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Autonomous Navigation of Mobile Robot in Dynamic Environments 

Based on Laser Range Finder Sensor  

Nguyen Van Phuc 

Graduate School 

Department of Mechatronics Engineering 

Pukyong National University 

Abstract 

 

Autonomous navigation of a mobile robot in dynamic environments is a 

fundamental requirement for effective autonomous navigation and widely 

used in large fields of industrial application. The past few years have been 

tremendous growth in the research areas of autonomous navigation of a 

mobile robotics. Navigation encompasses the ability of the robot to act based 

on its knowledge and sensor values so that it could reach its goal position as 

efficiently and reliably as possible. Navigation involves mapping, 

localization and predict motion planning while colliding avoidance for 

mobile robots. The mapping is the process whereby a robot can extract 

relevant information from its environment allowing it to remember it. 

Localization is the problem of estimating a robot’s pose relative to a map of 

its environment. Localization and mapping is based on data collected from a 

robot using a dense range scanner to generate a bi dimensional map 

representation of the surrounding environment. This externally sensed range 

data is correlated to estimate the robot’s position and build a map. Path 
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planning for a mobile robot is to find a collision free route, through the 

robot’s environment with obstacles, from a specified start location to a 

desired goal destination while satisfying certain optimization criteria. 

This thesis focuses on the problem of enabling mobile robots to build 

world models of their environment and to employ as a reference to self-

localization and path planning. The robot usually needs a representation of 

the environment and the capacity to interpret that representation to be able to 

plan a path towards some target location and to move safely in an 

environment where there may be variations in the position of the robots. The 

system builds bi dimensional maps of the environment that surrounds the 

robot, through data collected from the laser range finder sensor and also the 

estimated position of the robot. This research is geared towards implementing 

Local Registration/ Global Correlation (LRGC) algorithm for reliable 

reconstruction of consistent global maps from scanning laser data. The 

localization is carried out through stored environment maps by using scan 

matching method. The path planning task uses a focused D* (FD) search to 

compute the shortest and safest path from the present robot position to any 

reachable point in the given robot environment map. Once the main path is 

planned, a local segment of the path to plan around any unmapped obstacles 

it sees with its range sensors is recomputed. The dynamic window method is 

used to compute the translational and rotational velocities necessary to follow 

the path as closely as possible. 

Experiments using data collected from a SICK LMS-200 laser range 

finder illustrate the effectiveness of the algorithms and improvements over 

previous work. All the algorithms are implemented and verified using a 

Pioneer 3DX mobile robot equipped with the laser range finder. Experimental 

results for both the simulation and real world environment show that the 

method improves the accuracy of localization and mapping. 
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레이저 센서를 기반으로 하는 동적 환경에서의 이동로봇의 자율 주행 

Nguyen Van Phuc 

부경대학교 일반대학원 메카트로닉스공학과 

요 약 

 

동적 환경하에서의 이동로봇의 자율 주행은 많은 산업분야에서 이

용되는 효과적인 자율주행을 위해서 근본적으로 필요한 요구사항이다. 

과거 몇 년동안 이동로봇의 자율주행에 관한 많은 연구가 있어왔다. 주

행은  로봇이 자신의 지식과 센서정보를 바탕으로 가능한 한 효율적이고 신뢰

성있게 목표위치에 도달할 수 있는 능력을 포함한다. 주행은 매핑, 위치추정를 

포함하고  충돌회피를 하면서 동작설계를 가능하여야 한다. 매핑은 환경으로

부터 추출한 정보를 환경과 연관되게 하여 기억할 수 있도록 하는 과정이다.  

위치추정은 로봇의 위치와 자세를 지도상에서 추정하는 문제이다. 위치추정

과 매핑은 로봇이 스캐나 센서를 이용하여 표현한 주위환경의 양방향 지도를 

근거로 한다. 이러한 외부 데이터들은 로봇의 위치를 추정하는데 연관을 시키

고 지도를 구축한다. 이동 로봇의 경로계획은 지정된 시작위치에서 원하는 목

표지점까지 주어진 최적화 기준을 만족시키면서 장매물과 충돌하지 않는 경

로를 찾아내는 것이다. 
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본 논문은 로봇이 주위 환경의 모델을 구축하고 이것을 위치 추정과 경로

계획의 기준으로 사용하는 문제에 중점을 두고 있다. 로봇은 환경의 표현과 이

것을 해석하여 원하는 위치로 안전하게 이동할 수 있는 능력을 필요로 한다. 

레이저 센서로 획득한 데이터데 로봇의 추정 위치를 기반으로 하여 로봇의 주

위환경에 대한 양방향  지도를 구축한다. 본 연구는 레이저 스캐닝 데이터로부

터 전역 지도를 일관되고 신뢰성 있게 구축하는 지역등록/전역연관 (LRGC)  

알고리듬을 채용하고 있다. 위치 추정은 스캔 매칭 방법(scan matching method) 

에 의해  저장된 환경 지도를 통해 이루어 진다. 경로계획은 FD 방법을 이용하

여 구축된 지도에서 현 위치에서 목표위치까지의 안전한 최단경로를 찾는다. 

일단 주경로가 계획되면 장애물이 있는 주위의 경로는 센서를 이용하여 재계

산한다. 가능한 한 경로를 잘 추종하기 위한 전위속도와 회전속도를 도출하기 

위해 동적윈도방법(dynamic window method)을 사용한다. 

SICK LMS-200 레이저를 이용한 실험은 이전의 결과들에 비해 효율성과 

개선된 점을 보여준다.모든 알고리즘들은 레이저 센서가 장착된 파이오니아

사 3DX 모바일로봇으로 실험하였다. 시뮬레이션과 실제환경에서의 실험 결과

는 제시된 방법이 위치추정과 매핑에서 정확성을 향상시켰음을 보여준다.  
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1. INTRODUCTION 

Recently, developments in the residential application of mobile robot are 

envisioned to fulfil various kinds of tasks. In the last few years there has been 

a substantial progress in the field of service robots. A variety of mobile 

robots that are designed to operate in environments populated by humans has 

already been developed. These robots, for example, have been deployed in 

auto space exploration, underwater exploration, hospital, office building, 

autonomous production in factories, and department stores. Existing robotics 

systems are already able to perform various services such as delivery, 

surgeon, cleaning, education, robot-cop or entertainment. Figure 1.1 depicts 

four examples of existing robotic systems. The upper left image shows a 

Japanese cleaning robot which is designed to clean large surfaces, for 

example on the roads or airports. The robot in the upper right image has been 

developed within the tour guide robot [45]. The lower left image shows 

entertainment robot [46] and the lower right image depicts one of the NASA 

auto space exploration robots.  

 

(a) 

 

(b) 
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(c) 
 

(d) 

Fig. 1. Table of figures entries found. Various types of service robots. (a) 

Cleaning robot (b) Tour guide robot (c) Darwin-Op entertainment robot, and 

(d) The Mars exploration Rovers. 

 

This research addresses the development for mobile robot path planning, 

localization and mapping based on the data collected from the laser range 

finder sensor. Laser range scanners have been used for many years for map 

building, localization, path planning, and obstacle detection and collision 

avoidance. Laser scanners operate by sweeping a laser across a scene and at 

each angle, measuring the range and returned the nearest distance from 

obstacles to the robot in range of scanning. In this research we focused on the 

range returned from the laser, since the range laser ranging demands fast and 

provide direct information useful for mapping. I demonstrate how a laser 

range alone can be used to detect and track objects in the environment. At 

long ranges and grazing angles, vertical objects reflect significantly more 

laser energy than the horizontal road. The object detection system uses a high 

performance laser scanner which provides fast single-line laser scans. Data 

analysis on the returned angle and optimal distance signal is used to select 
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objects candidates. After candidates are matched and merged with candidates 

from previous scans, the range to each object is estimated by a novel 

intensity and position tracking method. Finally, the positions of all objects 

are updated based on vehicle motion before the next laser scan is acquired. 

The research field of localization and path planning for mobile robot was 

launched over several years ago. The researchers tried to solve the 

localization and map building problem for mobile robot in unstructured 

environments to create the bi dimensional maps and also estimated the 

robot’s location [6], [7], [8], [9]. Over the past decades, a large of the 

algorithm was explored and applied to the navigation and mapping for 

mobile robots in a real world environment. [10], [5], [12], [13], [14]. The 

study of navigation and mapping for autonomous robotics can be viewed as 

the state estimation problem, which simultaneous predicts the mobile robot 

posture and environmental characteristics of the location; it has important 

theoretical and practical value. This paper describes a navigation system 

which unites three important capabilities. It enables a mobile robot to avoid 

obstacles, map-building the environment and plan local paths around or 

complex obstacles while navigating. 

In order to be able to localize itself in an environment, the autonomous 

agent needs a representation or map of the environment. The robot should 

obtain a map by its own since obtaining maps from CAD models or 

measuring them by humans can be time consuming and inaccurate. In the 

literature, the mobile robot mapping is usually referred to as the simultaneous 

localization and mapping problem (SLAM) [1], [5]. Since mapping includes 

both, estimating the position of the robot relative to the map and generating a 

map using the data collected from the sensor and also estimate the location of 

the robot. Most of technique developed so far has been designed for 
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situations in which the environment is static during the map building process. 

Moving obstacles, however, can lead to serious errors in the resulting maps 

such as spurious objects or misalignments due to localization errors. Map 

building prefers to reconstruct the position and shape of objects and obstacles 

in the unknown environment where the robot is moving. We consider the 

problem of creating maps with mobile robots in dynamic environments. We 

present a scan matching approach that generates the map based on the laser 

data scanned; it then also detects lines in the corrected laser data. 

The localization with respect to an internal map play an important role 

since the robot that cannot position itself accurately is at risk from obstacles 

or dangerous areas that are in the map but which cannot be easily sensed. 

There are a number of works that addressed the localization using pose 

information [2], [3]. These works update the position of the vehicle based on 

the determination of the transformation between the pose of the robot and the 

laser measurements. The laser has also been used to determine natural 

features in indoor environments. In [4] a comparison of the behavioral 

monocular, Trinocular and laser in localization applications is presented. At 

the same time the robots should perform the navigation tasks in a minimum 

amount of time. Thus, sophisticated path planning techniques are needed to 

fulfil these requirements. 

The existing methods for solving the problem of motion planning for 

robot systems are decoupled, which means that they first plan paths for the 

individual robots independently. Afterward, they check if the robots would 

get too close to each other if the paths were executed. In such a case the paths 

are recomputed to avoid these conflicts. Many decoupled methods assign 

priorities to the individual robots. These priorities define an order in which 

the paths of the robots have to be recomputed. By computing the path of a 
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robot, the paths of the robots with higher priority are considered as fixed. 

This way, the size of the search space is extremely reduced. Most of the 

existing prioritized decoupled methods use a fixed priority scheme.  

In the path planning segment of this thesis we present an approach which 

determining a path that fulfills a specified direction represented by 

integrating of focused D* search algorithm and dynamic window local 

obstacle avoidance of moving objects. The moving obstacles are modelled as 

moving cells on the occupancy grid map and their motion is predicted by 

applying a procedure similar to dynamic window approach. The collision 

points of the robot and moving cells predicted trajectories from the new 

fictive obstacles in the environment, which should be avoided. 

During the search, we utilize constraints between global path and local 

reactive obstacle avoidance algorithms and integrated into a single motion 

control module in order to compute the shortest and safest path from the 

present robot pose to any reachable point in the dynamics and unknown 

environments. 

The remainder of this thesis is organized as follows: In the following 

Section is a presentation on solving the problem of map building for the robot. 

We present our approach to generate the environment that surround the robot 

based on the robot’s path and matching the laser scan algorithm. After this 

we focus on localization environments and described in Section 3 how to 

updating the pose of the robot in an environment based on sensor reading. In 

Section 4 we demonstrate how a mobile robot can plan the path and collision 

avoidance in the partially unknown environment. The simulation and 

experimental results are given in Section 5. Finally, the conclusions are 

summarized in Section 6. 
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2.  MAP BUILDING  

In order to perform tasks in an environment for a mobile robot, first, it 

must be able to answer the question: “Where am I?” When this question is 

posed with respect to a known previously existing map of the environment, 

the problem is commonly referred to as Localization. Simultaneous 

Localization and Mapping (SLAM) answers the question in a more general 

case: where the robot has no map to begin with and must construct a map at 

the same time as performing Localization.  

There are many different kinds of map building used for localization, are 

able to deal with noise in the odometry and noise in the sensor data, based on 

the form of sensor information and the representational requirements of 

localization. Traditionally, SLAM solutions involve estimating the positions 

of landmarks in the environment as well as the robot’s position based on 

measurements from robot-mounted sensors and odometry estimates. 

Numerous solutions to this problem have been considered such as scan 

matching for alignment [15], the Extended Kalman Filter (EKF) [16, 17], 

FastSLAM or Rao-Blackwellized Particle Filters (PF) [18, 19] and others to 

form the now very mature SLAM field. 

However, if the objects appear or travel through the sensor range of the 

robot during mapping, the resulting map will contain evidence about an 

object at the corresponding location. Moreover, if the robot returns to this 

location and scans area a second time, position estimate will be less accurate. 

The reduced accuracy of the resulting maps may have a negative influence on 

the overall performance of the robot, since it can obstruct the execution of 

typical navigation tasks such as localization and path planning. Maps can be 

based on topological or metric information, or a combination of the two. 

Metric maps can be further refined by whether they use features or rely on 
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dense surface information that does not distinguish the features. The dense 

sensor methods [20, 21, 22] attempt to use whatever sensor information is 

available to generate a map and they recreate a geometric representation of 

the surfaces in the environment. When localization the robot on the map, 

dense sensor matching can take the merit of whatever surface features are 

present, without having to explicating decides what constitutes a landmark.  

