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CHAPTER 1
INTRODUCTION

Statistical modeling means to formulate relationships between variables in
the form of mathematical equations in order to describe the data that are ran-
domly selected subset of a population of research interest. Practitioners make
statistical inferences to quantify the parameters in statistical models that repre-
sent characteristics of the population through confidence interval approach. The
applications of utilizing confidence intervals are encountered in a variety of fields:
optimal maintenance planning, neural networks, quality engineering, behavioral
science, economy, biology, etc.

The regression model has been used to describe the. relationship between
the response and predictor variables. In simple linear regression, the regression
model has one predictor variable and the variables are linearly related. Sam-
ples from observational studies are often selected with a three-stage sampling
structure. This thesis discusses statistical inference concerning the regression
coefficient in the simple linear regression modelwith a balanced two-fold nested
error structure. This model is appropriate to-use when there is subsampling
within secondary sampling units within primary sampling units. The model
therefore includes one error term associated with the first-stage sampling unit,
a second error term associated with the second-stage sampling unit, and a third
error term associated with the last-stage sampling unit. These three error terms
are assumed independent and normally distributed with zero means and con-
stant variances. However, this nested error structure yields response variables

correlated.



Since confidence intervals are usually more informative than hypothesis test-
ing, confidence intervals are presented to make inferences concerning a regression
coefficient. In this thesis we derive exact and approximate confidence intervals
for the regression coefficient using large sample theory. A 100(1—«)% confidence
interval for a parameter, for example 7, is referred to as a random interval with
a lower limit L and an upper limit U that are functions of sample values such
that

PL<y<U]l=1-« (1.1)

where « ranges from 0 to 1. A confidence interval that exactly holds equation
(1.1) is called an “exact” two-sided confidence interval. Such exact intervals
often do not exist in application. An approximate interval that has a realized

confidence coefficient greater than the stated level, i.e.,

PL<q=lUl>1 - (1.2)

is called a “conservative” twe-sided confidence interval. An approximate interval

that has a realized confidence coefficient less than the stated level, i.e.,

PL < FEU<1 -« (1.3)

is called a “liberal” two-sided confidence interval. Both conservative interval
and liberal interval are called “approximate” intervals. In general, conservative
intervals are preferred when only approximate intervals are available.

Chapter 2 presents a review of current research concerning the variability
of variance components and regression coefficients in a regression model with
nested error structure. Chapter 3 considers a simple linear regression model

with a balanced two-fold nested error structure and some distributional results



are examined. Exact and approximate confidence intervals for the regression co-
efficient are proposed. Chapter 4 conducts a simulation study to compare the
performance of the proposed confidence intervals. Finally, Chapter 5 summa-
rizes the results and a numerical example is presented in order to demonstrate
the methodology proposed. Recommendations are provided for selecting an ap-

propriate method. Topics for future research are also presented.



CHAPTER 2
LITERATURE REVIEW

2.1 Introduction

This chapter reviews previous research on confidence intervals on linear com-
bination of variance components and regression coefficients in linear models. A
general discussion of statistical inferences for linear models is presented in Section
2.2 and 2.3. The methods and applications of confidence intervals in regression

models with nested error structure are reviewed in Section 2.4.
2.2 Confidence Intervals in Linear Models

The earliest work for analyzing a statistical model was performed in 1924
by Fisher and his work covered optimum methods for statistical inferences in-
cluding point estimation, confidence intervals, and hypothesis tests. In many
applications of statistical inferences concerning analysis of variance, interest fo-
cuses on variance of the-effects rather than linear eombinations of the effects. The
variances associated with the effects are called variance components. Let 145, g /64
for g =1,...,Q be independently distributed chi-squared random variables with
ng degrees of freedom, respectively. It is frequently desired to construct confi-
dence intervals on linear combinations of the 0, i.e., v = Z?cqﬁq where ¢, > 0.
In practice, 6, represents variance components. Satterthwaite (1941, 1946) stud-
ied the distribution of a linear combination of more than one ¢,. He proposed

an approximation based on the point estimator of v, 4 = chng. By equating



the expectation and variance of 4 to that of an exact chi-squared random vari-
able, he was able to derive the approximate distribution of 4. He then used this
approximation to construct a confidence interval on 7.

Welch (1956) developed two alternative approximations designed to work
well in moderate-sized samples. The confidence limits are based on modifica-
tion of the large-sample normal approximation using Taylor series and Cornish-
Fisher expansions. One of the approximations can be represented as an improved
Satterthwaite approximation. Burdick and Sielken (1978) developed exact con-
fidence intervals on 7 for one-fold and two-fold nested models. The method
can be extended to any K-fold nested model and-applied to both balanced and
unbalanced designs. Graybill and Wang (1980) developed for constructing confi-
dence intervals on v with nennegative linear combinations of variances. Burdick
and Graybill (1992) provided the research of confidence intervals on the variance

components in linear models.

2.3 Point Estimation in Nested Regression Models

An important model employed in a variety of survey sampling and experi-
mental design applications is a regression model with nested error structure. The
model is an example of the mixed models and can be formulated in several ways.
Longford (1985) formulated a statistical model for clustered observations where
subjects are nested within groups. Observations within clusters tend to be more
homogeneous than those between clusters. Longford modified the classical linear

regression model by allowing the regression parameters to vary from cluster to



cluster. The model is

Vij = X _oXijkBik + Eij (2.3.1)

where Y;; is the value of the response variable for the jth observation in the ith
cluster, X;;0 = 1, X;; 1 represents the kth explanatory variable, §; . represents
the kth regression parameters, and ; = [8i0, ..., i p) is a random vector from
a (p + 1)-variate normal distribution with mean 8 = [fo,..., 5p] and variance

matrix ¥ where

0o 601 Bpo ... 901)
Oo1 61 0 Nk 0

Y =gt Jod 0 e . O 7 (2.3.2)
. AR 1@

The term FE;; represents a random variable from N (0, 0%) and (3; and E;; are
independent.. Longford applied this/variance component model to examine ex-
planatory variables measured on towns (clusters)-and on subunits within towns,
and studied the relationship of house price with associated explanatory variables.

Aitkin and Longford (1986) studied several statistical models for assessment
of school effectiveness in educational research studies. They used a data set of
907 students in 18 schools from one Local Educational Authority (LEA). The
LEA score for each student was used as the response variable with a Verbal
Reasoning Quotient (VRQ) score and sex as explanatory variables. Although

they compared several models, they recommended a variance component model



when clustering is inherent in the data structure. The variance component model

with one explanatory variable is

Yij = p+ BXi; + Ai + Eij (2.3.3)

where A; is the school effects, E;; is the student errors, and they are independent
and random samples from N (0,0%) and N(0, 0%), respectively. The observations
Y;; within a school are not independent because
oh+og ii=i,j=7j
Cov(Yy5,Yiry) =< 03 if =4, # j'; (2.3.4)
0 g T
Parameter estimates can be“determined using the Fisher scoring algorithm of
Longford (1987) which/ provides maximum likelihood estimates and standard
errors for the variance components.

Goldstein and McDonald (1988) extended model (2.3.3) into a more general
model that includes time series models, longitudinal data' models, multiple ma-
trix sampling models; generalizability theory: models; multilevel common factor
models, and complex sample survey designs: For a wide class of models, he rec-
ommends an iterative generalized least square procedure (IGLS) for estimation.
This method is relatively straight forward and easily incorporates adjustments
for errors in variables not available with standard maximum likelihood (ML)
approaches. He also showed that IGLS is equivalent to ML for a wide class of

models when the random variables have a multivariate normal distribution.



2.4 Confidence Intervals in Nested Regression Models

Previous research on nested regression models has mostly concentrated on
point estimation of the regression coefficients and the variance components. Bur-
dick and Graybill (1992) reviewed the research of confidence intervals in linear
models. However, the book rarely dealt with linear models with factors and
covariates.

