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다시마 발효 추출물의 lipopolysaccharide 로 유도된 RAW 264.7 

세포 염증반응에 미치는 영향 

 

 

최 지 일 

 

부경대학교 대학원 식품공학과 

 

요약 

 

다시마는 (Laminaria japonica) 전통적으로 한국과 일본에서 식용으로 

이용되어 왔고 항산화, 항균, 항당뇨, 항염증에 효과가 있다고 보고 

되어있다. 최근 다시마 발효 추출물이 항산화 및 간독성을 보호하는 효과가 

있다는 보고가 있었다. 그러나, 다시마 추출물의 항 염증에 대한 연구는 

많이 이루어져 왔으나 다시마 발효 추출물의 항염증에 대한 연구는 아직 

보고된 바 없다. 따라서 본 연구에서는 다시마 발효(FST) 후 외부순환식 

감압형 분리막을 이용하여 분자량에 따른 세가지 유형의 FST I (10 

kDa 보다 이상), FST II (1-10 kDa)과 FST III (1kDa 이하)를 준비했다. 

또한 염증을 유발시키는 Lipopolysaccaride 를 이용하여 RAW 264.7 
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세포에 염증을 유발시킨 후 FSTs 를 이용하여 염증억제 효능을 

검토하였다. 

그 결과, 염증반응매개 효소인 iNOS 와 COX-2, 염증성 사이토카인인 IL-

6, IL-1β, TNF-α 의 유전자 및 단백질 발현이 억제됨을 확인할 수 있었고 

FSTs 중 FST III 이 가장 항염증 효과가 우수함을 확인 할 수 있었다. 또한 

FSTs 는 염증 신호전달 경로인 NF-κB 의 활성화를 억제함으로서 염증 

반응을 제어하는 것을 확인 할 수 있었다. 
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Introduction 

 

Inflammation is the result of host response to pathogenic challenges or 

tissue injuries, and ultimately leads to the restoration of a normal tissue 

structure and function. Normal inflammatory responses are self-limited by a 

process which involves the down-regulation of pro-inflammatory proteins 

and the up-regulation of anti-inflammatory proteins (Lawrence et al., 2002). 

Thus, acute inflammation is a limited beneficial process, particularly in 

response to infectious pathogens, whereas chronic inflammation is an 

undesirable persistent phenomenon that can lead to the developments of 

inflammatory diseases (Kaplanski et al., 2003). Prolonged inflammation 

contributes to the pathogenesis of many inflammatory diseases, such as 

bronchitis, gastritis (Sakagami et al., 1997), inflammatory bowel disease, 

multiple sclerosis (Klotz et al., 2005), and rheumatoid arthritis (Ponchel et 

al., 2002). Macrophages play an important role in a variety of disease 

processes including autoimmune diseases, infections, and inflammatory 

disorders (Pierce, 1990). 

   Lipopolysaccharide (LPS), an endotoxin derived from Gram-negative 

bacterial outer membrane, can directly activate macrophages to produce a 

variety of pro-inflammatory cytokines, such as tumor necrosis factor-α 
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(TNF-α) and interleukins (ILs), and the formation of other inflammatory 

mediators, including prostaglandins (PGs) and nitric oxide (NO). NO is 

endogenously produced from L-arginine and molecular oxygen by the 

action of NO synthases (NOSs). In mammals, there are three isoforms of 

NOS; neuronal NOS (nNOS), endothelial NOS (eNOS) and inducible NOS 

(iNOS). nNOS and eNOS are constitutively expressed in neuronal and 

endothelial, respectively. In contrast, iNOS is inducible and its expression is 

increased in cells that are exposed to LPS or cytokines (Vane et al., 1994). 

Accordingly, high expression and activity of iNOS are observed in chronic 

diseases, such as inflammation and cancer (Maeda et al., 1998., Liu et al., 

1998). 

Prostaglandins (PGs) are synthesized by the action of cyclooxygenase 

(COX) in arachidonic acid metabolism (Vane et al., 1994). COX has two 

isoforms; COX-1 and COX-2. COX-1 is constitutively expressed in most 

cells and the COX-1-produced prostaglandins which involves in normal 

physiological functions. COX-2 is inducible in many types of cells 

including macrophages after the exposure of LPS, growth factors, and tumor 

promoters (Prescott et al., 2000, Hinz et al., 2002). In view of the 

importance of iNOS and COX-2 as plausible targets for the treatment of 

inflammatory disorders, I was interested in the effect of fermented sea 
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tangle (FST) on the suppression of iNOS and COX-2 expressions in LPS-

induced RAW 264.7 cells. 