Our emphasis is on reliability, efficient techniques that can be used to 

create maps as the robot moves in a new environment. We concentrate on 

metrically precise maps that are derived from dense range readings-scanning 

laser range finder system. Using a recently proposed new method in global 

mobile robot localization, this thesis develops a Local Registration/ Global 

Correlation (LRGC) mapping algorithm [20] for reliable construction of 

consistent global maps from scanning laser data without relying on features 

proprietor interactions. LRGC uses scan matching (local registration), map 

correlation (global correlation) and consistent pose estimation for creating 

accurate maps in real time.  

In this section, we present a Local Registration and Global Correlation 

(LRGC) method for determining consistent global pose estimation. This 

method based directly on the algorithm of the consistent pose estimation of 

Lu and Millios and used on two techniques to efficiently adding new 

information to current maps, and determining topological correct relations 

between the poses. 

Consider the case where a consistent map has already been created, and a 

new pose pn is added as Fig. 2. This new pose will have a connection to the 

previous pose based on odometry, and to several of the previous poses based 

on overlapping scan and the resultant scan matches. These relationships are 

highlighted in Fig. 2 by the bold arcs between poses. As long as the robot is 



8 

 

 

forging ahead and exploring new areas, these arcs all clusters into local 

neighborhoods that are well-connected, with no long-distance relationship. 

 

Fig. 2. Add a new pose of an unexplored environment to the map. 

 

Local registration works well if the robot constantly explores new areas. 

As it completes a large cycle, however, the problem of topological 

correctness becomes important, because new poses must be related to the old 

ones. At this point, it is critical to make topological identifications reliably, 

because a mistake can cause the map to be badly misaligned. In general, 

single scans do not have enough information to yield good false positive 

rejection, especially if the environment is relatively uniform in one direction, 

as happens often along corridors. Instead, we integrate a set of local scans 

into a map patch, and use this more extended template to find matches on the 

old map. 

The map patch technique is obviously more reliable than single scans in 

rejecting false positives, but it leaves open the question of how to efficiently 

perform matching, since single-scan techniques are no longer applicable. 

Fortunately, one author has recently investigated correlation concepts for 

matching map patches in the context of localization [23]. The resulting 

techniques have been shown to be both efficient and reliable, and we make 

use of them here to determine topological correctness in map-building with 
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cycles. Correlation operates in a “background” mode, checking for matches 

against the old map whenever the robot moves to an appropriate location, and 

adds in links between the new map and the old whenever appropriate. 

The Local Registration and Global Correlation algorithm are based on 

three different techniques: scan matching, consistent pose estimation, and 

map correlation. In the following section will present the techniques in detail, 

showing the modifications necessary to work under LRGC. Thereafter, the 

overall algorithm is described and illustrated how the individual components 

are assembled into a practical real-time system for the mapping of dense 

distance information.  

2.1.Scan matching 

Scan matching is the process of translating and rotating a range scan, 

which is obtained from the SICK laser range finder. The matching algorithm 

returns a position probability distribution of where to place the scan in order 

to have the range measurements correspond to map features. There might be 

more than one location where a scan fits and this is expressed by the 

probability distribution.  

It is critical that scan-matching does not overestimate the certainty of a 

pose, or else it can be difficult to find a consistent interpretation of a set of 

overlapping poses [24]. Scan matching should also produce quantitatively 

good results, e.g. straight lines in a corridor environment should be aligned 

accurately.  

First, the term of the scan will be described. 

Second, line segments and features extraction algorithms are presented, 

which operate directly on the scan data from scanning on a different position. 

Third, describe the methods are used for classifying the points of a scan 
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and filter out unwanted scan points. In this manner, e.g. Scans are smoothed, 

large amount of data can be reduced without losing information, or it may be 

only the polygonal portion of a scan are considered. 

Finally, the concept of the scan-matching method is defined and 

presented for covering different solution of two scans. 

2.1.1. Scan 

A scan is a set of measurements   , | 0... 1
T

i i im r i n    where the 

term of  ,
T

i ir are presented as a polar coordinates. 

A scan point  ,
T

i i im r  can be converted to a given recording position 

 , ,
T

l x y   in absolute Cartesian coordinates as follows: 

2

cos
( )

sin

i i i

i i i

x rx
R

y ry






    
     
    

     (2.1) 

Fig. 3. Shows a typical scan as it is taken from a commercial 180-laser 

scanner with 1 degree angular resolution and range resolution 5cm. 

  

Fig. 3. A typical scan which is detected by the laser scanner 180 ° SICK 

LMS-200. 
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The measured data of a laser scanner are characterized by a high angular 

resolution (typically <1 °) and a high accuracy in distance measurement and 

therefore laser scanner is more comprehensive, more accurate and more 

reliable than many other distance sensors such as sonar sensor. 

The measurements of a scan performed usually in a fixed number, for 

example with rising angle, this property is utilized in the following procedure. 

2.1.2. Feature extraction from scanning data 

It is always advantageous not only work directly on the individual scan 

points, but also extracts features from the scans. This section describes how 

can extract lines and corners from a scan. 

2.1.2.1.Line Extraction 

The following algorithm describes how line segments can be obtained 

from scanning points. This scan point is grouped and line segments are 

extracted from each group by using the split function. 

Algorithm 1: line-extraction(s) 

Input: Scan s 

Output: Set of line segments l 

Procedure: 

l = empty; 

start = 0; 

for i= 1 to numpoints(s) - 1 do 

p1 = n-th-scanpoints(s,i-1); 

p2 = n-th-scanpoints(s,i); 

if distance(p1,p2)  > MAX_DISTANCE then 

 l = l U split(s, start, i-1); 
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 start = i; 

end 

end 

l = l U split(s,start,numpoints(s)-1); 

return l 

 

The constant MAX DISTANCE determines the maximum distance 

between two points of successive scan for grouping. The split function 

performs the actual problem of the line extraction: 

 

Algorithm 2: split(s, start, end) 

Input: Set of scan points defined by s, start and end 

Output: Set of line segments l 

Procedure: 

l = empty; 

line = make-line(s, start, end) ; 

if numpoints(line) >= MIN-POINTS-ON-LINE then  

 if σ (line)  <  MAX-SIGMA  then  

  l := l U {line}; 

  else 

Pstart = n-th-scanpoint(s, start) ; 

pend  = n-th-scanpoint(s,end) ; 

isplit = start; d = 0; 

for i = start + 1 to end - 1 do 

 p = n-th-scanpoint(s,i) 

 if distance-to-line(p,pstart,pend) > d then 

isplit = i; 
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d = distance-to-line(p,pstart,pend) 

 end 

end 

l  = l U split (s, start, isplit) 

l  = l U split(s, isplit, end) 

 end 

end 

return l 

The split function is recursive. First, through the whole group of scan 

points a line of best fit (make-line) is created. If the generated line contains 

sufficient scan points and the standard deviation σ is not too large, the line is 

recorded in the line extension and returned. However, if the standard 

deviation is too large, but still enough points are presented, to form at least 

one line, then the set of scan points is divided at a certain point into two sub-

groups and the split function with two subgroups called recursively. Then, the 

connection of the two line extension given by the split function will be 

returned. The scanning point at the group is divided and determined by the 

point which has the maximum distance to the line through the starting and 

ending point of the group. It is determined in the for-loop. The function 

distance-to-line (p, p1, p2) supplies and increase the distance of the point P to 

the straight line, which is determined through the set of points p1 and p2. 

The constants MIN-POINTS -ON-LINE and MAX SIGMA determine the 

number lines and quality of the lines. A smaller value for MAX SIGMA 

generated more lines than a high value. Therefore, the accuracy of the lines 

for small values is better than for large ones. For the SICK Laser range finder 

LMS 200 provide MAX SIGMA values 5mm, a good compromise between 

low line number and high accuracy. 
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MIN-POINTS-ON-LINE sets the minimum number of points per line 

fixed. The smaller value is selected; the additional lines can be generated. 

However, this also increases the risk that lines are placed in wrong sensor 

data which have been generated by non-polygonal objects. The useful values 

for MIN- POINTS- ON-LINE range between 5 ~20. 

The split function calls at the beginning of make-line function. This sets a 

regression line through the given set of scan points, the split function can be 

implemented as follows: Let set (xi, yi), i = 0… n – 1 is Cartesian coordinates 

of the scan points which is determined by a straight line. The straight line 

defined by the parameters α and d, such that for all points (x, y) is on the line: 

cos sin 0x y d          (2.2) 

The straight line is created which minimizes the sum of the squares of the 

distance  

2

1

( cos sin )
n

fit i i

i

E x y d 


        (2.3) 

Then, the solutions for α and d and the associated standard deviation σ 

are calculated as [15, 21]: 

2 2

1
21

tan
2

xy

y x

S

S S
 





      (2.4) 

cos sind x y         (2.5) 

 2 2 2 2

2
2 21

4
2

xyx y y x
S S S S S

n


 
     

 
   (2.6) 

where: 

1

1 n

i

i

x x
n 

         (2.7) 

1

1 n

i

i

y y
n 

         (2.8) 
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 2

2

1

n

ix
i

S x x


         (2.9) 

 2

2

1

n

iy
i

S y y


         (2.10) 

  xy i iS x x y y         (2.11) 

  

Fig. 4. Extraction lines from a scan, links raw scan, right extracted lines 

2.1.2.2.Extraction of corners 

In a similar way as line extraction from the scan data, corners can also be 

generated from straight lines intersect together. For this purpose, the split 

function in the line extraction must only be replaced by the following 

function. 

Algorithm 3: split(s, start, end) 

Input: group of scan points is defined by s, start and end 

Output: set of edges e 

Procedure: 

e = empty; 

if (end-start) >= 2 MIN-POINTS-CORNER then 

pstart = n-th-scanpoints(s,start); 
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pend = n-th-scanpoints(s,end); 

isplit = start;  d= 0; 

for i = srtart + 1 to end -1 do 

p= n-th-scanpoints(s,i); 

if distance-to-line(p,pstart,pend) > d then 

isplit = i; d = distance-to-line (p,pstart,pend); 

end 

end 

if (isplit - start) > = MIN-POINTS-CORNER and  

(end - isplit) > =MIN-POINTS-CORNER then 

line1 = make-line(s, isplit - MIN-POINTS-CORNER, isplit) ; 

line2 = make-line(s, isplit, isplit + MIN-POINTS-CORNER) ; 

if σ(line1) < MAX-SIGMA and σ(line2) < MAX-SIGMA then  

e = e U {maks-corner (line1, line2)}; 

end 

end 

e = e U split(s, start, isplit); 

e = e U split(s, isplit, end); 

end 

return e 

First, the function examines whether sufficient scan points for the 

extraction of a corner. Then, search the line extraction from the scan point. If 

the straight lines through the start and end point of the group of points have 

the maximum distance. At this point, each line is a subset of MIN-POINTS-

CORNER scan points before and after this point and formed if sufficient scan 

points are in two in two subgroups, each straight line is defined by these 

points. Finally, if the standard deviations of both lines are not too large, a 
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corner is generated using the make-corner function. Make-corner intersection 

determined the position and angle of the two lines. The parameters MAX 

SIGMA and MIN-POINTS-CORNER determine how number the line 

extraction and quality of the extracted corners.  

2.1.3.  Median Filter 

For a number of existing scan processing algorithm, it is advantageous to 

edit the previously scanning with different filters, for example, to remove 

unwanted scan points, or to reduce the amount of data. In this section, 

median filter techniques are presented, which is used for smoothing the 

individual measurements. 

The median filter is capable to detect outliers in one scan, and to be 

replaced by an appropriate measurement. The median filter is applied for 

each scan point. A window is placed around the scan point. The scan point is 

then replaced by a new scanning point which has the same recording angle, 

but to remove the scan point increases the median of the distance values in 

the observed window. 

The following algorithm implements the median filter: 

Algorithm 4: median-filter(s) 

Input: scan s 

Output: scan s’ 

Procedure: 

 for i = 0 to numpoints(s) - 1 do  

  p = n-th-scanpoint(s,i); 

   for j = 0 to MEDIAN-NUM-POINTS - 1 do 

  k=(i+j-MEDIAN-NUM-POINTS/2)mod numpoints(s)  

  pk = n-th-scanpoint(s, k); 
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   d(j) = distance-value(pk) ; 

  end 

  dmedian = median{d}; 

  n-th-scanpoint(s',i) = (angle-value(p), dmedian); 

  end 

  return s' 

The parameter MEDIAN-NUM-POINTS determines the window size at 

which the median filter operates as well. A larger value indicates a strong 

smoothing of the scan, i.e. there are no more long distance fluctuations. A 

low value allows large variations in the distance, but at the same time be less 

outliers detected. In practice, we chose the value of MEDIAN-NUM-

POINTS = 5. 

The advantages of the median filter are in the removal of outliers and in 

the reduction of sensor noise and it shapes corners are rounded. The median 

filter often used to remove noise. Such noise reduction is a typical pre-

processing step to improve the results of the later processing such as object 

recognition, segmentation, and feature extraction etc. Here the median filter 

is applied in order to obtain smoother contours.  

2.1.4. Scan matching 

In this section, scan matching techniques are presented. The methods 

procedures a scan match with another one. The problem is specified in more 

detail in the following. There are several different solution methods for Scan 

matching that have been developed and applied in the past. The Cox 

algorithm, which has been covered a scan match with a line model and 

extended for the matching of scans. The iterative dual correspondence (IDC) 



19 

 

 

algorithm matching scans directly to other scan. The combination of these 

two methods allows improving advantage and avoiding disadvantage of them. 

Given two scan s and t. Scan s is denoted as a current scan and t is a 

reference scan. The receiving position of t defines the coordinate system of t. 

Now search for mapping match: l p , which position l in the coordinate 

system of it upon the maps probabilities [0,1]p  that indicate how well scan 

s and t match if s is replaced and rotated position  l. 

