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Sangshin Park 
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Abstract 

 

Optical wireless communication (OWC) has been considered as a complementary 

or alternative technologies to radio frequency (RF) communications. OWC employs 

visible light emitted by light-emitting-diode (LED) or laser-diode (LD) to carry 

information which is known as visible light communication (VLC). Optical camera 

communication (OCC), a subsystem of OWC, uses LEDs as the transmitter and a 

camera or image sensor as a receiver. OCC can provide high signal-to-noise ratio 

(SNR) and noninterference communication even in outdoor environments. 

 This thesis investigates a deep learning (DL) framework for designing OCC 

systems where a receiver is realized with optical cameras capturing images of 

transmit LEDs. The optimum decoding strategy is formulated as the maximum a 

posterior (MAP) estimation with a given received image. Due to the absence of 

analytical OCC channel models, it is challenging to derive the closed-form MAP 

detector. To address this issue, we employ a convolutional neural network (CNN) 

model at the OCC receiver. The proposed CNN approximates the optimum MAP 

detector that determines the most probable data symbols by observing an image of 

the OCC transmitter implemented by dot LED matrices. The supervised learning 

philosophy is adopted to train the CNN with labeled images. We collect training 
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samples in real-measurement scenarios including heterogeneous background noise 

and distance setups. As a consequent, the proposed CNN-based OCC receiver can 

be applied to arbitrary OCC scenarios without any channel state information. The 

effectiveness of our model is examined in the real-world OCC setup with Raspberry 

Pi cameras. The experimental results demonstrate that the proposed CNN 

architecture performs better than other DL models. 
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Ⅰ. Introduction 

Optical wireless communication (OWC) is a form of optical 

communication in which unguided infrared (IR), visible (VL) and ultraviolet 

(UV) bands to carry a signal. It is commonly used in short-range 

communication. With its powerful features such as low cost and high 

bandwidth, OWC can be a powerful alternative in contrast to existing wireless 

technologies. The emerging OWC has become popular in visible light 

communication (VLC) and free space optics (FSO). The use of OWC in 

mobile communication especially employed in 5G system which serves 

higher data rates.  

VLC, a form of OWC using visible optical carrier produced by light 

emitting diode (LED) or laser diode (LD) has become a promising candidate 

for next generation wireless communication due to its advantages of long life 

expectancy and low power consumption. VLC system operates in the visible 

band (390-750nm). VLC takes advantage of light emitting diodes (LEDs) 

which can be pulsed at very high speeds without noticeable effect on human 

eye. VLC can be possibly used in a wide range of applications including 

wireless local area networks. On the other hand, terrestrial point-to-point 

OWC systems, also known as the FSO systems, operate at the near IR 

frequencies (750-1600 nm). These system typically use laser transmitters and 
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offer a cost-effective protocol. There has been growing interest on UV 

communication as a result of recent progress in solid state optical sources 

operating within solar blind UV spectrum (200-280nm). Such designs are 

particularly useful for outdoor line-of-sight (LOS) configurations to support 

low-power UV.  

Optical camera communication (OCC) aims to deliver data from the 

light sources to the camera. OCC is different from VLC and Light Fidelity 

(Li-Fi) because various types of receivers are being used. With regard to the 

OCC, it is important to note that OCC-based systems are mainly targeted for 

a low-rate transmission, due to the reception-sampling rate, which is 

determined by the camera frame rate. Similar to VLC, OCC predominantly 

relies on the directional LOS transmission mode. In addition, OCC 

conveniently offers a MIMO capability by extracting the data from captured 

multiple light sources. Therefore, OCC can be considered as a subset of VLC.  

VLC has been regarded as a promising solution to expensive radio 

frequency (RF) bandwidths. Visible light frequency bands can secure wide 

bandwidth in comparison to conventional RF communications without any 

authorization, thereby providing the cost-effective high data rate services [1]. 

The performance of the VLC can be further improved by employing optical 
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cameras at receivers [2], [3] where transmitted information is detected based 

on received images. This OCC system successfully distinguishes multiple 

lighting sources in the pixel domain, facilitating spatial multiplexing 

strategies via an array of transmit LEDs.  

