

Thesis for the Degree of Master of Engineering

Autonomous Navigation of Mobile

Robot in Dynamic Environments Based

on Laser Range Finder Sensor

by

Nguyen Van Phuc

Graduate School

Department of Mechatronics Engineering

Pukyong National University

February 2013

AUTONOMOUS NAVIGATION OF

MOBILE ROBOT IN DYNAMIC

ENVIRONMENTS BASED ON LASER

RANGE FINDER SENSOR

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF MECHATRONICS

ENGINEERING AND THE COMMITTEE ON GRADUATE STUDIES

OF PUKYONG NATIONAL UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF ENGINEERING

Nguyen Van Phuc

February 2013

Autonomous Navigation of Mobile Robot in Dynamic Environments

Based on Laser Range Finder Sensor

A Thesis

by

Nguyen Van Phuc

Approved by:

(Chairman) Prof. Woon Kyung Baek

(Member) Prof. Young Seok Jung

(Member) Prof. Doo Sung Ahn

19 December 2012

ACKNOWLEDGEMENTS

First of all I would like to express my appreciation to Professor Doo Sung

Ahn for supporting me over all these years. It was a pleasure to work with

him as my advisor. I am grateful for his suggestions and guidance. Actually, I

cannot think of a more competent, more enthusiastic and also a more critical

advisor. I have learned a lot during the last few years.

I would like to thank all the current members and alumni of my

Laboratory, and Korean friends for their generous assistances. My special

thanks go to Vietnamese friends in Korea for coming up with sharing in life

at Pukyong National University, for helping to achieve invaluable documents.

Everyone has been open-minded to discussions which contributed to this

thesis. This thesis could not have been done without the help and support of

numerous people. Especially, I would like to thank all of friends at Yongdang

Campus for spending a lot of time helping me to solve soft- and hard ware

problems with Pioneer 3DX robot.

I am grateful to Pukyong National University for financial support of my

research, for creating good conditions for my study.

Finally, I have never forgotten to thank my family: my parents, my older

brother and sister, my sister-in-law, my niece and nephews who always

encourage me during the time I stayed far away from home.

Pukyong National University, Busan, Republic of Korea

Nguyen Van Phuc

i

Autonomous Navigation of Mobile Robot in Dynamic Environments

Based on Laser Range Finder Sensor

Nguyen Van Phuc

Graduate School

Department of Mechatronics Engineering

Pukyong National University

Abstract

Autonomous navigation of a mobile robot in dynamic environments is a

fundamental requirement for effective autonomous navigation and widely

used in large fields of industrial application. The past few years have been

tremendous growth in the research areas of autonomous navigation of a

mobile robotics. Navigation encompasses the ability of the robot to act based

on its knowledge and sensor values so that it could reach its goal position as

efficiently and reliably as possible. Navigation involves mapping,

localization and predict motion planning while colliding avoidance for

mobile robots. The mapping is the process whereby a robot can extract

relevant information from its environment allowing it to remember it.

Localization is the problem of estimating a robot’s pose relative to a map of

its environment. Localization and mapping is based on data collected from a

robot using a dense range scanner to generate a bi dimensional map

representation of the surrounding environment. This externally sensed range

data is correlated to estimate the robot’s position and build a map. Path

ii

planning for a mobile robot is to find a collision free route, through the

robot’s environment with obstacles, from a specified start location to a

desired goal destination while satisfying certain optimization criteria.

This thesis focuses on the problem of enabling mobile robots to build

world models of their environment and to employ as a reference to self-

localization and path planning. The robot usually needs a representation of

the environment and the capacity to interpret that representation to be able to

plan a path towards some target location and to move safely in an

environment where there may be variations in the position of the robots. The

system builds bi dimensional maps of the environment that surrounds the

robot, through data collected from the laser range finder sensor and also the

estimated position of the robot. This research is geared towards implementing

Local Registration/ Global Correlation (LRGC) algorithm for reliable

reconstruction of consistent global maps from scanning laser data. The

localization is carried out through stored environment maps by using scan

matching method. The path planning task uses a focused D* (FD) search to

compute the shortest and safest path from the present robot position to any

reachable point in the given robot environment map. Once the main path is

planned, a local segment of the path to plan around any unmapped obstacles

it sees with its range sensors is recomputed. The dynamic window method is

used to compute the translational and rotational velocities necessary to follow

the path as closely as possible.

Experiments using data collected from a SICK LMS-200 laser range

finder illustrate the effectiveness of the algorithms and improvements over

previous work. All the algorithms are implemented and verified using a

Pioneer 3DX mobile robot equipped with the laser range finder. Experimental

results for both the simulation and real world environment show that the

method improves the accuracy of localization and mapping.

iii

레이저 센서를 기반으로 하는 동적 환경에서의 이동로봇의 자율 주행

Nguyen Van Phuc

부경대학교 일반대학원 메카트로닉스공학과

요 약

동적 환경하에서의 이동로봇의 자율 주행은 많은 산업분야에서 이

용되는 효과적인 자율주행을 위해서 근본적으로 필요한 요구사항이다.

과거 몇 년동안 이동로봇의 자율주행에 관한 많은 연구가 있어왔다. 주

행은 로봇이 자신의 지식과 센서정보를 바탕으로 가능한 한 효율적이고 신뢰

성있게 목표위치에 도달할 수 있는 능력을 포함한다. 주행은 매핑, 위치추정를

포함하고 충돌회피를 하면서 동작설계를 가능하여야 한다. 매핑은 환경으로

부터 추출한 정보를 환경과 연관되게 하여 기억할 수 있도록 하는 과정이다.

위치추정은 로봇의 위치와 자세를 지도상에서 추정하는 문제이다. 위치추정

과 매핑은 로봇이 스캐나 센서를 이용하여 표현한 주위환경의 양방향 지도를

근거로 한다. 이러한 외부 데이터들은 로봇의 위치를 추정하는데 연관을 시키

고 지도를 구축한다. 이동 로봇의 경로계획은 지정된 시작위치에서 원하는 목

표지점까지 주어진 최적화 기준을 만족시키면서 장매물과 충돌하지 않는 경

로를 찾아내는 것이다.

iv

본 논문은 로봇이 주위 환경의 모델을 구축하고 이것을 위치 추정과 경로

계획의 기준으로 사용하는 문제에 중점을 두고 있다. 로봇은 환경의 표현과 이

것을 해석하여 원하는 위치로 안전하게 이동할 수 있는 능력을 필요로 한다.

레이저 센서로 획득한 데이터데 로봇의 추정 위치를 기반으로 하여 로봇의 주

위환경에 대한 양방향 지도를 구축한다. 본 연구는 레이저 스캐닝 데이터로부

터 전역 지도를 일관되고 신뢰성 있게 구축하는 지역등록/전역연관 (LRGC)

알고리듬을 채용하고 있다. 위치 추정은 스캔 매칭 방법(scan matching method)

에 의해 저장된 환경 지도를 통해 이루어 진다. 경로계획은 FD 방법을 이용하

여 구축된 지도에서 현 위치에서 목표위치까지의 안전한 최단경로를 찾는다.

일단 주경로가 계획되면 장애물이 있는 주위의 경로는 센서를 이용하여 재계

산한다. 가능한 한 경로를 잘 추종하기 위한 전위속도와 회전속도를 도출하기

위해 동적윈도방법(dynamic window method)을 사용한다.

SICK LMS-200 레이저를 이용한 실험은 이전의 결과들에 비해 효율성과

개선된 점을 보여준다.모든 알고리즘들은 레이저 센서가 장착된 파이오니아

사 3DX 모바일로봇으로 실험하였다. 시뮬레이션과 실제환경에서의 실험 결과

는 제시된 방법이 위치추정과 매핑에서 정확성을 향상시켰음을 보여준다.

v

CONTENTS

ACKNOWLEDGEMENTS ..

ABSTRACT ... i

CONTENTS .. v

LIST OF FIGURES ... vii

LIST OF TABLES .. ix

NOMENCLATURE ... x

1. INTRODUCTION .. 1

2. MAP BUILDING ... 6

2.1. Scan matching ... 9

2.1.1. Scan .. 10

2.1.2. Feature extraction from scanning data 11

2.1.3. Median Filter .. 17

2.1.4. Scan matching .. 18

2.2. Consistent position estimate .. 33

2.2.1. Definition of the estimation problem 34

2.2.2. Application for the mapping .. 37

2.3 Map Correlation .. 38

2.4 LRGC algorithm .. 40

3. LOCALIZATION .. 42

3.1 Dead Reckoning .. 43

3.2 Categories of localization methods ... 46

3.3 Scan matching localization .. 47

4 PATH PLANNING AND COLLISION AVOIDANCE 49

4.1 Path planning ... 49

4.1.1 Approaches for path planning .. 51

vi

4.1.2 FD * path planning algorithm .. 54

4.2 Collision Avoidance Behavior ... 64

4.2.1 Modeling of Wheeled Mobile Robot (WMR) 65

4.2.2 General Motion equations ... 66

4.2.3 Dynamic Window Approaches ... 68

5 EXPERIMENTAL RESULTS .. 71

5.1 Simulation results .. 71

5.2 Experimental results .. 73

6 CONCLUSIONS .. 81

6.1 Summary ... 81

6.2 Research limitations .. 82

6.3 Direction for future research ... 83

APPENDIX ... 85

REFERENCES ... 92

vii

LIST OF FIGURES

Fig. 1. Table of figures entries found. Various types of service robots.

(a)Cleaning robot (b) Tour guide robot (c) Darwin-Op

entertainment robot, and (d) The Mars exploration Rovers. 2

Fig. 2. Add a new pose of an unexplored environment to the map. 8

Fig. 3. A typical scan which is detected by the laser scanner 180 ° SICK

LMS-200. .. 10

Fig. 4. Extraction lines from a scan, links raw scan, right extracted lines 15

Fig. 5. Scheme of extended Cox algorithm .. 25

Fig. 6. Schematic structure of the extended IDC algorithm 32

Fig. 6. Schematic of the combined scan matching method 33

Fig. 7. Data flow of the LRGC mapping algorithm 40

Fig. 8. Tricycle kinematics as used for example on the Pioneer 3DX

Robot ... 44

Fig. 9. Artificial Potential Field Method .. 53

Fig. 10. Kinematic variables of the WMR ... 65

Fig. 11. Mapping simulation (a) Simulation environment constructed with

a number of objects, (b) Start scanning, (c) Final map. 72

Fig. 12. Sketch of the large environment including the trajectories of the

robot. Lines of the walls correspond to the on-line detected

obstacles which are incrementally incorporated in to the grid. The

smooth curvature represents the true robot trajectory. Robot was

able to follow the planned optimal path well. 72

Fig. 13. Motion control. (a) Path planning without obstacles, (b) and (c)

Robot traveled from the start position until reaching the goal and

avoid colliding with unexpected obstacles. 73

Fig. 14. The Intelligent Control Lab: The robot start in the lower left side

viii

and runs around the loop. The right image depicts the resulting

map generated. .. 74

Fig. 15. Corridors in the second floor of Department of Mechatronics at

Pukyong National University. (a) The corridor. (b) Detail of the

corridor .. 75

Fig. 16. 2-D environment map of a corridor in Mechatronics Building. (a)

The whole environment. (b) A detail showing different artifacts . 76

Fig. 17. Outdoor area near the Mechatronics Department building 76

Fig. 18. Map of the path in the outdoor environment. 76

Fig. 19. Map of partial Yongdang Campus reconstructed by laser reading

gathered in environment. ... 78

Fig. 20. Pioneer 3DX robot driving around an expected object. 78

Fig. 21. Typical trajectory taken by Pioneer 3DX when reaching the target

position. ... 79

Fig. 22. Experimental run in the campus at Pukyong National University

 ... 80

Fig. 23 Trajectory of Pioneer 3DX travelling along the path shown in Fig.

22 ... 80

ix

LIST OF TABLES

Table 1. Some details of the data gathered in the semi-outdoor environment

 .. 77

x

NOMENCLATURE

FD* : Focused D*

SLAM : Simultaneous Localization And Mapping

LRGC : Local Registration/ Global Correlation

DWA : Dynamic Window Approach

EKF : Extended Kalman Filter

PF : Particle Filters

IDC : Iterative Dual Correspondence

CAD : Computer Aided Design

1

1. INTRODUCTION

Recently, developments in the residential application of mobile robot are

envisioned to fulfil various kinds of tasks. In the last few years there has been

a substantial progress in the field of service robots. A variety of mobile

robots that are designed to operate in environments populated by humans has

already been developed. These robots, for example, have been deployed in

auto space exploration, underwater exploration, hospital, office building,

autonomous production in factories, and department stores. Existing robotics

systems are already able to perform various services such as delivery,

surgeon, cleaning, education, robot-cop or entertainment. Figure 1.1 depicts

four examples of existing robotic systems. The upper left image shows a

Japanese cleaning robot which is designed to clean large surfaces, for

example on the roads or airports. The robot in the upper right image has been

developed within the tour guide robot [45]. The lower left image shows

entertainment robot [46] and the lower right image depicts one of the NASA

auto space exploration robots.

(a)

(b)

2

(c)

(d)

Fig. 1. Table of figures entries found. Various types of service robots. (a)

Cleaning robot (b) Tour guide robot (c) Darwin-Op entertainment robot, and

(d) The Mars exploration Rovers.

This research addresses the development for mobile robot path planning,

localization and mapping based on the data collected from the laser range

finder sensor. Laser range scanners have been used for many years for map

building, localization, path planning, and obstacle detection and collision

avoidance. Laser scanners operate by sweeping a laser across a scene and at

each angle, measuring the range and returned the nearest distance from

obstacles to the robot in range of scanning. In this research we focused on the

range returned from the laser, since the range laser ranging demands fast and

provide direct information useful for mapping. I demonstrate how a laser

range alone can be used to detect and track objects in the environment. At

long ranges and grazing angles, vertical objects reflect significantly more

laser energy than the horizontal road. The object detection system uses a high

performance laser scanner which provides fast single-line laser scans. Data

analysis on the returned angle and optimal distance signal is used to select

3

objects candidates. After candidates are matched and merged with candidates

from previous scans, the range to each object is estimated by a novel

intensity and position tracking method. Finally, the positions of all objects

are updated based on vehicle motion before the next laser scan is acquired.

The research field of localization and path planning for mobile robot was

launched over several years ago. The researchers tried to solve the

localization and map building problem for mobile robot in unstructured

environments to create the bi dimensional maps and also estimated the

robot’s location [6], [7], [8], [9]. Over the past decades, a large of the

algorithm was explored and applied to the navigation and mapping for

mobile robots in a real world environment. [10], [5], [12], [13], [14]. The

study of navigation and mapping for autonomous robotics can be viewed as

the state estimation problem, which simultaneous predicts the mobile robot

posture and environmental characteristics of the location; it has important

theoretical and practical value. This paper describes a navigation system

which unites three important capabilities. It enables a mobile robot to avoid

obstacles, map-building the environment and plan local paths around or

complex obstacles while navigating.

