이 학 석 사 학 위 논 문

(E)-2,4-Dinitrobenzaldehyde O-aryloxime 과 (E)-2,4,6-Trinitrobenzaldehyde Obenzoyloxime 유도체의 니트릴-형성 제거반응에 관한 연구

2013년 2월

부경대학교대학원

화 학 과

류 은 미

이 학 석 사 학 위 논 문

(E)-2,4-Dinitrobenzaldehyde O-aryloxime 과 (E)-2,4,6-Trinitrobenzaldehyde Obenzoyloxime 유도체의 니트릴-형성 제거반응에 관한 연구 지도교수 변상 용

2013년 2월

부경대학교대학원

화 학 과

류 은 미

류은미의 이학석사 학위논문을 인준함.

2013년 2월 22일

위원 이학박사 변상용 (인)

CONTENTS

Page

List of Tables List of Figures List of Scheme Abstract

- 제 1 장 -	
I. 서 론	2
п Л й	
Ⅱ. 결 임 Ⅱ-1. 기기 및 시약	
Ⅱ-2.(E)-2,4-dinitrobenzaldehyde O-aryloxime 유도체 합성	
Ⅱ-3. 염기 용매의 제조	19
Ⅱ-4. 반응속도의 측정	
II -5. Control Experiment	20
Ⅱ-6. 반응 생성물의 확인	20
Ⅲ. 결 과	
IV. 고 찰	
V. 참고문헌	
VI. 부 록	

- 제 2 장 -

I. 서 론	60
--------	----

Ⅱ. 실 험

Ⅱ-1. 기기 및 시약	63
Ⅱ-2.(E)-2,4,6-trinitrobenzaldehyde O-benzoyloxime 유도체의 합성	64
Ⅱ-3. 염기 용매의 제조	70
Ⅱ-4. 반응속도의 측정	70
II -5. Control Experiment	71
Ⅱ-6. 반응 생성물의 확인	71
Ⅲ. 결 과	72
IV. 고 찰	76
V. 참고문헌	85
VI. 부 록	87

감사의	글	99
-----	---	----

LIST OF TABLES

- 제 1 장 -

Table 1.	Kinetic predictions for base-promoted β-elimination				
Table 2.	Predictions for change of transition state structure for a central	9			
	E2 reaction resulting from change in reaction conditions				
Table 3.	Rate constants for nitrile-forming eliminations from (E)-2,4-	22			
	$(NO_2)_2C_6H_3CH=NOC_6H_3-2-X-4-NO_2$ (1a-e) promoted by				
	R ₃ N in MeCN at 25.0 °C				
Table 4.	Brönsted β values for nitrile-forming eliminations from (E)-	24			
	$2,4-(NO_2)_2C_6H_3CH=NOC_6H_3-2-X-4-NO_2$ (1a-e) promoted by				
	R ₃ N in MeCN at 25.0 ℃				
Table 5.	Brönsted β_{lg} values for nitrile-forming eliminations from (E)-	24			
	2,4-(NO ₂) ₂ C ₆ H ₃ CH=NOC ₆ H ₃ -2-X-4-NO ₂ (1a-e) promoted by				
	R ₃ N in MeCN at 25.0 ℃				
Table 6.	Effect of the β -aryl group on the nitrile-forming eliminations	29			
	from (E)-ArCH=NOC ₆ H ₃ -2,4-(NO ₂) ₂ promoted by R_3N in				
	MeCN at 25.0 °C				
Table 7.	Effect of the base-solvent on the nitrile-forming eliminations	30			
	from (E)-2,4-(NO ₂) ₂ C ₆ H ₃ CH=NOC ₆ H ₃ -2,4-(NO ₂) ₂				
Table S1.	Observed rate constants for eliminations from (E)-2,4-	36			
	$(NO_2)_2C_6H_3CH=NOC_6H_3-2-X-4-NO_2$ (1a-e) promoted by				
	Et ₃ N in MeCN at 25.0 $^{\circ}$ C				

- **Table S2.** Observed rate constants for eliminations from (*E*)-2,4- 37 $(NO_2)_2C_6H_3CH=NOC_6H_3-2-X-4-NO_2$ (**1a-e**) promoted by Et₂N(CH₂CH₂OH) in MeCN at 25.0 °C
- **Table S3.** Observed rate constants for eliminations from (E)-2,4- 38 $(NO_2)_2C_6H_3CH=NOC_6H_3$ -2-X-4-NO2 (1a-e) promoted by $EtN(CH_2CH_2OH)_2$ in MeCN at 25.0 °C
- **Table S4.** Observed rate constants for eliminations from (*E*)-2,4- 38 $(NO_2)_2C_6H_3CH=NOC_6H_3-2-X-4-NO_2$ (1a-e) promoted by $N(CH_2CH_2OH)_3$ in MeCN at 25.0 °C

- 제 2 장 -

- Table 1.Rate constant for nitrile-forming elimination from (E)-2,4,6-73 $(NO_2)_3C_6H_2CH=NOC(O)C_6H_4X$ (1a-d) promoted by $R_2NH/R_2NH_2^+$ in 70 mol% MeCN(aq) at 25.0 °C
- Table 2.Brönsted β values for nitrile-forming eliminations from (E)-752,4,6-(NO2)_3C_6H_2CH=NOC(O)C_6H_4X (1a-d) promoted by $R_2NH/R_2NH_2^+$ in 70 mol% MeCN(aq) at 25.0 °C
- **Table 3.**Brönsted β_{lg} values for nitrile-forming eliminations from (E)-752,4,6-(NO2)_3C_6H_2CH=NOC(O)C_6H_4X (1a-d) promoted by $R_2NH/R_2NH_2^+$ in 70 mol% MeCN(aq) at 25.0 °C
- **Table 4.**Transition state parameters for nitrile-forming eliminations81from (E)-ArCH=NOC(O)C_6H_5 promoted by $R_2NH/R_2NH_2^+$ in70 mol% MeCN(aq) at 25.0 °C

- **Table 5.**Transition state parameters for proton removal and leaving84group loss in base promoted eliminations from (E)-2,4,6- $(NO_2)_3C_6H_2CH=NOX$
- **Table S1.** Observed rate constants for eliminations from (E)-2,4,6-87 $(NO_2)_3C_6H_2CH=NOC(O)C_6H_4X$ (1a-d) promoted by $Bz(i-Pr)NH/Bz(i-Pr)NH_2^+$ in 70 mol% MeCN(aq) at 25.0 °C
- **Table S2.** Observed rate constants for eliminations from (E)-2,4,6-87 $(NO_2)_3C_6H_2CH=NOC(O)C_6H_4X$ (1a-d) promoted by *i*-
 Bu_2NH/i - $Bu_2NH_2^+$ in 70 mol% MeCN(aq) at 25.0 °C
- **Table S3.** Observed rate constants for eliminations from (E)-2,4,6-88 $(NO_2)_3C_6H_2CH=NOC(O)C_6H_4X$ (1a-d) promoted by *i*- Pr_2NH/i - $Pr_2NH_2^+$ in 70 mol% MeCN(aq) at 25.0 °C
- Table S4.Observed rate constants for eliminations from (E)-2,4,6-88 $(NO_2)_3C_6H_2CH=NOC(O)C_6H_4X$ (1a-d) promoted by 2,6-DMP/2,6-DMPH⁺ in 70 mol% MeCN(aq) at 25.0 °C

1011

1 B &

LIST OF FIGURES

- 제 1 장 -

Figure 1.	Hammond postulate	5			
	(a) Exothermic (b) Endothermic process				
Figure 2.	Variable E2 transition state theory	6			
Figure 3.	More O'Ferrall-Jencks reaction coordinate diagram	7			
Figure 4.	Brönsted plots for the elimination from (E)-2,4-	23			
	$(NO_2)_2C_6H_3CH=NOC_6H_3-2-X-4-NO_2$ (1a-e) promoted by				
	R_3N in MeCN at 25.0 °C [X = H (1a, •), CH ₃ (1b, ■), Cl(1c,				
	▲), CF ₃ (1d, ∇), NO ₂ (1e, \blacklozenge)]				
Figure 5.	Plots of log k_2 vs. pK_{lg} values of the leaving group for the	23			
0	elimination from (E) -2,4- $(NO_2)_2C_6H_3CH=NOC_6H_3$ -2-X-4-				
	NO ₂ (1a-e) promoted by R_3N in MeCN at 25.0 °C				
	$[R_3N = N(CH_2CH_2OH)_3 (\blacksquare), EtN(CH_2CH_2OH)_2 (\bullet),$				
	$Et_2N(CH_2CH_2OH)(\blacktriangle), Et_3N(\triangledown)]$				
Figure 6.	Reaction coordinate diagram for nitrile-forming eliminations	27			
Figure S1.	Plots of k_{obs} vs. base concentration for eliminations from (<i>E</i>)-	39			
	$2,4-(NO_2)_2C_6H_3CH=NOC_6H_4-4-NO_2(1a)$ promoted by Et ₃ N				
	in MeCN at 25.0 $^{\circ}$ C				
Figure S2.	Plots of k_{obs} vs. base concentration for eliminations from (<i>E</i>)-	39			
8	$2,4-(NO_2)_2C_6H_3CH=NOC_6H_4-4-NO_2$ (1a) promoted by				
	Et ₂ N(CH ₂ CH ₂ OH) in MeCN at 25.0 $^{\circ}$ C				

- Figure S3. Plots of k_{obs} vs. base concentration for eliminations from (*E*)- 40 2,4-(NO₂)₂C₆H₃CH=NOC₆H₃-2-CH₃-4-NO₂ (**1b**) promoted by R₃N in MeCN at 25.0 °C [R₃N = Et₃N (**■**), Et₂N(CH₂CH₂OH) (•)]
- **Figure S4.** Plots of k_{obs} vs. base concentration for eliminations from (*E*)- 40 2,4-(NO₂)₂C₆H₃CH=NOC₆H₃-2-Cl-4-NO₂ (**1c**) promoted by R₃N in MeCN at 25.0 °C [R₃N = Et₃N (\blacksquare), Et₂N(CH₂CH₂OH) (\bullet)]
- **Figure S5.** Plots of k_{obs} vs. base concentration for eliminations from (*E*)- 41 2,4-(NO₂)₂C₆H₃CH=NOC₆H₃-2-Cl-4-NO₂ (**1c**) promoted by EtN(CH₂CH₂OH)₂ in MeCN at 25.0 °C
- Figure S6 Plots of k_{obs} vs. base concentration for eliminations from (*E*)- 41 2,4-(NO₂)₂C₆H₃CH=NOC₆H₃-2-CF₃-4-NO₂ (1d) promoted by R₃N in MeCN at 25.0 °C [R₃N = Et₃N (\blacksquare), Et₂N(CH₂CH₂OH) (\bullet)]
- Figure S7Plots of k_{obs} vs. base concentration for eliminations from (E)-422,4-(NO2)2C6H3CH=NOC6H3-2-CF3-4-NO2(1d) promotedby EtN(CH2CH2OH)2 in MeCN at 25.0 °C
- **Figure S8** Plots of k_{obs} vs. base concentration for eliminations from (*E*)- 42 2,4-(NO₂)₂C₆H₃CH=NOC₆H₃-2,4-(NO₂)₂ (**1e**) promoted by R₃N in MeCN at 25.0 °C [R₃N = Et₃N (\blacksquare), Et₂N(CH₂CH₂OH) (\bullet)]

Figure S9	Plots of k_{obs} vs. base concentration for eliminations from (<i>E</i>)- 4			
	$2,4-(NO_2)_2C_6H_3CH=NOC_6H_3-2,4-(NO_2)_2$ (1e) promoted by			
	EtN(CH ₂ CH ₂ OH) ₂ in MeCN at 25.0 °C			
Figure S10	IR spectrum of (E) -2,4- $(NO_2)_2C_6H_3CH=NOC_6H_4$ -4- NO_2	44		
	(1a)			
Figure S11	¹ H-NMR spectrum of (E) -2,4- $(NO_2)_2C_6H_3CH=NOC_6H_4$ -4-	45		
	$NO_2(1a)$			
Figure S12	EIMS spectrum of (E) -2,4- $(NO_2)_2C_6H_3CH=NOC_6H_4$ -4- NO_2	46		
	(1a)			
Figure S13	IR spectrum of (E) -2,4- $(NO_2)_2C_6H_3CH=NOC_6H_3$ -2- CH_3 -4-	47		
	NO ₂ (1b)			
Figure S14	¹ H-NMR spectrum of (E) -2,4- $(NO_2)_2C_6H_3CH=NOC_6H_3$ -2-	48		
	CH ₃ -4-NO ₂ (1b)			
Figure S15	EIMS spectrum of (E) -2,4- $(NO_2)_2C_6H_3CH=NOC_6H_3$ -2- CH_3 -	49		
	4-NO ₂ (1b)			
Figure S16	IR spectrum of $(E)-2,4-(NO_2)_2C_6H_3CH=NOC_6H_3-2-Cl-4-$	50		
	$NO_2(1c)$			
Figure S17	¹ H-NMR spectrum of (E) -2,4- $(NO_2)_2C_6H_3CH=NOC_6H_3$ -2-	51		
	$Cl-4-NO_2(1c)$			
Figure S18	EIMS spectrum of (E) -2,4- $(NO_2)_2C_6H_3CH=NOC_6H_3$ -2-Cl-4-	52		
	$NO_2(1c)$			
Figure S19	IR spectrum of $(E)-2,4-(NO_2)_2C_6H_3CH=NOC_6H_3-2-CF_3-4-$	53		
	$NO_2(1d)$			

- Figure S20 ¹H-NMR spectrum of (E)-2,4- $(NO_2)_2C_6H_3CH=NOC_6H_3$ -2- 54 CF₃-4-NO₂ (1d)
- Figure S21 EIMS spectrum of (E)-2,4- $(NO_2)_2C_6H_3CH=NOC_6H_3$ -2-CF₃- 55 4- NO_2 (1d)
- Figure S22 IR spectrum of (E)-2,4- $(NO_2)_2C_6H_3CH=NOC_6H_3$ -2,4- $(NO_2)_2$ 56 (1e)
- Figure S23 ¹H-NMR spectrum of (E)-2,4- $(NO_2)_2C_6H_3CH=NOC_6H_3$ -2,4- 57 $(NO_2)_2$ (1e)
- Figure S24 EIMS spectrum of (E)-2,4- $(NO_2)_2C_6H_3CH=NOC_6H_3$ -2,4- 58 $(NO_2)_2$ (1e)

- 제 2 장 -
- Figure 1. Brönsted plots for the elimination from (*E*)-2,4,6- 74 (NO₂)₃C₆H₂CH=NOC(O)C₆H₄X (1a-d) promoted by $R_2NH/R_2NH_2^+$ in 70 mol% MeCN(aq) at 25.0 °C [X = H (1a, •), *p*-OMe (1b, •), *m*-Cl (1c, \blacktriangle), *p*-CF₃(1d, \bigtriangledown)]
- Figure 2. Plots of log k_2 vs. pK_{lg} values of the leaving group for the 74 elimination from (E)-2,4,6- $(NO_2)_3C_6H_2CH=NOC(O)C_6H_4X$ (1a-d) promoted by $R_2NH/R_2NH_2^+$ in 70 mol% MeCN(aq) at 25.0 °C $[R_2NH = Bz(i-Pr)NH(\bullet), i-Bu_2NH(\bullet), i-Pr_2NH(\blacktriangle), 2,6-DMP(\blacktriangledown)]$