Park and Burdick (1993, 1994) and Park and Hwang (2002) constructed con-
fidence intervals in a simple regression model with one-fold nested error structure.
Park and Burdick (2003, 2004) extended their previous works by constructing
confidence intervals on the linear functions of variance.components in the model
with one factor and a covariate that has unbalanced nested error structure. Bur-
dick et al. (2005) applied the methods for constructing confidence intervals on
the linear functions of variance components to test a measurement system using
gauge R & R(Repeatability and Reproducibility) study which is an application
field of quality engineering. "When a measurement system in the process is ex-
pressed into a statistical model, the confidence intervals for repeatability and
reproducibility, i.e. funetions of the variances-in the model, have been useful
tools to determine if the measurement system is under control. Park and Yoon
(2009) proposed confidence intervals for functions of variances in a two-factor
model with a covariate for gauge R & R study application.

Park (2012) extended further the works by Park and Burdick (1993, 1994)
and Park and Hwang (2002) by including two-fold nested error structure in a sim-
ple regression model with one factor and a covariate. He derived approximate

confidence intervals on the variance components in a simple regression model with



balanced two-fold nested error structure. This thesis extends his work and con-
structs exact and approximate confidence intervals on the regression coefficient

in the model.




CHAPTER 3
CONFIDENCE INTERVALS ON THE REGRESSION COEFFICIENT
IN REGRESSION MODEL WITH A BALANCED
TWO-FOLD NESTED ERROR STRUCTURE

3.1 Introduction

The parameter of interest in this chapter is the regression coefficient, (3, in
regression model with a balanced two-fold nested error structure. The model is
defined in Section 3.2: A possible partitioning for source of variability of the
model is shown in Section 3.3. Distributional properties of several ordinary least
squares (OLS) estimators for 3 are derived in Section 3.4. The independence of
estimators of 8 and sums of squares that are appeared in the partition for source
of variability are proved in Section 3.5. Exact and approximate intervals for g

are proposed in Section 3.6 using Theorems in Sections 3.4 and 3.5.

3.2 Regression Model with a Balanced Two-fold Nested Error

Structure

The regression model with a balanced two-fold nested error structure is

defined as

Yijk = p+ BXijp + P + Oij + Eiji (3.2.1)

1=1,...,a;75=1,....;k=1,...,r

where Y}, is the kth random observation within the jth secondary level within

the ith primary level, u and 8 are unknown constants, X;;; is a fixed predictor

10



variable, F;, O;;, and E;j;, are respectively error terms associated with the first-
stage, second-stage, and last-stage sampling unit, and P;, O;;, and E;;; are
jointly independent normal random variables with zero means and variances 0%,
a%, and 0%, respectively. Since 8 and X, are fixed, model (3.1) is a mixed
model.

Model (3.2.1) is written in matrix notation as
y = Xa+ Bip + Byo + Bge (3.2.2)

where y is an abr x 1 random vector of observations, X is an abr X 2 matrix with
a column of 1’s in the first column and a column of known Xj;;;’s in the second

a a b
column, « is a 2 x 1 vector with elements p and 5, By = & 1., Bo = & & 1,,
i=1 i=1j=1

and B3 = él _él kél 1 = 1., are design matrices, @ is the direct sum operator,
i1 Yl ol

1;-and 1, arejrespectively brx1 and r x 1 column vectors of 1’s, 1,4, is an abr x abr

identity matrix, p is an @ x 1 vector of random P; effects; o /is an ab x 1 vector

of random O;; effects, and e is an abr X1 vector of random error terms, Ejjj.

Under the distributional assumptions of (3.2.1); y has a multivariate normal

distribution with mean Xarand covariance matrix 02B1B + 02 BoB) + 051,
3.3 ANOVA for the Regression Model

In order to form confidence intervals on the regression coefficient, an appro-
priate set of sums of squares is needed. One possible partitioning for source of

variability of model (3.2.1) that is useful for subsampling is shown in Table 3.3.1.

11



Table 3.3.1
A Partition for Source of Variability of Model (3.2.1)

SV DF SS
Among Primaries ni+1 Sy
Among Primaries Regression 1 B% Sezl
Among Primaries Residual n1 Ry
Among Secondaries ny +1 Syyo
Among Secondaries Regression 1 Bg Srz2
Among Secondaries Residual N9 Rs
Within Secondaries n3+1 Syys
Within Secondaries Regression 1 A§ Spa3
Within Secondaries Residual ns3 Rs
Adjusted Total n. 43, Syyi2s

The notation for the sums of squares and the estimators of S in Table 3.1 is

defined as follows:

ny =a— 2,

ny =a(b—1) — 1,

ng =ab(m—1) =1,

n.=njy + ng + ns,
Yij =2k Yijk /T, (3.3.1a)
372 :ZjZkYijk/bTa
Y. =%,%,5Yi/abr,

Xij. ZZkXijk:/T;

X =%;25 X551/ br,

X :ZiEjEkXijk/abr,

12



Syy1 :brzz‘(yzl. - Y..)Q»

Syy2 :Tzixj(ﬁj. - Y;'..)Q,

Syys =525k (Yije — Yij)?,

Sza1 :bTEi(Xi.. - X...)2,

Spwr =82 (X — Xi ),

Seas =% 55k (Xijk — Xij)?,

S:cyl :szi(Xi.. - X)( i. T Y),

Sauy2 =rEi%; (Xij. — Xi. ) (Yij = Y5),

Szis BRI XGd = Ko W — Yij.),
Syy12 =Syy1 + Syy2,
Syy1238=Syy12 + Syy3,
Szz12 =Szz1 + S, (3.3.1b)
Sze123 5= Szz12 + Szr3,
Sginz =Szy1 + Py2,
Srng 123 =0Bl> w3
B =Suy1/Seat,
Bo =Suy2/ Sy,
B3 =Say3/ Sz,
Ry =Syy1 — B2 Sua1,
Ry =Syy2 — BSSM, and

R3 :SyyB - B??Sxm?:

13



The estimators of 5 and the sums of squares in Table 3.3.1 are now described
in the context of a standard linear regression model. The estimator /5’1 is obtained
from the least squares regression of ;. on X, . The estimator Bg is obtained from
the least squares regression of Y;; on X;; and grouping variables that represent
1 primary levels. The estimator 63 is obtained from the least squares regression
of Y;j, on X 5, and grouping variables that represent ¢ primary and j secondary
levels.

Two more possible estimators of § in model (3.2.1) and the sums of squares
associated with the estimators can be obtained. The estimator BS = Suy12/Sza12
is obtained from the least squares regression of 17” on X’ij.. The sum of squares
Rg is written as' Rg = R — Ry — Ry where Rip = Syy12 — BgSmmlz. The
estimator BT = Syyi23/Szaizs is obtained from the least squares regression of
Yijr on X;ji. The sum of squares Ry is written as R = Ri23 — R12 — R3 where

Ri23 = Syy123 — B2.52193-
3.4 Distributional Results.of the Estimators of Regression Coefficient

In order to construct confidence intervals on the regression coefficient, the
ordinary least square(OLS) estimators of § are examined.
Theorem 3.4.1 Under the assumptions in (3.2.1), an OLS estimator B ~

N (B8, (bro% 4103+ 0%)/Sea1).

Proof. From Section 3.3 define

A S:Byl

Bl - Sxml

brE(X, - X )Y - Y)
- bryy (X — X.)2

14



=Yk Yi.
where
L XX
CONi(X - X )2

It can be shown by model (3.2.1) that

Y. =pu+BX; +P+0; +E;,
EY;)=E(u+8X; +P,+0; +E;)
:M—'_ﬁXza a’nd

V(Y.)=V(u+B8X; + P +0; +Ey)

2 2
F e )
TP T T N

Using the fact ¥;k = 0, X;kiX;. =1, X;k? = br/Syz1, one obtains

that

E(By) = E(X:k:Y)
= Siki(u+BX:.)
=0 and

V(B1) = V(Sik; Vi)
2 2

o g
=Sk (0p + -2 + 3F)

_ bral% + 7“0'(2) + 0%

Smxl

Since 51 is a linear combination of the Y; and Y;._ is normally distributed,

15



(3.4.1)

B ~N<B, bra%—kra%—ka%)

Sxml

Theorem 3.4.2 Under the assumptions in (3.2.1), an OLS estimators By ~
N (ﬁ, (ro +U%)/Sm2).