Thus, scan matching is a sub-problem matching in a multidimensional 

space. Through the determination a probability distribution, the scan poses 

can be expressed ambiguities, e.g. it may be that there are several positions 

where match the scans. 

Most of scans matching method simplify the property issue; two 

assumptions are described in the following: 

 Gaussian distribution: The distribution function, which is defined by 

match, can be approximated by Gaussian function. This has the 

consequence that only the first two moments (mean and variance) 

must be determined. However, no more arbitrary distributions are 

modeled, which is especially detrimental when several hypotheses 

exist. 

 Locality Assumption: It is believed that the approximate position of 

the recording, s is in the coordinate system of t (by odometry) and 

only a local adjustment is necessary. This enables use of local search 

method, which often also has a closed-form solution.  

These two scan matching assumptions can also be defined as a function 

of the scan - match which depicts two scans match on a Gaussian function 

with mean match  and covariance match matrix. 

 ( , ) ,match matchscan match s t        (2.12) 



20 

 

 

T

match x y           (2.13) 
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xy y ymatch
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



  

  

  
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 
 
 
 
 

       (2.14) 

The vector 
T

x y  
   indicates the position to be replaced, and rotated 

the scan s in the coordinate system of t so that a maximum overlap of the 

scan is generated. The miss match component match  is a measure of the 

accuracy of the calculated match. Thus the calculated probability function is 

a normal distribution, which is derived from the calculated mean and error 

covariance matrix: 

 ~ ,
T T

matchx y N x y             (2.15) 

2.1.4.1. Extended Cox algorithm 

A process for matching a scan line with a model was developed by Cox 

[27]. Points of the current scan are matched against a prior model consisting 

of line segments and calculated a position correction. 

First, the original method of Cox is presented. Thereafter, we described 

the extension algorithm which is usable for performing the pairs of scan 

matching. 

2.1.4.1.1. Cox algorithm 

The Cox algorithm is the original procedure for matching a scan line with 

a priori line model. Each scan point will be assigned to a line of the priori 

model. Then the displacement and rotation of the scan over the line model 

can be determined from this assignment. This method requires an 
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approximate initial estimate of the receiving position is obtained from 

odometry. 

The process can be divided into the following steps: 

1. Set
T T

x yx y s s s       . Where, 
T

x ys s s    is the initial 

position estimate of the scan recording, which is provided by 

odometry. 

2. Translate and rotate the scan position
T

x y  
   

3. Determine the model line for each scan point that is nearest to the 

point. This model line will be referred to below as the target line. 

4. Compute the transformation  
T

b x y     , which minimizes 

the sum of the distance between the scanning points, and squares of 

the target line, respectively. 

5. Set  
T T T

x y x y x y             . 

6. Repeat step 2-5 until the procedure converge. The result of the 

overlap is 
T

x y  
   

7. Calculate error covariance match  

Determining the target line 

In determining the goal line for a scan point, the line is selected that has 

the smallest distance (Euclidean) from the set of scan points. If this distance 

exceeds a predetermined maximum distance dmax, there is no correlation. In 

this case, the scan point treated as an outlier and removed for further steps. 

Determining the transformation 

The calculation of the transformation in Step 4 is constructed as a trans 

function which rotates the scanning at an angle  and translates with a 
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vector  
T

t x y    . However, the rotation is always around the position 

T

s x yl s s     of scan recording, the function trans emulates a scan point 

T

i ix iyp p p    as follows: 

cos( ) sin( )
( , )( ) ( )

sin( ) cos( )
i i s strans t p p l l t

 


 

   
      

  
 (2.16) 

Under the assumption that the rotation angle   is small, the trans 

function can be approximated as: 

1
( , )( ) ( )

1
i i s strans t p p l l t






 
      

 
  (2.17) 

At each scan point, the target line is given by the parameter 

T

i ix iyu u u    and ir  is all the points z on the line so that T

i iz u r . For 

simplicity, we assume that the line is infinitely distance (in the determination 

of the target line in step 1 but assumed the finite line segments), the squared 

distance of a scan point ip  to the target line can be calculated as follows: 

  
2

2 ( , )( )
T

i i idist trans t p u r        (2.18) 

Substituting equation (2.17) into (2.18) we obtained: 

2

2
1

( )
1

T

i s s i idist p l l t u r




    
            

  (2.19) 

2

2
0 1

( )
1 0

T

i s i i idist t p l p u r
    
            

   

      
2

( ) ( )iy y ix ix ix x iy iy ix p s p u y p s p u r             

   
2

1 2 3, ,i i i ix x x b y       (2.20) 
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where: 

1i ixx u         (2.21) 

2i iyx u         (2.22) 

3 ( ) ( )i iy y ix ix x iyx p s u p s u          (2.23) 

3 ( ) ( )i iy y ix ix x iyx p s u p s u          (2.24) 

( , , )Tb x y            (2.25) 

Then, the sum of squares distance fitE between scan points and target line 

for n scan points ...i np p  is given by: 

  
2

1 2 3

1

( ) , , ( ) ( )
n

T

fit i i i i

i

E b x x x b y Xb Y Xb Y


       (2.26) 

where: 

11 12 13

1 1 1n n n

x x x

X

x x x

 
 

  
 
 

      (2.27) 
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 
 

  
 
 

        (2.28) 

The function fitE must be minimized and the associated transformation b is 

determined. Differentiates Efit according to b and sets the resulting 

expression equal to zero: 

( )
0

fitE b

b





       (2.29) 

2 ( ) 0TX Xb Y         (2.30) 

T TX Xb X Y        (2.31) 

1( )T Tb X X X Y        (2.32) 
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The vector b is exactly the desired transformation in step 4 

Convergence and error covariance 

Steps 2-5 of the Cox algorithm is repeated until converges the algorithm. 

For convergence, we consider the calculated transformation vector b  and 

checks if it is small enough. This requires two conditions as follows: 

2 2

distx y          (2.33) 

          (2.34) 

The values of dist ex and   depend on the laser scanner and must be 

chosen appropriately. For commercially available laser scanners provide 

values from 1mm - 10mm for e dist  and 0.5°~ 1.0 ° for  to achieve good 

results. 

In addition, Cox method can use the result vector 
T

x y  
   in order to 

calculate the error covariance matrix match which indicates the accuracy of 

the estimated transformation. This is calculated as [27] 

11
( ) ( )( )

4

T T

match Y Xb Y Xb X X
n

   


   (2.35) 

2.1.4.1.2. Extension of the Cox algorithm 

An obvious extension of the Cox algorithm by using a pair of overlap 

scans extracted from the reference scan lines and used them as a priori model 

for Cox algorithm. 

Fig. 5. Shows the structure of the extended Cox algorithm. The Cox 

algorithm forwarded as a priori model from the reference scan line and a line 

model obtained. The current scan is preprocessed with line filter before 

applying to the Cox algorithm as well. In this way, model lines are minimized 
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wrong overlap of scan points. As a result is obtained by mean and covariance 

matrix of the scan overlap error also an error value, which indicates the 

quality of the computed overlap. This value is calculated as the median of all 

distances assignments of scan points to model lines according to overlap, a 

high error value is so bad overlap since the distances of scan points to model 

lines are large, a low value indicates a good matching. 

 

Fig. 5. Scheme of extended Cox algorithm 

 

To reduce a number of incorrect matching, the Cox algorithm has been 

extended by two heuristics. First, the current scan is filtered through a line 

filter, that is, scan points that are not on a line segment are removed. This 

reduces the amount of false point to line segment assignments in situations 

where the environment is not totally polygon. Second, a hard coded threshold 

of dmax is used to remove assignments that have a larger distance than dmax. 

2.1.4.2.IDC Algorithm  

IDC algorithm is an effective method for matching pair of scans, which 

do not reply on a geometric interpretation of the two scans, was developed by 

Lu and Milios [15, 21, 28]. In particular, the algorithm requires no features in 

the scan data. Thus, this method is suitable in many environments.  
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2.1.4.2.1. General approach 

The general concept of IDC algorithm scans points of the current scan 

matched with the reference scan points. In this case, this matching is similar 

to the Cox algorithm, a minimize sum of error and the displacement and 

rotation of the scans can be determined. For matching the set of scan points, 

two heuristic function is used: closest-point rule and matching-range rule. 

2.1.4.2.2. Closest-point rule 

For each scan point of the current scan determines the point in the 

reference scan which the scanning point is closest. There is interpolated 

between the scanning points of the reference scan. It connects the scan point 

with short line segments, therefore a partner must be not exactly a scanning 

point of the reference scan, but a point on the line may be connected with two 

adjacent nodes of scanning points. 

The algorithm is very simple to determine the match partners of scan 

point p with the current scan. Consider two successive scan points p1 and p2 

of the reference scan and calculate the distance from p to the line segment 

(p1, p2). The line segment with the smallest distance will contain this point, 

under the assumption, the scanning is only rotated a little, and the search area 

can be significantly reduced by the closest point. In addition, only scan point 

pi of the reference scans are considered, their angle with respect to the initial 

position of the current scan in an area around the angle of p. Mathematically, 

this means that the absolute value of the angle between the straight lines 

 ,  psl  and  ,  ps il  must be less than an angular tolerance ω where sl  is the 

receiving position of the current scan. For implementation, it is advantageous 

if the scan points of the reference scan are existed with ascending receiving 
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angle (with respect to 
sl ), since the use of this property allows the efficient 

implementation of the search range limitation. 

2.1.4.2.3. Matching-range rule 

The second heuristic is assigned to each scan point of the current scan 

with the point in the reference scan, which has the same distance with the 

location point sl . There is a re-interpolated between the scanning point and 

the reference scans. If no point is found, this means that these points have the 

same distance. So that, points are chosen which distance is closer to the 

desired distance. 

The algorithm to determine the match partner for a scan point p of the 

current scan is designed similar to the closest- point rule. Here are only 

examined points ip  of reference scans, which lie in the angular interval 

described above. In this way can also be avoided completely incorrect 

matching. The determination of the match partner is presented as follows: 

Algorithm 6: find-matching-point (p,pi) 

Input: scan point p; scan points pi , {1,..., }i n  

Output: point p’ 

Procedure: 

 d = distane(p,ls); 

 d’= ∞ ;  'pp
d   ; 

 for i = 1 to n -1 do 

  d1=  distance(pi,ls); 

  d2 = distance(pi+1,ls); 

  if (d1 < d and d2 < d) or (d1 > d and d2 > d) then 

   if | d1 – d| < | d2 – d| then 
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    dh  = |d1 - d|; ph = pi 

   else 

    dh  = |d2- d|; ph = pi+1; 

   end 

  else 

   ph = interpolate( pi, pi+1,d) 

    if d’ > 0 or distance (p,ph) < dpp’ then 

     d’ = 0; 

     dpp’ = distance(p,ph); 

     p’ = ph; 

    end 

   end 

 end 

return p’  

The algorithm examines all n-1 pairs of successive scan points in the 

maximum limit angular interval, for each pairs, the distance d1 and d2 of the 

position point is computed. If both distances are smaller or larger than the 

desired distance d, this pairs of distance cannot find the correspond point. If 

still not found better pint, in this case, the point p1 and pi+1 chooses as a 

temporary match partner which distance is closer to the desired distance. If 

the distances of the two points scanning, however, by the way that values less 

than and the other is greater than the desired value, the interpolate function 

can be interpolated between point p1 and pi+1 which has exactly desired 

distance. There may have several pairs (pi, pi+1) including the distance 

distribution. In this case, there is ambiguous correspondence. 
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2.1.4.2.4. Determination of the rotation and displacement 

Once set of pairs correspondence (pi,pi’), i= 1…n have been determined 

by one of the among rules described above, hence, the rotation and 

translation can be calculated by minimizing a sum of squares of the distance. 

The points pi of the current scan is also rotated and translated with   and

 
T

t x y    , respectively. Return to the receiving position of the scans ls. 

Now, the sum of the square distance between the rotation and translation 

points pi and pi’ are constructed. 

' 2

2

1

( , ) | ( )( ) |
n

fit i s s i

i

E t R p l l t p 


      
   

(2.36) 

This function only needs to be minimized. The right side parameters t  

and   are calculate directly to [28]  
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(2.41) 

It was found that the closest-point rule is particularly suitable for 

determining the displacement and the matching-range-point rule is well 

suited for determining the rotation. Therefore, both methods were combined 

and designed for the IDC- algorithm. 
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2.1.4.2.5. IDC algorithm 

The IDC algorithm can be formulated as follows: 

1. Set
T T

x yx y s s s       . Here 
T

x ys s s   is the initial 

estimate of the receiving position of the current scan which is given 

by odometry. 

2. Translation and rotation current scan position
T

x y  
   

3. For each scan point p, determine the correspondence '

ip  towards the 

closest-point rule and apply the matching-range-point rule to 

determine a correspondence  point ''

iP .  

4. Compute the solution 1 1 1( , , )Tx y    from the minimum sum of 

square distance between the set of correspondence pairs '( , )i ip p . 

5. Compute the solution 2 2 2( , , )Tx y    from the minimum the sum of 

square distance between the set of correspondence pairs "( , )i ip p . 

6. Set  1 1 2

T T T
x y x y x y              

7. Repeat step 2-6 until the algorithm converges. The result of the 

overlap is 
T

x y  
   

8. Compute error covariance match  

The IDC –Algorithm is to take the translation component from the 

closest-point rule solution and the rotation component from the matching-

range-rule solution to form the current solution for transformation. 

2.1.4.2.6. Error covariance 

The error covariance matrix match is calculated from the correspondence 
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pairs '( , )i ip p , i = 1 … n as follows [28]: 

2 1( )T

match s M M  
      

(2.42) 

where: 
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1( )T TD M M M Z       (2.48) 

Because of the simultaneous application of both heuristics, there are two 

sets of correspondence pairs. It is not much difference exist between two sets 

of correspondence pairs. Therefore, any of these two quantity correspondence 

are used for calculating the error covariance matrix. 