The optimum OCC decoding policy requires a novel signal 

processing strategy handling two-dimensional received images. The OCC 

channels, i.e., the propagation environments from transmit LEDs to receive 

cameras, have not been adequately studied in the literature. There have been 

several efforts on the analytical OCC channel models [4], [5], but they are 

typically confined to ideal scenarios in the absence of background noise and 

linear channel transfer functions. These are obviously far from practical 

realizations of the OCC systems suffering from various interruptions incurred 

by nonlinearity of LED and cameras, LED-camera misalignments, and  

ambient light interference. The lack of the exact channel state information 

(CSI) poses fundamental challenges in developing the maximum a posterior 

(MAP) detector for the OCC systems. For this reason, existing studies rely on 

simple image processing mechanisms [3] or additional LEDs [6]. These can 

only be suitable for stationary cases where both transmitter and receiver are 

fixed. To cope with time-varying OCC scenarios such as vehicular networks 

[3], it is essential to estimate CSI periodically. A recent work [1] has 
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investigated pilot-aided channel training techniques in the OCC system. 

Conventional multiple antenna communication strategies in the RF band are 

employed in designing the OCC receiver. The experimental results validate 

the feasibility of the CSI-assisted OCC detection rules. However, it still 

requires periodic channel estimation processes in each coherence time, 

thereby resulting in prohibitive overheads in time-varying scenarios such as 

mobile receivers. 

To tackle these difficulties, this paper develops a deep learning (DL) based 

OCC receiver that is robust to possible system impairment such as 

background noise, unknown CSI, and arbitrary distant scenarios. A data-

driven optimization property of DL techniques are exploited to train 

unavailable OCC MAP detector. Recent progresses [7], [8] have verified the 

feasibility of the DL in optimizing VLC transceivers. These are, however, still 

limited to artificially generated training samples. It is still an open problem to 

check the viability of the DL techniques in real-world OCC receiver 

optimization tasks. 

 This thesis presents a convolutional neural network (CNN) approach to 

identify the MAP detection rule without any CSI knowledge. To this end, 

training data samples are carefully measured in practical OCC setups with 

various patterns of background noise and heterogeneous distant setups. The 
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structure of the proposed CNN is carefully optimized such that the average 

bit error rate (BER) performance is minimized. The demonstration of the 

trained CNN receiver is carried out by Jetson Nano embedded boards with 

GPU installed. The experimental results demonstrate that the proposed CNN 

can successfully decodes the transmitted bitstreams conveyed by square dot 

LED matrix. 
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Ⅱ. Data Generation 

As illustrated in Fig. 1, our experimental setup includes a dot LED 

matrix (MAX7219) controlled by Arduino Uno and a receiver realized by 

NVIDIA Jetson Nano and Raspberry Pi camera v2. As an initial study, we 

consider an ideal scenario where the transmitter and receiver are perfectly 

synchronized. This setup is exploited for the data collection and 

demonstration of trained OCC receiver. The training of the OCC receiver 

is performed on a PC with an Intel i9-10900KF CPU, 32 GB of RAM, and 

RTX 3080 GPU.  

 

 

Fig. 1. Experimental environment. 
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2.1. Transmitter 

The OCC transmitter is implanted by an 8-by-8 dot LED matrix shown in 

Fig. 2. On-off keying (OOK) modulation scheme is employed where the 

information bits are encoded by on-off patterns of multiple LEDs. A group of 

LEDs, in particular, neighboring 4-by-4 LED submatrix, conveys a single bit 

jointly. This results in the data rate of 4 bits per channel use. However, due to 

the data-driven optimization property of the DL techniques, the proposed 

approach can be readily extended to arbitrary number of the data rate. For the 

rest of this paper, it is assumed that total 𝑁  bits are transmitted for each 

channel use. 

 

 

 

Fig. 2. Transmit LED matrix and OOK modulation strategy. 
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2.2. Receiver 

For implementing CNN-based image processing, the receiver is realized 

by Jetson Nano boards having multi-core GPU. It is equipped with a single 

Raspberry Pi camera capturing images of the transmit LED matrix. The 

resulting images are resized into 28-by-28 size, and then are processed by the 

proposed CNN-based OCC receiver. The performance of DL models highly 

depends on training samples. To reflect practical OCC systems, we collect 

numerous instances of received images in various environments. Several 

examples are shown in Fig. 3. Training samples are collected at eleven 

different configurations according to the distance between transmitter and 

receiver: 12 cm, 20 cm, 25 cm, 30 cm, 35 cm, 40 cm, 50 cm, 70 cm, 100 cm, 

130 cm, and 160 cm. At each setup, 16,000 images are collected, resulting in 

total 176,000 samples. All training data is labeled by its ground-truth 

bitstreams. Various OCC channel impairment features are included in the 

dataset. In particular, the transmit LED matrix is randomly rotated in a certain 

location (Fig. 3(a)) so that the proposed DL receiver can capture the effect of 

arbitrary misalignment between the transmitter and receiver. Also, numerous 

patterns of the background images are included as shown in Fig. 3(b) to 

develop the robust OCC receiver. Besides, the location of the transmitter 

randomly changes in each sample (Fig. 3(c)). These channel impairments can 
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identify the optimum detection rule that is robust to arbitrary OCC scenarios 

without exact CSI knowledge. 