In order to be able to localize itself in an environment, the autonomous

agent needs a representation or map of the environment. The robot should

obtain a map by its own since obtaining maps from CAD models or

measuring them by humans can be time consuming and inaccurate. In the

literature, the mobile robot mapping is usually referred to as the simultaneous

localization and mapping problem (SLAM) [1], [5]. Since mapping includes

both, estimating the position of the robot relative to the map and generating a

map using the data collected from the sensor and also estimate the location of

the robot. Most of technique developed so far has been designed for

4

situations in which the environment is static during the map building process.

Moving obstacles, however, can lead to serious errors in the resulting maps

such as spurious objects or misalignments due to localization errors. Map

building prefers to reconstruct the position and shape of objects and obstacles

in the unknown environment where the robot is moving. We consider the

problem of creating maps with mobile robots in dynamic environments. We

present a scan matching approach that generates the map based on the laser

data scanned; it then also detects lines in the corrected laser data.

The localization with respect to an internal map play an important role

since the robot that cannot position itself accurately is at risk from obstacles

or dangerous areas that are in the map but which cannot be easily sensed.

There are a number of works that addressed the localization using pose

information [2], [3]. These works update the position of the vehicle based on

the determination of the transformation between the pose of the robot and the

laser measurements. The laser has also been used to determine natural

features in indoor environments. In [4] a comparison of the behavioral

monocular, Trinocular and laser in localization applications is presented. At

the same time the robots should perform the navigation tasks in a minimum

amount of time. Thus, sophisticated path planning techniques are needed to

fulfil these requirements.

The existing methods for solving the problem of motion planning for

robot systems are decoupled, which means that they first plan paths for the

individual robots independently. Afterward, they check if the robots would

get too close to each other if the paths were executed. In such a case the paths

are recomputed to avoid these conflicts. Many decoupled methods assign

priorities to the individual robots. These priorities define an order in which

the paths of the robots have to be recomputed. By computing the path of a

5

robot, the paths of the robots with higher priority are considered as fixed.

This way, the size of the search space is extremely reduced. Most of the

existing prioritized decoupled methods use a fixed priority scheme.

In the path planning segment of this thesis we present an approach which

determining a path that fulfills a specified direction represented by

integrating of focused D* search algorithm and dynamic window local

obstacle avoidance of moving objects. The moving obstacles are modelled as

moving cells on the occupancy grid map and their motion is predicted by

applying a procedure similar to dynamic window approach. The collision

points of the robot and moving cells predicted trajectories from the new

fictive obstacles in the environment, which should be avoided.

During the search, we utilize constraints between global path and local

reactive obstacle avoidance algorithms and integrated into a single motion

control module in order to compute the shortest and safest path from the

present robot pose to any reachable point in the dynamics and unknown

environments.

The remainder of this thesis is organized as follows: In the following

Section is a presentation on solving the problem of map building for the robot.

We present our approach to generate the environment that surround the robot

based on the robot’s path and matching the laser scan algorithm. After this

we focus on localization environments and described in Section 3 how to

updating the pose of the robot in an environment based on sensor reading. In

Section 4 we demonstrate how a mobile robot can plan the path and collision

avoidance in the partially unknown environment. The simulation and

experimental results are given in Section 5. Finally, the conclusions are

summarized in Section 6.

6

2. MAP BUILDING

In order to perform tasks in an environment for a mobile robot, first, it

must be able to answer the question: “Where am I?” When this question is

posed with respect to a known previously existing map of the environment,

the problem is commonly referred to as Localization. Simultaneous

Localization and Mapping (SLAM) answers the question in a more general

case: where the robot has no map to begin with and must construct a map at

the same time as performing Localization.

There are many different kinds of map building used for localization, are

able to deal with noise in the odometry and noise in the sensor data, based on

the form of sensor information and the representational requirements of

localization. Traditionally, SLAM solutions involve estimating the positions

of landmarks in the environment as well as the robot’s position based on

measurements from robot-mounted sensors and odometry estimates.

Numerous solutions to this problem have been considered such as scan

matching for alignment [15], the Extended Kalman Filter (EKF) [16, 17],

FastSLAM or Rao-Blackwellized Particle Filters (PF) [18, 19] and others to

form the now very mature SLAM field.

However, if the objects appear or travel through the sensor range of the

robot during mapping, the resulting map will contain evidence about an

object at the corresponding location. Moreover, if the robot returns to this

location and scans area a second time, position estimate will be less accurate.

The reduced accuracy of the resulting maps may have a negative influence on

the overall performance of the robot, since it can obstruct the execution of

typical navigation tasks such as localization and path planning. Maps can be

based on topological or metric information, or a combination of the two.

Metric maps can be further refined by whether they use features or rely on

7

dense surface information that does not distinguish the features. The dense

sensor methods [20, 21, 22] attempt to use whatever sensor information is

available to generate a map and they recreate a geometric representation of

the surfaces in the environment. When localization the robot on the map,

dense sensor matching can take the merit of whatever surface features are

present, without having to explicating decides what constitutes a landmark.

Our emphasis is on reliability, efficient techniques that can be used to

create maps as the robot moves in a new environment. We concentrate on

metrically precise maps that are derived from dense range readings-scanning

laser range finder system. Using a recently proposed new method in global

mobile robot localization, this thesis develops a Local Registration/ Global

Correlation (LRGC) mapping algorithm [20] for reliable construction of

consistent global maps from scanning laser data without relying on features

proprietor interactions. LRGC uses scan matching (local registration), map

correlation (global correlation) and consistent pose estimation for creating

accurate maps in real time.

In this section, we present a Local Registration and Global Correlation

(LRGC) method for determining consistent global pose estimation. This

method based directly on the algorithm of the consistent pose estimation of

Lu and Millios and used on two techniques to efficiently adding new

information to current maps, and determining topological correct relations

between the poses.

Consider the case where a consistent map has already been created, and a

new pose pn is added as Fig. 2. This new pose will have a connection to the

previous pose based on odometry, and to several of the previous poses based

on overlapping scan and the resultant scan matches. These relationships are

highlighted in Fig. 2 by the bold arcs between poses. As long as the robot is

8

forging ahead and exploring new areas, these arcs all clusters into local

neighborhoods that are well-connected, with no long-distance relationship.

Fig. 2. Add a new pose of an unexplored environment to the map.

Local registration works well if the robot constantly explores new areas.

As it completes a large cycle, however, the problem of topological

correctness becomes important, because new poses must be related to the old

ones. At this point, it is critical to make topological identifications reliably,

because a mistake can cause the map to be badly misaligned. In general,

single scans do not have enough information to yield good false positive

rejection, especially if the environment is relatively uniform in one direction,

as happens often along corridors. Instead, we integrate a set of local scans

into a map patch, and use this more extended template to find matches on the

old map.

The map patch technique is obviously more reliable than single scans in

rejecting false positives, but it leaves open the question of how to efficiently

perform matching, since single-scan techniques are no longer applicable.

Fortunately, one author has recently investigated correlation concepts for

matching map patches in the context of localization [23]. The resulting

techniques have been shown to be both efficient and reliable, and we make

use of them here to determine topological correctness in map-building with

9

cycles. Correlation operates in a “background” mode, checking for matches

against the old map whenever the robot moves to an appropriate location, and

adds in links between the new map and the old whenever appropriate.

The Local Registration and Global Correlation algorithm are based on

three different techniques: scan matching, consistent pose estimation, and

map correlation. In the following section will present the techniques in detail,

showing the modifications necessary to work under LRGC. Thereafter, the

overall algorithm is described and illustrated how the individual components

are assembled into a practical real-time system for the mapping of dense

distance information.

2.1.Scan matching

Scan matching is the process of translating and rotating a range scan,

which is obtained from the SICK laser range finder. The matching algorithm

returns a position probability distribution of where to place the scan in order

to have the range measurements correspond to map features. There might be

more than one location where a scan fits and this is expressed by the

probability distribution.

It is critical that scan-matching does not overestimate the certainty of a

pose, or else it can be difficult to find a consistent interpretation of a set of

overlapping poses [24]. Scan matching should also produce quantitatively

good results, e.g. straight lines in a corridor environment should be aligned

accurately.

First, the term of the scan will be described.

Second, line segments and features extraction algorithms are presented,

which operate directly on the scan data from scanning on a different position.

Third, describe the methods are used for classifying the points of a scan

10

and filter out unwanted scan points. In this manner, e.g. Scans are smoothed,

large amount of data can be reduced without losing information, or it may be

only the polygonal portion of a scan are considered.

Finally, the concept of the scan-matching method is defined and

presented for covering different solution of two scans.

2.1.1. Scan

A scan is a set of measurements , | 0... 1
T

i i im r i n where the

term of ,
T

i ir are presented as a polar coordinates.

A scan point ,
T

i i im r can be converted to a given recording position

 , ,
T

l x y in absolute Cartesian coordinates as follows:

2

cos
()

sin

i i i

i i i

x rx
R

y ry

 (2.1)

Fig. 3. Shows a typical scan as it is taken from a commercial 180-laser

scanner with 1 degree angular resolution and range resolution 5cm.

Fig. 3. A typical scan which is detected by the laser scanner 180 ° SICK

LMS-200.

11

The measured data of a laser scanner are characterized by a high angular

resolution (typically <1 °) and a high accuracy in distance measurement and

therefore laser scanner is more comprehensive, more accurate and more

reliable than many other distance sensors such as sonar sensor.

The measurements of a scan performed usually in a fixed number, for

example with rising angle, this property is utilized in the following procedure.

2.1.2. Feature extraction from scanning data

It is always advantageous not only work directly on the individual scan

points, but also extracts features from the scans. This section describes how

can extract lines and corners from a scan.

2.1.2.1.Line Extraction

The following algorithm describes how line segments can be obtained

from scanning points. This scan point is grouped and line segments are

extracted from each group by using the split function.

Algorithm 1: line-extraction(s)

Input: Scan s

Output: Set of line segments l

Procedure:

l = empty;

start = 0;

for i= 1 to numpoints(s) - 1 do

p1 = n-th-scanpoints(s,i-1);

p2 = n-th-scanpoints(s,i);

if distance(p1,p2) > MAX_DISTANCE then

 l = l U split(s, start, i-1);

12

 start = i;

end

end

l = l U split(s,start,numpoints(s)-1);

return l

The constant MAX DISTANCE determines the maximum distance

between two points of successive scan for grouping. The split function

performs the actual problem of the line extraction:

Algorithm 2: split(s, start, end)

Input: Set of scan points defined by s, start and end

Output: Set of line segments l

Procedure:

l = empty;

line = make-line(s, start, end) ;

if numpoints(line) >= MIN-POINTS-ON-LINE then

 if σ (line) < MAX-SIGMA then

 l := l U {line};

 else

Pstart = n-th-scanpoint(s, start) ;

pend = n-th-scanpoint(s,end) ;

isplit = start; d = 0;

for i = start + 1 to end - 1 do

 p = n-th-scanpoint(s,i)

 if distance-to-line(p,pstart,pend) > d then

isplit = i;

13

d = distance-to-line(p,pstart,pend)

 end

end

l = l U split (s, start, isplit)

l = l U split(s, isplit, end)

 end

end

return l

The split function is recursive. First, through the whole group of scan

points a line of best fit (make-line) is created. If the generated line contains

sufficient scan points and the standard deviation σ is not too large, the line is

recorded in the line extension and returned. However, if the standard

deviation is too large, but still enough points are presented, to form at least

one line, then the set of scan points is divided at a certain point into two sub-

groups and the split function with two subgroups called recursively. Then, the

connection of the two line extension given by the split function will be

returned. The scanning point at the group is divided and determined by the

point which has the maximum distance to the line through the starting and

ending point of the group. It is determined in the for-loop. The function

distance-to-line (p, p1, p2) supplies and increase the distance of the point P to

the straight line, which is determined through the set of points p1 and p2.

The constants MIN-POINTS -ON-LINE and MAX SIGMA determine the

number lines and quality of the lines. A smaller value for MAX SIGMA

generated more lines than a high value. Therefore, the accuracy of the lines

for small values is better than for large ones. For the SICK Laser range finder

LMS 200 provide MAX SIGMA values 5mm, a good compromise between

low line number and high accuracy.

14

MIN-POINTS-ON-LINE sets the minimum number of points per line

fixed. The smaller value is selected; the additional lines can be generated.

However, this also increases the risk that lines are placed in wrong sensor

data which have been generated by non-polygonal objects. The useful values

for MIN- POINTS- ON-LINE range between 5 ~20.

The split function calls at the beginning of make-line function. This sets a

regression line through the given set of scan points, the split function can be

implemented as follows: Let set (xi, yi), i = 0… n – 1 is Cartesian coordinates

of the scan points which is determined by a straight line. The straight line

defined by the parameters α and d, such that for all points (x, y) is on the line:

cos sin 0x y d (2.2)

The straight line is created which minimizes the sum of the squares of the

distance

2

1

(cos sin)
n

fit i i

i

E x y d

 (2.3)

Then, the solutions for α and d and the associated standard deviation σ

are calculated as [15, 21]:

2 2

1
21

tan
2

xy

y x

S

S S

 (2.4)

cos sind x y (2.5)

 2 2 2 2

2
2 21

4
2

xyx y y x
S S S S S

n

 (2.6)

where:

1

1 n

i

i

x x
n

 (2.7)

1

1 n

i

i

y y
n

 (2.8)

15

 2

2

1

n

ix
i

S x x

 (2.9)

 2

2

1

n

iy
i

S y y

 (2.10)

 xy i iS x x y y (2.11)

Fig. 4. Extraction lines from a scan, links raw scan, right extracted lines

2.1.2.2.Extraction of corners

In a similar way as line extraction from the scan data, corners can also be

generated from straight lines intersect together. For this purpose, the split

function in the line extraction must only be replaced by the following

function.

Algorithm 3: split(s, start, end)

Input: group of scan points is defined by s, start and end

Output: set of edges e

Procedure:

e = empty;

if (end-start) >= 2 MIN-POINTS-CORNER then

pstart = n-th-scanpoints(s,start);

16

pend = n-th-scanpoints(s,end);

isplit = start; d= 0;

for i = srtart + 1 to end -1 do

p= n-th-scanpoints(s,i);

if distance-to-line(p,pstart,pend) > d then

isplit = i; d = distance-to-line (p,pstart,pend);

end

end

if (isplit - start) > = MIN-POINTS-CORNER and

(end - isplit) > =MIN-POINTS-CORNER then

line1 = make-line(s, isplit - MIN-POINTS-CORNER, isplit) ;

line2 = make-line(s, isplit, isplit + MIN-POINTS-CORNER) ;

if σ(line1) < MAX-SIGMA and σ(line2) < MAX-SIGMA then

e = e U {maks-corner (line1, line2)};

end

end

e = e U split(s, start, isplit);

e = e U split(s, isplit, end);

end

return e

First, the function examines whether sufficient scan points for the

extraction of a corner. Then, search the line extraction from the scan point. If

the straight lines through the start and end point of the group of points have

the maximum distance. At this point, each line is a subset of MIN-POINTS-

CORNER scan points before and after this point and formed if sufficient scan

points are in two in two subgroups, each straight line is defined by these

points. Finally, if the standard deviations of both lines are not too large, a

17

corner is generated using the make-corner function. Make-corner intersection

determined the position and angle of the two lines. The parameters MAX

SIGMA and MIN-POINTS-CORNER determine how number the line

extraction and quality of the extracted corners.