Reaction coordi	nate diagram for r	itrile-formi	ng eliminations	80
from (<i>E</i>)-2,4,6-1	rinitrobenzaldehyd	le O-benzoy	loximes	
Plots of k_{obs} vs.	base concentration	n for elimina	tions from (E) -	89
2,4,6-(NO ₂) ₃ C ₆	$H_2CH=NOC(O)C_6$	H ₅ (1a) pr	romoted by i-	
Bu ₂ NH/ <i>i</i> -Bu ₂ NI	H_2^+ in 70 mol% Mo	eCN(aq) at 2	25.0 °C	
Plots of k_{obs} vs.	base concentration	n for elimina	tions from (<i>E</i>)-	89
2,4,6-(NO ₂) ₃ C ₆	$H_2CH=NOC(O)C_6$	H ₅ (1a)	promoted by	
$R_2 NH/R_2 NH_2^+$	n 70 mol% MeCN	(aq) at 25.0	°C	
Plots of k_{obs} vs.	base concentration	for elimina	tions from (E)-	90
$2,4,6-(NO_2)_3C_6$	$H_2CH=NOC(O)C_6$	H ₄ - <i>p</i> -OCH ₃	(1b) promoted	
by R ₂ NH/R ₂ NH	f_2^+ in 70 mol% Me	CN(aq) at 2:	5.0 °C	
Plots of $k_{\rm obs}$ vs.	base concentratior	for elimina	tions from (E)-	90
2,4,6-(NO ₂) ₃ C ₆	$H_2CH=NOC(O)C_6$	H ₄ - <i>m</i> -Br (10	e) promoted by	
$R_2NH/R_2NH_2^+$	in 70 mol% MeCN	(aq) at 25.0	°C	
Plots of k_{obs} vs.	base concentratior	n for elimina	tions from (E)-	91
2,4,6-(NO ₂) ₃ C ₆]	$H_2CH=NOC(O)C_6$	H_4 - <i>p</i> - CF_3 (1d) promoted	
by R ₂ NH/R ₂ NH	r_2^+ in 70 mol% Me	CN(aq) at 2	5.0 °C	
¹ H-NMR	spectrum	of	(<i>E</i>)-2,4,6-	92
$(NO_2)_3C_6H_2CH_3$	=NOC(O)C ₆ H ₅ (1 a	a)		
¹³ C-NMR	spectrum	of	(<i>E</i>)-2,4,6-	93
$(NO_2)_3C_6H_2CH_3$	=NOC(O)C ₆ H ₅ (1 :	a)		
¹ H-NMR	spectrum	of	(<i>E</i>)-2,4,6-	94
$(NO_2)_3C_6H_2CH_3$	=NOC(O)C ₆ H ₄ - p -0	OCH ₃ (1b)		
	Reaction coordi from (E) -2,4,6-1 Plots of k_{obs} vs. 2,4,6-(NO ₂) ₃ C ₆ I Bu ₂ NH/ <i>i</i> -Bu ₂ NI Plots of k_{obs} vs. 2,4,6-(NO ₂) ₃ C ₆ I R ₂ NH/R ₂ NH ₂ ⁺ i Plots of k_{obs} vs. 2,4,6-(NO ₂) ₃ C ₆ I by R ₂ NH/R ₂ NH Plots of k_{obs} vs. 2,4,6-(NO ₂) ₃ C ₆ I R ₂ NH/R ₂ NH ₂ ⁺ i Plots of k_{obs} vs. 2,4,6-(NO ₂) ₃ C ₆ I R ₂ NH/R ₂ NH ₂ ⁺ i Plots of k_{obs} vs. 2,4,6-(NO ₂) ₃ C ₆ I by R ₂ NH/R ₂ NH ¹ H-NMR (NO ₂) ₃ C ₆ H ₂ CH ¹ H-NMR (NO ₂) ₃ C ₆ H ₂ CH	Reaction coordinate diagram for r from (E) -2,4,6-trinitrobenzaldehyd Plots of k_{obs} vs. base concentration 2,4,6-(NO ₂) ₃ C ₆ H ₂ CH=NOC(O)C ₆ Bu ₂ NH/ <i>i</i> -Bu ₂ NH ₂ ⁺ in 70 mol% Md Plots of k_{obs} vs. base concentration 2,4,6-(NO ₂) ₃ C ₆ H ₂ CH=NOC(O)C ₆ R ₂ NH/R ₂ NH ₂ ⁺ in 70 mol% MeCN Plots of k_{obs} vs. base concentration 2,4,6-(NO ₂) ₃ C ₆ H ₂ CH=NOC(O)C ₆ by R ₂ NH/R ₂ NH ₂ ⁺ in 70 mol% Me Plots of k_{obs} vs. base concentration 2,4,6-(NO ₂) ₃ C ₆ H ₂ CH=NOC(O)C ₆ R ₂ NH/R ₂ NH ₂ ⁺ in 70 mol% Me Plots of k_{obs} vs. base concentration 2,4,6-(NO ₂) ₃ C ₆ H ₂ CH=NOC(O)C ₆ R ₂ NH/R ₂ NH ₂ ⁺ in 70 mol% MeCN Plots of k_{obs} vs. base concentration 2,4,6-(NO ₂) ₃ C ₆ H ₂ CH=NOC(O)C ₆ by R ₂ NH/R ₂ NH ₂ ⁺ in 70 mol% Me ¹ H-NMR spectrum (NO ₂) ₃ C ₆ H ₂ CH=NOC(O)C ₆ H ₅ (1a ¹³ C-NMR spectrum (NO ₂) ₃ C ₆ H ₂ CH=NOC(O)C ₆ H ₅ (1a ¹ H-NMR spectrum (NO ₂) ₃ C ₆ H ₂ CH=NOC(O)C ₆ H ₅ (1a ¹ H-NMR spectrum (NO ₂) ₃ C ₆ H ₂ CH=NOC(O)C ₆ H ₅ (1a ¹ H-NMR spectrum	Reaction coordinate diagram for nitrile-formin from (<i>E</i>)-2,4,6-trinitrobenzaldehyde <i>O</i> -benzoy Plots of k_{obs} vs. base concentration for elimina 2,4,6-(NO ₂) ₃ C ₆ H ₂ CH=NOC(O)C ₆ H ₅ (1a) pr Bu ₂ NH/ <i>i</i> -Bu ₂ NH ₂ ⁺ in 70 mol% MeCN(aq) at 2 Plots of k_{obs} vs. base concentration for elimina 2,4,6-(NO ₂) ₃ C ₆ H ₂ CH=NOC(O)C ₆ H ₅ (1a) R ₂ NH/R ₂ NH ₂ ⁺ in 70 mol% MeCN(aq) at 25.0 Plots of k_{obs} vs. base concentration for elimina 2,4,6-(NO ₂) ₃ C ₆ H ₂ CH=NOC(O)C ₆ H ₄ - <i>p</i> -OCH ₃ by R ₂ NH/R ₂ NH ₂ ⁺ in 70 mol% MeCN(aq) at 23 Plots of k_{obs} vs. base concentration for elimina 2,4,6-(NO ₂) ₃ C ₆ H ₂ CH=NOC(O)C ₆ H ₄ - <i>m</i> -Br (1 c R ₂ NH/R ₂ NH ₂ ⁺ in 70 mol% MeCN(aq) at 25.0 Plots of k_{obs} vs. base concentration for elimina 2,4,6-(NO ₂) ₃ C ₆ H ₂ CH=NOC(O)C ₆ H ₄ - <i>m</i> -Br (1 c R ₂ NH/R ₂ NH ₂ ⁺ in 70 mol% MeCN(aq) at 25.0 Plots of k_{obs} vs. base concentration for elimina 2,4,6-(NO ₂) ₃ C ₆ H ₂ CH=NOC(O)C ₆ H ₄ - <i>p</i> -CF ₃ (by R ₂ NH/R ₂ NH ₂ ⁺ in 70 mol% MeCN(aq) at 25.0 Plots of k_{obs} vs. base concentration for elimina 2,4,6-(NO ₂) ₃ C ₆ H ₂ CH=NOC(O)C ₆ H ₄ - <i>p</i> -CF ₃ (by R ₂ NH/R ₂ NH ₂ ⁺ in 70 mol% MeCN(aq) at 25.0 Plots of k_{obs} vs. base concentration for elimina 2,4,6-(NO ₂) ₃ C ₆ H ₂ CH=NOC(O)C ₆ H ₄ - <i>p</i> -CF ₃ (by R ₂ NH/R ₂ NH ₂ ⁺ in 70 mol% MeCN(aq) at 25.0 Plots of k_{obs} vs. base concentration for elimina 2,4,6-(NO ₂) ₃ C ₆ H ₂ CH=NOC(O)C ₆ H ₅ (1 a) ¹³ C-NMR spectrum of (NO ₂) ₃ C ₆ H ₂ CH=NOC(O)C ₆ H ₅ (1 a) ¹³ H-NMR spectrum of (NO ₂) ₃ C ₆ H ₂ CH=NOC(O)C ₆ H ₅ (1 a) ¹⁴ -NMR spectrum of (NO ₂) ₃ C ₆ H ₂ CH=NOC(O)C ₆ H ₄ - <i>p</i> -OCH ₃ (1 b)	Reaction coordinate diagram for nitrile-forming eliminations from (<i>E</i>)-2,4,6-trinitrobenzaldehyde <i>O</i> -benzoyloximes Plots of k_{obs} vs. base concentration for eliminations from (<i>E</i>)- 2,4,6-(NO ₂) ₃ C ₆ H ₂ CH=NOC(O)C ₆ H ₅ (1a) promoted by <i>i</i> - Bu ₂ NH/ <i>i</i> -Bu ₂ NH ₂ ⁺ in 70 mol% MeCN(aq) at 25.0 °C Plots of k_{obs} vs. base concentration for eliminations from (<i>E</i>)- 2,4,6-(NO ₂) ₃ C ₆ H ₂ CH=NOC(O)C ₆ H ₅ (1a) promoted by R ₂ NH/R ₂ NH ₂ ⁺ in 70 mol% MeCN(aq) at 25.0 °C Plots of k_{obs} vs. base concentration for eliminations from (<i>E</i>)- 2,4,6-(NO ₂) ₃ C ₆ H ₂ CH=NOC(O)C ₆ H ₄ - <i>p</i> -OCH ₃ (1b) promoted by R ₂ NH/R ₂ NH ₂ ⁺ in 70 mol% MeCN(aq) at 25.0 °C Plots of k_{obs} vs. base concentration for eliminations from (<i>E</i>)- 2,4,6-(NO ₂) ₃ C ₆ H ₂ CH=NOC(O)C ₆ H ₄ - <i>m</i> -Br (1c) promoted by R ₂ NH/R ₂ NH ₂ ⁺ in 70 mol% MeCN(aq) at 25.0 °C Plots of k_{obs} vs. base concentration for eliminations from (<i>E</i>)- 2,4,6-(NO ₂) ₃ C ₆ H ₂ CH=NOC(O)C ₆ H ₄ - <i>p</i> -CF ₃ (1d) promoted by R ₂ NH/R ₂ NH ₂ ⁺ in 70 mol% MeCN(aq) at 25.0 °C Plots of k_{obs} vs. base concentration for eliminations from (<i>E</i>)- 2,4,6-(NO ₂) ₃ C ₆ H ₂ CH=NOC(O)C ₆ H ₄ - <i>p</i> -CF ₃ (1d) promoted by R ₂ NH/R ₂ NH ₂ ⁺ in 70 mol% MeCN(aq) at 25.0 °C Plots of k_{obs} vs. base concentration for eliminations from (<i>E</i>)- 2,4,6-(NO ₂) ₃ C ₆ H ₂ CH=NOC(O)C ₆ H ₄ - <i>p</i> -CF ₃ (1d) promoted by R ₂ NH/R ₂ NH ₂ ⁺ in 70 mol% MeCN(aq) at 25.0 °C ¹ H-NMR spectrum of (<i>E</i>)-2,4,6- (NO ₂) ₃ C ₆ H ₂ CH=NOC(O)C ₆ H ₅ (1a) ¹³ C-NMR spectrum of (<i>E</i>)-2,4,6- (NO ₂) ₃ C ₆ H ₂ CH=NOC(O)C ₆ H ₅ (1a) ¹³ C-NMR spectrum of (<i>E</i>)-2,4,6- (NO ₂) ₃ C ₆ H ₂ CH=NOC(O)C ₆ H ₅ (1a) ¹⁴ -NMR spectrum of (<i>E</i>)-2,4,6- (NO ₂) ₃ C ₆ H ₂ CH=NOC(O)C ₆ H ₄ - <i>p</i> -OCH ₃ (1b)

Figure S9	¹³ C-NMR	spectrum	of	(<i>E</i>)-2,4,6-	95
	$(NO_2)_3C_6H_2CH=N$	$NOC(O)C_6H_4$ -p-OC	2H ₃ (1b)		
Figure S10	¹ H-NMR	spectrum	of	(<i>E</i>)-2,4,6-	96
	$(NO_2)_3C_6H_2CH=N$	NOC(O)C ₆ H ₄ - <i>m</i> -Br	(1c)		
Figure S11	¹³ C-NMR	spectrum	of	(<i>E</i>)-2,4,6-	97
	$(NO_2)_3C_6H_2CH=N$	NOC(O)C ₆ H ₄ - <i>m</i> -Br	(1c)		
Figure S12	¹ H-NMR	spectrum	of	(<i>E</i>)-2,4,6-	98
	$(NO_2)_3C_6H_2CH=N$	$NOC(O)C_6H_4$ -p-CF	3 (1d)		
Figure S13	¹³ C-NMR	spectrum	of	(<i>E</i>)-2,4,6-	98
	$(NO_2)_3C_6H_2CH=N$	NOC(O)C ₆ H ₄ -p-CF	3 (1d)		
	NOVAUA TA		News 1		

LIST OF SCHEME

- 제 1 장 -

	Page
Scheme 1. Mechanism of Elimination Reaction	3

- 제 2 장 -

Scheme 1. E2 and E1cb Mechanism	77
Sahama 2 The evaluation state	02
Scheme 2. The cyclic transition state	03

Nitrile-Forming Elimination Reactions of (E)-2,4-Dinitrobenzaldehyde O-Aryloximes and (E)-2,4,6-Trinitrobenzaldehyde O-Benzoyloximes

Eun Mi Ryu

Department of Chemistry, The Graduate School, Pukyong National University

Abstract

In Chapter I, nitrile-forming eliminations from (E)-2,4- $(NO_2)_2C_6H_3CH=NOC_6H_3$ -2-X-4-NO₂ (**1a-e**) promoted by R₃N in MeCN have been studied kinetically. The reactions are second-order and exhibit Brönsted $\beta = 0.83-1.0$ and $|\beta_{lg}| = 0.41-0.46$. The results have been interpreted in terms of highly E1cb-like transition state with extensive C₆-H bond cleavage and limited N_{\alpha}-OAr bond cleavage. Comparison with exiting data reveals that the structure of the transition state changes from E2-central to highly E1cb-like either by the change of the β -aryl group from Ph to 2,4dinitrophenyl under the same condition or by the base-solvent system variation from EtO⁻-EtOH to Et₃N-MeCN for a given substrate (**1a-e**).

In Chapter II, nitrile-forming eliminations from (E)-2,4,6- $(NO_2)_3C_6H_2CH=NOC(O)C_6H_4X$ (1ad) promoted by $R_2NH/R_2NH_2^+$ in 70 mol% MeCN(aq) have been studied kinetically. The reactions produced only elimination products and exhibited second-order kinetics. The β and $|\beta_{lg}|$ values remained nearly the same within experimental error regardless of the ability of the leaving groups and the base strength variation. The results can be described by a negligible p_{xy} interaction coefficient, $p_{xy} = \partial\beta/\partial pK_{lg} = \partial\beta_{lg}/\partial pK_{BH} \approx 0$, which describes the interaction between the base catalyst and the leaving group. The negligible p_{xy} interaction coefficient are inconsistent with the E2 mechanism for which $p_{xy} > 0$ is expected, but provide a strong evidence for the (E1cb)_{irr} mechanism.

(*E*)-2,4-Dinitrobenzaldehyde O-aryloxime 유도체의 제거반응에 관한 연구: 니트릴 형성 제거반응에 미치는 β-아릴기와 염기 용매의 영향

I. 서 론

제거반응은 첨가, 치환, 자리 옮김 반응과 더불어 가장 기본적인 유 기화학 반응중의 하나이다. 이와 같은 화학 반응은 원자 또는 분자의 원자가 전자를 재배열하여 일어난다.

유기화학 반응에 대한 메커니즘 연구는 유기 화학 반응의 기본 원리 를 이해하고 유기 반응의 설명 및 예측에 필요한 유기 화학 이론을 발 전시키며, 유기 합성에 응용할 목적으로 많이 연구되었다.

제거 반응의 구조-반응성 관계는 할로젠화 알케인을 대상으로 널리 연구되었다.¹⁴ 올레핀을 형성하는 제거 반응은 크게 일분자 제거반응과 이분자 제거반응으로 구분된다. 일분자 제거반응은 염기와 반응하기 전 에 C_a-X 결합이 끊어져 카르보 양이온이 생긴 후 양성자가 이탈되는 E1 반응과 C_β-H 결합이 끊어져 카르보 음이온이 생기고 속도 결정 단 계에서 이탈기가 제거되는 (E1)_{anion} 반응이 있다. 이분자 제거 반응은 염기에 의해 수소와 이탈기가 동시에 제거되는 E2 반응과 염기에 의해 수소가 먼저 제거되어 카르보 음이온 중간체를 거치는 E1cb 반응이 있 다 (Scheme I).^{1,2}

2

Scheme 1. Mechanism of Elimination Reaction

Unimolecular Reaction

이와 같은 제거반응의 메커니즘은 반응 차수, 염기 영향, 용매 영향, 온도 영향, 동위 원소 효과 및 치환기 효과 등을 이용하여 밝힐 수 있다 (Table 1).