Proof. From Section 3.3 define

A S:EyQ
52 B Sx:r2
"2 e, X (X, _7Xz..)(:ij. -Y;)
TEZ'ZJ'(XU - XZ)Q

where

It can be shown by model (3.2.1) that

Yij. = p+ BXi. + P+ Oy + Eyj.,

E(Y;;) = E(p+ BXj + P, + Oy + Ej;))
= p+BXij. and

V (Vi) =V(u+BXij. + P+ O + Eij.)

0'2
2 2 E
=op+op+ .

16



USil’lg the fact Ejlij = 0, EZZJZUXU = 1, Ezzjl% = T/Samg,

253 <jrlijlijo = —1/Sgz2, and Cov(}_/ij_,}_/ij/,) = 0%  one obtains that

N

E(f2) = E(X:%;li;Yi;.)
= 3,550 (u+ BXi;)

= and

A

V(62) = V(5:%;1i;Yi;.)

= zizjzij(Y;jv) + 25 lisliy Cov(Yiy, Yijr))

0,2
= ;5,0 (0123 +05 + 7E> + 2585 jrlijlijr o

~T0h + 0%
- Sm:r2
Therefore,
2 2
By~ N <5, w) (3.4.2)
S:ch .

Theorem 3.4.3 Under the assumptions in (3.2.1), an OLS estimators By ~
N (ﬁa U%/Sx:rS)
Proof. From Section 3.3 define

A SwyS
/33 B Sm:c?)
_ Zizjzk(Xijk - Xz'j.)(}_/ijk - ng)
Yi¥ (X, — X;..)?
_ Eizjzk(Xijk - ng)ytéj
Zizjzk(Xijkz - Xij.)2

= 232 2kMijkYijk

where

Xigk — Xij._
2255 (Xige — Xi5.)%

Mijk =

17



It can be shown by model (3.2.1) that

E(Yijk) = E(p+ BXijk + P + Oi5 + Eiji)
= pu+ BXijr  and
V(Yijr) =V(p+ BXijk + P + Oij + Eiji)

2 2 2
=0pt+op+og.

Using the fact EZZJkaUk = O, ZZEJEkszkak = 1, ZZEJEkmfjk =

1/S2a3, 253 EpciMijeMijry = —1/Sza3,  Zj<jrZg by MijkMijrr = 0,
Cov(Yijk,Yiji') = 0% + 0, and Cov(Yijk, Yijin) = 05, one obtains
that

B(Bs) =E (34X Zrmisn Yigk)
S ¥ )
=0 and
V(Bs) =V (Z:25Zemin¥ijn)
:EiEjEkm?jkV(Yijk)
+ 288 Bk MM Cov(Yijr, Yijrr)

+ 2553 < j B kM jemiigire Cov(Yige, Y )

:UJQD—I-J%—I-J% _(7123—1—0%

Sﬂ:a:?) S;m:3
_ %%
B Sx:r3 .
Therefore,
~ 0'2
By~ N (5, b ) (3.43)
S:rmS .

18



Theorem 3.4.4 Under the assumptions in (3.2.1), an OLS estimators Bg ~

N(ﬁ, (klgbrafg—l—ra% —|—O’%)/Sm$12)
Proof. From Section 3.3 define

A Smy12
/65 B S:mle
_ S{E:Elﬁl + Smw252

S:r:c12

The estimators Bl and Bg are independent by

Cov(By, Ba) = Cov(Zik:Y;. , %%l Yis)
= EikizjlijCOU(l_fi..a Y;g)

= 0.

By use of (3.4.1) and (3.4.2), one obtains that

A Sa::clE(Bl) I Sa:wQE(BQ
(fs) = S5
= . and
Sgcclv(ﬁl) == ngQV(B2) 3 28:1:90189090200'0(617 32)
S§x12
Spz1(bro? + TJ?) +0%) + Spao (TJ?) + 0%
a S§x12
Sear2(§22Lbro} + rod + o)
S%:L‘IQ

_ kiobro% + ro? + o3,

V(Bs) =

Swm12

where
S;m:l

k12 =
S;m:lQ,

Since 35 is a linear combination of the Bl and Bg,

19



R k1ob 2 2 2
Bs ~ N (/3, = WP; :O i UE) (3.4.4)

Theorem 3.4.5 Under the assumptions in (3.2.1), an OLS estimators BT ~

N (6, (k13brod + kasrod + U%)/walgg).

Proof. From Section 3.3 define

A Sm 123
by = 2
Sxac123
_ Sma:lﬁl + Sa:mQ/BQ + Sam363
Smx123

The estimators /31 and /3’3 are independent by

Cov(f1,08) = Cov(Xiki¥s , i %Y kmijnYiik)
= 3;k; % Bpmig, Cov (Y. |, Yisk)

=0 and

Bs and fs are independent by

Cov(Ba; Ba) =1Cov(Xi%,1i V5,5 2% Semi i Yiji)
= 3,30 5km;jCov(Yi;, Yijk)

=0.

By use of (3.4.1), (3.4.2), and (3.4.3), one obtains that

E(BT) _ Sx:rlE(Bl) + szZE(BQ) + Sa:mBE(Bi*b)
= and
V() = <5 [S%1V(B0) + 525V (Bo) + 52,5V (o)

ey
Sx:r123

Sﬂcx123

20



+ ZSa:xlSm:cQC(M)(Bl’ 62)
+ 2Smxlsmx3cov(317 33)

+ 2Smw25mx3oov<327 53)}

1
:SQ [Smxl(bTUQP + 7’0'20 + 0-2E) + Smx2<7’0'20 + O'2E) + Smxgdiv}
xxl23

_Szx1 2 4 Saez1z g42 2
— wa brO-P + SleZS TUO + UE

S:cm123

_k‘13b7°0123 + k’QgT’O’% + 0']25

Sza123
where
Sz
i = S:c:cl;i %
Sra12
- Szz123
Therefore,
B N (5, kigbro?, ;— kazaé + 0%) (3.4.5)

3.5 Independence of the Estimators and Sums of Squares

It is necessary to show that the OLS estimators in Section 3.4 and the sums

of squares in Table 3.3.1 are independent.

Theorem 3.5.1 Under the distributional assumptions in (3.2.1), B1 and Ry are

ndependent.

Proof. The estimator (1 is the second element of the vector (X1X1) 1 X vy

where X; = WX, y; = Wiy, and W; = #B’l. The sum of squares R; is
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written in a quadratic form as Ry = bry F1y; where F; =1, — H; and H; =
X (X} X;)7'X]. It can be shown that y; ~ N(Xqa, 2 (brod +rod +o3)L,).
Theorem 7.5 in Searle (1987, p. 233) is applied to show independence.

Noting X/ H; = X/, one obtains that

1
(X’le)_lX’la(brai +rod + op)LbrFy
=(bro% +rod +o5) (X X,) X (I, — Hy)

=0.

Thus, Bl and R; are independent.

Theorem 3.5.2 Under the distributional assumptions-in (3.2.1), 32 and Ry are

independent.

Proof. The estimator B, is the second element of the vector (X,X3) X|y2
where Xo = W»[X Bji], yo» = Way, and Wy = 1B{. The sum of squares
R is written in a quadratic form as Ry = ry5S1ys where 'S, = I,;, — Hy and
H, = X5(X5X5) ™ X5 It can be shown that yo ~ N(Xga, 05WB;B/W) +
oLy + %O‘%Iab).

Noting BiW3S; = 0 and (X5X2)=X,S; = 0, one obtains that

1
(X5X0) " X5(0B5WoB B W) + 0314, + —0%14)rSy
T
=ro5(X5X) " XoWoB B WSS, + rod (X5X,) ™ X5S,
+ 0% (X5 X5) " X5S,

=0.

Thus, 32 and Ry are independent.
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Theorem 3.5.3 Under the distributional assumptions in (3.2.1), Bs and Rs are

mndependent.

Proof. The estimator 35 is the second element of the vector (X;Xs3)™ X4y
where X3 = W3[X Bj; Bg]. The sum of squares R3 is written in a quadratic
form as R3 = y'T1y where T1 = 1, — H3 and Hs = X3(X%X3)~ X5, It can be
shown that y ~ N(Xa, 0¢%B1B]| +02BoB) + 0%1).