2.1.3. Median Filter

For a number of existing scan processing algorithm, it is advantageous to

edit the previously scanning with different filters, for example, to remove

unwanted scan points, or to reduce the amount of data. In this section,

median filter techniques are presented, which is used for smoothing the

individual measurements.

The median filter is capable to detect outliers in one scan, and to be

replaced by an appropriate measurement. The median filter is applied for

each scan point. A window is placed around the scan point. The scan point is

then replaced by a new scanning point which has the same recording angle,

but to remove the scan point increases the median of the distance values in

the observed window.

The following algorithm implements the median filter:

Algorithm 4: median-filter(s)

Input: scan s

Output: scan s’

Procedure:

 for i = 0 to numpoints(s) - 1 do

 p = n-th-scanpoint(s,i);

 for j = 0 to MEDIAN-NUM-POINTS - 1 do

 k=(i+j-MEDIAN-NUM-POINTS/2)mod numpoints(s)

 pk = n-th-scanpoint(s, k);

18

 d(j) = distance-value(pk) ;

 end

 dmedian = median{d};

 n-th-scanpoint(s',i) = (angle-value(p), dmedian);

 end

 return s'

The parameter MEDIAN-NUM-POINTS determines the window size at

which the median filter operates as well. A larger value indicates a strong

smoothing of the scan, i.e. there are no more long distance fluctuations. A

low value allows large variations in the distance, but at the same time be less

outliers detected. In practice, we chose the value of MEDIAN-NUM-

POINTS = 5.

The advantages of the median filter are in the removal of outliers and in

the reduction of sensor noise and it shapes corners are rounded. The median

filter often used to remove noise. Such noise reduction is a typical pre-

processing step to improve the results of the later processing such as object

recognition, segmentation, and feature extraction etc. Here the median filter

is applied in order to obtain smoother contours.

2.1.4. Scan matching

In this section, scan matching techniques are presented. The methods

procedures a scan match with another one. The problem is specified in more

detail in the following. There are several different solution methods for Scan

matching that have been developed and applied in the past. The Cox

algorithm, which has been covered a scan match with a line model and

extended for the matching of scans. The iterative dual correspondence (IDC)

19

algorithm matching scans directly to other scan. The combination of these

two methods allows improving advantage and avoiding disadvantage of them.

Given two scan s and t. Scan s is denoted as a current scan and t is a

reference scan. The receiving position of t defines the coordinate system of t.

Now search for mapping match: l p , which position l in the coordinate

system of it upon the maps probabilities [0,1]p that indicate how well scan

s and t match if s is replaced and rotated position l.

Thus, scan matching is a sub-problem matching in a multidimensional

space. Through the determination a probability distribution, the scan poses

can be expressed ambiguities, e.g. it may be that there are several positions

where match the scans.

Most of scans matching method simplify the property issue; two

assumptions are described in the following:

 Gaussian distribution: The distribution function, which is defined by

match, can be approximated by Gaussian function. This has the

consequence that only the first two moments (mean and variance)

must be determined. However, no more arbitrary distributions are

modeled, which is especially detrimental when several hypotheses

exist.

 Locality Assumption: It is believed that the approximate position of

the recording, s is in the coordinate system of t (by odometry) and

only a local adjustment is necessary. This enables use of local search

method, which often also has a closed-form solution.

These two scan matching assumptions can also be defined as a function

of the scan - match which depicts two scans match on a Gaussian function

with mean match and covariance match matrix.

 (,) ,match matchscan match s t (2.12)

20

T

match x y (2.13)

2

2

2

x xy x

xy y ymatch

x y

 (2.14)

The vector
T

x y
 indicates the position to be replaced, and rotated

the scan s in the coordinate system of t so that a maximum overlap of the

scan is generated. The miss match component match is a measure of the

accuracy of the calculated match. Thus the calculated probability function is

a normal distribution, which is derived from the calculated mean and error

covariance matrix:

 ~ ,
T T

matchx y N x y (2.15)

2.1.4.1. Extended Cox algorithm

A process for matching a scan line with a model was developed by Cox

[27]. Points of the current scan are matched against a prior model consisting

of line segments and calculated a position correction.

First, the original method of Cox is presented. Thereafter, we described

the extension algorithm which is usable for performing the pairs of scan

matching.

2.1.4.1.1. Cox algorithm

The Cox algorithm is the original procedure for matching a scan line with

a priori line model. Each scan point will be assigned to a line of the priori

model. Then the displacement and rotation of the scan over the line model

can be determined from this assignment. This method requires an

21

approximate initial estimate of the receiving position is obtained from

odometry.

The process can be divided into the following steps:

1. Set
T T

x yx y s s s . Where,
T

x ys s s is the initial

position estimate of the scan recording, which is provided by

odometry.

2. Translate and rotate the scan position
T

x y

3. Determine the model line for each scan point that is nearest to the

point. This model line will be referred to below as the target line.

4. Compute the transformation
T

b x y , which minimizes

the sum of the distance between the scanning points, and squares of

the target line, respectively.

5. Set
T T T

x y x y x y .

6. Repeat step 2-5 until the procedure converge. The result of the

overlap is
T

x y

7. Calculate error covariance match

Determining the target line

In determining the goal line for a scan point, the line is selected that has

the smallest distance (Euclidean) from the set of scan points. If this distance

exceeds a predetermined maximum distance dmax, there is no correlation. In

this case, the scan point treated as an outlier and removed for further steps.

Determining the transformation

The calculation of the transformation in Step 4 is constructed as a trans

function which rotates the scanning at an angle and translates with a

22

vector
T

t x y . However, the rotation is always around the position

T

s x yl s s of scan recording, the function trans emulates a scan point

T

i ix iyp p p as follows:

cos() sin()
(,)() ()

sin() cos()
i i s strans t p p l l t

 (2.16)

Under the assumption that the rotation angle is small, the trans

function can be approximated as:

1
(,)() ()

1
i i s strans t p p l l t

 (2.17)

At each scan point, the target line is given by the parameter

T

i ix iyu u u and ir is all the points z on the line so that T

i iz u r . For

simplicity, we assume that the line is infinitely distance (in the determination

of the target line in step 1 but assumed the finite line segments), the squared

distance of a scan point ip to the target line can be calculated as follows:

2

2 (,)()
T

i i idist trans t p u r (2.18)

Substituting equation (2.17) into (2.18) we obtained:

2

2
1

()
1

T

i s s i idist p l l t u r

 (2.19)

2

2
0 1

()
1 0

T

i s i i idist t p l p u r

2

() ()iy y ix ix ix x iy iy ix p s p u y p s p u r

2

1 2 3, ,i i i ix x x b y (2.20)

23

where:

1i ixx u (2.21)

2i iyx u (2.22)

3 () ()i iy y ix ix x iyx p s u p s u (2.23)

3 () ()i iy y ix ix x iyx p s u p s u (2.24)

(, ,)Tb x y (2.25)

Then, the sum of squares distance fitE between scan points and target line

for n scan points ...i np p is given by:

2

1 2 3

1

() , , () ()
n

T

fit i i i i

i

E b x x x b y Xb Y Xb Y

 (2.26)

where:

11 12 13

1 1 1n n n

x x x

X

x x x

 (2.27)

1

n

y

Y

y

 (2.28)

The function fitE must be minimized and the associated transformation b is

determined. Differentiates Efit according to b and sets the resulting

expression equal to zero:

()
0

fitE b

b

 (2.29)

2 () 0TX Xb Y (2.30)

T TX Xb X Y (2.31)

1()T Tb X X X Y (2.32)

24

The vector b is exactly the desired transformation in step 4

Convergence and error covariance

Steps 2-5 of the Cox algorithm is repeated until converges the algorithm.

For convergence, we consider the calculated transformation vector b and

checks if it is small enough. This requires two conditions as follows:

2 2

distx y (2.33)

 (2.34)

The values of dist ex and depend on the laser scanner and must be

chosen appropriately. For commercially available laser scanners provide

values from 1mm - 10mm for e dist and 0.5°~ 1.0 ° for to achieve good

results.

In addition, Cox method can use the result vector
T

x y
 in order to

calculate the error covariance matrix match which indicates the accuracy of

the estimated transformation. This is calculated as [27]

11
() ()()

4

T T

match Y Xb Y Xb X X
n

 (2.35)

2.1.4.1.2. Extension of the Cox algorithm

An obvious extension of the Cox algorithm by using a pair of overlap

scans extracted from the reference scan lines and used them as a priori model

for Cox algorithm.

Fig. 5. Shows the structure of the extended Cox algorithm. The Cox

algorithm forwarded as a priori model from the reference scan line and a line

model obtained. The current scan is preprocessed with line filter before

applying to the Cox algorithm as well. In this way, model lines are minimized

25

wrong overlap of scan points. As a result is obtained by mean and covariance

matrix of the scan overlap error also an error value, which indicates the

quality of the computed overlap. This value is calculated as the median of all

distances assignments of scan points to model lines according to overlap, a

high error value is so bad overlap since the distances of scan points to model

lines are large, a low value indicates a good matching.

Fig. 5. Scheme of extended Cox algorithm

To reduce a number of incorrect matching, the Cox algorithm has been

extended by two heuristics. First, the current scan is filtered through a line

filter, that is, scan points that are not on a line segment are removed. This

reduces the amount of false point to line segment assignments in situations

where the environment is not totally polygon. Second, a hard coded threshold

of dmax is used to remove assignments that have a larger distance than dmax.

2.1.4.2.IDC Algorithm

IDC algorithm is an effective method for matching pair of scans, which

do not reply on a geometric interpretation of the two scans, was developed by

Lu and Milios [15, 21, 28]. In particular, the algorithm requires no features in

the scan data. Thus, this method is suitable in many environments.

Reference

scan

Current

scan

Cox Method

Line

Extraction

Line

Extraction

(, ,)x y

match
error

26

2.1.4.2.1. General approach

The general concept of IDC algorithm scans points of the current scan

matched with the reference scan points. In this case, this matching is similar

to the Cox algorithm, a minimize sum of error and the displacement and

rotation of the scans can be determined. For matching the set of scan points,

two heuristic function is used: closest-point rule and matching-range rule.

2.1.4.2.2. Closest-point rule

For each scan point of the current scan determines the point in the

reference scan which the scanning point is closest. There is interpolated

between the scanning points of the reference scan. It connects the scan point

with short line segments, therefore a partner must be not exactly a scanning

point of the reference scan, but a point on the line may be connected with two

adjacent nodes of scanning points.

The algorithm is very simple to determine the match partners of scan

point p with the current scan. Consider two successive scan points p1 and p2

of the reference scan and calculate the distance from p to the line segment

(p1, p2). The line segment with the smallest distance will contain this point,

under the assumption, the scanning is only rotated a little, and the search area

can be significantly reduced by the closest point. In addition, only scan point

pi of the reference scans are considered, their angle with respect to the initial

position of the current scan in an area around the angle of p. Mathematically,

this means that the absolute value of the angle between the straight lines

 , psl and , ps il must be less than an angular tolerance ω where sl is the

receiving position of the current scan. For implementation, it is advantageous

if the scan points of the reference scan are existed with ascending receiving

27

angle (with respect to
sl), since the use of this property allows the efficient

implementation of the search range limitation.

2.1.4.2.3. Matching-range rule

The second heuristic is assigned to each scan point of the current scan

with the point in the reference scan, which has the same distance with the

location point sl . There is a re-interpolated between the scanning point and

the reference scans. If no point is found, this means that these points have the

same distance. So that, points are chosen which distance is closer to the

desired distance.

The algorithm to determine the match partner for a scan point p of the

current scan is designed similar to the closest- point rule. Here are only

examined points ip of reference scans, which lie in the angular interval

described above. In this way can also be avoided completely incorrect

matching. The determination of the match partner is presented as follows:

Algorithm 6: find-matching-point (p,pi)

Input: scan point p; scan points pi , {1,..., }i n

Output: point p’

Procedure:

 d = distane(p,ls);

 d’= ∞ ; 'pp
d ;

 for i = 1 to n -1 do

 d1= distance(pi,ls);

 d2 = distance(pi+1,ls);

 if (d1 < d and d2 < d) or (d1 > d and d2 > d) then

 if | d1 – d| < | d2 – d| then

28

 dh = |d1 - d|; ph = pi

 else

 dh = |d2- d|; ph = pi+1;

 end

 else

 ph = interpolate(pi, pi+1,d)

 if d’ > 0 or distance (p,ph) < dpp’ then

 d’ = 0;

 dpp’ = distance(p,ph);

 p’ = ph;

 end

 end

 end

return p’

The algorithm examines all n-1 pairs of successive scan points in the

maximum limit angular interval, for each pairs, the distance d1 and d2 of the

position point is computed. If both distances are smaller or larger than the

desired distance d, this pairs of distance cannot find the correspond point. If

still not found better pint, in this case, the point p1 and pi+1 chooses as a

temporary match partner which distance is closer to the desired distance. If

the distances of the two points scanning, however, by the way that values less

than and the other is greater than the desired value, the interpolate function

can be interpolated between point p1 and pi+1 which has exactly desired

distance. There may have several pairs (pi, pi+1) including the distance

distribution. In this case, there is ambiguous correspondence.

29

2.1.4.2.4. Determination of the rotation and displacement

Once set of pairs correspondence (pi,pi’), i= 1…n have been determined

by one of the among rules described above, hence, the rotation and

translation can be calculated by minimizing a sum of squares of the distance.

The points pi of the current scan is also rotated and translated with and

T

t x y , respectively. Return to the receiving position of the scans ls.

Now, the sum of the square distance between the rotation and translation

points pi and pi’ are constructed.

' 2

2

1

(,) | ()() |
n

fit i s s i

i

E t R p l l t p

(2.36)

This function only needs to be minimized. The right side parameters t

and are calculate directly to [28]

' '1

' '

tan
xy yx

xx yy

S S

S S

(2.37)

2' ()()s st p l R p l

(2.38)

1

1 n

i

i

p p
n

(2.39)

'

1

1 n

i

i

p p
n

(2.40)

' ' '

1' '

()(')
n

xx xy

i i

iyx yy

S S
p p p p

S S

(2.41)

It was found that the closest-point rule is particularly suitable for

determining the displacement and the matching-range-point rule is well

suited for determining the rotation. Therefore, both methods were combined

and designed for the IDC- algorithm.

30

2.1.4.2.5. IDC algorithm

The IDC algorithm can be formulated as follows:

1. Set
T T

x yx y s s s . Here
T

x ys s s is the initial

estimate of the receiving position of the current scan which is given

by odometry.

2. Translation and rotation current scan position
T

x y

3. For each scan point p, determine the correspondence '

ip towards the

closest-point rule and apply the matching-range-point rule to

determine a correspondence point ''

iP .

4. Compute the solution 1 1 1(, ,)Tx y from the minimum sum of

square distance between the set of correspondence pairs '(,)i ip p .

5. Compute the solution 2 2 2(, ,)Tx y from the minimum the sum of

square distance between the set of correspondence pairs "(,)i ip p .

6. Set 1 1 2

T T T
x y x y x y

7. Repeat step 2-6 until the algorithm converges. The result of the

overlap is
T

x y

8. Compute error covariance match

The IDC –Algorithm is to take the translation component from the

closest-point rule solution and the rotation component from the matching-

range-rule solution to form the current solution for transformation.