2.1.4.2.7. Extended IDC algorithm 

An obvious optimization of the IDC- Algorithm is to edit the both 

previously scans with median filter. In this way, the number of scan points is 

greatly reduced without losing essential information. Furthermore, as Cox 
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algorithm, an error value is determined error which is calculated as the 

median distance of scan point assignments for overlapping. This value is 

smaller when two scans are good overlap, and large when the overlap is weak. 

Fig. 6. Shows the schematic structure of the extended IDC algorithm 

 

Fig. 6. Schematic structure of the extended IDC algorithm 

2.1.4.3.Combined scan matching algorithm 

In the previous section, both scans matching algorithms are presented. 

These techniques are appropriate for exploiting polygonal structures where 

the overlaps are determined for all variability, given accurate results and 

compared with neither algorithm in order to provide significantly better 

results. The Cox method requires a lower complexity and runtime as the IDC 

algorithm. In non-polygonal environment the IDC algorithm yields better 

results than the Cox algorithm. However, the IDC method in a polygonal 

environment does not reduce all variance, for example, a neighborhood with 

a long corridor, extremely optimistic. 

Therefore, the combination of the Cox algorithm which developed for 

polygonal environments with the IDC method which works well even in non-

polygonal environments are constructed, call combine scan matching method 

Fig. 7. Shows the schematic structure of this combined scan-matching 

method, the core of the process is a decision logic, which investigates to 

overlapping scans and then uses one of two methods Cox Scan-Matching or 

Reference 

scan 

Current 

scan 

IDC 

Method 

Filter 

Filter 

( , , )x y 

match

error 



33 

 

 

IDC Scan-Matching in order to calculate overlap. For the decision logic of 

the two scans each line segments are extracted, and the percentage of the line 

segments calculated in the total extent of the scans. If there are enough scan 

points lying on line segments then the extended Cox algorithm is used. 

Otherwise, the extended IDC is used. 

Checking lines 

in scans

Scan Matching

Line Extraction

Line Extraction
Current 

scan

Reference 

scan

Use 

Extended 

Cox

Use 

Extended 

IDC
( , , )x y 

match

error

NoYes

Fig. 7. Schematic of the combined scan matching method 

2.2.Consistent position estimate 

Lu and Milios following a different approach to the creation of the map 

extracted from sensor data. They consider the full pose set p, and try to 

global optimize p based on how well neighboring sensor scans match but it 

can be directly processed the raw data of a laser scanner. There is no explicit 

estimation of the map m; instead, the scans themselves are an explicit 

representation of the map surfaces. The whole process is called consistent 

pose estimation, since it finds a set of posed that minimizes the total error of 

the system. Error terms come from robot motion, and also overlapping scans: 

the better the scans match, the lower the error. The advantage here is that the 

method can be used in any environment and not any features that must be 

presented in the environment requires. The approach uses a combination of 
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relational-based and position-based representations, relations between 

positions obtained by odometry information and scan matching, while the 

positions are even free variables and are determined by solving an 

optimization problem. 

The knowledge acquired during odometry and scan matching relations 

between positions a network is created that consists of positions as nodes and 

relationships as links. In general, the relationships in this network are 

inconsistent or contradictory, since relationships are not independent 

variables and are subject to errors. The task now is to determine all positions 

so that the inconsistencies are resolved as far as possible, i.e. be minimal. 

This is achieved sum of error, which contains all the positions as free 

variables and each relationship is transformed into an expression that can be 

regarded as a spring between two positions. A spring has minimum energy 

when the parties’ positions correspond exactly to the relationship. The sum of 

error then calculates the total energy in the network, and the positions are 

determined so that this energy is minimized. 

2.2.1. Definition of the estimation problem 

The estimation problem is considered as the following generic optimal 

estimation problem. Assume that a network with uncertain measurement

n 1   nodes 0 1, ,..., nX X X , each node iX  represents a d-dimensional position 

vector. A link ijD  between two nodes iX  and jX  represents a measurable 

difference of the two positions. Generally, ijD is a function of iX  and jX , 

which may be non-linear.  

We model an observation of ijD  as ij ij ijD D D  , where ijD is a 

random Gaussian-distributed error with zero mean and known covariance 
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matrix ijC . The goal now is to determine the best estimate of all positions 

given a set of measurements ijD and covariance ijC . In addition, the 

covariance matrices of the estimated position vectors are determined based 

on the covariance matrices of the measurements.  

The optimality criterion is the minimum variance (or maximum 

likelihood). The node Xi is determined in such a way that the conditional 

probability of the derived ijD , given their observations ijD , is maximized. 

Assuming that all the observational error and Gaussian distributed 

independently, the optimality criterion is equivalent to minimizing the 

following Mahalanobis distance: 

   1

( , )

T

ij ij ij ij ij

i j

W D D C D D  
     

(2.49) 

where W is the sum of all measurement overflows. In this case, a pair of 

nodes ijD is no observation, the inverse of the associated covariance matrix is 

set to zero, 
1 0ijC  . 

By the linearity assumption, the measurement equation can be rewritten 

as the following formulas: 

   1

( , )

T

i j ij ij i j ij

i j

W X X D C X X D    
   

(2.50) 

Since only relative information is used in the function W, a position can 

be freely selected. Without loss of generality, 0 0X  and 1,..., nX X positions 

are relative to 0X . 

Noted that the measurement equations in matrix form as 

D HX         (2.51) 

where X is an nd-dimensional vector consisting of the concatenation of

1,..., nX X , D is the concatenation of all the positional differences of the form 
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ij i jD X X  and H is an incidence matrix which all entries being 1, -1 or 0. 

Then the function W is formulated in follows matrix form: 

   1T

W D HX C D HX  
     

(2.52) 

Here D  is the concatenation of all observations and C is the covariance 

matrix of D  which is a square matrix consists of ijC as sub-matrices. 

The solution for X which minimizes W is given by 

 
1

1 1T TX H C H H C D


 
     

(2.53) 

and the covariance of X as 

 
1

1T

XC H C H



       

(2.54) 

If the measurement errors are independent, C will be block-diagonal 

matrix and the solution can be simplified. Let G is nd x nd matrix 1TH C H . 

The dxd sub-matrices of G may be determined by 

1

ij ijG C 
        

(2.55) 

1

0

n

ii ij

j

G C




       

(2.56) 

In addition, let B is the nd-dimensional vector 1TH C D , the d-

dimensional sub-vectors of B can be determined by 

1

0; #

n

i ij ij

j j i

B C D



 
       

(2.57) 

Then the position estimate X and covariance matrix XC  are obtained: 

1X G B         (2.58) 

1

XC G
        

(2.59) 

Above equation requires 1TG H C H is invertible matrix. Lu and Milios 

suggest that it is possible to prove the inevitability of G, where the network is 
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fully connected and the individual error covariance are normally behaving. 

2.2.2. Application for the mapping 

A typical application of this optimal estimation is in mobile robot 

navigation, to estimate the robot position  , ,
T

i i ix y   with position 

uncertainties i  at different time i. The observations are relative to position 

information which determined from scan matching. Then the method can 

record positions that are determined from data taken during travel distance 

and entries the data into a global coordinate system, a consistent environment 

map is created.  

In this application, the measurement equation ijD  is non-linear because 

of the angle   component in the robot pose. Lu and Milios [15], however, 

show how the linearized measurement equation in this case and the 

optimization method can be applied. Since the linearization errors occur 

which is proportional to the initial position estimate, the method is applied 

iteratively. In practice four or five iterations are sufficient to converge on the 

result precision. 

The time complexity of the consistent position estimate for a record of n 

scan consists of the time for the development of the network and to determine 

the optimum positions. For the assembly of each pair of scanning must be a 

check whether there is enough overlap exists, and, if necessary, a scan 

overlap is performed.  

This method requires a good initial estimate of the scan pose in order to 

generate useful results. Therefore, it is used for two different purposes:  

1. In order to create local maps patches of the previous few scans the 

robot obtained. In this case the scan pose are always topological 
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correct data, since very little odometrical error has been accumulated. 

Even though if the larger odometry errors, use of scan matching and 

local registration can often recover the correct geometry.  

2. For closing a loop after topological relationships are obtained from the 

map correlation. In this case, consistent pose estimate is first run with 

the new links added to the map and then, after closing the loop leading 

to a topological correct map, return with new scan matches between 

the newly linked poses for fine-tuning the map. 

A typical network topology is shown in Figure 2.4. If a new pose ln is 

added to the chain, so only the last K scan pose for updating the map is used. 

Several properties of this incremental update should be obtained. First, the 

computation complexity at each step is constant since the number of modes is 

limited. In particular, the computational cost is independent of the map size, 

since the overlap of the individual scans is very efficient; the whole 

procedure is very quick. 

1.3 Map Correlation  

Map correlation is the main reason for matching a patch that integrates 

several scans and also for providing post match filters to reject false positives. 

To determine the relationship between poses that close a loop, a recent 

portion of the maps around the current pose created from the robot compared 

with the previous parts of the pre-generated map. Where there is a good 

match, it is likely that the new pose is topologically connected to one of the 

older poses. 

In the current method of the LRGC algorithm, once a topological 

connection is made, it is not possible inserted or removed it, since the closing 

of a loop all poses are updated and no history are maintained. For this reason, 
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any such connection needs to be very certain before it is made. This is the 

main reason for matching a patch that integrates several scans and also for 

providing post match filters to reject false positives.  

A further constraint on map matching is that it must be efficient. The 

correlation [23] procedure has provided a fast and precise matching. The 

justification for correlation technique lies in a Bayesian analysis of the match 

probability. For slightly given new map patch r and previous map m, the 

posterior probability is sought that the robot is at pose l. From the Bayes’ rule, 

the posterior probability can be obtained as  

( / , ) . ( / , ) ( , )p l r m k p r l m p l m      (2.60) 

Here gives the response function ( / , )p l r m  is the probability that we 

would see the map patch r from the robot pose l, given the old map m. As 

shown in [23], the sensor model can be approximated by a correlation 

operator. A regular grid is imposed on the map area, and for each cell i, the 

occupancy probability  ( )ip r  of the map patch impinging on the cell is 

calculated and ( )ip m  of the previous map impinging on the cell i. The 

correlation operator is: 

( , ) ( ) ( )i i

i

corr r m p r p m      (2.61) 

In practice it is convenient to put all the uncertainty into the map 

probability ( )ip m , simplifying the above sum and leads to an optimized 

implementation (for details, see [23]). 

In general, the probability should sum to less than one over the match 

area, that is, the robot’s current map patch doesn’t overlap with the old map. 

In order to estimate how the patch map doesn’t match, the correlated 

response will be normalized, and then use filters to reject false positives if 

there is unsatisfied match. 
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1.4 LRGC algorithm 

Fig. 8. Shows the basic scheme used for updating the map when a new 

scan is received from the laser range finder. A map is represented here as an 

undirected graph, where nodes are robot pose with associated as scans and 

links are constraints between pose obtained from scan matching or 

correlation map. The empty graph is used as the initial map. 
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Fig. 8. Data flow of the LRGC mapping algorithm 

 

When a new scan is added to the map, it is first registered with the last K 

scans to align and to improve the position estimation from the odometry. 

Then, the new scan pose is added together with its links to the current map.  

This result leads to updated map. 

Loop detection is implemented in the remaining part of the flow chart. 

Form the updated, an old map is extracted that is assumed to be topological 

correct. This is done by discarding the last m scans (with m > K) to avoid 

recent scans are available in the old map. A local path is also created from the 

newest scans and correlation with the old map. The resulting position 
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probability distribution is examined according to the filter described in the 

previous section. If the highest peak passed through the filter, it can be 

assumed that a topological relation has been found. In this case the relation is 

added to the map and consistent position estimate used to close the loop, and 

adjust the map. 

For finding topological relations, the search space is limited to an area 

around the current robot pose. This region grows with the pose uncertainty of 

the robot. The pose uncertainty is modeled with a Gaussian distribution and 

only test topological relations for pose that have a Mahalanobis distance to 

the robot pose smaller than a given threshold. Moreover, the local map size is 

adjusted linearly with the position uncertainty to compensate for possible 

ambiguities in large search spaces. Therefore, larger cycles are only closed if 

it exists a good evidence for topological relationship. Once a cycle has been 

closed, position uncertainty decreases and search space and path size fall 

back to small values automatically. 

At the end of map building, after all the scans have been integrated, the 

map can be further optimized by applying the consistent pose estimation 

overall scans poses.  
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2. LOCALIZATION  

Localization is the process of updating the pose of the robot in an 

environment based on sensor readings. The localization with respect to an 

internal map play an important role since the robot that cannot position itself 

accurately is at risk from obstacles or dangerous areas that are in the map but 

which cannot be easily sensed. 

In order to build maps, good localization is required. Currently, a majority 

of mobile robots odometric information is not accurate enough for reasonable 

localization. As the identification of the moving objects is based on previous 

maps of the same region, accuracy errors to determine the exact position of 

the robot can lead to mistakes such as considering static parts of the 

environment as moving objects. 

This section discusses a method for localization of a mobile robot. The 

assignment here is to determine the position of the robot based on a prior 

map and sensor data from the robot. 

Generally, there are two different localization problems: global- 

localization and local-localization. In the global-localization, the robot adds 

any location and the system will be given the opportunity to observe the 

environment by the robot’s sensors. Then, the system must decide what a 

possible position of the robot is by evaluating the sensor information. The 

process to make this decision is usually cumbersome and required depending 

on the size of the search space corresponding to large amount of computing 

time. 