Noting B;B|T; =0, BoB,T; = 0, and X5H3 = X%, one obtains that

(X5X3)” X5(0pB1B] + 05 B2Bj + 0fLuy ) T
=0%(X5X3)" X5B 1B Ty + 03 (X5X3)” X;B,B, T,
+op(X5X3) " X5T)

76,

Thus, 33 and R3 are independent.

Theorem 3.5.4 Under the distributional assumptions in (3.2.1), BS and Rio

2 2 2

ki2brop+ros+oy
2 2 2
braP +rogtog

are independent. where. Rio = k1 Ri + koRo, ki .= , and Ky =

2 2 2
kiobrop+ros+oyg
2 2
rog +og

Proof. Park (2012) proved that Ry/(brop+rod+0%) ~ x5, R2/(rop+og) ~
X%Q, and they are independent. Noting that Rys is linear combination of R; and
R5, one obtains that Rqis ~ X(21b—3' The estimator BS is the second element
of the vector (X’sXg) 'XsWay where Xg = W)X. It can be shown that

y~NXa, 0%B1B]+03BoB)+0%51ap,).

23



NOtiIlg that XigWQBlBllwllFl = O7 B’IW’281 = 0, XigWQBQBIQW/IFl =
0, X/SWQBQBIZWésl = 0, X.{SWQW1F1 = 0, and X%Wgwlzsl = 0, one ob-

tains that

(X'sX5)  XsWyo(05B1B] + 05BoB) + 051, ) [s1br WIF 1 W + kor WLS; W]

=0.

Thus, BS and R, are independent.

Theorem 3.5.5 Under the distributional assumptions in (3.2.1), Br and Ryss

2 2 2
kizbrop+kasrog+oy
2 2 2 ;
brap—l—rao—i-aE

are independent where Riog3 = T1R1 + mRs+ 13R3, 71 =

2 2 2

klngGP+k23TUO+0E
2 2
rostog

2 2 2
k13bTUP+k23T’O'O+O'E

P
%E

Ty = ,and T3 =

Proof. Park (2012) proved that Ry/(bro}p + rod +0%) ~ x2,, Ra/(rod +
0%) ~ Xa,, Rs/0% ~ x3,, and they are independent. Noting that Ry3 is linear
combination of Ri, Ro, and R3, one obtains that Rq53 ~ X?LbT— 4- The estimator
Br is the second element of the vector (X/X)~!1X'y.

Noting that X’'B;B{W/F; = 0, X’'B;B,W/F; =.0, X;W/F,W; = 0,
B, WS, = 0, X'B,B5W/S; = 0, X'W4Sy =0, B/T; = 0, B,T; = 0, and

X/ T = 0, one obtains that

(X'X) !X (0%B1B} + 05B2B), + 0514,
X [leTW/1F1W1 + TQTW,281W2 + 7'3T1]

=0.

Thus, BT and Rp23 are independent.
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3.6 Confidence Intervals for Regression Coefficient

The independence shown in Section 3.5 is used to make ¢ distributed random
variables with proper degrees of freedom. The confidence intervals for the regres-
sion coefficient in the model are constructed using this property. The modified
large sample property is also used to derive approximate confidence intervals.

Five chi-squared random variables, Ri, Ry, R3, Ri2, and Ry23, in Section

3.5 are summarized as follows:

bro?, +Jf;g+g§5 ~ Xa-2 (3.6.1a)
m.g)R—jagE g (3.6.1)

% ~ X?Lb(T‘fl)—l (3.6.1¢)
klzbrafailio%_}_aé ~ Xab—3 (3.6.1d)
= W oo/ (3.6.1e)

k13b7“0'123 R k‘23’l“0'20 aF O'%

In order to construct _confidence intervals for regression coefficient it is convenient
to summarize expected mean squares using sums of squares defined in Table 3.3.1.

In particular,

E(S?) = 0% +r0d +brop =6, (3.6.2a)
E(S3) = 0% + 1o} = 0 (3.6.2b)
E(S3) = 0% = 03 (3.6.2¢)

where S? = Ry /ni, S5 = Ry/ns, and S3 = R3/ns.
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The confidence intervals for 3 are now constructed using five Theorems in
Section 3.5. Since 3; and R are independent, an exact 100(1 — a)% two-sided
confidence interval on S using Theorem 3.5.1 is

St
S:mzl )

B+ ta/2 : n1) (3.6.3)

where (5.,,) is the t-value for v degrees of freedom with ¢ area to the right. This

method is referred to as EX1 method.

Using independence of 35 and Ry, an exact 100(1—a)% two-sided confidence
interval on 8 using Theorem 3.5.2 is

53

6.4

32 == t(a/2 : na)
This method is referred to as EX2 method.

Using independence of 35 and Rs, an exact 100(1— )% two-sided confidence

interval on 8 using Theorem 3.5.3 is

3 52
B3+ Hayn - i\ 33 (3.6.5)

This method is referred to as EX3 method.

Using independence of Bg and Ris, an exact 100(1 — )% two-sided confi-

dence interval on § using Theorem 3.5.4 is

2
Sl2

Sa:;leA

Bs % tiasz : ny) (3.6.6)
where 5%2 = Ry2/n4 and ny = ab—3. This method is referred to as EXS method.
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Using independence of 31 and Ris3, an exact 100(1 — @)% two-sided confi-

dence interval on 3 using Theorem 3.5.5 is

A S2
ﬁT + t(a/2 i n5) ﬁ (367)

where S%y; = Ri23/ns and ns = abr — 4. This method is referred to as EXT

method.

From expected mean squares in (3.6.2) the unbiased estimators of variance
components, 0%, 03, and 0%, can be obtained as (S? — S3)/br, (S3 — S3)/r,
and S2, respectively. By modifying (3.6.6) and using unbiased estimators of the
variance components, an approximate 100(1 —a)% two-sided confidence interval

on [ is

. k1982 4 (1 = 1) S2
AR+ Za/2\/ 1251 +S( : 12)0% (3.6.8)

where Z,, /5 is the Z-value with a//2 area to the right. This large sample interval

is referred to'as LSS method.

By modifying (3.6.7) and-using unbiased estimators of the variance compo-

nents, an approximate 100(1 —=a)% two-sided confidence interval on § is

Br + Za/z\/kBS% U2 —;clg)sg + (1= kag)S3 (3.6.9)
xxl23

This large sample interval is referred to as LST method.
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CHAPTER 4
SIMULATION STUDY

The performance of confidence intervals proposed in Chapter 3 is examined
using a simulation study. Sixty four designs are formed by taking all combinations
of a = 3,5,10,15, b = 2,5,10,15, and r = 2,5,10,15. The values of 0% are
selected from the set of values (0.01, 0.2, 0.4, 0.6, 0.8, 0.98) and the values of o3
and 0% are determined to set 0% + 02 + 0% = 1. The eighteen sets of specific
values for the variance components used in-the simulation study are shown in
Table 4.1.

Table 4.1
Values for the Variance Compenents used in Simulation
ESFENY T B U N )
0.01 0.01 0.98 | 0.40 0.01 0.59 0.80 0.01 0.19
0.01 0.49 0.50 | 0.40 0.30 0.30 0.80 0.10 0.10
0.01 0.98 0.01 | 0.40 0.59 0.01 0.80 0.19 0.01
0.20 0.01- 0.79 | 0.60 0.01 0.39 | 0.98 0.001 0.019
0.20 ~0.40--0.40 | 0.60 '0.20 0.20 { .0.98.°0.010 0.010

0.20 0.79-.0.01{0.60 0.39°0.01 | ~0.98 0.019 0.001

Recall that the mean squares in Chapter 3 are chi-squared random variables.
In particular, 57 ~ [(bro} + 10 +0%)/mlx5,, S5 ~ [(rod + o%) /n2lxa,, S5 ~
0% /n3]xin,. Sta ~ [(k12bro} + kasrody + o) /nalxy,, and Sty ~ [(kisbrop +
kosrod + 0%)/ns]xa.. These mean squares are generated by the RANGAM
function of the SAS by substituting the specific values in Table 4.1 for each

design.
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The values of S, are selected from the set of values (0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8) and the values of S,,2 and S,,3 are determined to set Sy;1 + Sypz2 +
Srzz3 = 1. Twenty one sets of specific values for the sums of squares used in the
simulation study are shown in Table 4.2. The values of the sums of squares are
used to calculate the constants k12, k13, and ka3.