2.1.4.2.6. Error covariance

The error covariance matrix match is calculated from the correspondence

31

pairs '(,)i ip p , i = 1 … n as follows [28]:

2 1()T

match s M M

(2.42)

where:

1

n

M

M

M

(2.43)

1 0

0 1

i

i

i

y
M

x

(2.44)

'1
()

2

i

i i

i

x
p p

y

(2.45)

2 () ()

2 3

TZ MD Z MD
s

n

(2.46)

'

1 1

'

n n

p p

Z

p p

(2.47)

1()T TD M M M Z (2.48)

Because of the simultaneous application of both heuristics, there are two

sets of correspondence pairs. It is not much difference exist between two sets

of correspondence pairs. Therefore, any of these two quantity correspondence

are used for calculating the error covariance matrix.

2.1.4.2.7. Extended IDC algorithm

An obvious optimization of the IDC- Algorithm is to edit the both

previously scans with median filter. In this way, the number of scan points is

greatly reduced without losing essential information. Furthermore, as Cox

32

algorithm, an error value is determined error which is calculated as the

median distance of scan point assignments for overlapping. This value is

smaller when two scans are good overlap, and large when the overlap is weak.

Fig. 6. Shows the schematic structure of the extended IDC algorithm

Fig. 6. Schematic structure of the extended IDC algorithm

2.1.4.3.Combined scan matching algorithm

In the previous section, both scans matching algorithms are presented.

These techniques are appropriate for exploiting polygonal structures where

the overlaps are determined for all variability, given accurate results and

compared with neither algorithm in order to provide significantly better

results. The Cox method requires a lower complexity and runtime as the IDC

algorithm. In non-polygonal environment the IDC algorithm yields better

results than the Cox algorithm. However, the IDC method in a polygonal

environment does not reduce all variance, for example, a neighborhood with

a long corridor, extremely optimistic.

Therefore, the combination of the Cox algorithm which developed for

polygonal environments with the IDC method which works well even in non-

polygonal environments are constructed, call combine scan matching method

Fig. 7. Shows the schematic structure of this combined scan-matching

method, the core of the process is a decision logic, which investigates to

overlapping scans and then uses one of two methods Cox Scan-Matching or

Reference

scan

Current

scan

IDC

Method

Filter

Filter

(, ,)x y

match

error

33

IDC Scan-Matching in order to calculate overlap. For the decision logic of

the two scans each line segments are extracted, and the percentage of the line

segments calculated in the total extent of the scans. If there are enough scan

points lying on line segments then the extended Cox algorithm is used.

Otherwise, the extended IDC is used.

Checking lines

in scans

Scan Matching

Line Extraction

Line Extraction
Current

scan

Reference

scan

Use

Extended

Cox

Use

Extended

IDC
(, ,)x y

match

error

NoYes

Fig. 7. Schematic of the combined scan matching method

2.2.Consistent position estimate

Lu and Milios following a different approach to the creation of the map

extracted from sensor data. They consider the full pose set p, and try to

global optimize p based on how well neighboring sensor scans match but it

can be directly processed the raw data of a laser scanner. There is no explicit

estimation of the map m; instead, the scans themselves are an explicit

representation of the map surfaces. The whole process is called consistent

pose estimation, since it finds a set of posed that minimizes the total error of

the system. Error terms come from robot motion, and also overlapping scans:

the better the scans match, the lower the error. The advantage here is that the

method can be used in any environment and not any features that must be

presented in the environment requires. The approach uses a combination of

34

relational-based and position-based representations, relations between

positions obtained by odometry information and scan matching, while the

positions are even free variables and are determined by solving an

optimization problem.

The knowledge acquired during odometry and scan matching relations

between positions a network is created that consists of positions as nodes and

relationships as links. In general, the relationships in this network are

inconsistent or contradictory, since relationships are not independent

variables and are subject to errors. The task now is to determine all positions

so that the inconsistencies are resolved as far as possible, i.e. be minimal.

This is achieved sum of error, which contains all the positions as free

variables and each relationship is transformed into an expression that can be

regarded as a spring between two positions. A spring has minimum energy

when the parties’ positions correspond exactly to the relationship. The sum of

error then calculates the total energy in the network, and the positions are

determined so that this energy is minimized.

2.2.1. Definition of the estimation problem

The estimation problem is considered as the following generic optimal

estimation problem. Assume that a network with uncertain measurement

n 1 nodes 0 1, ,..., nX X X , each node iX represents a d-dimensional position

vector. A link ijD between two nodes iX and jX represents a measurable

difference of the two positions. Generally, ijD is a function of iX and jX ,

which may be non-linear.

We model an observation of ijD as ij ij ijD D D , where ijD is a

random Gaussian-distributed error with zero mean and known covariance

35

matrix ijC . The goal now is to determine the best estimate of all positions

given a set of measurements ijD and covariance ijC . In addition, the

covariance matrices of the estimated position vectors are determined based

on the covariance matrices of the measurements.

The optimality criterion is the minimum variance (or maximum

likelihood). The node Xi is determined in such a way that the conditional

probability of the derived ijD , given their observations ijD , is maximized.

Assuming that all the observational error and Gaussian distributed

independently, the optimality criterion is equivalent to minimizing the

following Mahalanobis distance:

 1

(,)

T

ij ij ij ij ij

i j

W D D C D D

(2.49)

where W is the sum of all measurement overflows. In this case, a pair of

nodes ijD is no observation, the inverse of the associated covariance matrix is

set to zero,
1 0ijC .

By the linearity assumption, the measurement equation can be rewritten

as the following formulas:

 1

(,)

T

i j ij ij i j ij

i j

W X X D C X X D

(2.50)

Since only relative information is used in the function W, a position can

be freely selected. Without loss of generality, 0 0X and 1,..., nX X positions

are relative to 0X .

Noted that the measurement equations in matrix form as

D HX (2.51)

where X is an nd-dimensional vector consisting of the concatenation of

1,..., nX X , D is the concatenation of all the positional differences of the form

36

ij i jD X X and H is an incidence matrix which all entries being 1, -1 or 0.

Then the function W is formulated in follows matrix form:

 1T

W D HX C D HX

(2.52)

Here D is the concatenation of all observations and C is the covariance

matrix of D which is a square matrix consists of ijC as sub-matrices.

The solution for X which minimizes W is given by

1

1 1T TX H C H H C D

(2.53)

and the covariance of X as

1

1T

XC H C H

(2.54)

If the measurement errors are independent, C will be block-diagonal

matrix and the solution can be simplified. Let G is nd x nd matrix 1TH C H .

The dxd sub-matrices of G may be determined by

1

ij ijG C

(2.55)

1

0

n

ii ij

j

G C

(2.56)

In addition, let B is the nd-dimensional vector 1TH C D , the d-

dimensional sub-vectors of B can be determined by

1

0; #

n

i ij ij

j j i

B C D

(2.57)

Then the position estimate X and covariance matrix XC are obtained:

1X G B (2.58)

1

XC G

(2.59)

Above equation requires 1TG H C H is invertible matrix. Lu and Milios

suggest that it is possible to prove the inevitability of G, where the network is

37

fully connected and the individual error covariance are normally behaving.

2.2.2. Application for the mapping

A typical application of this optimal estimation is in mobile robot

navigation, to estimate the robot position , ,
T

i i ix y with position

uncertainties i at different time i. The observations are relative to position

information which determined from scan matching. Then the method can

record positions that are determined from data taken during travel distance

and entries the data into a global coordinate system, a consistent environment

map is created.

In this application, the measurement equation ijD is non-linear because

of the angle component in the robot pose. Lu and Milios [15], however,

show how the linearized measurement equation in this case and the

optimization method can be applied. Since the linearization errors occur

which is proportional to the initial position estimate, the method is applied

iteratively. In practice four or five iterations are sufficient to converge on the

result precision.

The time complexity of the consistent position estimate for a record of n

scan consists of the time for the development of the network and to determine

the optimum positions. For the assembly of each pair of scanning must be a

check whether there is enough overlap exists, and, if necessary, a scan

overlap is performed.

This method requires a good initial estimate of the scan pose in order to

generate useful results. Therefore, it is used for two different purposes:

1. In order to create local maps patches of the previous few scans the

robot obtained. In this case the scan pose are always topological

38

correct data, since very little odometrical error has been accumulated.

Even though if the larger odometry errors, use of scan matching and

local registration can often recover the correct geometry.

2. For closing a loop after topological relationships are obtained from the

map correlation. In this case, consistent pose estimate is first run with

the new links added to the map and then, after closing the loop leading

to a topological correct map, return with new scan matches between

the newly linked poses for fine-tuning the map.

A typical network topology is shown in Figure 2.4. If a new pose ln is

added to the chain, so only the last K scan pose for updating the map is used.

Several properties of this incremental update should be obtained. First, the

computation complexity at each step is constant since the number of modes is

limited. In particular, the computational cost is independent of the map size,

since the overlap of the individual scans is very efficient; the whole

procedure is very quick.

1.3 Map Correlation

Map correlation is the main reason for matching a patch that integrates

several scans and also for providing post match filters to reject false positives.

To determine the relationship between poses that close a loop, a recent

portion of the maps around the current pose created from the robot compared

with the previous parts of the pre-generated map. Where there is a good

match, it is likely that the new pose is topologically connected to one of the

older poses.

In the current method of the LRGC algorithm, once a topological

connection is made, it is not possible inserted or removed it, since the closing

of a loop all poses are updated and no history are maintained. For this reason,

39

any such connection needs to be very certain before it is made. This is the

main reason for matching a patch that integrates several scans and also for

providing post match filters to reject false positives.

A further constraint on map matching is that it must be efficient. The

correlation [23] procedure has provided a fast and precise matching. The

justification for correlation technique lies in a Bayesian analysis of the match

probability. For slightly given new map patch r and previous map m, the

posterior probability is sought that the robot is at pose l. From the Bayes’ rule,

the posterior probability can be obtained as

(/ ,) . (/ ,) (,)p l r m k p r l m p l m (2.60)

Here gives the response function (/ ,)p l r m is the probability that we

would see the map patch r from the robot pose l, given the old map m. As

shown in [23], the sensor model can be approximated by a correlation

operator. A regular grid is imposed on the map area, and for each cell i, the

occupancy probability ()ip r of the map patch impinging on the cell is

calculated and ()ip m of the previous map impinging on the cell i. The

correlation operator is:

(,) () ()i i

i

corr r m p r p m (2.61)

In practice it is convenient to put all the uncertainty into the map

probability ()ip m , simplifying the above sum and leads to an optimized

implementation (for details, see [23]).

In general, the probability should sum to less than one over the match

area, that is, the robot’s current map patch doesn’t overlap with the old map.

In order to estimate how the patch map doesn’t match, the correlated

response will be normalized, and then use filters to reject false positives if

there is unsatisfied match.

40

1.4 LRGC algorithm

Fig. 8. Shows the basic scheme used for updating the map when a new

scan is received from the laser range finder. A map is represented here as an

undirected graph, where nodes are robot pose with associated as scans and

links are constraints between pose obtained from scan matching or

correlation map. The empty graph is used as the initial map.

Current

scan

Last K

Scans Consistent

Pose

Estimation

Map Correlation

Add scan and

links to map

Discard last m

Scans

Add link to map

Consistent

Pose

Estimation

Use update map
Explicit

Pos.?

Current

map

Link new

scan pose

Local map

patch

Pos.

 prob.

Yes

No

New map

Partial map

Updated map

Fig. 8. Data flow of the LRGC mapping algorithm

When a new scan is added to the map, it is first registered with the last K

scans to align and to improve the position estimation from the odometry.

Then, the new scan pose is added together with its links to the current map.

This result leads to updated map.

Loop detection is implemented in the remaining part of the flow chart.

Form the updated, an old map is extracted that is assumed to be topological

correct. This is done by discarding the last m scans (with m > K) to avoid

recent scans are available in the old map. A local path is also created from the

newest scans and correlation with the old map. The resulting position

41

probability distribution is examined according to the filter described in the

previous section. If the highest peak passed through the filter, it can be

assumed that a topological relation has been found. In this case the relation is

added to the map and consistent position estimate used to close the loop, and

adjust the map.

For finding topological relations, the search space is limited to an area

around the current robot pose. This region grows with the pose uncertainty of

the robot. The pose uncertainty is modeled with a Gaussian distribution and

only test topological relations for pose that have a Mahalanobis distance to

the robot pose smaller than a given threshold. Moreover, the local map size is

adjusted linearly with the position uncertainty to compensate for possible

ambiguities in large search spaces. Therefore, larger cycles are only closed if

it exists a good evidence for topological relationship. Once a cycle has been

closed, position uncertainty decreases and search space and path size fall

back to small values automatically.

At the end of map building, after all the scans have been integrated, the

map can be further optimized by applying the consistent pose estimation

overall scans poses.

42

2. LOCALIZATION

Localization is the process of updating the pose of the robot in an

environment based on sensor readings. The localization with respect to an

internal map play an important role since the robot that cannot position itself

accurately is at risk from obstacles or dangerous areas that are in the map but

which cannot be easily sensed.

In order to build maps, good localization is required. Currently, a majority

of mobile robots odometric information is not accurate enough for reasonable

localization. As the identification of the moving objects is based on previous

maps of the same region, accuracy errors to determine the exact position of

the robot can lead to mistakes such as considering static parts of the

environment as moving objects.

This section discusses a method for localization of a mobile robot. The

assignment here is to determine the position of the robot based on a prior

map and sensor data from the robot.

Generally, there are two different localization problems: global-

localization and local-localization. In the global-localization, the robot adds

any location and the system will be given the opportunity to observe the

environment by the robot’s sensors. Then, the system must decide what a

possible position of the robot is by evaluating the sensor information. The

process to make this decision is usually cumbersome and required depending

on the size of the search space corresponding to large amount of computing

time.

On the other hand, the local-localization, the approximate position of the

robot is known and it is “only” a position correction can be calculated. In this

case, when the robot is placed at an approximately known position and then

43

continuously determines its position by comparing the sensor data with

environment map.

This research deals mainly with local-localization methods. Firstly, a

well-known localization method, dead reckoning, presented which evaluates

the odometry sensor data. This method is utilized in most robotics systems.

Then, a method is discussed in more detail, scan matching and Kalman

filtering, used to implement a local position determination. A sample runs in

a dynamic environment which demonstrates the robustness of the scan

matching methods.

3.1 Dead Reckoning

In the dead reckoning navigation, the position change of a vehicle is

determined by measuring the distance traveled of one or a number of wheels.

For this purpose, the wheels are mounted sensors that measure the rotational

movement of the respective wheel. Additionally, a gyro may be used to

determine the orientation of the robot reliably.

3.1.1 Tricycle kinematics

Fig.9. Shows a robot with three-wheel kinematics. This kinematics are

often used in mobile robotics. For example, it comes in the Pioneer 3DX

robots, which has been used for numerous experiments in this work. The

following is discussed more detail in this kinematics. The results can also be

applied to other system kinematics.

The two front wheels on Pioneer 3DX robot are the drive wheels and

equipped with sensors to determine the distance traveled. The rear wheel is a

freely rotating and idle wheel as it is, for example, used in office chairs.