Mechanism	Kinetic	β-Proton exchange	Base	$k_{ m H}/k_{ m D}$	Leaving group
	order	faster than elimination	catalysis		isotope effect
E1	1	Yes	General	1.0	Substantial
(E1) _{anion}	1 Yes O		General ^a	1.0	Substantial
(E1cb) _r	2	Yes	Specific	1.0	Substantial
(E1cb) _{ip}	2	No	General ^b	1.0~1.2	Substantial
(E1cb) _{irr}	2	No	General	2~8	Small to Negligible
E2	2	No	General	2~8	Small

Table 1. Kinetic predictions for base-promoted β-elimination^{2c}

^{*a*} Specific base catalysis predicted if extent of substrate ionization reduced from almost complete.

^b Depends on whether ion pair assists in removal of leaving group

그 중에서 E2 반응의 전이상태는 C_β-H 결합과 C_α-X 결합이 끊어지는 동시에 이중결합이 형성되는 복잡한 구조를 가지므로, 전이상태에 영향 을 미치는 용매나 치환기 등의 반응조건을 변화시키는 연구가 많이 이 루어져 마침내 이들의 영향을 정상적으로 이해할 수 있게 되었다.

유기 화학 반응의 구조와 반응성 관계를 설명하는데 가장 오래 사 용되어 온 이론으로 Hammond의 가정이 있다 (Figure 1).^{2a}

 Figure 1. Hammond postulate, (a) Exothermic (b) Endothermic process.

 이 이론은 전이 상태의 구조가 발열 반응에서는 반응물과 유사한

 구조를 가지게 되고, 흡열 반응에서는 생성물과 유사한 구조를 가지게

 될 것이라는 가설이다. 그러나 E2 반응같이 복잡한 전이상태를 거치는

 제거반응에 대해서는 Hammond 가정으로는 설명할 수 없는 경우가 많

 다.

이와 같은 문제를 해결하기 위해 Bunnett은 variable E2 transition state theory를 제안하여 제거반응에서의 전이상태에 미치는 반응물 구조의 영향을 설명하였다 (Figure 2).⁵

이 이론에 의하면 전이상태 구조는 C_β-H 결합과 C_α-X 결합이 끊어진 정도에 따라 결정되며 C_α-X 결합의 끊어진 정도가 크면 E1-like, C_β-H 결합과 C_α-X 결합의 끊어진 정도가 같으면 E2-central, C_β-H 결합의 끊어 진 정도가 크면 E1cb-like 구조라고 한다. 예를 들어 나쁜 이탈기를 사 용할 경우, C_β-H 결합보다 C_α-X 결합이 끊어지기 어려우므로 E1cb-like 구조를 가질 것이라고 예측할 수 있다. 이 이론은 앞의 Hammond 가정 보다는 잘 맞으나, 이 또한 여러 가지 한계가 있음이 발견되었다.

따라서 현재 유기 화학 반응에서 전이상태 구조의 설명과 예측에 가 장 널리 이용되고 있는 이론은 Thornton, More O'Ferrall 및 Jencks 등에 의해 발전된 3 차원적 반응 좌표계 그림이다. 이 이론은 3 차원적 반응 좌표계에 반응물과 생성물 및 각 중간체의 에너지에 따라 전이상태의 위치를 나타낼 수 있다. 아래의 그림은 올레핀 형성 제거 반응에 대하 여 3차원적 반응 좌표계 그림을 위에서 내려다 본 2 차원적 그림이다 (Figure 3).^{2b}

Figure 3. More O'Ferrall-Jencks reaction coordinate diagram.

이 좌표계에서 가로축은 C₆-H 결합의 끊어진 정도, 세로축은 C_a-X 결 합의 끊어진 정도를 나타낸다. 좌표계에서 E1 반응은 반응물로부터 카 르보 양이온 중간체를 거쳐 생성물이 형성되는 경로이며 E1cb 반응은 음이온 중간체를 거치는 경로로 E2 반응은 이 두 중간체의 사이를 거 쳐 진행되는 경로로 표시할 수 있다. 이 그림에서 반응물로부터 생성물 로 향하는 반응 좌표계 방향은 Hammond의 가정과 같으며, 수직 방향 은 Bunnett의 이론과 일치한다. 따라서 반응 좌표계 그림은 Hammond 가설과 Bunnett의 이론을 모두 포함한 보다 포괄적인 이론이라고 할 수 있다. 이 이론에 의하면, 반응조건이나 치환기의 변화가 전이상태 구조 에 미치는 영향은 반응 좌표계와 평행한 반응과 수직되는 방향에 미치 는 영향의 합으로 나타낼 수 있다. 만약 F2 반응에서 나쁜 이탈기를 사 용하면 반응물에 비해 생성물의 에너지가 높아지므로 반응 좌표계 방 향으로는 생성물 쪽으로 이동하며(Hammond 가정), 반응 좌표계에 수직 되는 방향으로는 E1 중간체에 비해 Elcb 중간체의 에너지가 낮아지므 로 Elcb 방향으로 전이상태가 이동할 것이다(Bunnett 이론). 따라서 전 이상태는 이 두 영향의 벡터 합인 1' 방향으로 이동하게 되어 C_B-H 결 합의 끊어진 정도는 증가되고, Ca-X 결합의 끊어진 정도에는 변함이 없 을 것이다. 또한 El 및 Elcb 반응의 경우에는 반응 좌표계에 수직인 방향은 무시할 수 있으므로, 나쁜 이탈기를 사용하면 전이상태는 각각 2에서 2'로, 3에서 3'로 이동할 것이다. E2 반응에 대한 엮기, 이탈기 및 치환기의 영향을 Table 2에 정리하였다.

Condition change	C-H bond Length	C-X bond Length	Carbanion Character at C_{β}	Double-bond Formation
Poorer leaving group	Longer	Same	More	Same
Strong base	Same	Shorter	More	Less
Electron withdrawing	Longer	Shorter	More	Less
group at C_{β}				
Electron releasing	Shorter	Longer	Less	Less
group at C_{α}	Nr		-Uni	

Table 2. Predictions for change of transition state structure for a central E2 reaction resulting from change in reaction conditions^{2d}

이 표에서 보면 두 이론이 예측하는 결과는 매우 다르다. Variable E2 transition state theory에 의하면 전자를 끄는 치환기, 나쁜 이탈기, 혹은 강한 염기를 사용했을 때 전이상태는 E2에서 E1cb-like로 이동할 것으 로 예측한다. 반면에 3 차원적 반응 좌표계 그림은 이와 같은 반응조건 의 변화에 따라 각각 다른 전이상태의 구조를 예측하고 있다. 그러나 지금까지 발표된 대부분의 연구결과는 이 두 가지 이론으로 모두 설명 할 수 있었다. 그 이유는 반응조건의 변화에 따른 전이상태 구조의 차 이가 미세하여 각각의 이론이 예측하는 차이점을 관찰할 수 없었거나, 전이상태 구조를 나타내는 여러 변수 중 일부만 측정하여 전이상태 구 조의 차이를 정확하게 비교할 수 없었기 때문으로 생각된다. 그러나 반응좌표계 그림이 Variable E2 transition state theory를 포괄하고 있으며, 제거반응뿐만 아니라 S_N2 반응, 카보닐 화합물에 대한 첨가반 응 등의 구조-반응성 관계를 설명하는 데에도 유용하기 때문에 최근에 는 반응좌표계 그림이 가장 널리 사용되고 있다.

(E)-Benzaldehyde O-aryloxime 유도체의 제거반응은 다양한 조건에서 연구되었다.⁶⁻¹¹ 이 화합물이 syn 제거를 가지며, β-탄소가 sp² 혼성화를 이루고 있으며, 나쁜 이탈기를 가지고 있기 때문에 Elcb 메커니즘 혹은 Elcb-like 전이상태를 거쳐 반응할 것으로 예상하였다. 그러나 대부분의 연구결과, 이 반응은 E2 메커니즘에 의해 진행됨이 밝혀졌다.

앞서 발표된 논문인, (E)-XC₆H₄CH=NOAr(2)와 R₃N-MeCN과의 제거반 응은 E2 메커니즘에 의해 진행되는 것으로 밝혀졌다.⁶ 이들 메커니즘 또한 반응 좌표계 그림을 이용하여 설명할 수 있다. O-아릴 치환기의 전자 *끄*는 힘이 증가할수록 전이상태는 E1cb 모서리 쪽으로 이동하였 고, 강한 염기를 사용하면 전이상태는 E1 중간체 쪽으로 이동되었다. 반면에, 이탈기를 2,4-dinitrophenoxide에서 picrate로 바꾸었을 때, ρ 값은 감소하였고 β 값은 증가하였다. 이러한 결과는 반응 좌표계 그림에서 예측되는 결과와는 불일치함을 보였다. 즉 반응 좌표계 그림에서는 이 탈기 능력이 증가할수록 ρ 값과 β 값이 감소되는 결과를 보여주기 때 문이다. 이탈기 변화에 의한 전이상태 구조의 특이한 변화는 이탈기의 음이온 안정화 시킬 수 있는 능력이 크게 차이 나기 때문이다. 하지만 이 결과에 대한 설명은 더 많은 연구가 필요하다.

본 연구에서는 (*E*)-benzaldehyde O-aryloxime의 β-아릴 자리에 페닐기보 다 전자 *끄*는 능력이 큰 2,4-dinitrophenyl기를 도입하면, 전이상태에서 생성되는 β-카르보 음이온을 안정화 시켜줄 수 있으므로, 전이상태가 E1cb-like 혹은 E1cb 메커니즘이 발견될 가능성이 크다. 따라서 이를 확 인하기 위하여 (*E*)-2,4-dinitrobenzaldehyde O-aryloxime 유도체와 R₃N-MeCN 과의 반응을 조사하였다 (eq 1). 또한 본 연구와 앞서 연구된 (*E*)-XC₆H₄CH=NOC₆H₃-2-X-4-NO₂와 R₃N-MeCN과의 제거반응과 (*E*)-2,4-(NO₂)₂C₆H₃CH=NOC₆H₃-2-X-4-NO₂와 EtO-EtOH와의 제거반응의 연구결 과를 비교함으로써 니트릴 형성 전이상태에서의 β-아릴 치환기와 염기 용매의 영향에 따른 반응 메커니즘을 규명하고자 한다.

Ⅱ.실 험

Ⅱ-1. 기기 및 시약

반응물 및 생성물의 조사에 이용한 NMR 분광광도계는 JNM-ECP 400(FT NMR, 400MHz)을 사용하였고, UV스펙트럼은 Milton Roy Spectronic 1201 분광광도계와 OPTIZEN 3220UV를 사용하여 얻었다. IR스 펙트럼은 Perkin Elmer Limited Spectrum 2000 FT-IR 분광광도계를 사용하 여 얻었으며 속도측정에 이용한 항온조는 Brookfield의 TC-500을 사용 하였다. 녹는점은 Electrothermal Melting Point Apparatus를 이용하여 측정 하였다.

합성에 필요한 시약은 Aldrich의 Spectroscopy급의 용매를 알려진 방법 에 따라 정제하여 사용하였다.¹²

Ⅱ-2. (E)-2,4-dinitrobenzaldehyde O-aryloxime 유도체 합성¹³⁻¹⁵

II-2-1. (E)-2,4-dinitrobenzaldehyde O-4-nitrophenyloxime(1a)

1. Ethyl acetohydroxamate의 합성

증류수에 무수 K₂CO₃ (166 mmol)을 녹인 후 0 ℃로 냉각시켰다. 여기 에 ethyl acetimidate hydrochloride (80.9 mmol)을 넣고, NaCl (17.1 mmol)을 첨가한 후 약 10분간 강하게 교반하였다. 이 용액을 diethyl ether로 추출 하여 증류수로 씻은 후, NH₂OH·HCl (102 mmol)을 증류수에 녹인 용액에 붓고, 다시 NaCl (17.1 mmol)을 첨가한 후 약 15분간 강하게 교반하였다. diethyl ether층을 분리하고 물 층을 다시 한번 diethyl ether로 추출한 다 음, 무수 황산 마그네슘으로 건조시켰다. diethyl ether를 상온에서 감압 증발시켜 무색의 액체를 얻었다. mp: 25~26 ℃; IR (KBr); 3350 cm⁻¹ (O-H)

2. Ethyl O-(4-nitrophenyl)acetohydroxamate의 합성

무수 DMSO에 t-BuOK (25.0 mmol)와 ethyl acetohydroxamate (25.0 mmol) 를 넣고 0 ℃로 냉각시켰다. 이 용액에 4-nitrofluorobenzene (25.0 mmol)을 무수 DMSO에 녹인 용액을 적하 깔대기로 2 시간에 걸쳐 천천히 적가 하고, 상온에서 19 시간 동안 교반시킨 후 얼음물에 붓고, pH가 5.0이 될 때까지 아세트산을 가하니 미색의 결정이 얻어졌다. 이를 여과한 다 음 n-헥산으로 재결정하였다. mp: 103~104 ℃

NO

3. O-(4-nitrophenyl)hydroxylamine의 합성

1,4-디옥산에 ethyl O-(4-nitrophenyl)acetohydroxamate (2.23 mmol)을 녹여 10 ℃로 냉각하고 70% 과염소산을 첨가한 후 2 시간 동안 교반시킨 다 음 상온에서 2 시간 동안 더 교반하였다. 이 용액에 얼음물을 붓고 NaOH 수용액으로 pH를 7로 조절하여 침전을 얻었다. 침전을 여과하여 0.5 M NaOH 수용액과 물로 깨끗이 씻은 후 P₂O₅ 하에서 진공 건조시켜 미황색의 결정을 얻었다. mp: 124~125 ℃

4. (E)-2,4-dinitrobenzaldehyde O-4-nitrophenyloxime (1a)의 합성

 O_{2}

NO/

무수 에탄올에 O-(4-nitrophenyl)hydroxylamine (0.50 mmol)과 2,4dinitrobenzaldehyde (0.50 mmol)을 넣고 10분간 환류시킨 후 진한 염산을 가하여 노란색 고체를 얻었다. 고체를 여과한 다음 에탄올로 재결정하 여 0.16g(수득률 : 68%)을 얻었다.

-01=1 👡

NO

(*E*)-2,4-(O_2N)₂C₆H₃CH=NOC₆H₄-4-NO₂ (1a): Yield 68%; mp 181-182 °C; IR(KBr, C=N, cm⁻¹) 1586; ¹H NMR(DMSO-*d*₆) δ 7.54(d, *J* = 7.2, 2H), 8.32(d, *J* = 7.2, 2H), 8.36(d, *J* = 8.72, 1H), 8.65(dd, *J* = 8.72, 2.40, 1H), 8.87(s, 1H), 9.20(s, 1H); HRMS-(EI); m/z calcd for C₁₃H₈N₄O₇ 332.0393, found 332.0392.

II-2-2. (*E*)-2,4-dinitrobenzaldehyde O-2-methyl-4-nitrophenyloxime (1b)

NOb

같은 ∏-2-1 과 방법으로 합성된 O-(2-methyl-4-1 - 3Ó nitrophenyl)hydroxylamine (0.50)mmol)과 2,4-dinitrobenzaldehyde (0.50)(*E*)-2,4-dinitrobenzaldehyde O-2-methyl-4-nitrophenyloxime mmol)으로부터 0.12 g (수득률 : 71%)을 얻었다.

- 20

(*E*)-2,4-(O₂N)₂C₆H₃CH=NOC₆H₃-2-CH₃-4-NO₂ (1b): Yield 71%; mp 168-170 °C; IR(KBr, C=N, cm⁻¹) 1583; ¹H NMR(DMSO- d_6) δ 2.37(s, 3H), 7.67(d, *J* = 9.08, 1H), 8.16(dd, *J* = 2.72, 9.08, 1H), 8.21(s, 1H), 8.36(d, *J* = 8.52, 1H), 8.65(dd, *J* = 2.05, 8.52, 1H), 8.86(s, 1H), 9.23(s, 1H); HRMS-(EI); m/z calcd for C₁₄H₁₀N₄O₇ 346.0549, found 346.0549. II-2-3. (E)-2,4-dinitrobenzaldehyde O-2-chloro-4-nitrophenyloxime (1c)

Ⅱ-2-1 의 1-3 과 같은 방법으로 합성된 O-(2-chloro-4nitrophenyl)hydroxylamine (0.50 mmol)과 2,4-dinitrobenzaldehyde (0.50 mmol)으로부터 (E)-2,4-dinitrobenzaldehyde O-2-chloro-4-nitrophenyloxime 0.13 g (수득률 : 73%)을 얻었다.