On the other hand, the local-localization, the approximate position of the 

robot is known and it is “only” a position correction can be calculated. In this 

case, when the robot is placed at an approximately known position and then 
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continuously determines its position by comparing the sensor data with 

environment map. 

This research deals mainly with local-localization methods. Firstly, a 

well-known localization method, dead reckoning, presented which evaluates 

the odometry sensor data. This method is utilized in most robotics systems. 

Then, a method is discussed in more detail, scan matching and Kalman 

filtering, used to implement a local position determination. A sample runs in 

a dynamic environment which demonstrates the robustness of the scan 

matching methods.  

3.1 Dead Reckoning 

In the dead reckoning navigation, the position change of a vehicle is 

determined by measuring the distance traveled of one or a number of wheels. 

For this purpose, the wheels are mounted sensors that measure the rotational 

movement of the respective wheel. Additionally, a gyro may be used to 

determine the orientation of the robot reliably. 

3.1.1 Tricycle kinematics 

Fig.9. Shows a robot with three-wheel kinematics. This kinematics are 

often used in mobile robotics. For example, it comes in the Pioneer 3DX 

robots, which has been used for numerous experiments in this work. The 

following is discussed more detail in this kinematics. The results can also be 

applied to other system kinematics. 

The two front wheels on Pioneer 3DX robot are the drive wheels and 

equipped with sensors to determine the distance traveled. The rear wheel is a 

freely rotating and idle wheel as it is, for example, used in office chairs. 



44 

 

 

 

Fig. 9. Tricycle kinematics as used for example on the Pioneer 3DX Robot 

 

Usually, this kinematic is chosen the reference point in the center of the 

axis of the wheels with odometry sensors. This achieves a simple calculation 

of the change in position of the distance which has been completed by the 

two wheels. The traveled distance is calculated as the average of the 

distances of the two wheels and the change in orientation is proportional to 

the difference of the two values. The following describes how the current 

position can be calculated from this information. 

When vehicle is moving, at regular interval, the vehicle position is 

updated. For this purpose, the traveled distance δ and the change in the 

orientation α since the last time is measured and set off against from the 

current vehicle position. For simplicity, it is assumed that the vehicle is 

moving during this period almost rectilinear. Although this gives some error, 

this can be arbitrarily reduced by choosing a smaller time interval between 

measurements. 

The robot position ( , , )Tl x y   is updated by adding ( , )Ta   using 

the following formula: 
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     (3.1) 

One problem of the location determination is that errors occur in the 

odometry. For example, the wheels slide (wheel spin), be out of round, it can 

be wrong due to uneven ground distances can be measured or running on the 

ground, does not allow accurate measurement of the distance traveled. These 

errors are typically quite low, for example, short distances provides dead 

reckoning very accurate results. Hence, the distance error is increasing 

without boundary limit.  

Naturally, the occurring odometry error can be reduced. However, only 

the error will be reduced, but not the fundamental problem solved in that the 

position over long distances will be inaccurate. To solve this problem, further 

sensors may be included, for example distance measuring sensors, such as 

laser scanners. Nevertheless, the position error, which is generated in the 

dead reckoning, is modeled. The following will be discussed in more detail. 

3.1.2 Position error 

It is assumed that the errors of the position determination are normally 

distributed by dead reckoning, that is, measured distance and rotation are 

underlies Gaussian distribution. Furthermore, in a larger number of 

positioning systems (for example, the system based on Kalman filter) also 

modeled the robot position by a Gaussian distribution. This introduces the 

following representation. 

~ ( , )l ll N          (3.2) 

( , , )T

l x y         (3.3) 
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~ ( , )a aa N          (3.5) 

( , )T

a          (3.6) 
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a









 
   

 
       (3.7) 

At the input a, it is assumed that the distance traveled  not correlated 

with the change in the orientation , so 0  . 

The parameters of the function F are considered as a vector ( , , , , )Tx y    , 

the formulas may be used directly, mean value and covariance matrix in order 

to determine the old position of the vehicle and the input of the new vehicle 

position. 

3.2 Categories of localization methods 

Generally speaking, localization methods fall into three basic categories: 

behavior-based approaches, landmark localization and dense sensor matching. 

Behavior based approaches are based on the interaction of robot actions 

with the environment to navigate. For example, robot followed a right-hand 

rule to traverse an office environment and found its way back reversing the 

procedure. While behavior-based systems are very useful for certain tasks, 

their ability to localize a robot geometrically is limited since their navigation 

capability is implicit in their sensor and action history. 

Landmark localization is based on the recognition of landmarks to keep 

the robot localized geometry. The landmark may be given a priori or learn 

from the robot system as it explore the environment [25]. While landmark 
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localization methods can achieve impressive results in geometric localization, 

they require either engineering the environment to provide a set of adequate 

landmarks or efficient recognition features to use as landmarks. In contrast, 

dense sensor data comparative methods [8, 21] attempt to use whatever the 

sensor information is available to determine the robot position. This is 

accomplished by matching the dense sensor scans against a surface map of 

the environment, without extracting landmark features. Hence, dense sensor 

data comparative method can take advantage of any existing features in the 

sensor data without having to explicitly decide what constitutes a landmark. 

In the following, scan matching with Kalman filter which uses a Gaussian 

probability distribution is presented. 

3.3  Scan matching localization 

Scan matching localization is a process which has been successfully used 

to localize a mobile robot [15, 21, 26, 27]. Usually, Kalman filter is used to 

fuse with the pose estimate by audiometry and scan matching. 

Scan matching localization using Kalman filtering represents the 

probability distribution of the robot position by a Gaussian distribution: 

( ) ( , )l lp l N          (3.8) 

Likewise odometry errors and scan-matching correction can be modeled 

by Gaussian distributions. This has the advantage that robot positions can be 

calculated with high accuracy and an efficient fusion method can be used, 

namely, Kalman filtering. 

On the robot moves ( , )Ta   , and then the prediction step, the new 

robot position is calculated using the formulas: 
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     (3.9) 

T T

l l l l a a aF F F F            (3.10) 

From the scan matching a pose update 0  with an error covariance 

matrix 0 is obtained and the robot pose and covariance is updated using the 

formulas: 

   
1

1 1 1 1

0 0 0l l l l  


            (3.11) 

 
1

1 1

0l l


           (3.12) 

These equations show that Kalman filter based location can be efficiently 

implemented. As long as the error models are accurate, Kalman filter will 

provide a very good position estimate. 

The success of the Kalman filter depends on the ability of scan matching. 

If scan matching provides a false position estimation, the Kalman filter also 

computed incorrectly, fused estimate. In the worst case, the robot cannot 

localize or provides incorrect position values. 
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4 PATH PLANNING AND COLLISION AVOIDANCE  

4.1  Path planning 

Path planning for mobile robots consists of finding a sequence of state 

transitions that leads robot from its initial state to some desired goal state. 

Typically, the states are robot locations and the transitions represent actions 

the robot can take, each of which has an associated cost. 

Path planning in a dynamic and unknown environment is the most 

complicated case in robotic motion planning, and is also the most common 

situation that mobile robots will confront. In the real world, mobile robots 

often need not only to avoid static obstacles, but also to avoid colliding with 

the large obstacle lives. Due to the complicated and unknown environment, 

the robot cannot adopt one time global path planning for the environment. 

The global optimized is thereby difficult to be obtained. The robot has to use 

sensors acquiring the information about the surrounding environment and do 

online real-time path planning. The planning time for mobile robot should be 

short because the robot needs a sufficient time interval to adjust its 

movement in order to avoid the coming obstacle. 

Given a particular goal, a robot must be able to generate a path that it will 

follow from its current position in the environment to the specified goal. 

In the two previous sections have described how a robot can determine its 

position using a map of the environment, and how it can create this map from 

a data exploration movement. To obtain a complete navigation system in 

which the robot system operates autonomously in its environment, the system 

must also be able to path determination and motion planning. This is the 

subject of this section. 
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The robot trajectory or motion planning in the presence of moving 

obstacles are studied. The goal is to find an optimal robot trajectory 

(consisting of both path and the motion along the path) which avoids 

collision with moving obstacles. Some theatrical result about the complexity 

or trajectory planning can be found in [10,32]. Some heuristic approaches for 

planning a collision free path in the presence of moving obstacle are 

presented in [26, 29, 31]. 

The problem of path planning can be formulated as follows: a start 

position (the current position of the robot), a target position and a 

neighborhood are given. We look for a sequence of actions, for example a 

sequence of intermediate positions that the robot interference (also without 

colliding with obstacles) moving from the start to the target position. This 

problem has been studied extensively by Latombe [29]. There are many 

different approaches presented and complexity assessments determined. 

An idea of abstracting the problem of motion planning lies in the concept 

of configuration space. The concept of configuration space has been widely 

used for solving the path planning problem. The configuration space consists 

of all possible positions (location and orientation), in which the robot may be 

in its vicinity. Through this model, the robot can be modeled as a point and 

the path planning is reduced to design of a point in configuration space. 

For the movement in the plane of planning the configuration space is 

three dimensional, the robot is a cylinder and it can be rotated on the spot, 

that is, drive at any time in any direction, then the configuration space is 

reduced to 2 dimensions since the orientation of the robot is no longer 

important. In many processes, therefore, the robot is assumed to be circular 

or extended the shape of the robot to circle. In this work, this assumption can 

also be used to design a new grid space path planning method. 
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The rest of this section is organized as follows. In the former, different 

approaches to motion planning is presented as outlined in [29].  

The second, we introduce the path planning algorithm focused on 

determining a path that fulfills a specified direction represented by using the 

focused D* search algorithm. The FD* approach divides the environment 

into cells of equal size is discussed in detail and show that it is suitable for 

large environments. The robot creates a topological route map by laser scans; 

it can be scheduled on the efficient paths over long distances. For local 

planning of individual intermediate points, a FD* approach is used with a 

limited search space. This results in an efficient and robust path planning 

system that avoids obstacle dynamic reactive recognizes impassable ways 

and find alternative routes. In this method, an experiment is implemented 

with a Pioneer 3DX robot in which the system has a number of times to plan 

a new path. Finally, the method is evaluated and discusses potential problems. 

4.1.1 Approaches for path planning 

There are a variety of procedures for planning the motion of a mobile 

robot. Most of these methods classify into the following categories: 

Roadmap approach: the roadmap approach to path planning consists of 

capturing the connectivity of the robot’s free space in a network of one-

dimensional curves lying in the free space. Once a roadmap has been 

constructed, it is used as a set of standardized paths. Path planning is thus 

reduced to connecting the initial and goal configurations to the points and 

searching for a path between these points. 

Potential field approach: the idea of this approach is to make the robot 

move as particles in an artificial potential field. In this case, the potential 

field is induced by the target position, which an attracting force, and the 
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obstacles produce a repulsive potential. The negated gradient of the total 

potential is treated as an artificial force applied to the robot. The position and 

direction vector ( , )TX x y  of robot are fixed on by a composite of attractive 

force and repulsive force. 

The attractive potential field function is given by: 

21
( ) ( , )

2
att gU X kd X X       (4.1) 

Where: 

k: positive scaling factor 

X: position of the robot 

Xg: goal of the robot 

( , )g gd X X X X  : Distance from robot to goal  (4.2) 

The attractive force attF  is negative grads of the attractive potential field 

function: 

[ ( )] ( , )att att gF U X kd X X        (4.3) 

The repulsive potential field function is described by 

0 0

0

0 0

( , )1 1
0.5

( )         ( , )

( , )0

ref

d X X d

U X d X X d

d X X d


  

  
   
 

  (4.4) 

 : positive scaling factor 

0( , )d X X : the shortest distance between the robot and obstacles 

The term of constant 0d  is the distance of influence imposed by the 

obstacle; its value depends on the condition of the obstacle and the goal of 

the robot, and it usually less than half distances between the obstacles or 

shortest length from the destination to the obstacles. 

When the robot is not at the goal, the repulsive force is 



53 

 

 

0 0

0 0

0 0

( ) [ ( )]
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        ( , ) ( , )

( , )0

ref refF X U X

d X X d

d X X d d X X

d X X d



 

  
  

   
 

 (4.5) 

The resultant force is 

att refF F F         (4.6) 

F navigates the movement of the robot as illustrated in Fig.10. 

 

Fig. 10. Artificial Potential Field Method 

 

The potential field methods can be very efficient to plan paths for a robot. 

However, it also has some drawbacks. The major problem is that robots are 

often trapped into a local minimum before reaching the destination. 

Therefore, this method is combined with many other computational methods 

to improve its efficiency. 

A* algorithm finds a path as good as found by Dijkstra’s algorithm but 

does it much more efficiently using an additional heuristic to guide itself to 

the goal. Dijkstra’s algorithm uses a best first approach. It works by visiting 

modes in the graph starting from the start point and repeatedly examining the 
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closest not yet examined node until it reaches the goal. A* always first 

expands the node with the best cost calculated by ( ) ( ) ( )f n g n h n  . Where 

( )g n  represents the cost of the path from the starting point to the node n, and 

( )h n represents the heuristic estimated cost from the node n to the goal. 

Usually, for calculating the heuristic cost, the Euclidean distance is used. 

These methods have the serious disadvantage that the robot can operate in 

local minima, from which he can only get out by using additional 

mechanisms again. For this reason, this approach will not be further pursued. 

In the following, a Focused Dynamics D* (FD*) is presented for motion 

planning and described problems of this approach due to its efficient use of 

heuristics and incremental updates.  

4.1.2 FD * path planning algorithm 

In this work, the FD* [32, 33] graph search algorithm is used to find the 

global path from the current position to the goal position. The FD* algorithm 

can handle increasing or decreasing arc costs and moving start states. This 

method uses the focusing heuristic function to estimate the estimated path 

cost from the current location to the goal to help the robot to minimize its 

search space. It plans optimal traverse in real-time by incrementally repairing 

paths to the robot’s state as a new environment information is known, which 

makes it possible to greatly reduce the computational cost. When the robot 

gathers new information about the environment, it will re-plan new paths 

based on the new information and procedure a path for the robot. 