44

Fig. 9. Tricycle kinematics as used for example on the Pioneer 3DX Robot

Usually, this kinematic is chosen the reference point in the center of the

axis of the wheels with odometry sensors. This achieves a simple calculation

of the change in position of the distance which has been completed by the

two wheels. The traveled distance is calculated as the average of the

distances of the two wheels and the change in orientation is proportional to

the difference of the two values. The following describes how the current

position can be calculated from this information.

When vehicle is moving, at regular interval, the vehicle position is

updated. For this purpose, the traveled distance δ and the change in the

orientation α since the last time is measured and set off against from the

current vehicle position. For simplicity, it is assumed that the vehicle is

moving during this period almost rectilinear. Although this gives some error,

this can be arbitrarily reduced by choosing a smaller time interval between

measurements.

The robot position (, ,)Tl x y is updated by adding (,)Ta using

the following formula:

45

cos()

(,) sin()

x

l F l a y

 (3.1)

One problem of the location determination is that errors occur in the

odometry. For example, the wheels slide (wheel spin), be out of round, it can

be wrong due to uneven ground distances can be measured or running on the

ground, does not allow accurate measurement of the distance traveled. These

errors are typically quite low, for example, short distances provides dead

reckoning very accurate results. Hence, the distance error is increasing

without boundary limit.

Naturally, the occurring odometry error can be reduced. However, only

the error will be reduced, but not the fundamental problem solved in that the

position over long distances will be inaccurate. To solve this problem, further

sensors may be included, for example distance measuring sensors, such as

laser scanners. Nevertheless, the position error, which is generated in the

dead reckoning, is modeled. The following will be discussed in more detail.

3.1.2 Position error

It is assumed that the errors of the position determination are normally

distributed by dead reckoning, that is, measured distance and rotation are

underlies Gaussian distribution. Furthermore, in a larger number of

positioning systems (for example, the system based on Kalman filter) also

modeled the robot position by a Gaussian distribution. This introduces the

following representation.

~ (,)l ll N (3.2)

(, ,)T

l x y (3.3)

46

2

2

2

x xy x

l xy y y

x y

 (3.4)

~ (,)a aa N (3.5)

(,)T

a (3.6)

2

2

0

0
a

 (3.7)

At the input a, it is assumed that the distance traveled not correlated

with the change in the orientation , so 0 .

The parameters of the function F are considered as a vector (, , , ,)Tx y ,

the formulas may be used directly, mean value and covariance matrix in order

to determine the old position of the vehicle and the input of the new vehicle

position.

3.2 Categories of localization methods

Generally speaking, localization methods fall into three basic categories:

behavior-based approaches, landmark localization and dense sensor matching.

Behavior based approaches are based on the interaction of robot actions

with the environment to navigate. For example, robot followed a right-hand

rule to traverse an office environment and found its way back reversing the

procedure. While behavior-based systems are very useful for certain tasks,

their ability to localize a robot geometrically is limited since their navigation

capability is implicit in their sensor and action history.

Landmark localization is based on the recognition of landmarks to keep

the robot localized geometry. The landmark may be given a priori or learn

from the robot system as it explore the environment [25]. While landmark

47

localization methods can achieve impressive results in geometric localization,

they require either engineering the environment to provide a set of adequate

landmarks or efficient recognition features to use as landmarks. In contrast,

dense sensor data comparative methods [8, 21] attempt to use whatever the

sensor information is available to determine the robot position. This is

accomplished by matching the dense sensor scans against a surface map of

the environment, without extracting landmark features. Hence, dense sensor

data comparative method can take advantage of any existing features in the

sensor data without having to explicitly decide what constitutes a landmark.

In the following, scan matching with Kalman filter which uses a Gaussian

probability distribution is presented.

3.3 Scan matching localization

Scan matching localization is a process which has been successfully used

to localize a mobile robot [15, 21, 26, 27]. Usually, Kalman filter is used to

fuse with the pose estimate by audiometry and scan matching.

Scan matching localization using Kalman filtering represents the

probability distribution of the robot position by a Gaussian distribution:

() (,)l lp l N (3.8)

Likewise odometry errors and scan-matching correction can be modeled

by Gaussian distributions. This has the advantage that robot positions can be

calculated with high accuracy and an efficient fusion method can be used,

namely, Kalman filtering.

On the robot moves (,)Ta , and then the prediction step, the new

robot position is calculated using the formulas:

48

cos()

(,) sin()l

x

F l a y

 (3.9)

T T

l l l l a a aF F F F (3.10)

From the scan matching a pose update 0 with an error covariance

matrix 0 is obtained and the robot pose and covariance is updated using the

formulas:

1

1 1 1 1

0 0 0l l l l

 (3.11)

1

1 1

0l l

 (3.12)

These equations show that Kalman filter based location can be efficiently

implemented. As long as the error models are accurate, Kalman filter will

provide a very good position estimate.

The success of the Kalman filter depends on the ability of scan matching.

If scan matching provides a false position estimation, the Kalman filter also

computed incorrectly, fused estimate. In the worst case, the robot cannot

localize or provides incorrect position values.

49

4 PATH PLANNING AND COLLISION AVOIDANCE

4.1 Path planning

Path planning for mobile robots consists of finding a sequence of state

transitions that leads robot from its initial state to some desired goal state.

Typically, the states are robot locations and the transitions represent actions

the robot can take, each of which has an associated cost.

Path planning in a dynamic and unknown environment is the most

complicated case in robotic motion planning, and is also the most common

situation that mobile robots will confront. In the real world, mobile robots

often need not only to avoid static obstacles, but also to avoid colliding with

the large obstacle lives. Due to the complicated and unknown environment,

the robot cannot adopt one time global path planning for the environment.

The global optimized is thereby difficult to be obtained. The robot has to use

sensors acquiring the information about the surrounding environment and do

online real-time path planning. The planning time for mobile robot should be

short because the robot needs a sufficient time interval to adjust its

movement in order to avoid the coming obstacle.

Given a particular goal, a robot must be able to generate a path that it will

follow from its current position in the environment to the specified goal.

In the two previous sections have described how a robot can determine its

position using a map of the environment, and how it can create this map from

a data exploration movement. To obtain a complete navigation system in

which the robot system operates autonomously in its environment, the system

must also be able to path determination and motion planning. This is the

subject of this section.

50

The robot trajectory or motion planning in the presence of moving

obstacles are studied. The goal is to find an optimal robot trajectory

(consisting of both path and the motion along the path) which avoids

collision with moving obstacles. Some theatrical result about the complexity

or trajectory planning can be found in [10,32]. Some heuristic approaches for

planning a collision free path in the presence of moving obstacle are

presented in [26, 29, 31].

The problem of path planning can be formulated as follows: a start

position (the current position of the robot), a target position and a

neighborhood are given. We look for a sequence of actions, for example a

sequence of intermediate positions that the robot interference (also without

colliding with obstacles) moving from the start to the target position. This

problem has been studied extensively by Latombe [29]. There are many

different approaches presented and complexity assessments determined.

An idea of abstracting the problem of motion planning lies in the concept

of configuration space. The concept of configuration space has been widely

used for solving the path planning problem. The configuration space consists

of all possible positions (location and orientation), in which the robot may be

in its vicinity. Through this model, the robot can be modeled as a point and

the path planning is reduced to design of a point in configuration space.

For the movement in the plane of planning the configuration space is

three dimensional, the robot is a cylinder and it can be rotated on the spot,

that is, drive at any time in any direction, then the configuration space is

reduced to 2 dimensions since the orientation of the robot is no longer

important. In many processes, therefore, the robot is assumed to be circular

or extended the shape of the robot to circle. In this work, this assumption can

also be used to design a new grid space path planning method.

51

The rest of this section is organized as follows. In the former, different

approaches to motion planning is presented as outlined in [29].

The second, we introduce the path planning algorithm focused on

determining a path that fulfills a specified direction represented by using the

focused D* search algorithm. The FD* approach divides the environment

into cells of equal size is discussed in detail and show that it is suitable for

large environments. The robot creates a topological route map by laser scans;

it can be scheduled on the efficient paths over long distances. For local

planning of individual intermediate points, a FD* approach is used with a

limited search space. This results in an efficient and robust path planning

system that avoids obstacle dynamic reactive recognizes impassable ways

and find alternative routes. In this method, an experiment is implemented

with a Pioneer 3DX robot in which the system has a number of times to plan

a new path. Finally, the method is evaluated and discusses potential problems.

4.1.1 Approaches for path planning

There are a variety of procedures for planning the motion of a mobile

robot. Most of these methods classify into the following categories:

Roadmap approach: the roadmap approach to path planning consists of

capturing the connectivity of the robot’s free space in a network of one-

dimensional curves lying in the free space. Once a roadmap has been

constructed, it is used as a set of standardized paths. Path planning is thus

reduced to connecting the initial and goal configurations to the points and

searching for a path between these points.

Potential field approach: the idea of this approach is to make the robot

move as particles in an artificial potential field. In this case, the potential

field is induced by the target position, which an attracting force, and the

52

obstacles produce a repulsive potential. The negated gradient of the total

potential is treated as an artificial force applied to the robot. The position and

direction vector (,)TX x y of robot are fixed on by a composite of attractive

force and repulsive force.

The attractive potential field function is given by:

21
() (,)

2
att gU X kd X X (4.1)

Where:

k: positive scaling factor

X: position of the robot

Xg: goal of the robot

(,)g gd X X X X : Distance from robot to goal (4.2)

The attractive force attF is negative grads of the attractive potential field

function:

[()] (,)att att gF U X kd X X (4.3)

The repulsive potential field function is described by

0 0

0

0 0

(,)1 1
0.5

() (,)

(,)0

ref

d X X d

U X d X X d

d X X d

 (4.4)

 : positive scaling factor

0(,)d X X : the shortest distance between the robot and obstacles

The term of constant 0d is the distance of influence imposed by the

obstacle; its value depends on the condition of the obstacle and the goal of

the robot, and it usually less than half distances between the obstacles or

shortest length from the destination to the obstacles.

When the robot is not at the goal, the repulsive force is

53

0 0

0 0

0 0

() [()]

(,)1 1 1

 (,) (,)

(,)0

ref refF X U X

d X X d

d X X d d X X

d X X d

 (4.5)

The resultant force is

att refF F F (4.6)

F navigates the movement of the robot as illustrated in Fig.10.

Fig. 10. Artificial Potential Field Method

The potential field methods can be very efficient to plan paths for a robot.

However, it also has some drawbacks. The major problem is that robots are

often trapped into a local minimum before reaching the destination.

Therefore, this method is combined with many other computational methods

to improve its efficiency.

A* algorithm finds a path as good as found by Dijkstra’s algorithm but

does it much more efficiently using an additional heuristic to guide itself to

the goal. Dijkstra’s algorithm uses a best first approach. It works by visiting

modes in the graph starting from the start point and repeatedly examining the

54

closest not yet examined node until it reaches the goal. A* always first

expands the node with the best cost calculated by () () ()f n g n h n . Where

()g n represents the cost of the path from the starting point to the node n, and

()h n represents the heuristic estimated cost from the node n to the goal.

Usually, for calculating the heuristic cost, the Euclidean distance is used.

These methods have the serious disadvantage that the robot can operate in

local minima, from which he can only get out by using additional

mechanisms again. For this reason, this approach will not be further pursued.

In the following, a Focused Dynamics D* (FD*) is presented for motion

planning and described problems of this approach due to its efficient use of

heuristics and incremental updates.

4.1.2 FD * path planning algorithm

In this work, the FD* [32, 33] graph search algorithm is used to find the

global path from the current position to the goal position. The FD* algorithm

can handle increasing or decreasing arc costs and moving start states. This

method uses the focusing heuristic function to estimate the estimated path

cost from the current location to the goal to help the robot to minimize its

search space. It plans optimal traverse in real-time by incrementally repairing

paths to the robot’s state as a new environment information is known, which

makes it possible to greatly reduce the computational cost. When the robot

gathers new information about the environment, it will re-plan new paths

based on the new information and procedure a path for the robot.

4.1.2.1 Definitions and Formulation

The set of states denote robot location connected by directional arcs, each

of which has an associated cost.

55

The term of G denotes the goal state from the robot starting at a particular

state and moving across arcs (incurring the cost of traversal) to other states

until reaching the goal state.

Every state X except G has a backpointer to a next state Y denoted by

()b X Y . The D* use backpointer to represent the paths to the goal.

Arc cost function c (X, Y) is the cost of traversing an arc from state Y to

state X. This cost is a positive number and the cost function c (X, Y) is

undefined if Y does not have an arc to X. Therefore, two states X and Y are

neighbors in the space if c (X, Y) is defined.

D* use an OPEN list to propagate information about changes to the arc

cost function and to calculate the path cost to states in the space. Every state

X has an associated tag t (X) such that:

 if X OPEN list

() if X OPEN list

 if X OPEN list

New

t X OPEN

CLOSED

For each visited state X, D* maintains an estimate of the sum of the arc

cost from an X to G given by path cost function h (X). This estimate is

equivalent to the optimal (minimal) cost from the state X to G.

The key function k (X) is defined to be equal to the minimum of h (X)

before modification and all values assumed h (X). The key function classifies

a state X on the OPEN list into one of two types: a RAISE state if

 k X h X , and a LOWER state if k X h X . D* use RAISE state

to propagate information about path cost increases and LOWER state

propagate information about path cost reductions. The propagation takes

place through the repeated removal of the states from the OPEN list. Each

time a state is removed from the list, it expanded to pass cost changes to its

56

neighbors. These neighbors are in turn placed on the OPEN list to continue

the process.

Let
0 1{ , ,..., }NR R R be the sequence of states occupied by the robot when

states were added to OPEN list, where iR is the robot’s state at the time X

was inserted on the OPEN list and a biased value (,)B if X R .

The value of (,)B if X R is given by:

0(,) (,) (,)B i i if X R f X R d R R (4.7)

Where:

The function (,)if X R is the estimated robot path cost given by:

(,) () (,)i if X R h X g X R (4.8)

The function 0(,)id R R is the accrued bias given by:

1 0 2 1 1

0

(,) (,) ... (,) if i > 0
(,)

0 otherwise

i i

i

g R R g R R g R R i
d R R

 (4.9)

The function (,)g X Y is the focusing heuristic, representing the estimated

path cost from Y to X. A vector of values (, ,)Bf f k is stored with each state

on the list.

The parameters minf and valk are defined to be minimum values for all X

and be its corresponding k (X) value respectively. These parameters comprise

an important threshold for D*. By processing properly-focused f values in

ascending order, the algorithm ensures that for all states X, if min()f X f or

(min()f X f and () valh X k) then ()h X is optimal. Let currR be the current

state on which the search is focused, initialized to the robot’s start state. The

parameter currd is the accrued bias from the robot’s start to its current state.

57

0 0(,) 0currd d R R (4.10)

4.1.2.1 Focus D* Algorithm

Like A*, D* operates on a cost graph. The environment with the obstacles

is represented by a uniform grid map. The main idea of the method is

illustrated as follows: From the initial state, the method repeatedly selects the

neighbor with the minimum cost until propagates to the goal. Each small cell

in the map is called a state. Each state X has the arc cost of the state X to the

goal given by the path cost function ()h X . From the start point (start state),

all neighbor states of the current state are listed on the open list. From the

open list, the method calculates the arc cost of the states by ()h X . Then,

select the state with the minimum ()h X , go to this state, and new neighbors

are added to the open list. In the dynamic uncertain environment, when the

robot detects new obstacles or the absence of expected obstacles, the cost

values of the states in the area change. And the adjoining states are put on the

open list for cost correction. Encountering unexpected obstacles, D* will set

off a “raise” wave, a wave of increasing cost, through neighboring states.