 

(a) Samples with random misalignment angles (12cm) 

 

(b) Samples with random background patterns (70cm) 

 

(c) Samples with randomly located LEDs (160cm) 

 

Fig. 3. Sample images of training dataset. 
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Ⅲ. Proposed CNN-based OCC Receiver 

 

The received RGB image is represented by a matrix 𝐘 ∈ ℝ28×28×3 

where the last dimension stands for RGB color domain. Let 𝐱 =

(𝑥1, ⋯ , 𝑥𝑁)𝑇 ∈ {0,1}𝑁 be a set of 𝑁 transmitted bits. These are encoded 

by the OOK modulation illustrated in Fig. 2 and are conveyed jointly. 

Then, the received image through nonlinear OCC channel transfer 

function ℎ(⋅), which includes any interruptions from the transmit LEDs 

to the received image, can be written by 

𝐘 =  ℎ(𝐱). (1) 

The optimum MAP receiver over such a OCC channel requires the 

exact and analytical formula of ℎ(⋅), which is, in general, not available. 

To handle this difficult, we identify the robust OCC receiver that does not 

need any CSI knowledge. With practical bit interleaving operations, the 

transmitted bits 𝑥1, ⋯ , 𝑥𝑁 becomes independent. Therefore, a posterior 

probability of the received image 𝐘 can be expressed by  

 𝑝(𝐱|𝐘) = 𝑝(𝑥1|𝐘) × ⋯ × 𝑝(𝑥𝑁|𝐘). (2) 

Here, each marginal a posterior 𝑝(𝑥𝑛|𝐘) is computed as 

 𝑝(𝑥𝑛|𝐘) = 𝔼ℎ[𝑝(𝑥𝑛|𝐘, ℎ)], (3) 

where 𝔼𝑋[⋅] stands for the expectation operation over a random variable  
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𝑋. It is not difficult to determine  𝑝(𝑥𝑛|𝐘) when the OCC channel mapping 

ℎ(⋅) and its distribution of are available. However, accurate channel models 

are typically not available in the OCC system due to the nonlinearity of LED 

and camera as well as the highly stochastic nature of image noise. 

Consequently, there is no analytical formula for a posterior 𝑝(𝑥𝑛|𝐘). To 

address this issue, we approximate the computation of a posterior by using 

CNN. It has been stated in the universal approximation theorem [9] that any 

continuous-valued functions can be successfully modeled by finite-layer 

neural networks with arbitrary small approximation error. Since a posterior 

(2) can be viewed as continuous-valued mapping of the received image, this 

can also be accurately modeled by carefully constructed deep neural networks.  

 Among various candidates, we choose the CNN architecture which has 

been known to be powerful for handling image dataset. Let 𝐩 = ℱ𝜃(𝐘) be a 

CNN with a trainable parameter set 𝜃. It produces 𝑁-dimensional a posterior 

probability vector 𝐩 = [𝑝(𝑥1 = 1|𝐘), ⋯ , 𝑝(𝑥𝑁 = 1| 𝐘)]𝑇 ∈ ℝ𝑁 , i.e., each 

element of the CNN output represents the marginal probability 𝑝(𝑥𝑛 = 1|𝐘) 

in (3). This can be regarded as discriminative models for binary classification 

tasks [10]. To yield a feasible marginal probability vector, the sigmoid 

function 𝜎(𝑧) = 1/(1 + e−𝑧) is employed as the output activation function 

of the CNN, whereas the rectified linear unit (ReLU) activation ReLU(𝑧) =
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max {0, 𝑧} is adopted at hidden layers. As a result, the prediction of the CNN 

for each transmitted bit 𝑥𝑛 is written by 𝑝(𝑥𝑛 = 1|𝐘) = [ℱ𝜃(𝐘)]𝑛, where 

[𝐳]𝑛 stands for the 𝑛-th element of a vector 𝐳. 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Proposed CNN structure. 
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Fig. 4 depicts the proposed CNN architecture consisting of several 