(*E*)-2,4-(O_2N)₂C₆H₃CH=NOC₆H₃-2-Cl-4-NO₂ (1c): Yield 73%; mp 158-160 °C; IR(KBr, C=N, cm⁻¹) 1583; ¹H NMR(DMSO-*d*₆) δ 7.86(d, *J* = 9.24, 1H), 8.30(dd, *J* = 9,24, 2.72, 1H), 8.37(d, *J* = 8.56, 1H) ,8.45(s, 1H), 8.68(dd, *J* = 8.56, 2.40, 1H), 8.88(s, 1H), 9.32(s, 1H); HRMS-(EI); m/z calcd for C₁₃H₇ClN₄O₇ 366.0003, found 366.0004.

II-2-4.(*E*)-2,4-dinitrobenzaldehyde O-2-trifluoromethyl-4-nitrophenyloxime (1d)

Ⅱ-2-1 의 1-3 과 같은 방법으로 합성된 O-(2-trifluoromethyl-4nitrophenyl)hydroxylamine (0.50 mmol)과 2,4-dinitrobenzaldehyde (0.50 mmol)으로부터 (E)-2,4-dinitrobenzaldehyde O-2-trifluoromethyl-4nitrophenyloxime 0.15 g (수득률 : 76%)을 얻었다.

(*E*)-2,4-(O_2N)₂C₆H₃CH=NOC₆H₃-2-CF₃-4-NO₂ (1d): Yield 76%; mp 167-169 °C; IR(KBr, C=N, cm⁻¹) 1597; ¹H NMR(DMSO-*d*₆) δ 8.02(d, *J* = 9.56, 1H), 8.38(d, *J* = 8.54, 1H), 8.51(s,1H), 8.62(dd, *J* = 9.24, 2.72, 1H), 8.68(dd, *J* = 8.54, 2.4, 1H), 8.88(s, 1H), 9.30(s, 1H); HRMS-(EI); m/z calcd for C₁₃H₇F₃N₄O₇ 400 .0267, found 400.0267.

II-2-5. (E)-2,4-dinitrobenzaldehyde O-2,4-dinitrophenyloxime (1e)

Ⅱ-2-1 의 1-3 과 같은 방법으로 합성된 O-(2,4-

dinitrophenyl)hydroxylamine (0.50 mmol)과 2,4-dinitrobenzaldehyde (0.50 mmol)으로부터 (E)-2,4-dinitrobenzaldehyde O-2,4-dinitrophenyloxime 0.13 g (수득률 : 69%)을 얻었다.

(*E*)-2,4-(O_2N)₂C₆H₂CH=NOC₆H₃-2,4-(NO₂)₂ (1e): Yield 69%; mp 165-167 °C; IR(KBr, C=N, cm⁻¹) 1605; ¹H NMR(DMSO-*d*₆) δ 8.08(d, *J* = 9.24, 1H), 8.36(d, *J* = 8.56, 1H), 8.60(dd, *J* = 2.76, 9.24), 8.69(dd, 1H, *J* = 2.04, 8.56), 8.88(m, 2H), 9.34(s, 1H); HRMS-(EI); m/z calcd for C₁₃H₇N₅O₉ 377.0244, found 377.0239.

Ⅱ-3. 염기 용매의 제조

반응 용매인 MeCN은 문헌에 알려진 방법에 따라 CaH2를 넣고 1 시 간 동안 환류시킨 후 분별증류하여 정제해 사용하였다.¹² 염기들은 공 기 중에서 서서히 변질되어 연한 황갈색을 나타내는데, 반응속도를 측 정하기 직전에 다시 정제하여 사용되었다. 염기들의 무게를 정확히 달 아 MeCN에 용해시켜 농도를 결정하였고 필요에 따라 희석하여 사용하 였다.

Ⅱ-4. 반응속도의 측정

3.0 ml 염기 용액을 넣은 큐벳을 UV-VIS 분광광도계에 넣어 25 ℃에 도달하도록 20분 동안 기다린 후, 이 용액에 (*E*)-2,4-dinitrobenzaldehyde O-aryloximes (1a-e) 용액을 마이크로 실린지로 6 μℓ를 취하여 aryloxide의 최대 흡수 파장인 400 - 434 nm에서 시간에 따른 흡광도의 증가로써 반 응속도를 측정하였다.^{6,16} 반응 조건은 염기의 농도가 la-e의 농도보다 10배 이상 과량인 유사 일차 반응 조건에서 수행하였다. 모든 반응에 대해 반응 시간에 따른 ln(A_w-A_t) 값은 80% 이상 진행될 때 좋은 직선 관계를 보여 주었다. 이 직선의 기울기인 유사 일차 반응 속도상수 kobs 를 구하고 이차 반응 속도 상수 k2는 농도 변화에 따른 kobs 값을 도시 하여 직선의 기울기에서 구하거나 kobs를 염기의 농도로 나누어 구하였 ONA/ 다. UNIL

II-5. Control Experiment

기질인 (E)-2,4-dinitrobenzaldehyde O-aryloxime 1a-e의 안정성은 이미 보 고되어 있다.^{11,17} 안정성은 TLC, mp 및 UV-Vis 스펙트럼으로 확인하였 다. 모든 la-e 화합물은 냉장고에서 6개월 동안 안정하였다. 그러나 MeCN에서 녹인 용액은 냉장고에 보관되었을 때 2일 후에 분해되었다. Ⅱ-6. 반응 생성물의 확인

1a와 Et₃N-MeCN 사이의 반응 생성물은 알려진 방법에 따라 확인하였 다.¹⁷ 생성물은 2,4-dinitrobenzonitrile이며 녹는점 103-105 ℃ (lit.²⁶ mp 104-105℃)으로 확인할 수 있었다. 2,4-dinitrobenzonitrile의 수득률은 97%이며 aryloxide 수득률 또한 반응 속도 측정에서 구한 A∞ 값과 aryloxide의 흡 광계수를 비교하여 구하였고 수득률은 95~97% 이었다.
Ⅲ. 결 과

반응물 (E)-2,4-dinitrobenzaldehyde O-aryloxime은 문헌의 방법대로 무수 에탄올 용매에 2,4-dinitrobenzaldehyde와 치환기가 있는 Oarylhydroxylamine을 넣고 몇 분간 환류시킨 후, 진한 염산 몇 방울을 가 하여 합성하였다.¹³⁻¹⁵ 생성물은 NMR, IR 스펙트럼과 Mass 분석, 녹는점 등으로 확인하였다 (Fig. S10-24).

(E)-2,4-Dinitrobenzaldehyde O-aryloxime과 R₃N-MeCN 염기와의 반응으로 benzonitrile과 aryloxide가 정량적으로 얻어졌다. 반응 속도 측정에서 구한 A_∞ 값과 aryloxide의 흡광계수를 비교하여 구한 aryloxide의 수득률 은 95~97% 이었다.

제거반응의 속도는 aryloxide의 최대흡수파장, λ_{max}에서 시간에 따른 흡 광도의 증가를 측정하여 구하였다. 모든 반응에 대해 반응 시간에 따른 ln(A_∞-A_t) 값의 변화는 반감기가 제 번 이상 지날 때까지 매우 좋은 직 선 관계를 보여 주었다. 반응물 **1a-e**와 삼차 아민의 반응을 염기 농도 에 대한 *k*_{obs}를 도시한 결과는 Table S1-4에 나타내었다. Origin 프로그램 을 통해 그린 염기농도에 대한 *k*_{obs} 값의 변화는 원점을 통과하는 직선 으로 나타났고 (Fig S1-9), 이차 반응의 속도상수 *k*₂는 이 직선의 기울기 로부터 구하거나 *k*_{obs}를 염기의 농도로 나누어 얻었다. 그러나 염기 N(CH₂CH₂OH)₃와 반응물 **1a**,**1b**에 대한 *k*₂값은 반응 속도가 매우 느려 얻을 수가 없었다. 이를 제외한 **1a-e**의 제거반응의 *k*₂ 값은 Table 3에 정 리하였다.

Brönsted plot 에서의 k₂ 값은 염기의 pK_a 값과 좋은 상관관계를 나타낸 다(Figure 4). β 값은 이탈기의 이탈능력이 증가할수록 증가함을 보여주 었다 (Table 4). 또한 β_{lg} 값은 이탈기의 pK_{lg} 값과 k₂ 값으로부터 구하였 다 (Figure 5). 그 결과 염기가 N(CH₂CH₂OH)₃의 경우 다른 염기에서 구 한 β_{lg} 값과 매우 큰 차이의 값이 얻어졌다 (-0.36±0.25). 따라서 전이상 태 구조를 예측하기 위한 β_{lg} 값은 이를 제외한 나머지 결과만을 이용 하였다 (Table 5).

Table 3. Rate constants for nitrile-forming eliminations from (*E*)-2,4-(NO₂)₂C₆H₃CH=NOC₆H₃-2-X-4-NO₂ (**1a-e**)^{*a*} promoted by R₃N in MeCN at 25.0 $^{\circ}$ C

 $10^{3}k_{2}$ M⁻¹s^{-1d,e} When X is

Base ^b	pKa ^c	CH ₃ (1b)	H(1a)	Cl(1c)	CF ₃ (1d)	NO ₂ (1e)
N(CH ₂ CH ₂ OH) ₃	15.7	-	-	2.32	2.06	13.5
EtN(CH ₂ CH ₂ OH) ₂	16.3	0.485	0.869	10.3	10.8	111
Et ₂ N(CH ₂ CH ₂ OH)	17.7	4.94	9.29	122	134	1278
Et ₃ N	18.5	35.3	73.8	1446	1670	12499

^{*a*}[Substrate] = 5.0 x 10⁻⁵ M. ^{*b*}[R₃N] = 8.0 x 10⁻⁴ – 0.18 M. ^{*c*}Reference 25. ^{*d*}Average of three or more rate constants. ^{*e*}Estimated uncertainty, $\pm 3\%$

Figure 4. Brönsted plots for the elimination from (*E*)-2,4-(NO₂)₂C₆H₃CH=NOC₆H₃-2-X-4-NO₂ (1a-e) promoted by R₃N in MeCN at 25.0 °C [X = H (1a, \bullet), CH₃(1b, \blacksquare), Cl(1c, \blacktriangle), CF₃ (1d, \bigtriangledown), NO₂(1e, \blacklozenge)].

Figure 5. Plots of log k_2 vs. pK_{lg} values of the leaving group for the elimination from (E)-2,4- $(NO_2)_2C_6H_3CH=NOC_6H_3$ -2-X-4- NO_2 (**1a-e**) promoted by R₃N in MeCN at 25.0 °C [R₃N = N(CH₂CH₂OH)₃ (**•**), EtN(CH₂CH₂OH)₂ (•), Et₂N(CH₂CH₂OH) (**▲**), Et₃N (**▼**)].

Table 4. Brönsted β values for nitrile-forming eliminations from (*E*)-2,4-(NO₂)₂C₆H₃CH=NOC₆H₃-2-X-4-NO₂ (**1a-e**) promoted by R₃N in MeCN at 25.0 °C

	$X = CH_3$	X = H	X = Cl	$X = CF_3$	$X = NO_2$
pK_{lg}^{a}	21.1 ^b	20.7	18.1	17.0	16.0
β	0.83±0.09	0.86±0.10	0.95±0.08	0.99±0.08	1.0±0.09

^{*a*}Reference 25. ^{*b*}Determined from the slope of the plot of σ vs p K_a

GNAT

Table 5. Brönsted β_{lg} values for nitrile-forming eliminations from (*E*)-2,4-(NO₂)₂C₆H₃CH=NOC₆H₃-2-X-4-NO₂ (**1a-e**) promoted by R₃N in MeCN at 25.0 °C

UNI

R ₃ N	N(CH ₂ CH ₂ OH) ₃	EtN(CH ₂ CH ₂ OH) ₂	Et ₂ N(CH ₂ CH ₂ OH)	Et ₃ N
pK _a ^a	15.7	16.3	17.7	18.5
β_{lg}	-	-0.41±0.05	-0.42±0.05	-0.46±0.04
^a Refer	rence 25.			

IV. 고 찰

(E)-2,4-Dinitrobenzaldehyde O-aryloxime 1과 R₃N-MeCN 반응 의 메커니즘과 전이상태 구조

반응속도와 생성물을 연구한 결과 반응물인 **la-e**와 **R**₃N-MeCN과의 제거반응은 E2 메커니즘으로 진행됨이 명확하다. 이 반응은 제거반응 생성물만이 얻어졌고 2차 반응이므로, 이분자반응 경로 이외의 모든 경 로는 제외할 수 있다. 또한 β, β_l의 실제 값으로부터 Elcb 메커니즘이 진행되지 않음을 알 수 있다.^{18,19}

기질 **1a-e**와 삼차 아민에 의해 진행된 제거반응은 이탈기 변화에 따 라 0.83 - 1.0 사이의 Brönsted β 값이 관찰되었으며 (Table 4), 염기세기의 변화에 따른 β_{lg} 값은 거의 변화가 없었다 (Table 5). Brönsted β 값은 전이 상태에서 C_β-H 결합이 끊어지는 정도를 의미하고, [β_{lg}] 값은 N_α-OAr 결 합이 끊어지는 정도를 나타내는 척도이다. 본 연구에서는 β 값은 거의 1에 가깝고, [β_{lg}] 값은 0.41-0.46의 값이 관측되었다. 이는 전이상태에서 C_β-H 결합이 대부분 끊어지고 제한적인 Nα-OAr 결합 끊어짐을 의미한 다. 그러므로 More-O'Ferrall-Jencks 반응 좌표계에서 E2 중심으로부터 다소 왼쪽 방향으로 전이상태가 위치해 있을 것이다 (A in Figure 6). 이 결론은 상호 작용 계수 (interaction coefficient), *p*_{xy} = ∂β/∂*pK*_{lg} = ∂β_{lg}/∂*pK*_a 로 입증할 수 있다.¹⁹⁻²² Table 5는 염기촉매의 염기도가 증가하 여도 β_{lg} 값은 비슷한 값을 가지는 것을 보여주고 있다. 이는 염기촉매 와 이탈기 사이의 상호작용이 무관하다는 것을 뜻하며, 이들의 상호 작 용 계수 *p*_{xy}가 0이라는 사실과 일치한다. 이는 E1cb-like 전이상태로 진 행되는 증거이다.

Figure 6. Reaction coordinate diagram for nitrile-forming eliminations. The transition states for eliminations from **1a** and **2** are indicated as A and C, respectively. The effect of the change to a better leaving group on A is depicted by the shift from A to B, while the effects of the change to an electron-withdrawing substituent, a better leaving group, and a weaker base on C are shown by the shifts from C to D, C to E, and C to F, respectively.

Figure 6의 More-O'Ferrall-Jencks 반응 좌표계에서 이탈기의 능력이 증가할수록 좌표계의 윗 쪽에 비해 아래쪽의 에너지를 낮추게 된다. 따 라서 좋은 이탈기를 쓰는 경우, 전이상태는 좌표계의 A에서 B의 방향 인, 아랫쪽으로 이동할 것이다. 그 결과 C_β-H 결합은 거의 끊어지지 않 을 것이며 거의 동일한 β 값을 가지게 될 것이다. 반면에 N_α-OAr 결합 끊어짐이 증가하게 되어 큰 |β_{lg}| 값을 가지게 될 것이다.¹⁹⁻²² 이러한 예 측은 실험 결과와 잘 일치한다 (Table 4).

유사하게 강한 염기를 사용할 경우, 반응 좌표계 그림의 왼쪽 부분의 에너지가 낮아지게 된다. 따라서 전이상태는 거의 같은 자리인 A에 머 무르게 될 것이다. 따라서 강한 염기를 사용하는 경우, N_α-OAr 결합은 거의 끊어지지 않으며, 거의 동일한 β_{lg} 값을 가지게 된다는 Table 5의 결과와 잘 일치한다.¹⁹⁻²²

니트릴 형성 제거반응의 전이상태구조에 미치는 β-아릴기의 영향

앞서 연구된 (E)-XC₆H₄CH=NOC₆H₃-2-X-4-NO₂ (2)와 R₃N-MeCN과의 반 응은 C_β-H 결합과 N_α-OAr 결합이 상당히 끊어지는 동시에 삼중 결합이 형성되는 E2-central 전이상태에 의해 진행되었다 (C in Figure 6).⁶ β-아릴 기가 페닐에서 2,4-dinitrophenyl로 변화될 때, 제거반응의 속도는 1.7x10⁴ 배 증가하였고, Brönsted β값은 0.55에서 1.0으로, |β_{1g}|값 또한 0.39에서 0.46으로 각각 증가하였다 (Table 6). 이 결과는 전이상태에서 C_β-H 결합 끊어짐은 매우 크게 증가하였고, N_α-OAr 결합 끊어짐은 조금 증가함을 나타낸다.