When this wave meets with the states that are able to lower path costs, these

“lower” states are put on the open list to recalculate new optimal paths. When

it detects the absence of an expected obstacle, the arc of the path passing

through this “missing” obstacle is assigned a small cost, denoting an empty

space, and the adjoining state is put on the open list as a lower state, setting

off a “lower” wave, a wave of decreasing cost. D* is able to determine how

far the raise and lower waves need to propagate while providing the optimal

path for robot traverse continuously.

The basic D* method can use heuristic function to focus on the search in

the direction of the robot and reduce the total number of the state (grid)

58

expansion. The focus D* method uses the focusing heuristic function to

estimate the estimated path cost from the current location to the goal to help

the robot to minimize its search space.

We consider the FD* algorithm which is based on a path cost function h,

which represents the total cost from the current node of the search to the goal

node, and a heuristic function g, which estimates but never overestimates the

cheapest solution for achieving the current node from the start node in the

(x,y) grid map search space. The total cost function f g h determines the

order of expanding nodes in state space. The Focus D* algorithm consists

primarily of three functions: PROCESS-STATE, MODIFY-COST, and

MOVE-ROBOT.

The PROCESS - STATE is used to compute optimal path costs to the goal.

MODIFY- COST is used to change the arc cost function and enter affect

states on the OPEN list.

MOVE-ROBOT uses the two functions to move the robot optimally.

Initially, t (X) is set to NEW for all states, h (G) is set to zero, and G is

placed on the OPEN list. The first function, PROCESS-STATE, is repeatedly

called until the robot’s state, X, is removed from the OPEN list. The robot

then proceeds to follow the backpointers in the sequence {X} until it either

reaches the goal or discovers an error in the arc cost function c. The second

function, MODIFY-COST, is immediately called to correct c and place

affected states on OPEN list. The robot’s state is updated on it discovers an

error, a possibly new sequence states has been constructed, and the robot

continues to follow the backpointers in the sequence toward the goal. The last

function, MOVE-ROBOT illustrates how to use Process-State and Modify-

Cost to move the robot through the environment with the goal along the

optimal traverse. The algorithms for these functions are presented below

59

along with three of more detailed functions for managing the OPEN list:

INSERT, MIN-STATE, and MIN-VAL. The user provides the function

GVAL(X,Y) which computes and returns the focusing heuristic g(X,Y). The

embedded routines are:

 MIN a,b returns minimum of two scalar values a and b.

COST(X) computes (,) () (,)curr currf X R h X GVAL X R and return the

vector of values (,), ()currf X R h X for a state X.

DELETE(X), which deletes state X from the OPEN list and set

()t X CLOSED .

PUT-STATE(X) inserts X on the OPEN list according to the vector

((), (), ())Bf X f X k X .

GET-STATE returns the state on the OPEN list with minimum vector

value.

The INSERT function changes the value of ()h X to newh and inserts or

repositions X on the OPEN list. The INSERT function is described as:

Function: INSERT(X,hnew)

If t(X) = new then k(X) = hnew

else

 If t(X) = OPEN then

 k X ((),)newMIN k X h ;

 DELETE(X);

 else k X ((),)newMIN h X h

() newh X h ; () currr X R ;

() () (,)currf X h X GVAL X R ; () ()B currf X f X d

PUT-STATE(X)

60

The function MIN-STATE returns the state on the OPEN list with

minimum f value. In order to do this, the function retrieves the state on the

OPEN list with lower value. If the state was placed on the OPEN list when

the robot was at a previous location, then it is re-inserted on the OPEN list.

This operation has the effect of correcting the state’s accrued bias using the

robot’s current state while leaving the state’s h and k values unchanged.

MIN-STATE continues to retrieves states from the OPEN list until it finds

one that was placed on the OPEN list with the robot at its current state.

Function: MIN-STATE ()

While X = GET-STATE () = -1

if () currr X R then

 ()newh h X ; () k Xh X ; DELETE(X); (,)newINSERT X h

else return X

return -1

The MIN-VAL function returns the f and k values of the state on the

OPEN list with minimum f value, that is, min(,)valf k .

In the function PROCESS-STATE cost changes are propagated and new

paths are computed. The state X with lowest f value is removed from OPEN

list. If X is LOWER state (e.i., () ()k X h X), its path cost is optimal. Each

neighbor state of X is examined to see if its path cost can be lowered.

Additionally, the neighbor state receives an initial path cost value, and cost

changes are propagated to each neighbor that has a backpointer X, regardless

of whether the new cost is greater than or less than the old. Because these

states are descendants of X, any change to the path cost of X affects their

path costs as well. All neighbors that receive a new path cost are placed on

the OPEN list, so that they will propagate the cost changes to their neighbor.

61

If X is a RAISE state, its path cost may not be optimal. Before the X

propagate cost change to its neighbor, its optimal neighbors are examined to

see if ()h X can be reduced. cost changes are propagated to NEW state and

immediate descendants in the same way as for LOWER states. If X is able to

lower the path cost of a state that is not an immediate descendant, X is placed

back on the OPEN list for future expansion. This action is required to avoid

creating a closed loop in the backpointer. Thus, the update is postponed until

the neighbor has an optimal path cost.

Function: PROCESS-STATE

X = MIN-STATE()

if X = NULL then return -1

((), ())val f X k X ; () valk X k ; ()DELETE X ;

if ()valk h X then

If ()t Y NEW & () () (,)h X h Y c Y X then

()b X Y ; () () (,)h X h Y c Y X ;

if ()valk h X then

If ()t Y NEW || (()b Y X & () () (,)h Y h X c Y X) ||(()b Y X &

() () (,)h Y h X c Y X) then

()b Y X ; (, () (,))INSERT Y h X c Y X ;

else

if ()t Y NEW || (()b Y X & () () (,)h Y h X c Y X) then

()b Y X ; (, () (,))INSERT Y h X c Y X ;

else

If ()b Y X & () () (,)h Y h X c Y X & ()t Y CLOSED then

(, ())INSERT X h X ;

else

62

if ()b Y X & () () (,)h Y h X c Y X &

()t Y CLOSED & () valh Y k then

(, ())INSERT Y h Y ;

return MIN-VAL()

In function MODIFY-COST, the arc cost function is updated with

changed value. Since the path cost for state Y state will change. When X is

expanded via PROCESS-STATE, it computes a new () () (,)h Y h X c Y X

and places Y on the OPEN list. Additional state expansions propagate the

cost to the descendants of Y.

Function: MODIFY-COST (X,Y,cval)

(,) valc X Y c

If ()t Y CLOSED then (, ())INSERT X h X

Return MIN-VAL ()

The function MOVE-ROBOT illustrates how to use PROCESS-STATE

and MODIFY COST to move the robot from S through the environment to G

along an optimal transverse. For all states, t is set to NEW, h(G) is set to zero.

PROCESS-STATE is called repeatedly until either an initial path is computed

to the robot’s state or it is determined that no path exists. The robot then

proceeds to follow the backpointer until it either reaches the goal or discover

a discrepancy between the sensor measurements of an arc cost s and stored

arc cost c due to a detected obstacle. If the robot moved since the last time

discrepancies were discovered, then its state R is saved as the new focal point

and the accrued bias currd is updated. MODIFY-COST is called to correct c

and place affected state on the OPEN list then called repeatedly to propagate

costs and compute a new path to the goal. The robot continues to follow the

63

backpointers toward the goal. The function return GOAL-REACHED of the

goal is found and NO-PATH if it is unreachable.

Function: MOVE-ROBOT(S,G)

()t Y NEW

0currd ; currR S ;

(,0)INSERT G ; (0,0)val

while ()t S CLOSED & 1val

()val PROCESS STATE

if ()t S NEW then return NO-PATH

R S

while R G

if (,) (,)s Y X c Y X then

if currR R

(,)curr curr currd d GVAL R R

currR R

(, , (,))val MODIFY COST X Y s X Y

while val No PATH

()val PROCESS STATE ; ()R b R

return GOAL-REACHED

FD* search fans out from the goal node, expanding neighbor nodes

within the contours of increasing f value until the start node is reached or all

possible obstacle free neighbors are exhausted upon which the algorithm

declares no path is found. Initial search by FD* algorithm sets pointer from

each state in the searched area to the next state and optimal paths to the goal

from every state in the expanded area of the environment are computed

simply following the pointers. Any discrepancy that is discovered from the

64

earlier sensory information about the vicinity of the robot environment

initiates algorithm on-line execution. The new path is then determined

redirecting the pointers locally. The number of expanded nodes is minimal

and consequently the time of execution.

4.2 Collision Avoidance Behavior

To operate successfully in populated environments, mobile robots must

be able perceive their environment and react to unforeseen circumstances and

re-plan dynamically in order to achieve their missions. To ensure safe

navigations, most of existing robot systems rely on reactive collision

avoidance modules to control the robot. The predominant hypothesis of these

approaches to collision avoidance is strictly sensor-based: Sensor readings

are continuously analyzed to determine collision-free motion.

In this section, we focus on the reactive avoidance of collisions with

obstacles. The Dynamic Window Approach [31] proposed in this work is

especially designed to deal with the constraints improved by limited

velocities and accelerations, because it is derived directly from the motion

dynamics of mobile robots. The DWA generates actuator command such that

the robot does not collide with obstacles because this method considers

periodically only a short time interval when computing the next steering

command to avoid the enormous complexity of the general motion planning

approach. The approximation of trajectories during such a time interval by

circular arcs results in a 2D search space of a translational and rotational

space. This search space is reduced to the admissible velocities allowing the

robot to stop safely. In various tests, the DWA figured out to be reliable even

in highly crowded areas. The advantage of the DWA over other low-level

colliding avoidance algorithms is the low complexity even at high speeds.

65

4.2.1 Modeling of Wheeled Mobile Robot (WMR)

The kinematical scheme of a mobile robot, where v is the velocity of the

robot’s centroid.
Lv is the velocity of the left wheel,

Rv is the velocity of the

right wheel, b is the bias of the WMR (distance between the planes of the

drive wheels), r is the radius of the drive wheels, (x,y) is the position of the

robot, and the orientation of the robot is shown in Fig. 11.

Fig. 11. Kinematic variables of the WMR

According to the motion principle of the rigid body kinematics, the

motion of a mobile robot can be described using equations (4.2.1.1) and

(4.2.1.2), where L and R are angular velocities of the left and right wheels

respectively, and is the angular velocity of the centroid as (4.2.1.3).

R Rv r , L Lv r (4.1)

R Lv v

b

 ,

2

R Lv v
v

 (4.12)

Substituting equation (4.2.1.2) into (4.2.1.2) which yields

()R L

r

b
 , ()

2
R L

r
v (4.13)

66

Moreover, the dynamic function of the robots gives

cosx v , siny v , (4.14)

Substituting equation (4.2.1.4) in (4.2.1.3) we obtained:

1

2
R

b
v

b r
 ,

1

2
L

b
v

b r
 (4.15)

The kinematic equation and its inverse are given:

()
2

()

R L

R L

r

v

r

b

 (4.16)

1

2

1

2

R

L

b
v

b r

b
v

b r

 (4.17)

4.2.2 General Motion equations

This section describes the fundamental motion of a mobile robot. The

derivation begins with the correct dynamic laws, assuming that the robots

translational and rotational velocity can be controlled independently. To make

the equations more practical, we derive an approximation that models

velocity as a piecewise constant function in time.

The use of a global reference frame allows the decoupling of the two

translational axes. The equation of motion of the x- axis can be expressed as

follows:

0

2

() (0)

1
(0)

2

it

i x i x

x i x i

x t x v t a tdt

x v t a t

 (4.18)

67

Where the term of
xa and

xv are constants acceleration and velocity

respectively.

Similarly for y-axis:

0

2

() (0)

1
(0)

2

it

i y i y

y i y i

y t y v t a tdt

y v t a t

 (4.19)

These equations show that when accelerating from a constant velocity to

achieve a given velocity command the robot describes a quadratic curve until

the desired velocity is attained. The curvature of those curves depends on the

magnitude of the acceleration. In order to achieve curves with low curvature

the two-dimensional search space is searched for different accelerations. If

the accelerations are chosen such that xy x ya a a , a motion command will

be defined as:

(,)x yv v v (4.20)

(,)x ya a a (4.21)

To determine if a motion command is admissible the length of the

resulting trajectory has to be determined. Simulation of the base motion

according to the equations of motion will determine the duration time it of

the trajectory until hitting an obstacle. The length of the trajectory can then

be computed analytically:

0

2 2

0
() ()

i

i

i

t

t

t

x x y y

l v dt

v a t v a t dt

 (4.22)

If the length of the trajectory permits the robot come to a halt after

moving for the duration of one servo tick, the motion command is considered

admissible.

68

4.2.3 Dynamic Window Approaches

The dynamic window approach is a velocity space local reactive

avoidance technique where search for commands controlling the robot is

carried out directly in the space of velocities. The dynamics window

approach desire to collision avoidance need to following properties:

 The robot must travel safely even with high speed. It therefore must

take the dynamic constraints into account.

 The robot should react adequately and rapidly to unforeseen

circumstances. This requires fast techniques for the detection of

obstacles and the selection of appropriate steering commands.

 The robot should make maximum progress towards the goal. This

implies that whenever advantageous, the robot should modify its

travel direction to stay away from obstacles.

This method takes into account the kinematic and dynamic constraints of

the robot. The search space is the set of current velocity vector (,)c cv , where

cv and c denote the translation velocity and rotational velocity respectively

that can be reached within the next sampling interval. Among all velocity

tuples those are selected that allow the robot to come to a stop before hitting

an obstacle, given the current position, the current velocity, and the

acceleration capabilities of the robot. These velocities are called the

admissible velocities. To determine the next motion command all admissible

velocities within the dynamic window are considered. Among those a

velocity is chosen that maximizes the alignment of the robot with the target

and the length of the trajectory until an obstacle is reached. Then the dynamic

window dV is defined as [31]:

69

(,) | [,]

[,]

a c a c

d

a c a c

v v v v t v v t
V

t t

 (4.23)

where the term of av and a represent maximal translational and rotational

accelerations of actual.

A velocity vector (,)v is considered safe if the robot is able to stop

along the trajectory defined by (,)v before crashing into any object that

may be encountered along that path. The set aV of admissible velocities can

be obtained as:

 min min, 2 (,) 2 (,)a b bV v d v v d v v (4.24)

Where

The term min (,)d v denotes the distance to the nearest obstacle on the

corresponding curvature.

The term of bv and b are maximal translational and rotational

accelerations breakage decelerations.

Let sV be the limitation of maximum translation and rotation velocity in

the search space, then the result search space rV can be described as the

intersection of the restricted areas:

r s a dV V V V (4.25)

In order to produce the search for velocities feasible and appropriate for

fast reactive response, the dynamic window approach considers exclusively

the first sampling interval to the collect the optimal velocity vector. The

velocity in the remaining n-1 sampling intervals is constant. The search is

repeated after each sampling interval and the velocities stay automatically

constant if does not exit commands are given.