Marine algae have been identified as rich sources of structurally diverse 

bioactive compounds with great pharmaceutical potential (Blunt et al., 2010, 

Abad et al., 2008). Variety of biological compounds including phlorotannins 

and fucoxanthin were isolated from Laminariacceae and characterized on 

their biological activities (Okuzumi et al., 1993, Kim et al., 2005, Woo et 

al.,2009). Sea tangle (Laminaria japonica) is representative marine brown 

alga that is commonly used as seasonings, condiments and health food in 

Korea, Japan and China. Variety in vitro and in vivo studies have focused on 

the antioxidant (Huang et al., 2004., Yuan et al., 2006., Park et al., 2009) 

and chemopreventive (Zhang et al., 2008) activities of the extracts from L. 

japonica.  

As part of my ongoing is the investigation for anti-inflammatory activity 

of fermented sea tangle extract (FST). To the best of my knowledge, there 

are no reports about the anti-inflammatory activity of γ-aminobutyric acid 

(GABA)-enriched sea tangle extract (FST) and prompted me to investigate 

signaling mechanism of FST to inflammatory proteins in the LPS-induced 

RAW 264.7 cells. In the present study, anti-inflammatory activity of FST 
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and its possible mechanisms in LPS-induced RAW 264.7 cells was 

investigated.  
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Materials and Methods 

 

1. Preparation of fermented sea tangle extracts (FSTs) 

 

Sea tangle (Laminaria japonica) was purchased at Gi-jang market, Busan, 

Korea in March 2007. The Sea tangle was washed with fresh water to 

eliminate foreign materials such as sand, shells, and others. Then, the 

sample was added to water at a ratio of 1:15 (w/v) and 2% (w/w of dry sea 

tangle) rice flour was added to aid fermentation. After autoclaving at 121°C 

for 30 min, Lactobacillus. brevis BJ20 (Accession no. KCTC 11377BP) 

culture was added to the sea tangle extract at a concentration of 2% (v/v), 

followed by thorough mixing and incubation at 37°C. The fermented 

product was obtained by filtration and was freeze-dried. γ-Amino Butyric 

Acid (GABA)-enrich fermented sea tangle extract (FST) were further 

fractionated into three types, FST I (over than 10 kDa), FST II (1-10 kDa) 

and FST III (less than 1kDa) according to the molecular weight using a 

ultrafiltration . 

 



６ 
 

2. Cell culture and cell viability assay 

 

RAW 264.7 cells were grown to confluence in Dulbecco’s Modified 

Eagle Medium (DMEM) with 10% fetal bovine serum (FBS) at 37ºC in a 

humidified atmosphere of 5% CO2. Cytotoxicity of various molecular 

weight of FSTs was evaluated by MTT assay, a method based on the 

reduction of 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

(MTT) (Weislow et al., 1989). The medium containing RAW 264.7 cells 

were cultured into a 96-well plate at a density of 1 x 105 cells per ml. The 

plate was incubated overnight and treated with 100 μl of DMEM medium 

containing different concentrations of FSTs. After 24 h of incubation, MTT 

solution (1 mg/ml) was added to each well and the plate was incubated for 

another 4 h at 37ºC. The blue formazan salt was dissolved in DMSO. 

Optical density was measured at 540 nm with a GENios microplate reader 

(Tecan, Austria GmbH, Austria). The optical density of formazan formed by 

untreated cells was taken as 100% of viability. 
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Fig. 1. Molecular structure of MTT and its corresponding reaction product 

 

3. Determination of intracellular ROS formation 

 