convolutional layers followed by fully-connected (FC) layers. As 

mentioned, the input to the CNN is a resized image of size 28 × 28 × 3 

having RGB color channels. The first convolutional layer handles the input 

image with 16 kernels of size 3 × 3 × 3. The stride is set to 2. This results 

in a latent feature of size 26 × 26 × 16. The ReLU activation is applied to 

all hidden layers. At the second convolution layer, we use 32 kernels of 

size 3 × 3 × 16, resulting in feature outputs of size 24 × 24 × 32. The 

subsequent pooling layer performs down-sampling operation by taking the 

maximum value within 2 × 2 window. The third convolution layer consists 

of 64 3 × 3 × 32 kernels.  After the second max-pooling operation, the 

resultant output becomes a 3D tensor of size 5 × 5 × 64, which is fed to 

two FC layers. As discussed, the output activation is set to the sigmoid 

function to yield probability vector 𝐩 . The final decision for each 

transmitted bit can be obtained by the argmax operation. 

The maximum likelihood (ML) estimate is adopted to optimize the 

CNN parameter set 𝜃 . With some manipulation, the negative log-

likelihood of 𝜃, denoted by 𝐿(𝜃), is expressed by  

 

 



14 

 

𝐿(𝜃) = 𝔼(𝐱,𝐘) [∑ 𝑙(𝑥𝑛, [ℱ𝜃(𝐘)]𝑛)

𝑁

𝑛=1

], 
 

(4) 

where the binary cross-entropy function is defined as 

𝑙(𝑥𝑛, [ℱ𝜃(𝐘)]𝑛) = −𝑥𝑛 log[ℱ𝜃(𝐘)]𝑛 − (1 − 𝑥𝑛) log(1 − [ℱ𝜃(𝐘)]𝑛). 

In (4), the expectation is taken over all instances of (𝐱, 𝐘) including the 

stochastic OCC channel (1). The function 𝐿(𝜃) is exploited as a training 

loss of the proposed CNN. To minimize the loss function, we adopt the 

gradient-based training algorithm which iteratively updates the trainable 

parameter 𝜃 based on the gradient descent (GD) method as  

 𝜃 ← 𝜃− 𝜂∇𝐿 (𝜃), (5) 

where η > 0 is the learning rate and ∇ denotes the gradient operator. For 

ease of implementation, the expectation term in (4) can be approximated 

by the sample mean over a training dataset 𝒯 = {(𝐱(𝑖), 𝐘(𝑖))|𝑖 = 1, ⋯ , 𝑇} 

consisting of 𝑇 samples of received images 𝐘(𝑖) and their corresponding 

labels, i.e., the transmitted bitstream 𝐱(𝑖). Consequently, the mini-batch 

stochastic GD (SGD) updates of (5) can be written by  

 

𝜃 ← 𝜃− 𝜂
1

𝑆
∑ ∑ ∇𝑙(𝑥𝑛, [ℱ𝜃(𝐘)]𝑛)

𝑁

𝑛=1(𝐱,𝐘)∈𝒮

, 
 

(6) 

where 𝒮 ⊂ 𝒯 with |𝒮| = 𝑆 accounts for a mini-batch set with randomly 

chosen 𝑆 training samples. 
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Ⅳ. Simulation Results 

 

This section assesses the performance of the proposed DL-based VLC 

systems. Among total 16,000 samples, 5280 and 5280 images are used for the 

training and validation, respectively, whereas the final evaluation of the 

trained CNN is conducted on the remaining 5440 test samples. The Adam 

optimizer [11] is adopted as the training algorithm. The batch normalization 

technique [12] is applied to all hidden layers. 

The performance of DL models highly depends on choices of hyper- 

parameters, e.g., learning rate, network structure, and batch size. To validate 

the proposed CNN model, Fig. 5. shows the convergence behavior of the 

CNN training step for various learning rate values. In particular, we evaluate 

the validation BER performance with respect to the training epochs. It has 

been known that a large learning rate 𝜂  leads to the fast convergence 

behavior, but at the same time, may incur a poor convergent point with 

unsatisfactory performance such as the saddle point and local minima. On the 

contrary, the training step requires intensive computations for a small 𝜂 as it 

results in the slow convergence. Therefore, an appropriate learning rate 

should be carefully chosen based on the convergence behavior. From the 

figure, we can see that a large learning rate, e.g., 𝜂 = 0.01 exhibits an to get 
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inefficient convergent point, whereas the result with  𝜂 = 0.0001  suffer 

from the slow convergence speed. We thus choose an intermediate value 

𝜂 = 0.001  that achieves a good tradeoff between the validation BER 

performance and the learning speed.  