70

The velocity maximizing a certain objective function (,)F v is selected

from the reduce set of velocities rV as [31]. The object function includes a

measure of progress towards a goal location, the forward velocity of the robot,

and the distance to the next obstacle on the trajectory. It is expressed as

weighted sum of the criteria target heading, clearance and velocity.

1 2 3(,) (,) (,) (,)F v k head v k dist v k vel v (4.26)

where:

The target heading (,)head v measure the alignment of the robot with

the target direction. The function (,) 1 /head v where is the angle

between the direction of motion and goal heading, result in large values for

good alignment with the goal heading. The goal heading is modified if the

robot’s lateral distance to an obstacle becomes too small.

The function (,)dist v is the distance to the closest obstacle. If there is

no obstacle existing on the curvature, this value is set to a large constant.

The function (,)vel v is used to evaluate the progress of the robot on the

corresponding trajectory. It can be defined as follows:

(,)
 if robot is far from goal

max(,)
(,)

(,)
1 if robot is close to goal

max(,)

v

v
vel v

v

v

 (4.27)

where max(,)v the maximum velocity of the robot can be achieved. It

will favor high velocities if the robot is far from the goal and low velocities

when it is close. If the trajectory that results from the motion command

passes through the goal region. The parameters 1k , 2k , and 3k can be adjust to

modify the behavior of the robot.

71

5 EXPERIMENTAL RESULTS

5.1 Simulation results

The mapping algorithm outline in the second section has been tested in

various environments. The results obtained in this section come from the

mapping algorithm running on simulated world data.

Fig.12 and Fig. 13 show the experiments have been carried out by

running robot around the virtual environment based on MobileSim platform

[44].

The proposed motion control algorithms have been implemented in Aria

programming [31] and tested on the virtual robot is equipped with SICK that

are used to detect dynamic obstacles and to update occupancy grid map

information. Obstacles considered by the dynamic window were represented

as point object. Partially known information about the state of the

environment is given a prior. The simulation results were taken and monitor

under MobileEyes software [44]. We tested a large number of various

situations and our motion control methods provided safe and efficient robot

motion in all of them. The results of a test are presented in Fig. 14

(a) (b)

72

(c) (d)

Fig. 12. Mapping simulation (a) Simulation environment constructed with a

number of objects, (b) Start scanning, (c) Final map.

Fig. 13. Sketch of the larger environment including the trajectories of the

robot. Lines of the walls correspond to the on-line detected obstacles which

are incrementally incorporated into the grid. The smooth curvature represents

the true robot trajectory. The robot was able to follow the planned optimal

path well.

In order to illustrate the functionality of the proposed path planning and

obstacle avoidance algorithms, the results of the test are presented in Fig. 14

where the robot moved across its path to the goal position. In the simulation

73

environments, we put a number of objects on the map. These objects are used

to test the colliding avoidance method. The robot motion obtained by the

presence of obstacles. Fig .14 shows the shortest global path in complex

environments.

(a)

(b)

(c)

Fig. 14. Motion control. (a) Path planning without obstacles, (b) and (c)

Robot traveled from the start position until reaching the goal and avoid

colliding with unexpected obstacles.

5.2 Experimental results

The map building algorithm outlined in the section 2 has been

implemented and tested using real robots and datasets gathered with real

74

robot. Our implementation runs online on the ActivMedia Pioneer 3DX

platform. The Pioneer 3DX robot is equipped with a SICK laser range finder

mounted on the robot platform. The laser sensor has a maximum viewing

angle of 180 degrees and an accuracy of the range-finder is 1 centimeter. The

experiments carried out in a variety of environments have shown the

effectiveness of our approach in indoor and outdoor environments.

In the first experiment, we use the Pioneer 3DX robot to build the map in the

Intelligent Control Lab (ICLab) (as depicted in Fig.15) and in a populated corridor

at Department of Mechatronics Engineering, Pukyong National University. The

maps of these environments are depicted in Fig.16 and Fig.17. The datasets have

been recorded with a Pioneer 3DX robot equipped with a SICK sensor. As can be

seen in the right image of Fig. 17, the quality of the final map is so high without any

significant errors or inconsistencies.

Fig. 15. The Intelligent Control Lab: The robot start in the lower left side and

runs around the loop. The right image depicts the resulting map generated.

In the second experiment, we created a 2-D graphic map of the outdoors on

Yongdang campus. From a bird’s eyes view, walls, trees and obstruction of

1m

75

the environment to be navigated as illustrated in Fig. 19 while the real world

environment is delineated in Fig. 18. Note that this environment partly

violates the assumptions that the environment is planar. Additionally, there

were objects like bushes and grass which are hard to be mapped with a laser

range finder. Furthermore, there were moving objects like cars and people.

Despite the resulting spurious measurements, our algorithm was able to

generate an accurate map.

(a)

(b)

Fig. 16. Corridors on the second floor of Department of Mechatronics at

Pukyong National University. (a) The corridor. (b) Detail of the corridor

(a) (b)

76

Fig. 17. 2-D environment map of a corridor in Mechatronics Building. (a)

The whole environment. (b) A detail showing different artifacts

(a) (b)

Fig. 18. Outdoor area near the Mechatronics Department building

Fig. 19. Map of the path in the outdoor environment.

In the third experiment, we reconstructed the map of a partial Yondang

77

Campus. The test environment was implemented corresponds to an semi-

outdoor area around several building such as the Chemical Engineering

building (B4), school bus stop, Mechanical Engineering building (B6) and

Mechatronics Department building (B9). The term semi-outdoor is used to

define an outdoor area which is close to a building and, thus, has both

structured and unstructured elements. Table 1 provides some general details

of the collected data. The environment consists of narrow, tiled, bushes and

the wall sides of building. Fig. 120. Shows the laser readings gathered in

environment.

Number of readings 72424

Number of lines 181

Average speed 25 cm/s

Table 1. Some details of the data gathered in the semi-outdoor environment

78

Fig. 20. Map of partial Yongdang Campus reconstructed by laser reading

gathered in environment.

The path planning method has been implemented and extensively tested

on our Pioneer 3DX mobile robot. This robot is equipped with SICK laser

range finder that is used to detect dynamic obstacles.

Fig. 21. Pioneer 3DX robot driving around an expected object.

The first experiment was carried out using the robot in our department

environment at Pukyong National University. In order to test the capacities of

our system to deal with unexpected obstacles we installed a number of

objects in the corridor and change their position frequently. Additionally,

people were walking in the environment. In the experiment, we did not

observe a single collision during which the robot traveled over 40 m with

average speeds of over 25 cm/s. Fig.21 show the typical situation during

these experiments. Here the Pioneer 3DX robot is moving around unexpected

obstacle in the corridor. During the experiment we found that the generated

79

paths were very smooth and that the overall behavior was quite efficient.

Fig. 22. Typical trajectory taken by Pioneer 3DX when reaching the target

position.

The robot travel along the corridor of our department environment and it

must collide avoidance is illustrated in Fig. 22. The image contains the

trajectory generated and unexpected obstacle position.

80

Fig. 23. Experimental run in the campus at Pukyong National University

Fig. 24 Trajectory of Pioneer 3DX travelling along the path shown in Fig. 22

81

Another experiment carried out in an outdoor environment is depicted in

Fig.23. Here we installed a large number of obstacles in front of a road to

increase the difficulty of reaching the goal position. As can be seen in the

image, the robot found the shortest path to reach the goal while colliding

object located on the path. Fig. 24 shows a sequence of images illustrating

the robot executing the steering commands.

6 CONCLUSIONS

This section summarizes the Thesis, and discusses the research

limitations of the project. Future research on navigation for mobile robot will

also be discussed.

6.1 Summary

We studied the problem of robot navigation in unknown and dynamic

environment using a laser range finder sensor. This thesis presented the

implementation of different types of high accuracy map building and

navigation for both outdoor and indoor applications. We performed the

arbitrary probability distributions across a grid of robot poses approach as a

robust scan matching localization technique to estimate the position of a

mobile robot. The scan matching approaches do not reply on the

distinguishable features in the environment. Hence, we avoid the difficult

process of feature detection and feature correspondences. We use most of the

sensor data in the matching process. This suggests that scan matching

methods are robust.

The map is generated by matching a scanned directly to another scan

82

without requiring an a priori world environment. Thus, these methods can be

used for exploration and map building in unknown environments. In

additionally; this method can work in general curved environments.

The results of localization by using scan matching localization approach

shows that it potentially can keep track of the robot’s position in an arbitrary

probabilistic configuration.

We presented an integrated approach to sensor based collision avoidance

and path planning for mobile robots in dynamic environments. Our algorithm

includes several techniques to deal with the complexity of the induced

problem during re-planning. The motion of an obstacle is regarded as the

motion of the occupied moving cells in a grid map. The predicted trajectory

of each moving cell is used for the collision calculation with the possible

robot trajectories. The path planning is proposed based on the FD* graph

search algorithm. The algorithm for producing the path is proved to be the

shortest path in the geometry space. The possible robot trajectories are

generated by using the dynamic window approach. The overall system is

highly efficient and can be run on a standard PC. It automatically adapts

itself to the performance of the underlying processor and to the complexity of

the search problem.

The algorithm has been experimentally implemented and tested on a

Pioneer 3DX mobile robot using a laser range finder. In all experiments our

method was able to generate safe trajectories. The experiments confirmed

that our algorithm yields efficient trajectories of the navigation system.

6.2 Research limitations

The project successfully implements the experiment mapping,

localization and path planning for mobile robots in dynamic environments

83

based on several methods as discussed in the previous sections. However,

there are still some research limitations in the project. The limitations of the

project are described as follows:

We comprehensively studied the techniques for matching a range scan for

deriving the relative position and heading of the robot. The difficulties are

issues in this problem are that the scans are noisy, discontinuous, not

necessarily linear, and two scans taken at different positions may not

completed overlap because of occlusion.

In the study of optimal registration of multiple range scans for mapping

an unknown environment, new sensor data are merged to a cumulative model

based on local registrations, and this may cause inconsistency in the model.

6.3 Direction for future research

To conclude our thesis, we point out several possible directions for future

research.

We have proven that it is sufficient to use a two-dimensional laser range

finder for robot localization in structured indoor environments where the

world contour is typically formed by long smooth walls. However, it will be

much more difficult to do this in a cluttered industrial workshop where the

nice wall structures are hidden by irregular, three-dimensional objects such as

pipes, racks, machines, moving objects such as people, cars, etc. it will be

interesting to examine if the laser range sensing is still capable of providing

localization for the robot. A possible approach is to use 3D range scans to

reveal more structures in the environment. Registration of 3D scans is

considerably more difficult than registration of 2D scans because the range

measurements are spares in 3D space. One possibility is to use an active

approach in collecting the measurements (to point the laser beam in the

directions where objects are observed from previous scans).

84

More robust localization algorithms should be investigated. Global

Positioning System (GPS) can serve to improve localization; however, GPS

currently is only precise to within several feet and is less precise indoors than

outdoors. For tasks that require more precision and accuracy, GPS cannot be

the sole solution. Software-based solutions such as Monte Carlo Localization

are also promising. Sonar may be used in conjunction with other sensing

modalities such as vision and laser to create more robust collision avoidance

systems in more unstructured environments.

Furthermore, building maps from sensor data is typically done only for a

limited period of time. After the robot has acquired a map, it uses this model

for a variety of different tasks. An interesting aspect in the context of map

learning is the lifelong map learning problem where the robot has to update

and maintain its model of the environment for a long period of time. The

longer the robot integrates observations obtained in the environment into grid

map, the more the map gets blurred. The reasons for this are small errors in

the observations, ambiguous situation for the scan-matcher, as well as the

sampling process for drawing the next generation of samples. One possibility

to overcome this problem is to abort the map update process and focus on

localizing the vehicle. Whenever the robot detects changes in the

environment it would have to updating the map model appropriately.

Though the integrated Focused D* and DWA solves the issue of obtaining

the optimal path and colliding avoidance in a dynamic environment. The FD*

method uses the focusing heuristic function to predict the estimated path cost

from the current location to the goal to help the robot to minimize its search

space. To enhance the performance of FD* algorithm, Field D* [43] method

was proposed. Field D* extends the standards D* algorithm by using linear

interpolation to derive the path cost of the points between grid intersections.

85

APPENDIX

A1. Notation

The following notations are used in this work.

The position of the robot is given by a row vector (, ,)Tx y which

contains location and orientation. For a matrix M and M
T
 specifies the

transposed matrix. M is square and regular, then M
-1

 denotes the inverse of

matrix M and det(M) its determinant.

For an angle α defined 2 ()R and 3()R associated rotation matrices

2

cos sin
()

sin cos
R

3

cos sin 0

() sin cos 0

0 0 1

R

A2. Normal Distribution

In the range of the sensor data processing is often assumed that the

probability of occurrence is based on measured values on a normal

distribution. One advantage of the normal distribution is that you can define

them completely by specifying the expected value (mean value) and variance.

The density function of the normal distribution for the scalar case with

mean x and variance 2

x is defined as follows:

2
1

2

2

1
()

2

x

x

x

x

p x e

Notation: 2~ (,)x xx N

In n-dimensional space, the above equation can be rewritten as:

11
() ()

2

2

1
()

(2) det()

T
x x xx x

x

p x e

86

Notation: ~ (,)x xx N , where x in a n-dimensional is expectation and

x is a n × n-dimensional covariance matrix.

A3. Mahalanobis distance

For the presentation of normally distributed density functions in the

multidimensional case point sets with equal probability density are

interesting. To determine this, set the density function p(x) is constant and

determined x

11
() ()

2

2

1
constant

(2) det()

T
x x xx x

x

e

1 2() () constantT

x x xx x r

In the two-dimensional case this equation describes a contour line of the

three-dimensional graph of p (x). This contour has the shape of an ellipse, the

value of the formula 1() ()T

x x xx x is the squared Mahalanobis

distance between the vector x and the mean value x . The importance of this

measure can be illustrated most simply in the scalar case with r = 1. The

equation then reduces to 2 2() 1x xx or 2 2()x xx . This means that

the Mahalanobis distance of x to the mean value x is closer to 1.

A4. Transformation of density functions

In the sensor data processing the problem is often given to transform

observations of a sensor in another uniform observation system. There are the

measured data from a normal distribution with a known mean and a known

covariance matrix. The question now is what probability distribution is after

the transformation.

87

Formally, a m-dimensional variable u, ~ (,)u uu N and a

transformation F: m n with F (u) = x, ~ (,)x xx N and given the

mean value x , and searched the covariance matrix x .

To determine the new normal distribution, a distinction between the two

cases, if F is linear or nonlinear.

Linear Transformation

In the linear case, F can be represented as F (u) = Au + b, where A is a

constant and b is an nxm matrix of n-dimensional column vector. For the

expectation x and covariance matrix x is given by:

()

()

()

x

u

E x

E Au b

AE u b

A b

((())(()))

(((())(()))

(((()))((())))

((())(())

T

x

T

T

T T

T

u

E x E x x E x

E Au b AE u b Au b AE u b

E A u E u A u E u

AE u E u u E u A

A A

Nonlinear transformation

If F is non-linear, so approaching it through a Taylor polynomial in an

appropriate reference point u and omits higher order terms:

() () ()()F u F u F u u u

Here () ()
F

F u u
u

 is an nxn matrix with the partial derivatives of F at

the point u . This matrix is called the Jacobian.