4.1.2.1 Definitions and Formulation 

The set of states denote robot location connected by directional arcs, each 

of which has an associated cost. 
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The term of G denotes the goal state from the robot starting at a particular 

state and moving across arcs (incurring the cost of traversal) to other states 

until reaching the goal state. 

Every state X except G has a backpointer to a next state Y denoted by

( )b X Y . The D* use backpointer to represent the paths to the goal. 

Arc cost function c (X, Y) is the cost of traversing an arc from state Y to 

state X. This cost is a positive number and the cost function c (X, Y) is 

undefined if Y does not have an arc to X. Therefore, two states X and Y are 

neighbors in the space if c (X, Y) is defined.  

D* use an OPEN list to propagate information about changes to the arc 

cost function and to calculate the path cost to states in the space. Every state 

X has an associated tag t (X) such that: 

            if X   OPEN list

( )         if X OPEN list

   if X OPEN list

New

t X OPEN

CLOSED




 
 

 

For each visited state X, D* maintains an estimate of the sum of the arc 

cost from an X to G given by path cost function h (X). This estimate is 

equivalent to the optimal (minimal) cost from the state X to G. 

The key function k (X) is defined to be equal to the minimum of h (X) 

before modification and all values assumed h (X). The key function classifies 

a state X on the OPEN list into one of two types: a RAISE state if 

   k X   h X , and a LOWER state if    k X h X . D* use RAISE state 

to propagate information about path cost increases and LOWER state 

propagate information about path cost reductions. The propagation takes 

place through the repeated removal of the states from the OPEN list. Each 

time a state is removed from the list, it expanded to pass cost changes to its 
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neighbors. These neighbors are in turn placed on the OPEN list to continue 

the process. 

Let 
0 1{ , ,..., }NR R R  be the sequence of states occupied by the robot when 

states were added to OPEN list, where iR is the robot’s state at the time X 

was inserted on the OPEN list and a biased value ( , )B if X R . 

The value of ( , )B if X R is given by: 

0( , ) ( , ) ( , )B i i if X R f X R d R R       (4.7) 

Where: 

The function ( , )if X R  is the estimated robot path cost given by: 

( , ) ( ) ( , )i if X R h X g X R       (4.8) 

The function 0( , )id R R  is the accrued bias given by: 

1 0 2 1 1

0

( , ) ( , ) ... ( , ) if i > 0
( , )

0 otherwise

i i

i

g R R g R R g R R i
d R R

   
 


 

         (4.9) 

The function ( , )g X Y is the focusing heuristic, representing the estimated 

path cost from Y to X. A vector of values ( , , )Bf f k  is stored with each state 

on the list. 

The parameters minf and valk are defined to be minimum values for all X 

and be its corresponding k (X) value respectively. These parameters comprise 

an important threshold for D*. By processing properly-focused f values in 

ascending order, the algorithm ensures that for all states X, if min( )f X f or 

( min( )f X f and ( ) valh X k ) then ( )h X is optimal. Let currR be the current 

state on which the search is focused, initialized to the robot’s start state. The 

parameter currd is the accrued bias from the robot’s start to its current state. 
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0 0( , ) 0currd d R R        (4.10) 

4.1.2.1 Focus D* Algorithm 

Like A*, D* operates on a cost graph. The environment with the obstacles 

is represented by a uniform grid map. The main idea of the method is 

illustrated as follows: From the initial state, the method repeatedly selects the 

neighbor with the minimum cost until propagates to the goal. Each small cell 

in the map is called a state. Each state X has the arc cost of the state X to the 

goal given by the path cost function ( )h X . From the start point (start state), 

all neighbor states of the current state are listed on the open list. From the 

open list, the method calculates the arc cost of the states by ( )h X . Then, 

select the state with the minimum ( )h X , go to this state, and new neighbors 

are added to the open list. In the dynamic uncertain environment, when the 

robot detects new obstacles or the absence of expected obstacles, the cost 

values of the states in the area change. And the adjoining states are put on the 

open list for cost correction. Encountering unexpected obstacles, D* will set 

off a “raise” wave, a wave of increasing cost, through neighboring states. 

When this wave meets with the states that are able to lower path costs, these 

“lower” states are put on the open list to recalculate new optimal paths. When 

it detects the absence of an expected obstacle, the arc of the path passing 

through this “missing” obstacle is assigned a small cost, denoting an empty 

space, and the adjoining state is put on the open list as a lower state, setting 

off a “lower” wave, a wave of decreasing cost. D* is able to determine how 

far the raise and lower waves need to propagate while providing the optimal 

path for robot traverse continuously. 

The basic D* method can use heuristic function to focus on the search in 

the direction of the robot and reduce the total number of the state (grid) 
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expansion. The focus D* method uses the focusing heuristic function to 

estimate the estimated path cost from the current location to the goal to help 

the robot to minimize its search space.  

We consider the FD* algorithm which is based on a path cost function h, 

which represents the total cost from the current node of the search to the goal 

node, and a heuristic function g, which estimates but never overestimates the 

cheapest solution for achieving the current node from the start node in the 

(x,y) grid map search space. The total cost function f g h   determines the 

order of expanding nodes in state space. The Focus D* algorithm consists 

primarily of three functions: PROCESS-STATE, MODIFY-COST, and 

MOVE-ROBOT. 

The PROCESS - STATE is used to compute optimal path costs to the goal. 

MODIFY- COST is used to change the arc cost function and enter affect 

states on the OPEN list. 

MOVE-ROBOT uses the two functions to move the robot optimally. 

Initially, t (X) is set to NEW for all states, h (G) is set to zero, and G is 

placed on the OPEN list. The first function, PROCESS-STATE, is repeatedly 

called until the robot’s state, X, is removed from the OPEN list. The robot 

then proceeds to follow the backpointers in the sequence {X} until it either 

reaches the goal or discovers an error in the arc cost function c. The second 

function, MODIFY-COST, is immediately called to correct c and place 

affected states on OPEN list. The robot’s state is updated on it discovers an 

error, a possibly new sequence states has been constructed, and the robot 

continues to follow the backpointers in the sequence toward the goal. The last 

function, MOVE-ROBOT illustrates how to use Process-State and Modify-

Cost to move the robot through the environment with the goal along the 

optimal traverse. The algorithms for these functions are presented below 
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along with three of more detailed functions for managing the OPEN list: 

INSERT, MIN-STATE, and MIN-VAL. The user provides the function 

GVAL(X,Y) which computes and returns the focusing heuristic g(X,Y). The 

embedded routines are: 

 MIN a,b returns minimum of two scalar values a and b. 

COST(X) computes ( , ) ( ) ( , )curr currf X R h X GVAL X R  and return the 

vector of values  ( , ), ( )currf X R h X  for a state X. 

DELETE(X), which deletes state X from the OPEN list and set

( )t X CLOSED . 

PUT-STATE(X) inserts X on the OPEN list according to the vector

( ( ), ( ), ( ))Bf X f X k X . 

GET-STATE returns the state on the OPEN list with minimum vector 

value. 

The INSERT function changes the value of ( )h X to newh and inserts or 

repositions X on the OPEN list. The INSERT function is described as: 

Function: INSERT(X,hnew) 

If t(X) = new then k(X) = hnew 

else 

 If t(X) = OPEN then 

   k X ( ( ), )newMIN k X h ; 

  DELETE(X); 

 else  k X ( ( ), )newMIN h X h  

( ) newh X h ; ( ) currr X R ; 

( ) ( ) ( , )currf X h X GVAL X R  ; ( ) ( )B currf X f X d   

PUT-STATE(X) 
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The function MIN-STATE returns the state on the OPEN list with 

minimum f value. In order to do this, the function retrieves the state on the 

OPEN list with lower value. If the state was placed on the OPEN list when 

the robot was at a previous location, then it is re-inserted on the OPEN list. 

This operation has the effect of correcting the state’s accrued bias using the 

robot’s current state while leaving the state’s h and k values unchanged. 

MIN-STATE continues to retrieves states from the OPEN list until it finds 

one that was placed on the OPEN list with the robot at its current state. 

Function: MIN-STATE () 

While X = GET-STATE () = -1 

if ( ) currr X R  then 

 ( )newh h X ;  ( ) k Xh X  ; DELETE(X); ( , )newINSERT X h  

else return X 

return -1 

The MIN-VAL function returns the f and k values of the state on the 

OPEN list with minimum f value, that is, min( , )valf k . 

In the function PROCESS-STATE cost changes are propagated and new 

paths are computed. The state X with lowest f value is removed from OPEN 

list. If X is LOWER state (e.i., ( ) ( )k X h X ), its path cost is optimal. Each 

neighbor state of X is examined to see if its path cost can be lowered. 

Additionally, the neighbor state receives an initial path cost value, and cost 

changes are propagated to each neighbor that has a backpointer X, regardless 

of whether the new cost is greater than or less than the old. Because these 

states are descendants of X, any change to the path cost of X affects their 

path costs as well. All neighbors that receive a new path cost are placed on 

the OPEN list, so that they will propagate the cost changes to their neighbor. 
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If X is a RAISE state, its path cost may not be optimal. Before the X 

propagate cost change to its neighbor, its optimal neighbors are examined to 

see if ( )h X can be reduced. cost changes are propagated to NEW state and 

immediate descendants in the same way as for LOWER states. If X is able to 

lower the path cost of a state that is not an immediate descendant, X is placed 

back on the OPEN list for future expansion. This action is required to avoid 

creating a closed loop in the backpointer. Thus, the update is postponed until 

the neighbor has an optimal path cost. 

Function: PROCESS-STATE 

X = MIN-STATE() 

if X = NULL then return -1 

( ( ), ( ))val f X k X ; ( ) valk X k ; ( )DELETE X ; 

if ( )valk h X then 

If ( )t Y NEW  & ( ) ( ) ( , )h X h Y c Y X   then 

( )b X Y ; ( ) ( ) ( , )h X h Y c Y X  ; 

if ( )valk h X  then 

If ( )t Y NEW || ( ( )b Y X & ( ) ( ) ( , )h Y h X c Y X  ) ||( ( )b Y X &

( ) ( ) ( , )h Y h X c Y X  ) then 

( )b Y X ; ( , ( ) ( , ))INSERT Y h X c Y X ; 

else 

if ( )t Y NEW || ( ( )b Y X & ( ) ( ) ( , )h Y h X c Y X  ) then 

( )b Y X ; ( , ( ) ( , ))INSERT Y h X c Y X ; 

else 

If ( )b Y X & ( ) ( ) ( , )h Y h X c Y X   & ( )t Y CLOSED then 

( , ( ))INSERT X h X ; 

else 
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if ( )b Y X & ( ) ( ) ( , )h Y h X c Y X   &

( )t Y CLOSED & ( ) valh Y k  then 

( , ( ))INSERT Y h Y ; 

return MIN-VAL() 

In function MODIFY-COST, the arc cost function is updated with 

changed value. Since the path cost for state Y state will change. When X is 

expanded via PROCESS-STATE, it computes a new ( ) ( ) ( , )h Y h X c Y X   

and places Y on the OPEN list. Additional state expansions propagate the 

cost to the descendants of Y. 

Function: MODIFY-COST (X,Y,cval) 

( , ) valc X Y c  

If ( )t Y CLOSED  then ( , ( ))INSERT X h X  

Return MIN-VAL () 

The function MOVE-ROBOT illustrates how to use PROCESS-STATE 

and MODIFY COST to move the robot from S through the environment to G 

along an optimal transverse. For all states, t is set to NEW, h(G) is set to zero. 

PROCESS-STATE is called repeatedly until either an initial path is computed 

to the robot’s state or it is determined that no path exists. The robot then 

proceeds to follow the backpointer until it either reaches the goal or discover 

a discrepancy between the sensor measurements of an arc cost s and stored 

arc cost c due to a detected obstacle. If the robot moved since the last time 

discrepancies were discovered, then its state R is saved as the new focal point 

and the accrued bias currd is updated. MODIFY-COST is called to correct c 

and place affected state on the OPEN list then called repeatedly to propagate 

costs and compute a new path to the goal. The robot continues to follow the 
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backpointers toward the goal. The function return GOAL-REACHED of the 

goal is found and NO-PATH if it is unreachable. 

Function: MOVE-ROBOT(S,G) 

( )t Y NEW  

0currd  ; currR S ; 

( ,0)INSERT G ; (0,0)val   

while ( )t S CLOSED & 1val    

()val PROCESS STATE   

if ( )t S NEW  then return NO-PATH 

R S  

while R G  

if ( , ) ( , )s Y X c Y X  then 

if currR R  

( , )curr curr currd d GVAL R R     

currR R  

( , , ( , ))val MODIFY COST X Y s X Y   

while val No PATH   

()val PROCESS STATE  ; ( )R b R  

return GOAL-REACHED 

FD* search fans out from the goal node, expanding neighbor nodes 

within the contours of increasing f value until the start node is reached or all 

possible obstacle free neighbors are exhausted upon which the algorithm 

declares no path is found. Initial search by FD* algorithm sets pointer from 

each state in the searched area to the next state and optimal paths to the goal 

from every state in the expanded area of the environment are computed 

simply following the pointers. Any discrepancy that is discovered from the 
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earlier sensory information about the vicinity of the robot environment 

initiates algorithm on-line execution. The new path is then determined 

redirecting the pointers locally. The number of expanded nodes is minimal 

and consequently the time of execution. 