Table 6. Effect of the β -aryl group on the nitrile-forming eliminations from (*E*)-ArCH=NOC₆H₃-2,4-(NO₂)₂ promoted by R₃N in MeCN at 25.0 °C

	$Ar = Phenyl (2)^{a}$	$Ar = 2,4-(NO_2)_2C_6H_3$ (1a)
rel.rate	1	$1.7 \mathrm{x10}^4$
β	0.55±0.03	1.0±0.09
$ \beta_{lg} $	0.39±0.03	0.46±0.04
^{<i>a</i>} Reference 6.		

More O'Ferrall-Jencks 반응 좌표계에서 전자 끄는 능력이 좋은 β-아릴 치환체를 사용하는 경우, 좌표계의 좌측 위쪽에 존재하는 탄소음이온 중간체의 에너지가 낮아질 것이다 (Figure 6).²⁰ 좌표계를 위에서 보았을 때, 대각선 방향의 에너지 표면 곡률이 평행 방향보다 더 가파르기 때 문에 전이상태는 C에서 에너지 표면 곡률이 좀 더 작은 방향인 A로

전자 끄는 능력이 더 강한 2,4-dinitrophenyl기는 β-탄소에 형성된 음전 하를 안정화 시켜줄 수 있기 때문에 C_β-H 결합 끊어짐이 증가하는 것 이다. 음전하 중 일부는 부분 삼중결합을 형성하기 위해서 β-탄소에서 α-질소로 이동할 것이고, N_α-OAr의 결합 끊어짐 또한 증가하게 될 것이 다. 따라서 2,4-dinitrophenyl기는 β-탄소에 생성된 음전하를 안정화 시켜 주며, 음전하의 일부분이 부분적으로 삼중결합이 형성되는 것을 증가시 켜 전이상태 구조를 크게 안정화 시켜주는 것으로 보인다. 그러므로 제 거반응 속도가 1,7x10⁴배 정도 증가된 것은 페닐기보다 2,4-dinitrophenyl 기가 전자 끄는 능력이 크게 증가하였기 때문으로 생각된다.

니트릴 형성 제거반응의 전이상태구조에 미치는 염기-용매 영향

앞서 연구된 1a와 EtO'-EtOH와의 제거반응은 E2-central 전이상태를 거쳐 반응이 진행되는 것으로 알려져 있다.¹¹ Table 5는 염기 용매가 EtO'-EtOH에서 Et₃N-MeCN으로 변화할 때, 1a의 제거반응에 대한 전이 상태 인자들을 비교한 결과이다.

Table 7. Effect of the base-solvent on the nitrile-forming eliminations from (E)-2,4-(NO2)2C6H3CH=NOC6H3-2,4-(NO2)2.

Base-solvent	EtO ⁻ -EtOH ^a	Et ₃ N-MeCN
pKa	19.2 ^b	18.5 ^c
rel.rate	1	276
β	0.55±0.03	1.0±0.09
$ \beta_{lg} $	0.39±0.03	0.46±0.04
- L		

^{*a*}Reference 11. ^{*b*}Reference 24. ^{*c*}Reference 25.

위 결과에서는 염기의 세기가 감소한 반면 반응 속도는 276배 증가 함을 보여주었다. 또한 염기 용매가 변함에 따라 B 값은 0.55에서 1.0으 로, Bb 값은 0.39에서 0.46으로 각각 증가하였다. 즉, 전이상태에서 Ca-H 결합 끊어짐은 크게 증가하고, N_a-OAr 결합 끊어짐은 조금 증가한다 는 것을 의미한다. 이러한 결과는 용매화 효과에 의한 것으로 생각된다. 전이상태에서 β-탄소에 생성된 부분 음전하들이 비양자성 용매인 MeCN에 의해 안정화 될 수 없기 때문에 전이상태는 염기 세기의 변화 에 좀 더 민감하게 되고 그 결과 더 큰 β 값을 가지는 것으로 생각된 다. 또한 음전하는 부분 삼중결합을 형성하기 위해 β-탄소에서 α-질소 쪽으로 이동되며 그 결과 Ng-OAr 결합은 느슨해져야 한다. 이는 음전 하를 최대로 비편재화 시키기 위함이다. 만약, 상당한 양의 음전하가 β-탄소에서 α-질소로 이동된다면 N_a-OAr 결합의 끊어지는 정도 또한 증 가되어야 한다. 그 결과 Biel값은 크게 증가할 것이 예측된다. 또한 Et₃N-MeCN에 의한 제거반응의 빠른 속도는 전이상태에서 삼중결합이 형성되는 정도가 크기 때문이라 생각된다. 이 연구에서 가장 흥미로운 결과는 염기용매가 EtO-EtOH에서 Et₁N-MeCN으로 변화함에 따라 전이 상태가 E2-central에서 E1cb-like로 변화한다는 점이다.

결론적으로 본 연구는 염기용매인 R₃N-MeCN에 의해 진행되는 반응 물 **la**-e의 제거반응에 대해 조사하였다. 이 반응은 Elcb-like 전이상태 를 통한 E2 메커니즘으로 진행되었다. 전자 *끄*는 능력이 좋은 2,4dinitrophenyl기로 인해 C_β-H 결합의 끊어짐이 증가하며 N_α-OAr 결합의 끊어짐 또한 증가하게 된다. 또한 같은 조건에서 β-아릴 치환체가 페닐 기에서 2,4-dinitrophenyl기로 변화하거나 염기용매가 EtO-EtOH에서 Et₃N-MeCN으로 변화함에 따라 전이상태가 E2-central에서 Elcb-like로 변화하는 것이 관측되었다.

V. 참고문헌

- (1) Saunder, Jr. W. H.; Cockerill, A. F. *Mechanism of Elimination Reaction*; Wiley : New York, **1973**; pp 47-104, 165-203, and 498-537.
- (2) Lowry, T. H.; Richardson, K. S. Mechanism and Theory in organic Chemistry,
- 3rd Ed.; Harper and Row: New York, **1987**; (a) pp 197. (b) pp 212-214. (c) pp 535. (d) pp 591-608. (e) pp 640-644.
- (3) Gandler, J. R. Mechanism of *Base-Catalyzed alkene-Forming 1,2-Elimination*; Patai, S., Ed.; Chichester, **1989**; Vol. 2, Part 1, pp 733-787.
- (4) Carey, F. A.; Sundberg, R, J. *Advanced Organic Chemistry*, 2nd Ed.; Ptenum press:New York, **1984**; Part A, pp 345-351.
- (5) Bunnett, J. F. Angew Chem., Int. Ed. Engl. 1962, 1, 225.
- (6) Cho, B. R.;Kim, K. D.; Lee, J. C.; Cho, N. S. J.Am.Chem.Soc. 1988, 110, 6145-6148.
- (7) Cho, B. R.; Lee, J. C.; Cho, N. S.; Kim, K. D. J. Chem. Soc. Perkin Trans Ⅱ, **1989**, 489-492.
- (8) Cho, B. R.; Min, B. K.; Lee, C. W.; Je, J. T. J. Org. Chem. 1991, 56, 5513-5517.
- (9) Cho, B. R.; Jung, J.; Ahn, E. K. J.Am. Chem. Soc. 1992, 114, 3425-3429.
- (10) Cho, B. R.; Je, J. T. J. Org. Chem. 1993, 58, 6190-6193.

- (11) Cho, B. R.; Cho, N. S.; Song, K. S.; Son, K. N.; Kim, Y. K. J. Org. Chem.1998, 63, 3006-3009.
- (12) Perrin, D. D.; Armargo, W. L. F. *Purification of Laboratory Chemicals*, 2nd Ed.; **1980**; pp 320.
- (13) Hegarty, A. F.; Tuohey, P. J. J. Chem. Soc., Perkin Trans. 2 1980, 1313-1317.
- (14) Tamura, Y.; Minamikawa, J.; Sumoto, K.; Fujii, S.; Ikeda, M. *Synthesis*. 1977, 1-17.
- (15) Bumgardner, C. L; Lilly, R. L. Chem. Ind.(London) 1962, 24, 560-599.
- (16) Tagaki, W.; Kobayashi, S.; Kurihara, K.; Kurashima, K.; Yoshida, Y.; Yano, J.*J. Chem. Soc., Chem. Commun.* **1976**, 843-845.
- (17) Cho, B. R.; Chung, H. S.; Pyun, S. Y. J. Org. Chem. 1999, 64, 8375-8378.
- (18) Lowry, T. H.; Richardson, K. S. *Mechanism and Theory in Organic Chemistry*; Harper and Row: New York, **1987**; (a) pp 214-218, (b) pp 591-616, (c) pp 640-644.
- (19) Gandler, J. R. The Chemistry of Double Bonded Functional Groups, Patai, S.,
- Ed. John Wiley and Sons, Chichester, 1989, vol.2, part 1, pp 734-797.
- (20) Jencks, W. P. Chem. Rev. 1985, 85, 511-527.
- (21) Gandler, J. R; Jencks, W. P. J. Am. Chem. Soc. 1982, 104, 1937-1951.
- (22) Gandler, J. R; Yokohama, J. J. Am. Chem. Soc. 1984, 106, 130-135.
- (23) Gnadler, J. R; Storer, J. W.; Ohlberg, D. A. A. J. Am. Chem. Soc. 1990, 112, 7756-7762.

- (24) Gaunti, G. J. Chem. Soc., Perkin Trans. 2 1981, 327-330.
- (25) Coetzee, J. F. Prog. Phys. Org. Chem. 1965, 4, 45-92.
- (26) Dictionary of Organic Compounds ; Mack Printing Co.; Easton, PA, 1982;

Vol.2, p 2258.

Ⅵ. 부 록

Table S1. Observed rate constants for eliminations from (*E*)-2,4- $(NO_2)_2C_6H_3CH=NOC_6H_3-2-X-4-NO_2$ (**1a-e**)^{*a*} promoted by Et₃N^{*b*} in MeCN at 25.0 °C

Entry	10 ² [buffer],			$10^2 k_{\rm obs}, {\rm s}^{-1c,d}$		
Entry	М	1 a	1b	1c	1d	1e
1	0.06					0.604
2	0.08			0.109	0.120	
3	0.1	TI	ONA	0.120	0.124	0.960
4	0.2	0.0355	UIIA	- Un		
5	0.4	0.0340		0.536	0.585	4.70
6	0.6	0.0557	0.0266		-	
7	0.8	0.0701			HI I	9.80
8	1.0	0.0890			5	
9	1.2	0.105			151	
10	1.4	0.123			-	
11	1.6	0.136	0.0722	4	1	
12	1.8	0.153	17 H H	IT II		
13	2.0	0.168		2.87	3.30	
14	3.0	0.214				
15	5.0	0.374				
16	6.0	0.470	0.240			
17	7.0	0.542				
18	8.0	0.619				
19	9.0	0.672				
20	10.0	0.741				
21	18.0		0.647			

^{*a*}[Substrate] = 5.0×10^{-5} M. ^{*b*}[R₃N] = 8.0×10^{-4} - 0.18 M. ^{*c*}Average of three or more rate constants. ^{*d*}Estimated uncertainty, ± 3%.

Table S2. Observed rate constants for eliminations from (*E*)-2,4- $(NO_2)_2C_6H_3CH=NOC_6H_3-2-X-4-NO_2(1a-e)^a$ promoted by $Et_2N(CH_2CH_2OH)^b$ in MeCN at 25.0 °C

Entry	10 ² [buffer]			$10^2 k_{\rm obs}, {\rm s}^{-1c,d}$		
Litti y	,М	1a	1b	1c	1d	1e
1	0.08			0.0177	0.0176	0.101
2	0.6			0.0797	0.0796	0.669
3	0.8			0.102	0.110	1.09
4	1.2			0.155	0.167	1.50
5	1.6	0.0147	0.00981			
6	5.0	0.0395	0.0210	- 10		
7	8.0	0.0651	0.0403	N		
8	10.0	0.0951	0.0501		5	
^{<i>a-d</i>} See footnot	es under Table S1				T	
	INNA	A THE	CH 9	H II	ISITE	

Table S3. Observed rate constants for eliminations from (E)-2,4- $(NO_2)_2C_6H_3CH=NOC_6H_3$ -2-X-4- $NO_2(1a-e)^a$ promoted by EtN $(CH_2CH_2OH)_2^b$ in MeCN at 25.0 °C

Entry	10 ² [buffer],			$10^2 k_{\rm obs}, {\rm s}^{-1c,d}$		
Entry	М	1a	1b	1c	1d	1e
1	3.0	-	-	0.0229	0.0333	0.257
2	5.0	-	-	0.0698	0.0543	0.517
3	8.0	-	-	0.0826	0.0855	0.838
4	10.0	-	-	0.103	0.109	1.04
5	20.0	0.0174	0.00969			
a-d See footnote	es under Table S1	NN.				

Table S4. Observed rate constants for eliminations from (E)-2,4- $(NO_2)_2C_6H_3CH=NOC_6H_3$ -2-X-4- NO_2 (**1a-e**)^{*a*} promoted by $N(CH_2CH_2OH)_3^{b}$ in MeCN at 25.0 °C

Entry	10 ² [buffer],	$10^2 k_{\rm obs}, {\rm s}^{-1c,d}$					
Linu y	M	1 a	1b	1c /	1d	1e	
1	8.0	-		0.0185	0.0165	0.108	
a-d See footnote	s under Table S1	1			/		
A ST TH OL W							

Figure S1. Plots of k_{obs} vs. base concentration for eliminations from (*E*)-2,4-(NO₂)₂C₆H₃CH=NOC₆H₄-4-NO₂ (**1a**) promoted by Et₃N in MeCN at 25.0 °C.

Figure S2. Plots of k_{obs} vs. base concentration for eliminations from (*E*)-2,4-(NO₂)₂C₆H₃CH=NOC₆H₄-4-NO₂ (**1a**) promoted by Et₂N(CH₂CH₂OH) in MeCN at 25.0 °C.

Figure S3. Plots of k_{obs} vs. base concentration for eliminations from (*E*)-2,4-(NO₂)₂C₆H₃CH=NOC₆H₃-2-CH₃-4-NO₂ (1b) promoted by R₃N in MeCN at 25.0 °C [R₃N = Et₃N (\blacksquare), Et₂N(CH₂CH₂OH) (\bullet)].

Figure S4. Plots of k_{obs} vs. base concentration for eliminations from (*E*)-2,4-(NO₂)₂C₆H₃CH=NOC₆H₃-2-Cl-4-NO₂ (**1c**) promoted by R₃N in MeCN at 25.0 °C [R₃N = Et₃N (\blacksquare), Et₂N(CH₂CH₂OH) (\bullet)].

Figure S5. Plots of k_{obs} vs. base concentration for eliminations from (*E*)-2,4-(NO₂)₂C₆H₃CH=NOC₆H₃-2-Cl-4-NO₂ (**1c**) promoted by EtN(CH₂CH₂OH)₂ in MeCN at 25.0 °C.

Figure S6. Plots of k_{obs} vs. base concentration for eliminations from (*E*)-2,4-(NO₂)₂C₆H₃CH=NOC₆H₃-2-CF₃-4-NO₂ (**1d**) promoted by R₃N in MeCN at 25.0 °C [R₃N = Et₃N (**■**), Et₂N(CH₂CH₂OH) (**●**)].

Figure S7. Plots of k_{obs} vs. base concentration for eliminations from (*E*)-2,4- $(NO_2)_2C_6H_3CH=NOC_6H_3-2-CF_3-4-NO_2$ (1d) promoted by EtN(CH₂CH₂OH)₂ in MeCN at 25.0 °C.

Figure S8. Plots of k_{obs} vs. base concentration for eliminations from (*E*)-2,4-(NO₂)₂C₆H₃CH=NOC₆H₃-2,4-(NO₂)₂ (**1e**) promoted by R₃N in MeCN at 25.0 °C [R₃N = Et₃N (**■**), Et₂N(CH₂CH₂OH) (**●**)].