F is linearized at a suitable reference point u . For the reference point is

referring to the mean value of u, because we are only interested in the points

88

near the expected value
uu . Now the function F becomes to the linear

case, and then it follows the matrix A and the vector b:

()uA F

() ()u u ub F F

With the assistance of the results from linear case, the mean x and

covariance matrix x is obtained:

() () ()

()

x u

u u u u u

u

A b

F F F

F

() ()

T

x u

T

u u u

A A

F F

Example of transformation

Considering the measurement process of a 2d laser laser scanner, it is

found that the range measurements and the angle at which the measurements

take place are associated with an error. For this error, we assume that they are

normally distributed and independently.

Let d is the distance measured and is the angle at which the

measurement takes place, then d and normally distributed with

2~ (,)d dd N and 2~ (,)N , where d is the expected value (mean

value) of the actual distance and is the mean value of the actual angle

corresponds.

A measure ,
T

d is now converted to Cartesian coordinates by applying

the transformation F (see Fig…..)

cos
()

sin

d x d
F

y d

89

The transformation results for the Cartesian coordinates is determined by

a new distribution

~ (,)
x

xy

y

x
N

y

where:

cos
()

sin

x

y

d d
F

d

T

xy d d dF F

cos sin

sin cos
d

d
F

d

2

2

0

0

d

d

d

y

x

α

Fig. 25. Transformation of a measurement in Cartesian coordinates

A5 Kalman Filter

Usually, the situation is given with several measurements from different

sensors on the same facts. Each of these measurements provides a normally

distributed observations with mean and variance values, the question is how

the measurements of the sensors are linked together to get a final result that is

90

more accurate and has a smaller error.

For this, the Kalman filter is used, on condition that all estimates with

normally distributed errors are present. The Kalman filter estimates the fused

then turn a new estimate with a new error is normally distributed. As an

optimality criterion for the selection of the new estimate is the criterion of

minimum variance. The new estimate is selected so that the resulting error is

minimized.

A5.1 One-dimensional case

The procedure and effect of the Kalman filter can be best shown an

example of the scalar case. Suppose two sensors for measuring distance are

set up so that they have the same distance to the object in front of them, e.g. a

wall, possess. The sensors must, therefore, measure the same distance value.

Furthermore, it is assumed that the measurements of the sensors are affected

by an error. The measurements 1l from sensor 1 and l2 from sensor 2 are

distributed as follows:

2

1 1 1~ (,)l N

2

2 2 2~ (,)l N

Here 1 and 2 correspond to real distances and 1 and 2 are the

respective standard deviations, which can be determined by a series of

measurements. The problem now is how to link the data of the two sensors in

order to calculate the present distance from a respective one of the two

sensors measuring, which takes account of the properties of both sensors. It is

obvious, in this case to use a weighted arithmetic mean of the two distance

measurements. The respective weights are inversely proportional to the

associated variance.

l1 and l2 are the measurements of the two sensors; new distance value l

91

with variance 2 is calculated by Kalman filtering

1 22 2

1 2
2 2

1 2

1 1 1

1 1
l l l

2 2 2

1 2

1 1 1

In the case of 1 2 (when using two identical instruments) the

equations are reduced as

 1 2

1

2
l l l

2
2 1

2

A5.2 Multidimensional case

In the n-dimensional case, there are two n-dimensional vectors m1 and

m2.

1 1 1~ (,)m N

2 2 2~ (,)m N

The calculation by Kalman filtering improved estimate m with covariance

matrix is then given by:

1

1 1 1 1

2 2 2l l l

1

1 1

2l

At this point it should be noted that the Kalman filter is usually applied in

such a way that initially a prediction based on the current state of

measurements, and compared with the prediction of the actual sensor

measurement. From this, an update to the system state is computed.

92

REFERENCES

1. J. A. Castellanos, J. M. Martinez, J. Neira and J. D. Tardos, Simultaneous

map building and localization for mobile robots: a multisensor fusion

approach, Proc. of the 1998 IEEE International Conference on Robotics

& Automation, pp. 1244-1249, 1998.

2. R. Madhavan; M. Dissanayake, H.F. Durrant-Whyte, Autonomous

underground navigation of an LHD using a combined ICP-EKF approach,

Proc. Of the IEEE Conference on Robotics and Automation, pp.3703-

3708, 1998.

3. P. Jensfelt, H. Christensen, Laser based poses tracking, Proc. of the IEEE

Conference on Robotics and Automation, pp. 2994-2998, 1999.

4. J. Castellanos, J. Martinez, J. Neira, J. Tardos, Simultaneous map

building and localization for mobile robots: a multisensor fusion

approach, Proc. of the IEEE Conference on Robotics and Automation, pp

1244-1249, 1998.

5. D. F. Wolf and G. S. Sukhatme, Mobile robot simultaneous localization

and mapping in dynamic environments, Trans. On Autonomous Robots,

Vol. 19, No. 1, pp.53-65, 2005.

6. A. Hernández, J. Ureña, M. Mazo, J.J. García, A. Jiménez, J.A. Jiménez,

M. C. Pérez, F.J. Álvarez, C. De Marziani, J.P. Dérutin, J. Sérot,

Advanced adaptive sonar for mapping applications, Journal of Intelligent

& Robotic Systems, Vol. 55, No. 1, pp. 81-106, 2009.

7. D. Hahnel, R. Triebel, W. Burgard and S. Thrun, Map building with

mobile robots in dynamic environment, Proc. of the IEEE International

Conference on Robotics and Automation , pp.1557-1563, 2003.

8. J. S. Gutmann, Markov Kalman localization for mobile robots, Trans. On

93

Pattern Recognition, Vol.2, pp. 601-604, 2002.

9. S. Thrun, J.S. Gutmann, D. Fox, W. Burgard and B. J. Kuipers,

Integrating topological and metric maps for mobile robot navigation: a

statistical approach, AAAI Proceedings, 1998.

10. D. Saitov and S. G. Lee, Mobile Robot Navigation Based on EWA with

Adaption of Particle Filter and Map Merging Algorithms for Localization

and Mapping, International Journal of Precision Engineering and

Manufacturing, Vol. 12, No. 3, pp. 451-459, 2011.

11. J. O. Wallgrün, Voronoi Graph Matching for Robot Localization and

Mapping, Trans. on Computational Science IX, Lecture Notes in

Computer Science, Vol6290, pp. 76-108, 2010.

12. S. Se, D. Lowe and J. Little, Mobile robot localization and mapping with

uncertainty using scale-invariant visual landmarks, International Journal

of Robotics Research, Vol. 21, No. 8, pp. 735-758, 2002.

13. S. Se, D. Lowe and J. Little, Vision-Based global localization and

mapping for mobile robot, Trans. on Robotics, Vol. 21, Vo. 3, pp. 364-375,

2005.

14. J. A. Castellanos, J. M. Martinez, J. Neira and J. D. Tardos, Simultaneous

map building and localization for mobile robots: a multisensor fusion

approach, I Proceedings of the 1998 IEEE International Conference on

Robotics & Automation, pp. 1244-1249, 1998.

15. F. Lu and E. Milios, Globally consistent range scans alignment for

environment mapping. Trans. on Autonomous Robots, Vol. 4, pp. 333–

349, 1997.

16. R. E. Kalman, A new approach to linear filtering and prediction problems.

Trans. on the ASME–Journal of Basic Engineering, Vol. 82, pp. 35–45,

1960.

94

17. J. J. Leonard and H. F. Durrant-Whyte. Mobile robot localization by

tracking geometric beacons. Trans. on Robotics and Automation, Vol. 7,

No. 3, pp. 376–382, 1991.

18. R. Smith, M. Self, and P. Cheeseman. Estimating uncertain spatial

relationships in robotics, Trans. on Autonomous Robot Vehicles, pp. 167-

193, 1990.

19. C. Stachniss, G. Grisetti, D. Haehnel, and W. Burgard. Improved rao-

blackwellized mapping by adaptive sampling and active loop closure.

Work-shop on Self-Organization of Adaptive, 2004

20. J. S Gutmann and K. Konolige, Incremental mapping of large cyclic

environment, in Computational Intelligence in Robotics and Automation,

pp. 318-479, 1999.

21. F. Lu and E. E. Milos, Robot pose estimation in unknown environments

by matching 2D range scans, Journal of Intelligent and Robotic Systems,

Vol.18, No. 3, pp.249–275, 1997.

22. W. Burgard, D. Fox and S. Thrun, Active mobile robot localization, Proc.

of the International Joint Conferences on Artificial Intelligence, pp.1346-

1352, 1997.

23. K. Konolige and K. Chou, Markov localization using correlation, Proc. of

the International Joint Conference on Artificial Intelligence, 1999.

24. P. H´ebert, S. Betg´e-Brezetz, and R. Chatila, Probabilistic map learning:

necessity and difficulties, Proc. of the International Workshop on

Reasoning with Uncertainty in Robotics, Amsterdam, 1995.

25. S. Se, D. Lowe and J. Little, Mobile robot localization and mapping with

uncertainty using scale-invariant visual landmarks, International Journal

of Robotics Research, Vol. 21, No. 8, pp. 735-758, 2002.

26. I. J. Cox and G.T. Wilfong, Autonomous Robot Vehicles, Springer-Verlag,

95

1990.

27. J. Cox, Blanche: Position estimation for an autonomous robot vehicle, In

Cox and Wilfong, pp. 221-228, 1990.

28. F. Lu, Shape registration using optimization for mobile robot navigation,

PhD thesis.

29. J. C. Latombe, Robot Motion Planning, Kluwer Academic Pulishers,

1991.

30. M. Seder and I. Petrovic, Dynamic window based approach to mobile

robot motion control in the presence of moving obstacles, Proc. of the

International Conference on Robotics and Automation, pp. 1986-1991,

2007.

31. D. Fox, W. Burgard and S. Thrun, The dynamic window approaches to

collision avoidance, IEEE Robotics & Automation Magazine, Vol.3, No.

1, pp.23-33, Mar 1997.

32. A. Stentz, Optimal and efficient path planning for partially-known

environment, Proc. of the International Conference on Robotics and

Automation, vol.4, pp.3310-3317, May 1994.

33. A. Stenz, The focused D* algorithm for real-time replanning, Proc. of the

International Joint Conference on Artificial Intelligence, vol. 2, pp. 1652-

1659, August 1995.

34. N. Avaehe and O. D. Faugeras, Maintaining representations of the

environment of a mobile robot, Trans. on Robotics and Automation, Vol.

5, No. 6, pp. 804-819, 1989.

35. S. Borthwick and H. Durrant-Whyte, Simultaneous localisation and map

building for autonomous guided vehicles. Proc. of the International

Conference on Intelligent Robots and Systems, pp. 761-768, 1994.

36. J. Gonzalez, A. Eeina and A. Ollero, Map building for a robot equipped

96

with a 2D laser rangefinder. Proc. of the International Conference on

Robotics and Automation, 1994.

37. J. L. Crowley, World modelling and position estimation for a mobile

robot using ultrasonic ranging. Proc. of the International Conference on

Robotics and Automation, pp. 674-680, 1989.

38. Y. D. Kwon and J. S. Lee, A stochastic environment modelling method

for mobile robot by using 2-D laser scanner. Proc. of the International

Conference on Robotics and Automation, pp. 1688-1693, April 1997.

39. J. Leonard, H. Durrant-Whyte and I. J. Cox, Dynamic map building for

an autonomous mobile robot. Proc. of the International Conference on

Intelligent Robots and Systems, pp. 89-95, 1990.

40. H. F. Durrant-Whvte, Consistent integration and propagation of disparate

sensor observations, International Journal of Robotics Research, Vol. 6,

No. 3, pp. 3 24, 1987.

41. E. Smith, M, Self, and P. Cheeseman, Estimating uncertain spatial

relationships in robotics, In Cox and Wilfong, pp 167-193, 1990.

42. J. A. Castellanos, J. M. M. Montiel, J. Neira, and J. D. Tardos, The

SPmap: A probabilistic framework for simultaneous localization and map

building, Trans. on Robotics and Automation, Vol. 15, No. 5, pp. 948-952,

Oct.1999.

43. D. Ferguson and A. Stentz, Filed*: An Interpolation-based Path Planner

and Replanner, International Symposium on Robotics Research, Vol. 8,

pp. 239-253, 2005.

44. robots.mobilerobots.com

45. www.intelligentcontrol.es/diego/projects_mobilerobots.html

46. www.robotis.com

http://robots.mobilerobots.com/
http://www.intelligentcontrol.es/diego/projects_mobilerobots.html
http://www.robotis.com/

	1. INTRODUCTION
	2. MAP BUILDING
	2.1. Scan matching
	2.1.1. Scan
	2.1.2. Feature extraction from scanning data
	2.1.3. Median Filter
	2.1.4. Scan matching

	2.2. Consistent position estimate
	2.2.1. Definition of the estimation problem
	2.2.2. Application for the mapping

	2.3 Map Correlation
	2.4 LRGC algorithm

	3. LOCALIZATION
	3.1 Dead Reckoning
	3.2 Categories of localization methods
	3.3 Scan matching localization

	4. PATH PLANNING AND COLLISION AVOIDANCE
	4.1 Path planning
	4.1.1 Approaches for path planning
	4.1.2 FD * path planning algorithm

	4.2 Collision Avoidance Behavior
	4.2.1 Modeling of Wheeled Mobile Robot (WMR)
	4.2.2 General Motion equations
	4.2.3 Dynamic Window Approaches

	5. EXPERIMENTAL RESULTS
	5.1 Simulation results
	5.2 Experimental results

	6. CONCLUSIONS
	6.1 Summary
	6.2 Research limitations
	6.3 Direction for future research

	APPENDIX
	REFERENCES

<startpage>15
1. INTRODUCTION 1
2. MAP BUILDING 6
 2.1. Scan matching 9
 2.1.1. Scan 10
 2.1.2. Feature extraction from scanning data 11
 2.1.3. Median Filter 17
 2.1.4. Scan matching 18
 2.2. Consistent position estimate 33
 2.2.1. Definition of the estimation problem 34
 2.2.2. Application for the mapping 37
 2.3 Map Correlation 38
 2.4 LRGC algorithm 40
3. LOCALIZATION 42
 3.1 Dead Reckoning 43
 3.2 Categories of localization methods 46
 3.3 Scan matching localization 47
4. PATH PLANNING AND COLLISION AVOIDANCE 49
 4.1 Path planning 49
 4.1.1 Approaches for path planning 51
 4.1.2 FD * path planning algorithm 54
 4.2 Collision Avoidance Behavior 64
 4.2.1 Modeling of Wheeled Mobile Robot (WMR) 65
 4.2.2 General Motion equations 66
 4.2.3 Dynamic Window Approaches 68
5. EXPERIMENTAL RESULTS 71
 5.1 Simulation results 71
 5.2 Experimental results 73
6. CONCLUSIONS 81
 6.1 Summary 81
 6.2 Research limitations 82
 6.3 Direction for future research 83
APPENDIX 85
REFERENCES 92
</body>