4.2 Collision Avoidance Behavior 

To operate successfully in populated environments, mobile robots must 

be able perceive their environment and react to unforeseen circumstances and 

re-plan dynamically in order to achieve their missions. To ensure safe 

navigations, most of existing robot systems rely on reactive collision 

avoidance modules to control the robot. The predominant hypothesis of these 

approaches to collision avoidance is strictly sensor-based: Sensor readings 

are continuously analyzed to determine collision-free motion. 

In this section, we focus on the reactive avoidance of collisions with 

obstacles. The Dynamic Window Approach [31] proposed in this work is 

especially designed to deal with the constraints improved by limited 

velocities and accelerations, because it is derived directly from the motion 

dynamics of mobile robots. The DWA generates actuator command such that 

the robot does not collide with obstacles because this method considers 

periodically only a short time interval when computing the next steering 

command to avoid the enormous complexity of the general motion planning 

approach. The approximation of trajectories during such a time interval by 

circular arcs results in a 2D search space of a translational and rotational 

space. This search space is reduced to the admissible velocities allowing the 

robot to stop safely. In various tests, the DWA figured out to be reliable even 

in highly crowded areas. The advantage of the DWA over other low-level 

colliding avoidance algorithms is the low complexity even at high speeds.  
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4.2.1 Modeling of Wheeled Mobile Robot (WMR) 

 

The kinematical scheme of a mobile robot, where v is the velocity of the 

robot’s centroid. 
Lv  is the velocity of the left wheel, 

Rv  is the velocity of the 

right wheel, b is the bias of the WMR ( distance between the planes of the 

drive wheels), r is the radius of the drive wheels, (x,y) is the position of the 

robot, and the orientation of the robot is shown in Fig. 11. 

 

Fig. 11. Kinematic variables of the WMR 

 

According to the motion principle of the rigid body kinematics, the 

motion of a mobile robot can be described using equations (4.2.1.1) and 

(4.2.1.2), where L and R  are angular velocities of the left and right wheels 

respectively, and  is the angular velocity of the centroid as (4.2.1.3). 

R Rv r   , L Lv r      (4.1) 

R Lv v

b



  , 

2

R Lv v
v


      (4.12) 

Substituting equation (4.2.1.2) into (4.2.1.2) which yields 

( )R L

r

b
     , ( )

2
R L

r
v        (4.13) 
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Moreover, the dynamic function of the robots gives 

cosx v    , siny v    ,      (4.14) 

Substituting equation (4.2.1.4) in (4.2.1.3) we obtained: 

1

2
R

b
v

b r
      , 

1

2
L

b
v

b r
      (4.15) 

The kinematic equation and its inverse are given: 

( )
2

( )

R L

R L

r

v

r

b

 


 

 
  

   
   

  

      (4.16) 

1

2

1

2

R

L

b
v

b r

b
v

b r







 
  

   
   

  

      (4.17) 

 

4.2.2 General Motion equations 

 

This section describes the fundamental motion of a mobile robot. The 

derivation begins with the correct dynamic laws, assuming that the robots 

translational and rotational velocity can be controlled independently. To make 

the equations more practical, we derive an approximation that models 

velocity as a piecewise constant function in time.  

The use of a global reference frame allows the decoupling of the two 

translational axes. The equation of motion of the x- axis can be expressed as 

follows: 

0

2

( ) (0)

1
(0)

2

it

i x i x

x i x i

x t x v t a tdt

x v t a t

  

  


     (4.18) 
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Where the term of 
xa  and 

xv  are constants acceleration and velocity 

respectively. 

Similarly for y-axis: 

0

2

( ) (0)

1
(0)

2

it

i y i y

y i y i

y t y v t a tdt

y v t a t

  

  


     (4.19) 

These equations show that when accelerating from a constant velocity to 

achieve a given velocity command the robot describes a quadratic curve until 

the desired velocity is attained. The curvature of those curves depends on the 

magnitude of the acceleration. In order to achieve curves with low curvature 

the two-dimensional search space is searched for different accelerations. If 

the accelerations are chosen such that xy x ya a a  , a motion command will 

be defined as: 

( , )x yv v v        (4.20) 

( , )x ya a a        (4.21) 

To determine if a motion command is admissible the length of the 

resulting trajectory has to be determined. Simulation of the base motion 

according to the equations of motion will determine the duration time it  of 

the trajectory until hitting an obstacle. The length of the trajectory can then 

be computed analytically: 

0

2 2

0
( ) ( )

i

i

i

t

t

t

x x y y

l v dt

v a t v a t dt



   




     (4.22) 

If the length of the trajectory permits the robot come to a halt after 

moving for the duration of one servo tick, the motion command is considered 

admissible. 
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4.2.3 Dynamic Window Approaches 

 

The dynamic window approach is a velocity space local reactive 

avoidance technique where search for commands controlling the robot is 

carried out directly in the space of velocities. The dynamics window 

approach desire to collision avoidance need to following properties: 

 The robot must travel safely even with high speed. It therefore must 

take the dynamic constraints into account. 

 The robot should react adequately and rapidly to unforeseen 

circumstances. This requires fast techniques for the detection of 

obstacles and the selection of appropriate steering commands. 

 The robot should make maximum progress towards the goal. This 

implies that whenever advantageous, the robot should modify its 

travel direction to stay away from obstacles. 

This method takes into account the kinematic and dynamic constraints of 

the robot. The search space is the set of current velocity vector ( , )c cv  , where 

cv  and c  denote the translation velocity and rotational velocity respectively 

that can be reached within the next sampling interval. Among all velocity 

tuples those are selected that allow the robot to come to a stop before hitting 

an obstacle, given the current position, the current velocity, and the 

acceleration capabilities of the robot. These velocities are called the 

admissible velocities. To determine the next motion command all admissible 

velocities within the dynamic window are considered. Among those a 

velocity is chosen that maximizes the alignment of the robot with the target 

and the length of the trajectory until an obstacle is reached. Then the dynamic 

window dV  is defined as [31]: 
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( , ) | [ , ]

[ , ]

a c a c

d

a c a c

v v v v t v v t
V

t t



    

      
  

     
  (4.23) 

where the term of av  and a  represent maximal translational and rotational 

accelerations of actual. 

A velocity vector ( , )v   is considered safe if the robot is able to stop 

along the trajectory defined by ( , )v   before crashing into any object that 

may be encountered along that path. The set aV  of admissible velocities can 

be obtained as: 

 min min, 2 ( , ) 2 ( , )a b bV v d v v d v v      (4.24) 

Where 

The term min ( , )d v   denotes the distance to the nearest obstacle on the 

corresponding curvature. 

The term of bv  and b  are maximal translational and rotational 

accelerations breakage decelerations. 

Let sV  be the limitation of maximum translation and rotation velocity in 

the search space, then the result search space rV  can be described as the 

intersection of the restricted areas: 

r s a dV V V V          (4.25) 

In order to produce the search for velocities feasible and appropriate for 

fast reactive response, the dynamic window approach considers exclusively 

the first sampling interval to the collect the optimal velocity vector. The 

velocity in the remaining n-1 sampling intervals is constant. The search is 

repeated after each sampling interval and the velocities stay automatically 

constant if does not exit commands are given. 
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The velocity maximizing a certain objective function ( , )F v   is selected 

from the reduce set of velocities rV  as [31]. The object function includes a 

measure of progress towards a goal location, the forward velocity of the robot, 

and the distance to the next obstacle on the trajectory. It is expressed as 

weighted sum of the criteria target heading, clearance and velocity. 

1 2 3( , ) ( , ) ( , ) ( , )F v k head v k dist v k vel v        (4.26) 

where: 

The target heading ( , )head v   measure the alignment of the robot with 

the target direction. The function ( , ) 1 /head v      where   is the angle 

between the direction of motion and goal heading, result in large values for 

good alignment with the goal heading. The goal heading is modified if the 

robot’s lateral distance to an obstacle becomes too small. 

The function ( , )dist v   is the distance to the closest obstacle. If there is 

no obstacle existing on the curvature, this value is set to a large constant. 

The function ( , )vel v  is used to evaluate the progress of the robot on the 

corresponding trajectory. It can be defined as follows: 

( , )
       if robot is far from goal

max( , )
( , )

( , )
1    if robot is close to goal

max( , )

v

v
vel v

v

v














 
 



  (4.27) 

where max( , )v   the maximum velocity of the robot can be achieved. It 

will favor high velocities if the robot is far from the goal and low velocities 

when it is close. If the trajectory that results from the motion command 

passes through the goal region. The parameters 1k , 2k , and 3k can be adjust to 

modify the behavior of the robot. 
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5 EXPERIMENTAL RESULTS  

5.1  Simulation results 

The mapping algorithm outline in the second section has been tested in 

various environments. The results obtained in this section come from the 

mapping algorithm running on simulated world data. 

Fig.12 and Fig. 13 show the experiments have been carried out by 

running robot around the virtual environment based on MobileSim platform 

[44]. 

The proposed motion control algorithms have been implemented in Aria 

programming [31] and tested on the virtual robot is equipped with SICK that 

are used to detect dynamic obstacles and to update occupancy grid map 

information. Obstacles considered by the dynamic window were represented 

as point object. Partially known information about the state of the 

environment is given a prior. The simulation results were taken and monitor 

under MobileEyes software [44]. We tested a large number of various 

situations and our motion control methods provided safe and efficient robot 

motion in all of them. The results of a test are presented in Fig. 14 

(a) (b) 
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(c) (d) 

Fig. 12. Mapping simulation (a) Simulation environment constructed with a 

number of objects, (b) Start scanning, (c) Final map. 

 

 

Fig. 13. Sketch of the larger environment including the trajectories of the 

robot. Lines of the walls correspond to the on-line detected obstacles which 

are incrementally incorporated into the grid. The smooth curvature represents 

the true robot trajectory. The robot was able to follow the planned optimal 

path well. 

 

In order to illustrate the functionality of the proposed path planning and 

obstacle avoidance algorithms, the results of the test are presented in Fig. 14 

where the robot moved across its path to the goal position. In the simulation 
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environments, we put a number of objects on the map. These objects are used 

to test the colliding avoidance method. The robot motion obtained by the 

presence of obstacles. Fig .14 shows the shortest global path in complex 

environments. 

 

(a) 
 

(b) 

 

(c) 

 

Fig. 14. Motion control. (a) Path planning without obstacles, (b) and (c) 

Robot traveled from the start position until reaching the goal and avoid 

colliding with unexpected obstacles. 

 

5.2  Experimental results 

The map building algorithm outlined in the section 2 has been 

implemented and tested using real robots and datasets gathered with real 
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robot. Our implementation runs online on the ActivMedia Pioneer 3DX 

platform. The Pioneer 3DX robot is equipped with a SICK laser range finder 

mounted on the robot platform. The laser sensor has a maximum viewing 

angle of 180 degrees and an accuracy of the range-finder is 1 centimeter. The 

experiments carried out in a variety of environments have shown the 

effectiveness of our approach in indoor and outdoor environments. 

In the first experiment, we use the Pioneer 3DX robot to build the map in the 

Intelligent Control Lab (ICLab) (as depicted in Fig.15) and in a populated corridor 

at Department of Mechatronics Engineering, Pukyong National University. The 

maps of these environments are depicted in Fig.16 and Fig.17. The datasets have 

been recorded with a Pioneer 3DX robot equipped with a SICK sensor. As can be 

seen in the right image of Fig. 17, the quality of the final map is so high without any 

significant errors or inconsistencies. 

 

 

 

Fig. 15. The Intelligent Control Lab: The robot start in the lower left side and 

runs around the loop. The right image depicts the resulting map generated. 

 

In the second experiment, we created a 2-D graphic map of the outdoors on 

Yongdang campus. From a bird’s eyes view, walls, trees and obstruction of 

1m 
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the environment to be navigated as illustrated in Fig. 19 while the real world 

environment is delineated in Fig. 18. Note that this environment partly 

violates the assumptions that the environment is planar. Additionally, there 

were objects like bushes and grass which are hard to be mapped with a laser 

range finder. Furthermore, there were moving objects like cars and people. 

Despite the resulting spurious measurements, our algorithm was able to 

generate an accurate map. 

 

(a) 

 

(b) 

Fig. 16. Corridors on the second floor of Department of Mechatronics at 

Pukyong National University. (a) The corridor. (b) Detail of the corridor 

 

 

(a)                                                            (b) 
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Fig. 17. 2-D environment map of a corridor in Mechatronics Building. (a) 

The whole environment. (b) A detail showing different artifacts 

  

(a)                                                          (b) 

Fig. 18. Outdoor area near the Mechatronics Department building 

 

 

Fig. 19. Map of the path in the outdoor environment. 

 

In the third experiment, we reconstructed the map of a partial Yondang 
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Campus. The test environment was implemented corresponds to an semi-

outdoor area around several building such as the Chemical Engineering 

building (B4), school bus stop, Mechanical Engineering building (B6) and 

Mechatronics Department building ( B9). The term semi-outdoor is used to 

define an outdoor area which is close to a building and, thus, has both 

structured and unstructured elements. Table 1 provides some general details 

of the collected data. The environment consists of narrow, tiled, bushes and 

the wall sides of building. Fig. 120. Shows the laser readings gathered in 

environment. 

 

Number of readings 72424 

Number of lines 181 

Average speed 25 cm/s 

Table 1. Some details of the data gathered in the semi-outdoor environment 
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Fig. 20. Map of partial Yongdang Campus reconstructed by laser reading 

gathered in environment. 

The path planning method has been implemented and extensively tested 

on our Pioneer 3DX mobile robot. This robot is equipped with SICK laser 

range finder that is used to detect dynamic obstacles. 

 

 

Fig. 21. Pioneer 3DX robot driving around an expected object. 