Figure S9. Plots of k_{obs} vs. base concentration for eliminations from (*E*)-2,4-(NO₂)₂C₆H₃CH=NOC₆H₃-2,4-(NO₂)₂ (1e) promoted by EtN(CH₂CH₂OH)₂ in MeCN at 25.0 °C.

Figure S10. IR spectrum of (E)-2,4- $(NO_2)_2C_6H_3CH=NOC_6H_4$ -4- NO_2 (1a).

H

21 1

Figure S11. ¹H-NMR spectrum of (E)-2,4- $(NO_2)_2C_6H_3CH=NOC_6H_4$ -4- NO_2 (1a) (DMSO- d_6).

Figure S12. EIMS spectrum of (E)-2,4- $(NO_2)_2C_6H_3CH=NOC_6H_4$ -4- NO_2 (1a).

Figure S14. ¹H-NMR spectrum of (E)-2,4- $(NO_2)_2C_6H_3CH=NOC_6H_3$ -2-CH₃-4- NO_2 (1b) (DMSO- d_6).

Figure S15. EIMS spectrum of (E)-2,4- $(NO_2)_2C_6H_3CH=NOC_6H_3$ -2- CH_3 -4- NO_2 (1b).

Figure S16. IR spectrum of (*E*)-2,4-(NO₂)₂C₆H₃CH=NOC₆H₃-2-Cl-4-NO₂(1c).

H

01 J

Figure S17. ¹H-NMR spectrum of (E)-2,4- $(NO_2)_2C_6H_3CH=NOC_6H_3$ -2-Cl-4-NO₂ (1c) (DMSO- d_6).

Figure S18. EIMS spectrum of (E)-2,4- $(NO_2)_2C_6H_3CH=NOC_6H_3$ -2-Cl-4-NO₂ (1c).

Figure S19. IR spectrum of (*E*)-2,4-(NO₂)₂C₆H₃CH=NOC₆H₃-2-CF₃-4-NO₂ (1d).

CH

01 11

Figure S20. ¹H-NMR spectrum of (E)-2,4- $(NO_2)_2C_6H_3CH=NOC_6H_3$ -2-CF₃-4- NO_2 (1d) (DMSO-*d*₆).

Figure S21. EIMS spectrum of (E)-2,4- $(NO_2)_2C_6H_3CH=NOC_6H_3$ -2- CF_3 -4- NO_2 (1d).

Figure S22. IR spectrum of (*E*)-2,4-(NO₂)₂C₆H₃CH=NOC₆H₃-2,4-(NO₂)₂(1e).

H

01 1

Figure S23. ¹H-NMR spectrum of (E)-2,4- $(NO_2)_2C_6H_3CH=NOC_6H_3$ -2,4- $(NO_2)_2$ (1e) $(DMSO-d_6)$.

Figure S24. EIMS spectrum of (*E*)-2,4-(NO₂)₂C₆H₃CH=NOC₆H₃-2,4-(NO₂)₂(1e).

(E)-2,4,6-Trinitrobenzaldehyde O-benzoyloxime 유도체의 제거반응에 관한 연구: 니트릴 형성 제거반응에 미치는 β-아릴기와 이탈기의 영향

I. 서 론

Benzaldehyde O-benzoyloxime 유도체들의 제거반응은 다양한 조건에서 연구되었다.¹⁻⁷ 이 모든 경우 또한 화합물들이 syn 반응물이며 β-탄소가 sp² 혼성화를 이루며, 나쁜 이탈기를 가지고 있음에도 불구하고 대부분

의 연구결과, 제거반응은 E2 메커니즘에 의해 진행됨이 밝혀졌다.⁸⁻¹¹ 앞서의 연구에서 (E)-2,4-(NO₂)₂C₆H₃CH=NOC(O)C₆H₄X와 R₂NH/R₂NH₂⁺ -70 mol% MeCN(aq)의 반응이 연구되었다.7 이 실험에서 이탈기와 염기 변화에 따라 β와 |βμ| 값은 실험적 오차 범위에서 거의 같은 값을 의 가졌다. 이러한 결과들은 반응이 (Elcb)irr 메커니즘에 의해 진행된다는 증거이다. 즉, 이 결과는 β-탄소의 산도가 증가되어 나타나는 결과로 생 각된다. 이와 같이 70 mol% MeCN(aq)에서 니트릴 형성 제거 반응이 (E1cb)irr 메커니즘으로 진행되는 것은 본 결과가 첫 번째의 예이다. 반 면에 (E)-2,4,6-(NO₂)₃C₆H₂=CHNOC₆H₄X와 R₃N/R₃NH⁺-70 mol% MeCN(aq) 의 제거반응은 E2 메커니즘에 의해 진행된다고 밝혀졌다.¹⁸ 이탈기 능 력이 감소함에 따라 전이상태의 구조는 E2-central에서 E1cb-like로 바뀌 었다. 만약 위 결과의 해석이 옳다면 MeCN에서 benzoic acid와 4nitrophenol의 pKa 값이 동일한 것으로 알려져 있기 때문에.¹² 유사한 반 응 메커니즘이 예측될 수 있다. 전이상태에서 β-탄소에 생성된 부분 음 전하가 전자 끄는 능력이 좋은 β-아릴 치환체에 의해 안정화 된다면, 전이상태는 Elcb 메커니즘에 의해 진행될 것이 예상된다. 그렇지만 위 실험결과는 우리의 예측과 일치하지 않았다. 그러므로 제안된 메커니즘 에 대해 명확하게 설명하기 위해서는 니트릴 형성 제거반응에 대한 자 세한 연구가 필요하다.

따라서, 본 연구는 전자를 끌어당기는 능력이 좋은 β-아릴기를 도입 함으로써 메커니즘의 변화가 일어나는지 확인하기 위해 (*E*)-2,4,6trinitrobenzaldehyde O-benzoyloxime 과 R₂NH/R₂NH₂⁺-70 mol% MeCN(aq)과 의 반응을 연구하였다 (eq 1). 본 연구에서 도입된 trinitro기는 C_β-H 결 합의 산도와 입체장애를 증가시킬 것으로 예상된다. 이 물질은 지금까 지 연구된 (*E*)-benzaldehyde O-benzoyloxime 유도체 중 가장 강하게 활성 화된 반응물이다.

Ⅱ.실험

Ⅱ-1. 기기 및 시약

반응물 및 생성물의 조사에 이용한 NMR 분광광도계는 JNM-ECP 400(FT NMR, 400MHz)을 사용하였고, UV스펙트럼은 Milton Roy Spectronic 1201 분광광도계와 OPTIZEN 3220UV를 사용하여 얻었다. IR스 펙트럼은 Perkin Elmer Limited Spectrum 2000 FT-IR 분광광도계를 사용하 여 얻었으며 속도측정에 이용한 항온조는 Brookfield의 TC-500을 사용 하였다. 녹는점은 Electrothermal Melting Point Apparatus를 이용하여 측정 하였다.

합성에 필요한 시약은 Aldrich의 Spectroscopy급의 용매를 알려진 방 법에 따라 정제하여 사용하였다.¹⁹

Ⅱ-2. (E)-2,4,6-trinitrobenzaldehyde O-benzoyloxime 유도체의 합성

II-2-1. (E)-2,4,6-trinitrobenzaldehyde O-benzoyloxime (1a)

1. 2,4,6-Trinitrotoluene의 합성²⁰

37.5 ml 의 발언황산을 0 ℃까지 냉각한 후 13.5 ml 의 90% 질산을 천천히 가하였다. 위 용액을 실온까지 올린 후, 2,4-dinitrotoluene (97.2 mmol, 17.7g)을 첨가하고 조심스럽게 교반하였다. 1 시간 동안 점차적으로 90 ℃까지 반응온도를 올린 다음 2 시간 더 교반하였다. 상온에서 냉각시키고 하룻밤 동안 방치하였다. 이 용액을 염화 데틸렌으로 추출하고, 유기층을 Na₂CO₃ 용액으로 중화시킨 후, 증류수로 2 번 씻어주었다. 감압 증류한 후 생성된 고체 2,4,6trinitrotoluene 를 에탄올과 사염화탄소로 재결정하여 순수한 고체를 얻었다. ¹H-NMR(CDCl₃) δ 2,71(s,3H), 8.84(s,2H), mp : 81.5 - 82.0 ℃ 2. 2,4,6-Trinitrobenzaldehyde 의 합성²¹

같은 양의 알코올과 아세톤을 넣은 혼합용액 25 ml 에 2,4,6trinitrotoluene (15.4 mmol, 3.5 g)을 가하고 온도를 50 ℃까지 서서히 승온하였다. 이 용액에 무수 Na₂CO₃ (14,2 mmol, 1.5 g)와 p-nitrosodimethylaniline (16.6 mmol, 2.5 g)을 한 시간 동안 첨가하였다. 혼합액을 교반하는 동안 온도는 50 ℃로 유지하였다. 이 혼합액을 적어도 하루 이상 방치하고, 큰 뷰흐너 깔때기를 이용하여 고체를 여과하고 95% 알코올을 가한 다음 고체 생성물을 분쇄한 후 여과하였다. 이 과정을 3 번 반복 후, Na2CO3 가 모두 제거될 때까지 25% 아세트산 용액으로 씻어주었다. 남아있는 고체를 분리하고 건조시킨 후, 7.5 ml 의 진한 염산(12 M)이 들어있는 비이커에 가한다. 이 혼합물을 교반하면, 검은색의 생성물이 노란색 물질로 바뀌었다. 노란색 물질을 큰 삼각 플라스크에 옮겨 진한 염산(12 M)으로 씻은 후 염산과 같은 양의 벤젠을 혼합물에 가하였다. 플라스크를 흔들어 준 후, 물중탕을 하였다. 따뜻한 벤젠 용액의 위층을 여과종이에 붓고 5 분간 방치한 후 남아있는 용액에 벤젠을 첨가하고 다시 추출하였다. 이 혼합된 벤젠

추출물을 250 ml까지 감압 증류하였다. 남은 용액을 냉각시키고 생성된 고체를 여과하였다. 고체를 분쇄한 다음 diethyl ether 로 여러 번 세척하고, 벤젠으로 재결정하여 순수한 고체 생성물을 얻었다. mp:119 ℃

3. (E)-2,4,6-trinitrobenzaldoxime 의 합성

에탄올 1.7 ml 에 2,4,6-trinitrobenzaldehyde (1.0 mmol, 0.24 g)를 녹인 용액을 0 ℃까지 냉각시킨 후 물에 녹인 NH₂OH·HCl (1.2 mmol, 0.083 g) 용액을 서서히 가하였다. 10 ℃까지 승온 후, 10 분간 교반하였다. 과량의 에탄올을 가한 후, 실온에서 하루 동안 방치하였다. 과량의 에탄올을 감압증류로 날린 후, 10 ml NaHCO₃ 수용액을 한 방울씩 가하였다. 생성된 고체를 여과하고 증류수로 세척한 후, 벤젠으로 재결정하여 순수한 고체를 얻었다. ¹H-NMR (Acetone-d₆) δ 11.6(s,1H), 9.12(s,2H), 8.55(s, 1H); mp : 150-153 ℃ 4. (E)-2,4,6-trinitrobenzaldehyde O-benzoyloxime(1a)의 합성¹

NaOH 수용액에 2,4,6-trinitrobenzaldoxime (0.5 mmol, 0.128 g)을 가한다. 0 ℃ 까지 냉각시킨 후 에탄올 1 ml 에 녹인 benzoyl chloride(0.6 mmol, 0.0843 g) 용액을 가한 다음 10 ℃로 유지하였다. 약 30 분 후 혼합물의 액성이 중성이나 산성이 되면 반응을 중단하였다. 냉각수를 가한 다음 고체 생성물을 여과한 후 에탄올로 재결정하여 순수한 고체 0.15 g (수득률 : 83%)을 얻었다. (*E*)-2,4,6-(O₂N)₃C₆H₂CH=NOC(O)C₆H₅ (1a): Yield 85%; mp 190 °C; IR(KBr, C=O, cm⁻¹) 1762; ¹H NMR(Acetone-*d*₆) δ 7.61-7.63 (m 2H), 7.73-7.75 (m,1H), 8.14-8.16 (m, 2H), 9.32(s,2H), 9.39(s,1H); ¹³C NMR(DMSO-*d*₆) δ 124.0, 125.0, 127.0, 129.1, 129.5, 134.3, 148.4, 149.2, 152.9, 162.2.

II -2-2. (*E*)-2,4,6-trinitrobenzaldehyde O-4-methoxybenzoyloxime(1b)

Ⅱ-2-1 의 1-3 과 같은 방법으로 합성된 2,4,6-trinitrobenzaldoxime (0.5 mmol, 0.128 g)과 *p*-methoxy benzoyl chloride(0.6 mmol, 0.103 g)으로부터 (*E*)-2,4,6-trinitrobenzaldehyde O-4-methoxybenzoyloxime 0.14 g (수득률: 73%)을 얻었다.

(*E*)-2,4,6-(O₂N)₃C₆H₂CH=NOC(O)C₆H₄-*p*-OMe (1b): Yield 73%; mp 216 °C ; IR(KBr, C=O, cm⁻¹) 1772; ¹H NMR(Acetone-*d*₆) δ 3.93 (s, 3H), 7.11 (d, *J* = 9.16, 2H), 8.10 (d, *J* = 9.16, 2H), 9.31 (s, 2H), 9.34 (s, 1H); ¹³C NMR(DMSO-*d*₆) δ 55.6, 114.4, 118.8, 124.0, 125.1, 131.7, 148.3, 149.2, 152.2, 161.8, 163.9.

II-2-3. (E)-2,4,6-trinitrobenzaldehyde O-3-bromobenzoyloxime(1c)

Oal

Ⅱ-2-1 의 1-3 과 같은 방법으로 합성된 2,4,6-trinitrobenzaldoxime (0.5 mmol, 0.128 g)과 *m*-bromo benzoyl chloride (0.6 mmol, 0.132 g)으로부터 (*E*)-2,4,6-trinitrobenzaldehyde O-3-bromobenzoyloxime 0.13 g (수득률 : 57%)을 얻었다.

NO₂

(*E*)-2,4,6-(O₂N)₃C₆H₂CH=NOC(O)C₆H₄-*m*-Br (1c): Yield 57%; mp 240 °C IR(KBr, C=O, cm⁻¹) 1782; ¹H NMR(Acetone-*d*₆) δ 7.60 (t, *J* = 8.08, 1H), 7.93 (d, *J* = 8.08, 1H), 8.15 (d, *J* = 7.68, 1H), 8.30 (s, 1H), 9.33 (s,2H), 9.45 (s, 1H); ¹³C NMR(DMSO-*d*₆) δ 122.1, 124.0, 124.9, 128.6, 129.3, 131.2, 131.8,137.0, 148.4, 149.2,153.4,161.0.

II -2-4.(*E*)-2,4,6-trinitrobenzaldehyde O-4- trifluoromethyl benzoyloxime(1d)

 O_2

II-2-1 의 1-3 과 같은 방법으로 합성된 2,4,6-trinitrobenzaldoxime (0.5 mmol, 0.128 g)과 *p*-trifluoromethyl benzoyl chloride (0.6 mmol, 0.126 g)으로부터 (*E*)-2,4,6-trinitrobenzaldehyde O-4- trifluoromethyl benzoyloxime 0.096 g (수득률 : 45%)을 얻었다.

(*E*)-2,4,6-(O₂N)₃C₆H₂CH=NOC(O)C₆H₄-*p*-CF₃ (1d): Yield 45%; mp 288 °C IR(KBr, C=O, cm⁻¹) 1744; ¹H NMR(Acetone-*d*₆) δ 7.83 (d, *J* = 8.2, 2H), 8.19 (d, *J* = 7.88, 2H), 9.28 (s, 2H), 9.40 (s, 1H); ¹³C NMR(DMSO-*d*₆) δ 110.0, 124.3, 125.6, 130.1, 130.5, 132.3, 132.6, 134.6, 149.2, 151.2, 153.7, 166.2.

Ⅱ-3. 염기 용매의 제조

반응 용매인 MeCN과 이차 아민은 문헌에 알려진 방법에 따라 CaH₂ 를 넣고 1 시간 동안 환류시킨 후 분별증류하여 정제해 사용하였다.¹⁹ R₂NH/R₂NH₂⁺-70 mol% MeCN(aq)의 용액은 70 mol% MeCN(aq)에 R₂NH 와 R₂NH₂⁺의 동일양을 가하여 얻었다. 모든 염기 용액의 경우, Bu₄N⁺Br⁻ 를 가하여 이온 세기를 0.1 M로 유지하였다.