The OLS estimators of 8 are generated by the distributional properties. In
particular, 1 ~ N(B, (bro% + 103 + 02)/Sua1), B2 ~ N(B, (rod + 0%)/Sza2),
B3 ~ N(B,0%/Sass), Bs = kiaf1 + (1 — k1) B2, and Br = kyaBh + (kas — ks) B2 +
(1 —kos) 3. These estimators are generated by using RANNOR function of SAS
and by substituting the specific values in Table 4.1 and 4.2. Simulated values for
S2, 82,82 5%, 8igns Bl, Bg, Bg, BS, and fr are substituted into the appropriate
formula. The confidence intervals are then computed.

Table 4.2
Values for the Sums of Squares used in Simulation

Szl Sza2Ozx3 | Seul Oez2 O3 | Suzl Szwe Szes
0.1 0.1 0.8 0.2 0.7 0.1 04 0.5/0.1
01 03 06| 03 01 06| 05 01 04
0.1 "0:5+ 04| 03 02 05],0.5-02 0.3
0.1 0.7 0.2 0.3 0.4.-.0.3 0.5 04 0.1
0.2 0.1 0.7 0305 0.2 0.6 0.1 0.3
0.2 03 0.5 04 0.1 0.5 0.7 0.1 0.2
0.2 05 0.3 04 0.3 0.3 0.8 0.1 0.1

For each design 2000 iterations are simulated and two-sided confidence inter-
vals on regression coefficient are computed for each proposed method. Confidence
coefficients are determined by counting the number of the intervals that contain
regression coefficient 3. The average lengths of the two-sided confidence intervals

are computed.
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Tables 4.3 - 4.10 present the results of the simulation for stated 90% confi-
dence intervals on 8. The EX1, EX2, EX3, EXS, EXT, LSS, and LST methods
refer to the intervals in (3.6.3)-(3.6.9), respectively. Using the normal approxi-
mation to the binomial, if the true confidence coefficient is 0.90, there is less than
a 2.5% chance that a simulated confidence coefficient based on 2000 replications
will be less than 0.88685. The comparison criteria are: i) the ability to maintain
the stated confidence coefficient and ii) the average length of two-sided confi-
dence intervals. Although shorter average lengths are preferable, it is necessary
that an interval first maintain the stated confidence level.

The EX1, EX2, EX3, EXS, and EXT methods generally maintain the stated
confidence level in Table 4.3 - 4.10. The LSS method is too liberal when (a = 3),
(a =5), (a =10, b =2 to 10), and (e = 15, b = 2) since the simulated confidence
coefficients of the method fall below the 0.88685. The LST method is too liberal
when (a =3, b6=2, r=2),(a=5,/b=2, r=2), and (a =10, b=2, r = 2).
LST method is preferred to LSS method because LST method utilizes more
degrees of freedom ny, no, and ng whereas LSS method uses n; and nsy only.

In general, EX3, EXT, and LST methods generate shorter average interval
lengths than EX1, EX2, and EXS methods. EX3, EXT, and LST methods are
comparable because they utilize all X and Y information from sampling units
to subsampling units, which makes their degrees of freedom large. EXT and
LST methods are very similar because LST method is a modified large sample
interval of EXT method. The more degrees of freedom the method uses, the
shorter interval the method generates. Therefore we recommend EX3, EXT, and

LST methods in order to derive confidence intervals for regression coefficient g
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because they generally keep stated confidence coefficient and yield shorter interval

lengths.
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Table 4.3

Simulated Confidence Coefficients for 90 % Two-sided Intervals on /3

a b r EX1 EX2 EX3 EXS EXT LSS LST
3 2 2 max 0.9175 0.9190 0.9180 0.9175 0.9210 0.8380 0.8825
min 0.8825 0.8810 0.8780 0.8830 0.8790 0.7770 0.8395
3 2 5 max 0.9210 0.9205 0.9160 0.9180 0.9150 0.8350 0.9040
min 0.8770 0.8810 0.8750 0.8830 0.8770 0.7735 0.8685
3 2 10 max 0.9170 0.9165 0.9255 0.9200 0.9235 0.8320 0.9165
min 0.8795 0.8780 0.8740 0.8790 0.8770 0.7735 0.8735
3 2 15 max 0.9180 0.9195 0.9170 0.9175 0.9200 0.8280 0.9160
min 0.8795 0.8790 0.8765 0.8740 0.8775 0.7750 0.8720
3 5 2 max 0.9190 0.9230 0.9170 0.9200 0.9205 0.8940 0.9070
min 0.87650.8835-0.8805 0.8800 0.8825 0.8525 0.8685
3 5 5 max 0.9190 0.9200 0.9210 0.9225 0.9230 0.8975 0.9200
min 0.8800 0.8805 0.8765 0.8815 0.8800 0.8540 0.8760
3 5 10 max 0.9195 0.9225 0.9155 0.9215 0.9175 0.8915 0.9155
min (0.8825 0.8810 0.8780 0.8830 0.8790 0.8540 0.8395
3 5 15 max;0.9175 0.9200 0.9200 0.9195 0.9195 0.8955 0.9170
min 0.8795 0.8785 0.8810 0.8820 0.8730 0.8535 0.8730
3 10 2 max 0.9165 0.9155 0.9235 0.9200 0.9185 0.9090 0.9120
min (0.8805 0.8795 0.8795 0.8815 0.8775 0.8650 0.8700
3 10 5 max 0.9205 0.9180 0.9230 0.9185 0.9215 0.9070 0.9195
min - 0.8820 0.8785 0.8820 0.8815 0.8820 0.8690 0.8790
3 10 10 max-0.9170 0.9215 0.9230 0.9185 0.9165 0.9055 0.9160
min 0.8775 0.8790 0.8785 0.8815 0.8775 0.8680 0.8775
3 10 15 max 0.9160 0.9160 0.9230 0.9180 0.9185 0.9060 0.9185
min 0.8695 0.8790 0.8805 0.8805 0.8795 0.8665 0.8790
3 15 2 max 0.9180 0.9185 0.9220 0.9195 0.9195 0.9160 0.9165
min (0.8800 0.8830 0.8835 0.8795 0.8810 0.8715 0.8775
3 15 5 max 0.9210 0.9180 0.9190 0.9160 0.9150 0.9100 0.9135
min 0.8825 0.8740 0.8780 0.8825 0.8810 0.8750 0.8810
3 15 10 max 0.9225 0.9205 0.9195 0.9185 0.9195 0.9085 0.9195
min 0.8810 0.8820 0.8785 0.8715 0.8805 0.8650 0.8795
3 15 15 max 0.9175 0.9210 0.9200 0.9150 0.9165 0.9090 0.9165
min 0.8820 0.8805 0.8800 0.8775 0.8780 0.8710 0.8780
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Table 4.4