 

The first experiment was carried out using the robot in our department 

environment at Pukyong National University. In order to test the capacities of 

our system to deal with unexpected obstacles we installed a number of 

objects in the corridor and change their position frequently. Additionally, 

people were walking in the environment. In the experiment, we did not 

observe a single collision during which the robot traveled over 40 m with 

average speeds of over 25 cm/s. Fig.21 show the typical situation during 

these experiments. Here the Pioneer 3DX robot is moving around unexpected 

obstacle in the corridor. During the experiment we found that the generated 
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paths were very smooth and that the overall behavior was quite efficient.  

 

 

 

 

Fig. 22. Typical trajectory taken by Pioneer 3DX when reaching the target 

position. 

 

The robot travel along the corridor of our department environment and it 

must collide avoidance is illustrated in Fig. 22. The image contains the 

trajectory generated and unexpected obstacle position. 
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Fig. 23. Experimental run in the campus at Pukyong National University 

 

 

Fig. 24 Trajectory of Pioneer 3DX travelling along the path shown in Fig. 22 
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Another experiment carried out in an outdoor environment is depicted in 

Fig.23. Here we installed a large number of obstacles in front of a road to 

increase the difficulty of reaching the goal position. As can be seen in the 

image, the robot found the shortest path to reach the goal while colliding 

object located on the path. Fig. 24 shows a sequence of images illustrating 

the robot executing the steering commands. 

 

6 CONCLUSIONS 

This section summarizes the Thesis, and discusses the research 

limitations of the project. Future research on navigation for mobile robot will 

also be discussed. 

 

6.1  Summary 

We studied the problem of robot navigation in unknown and dynamic 

environment using a laser range finder sensor. This thesis presented the 

implementation of different types of high accuracy map building and 

navigation for both outdoor and indoor applications. We performed the 

arbitrary probability distributions across a grid of robot poses approach as a 

robust scan matching localization technique to estimate the position of a 

mobile robot. The scan matching approaches do not reply on the 

distinguishable features in the environment. Hence, we avoid the difficult 

process of feature detection and feature correspondences. We use most of the 

sensor data in the matching process. This suggests that scan matching 

methods are robust. 

The map is generated by matching a scanned directly to another scan 
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without requiring an a priori world environment. Thus, these methods can be 

used for exploration and map building in unknown environments. In 

additionally; this method can work in general curved environments. 

The results of localization by using scan matching localization approach 

shows that it potentially can keep track of the robot’s position in an arbitrary 

probabilistic configuration. 

We presented an integrated approach to sensor based collision avoidance 

and path planning for mobile robots in dynamic environments. Our algorithm 

includes several techniques to deal with the complexity of the induced 

problem during re-planning. The motion of an obstacle is regarded as the 

motion of the occupied moving cells in a grid map. The predicted trajectory 

of each moving cell is used for the collision calculation with the possible 

robot trajectories. The path planning is proposed based on the FD* graph 

search algorithm. The algorithm for producing the path is proved to be the 

shortest path in the geometry space. The possible robot trajectories are 

generated by using the dynamic window approach. The overall system is 

highly efficient and can be run on a standard PC. It automatically adapts 

itself to the performance of the underlying processor and to the complexity of 

the search problem. 

The algorithm has been experimentally implemented and tested on a 

Pioneer 3DX mobile robot using a laser range finder. In all experiments our 

method was able to generate safe trajectories. The experiments confirmed 

that our algorithm yields efficient trajectories of the navigation system.  

 

6.2  Research limitations 

The project successfully implements the experiment mapping, 

localization and path planning for mobile robots in dynamic environments 
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based on several methods as discussed in the previous sections. However, 

there are still some research limitations in the project. The limitations of the 

project are described as follows: 

We comprehensively studied the techniques for matching a range scan for 

deriving the relative position and heading of the robot. The difficulties are 

issues in this problem are that the scans are noisy, discontinuous, not 

necessarily linear, and two scans taken at different positions may not 

completed overlap because of occlusion. 

In the study of optimal registration of multiple range scans for mapping 

an unknown environment, new sensor data are merged to a cumulative model 

based on local registrations, and this may cause inconsistency in the model. 

6.3  Direction for future research 

To conclude our thesis, we point out several possible directions for future 

research. 

We have proven that it is sufficient to use a two-dimensional laser range 

finder for robot localization in structured indoor environments where the 

world contour is typically formed by long smooth walls. However, it will be 

much more difficult to do this in a cluttered industrial workshop where the 

nice wall structures are hidden by irregular, three-dimensional objects such as 

pipes, racks, machines, moving objects such as people, cars, etc. it will be 

interesting to examine if the laser range sensing is still capable of providing 

localization for the robot. A possible approach is to use 3D range scans to 

reveal more structures in the environment. Registration of 3D scans is 

considerably more difficult than registration of 2D scans because the range 

measurements are spares in 3D space. One possibility is to use an active 

approach in collecting the measurements (to point the laser beam in the 

directions where objects are observed from previous scans). 
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More robust localization algorithms should be investigated. Global 

Positioning System (GPS) can serve to improve localization; however, GPS 

currently is only precise to within several feet and is less precise indoors than 

outdoors. For tasks that require more precision and accuracy, GPS cannot be 

the sole solution. Software-based solutions such as Monte Carlo Localization 

are also promising. Sonar may be used in conjunction with other sensing 

modalities such as vision and laser to create more robust collision avoidance 

systems in more unstructured environments. 

Furthermore, building maps from sensor data is typically done only for a 

limited period of time. After the robot has acquired a map, it uses this model 

for a variety of different tasks. An interesting aspect in the context of map 

learning is the lifelong map learning problem where the robot has to update 

and maintain its model of the environment for a long period of time. The 

longer the robot integrates observations obtained in the environment into grid 

map, the more the map gets blurred. The reasons for this are small errors in 

the observations, ambiguous situation for the scan-matcher, as well as the 

sampling process for drawing the next generation of samples. One possibility 

to overcome this problem is to abort the map update process and focus on 

localizing the vehicle. Whenever the robot detects changes in the 

environment it would have to updating the map model appropriately. 

Though the integrated Focused D* and DWA solves the issue of obtaining 

the optimal path and colliding avoidance in a dynamic environment. The FD* 

method uses the focusing heuristic function to predict the estimated path cost 

from the current location to the goal to help the robot to minimize its search 

space. To enhance the performance of FD* algorithm, Field D* [43] method 

was proposed. Field D* extends the standards D* algorithm by using linear 

interpolation to derive the path cost of the points between grid intersections.
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APPENDIX 

A1. Notation 

The following notations are used in this work. 

The position of the robot is given by a row vector ( , , )Tx y  which 

contains location and orientation. For a matrix M and M
T
 specifies the 

transposed matrix. M is square and regular, then M
-1

 denotes the inverse of 

matrix M and det(M) its determinant. 

For an angle α defined 2 ( )R   and 3( )R  associated rotation matrices 

2

cos sin
( )

sin cos
R

 


 

 
  
 

 

3

cos sin 0

( ) sin cos 0

0 0 1

R

 

  

 
 


 
  

 

A2. Normal Distribution 

In the range of the sensor data processing is often assumed that the 

probability of occurrence is based on measured values on a normal 

distribution. One advantage of the normal distribution is that you can define 

them completely by specifying the expected value (mean value) and variance. 

The density function of the normal distribution for the scalar case with 

mean x  and variance 2

x  is defined as follows: 

2
1

2

2

1
( )

2

x

x

x

x

p x e







 
  

   

Notation: 2~ ( , )x xx N    

In n-dimensional space, the above equation can be rewritten as: 

11
( ) ( )

2

2

1
( )

(2 ) det( )

T
x x xx x

x

p x e
 



   



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Notation: ~ ( , )x xx N   , where x in a n-dimensional is expectation and 

x  is a n × n-dimensional covariance matrix. 

 

A3. Mahalanobis distance 

For the presentation of normally distributed density functions in the 

multidimensional case point sets with equal probability density are 

interesting. To determine this, set the density function p(x) is constant and 

determined x 

11
( ) ( )

2

2

1
constant

(2 ) det( )

T
x x xx x

x

e
 



   




 

1 2( ) ( ) constantT

x x xx x r       

In the two-dimensional case this equation describes a contour line of the 

three-dimensional graph of p (x). This contour has the shape of an ellipse, the 

value of the formula 1( ) ( )T

x x xx x    is the squared Mahalanobis 

distance between the vector x and the mean value x . The importance of this 

measure can be illustrated most simply in the scalar case with r = 1. The 

equation then reduces to 2 2( ) 1x xx     or 2 2( )x xx    . This means that 

the Mahalanobis distance of x to the mean value x is closer to 1. 

 

A4. Transformation of density functions 

In the sensor data processing the problem is often given to transform 

observations of a sensor in another uniform observation system. There are the 

measured data from a normal distribution with a known mean and a known 

covariance matrix. The question now is what probability distribution is after 

the transformation. 
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Formally, a m-dimensional variable u, ~ ( , )u uu N   and a 

transformation F: m n   with F (u) = x, ~ ( , )x xx N   and given the 

mean value x , and searched the covariance matrix x . 

To determine the new normal distribution, a distinction between the two 

cases, if F is linear or nonlinear. 

Linear Transformation 

In the linear case, F can be represented as F (u) = Au + b, where A is a 

constant and b is an nxm matrix of n-dimensional column vector. For the 

expectation x and covariance matrix x is given by: 

( )

( )

( )

x

u

E x

E Au b

AE u b

A b







 

 

 

 

(( ( ))( ( )) )

(( (( ) )( ( ) ) )

(( ( ( )))( ( ( ))) )

(( ( ))( ( ) )

T

x

T

T

T T

T

u

E x E x x E x

E Au b AE u b Au b AE u b

E A u E u A u E u

AE u E u u E u A

A A

   

      

  

  

 

 

Nonlinear transformation 

If F is non-linear, so approaching it through a Taylor polynomial in an 

appropriate reference point u  and omits higher order terms: 

( ) ( ) ( )( )F u F u F u u u    

Here ( ) ( )
F

F u u
u


 


 is an nxn matrix with the partial derivatives of F at 

the point u . This matrix is called the Jacobian. 

F is linearized at a suitable reference point u . For the reference point is 

referring to the mean value of u, because we are only interested in the points 
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near the expected value
uu  . Now the function F becomes to the linear 

case, and then it follows the matrix A and the vector b: 

( )uA F   

( ) ( )u u ub F F     

With the assistance of the results from linear case, the mean x  and 

covariance matrix x  is obtained: 

( ) ( ) ( )

( )

x u

u u u u u

u

A b

F F F

F

 

    



 

   



 

( ) ( )

T

x u

T

u u u

A A

F F 

  

    

Example of transformation 

Considering the measurement process of a 2d laser laser scanner, it is 

found that the range measurements and the angle at which the measurements 

take place are associated with an error. For this error, we assume that they are 

normally distributed and independently.  

Let d is the distance measured and  is the angle at which the 

measurement takes place, then d and  normally distributed with

2~ ( , )d dd N    and 2~ ( , )N     , where d  is the expected value (mean 

value) of the actual distance and  is the mean value of the actual angle 

corresponds. 

A measure  ,
T

d  is now converted to Cartesian coordinates by applying 

the transformation F (see Fig…..) 

cos
( )

sin

d x d
F

y d



 

     
      

     
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The transformation results for the Cartesian coordinates is determined by 

a new distribution 

~ ( , )
x

xy

y

x
N

y





  
  

   
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Fig. 25. Transformation of a measurement in Cartesian coordinates 

 

A5 Kalman Filter 

Usually, the situation is given with several measurements from different 

sensors on the same facts. Each of these measurements provides a normally 

distributed observations with mean and variance values, the question is how 

the measurements of the sensors are linked together to get a final result that is 
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more accurate and has a smaller error. 

For this, the Kalman filter is used, on condition that all estimates with 

normally distributed errors are present. The Kalman filter estimates the fused 

then turn a new estimate with a new error is normally distributed. As an 

optimality criterion for the selection of the new estimate is the criterion of 

minimum variance. The new estimate is selected so that the resulting error is 

minimized. 

A5.1 One-dimensional case 

The procedure and effect of the Kalman filter can be best shown an 

example of the scalar case. Suppose two sensors for measuring distance are 

set up so that they have the same distance to the object in front of them, e.g. a 

wall, possess. The sensors must, therefore, measure the same distance value. 

Furthermore, it is assumed that the measurements of the sensors are affected 

by an error. The measurements 1l  from sensor 1 and l2 from sensor 2 are 

distributed as follows: 

2

1 1 1~ ( , )l N    

2

2 2 2~ ( , )l N    

Here 1  and 2  correspond to real distances and 1  and 2 are the 

respective standard deviations, which can be determined by a series of 

measurements. The problem now is how to link the data of the two sensors in 

order to calculate the present distance from a respective one of the two 

sensors measuring, which takes account of the properties of both sensors. It is 

obvious, in this case to use a weighted arithmetic mean of the two distance 

measurements. The respective weights are inversely proportional to the 

associated variance. 

l1 and l2 are the measurements of the two sensors; new distance value l 
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with variance 2  is calculated by Kalman filtering 

1 22 2

1 2
2 2

1 2

1 1 1

1 1
l l l

 

 

 
  

 

 

2 2 2

1 2

1 1 1

  
   

In the case of 1 2  (when using two identical instruments) the 

equations are reduced as 

 1 2

1

2
l l l   

2
2 1

2


 

 

 

A5.2 Multidimensional case 

In the n-dimensional case, there are two n-dimensional vectors m1 and 

m2. 

1 1 1~ ( , )m N    

2 2 2~ ( , )m N    

The calculation by Kalman filtering improved estimate m with covariance 

matrix   is then given by: 

   
1

1 1 1 1

2 2 2l l l  


             

 
1

1 1

2l


    

 

At this point it should be noted that the Kalman filter is usually applied in 

such a way that initially a prediction based on the current state of 

measurements, and compared with the prediction of the actual sensor 

measurement. From this, an update to the system state is computed. 
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