UNIL

Ⅱ-4. 반응속도의 측정

R₂NH/R₂NH₂⁺-70 mol% MeCN(aq) 염기 용액을 3.0 ml 취하여 넣은 큐 벳을 UV-VIS 분광광도계에 넣어 25 ℃에 도달하도록 20분 동안 기다린 후 (E)-2,4,6-trinitrobenzaldehyde O-benzoyloximes (1a-d) 용액을 마이크로 실린지로 6 μl를 취하여 기질의 흡광도가 감소되는 258-280 nm에서 시 간에 따른 흡광도의 변화로 반응속도를 측정하였다. 3,4 반응 조건은 앞 의 실험과 마찬가지로 염기의 농도가 **1a-d**의 농도보다 10배 이상 과량 인 유사 일차 반응 조건에서 수행하였다. 모든 반응에 대해 반응 시간 에 따른 값은 80% 이상 진행될 때 $\ln(A_{\infty}-A_{t})$ 좋은 직선 관계를 보여 주었다. 이 직선의 기울기인 유사 일차 반응 속 도상수 kobs를 구하고 이차 반응 속도 상수 kob 농도 변화에 따른 kobs 값을 도시하여 직선의 기울기에서 구하거나 k_{obs} 를 염기의 농도로 나누 어 구하였다.

II-5. Control Experiment

(E)-2,4,6-trinitrobenzaldehyde O-benzoyloxime 1a-d의 안정성은 mp 및 UV-Vis 스펙트럼으로 확인하였다.^{4,6} 모든 1a-d 화합물은 냉장고에서 6개월 동안 안정하였다. 용매 MeCN에서 녹인 용액은 냉장고에 보관되었을 때 5주 후에 분해되었다.

Ⅱ-6. 반응 생성물의 확인

70 mol% MeCN(aq)에서 화합물 1a와 *i*-Bu₂NH/*i*-Bu₂NH₂⁺의 반응생성물 은 알려진 방법에 따라 확인하였다.⁶ 2,4,6-trinitrobenzonitrile이 생성되어 졌고, 녹는점 133-134 ℃ (lit.²² mp 134-135 ℃)으로 확인할 수 있었다.

Ⅲ. 결 과

(E)-2,4,6-Trinitrobenzaldehyde O-benzoyloxime 유도체 (1a-d)는 NaOH 수용액에 benzoyl chloride 와 (E)-2,4,6-trinitrobenzaldoxime 을 넣고 합성하였다.¹ 합성된 물질은 녹는점, IR 교반하여 및 NMR 등 확인하였다 (Figure S6-13). 생성물의 확인은 분광학적인 방법으로 알려진 방법에 따라 확인하였다.⁶ 즉, 화합물 1a 를 *i*-Bu₂NH/*i*-Bu₂NH₂⁺-70 mol% MeCN(aq)과의 반응에서 2,4,6-trinitrobenzonitrile 과 benzoate 가 확인하였다. 그 결과 제거반응 생성물인 생성됨을 2.4.6trinitrobenzonitrile 의 수득률은 96%이었다. 제거반응의 속도는 기질의 최대흡수파장(λ_{max}) 258-280 nm에서 시간에 따른 흡광도의 감소를 측정하여 구하였다. 모든 반응은 유사 일차 반응 조건에서 수행되었고, 반응 시간에 따른 ln(A_∞-A_t) 값의 변화는 반감기 가 세 번 이상 지날 때까지 매우 좋은 직선 관계를 보여 주었다. 이들 의 이차 반응 속도상수 k2는 Table S1-4에 나타내었다. Origin 프로그램을

통해 그린 염기농도에 대한 k_{obs} 값의 변화는 원점을 통과하는 직선으로 나타났고(Fig S1-5), 이차 반응의 속도상수 k_2 는 이 직선의 기울기로부터 얻었다. **1a-d**의 제거반응에 대한 k_2 값은 Table 1에 정리하였다.

Table 1. Rate constant for nitrile-forming elimination from (*E*)-2,4,6- $(NO_2)_3C_6H_2CH=NOC(O)C_6H_4X$ (**1a-d**)^{*a*} promoted by R₂NH/R₂NH₂⁺ in 70 mol% MeCN(aq)^{*b,c*} at 25.0 °C

			k_2 , M ⁻¹ s ^{-1 f.g} (When X is)				
$R_2 NH^d$	pK _a ^e	Н	<i>p</i> -OMe	<i>m</i> -Br	<i>p</i> -CF3		
Bz(<i>i</i> -Pr)NH	16.8	2.79	1.43	6.29	7.12		
<i>i</i> -Bu ₂ NH	18.2	10.9	5.80	24.3	28.0		
<i>i</i> -Pr ₂ NH	18.5	7.29	3.66	13.9	17.2		
2,6-DMP ^{<i>h</i>}	18.9	12.3	5.01	23.0	32.1		

^{*a*}[Substrate] = 8.0 x 10⁻⁵ M. ^{*b*}[R₂NH]/[R₂NH₂⁺] = 1.0. ^{*c*} μ = 0.1(Bu₄N⁺Br⁻). ^{*d*}[R₂NH] = 1.0 x 10⁻³ - 2.0 x 10⁻² M. ^{*e*}Reference 12. ^{*f*}Average of three or more rate constants. ^{*g*}Estimated uncertainty, ±3%. ^{*h*}cis-2,6-Dimethylpiperidine.

염기 용매 *i*-Bu₂NH에 대한 속도상수를 제외하고는, 염기도와 이탈기 능력이 증가할수록 k₂ 값이 증가하였다. *i*-Bu₂NH 염기는 다른 염기와 비 교하여 큰 속도 값이 관측되었다. 위 결과는 염기의 입체효과의 차이로 생각된다.

염기의 pK_a 값에 대한 log k₂값을 도시한 그래프를 Figure 1에 나타내 었다. 이 그래프는 *i*-Bu₂NH를 제외하고, 좋은 직선 관계를 보여주었다. 따라서 β 값은 *i*-Bu₂NH에 대한 값을 제외한 직선의 기울기로부터 구하 였다. 또한 속도상수 k₂를 이탈기의 pK_{lg} 값에 대해 도시한 그래프를 Figure 2에 나타내었고, |β_{lg}| 값 또한 직선의 기울기로부터 계산되었다.

Figure 1. Brönsted plots for the elimination from (*E*)-2,4,6- $(NO_2)_3C_6H_2CH=NOC(O)C_6H_4X$ (**1a-d**) promoted by $R_2NH/R_2NH_2^+$ in 70 mol% MeCN(aq) at 25.0 °C [X = H (**1a**, •), *p*-OMe (**1b**, •), *m*-Cl (**1c**, \blacktriangle), *p*-CF₃ (**1d**,

Figure 2. Plots of log k_2 vs. pK_{lg} values of the leaving group for the elimination from (E)-2,4,6- $(NO_2)_3C_6H_2CH=NOC(O)C_6H_4X$ (1a-d) promoted by $R_2NH/R_2NH_2^+$ in 70 mol% MeCN(aq) at 25.0 °C [$R_2NH = Bz(i-Pr)NH(\blacksquare)$, *i*- $Bu_2NH(\bullet)$, *i*- $Pr_2NH(\blacktriangle)$, 2,6-DMP(\bigtriangledown)]

Table 2와 3은 β와 βlg 값을 실었다. β 값은 0.25-0.29이고 |βlg| 값은 0.30-0.35 값으로 얻어졌다. β와 |βlg|값은 실험적 오차 범위 내에서 이탈 기와 염기 세기의 변화에 무관하게 비슷한 값을 가진다는 것을 알 수 있다.

Table 2. Brönsted β values for nitrile-forming eliminations from (*E*)-2,4,6-(NO₂)₃C₆H₂CH=NOC(O)C₆H₄X (**1a-d**) promoted by R₂NH/R₂NH₂⁺ in 70 mol% MeCN(aq) at 25.0 °C

	X=p-OMe	X=H	X=m-Br	$X=p-CF_3$
pK_{lg}^{a}	21.3	20.7	19.5	19.2 ^b
β	0.25±0.02	0.29±0.05	0.25±0.05	0.29±0.07
^{<i>a</i>} Reference 12. ^{<i>b</i>} I	Determined from the s	slope of the plot of σ	vs p K_a .	

Table 3. Brönsted β_{lg} values for nitrile-forming eliminations from (*E*)-2,4,6-(NO₂)₃C₆H₂CH=NOC(O)C₆H₄X (**1a-d**) promoted by R₂NH/R₂NH₂⁺ in 70 mol% MeCN(aq) at 25.0 °C

R ₂ NH	Bz(<i>i</i> -Pr)NH	<i>i</i> -Bu ₂ NH	<i>i</i> -Pr ₂ NH	2,6-DMP ^b
pKa ^a	16.8	18.2	18.5	18.9
β_{lg}	-0.32±0.03	-0.32±0.03	-0.30±0.04	-0.35±0.06

^{*a*}Reference 12. ^{*b*}cis-2,6-Dimethylpiperidine.

IV. 고 찰

(E)-2,4,6-Trinitrobenzaldehyde O-benzoyloxime 1의 제거 반응 메커니즘과 전이상태

앞서 연구된 (E)-2,4-dinitrobenzaldehyde O-benzoyloxime 유도체와 R₂NH/R₂NH₂⁺-70 mol% MeCN(aq) 염기와의 반응은 (E1cb)_{irr} 메커니즘에 의해 진행된다고 밝혀졌다.⁷ 반응속도와 생성물을 연구한 결과 la-d와 R₂NH/R₂NH₂⁺-70 mol% MeCN(aq)과의 제거반응 또한 (E1cb)_{irr} 메커니즘으 로 진행됨이 확인되었다. 이 반응은 2차 반응 속도를 나타내기 때문에 이분자성 반응 경로 이외의 모든 경로는 제외할 수 있다. 그러므로 제 거반응 메커니즘은 이분자성 반응인 E2 아니면 Elcb 과정에 의해 진행 될 것이다. 만약, 반응이 탄소 음이온 중간체를 통해 진행이 된다면, 속 도 식은 $k_{obs} = k_1 k_2 [B] / (k_1 [BH^+] + k_2)$ (Scheme 1) 로 나타낼 수 있다.¹¹ (E1cb)_R 메커니즘은 첫 번째 단계가 가역적이므로 k₁[BH⁺]>>k₂이다. 따 라서 속도 식은 $k_{obs} = k_1 k_2 [B] / (k_1 [BH^+] 로 간단하게 나타낼 수 있다. 반응$ 을 통해 [B]/[BH⁺]가 1.0 으로 유지되기 때문에 완충 용액의 농도와 관 계없이 kobs는 일정하여야 한다. 그러므로 (E1cb)R 메커니즘은 kobs 값의 염기 의존도에 의하여 제외된다 (Figure S1-5).

만약 이 반응이 (E1cb)irr 메커니즘에 의해 진행된다면, $k_1[BH^+] << k_2$ 이 므로, 속도 식은 $k_{obs} = k_1[B]$ 가 될 것이다. 이 경우 속도론적 결과만으로 E2 메커니즘과 (E1cb)irr 메커니즘을 명확하게 구별하기는 어렵다.¹³

Scheme 1. E2 and E1cb Mechanism

(E1cb)_{irr}과 E2 메커니즘은 이탈기 효과에 의해 쉽게 설명될 수 있다. (E1cb)_{irr} 메커니즘은 속도결정 단계에서 이탈기가 거의 끊어지지 않고 유지되기 때문에 이탈기 영향을 거의 받지 않는다. 반면에 E2 메커니즘 의 경우, 전이상태에서 이탈기가 끊어지는 단계가 속도 결정에 영향을 미치므로 (E1cb)_{irr} 반응에 비하여 이탈기의 영향을 많이 받을 것이 예상 된다. 그러나 반응물 1과 이차 아민에 의해 진행된 제거반응의 |β_{1g}| 값 이 0.30-0.35의 범위를 가지므로 두 메커니즘 사이의 차이점은 명확히 설명할 수 없다. 위 두 반응 메커니즘의 구분은 상호 작용 계수 (interaction coefficient), $p_{xy} = \partial \beta / \partial p K_{lg} = \partial \beta_{lg} / \partial p K_a$ 로 구분 할 수 있다.

Table 2는 반응물 1과 이차 아민의 제거반응에 대한 β 값을 나타내는 데, 염기의 세기와 무관하게 β값은 실험적 오차 내에서 거의 같은 값이 얻어졌다. 위 결과는 염기촉매와 이탈기 사이의 상호작용이 무관한 *p*_{xy} = ∂β/∂p*K*_{lg=}0인 것으로 나타낼 수 있다.^{11,14-17}

또한 염기 세기에 따른 이탈기의 이탈정도를 나타내는 $p_{xy} = \partial \beta_{lg} / \partial p K_{BH}$ 가 0의 값을 가진다는 것을 의미한다 (Table 3). 따라서 반응 메커니즘이 E2 메커니즘으로 진행된다면 p_{xy} 는 0보다 클 것이며 (Elcb)_{irr} 메커니즘으로 진행되는 경우 p_{xy} 는 0의 값을 가질 것이다. 따라 서 위 결과는 반응이 (Elcb)_{irr} 메커니즘으로 진행된다는 강력한 증거이 다.

반면에, 전이상태의 구조는 Brönsted β와 [β_{lg}] 값으로 예측할 수 있다. 이차아민에 의해 진행된 **1a-d**의 제거반응은 0.25-0.29 범위의 β값을 가 진다 (Table 2). 이는 전이상태에서 수소 이동의 정도가 작다는 것을 나 타낸다. [β_{lg}] 값 또한 0.30-0.35의 범위를 가지며 NO(O)C-Ar 결합 끊어짐 이 제한된다는 것을 의미한다 (Table 3). 즉, **1a-d**의 니트릴 형성 제거반 응은 수소이동과 NO(O)C-Ar 결합 끊어짐이 제한적인 reactant-like 전이 상태를 거치는 *k*₁이 속도 결정단계인 (E1cb)_{irr} 메커니즘으로 진행되는 것으로 생각된다.13

제거반응에 미치는 이탈기 및 염기의 영향은 More O'Ferrall-Jencks 반 응 좌표계 그림으로 설명할 수 있다 (Figure 3).¹⁴ 2,6-DMP에 의해 진행 된 1a의 제거반응은 0.29의 β값과 0.35의 |β_{lg}| 값이 얻어졌다 (Table 4). 이 결과는 1의 니트릴 형성 제거반응이 수소이동과 NO(O)C-Ar 결합 끊어짐이 제한적인 reactant-like 전이상태를 거쳐 진행된다는 것을 나타 낸다. 그러므로 전이상태는 반응 좌표계의 오른쪽 가장자리에 위치해 있을 것이다 (A in Figure 3). 좋은 이탈기를 사용하게 되면 반응 좌표계 의 위쪽 가장자리의 에너지가 증가할 것이다. 대각선의 영향은 거의 받 지 않기 때문에 β 값은 무시할 수 있고, 그 결과 전이상태는 거의 같은 자리에 남이 있게 될 것이다.

유사하게 강한 염기를 사용할 경우, 반응 좌표계 그림의 오른쪽 부분의 에너지가 증가하게 된다.

Figure 3. Reaction coordinate diagram for nitrile-forming eliminations from (*E*)-2,4,6-trinitrobenzaldehyde O-benzoyloximes. The transition state for eliminations from **1a** indicated as A(Center). The effects of the change to a stronger base and a better leaving group on the diagonal reaction coordinate are shown by the shifts from B to C and B to D, respectively. These effects can be described by $p_{xy} > 0$.

대부분의 결과들은 같은 조건에서 진행된 (*E*)-2,4-dinitrobenzaldehyde O-benzoyloximes의 제거반응과 유사하다 (Table 4). 또한 위 결과에서 나 타난 상호작용 계수는 E2 메커니즘 (*p*xy>0)의 상호작용 계수의 예측과 잘 일치하지 않는다. 따라서 반응이 (E1cb)_{irr} 메커니즘으로 진행된다는 강력한 증거이다.

니트릴 형성 제거반응의 전이상태구조에 미치는 β-아릴기의 영향

(E)-benzaldehyde O-benzoyloxime 유도체와 DBU-MeCN과의 반응은 E2 메커니즘에 의해 제거반응 생성물이 생성되었다.⁴ syn 반응물과 β-탄소 의 sp² 혼성화 및 나쁜 이탈기를 가진 반응물은 E1cb 혹은 E1cb-like 전 이 상태를 거쳐 반응이 진행될 것이 예상되지만 모든 반응에서 E2 메 커니즘으로 진행되었다.⁸⁻¹¹

Table 4는 (E)-ArCH=NOC(O)C₆H₅의 반응속도와 전이상태 parameter들 을 비교 한 것이다.