Simulated Confidence Coefficients for 90 % Two-sided Intervals on 3

a b r EX1 EX2 EX3 EXS EXT LSS LST
5 2 2 max 0.9175 0.9190 0.9190 0.9160 0.9210 0.8780 0.9055
min 0.8770 0.8775 0.8810 0.8815 0.8810 0.8350 0.8560
5 2 5 max 09175 0.9240 0.9165 0.9165 0.9195 0.8755 0.9110
min 0.8740 0.8760 0.8805 0.8790 0.8790 0.8315 0.8730
5 2 10 max 0.9210 0.9190 0.9200 0.9200 0.9195 0.8815 0.9155
min 0.8825 0.8785 0.8790 0.8825 0.8820 0.8360 0.8790
5 2 15 max 0.9225 0.9200 0.9200 0.9180 0.9215 0.8840 0.9180
min 0.8785 0.8805 0.8775 0.8800 0.8780 0.8355 0.8765
5 5 2 max 0.9165 0.9155 0.9210 0.9205 0.9185 0.9065 0.9155
min 0.8735-0.87500.8810 0.8845 0.8850 0.8665 0.8775
5 5 5 max 0.9155 0.9180 0.9150 0.9180 0.9250 0.9050 0.9215
min 0.8720 0.8715 0.8805 0.8790 0.8830 0.8670 0.8810
5 5 10 max 0.9180 0.9160 0.9120 0.9220 0.9220 0.9135 0.9200
min 0:8775 0.8725 0.8810 0.8805 0.8845 0.8665 0.8825
5 5 15 max 09175 0.9170 0.9160 0.9220 0.9200 0.9095 0.9190
min  0.8815 0.8760-0.8805 0.8785 0.8855 0.8690 0.8850
5 100 2 max 0.9170 0.9200 0.9175 0.9210 0.9245 0.9175 0.9210
min 0.8775 0.8780 0.8830 0.8790 0.8835 0.8705 0.8810
5 10 5 max 0.9140 0.9165 0.9195 0.9195 0.9815 0.9150 0.9170
min - 0.8835 0.8815 0.8820 0.8820.0.8840 0.8755 0.8825
5 10 10 max-0.9170 0.9170 0.9165 0.9235 0.9220 0.9180 0.9220
min 0.8820 0.8805 0.8805 0.8815 0.8830 0.8750 0.8815
5 10 15 max 0.9195 0.9190 0.9170 0.9235 0.9235 0.9190 0.9225
min 0.8795 0.8790 0.8825 0.8795 0.8805 0.8740 0.8790
5 15 2 max 0.9160 0.9185 0.9165 0.9210 0.9170 0.9160 0.9155
min 0.8835 0.8795 0.8815 0.8770 0.8830 0.8755 0.8810
5 15 5 max 0.9215 0.9190 0.9190 0.9220 0.9175 0.9180 0.9175
min 0.8835 0.8780 0.8770 0.8785 0.8800 0.8745 0.8770
5 15 10 max 0.9175 0.9200 0.9195 0.9215 0.9195 0.9185 0.9195
min 0.8825 0.8770 0.8760 0.8830 0.8805 0.8785 0.8805
5 15 15 max 0.9210 0.9205 0.9170 0.9175 0.9180 0.9145 0.9175
min 0.8825 0.8770 0.8705 0.8815 0.8780 0.8775 0.8760
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Table 4.5

Simulated Confidence Coefficients for 90 % Two-sided Intervals on 3

a b r EX1 EX2 EX3 EXS EXT LSS LST
10 2 2 max 0.9215 0.9170 0.9210 0.9250 0.9195 0.9045 0.9110
min 0.8800 0.8820 0.8810 0.8800 0.8800 0.8560 0.8665
10 2 5 max 0.9180 0.9240 0.9170 0.9190 0.9205 0.8995 0.9170
min 0.8780 0.8785 0.8800 0.8780 0.8795 0.8590 0.8760
10 2 10 max 0.9205 0.9190 0.9210 0.9160 0.9195 0.9005 0.9185
min 0.8830 0.8760 0.8735 0.8750 0.8715 0.8500 0.8705
10 2 15 max 0.9190 0.9210 0.9225 0.9175 0.9715 0.9005 0.9160
min 0.8840 0.8795 0.8735 0.8775 0.8790 0.8570 0.8785
10 5 2 max 0.9165 0.9155 0.9210 0.9205 0.9185 0.9065 0.9155
min 0.8735-0.87500.8810 0.8845 0.8850 0.8665 0.8775
10 5 5 max 0.9185 0.9215 0.9200 0.9210 0.9200 0.9140 0.9160
min  0.8790 0.8770 0.8765 0.8770 0.8780 0.8700 0.8725
10 5 10 max 0.9220 0.9165 0.9160 0.9170 0.9190 0.9115 0.9190
min 0:8815 0.8830 0.8800 0.8830 0.8795 0.8745 0.8785
10 5 15 max 0.9200 0.9170 0.9200 0.9165 0.9170 0.9100 0.9170
min  0.8800 0.8800-0.8800 0.8820 0.8835 0.8720 0.8830
10 10, 2 'max 0.9205 0.9170 0.9185 0.9230 0.9195 0.9190 0.9170
min 0.8825 0.8695 0.8780 0.8770 0.8825 0.8735 0.8805
10 10 5 max - 0.9180 0.9185 0.9165 0.9175 0.9215 0.9150 0.9205
min 0.8810 0.8810 0.8835 0.8770.0.8805 0.8720 0.8805
10 10 10 max-0.9190 0.9170 0.9170 0.9215 0.9210 0.9200 0.9210
min 0.8785 0.8835 0.8795 0.8785 0.8810 0.8745 0.8805
10 10 15 max 0.9220 0.9180 0.9185 0.9200 0.9195 0.9185 0.9195
min 0.8815 0.8830 0.8810 0.8790 0.8805 0.8750 0.8805
10 15 2 max 0.9165 0.9195 0.9195 0.9175 0.9195 0.9160 0.9165
min 0.8910 0.8930 0.8920 0.8915 0.8920 0.8895 0.8895
10 15 5 max 0.9210 0.9175 0.9185 0.9180 0.9195 0.9160 0.9195
min 0.8935 0.8925 0.8930 0.8965 0.8975 0.8920 0.8970
10 15 10 max 0.9185 0.9210 0.9190 0.9205 0.9220 0.9175 0.9220
min 0.8790 0.8805 0.8785 0.8785 0.8780 0.8775 0.8775
10 15 15 max 0.9185 0.9220 0.9215 0.9220 0.9210 0.9180 0.9210
min 0.8790 0.8795 0.8785 0.8800 0.8795 0.8775 0.8795
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Table 4.6

Simulated Confidence Coefficients for 90 % Two-sided Intervals on 3

a b r EX1 EX2 EX3 EXS EXT LSS LST
15 2 2 max 0.9175 0.9220 0.9250 0.9195 0.9190 0.9090 0.9115
min 0.8820 0.8820 0.8785 0.8785 0.8805 0.8670 0.8755
15 2 5 max 0.9255 0.9195 0.9220 0.9230 0.9230 0.9110 0.9205
min 0.8825 0.8810 0.8775 0.8755 0.8775 0.8615 0.8735
15 2 10 max 0.9190 0.9205 0.9185 0.9205 0.9160 0.9145 0.9160
min 0.8815 0.8775 0.8805 0.8810 0.8770 0.8675 0.8755
15 2 15 max 0.9190 0.9200 0.9160 0.9165 0.9155 0.9070 0.9145
min (0.8800 0.8810 0.8805 0.8800 0.8790 0.8665 0.8790
15 5 2 max 0.9160 0.9195 0.9215 0.9190 0.9180 0.9155 0.9170
min (0.8810-0.88200-8800 0.8815 0.8815 0.8780 0.8780
15 5 5 max 0.9175 0.9150 0.9220 0.9210 0.9190 0.9155 0.9175
min 0.8780 0.8760 0.8780 0.8855 0.8780 0.8800 0.8775
15 5 10 max 0.9175 0.9170 _0.9230 0.9245 0.9235 0.9195 0.9230
min 0:8780 0.8740 0.8775 0.8805 0.8790 0.8770 0.8785
15 5 15 max 0.9205 0.9175 0.9200 0.9220 0.9220 0.9165 0.9220
min = 0.8750 0.8715-0.8775 0.8805 0.8815 0.8750 0.8815
15 10, 2 'max 10.9200 0.9200 0.9180 0.9165 0.9155 0.9145 0.9145
min 0.8835 0.8820 0.8795 0.8810 0.8795 0.8785 0.8785
15 10 5 max - 0.9175 0.9180 0.9215 0.9180 0.9185 0.9160 0.9185
min - 0.8810 0.8815 0.8805 0.8835.0.8300 0.8810 0.8800
15 10 10 max-0.91556 0.9175 0.9195 0.9165 0.9185 0.9145 0.9185
min 0.8795 0.8840 0.8810 0.8820 0.8830 0.8810 0.8830
15 10 15 max 0.9160 0.9185 0.9185 0.9195 0.9190 0.9180 0.9190
min 0.8805 0.8810 0.8790 0.8825 0.8825 0.8815 0.8825
15 15 2 max 0.9185 0.9245 0.9215 0.9165 0.9190 0.9150 0.9190
min 0.8790 0.8835 0.8835 0.8805 0.8820 0.8790 0.8810
15 15 5 max 0.9190 0.9205 0.9200 0.9145 0.9165 0.9135 0.9165
min 0.8815 0.8785 0.8820 0.8845 0.8825 0.8830 0.8825
15 15 10 max 0.9195 0.9210 0.9205 0.9160 0.9175 0.9145 0.9170
min 0.8800 0.8810 0.8805 0.8825 0.8820 0.8820 0.8820
15 15 15 max 0.9205 0.9190 0.9205 0.9155 0.9170 0.9150 0.9170
min 0.8790 0.8805 0.8805 0.8810 0.8825 0.8805 0.8825
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Table 4.7
Average Interval Lengths for 90 % Two-sided Intervals on 3