 

 

 

 

 

 

Fig. 5. Convergence behavior for various learning rate values. 
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Next, we examine the impact of the number of convolutional kernels in 

Fig. 6. Here, 𝐾  represents for the number of kernels in the third 

convolutional layer. Based on Fig. 6, the performance of BER is generally 

better as 𝐾 increases due to the increase of the expressive power of the CNN. 

However, employing a number of convolutional kernels requires high 

computational complexity in real-time decoding steps. Therefore, for 

designing practical OCC receivers with reasonable computing units, we need 

to choose a moderate 𝐾. We can see that the CNN with 𝐾 = 64 achieves 

almost identical performance to that with 𝐾 = 512 . For this reason, the 

proposed CNN is constructed with 64 kernels at the third convolutional layer. 

 

 

Fig. 6. Convergence behavior for various kernel configurations. 



18 

Fig. 7 illustrates the validation BER for various CNN configurations 

with the different number of convolutional layers 𝐶. Increasing 𝐶 leads to a 

deepen structure with a higher model complexity, possibly posing the over-

fitting problem. On the contrary, it would be insufficient to process received 

images with shallow CNNs, i.e., the case of a small 𝐶. Such an under-fitting 

and over-fitting tradeoff can be observed from the figure. The validation BER 

first increases as 𝐶  grows and achieves the best performance at 𝐶 = 3 . 

However, the validation BER decreases after 𝐶 = 3 due to the over-fitting 

issue. Therefore, an efficient choice is given by 𝐶 = 3.  

 

 

 

Fig. 7. Convergence behavior for various layer setups. 
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The impact of the batch size 𝑆 to the BER performance is presented in 

Table Ⅰ. It is shown that the validation BER performance is gradually 

improved as the batch size increases. We thus choose 𝑆 = 128, which is the 

maximum allowable value for our training environment. 

 

 

 

 

 

Table 1. Impact of batch size 

 

Batch size Validation BER 

16 6.16e-05 

32 5.21e-05 

64 3.79e-05 

128 2.36e-05 
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Finally, Fig. 8 provides the BER performance evaluated over the test 

dataset by varying the distance between the transmitter and the receiver. As 

benchmark, we also plot the test BER performance of a fully-connected 

neural network (FNN) which only consists of five FC layers. For fair 

comparison, the number of trainable variables of the FNN is carefully set to 

similar with that of the proposed CNN model. Vectorized images become 

inputs of the FNN. The output dimensions of each layer are set to 32, 64, 128, 

256, and 4, respectively. Both the CNN and FNN are trained with samples 

measured at all simulated distance setups, and their test BER is examined at 

a specific distance configuration. From the figure, we can observe that the 

proposed CNN outperforms the FNN baseline at all simulated distance setups. 

The test BER performance of both schemes generally increases as the 

communication distance gets larger. This is because the decoding of distant 

LED matrices is typically more difficult. Nevertheless, the proposed CNN 

exhibits the BER performance around 10-4 regardless of the distance, which 

is the practical BER value in real-world OCC systems. It is worth noting that 

the proposed CNN method does not require any optical channel statistics both 

in the training and implementation stages. As a result, the detection rule of 

the proposed DL-based OCC receiver is independent of the communication 

environment. Thus, we can conclude that this result validates the feasibility 
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of the proposed CNN detector in practical OCC systems. 

 

 

 

 

 

 

 

 

Fig. 8. Test BER performance with respect to distance. 
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Ⅴ. Conclusion 

 

This thesis investigates a DL approach for optimizing OCC receivers 

which robust to impairment of optical channels. To this end, a CNN is 

constructed which infers transmitted data bits from received images 

capturing dot LED matrices. Training data samples are carefully collected 

such that the CNN can learn statistical properties of arbitrary channel 

corruptions including random distance, background, and misalignment. A 

supervised training algorithm is presented which optimizes the CNN to 

mimic the optimal MAP detector without the CSI. The effectiveness of the 

proposed CNN-based OCC receiver is examined real-world experimental 

environments. It is revealed that the DL techniques can infer arbitrary 

optical channel impairments in a data-driven manner and achieves 

practical ranges of BER performance. It would be interesting future work 

to reduce the real-time computational complexity of DL-enabled OCC 

receivers. A possible solution is to design a light-weight CNN based on 

the knowledge distillation technique [13]. 
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