Table 4. Transition state parameters for nitrile-forming eliminations from (*E*)-ArCH=NOC(O)C₆H₅ promoted by $R_2NH/R_2NH_2^+$ in 70 mol% MeCN(aq) at 25.0 °C

	Ar = $2,4-(NO_2)_2C_6H_3^{*}$ Ar = $2,4,6-(NO_2)_3C_6H_2(1)$				
rel rate ^b	1	270			
β	0.32±0.02	0.29±0.05			
β_{lg}	-0.31±0.01	-0.35±0.06			
$p_{ m xy}$	~ 0	~ 0			
^{<i>a</i>} Reference 7. ^{<i>b</i>} R ₂ NH=	=2,6-DMP				

81

아릴 치환체가 2,4,6-trinitrophenyl(1a)인 경우, β-아릴기의 전자 끌어당기 는 능력이 크게 증가하였기 때문에 2,4-dinitrophenyl보다 반응속도가 270배 빠르게 나타났다. 그러나 속도를 제외한 두 제거반응의 전이상태 인자들은 거의 비슷하였다. 즉, β-아릴 치환체의 전자 끌어당기는 능력 이 다름에도 불구하고 제거반응에 대한 전이상태 구조가 비슷하다는 것을 의미한다. *p*_{xy} 상호 작용 계수 또한 같게 나타났다.

ATIONAL

니트릴 형성 제거반응의 전이상태구조에 미치는 이탈기 영향 $(E)-2,4,6-(NO_2)_3C_6H_2CH=NOC(O)C_6H_4-4-NO_2(1) 과 (E)-2,4,6-$ Table 5는 (NO₂)₃C₆H₂CH=NOC₆H₄-4-NO₂¹⁸의 제거반응에 대한 전이상태 인자들을 비교하였다. 염기용매에 의해 진행되는 니트릴 형성 제거반응에서, 이 탈기를 4-nitrophenyl기에서 4-nitrobenzoyl기로 변화시킬 때, 반응 속도는 3배 정도 감소하였고, 반면 Brönsted β 와 βlg 값은 더 작게 나타났다 (Table 5). 즉, 전이상태에서 C_B-H와 N_α-OC(O)Ar 결합이 적게 끊어진다 는 것을 의미한다. 또한 (E)-2,4,6-trinitrobenzaldehyde O-4-nitrophenyloxime 의 반응은 메커니즘에 의해 진행되었고 반면에 E2 (E)-2,4,6trinitrobenzaldehyde O-4-nitrobenzoyloxime (1a)은 (E1cb)_{irr} 메커니즘에 의해 진행되었다. 위 두 물질의 반응 메커니즘의 변화는 1의 제거반응에 대 한 cyclic 전이상태 TS1으로 설명할 수 있다.

Scheme 2. The cyclic transition state

즉, 음전하가 β-탄소와 카보닐 산소 원자 사이에 비편재화 되어있으 며, 분자내에서 부분적으로 수소 결합을 하는 cyclic 전이상태 TS1을 형 성하기 때문에 전하들이 최대로 분산될 수 있다. 그러므로 기질 1의 제 거반응은 (*E*)-2,4,6-trinitrobenzaldehyde O-4-nitrophenyloximes 보다 염기와 이탈기 변화에 적게 영향을 받을 것이다.

Х 4-nitrophenyl^a 4-nitrobenzovl(1) R_3N/R_3NH^+ in 70 mol% $R_2NH/R_2NH_2^+$ in 70 mol% Base-solvent MeCN(aq) MeCN(aq) 20 7^{*b*,c} $20.7^{b,c}$ $pK_a(AH)$ 3^d rel rate 1^e β 0.88 ± 0.11 0.29 ± 0.05 -0.30 ± 0.04 -0.34 ± 0.04 β_{lg} >0 0 $p_{\rm xy}$

Table 5. Transition state parameters for proton removal and leaving-group loss in base-promoted eliminations from (E)-2,4,6- $(NO_2)_3C_6H_2CH=NOX$

^{*a*}Reference 18. ^{*b*}pKa of the leaving group in MeCN. ^{*c*}Reference 12. ^{*d*} $R_3N = Et_3N(pK_a = 18.5)$. ^{*e*} $R_2NH = i-Pr_2NH(pK_a = 18.5)$.

결론적으로 본 연구는 (E)-2,4,6-trinitrobenzaldehyde O-benzoyloxime 유 도체와 R₂NH/R₂NH₂⁺-70 mol% MeCN(aq)과의 제거반응에 대해 연구하였 다. 1의 니트릴 형성 제거반응은 수소의 이동과 이탈기 결합의 끊어짐 이 제한된 reactant-like 전이상태를 거친 (E1cb)_{irr} 메커니즘으로 진행된다. 전이상태의 특징은 cyclic 전이상태를 거쳐 진행되는 것으로 생각된다.

V. 참고문헌

- (1) Cho, B. R.; Jang, W. J.; Je, J. T.; Bartsch RA. J. Org. Chem. **1993**, 58, 3901-3904.
- (2) Cho, B. R.; Cho, N. S.; Chung, H. S.; Son, K. N.; Han, M. S.; Pyun, S. Y. Bull. Korean Chem. Soc. **1997**, *18*, 1301-1303.
- (3) Cho, B. R.; Cho, N. S.; Lee, S. K. J. Org. Chem. 1997, 62, 2230-2233.
- (4) Cho, B. R.; Chung, H. S.; Cho, N. S. J. Org. Chem. 1998, 63, 4685-4690.
- (5) Cho, B. R.; Cho, N. S.; Song, S. H.; Lee, S. K. J. Org. Chem. **1998**, 63, 8304-8309.
- (6) Cho, B. R.; Chung, H. S.; Pyun, S. Y. J. Org. Chem. 1999, 64, 8375-8378.
- (7) Pyun, S. Y.; Cho, B. R. J. Org. Chem. 2008, 73, 9451-9453.
- (8) DePuy, C. H.; Naylor, C. G.; Beekman, J. A. J. Org. Chem. 1970, 35, 2750-2753.
- (9) Dohner, B. R.; Saunders, Jr. W. H. J. Am. Chem. Soc. 1986, 108, 245-259.
- (10) Saunders, W. H. Jr.; Cockerill, A. F. *Mechanism of Elimination Reactions*;Wiely: New York, **1973**; pp 510-523.
- (11) Gandler, J. R. The Chemistry of Double Bonded Functional Groups, Patai, S.,
- Ed. John Wiley and Sons, Chichester, 1989, vol.2, part 1, pp 734-797.
- (12) Coetzee, J. F. Prog. Phys. Org. Chem. 1965, 4, 45-92.

- (13) Lowry, T. H.; Richardson, K. S. *Mechanism and Theory in Organic Chemistry*; Harper and Row : New York, **1987**; (a) pp 214-218, (b) pp 591-616,
 (c) pp 640-644.
- (14) Jencks, W. P. Chem. Rev. 1985, 85, 511-527.
- (15) Gandler, J. R.; Jencks, W. P. J. Am. Chem. Soc. 1982, 104, 1937-1951.
- (16) Gandler, J. R.; Yokohama, J. J. Am. Chem. Soc. 1984, 106, 130-135.
- (17) Gandler, J. R.; Storer, J. W.; Ohlberg, D. A. A. J. Am. Chem. Soc. 1990, 112, 7756-7762.
- (18) Pyun, S. Y.; Byun, W. S.; Cho, B. R. Bull. Korean Chem. Soc. 2011, 32, 1921-1924.
- (19) Perrin, D. D.; Armargo, W. L. F. *Purification of Laboratory Chemicals*, 2nd Ed.; **1980**; pp 320.
- (20) Dorey, R. C.; William, R. C. J. Chem. Eng. Data. 1984, 29, 93-97.
- (21) Alexander, L.; Emil, H. B. J. Am. Chem. Soc. 1921, 43, 341-346.

Ⅵ. 부 록

Table S1. Observed rate constants for eliminations from (*E*)-2,4,6- $(NO_2)_3C_6H_2CH=NOC(O)C_6H_4X$ (**1a-d**)^{*a*} promoted by Bz(*i*-Pr)NH/Bz(*i*-Pr)NH₂⁺ ^{*b,c*} in 70 mol% MeCN(aq) at 25.0 °C

Entry	10 ² [buffuer],	$10^2 k_{\rm obs}$, s ^{-1 d,e}				
Entry	Μ	1 a	1b	1c	1d	
1	0.1	0.792	0.228	0.792	0.924	
2	0.2	1.48	0.384	1.48	1.62	
3	0.4	2.86	0.658	2.86	2.99	
4	0.6	3.97	0.918	3.97	4.81	
5	0.8	5.22	1.25	5.22	5.74	

^{*a*}[Substrate] = 8.0 x 10^{-5} . ^{*b*}Buffer ratio = 1.0. ^{*c*}Ionic strength = 0.1(Bu₄N⁺Br-). ^{*d*}Average of three or more rate constants. ^{*c*}Estimated uncertainty, ±3%.

Table S2. Observed rate constants for eliminations from (E)-2,4,6- $(NO_2)_3C_6H_2CH=NOC(O)C_6H_4X$ (**1a-d**)^{*a*} promoted by *i*-Bu₂NH/*i*-Bu₂NH₂^{+b,c} in 70 mol% MeCN(aq) at 25.0 °C

Entry	10 ² [buffer],	-	$10^2 k_{\rm obs}$	$, S^{-1 d, e}$	
	M	1a	lb	le	1d
1	0.1	1.54	0.695	2.59	2.66
2	0.2	2.65	1.19	4.45	5.19
3	0.4	4.69	2.30	9.09	10.6
4	0.6	7.25	3.53	13.4	14.9
5	0.8	9.15	4.73	19.9	22.9
6	1.0	11.4	-	-	-
7	1.2	13.3	-	-	-
8	1.6	18.2	-	-	-
9	2.0	22.2	-	-	-

Table S3. Observed rate constants for eliminations from (*E*)-2,4,6- $(NO_2)_3C_6H_2CH=NOC(O)C_6H_4X$ (**1a-d**)^{*a*} promoted by *i*-Pr₂NH/*i*-Pr₂NH₂^{+b,c} in 70 mol% MeCN(aq) at 25.0 °C

Entry	10 ² [buffer],	$10^2 k_{\rm obs}, {\rm s}^{-1 d, e}$				
	М	1a	1b	1c	1d	
1	0.1	1.28	0.574	2.25	2.62	
2	0.2	2.05	0.901	3.86	4.40	
3	0.4	3.43	1.77	6.26	7.73	
4	0.6	4.96	2.40	9.18	11.2	
5	0.8	6.39	3.12	12.1	14.4	
^e See footnotes	under Table S1.	1		12		

Table S4. Observed rate constants for eliminations from (*E*)-2,4,6- $(NO_2)_3C_6H_2CH=NOC(O)C_6H_4X$ (**1a-d**)^{*a*} promoted by 2,6-DMP/2,6-DMPH^{+b,c} in 70 mol% MeCN(aq) at 25.0 °C

Entry	10 ² [buffer],	20 -	$10^2 k_{\rm obs}, {\rm s}^{-1 d, e}$			
	М		1b	1c	1d	
1	0.1	1.74	0.988	3.50	4.23	
2	0.2	3.10	1.51	5.91	7.84	
3	0.4	5.18	2.21	10.8	13.3	
4	0.6	7.51	3.65	14.8	19.8	
5	0.8	10.6	4.42	19.8	27.1	

Figure S1. Plots of k_{obs} vs. base concentration for eliminations from (*E*)-2,4,6-(NO₂)₃C₆H₂CH=NOC(O)C₆H₅ (**1a**) promoted by *i*-Bu₂NH/*i*-Bu₂NH₂ in 70 mol% MeCN(aq) at 25.0 °C , [R₂NH]/[R₂NH₂⁺] = 1.0, μ = 0.10 M (Bu₄N⁺Br⁻).

Figure S2. Plots of k_{obs} vs. base concentration for eliminations from (*E*)-2,4,6-(NO₂)₃C₆H₂CH=NOC(O)C₆H₅ (**1a**) promoted by R₂NH/R₂NH₂⁺ in 70 mol% MeCN(aq) at 25.0 °C, [R₂NH]/[R₂NH₂⁺] = 1.0, μ = 0.10 M (Bu₄N⁺Br⁻). [R₂NH = Bz(*i*-Pr)NH(\blacksquare), *i*-Pr₂NH(\blacklozenge), 2,6-DMP(\blacktriangle)].

Figure S3. Plots of k_{obs} vs. base concentration for eliminations from (*E*)-2,4,6-(NO₂)₃C₆H₂CH=NOC(O)C₆H₄-*p*-OCH₃ (**1b**) promoted by R₂NH/R₂NH₂⁺ in 70 mol% MeCN(aq) at 25.0 °C , [R₂NH]/[R₂NH₂⁺] = 1.0, μ = 0.10 M (Bu₄N⁺Br⁻). [R₂NH = Bz(*i*-Pr)NH(\blacksquare), *i*-Bu₂NH(\blacktriangle), *i*-Pr₂NH(\blacklozenge), 2,6-DMP(\blacktriangledown)].

Figure S4. Plots of k_{obs} vs. base concentration for eliminations from (*E*)-2,4,6-(NO₂)₃C₆H₂CH=NOC(O)C₆H₄-*m*-Br (**1c**) promoted by R₂NH/R₂NH₂⁺ in 70 mol% MeCN(aq) at 25.0 °C , [R₂NH]/[R₂NH₂⁺] = 1.0, μ = 0.10 M (Bu₄N⁺Br⁻). [R₂NH = Bz(*i*-Pr)NH(\blacksquare), *i*-Bu₂NH(\blacktriangle), *i*-Pr₂NH(\bigcirc), 2,6-DMP(\blacktriangledown)].

Figure S5. Plots of k_{obs} vs. base concentration for eliminations from (*E*)-2,4,6-(NO₂)₃C₆H₂CH=NOC(O)C₆H₄-*p*-CF₃ (**1d**) promoted by R₂NH/R₂NH₂⁺ in 70 mol% MeCN(aq) at 25.0 °C, [R₂NH]/[R₂NH₂⁺] = 1.0, μ = 0.10 M (Bu₄N⁺Br⁻). [R₂NH = Bz(*i*-Pr)NH(\blacksquare), *i*-Bu₂NH(\blacktriangle), *i*-Pr₂NH(\blacklozenge), 2,6-DMP(\blacktriangledown)].

Figure S6. ¹H-NMR spectrum of (E)-2,4,6- $(NO_2)_3C_6H_2CH=NOC(O)C_6H_5(1a)$ (Acetone- d_6).

I

Hotu

0

4

Figure S7. ¹³C-NMR spectrum of (E)-2,4,6- $(NO_2)_3C_6H_2CH=NOC(O)C_6H_5(1a)$ (DMSO- d_6).

47

Hotu

Figure S8. ¹H-NMR spectrum of (E)-2,4,6- $(NO_2)_3C_6H_2CH=NOC(O)C_6H_4$ -*p*-OCH₃(**1b**) (Acetone-*d*₆).

CH OL IN

Figure S9. ¹³C-NMR spectrum of (E)-2,4,6- $(NO_2)_3C_6H_2CH=NOC(O)C_6H_4-p$ -OCH₃(1b) (DMSO-d₆).

Hoin

Hotu

Figure S11. ¹³C-NMR spectrum of (E)-2,4,6- $(NO_2)_3C_6H_2CH=NOC(O)C_6H_4-m$ - Br(1c) (DMSO- d_6).

Hoin

Figure S12. ¹H-NMR spectrum of (E)-2,4,6- $(NO_2)_3C_6H_2CH=NOC(O)C_6H_4-p - CF_3(1d)$ (Acetone- d_6).

Figure S13. ¹³C-NMR spectrum of (E)-2,4,6- $(NO_2)_3C_6H_2CH=NOC(O)C_6H_4-p - CF_3$ (1d) (DMSO-*d*₆).

감사의 글

이 논문을 완성하기까지 가장 고생하신 변상용 교수님께 먼저 감사의 말씀을 드립니다. 부족한 저를 항상 믿어주시고 아낌없는 가르침과 조 언을 주신 교수님께 진심으로 감사 드립니다. 그리고 저의 논문 심사를 맡아주시고, 소중한 충고와 조언을 해주셨던 심현관 교수님, 서성용 교 수님께도 감사 드립니다.

감사 드리고, 항상 힘이 되어 주는 친구들과 오빠에게도 감사의 인사를 드립니다.