a b r EX1 EX2 EX3 EXS EXT LSS LST
3 2 2 max 64.185 23.018 12.070 13.919 6.4700 9.7290 5.7230
min 11.470 0.894 0.134 3.439 2.2637 2.4041 2.0023
3 2 5 max 104.14 38.785 10.634 21.825 9.5092 15.254 9.1705
min 11.66 0.948 0.120 4.706 3.3644 3.289 3.2445
3 2 10 max 144.78 51.428 10.454 30.822 13.286 21.543 13.066
min 12.76 1.063 0.118 4.890 3.370 3.418 3.314
3 2 15 max 177.80 62.862 10.409 37.723 16.197 26.366 16.022
min 13.25 1.143 0.117 5.017 3.387 3.506 3.350
3 5 2 max 10240 15.753 10.822 17.341 9.4695 16.004 9.1322
min 11.86—0.605 0.123 3.686 2.1603 3.4026 2.0834
3 5 5 max 164.39 24.797 10.447 27405 14.797 25.291 14.604
min  12.69 0.646 0.117 3.839 -3.351 3.543 3.308
3 5 10 max 230.33 34.941 10.387 38.880 20.777 35.882 20.646
min 14.13 0.710 0.116 3.997 3.393 3.689 3.371
3 5 15 max 282.89 42.794 10.356 47.604 25.373 43.933 25.267
min 1533 0.767 0.116 4.161 3.440 3.840 3.426
3 10 2 max 143.43 15.044 10.553 23.776 13.221 22.961 13.003
min 11.79 0.584 0.119 3.609 2.171 3.485 2.135
3 10 5 max 227.05 23.778 10.365 37.570 20.743 36.281 20.611
min - 13.53 0.621 0.117 '3.791 - 3.365 3.661 3.343
3 10 10 max-321.53 33.655 10.351 53.159 29.251 51.335 29.160
min 16.19 0.684 0.116 4.046 3.459 3.907 3.449
3 10 15 max 393.67 41.121 10.339 65.045 35.783 62.813 35.708
min 17.88 0.741 0.116 4.294 3.551 4.147 3.544
3 15 2 max 176.91 14.883 10.491 28.717 16.119 28.083 15.946
min 12.46 0.578 0.117 3.619 2.189 3.539 2.166
3 15 5 max 28220 23.465 10.342 45.652 25.325 44.645 25.219
min 14.47 0.617 0.116 3.846 3.403 3.761 3.389
3 15 10 max 398.75 33.198 10.332 64.406 35.740 62.985 35.666
min 17.61 0.681 0.116 4.181 3.538 4.089 3.530
3 15 15 max 487.27 40.679 10.323 78.776 43.761 77.039 43.700
min 20.36 0.737 0.116 4.430 3.663 4.332 3.658
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Table 4.8
Average Interval Lengths for 90 % Two-sided Intervals on 3

a b r EX1 EX2 EX3 EXS EXT LSS LST
5 2 2 max 27.788 18.004 11.250 11.561 6.1748 10.037 5.8174
min 4.897 0.691 0.125 2.891 2.1646 2.510 2.0393
5 2 5 max 44.077 28.317 10.507 18.379 9.4207 15.956 9.2310
min 5.147 0.741 0.118 3.924 3.3209 3.406 3.2540
5 2 10 max 62.820 39.860 10.398 25.897 13.171 22.483 13.044
min 5.533 0.812 0.117 4.068 3.339 3.353 3.307
5 2 15 max 77.371 48.990 10.362 31.730 16.121 27.548 16.018
min 5.830 0.882 0.116 4.193 3.363 3.641 3.342
5 5 2 max 43.490 15.266 10.663 16.852 9.3581 16.143 9.1696
min  5.149-0.587 ~0.119 3.605 2.1376 3.454 2.0946
5 5 5 max 69.109 24.038 10.399 26.738 14.690 25.612 14.577
min  5.562 0.631 0.116 3.719 -3.332 3.562 3.297
5 5 10 max 97.000 33.986 10.334 37.670 20.712 36.084 20.636
min 6.178 0.696 0.116 3.892 3.380 3.728 3.367
5 5 15 max  118.87 41.593 10.319 46.165 25.340 44.222 25.277
min  6.728 0.753. 0.116 4.066 3.432 3.895 3.424
5 10 2 max 61.514 14.896 10.473 23.403 13.164 22.941 13.037
min 5318 0.577 0.118 3.592 2.148 3.522 2.127
5 10 5 max 97.147 23.492 10.342 36.974 20.699 36.246 20.621
min - 6.076 0.618 0.116 3.758 3.360 3.684 3.347
5 10 10 max-136.91 33.217 10.317 52:405 29.229 51.372 29.174
min 7.09 0679 0.116 4.016 3.454 3.936 3.447
5 10 15 max 167.92 40.708 10.313 64.178 35.773 62.913 35.729
min 795 0.736 0.116 4.255 3.545 4.171 3.540
o 15 2 max 74.957 14.774 10.426 28.504 16.057 28.138 15.955
min 5.970 0.574 0.117 3.618 2.168 3.571 2.155
5 15 5 max 118.92 23.344 10.327 45.139 25.291 44.558 25.228
min 6.52 0.613 0.116 3.834 3.398 3.785 3.390
5 15 10 max 168.50 32.998 10.310 63.890 35.737 63.068 35.688
min 7.82 0.675 0.116 4.166 3.529 4.113 3.524
5 15 15 max 206.50 40.386 10.307 78.326 43.755 77.318 43.719
min 8.90 0.731 0.116 4.440 3.655 4.349 3.652
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Table 4.9
Average Interval Lengths for 90 % Two-sided Intervals on 3

a b r EX1 EX2 EX3 EXS EXT LSS LST
10 2 2 max 22.747 15.952 10.770 10.903 6.0032 10.309 5.8487
min 4.141 0.614 0.121 2.733 2.1282 2.584 2.0734
10 2 5 max 36.100 25.153 10.418 17.281 9.3294 16.339 9.2394
min 4.307 0.658 0.117 3.697 3.2993 3.495 3.2670
10 2 10 max 50.934 35.625 10.368 24.379 13.142 23.051 13.080
min 4.587 0.723 0.116 3.819 3.334 3.611 3.318
10 2 15 max 62.351 43.683 10.343 29.841 16.067 28.215 16.016
min 4.854 0.780 0.116 3.936 3.359 3.722 3.349
10 5 2 max 36.115 14.969 10.479 16.588 9.2996 16.261 9.2098
min 4.237-0.578 ~0.117 3.557 2.1294 3.487 2.1089
10 5 5 max 56.695 23.528 10.345 26.225 14.627 25.708 14.572
min  4.582 0.620 0.116 3.671 -3.317 3.598 3.305
10 5 10 max 80.246 33.368 10.320 37.043 20.661 36.312 20.622
min 5.096 0.681 0.116 3.849 3.339 3.773 3.366
10 5 15 max 98.258 40.825 10.316 45.307 25.285 44.414 25.254
min 5572 0.737 0.116 4.012 3.427 3.393 3.423
10 10 2 max 50.814 14.774 10.417 23.241 13.081 23.019 13.019
min 4449 0.573 0.117 3.570 2.150 3.536 2.140
10 10 5 max 80.159 23.344 10.327 36.782 20.657 36.431 20.619
min- 5.016 0.613 0.116 3.736.3.358 3.701 3.352
10 10 10 max-113.66 33.034 10.312 52:083 29.182 51.586 29.154
min 0.84 0.674 0.116 3.987 3.450 3.948 3.447
10 10 15 max 139.54 40.405 10.309 63.789 35.730 63.179 35.708
min 6.57 0.730 0.116 4.225 3.542 4.185 3.540
10 15 2 max 62.017 14.728 10.378 28.389 15.993 28.210 15.943
min 4.618 0.572 0.116 3.595 2.171 3.572 2.164
10 15 5 max 98.705 23.276 10.321 44.917 25.277 44.634 25.246
min 5.38 0.610 0.116 3.809 3.397 3.785 3.393
10 15 10 max 139.59 32.857 10.312 63.550 35.721 63.149 35.699
min 6.48 0.671 0.116 4.138 3.528 4.112 3.526
10 15 15 max 171.09 40.217 10.309 77.806 43.736 77.315 43.718
min 743 0.727 0.116 4.386 3.656 4.358 3.654

