 

control  which was 11%, spotted with 60 min (1 hour) of irradiation t ime,  

even for 45 min cell  decrease was 5% which was also higher then control 

plate,  afterwards even for 10 and 30 min irradiation decrease percentage 

were also higher i .e.  0.3% and 3% respectively compare to control .  IR788 

dye is an infrared dye which generate heat when i t  exposes to l ight also 

IR788-sIPN NP may had toxic effect  on  cell,  after NP uptake  and due to 

l ight -dark condition algal  cells were infirm and when cell  exposed to 

infrared (808nm) laser l ight IR788 increased heat inside  and on the outer 

layer of the cell  resulted cell  blast .  

 

Table 6 .  Akashiwo  sanguinea  cel l  decrease percentage after  laser  i r radia t ion 

(0.5 W/cm²)  at  d ifferent  i r radiat ion t ime   

Experiment  Irradiation Time  

Cell  decrease 

percentage   

Control (Without NP)  

10 min  0.2%  

30min  1%  

45 min  2%  

60min  4%  

IR788-sIPN NP  

10 min  0.3%  

30min  3%  

45 min  5%  

60min  11%  
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Now on the basis of above concept s,  the effects of IR788 dye loaded 

nanoparticles have higher effect  on microalgae cells when laser irradiation 

apply after nanoparticle uptake , as because IR788 dye from IR788-sIPN 

nanoparticle is an infrared dye which generate heat when it  exposes to 

l ight.  As most of the Akashiwo sanguinea  cells uptake nanoparticles inside 

so when IR788-sIPN nanoparticle uptake cell  expose to laser irradiation 

after a certain time of irradiation IR788 increased heat inside and outer 

layer of the cell  resulted cell  blast  which already showed under chapter 

III  in Figure 16, 17,18  and Table 4 5  6 with cell  decrease percentage .  

According to Figure 16, 17,18  and Table 4 5 6,  in all  cases algal  cell  

number decreased with increasing laser light exposed t ime gradually even 

with lower laser power when irradiation t imes were higher cell  decreases 

were higher.   
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Ⅳ . Conclusions 

 

 

Lumogen violet  and IR788 sIPN nanoparticles were, core-stabil ized 

polymeric nanoparticle loaded with quarterrylene dye s, were successfully 

prepared via self -assembly followed by sIPN formation. It  has improved 

structural  integrity and stabil ity as shown by CMT test .  Herein, we 

assessed the uptake abil i ty and effect  of LV-sIPN and IR788-sIPN NPs on 

dinoflagellate marine microalgae Akashiwo sanguinea  and Alexandrium 

pacif icum. Nanoparticles uptake by Akashiwo sanguinea was found to be 

higher compare to Alexandrium pacif icum ,  confirmed by fluorescence 

(DAPI) image after 24-hour l ight–dark condition.  

IR788-sIPN NPs is photoreactive substances that  evidence UV light 

absorption properties in NPs accumulated cells,  so UV light absorption 

was conducted with both IR788-sIPN and LV-sIPN NPs uptake algae cells. 

LV-sIPN and IR788-sIPN NPs were applied on Akashiwo sanguinea and 

exposed  for 15 min, 20 min, 30 min laser (Infrared -808) irradiation under 

1.5 W/cm2  laser power. In all  cases, algal  cell  number decreased with 

increasing laser l ight exposed t ime with no significant differences in 

results among LV-sIPN and control  conditions . Compare to LV-sIPN 

nanoparticle IR788-sIPN nanoparticle had effectively higher impact on 

Akashiwo sanguinea  cell  at  different laser irradiation t ime , later on this,  

IR788-sIPN NP uptake Akashiwo sanguinea  cells were exposed  for 10 min,  
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30 min, 45 min, 60 min  laser (Infrared-808) irradiation under 1.0  W/cm2  

and 0.5 W/cm2  laser power separately.  In all  cases, algal  cell  number  

decreased with increasing laser l ight  exposed t ime gradually.  IR788 dye is  

an infrared dye which generate heat when i t exposes l ight or laser l ight,  

due to this IR788 dye from IR788-sIPN nanoparticle  increased heat inside 

and on the outer layer of the cell  resulted cell blast .  We observed evidence 

of increased algal  toxicity of IR788 -sIPN nanoparticles under laser l ight 

irradiation .  In addit ion, we observed that  algal  toxicity could be solely 

due to the IR788 dye from IR788-sIPN nanoparticle.  IR788-sIPN 

nanoparticle  can be used for red tide algal  elimination further.  

As a new kind of material ,  nanomaterials have been widely used in various 

fields even though there exists a certain degree of threat  to the safety of 

aquatic organisms. Studies on the toxicity of NPs on algae can not  only 

explore the toxic mechanism of NPs on algae, but  also provide a  

theoretical  basis for the safety assessment of biolog ical  toxicity of 

nanomaterials.  However, the exposure dose of NPs in the natural 

environment is usually low, and exposure t ime can be  much longer It  is  

not clear how the environmental  factors would influence the transmission 

of NPs in the food chain. Therefore, it  is  necessary to establish a more 

comprehensive aquatic biological  system, including primary producers and 

consumers at  different trophic levels,  to investigate the transmission and 

biological  effects of NPs along the food chain. For this purpose, great  

efforts have been made in this area and more work will  be conducted in 

future. 
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