38



Table 4.10
Average Interval Lengths for 90 % Two-sided Intervals on 3

a b r EX1 EX2 EX3 EXS EXT LSS LST
15 2 2 max 21.993 15.474 10.590 10.726 5.9321 10.358 5.8340
min 3.946 0.597 0.119 2.695 2.1108 2.602 2.0759
15 2 5 max 34.801 24.417 10.380 16.958 9.3025 16.376 9.2435
min 4.136 0.636 0.116 3.628 3.2985 3.503 3.2776
15 2 10 max 49.063 34.587 10.340 23.916 13.122 23.096 13.081
min 4.423 0.703 0.116 3.439 3.331 3.615 3.213
15 2 15 max 60.033 42.423 10.326 29.252 16.055 28.248 16.021
min 4.682 0.760 0.116 3.864 3.360 3.731 3.353
15 5 2 max 34.840 14.847 10.404 16.509 9.2657 16.297 9.2069
min 4.110-0.573 -0.117 3.598 2.1281 3.494 2.1146
15 5 5 max 54.921 23.441 10.323 26.056 14.607 25.720 14.571
min  4.436 0.612 0.116 3.653 -3.332 3.606 3.313
15 5 10 max 77.826 33.129 10.313 36.811 20.653 36.337 20.628
min 4931 0.674 0.116 3.825 3.370 3.775 3.367
15 5 15 max [ 95.163 40.523 10.312 45.104 25.292 44.524 25.271
min = 5.380 0.730- 0.116 3.988 3.428 3.936 3.425
15 10 2 max 49.150 14.714 10.376 23.215 13.073 23.069 13.032
min  4.272 0.572 0.116 3.556 2.145 3.534 2.139
15 10 5 max 77.440 23.227 10.323 36.601 20.642 36.371 20.616
min 4.826 0.611 0.116 3.719.3.359 3.696 3.354
15 10 10 max-109.87 32.796 10.314 51.801 29.176 51.474 29.158
min 5.63 0.672 0.116 3.976 3.453 3.951 3.450
15 10 15 max 134.32 40.165 10.309 64.472 35.727 63.072 35.712
min 6.33 0.727 0.116 4.213 3.545 4.187 3.544
15 15 2 max 59.945 14.678 10.352 28.319 15.995 28.201 15.962
min 4.461 0.571 0.116 3.590 2.168 3.575 2.164
15 15 5 max 95.131 23.168 10.311 44.769 25.254 44.582 25.233
min 5.210 0.610 0.116 3.804 3.398 3.788 3.395
15 15 10 max 134.48 32.741 10.304 63.315 35.712 63.051 35.697
min 6.27 0.671 0.116 4.135 3.530 4.118 3.528
15 15 15 max 164.67 40.086 10.303 77.551 43.735 77.227 43.723
min 718 0.726 0.116 4.382 3.657 4.364 3.656
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CHAPTER 5
NUMERICAL EXAMPLE AND CONCLUSIONS

Belsley et al. (1980) analyzed the relationship of house prices on quality of
the environment using 506 observations on census tracts belonging to 92 towns in
the Boston Standard Metropolitan Statistical Area(SMSA) in 1970. The response
variable used in the study is logarithm of the median value of owner-occupied
homes(Y') and one of the predictor variables is the per capita crime rate(X).

A subset of these data was selected to conform to the design with a = 3,
b =2, and r = 5 of our simulation. We selected six towns(Salem, Woburn,
Natick, Winchester, Belmont, and Arlington) and 5 observations from each town.
We assume that Salem and Woburn, Natick and Winchester, and Belmont and
Arlington belong to the same district, respectively, and that observations are
nested within towns(secondary units) that are nested within districts(primary
units) in order to correspond with a/balanced two-fold nested error structure.

The data chosen-are in-Table 5.1. :Using the data in Table 5.1 we computed
necessary statistics as follows: Bl = —3.484, Bg = —7.103, Bg = —3.072, BS =
—5.666, By = —4.493, S? = 0.0163, S2 = 0.3068, S2 = 0.0199, S% = 0.0820,
S% = 0.0796, k1o = 0.3970, k13 = 0.2174, and ko3 = 0.5477. The resulting
90% two-sided confidence intervals for 3 are shown in Table 5.2. LSS method
is not recommended because it did not maintain stated confidence level when
a=3,b=2,and r =5 in the simulation study. EX3, EXT, and LST methods
are recommended to construct 90% two sided confidence interval for 5. EX3

and EXT methods use t-values with ng = 23 and ns = 26 degrees of freedom,
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respectively, and LST uses Z-value. The confidence intervals of the three methods
contain negative values for lower and upper limits. Therefore the null hypothesis

Hy : 8 =0 is not rejected at a = 10%

Table 5.1
Selected Data Set from Boston SMSA in 1970
Salem Woburn Natick
Y X Y X Y X

10.0389 0.08829 10.3735 0.07875 10.0732 0.08244
10.2073 0.14455 10.3023 0.12579 10.0562 0.09252
9.71112 0.21124 10.4602 0.08370 9.99880 0.11329
9.84692 0.17004 10.5187 0.09068 9.90848 0.10612
9.61581 0.22489 10.3255 0.06911 10.0078 0.10290

Wirnchester Belmont Arlington

Y X Y X ¥, X
10.2541 0.12204 10.5241.0.05780 10.0732" 0.13914
9.97115 0:11504 10.5916 0.06588 10.0690 '0.09178
10.5636 0.12083 10.4968 0.06888 10.0257 0.08447
10.6874 0.08187 10.5427 0.09103 10.2888 0.06664
10.4103 0.06860 10.3890 0.10008 10.0519 /0.07022

Table 5.2
90% Confidence Intervals on S for Example Data

Lower Upper Interval

Method  Estimates  bound bound length
EX1 (3 =-3484 -11.40 443 15.83
EX2 [, =-7.103 -19.98 5.78  25.76
EX3  f3=-3.072 -4.72 -1.43 3.29
EXS fBg=-5666 -12.03 0.70 12.73
EXT fBr=-4493 -7.13 -1.86 5.27
LSS  Bg=-5666 -10.12 -1.22 8.90

LST  fBr=-4493 -7.03 -1.95 5.08
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In summary this thesis presents an approach for constructing confidence
intervals for regression coefficient in a simple linear regression model with a
balanced two-fold nested error structure. We used OLS estimators to construct
confidence intervals for # and performed simulations to compare the confidence
intervals derived for primary sampling units a from 3 to 15, secondary sampling
units b from 2 to 15, and the last sampling units » from 2 to 15. The simulation
study was therefore performed 64 combinations for different values of a, b, and r.

When a = 3, 5, and 10, LSS method is not recommended to compute con-
fidence interval. For a = 3, 5, and 10 with b = 2 and r = 2, LST method is not
recommended. Except-other cases, LSS and LST methods can be applied to con-
struct confidence interval. Except for LSS and LST methods, other five methods
can be used across all combinations of a;b, and r. We therefore recommend to
compute all seven confidence intervals for f and choose the shortest confidence

interval for regression coefficient to apply for real examples.
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