Intracellular formation of reactive oxygen species (ROS) was assessed as 

described previously using 2',7'dichlorofluorescein diacetate (DCFH-DA) as 

the substrate (Rajapakse et al., 2007). RAW 264.7 cells growing in 

fluorescence 96-well plates were loaded with 20 µM DCFH-DA in HBSS 

and incubated for 20 min in the dark. Non-fluorescent DCFH-DA dye is 

freely penetrated into cells, gets hydrolyzed by intracellular esterases to 

2',7'dichlorodihydrofluororescein (DCFH), and traps inside the cells. Cells 

were then treated with different concentrations of FSTs and incubated for 1 

h. After washing the cells with PBS three times, 500 µM H2O2 dissolved in 

HBSS were added to the cells. The formation of 2',7'dichlorofluorescein 

(DCF) due to oxidation of DCFH in the presence of various ROS was read 
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after every 20 min at the excitation wavelength (Ex) of 485 nm and the 

emission wavelength (Em) of 528 nm using a fluorescence microplate 

reader (Tecan Austria GmbH, Salzburg, Austria). Dose and time-dependant 

effects of the sample treated groups were plotted and compared with 

fluorescence intensity of the control and blank groups. 

 

4. Membrane lipid peroxidation 

 

Intracellular lipid hydroperoxide levels were determined by the 

fluorescence probe, diphenyl-1-pyrenylphosphine (DPPP) as described 

previously (Rajapakse et al., 2007). RAW 264.7 cells growing in culture 

dishes were washed three times with PBS and labeled with 13 mM DPPP 

(dissolved in DMSO) for 30 min at 37ºC in the dark. Cells were washed 

three times with PBS and seeded into fluorescence microtiter 96-well plates 

at a density of 1 x 108  cells per ml using serum free media. Following 

complete attachment, cells were treated with various concentrations of 

sample and incubated for 1 h. After incubation, 3 mM AAPH in PBS was 

added and DPPP-oxide fluorescence intensity was measured after 9 and 18 h 

at the excitation wavelength (Ex) of 361 nm and the emission wavelength 
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(Em) of 380 nm using GENios fluorescence microplate reader (Tecan 

Austria GmbH,Austria). 

 

5.  Measurement of NO 

 

RAW 264.7 cells (1 x 106) were plated and incubated with 0-100 µg/mL 

FSTs in the absence or presence of LPS (1 µg/mL) for 24 hr. After treatment 

of LPS and FSTs, RAW 264.7 cells culture medium was saved for measured 

as an of nitrite. The nitrite concentration in the culture medium was 

measured as an indicator of NO production, according to the Griess reaction 

(Kim et al., 1995). One hundred microliters of culture supernatant was 

mixed with the same volume of Griess reagent (0.1% 

naphtylethylenediamine dihydrochloride and 1% sulfanilamide in 5% 

H₃PO₄). The absorbance of the mixture was measured with a microplate 

reader (Infinite F200 pro, TECAN) at 540 nm. The concentration of nitrite 

was calculated with sodium nitrite as a standard. 
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6.  RNA extraction and reverse transcription-polymerase chain reaction 

 

Total RNA was isolated using a Trizol reagent (Invitrogen Co., CA, 

USA) following the manufacture's recommendations. Total RNA was 

digested with RNase-free DNase (Roche, IN, USA) for 15 min at 37ºC and 

repurified by the RNeasy kit according to the manufacture's protocol 

(Quiagen, CA, USA). cDNA was synthesized from 2 μg total RNA. By 

incubation at 37ºC for 1 h with MLV reverse transcriptase (Promega) with 

random hexanucleotide according to the manufacture's instruction. Primers 

to specifically amplify the genes interested were showed in Table 1. 

Amplification was performed in a master-cycler (Eppendorf, Hamburg, 

Germany) with cycles of denaturation at 95ºC 30 sec, annealing at 60ºC 45 

sec, and extension at 72ºC for 1 min, respectively. The amplified PCR 

products were run in 1.0% agarose gels and visualized by ethidium bromide 

(EtBr).  

 

7.  Western blot analysis  

 

Western blotting was performed according to standard procedures. 

Briefly, cells were lysed in RIPA buffer containing 50 mM Tris–HCl (pH 



１１ 
 

8.0), 0.4% Nonidet P-40, 120 mM NaCl, 1.5 mM MgCl2, 2 mM 

phenylmethylsulfonyl fluoride, leupeptin (80 μg/ml), 3 mM NaF and 1 mM 

DTT at 4°C for 30 min. Cell lysates (50 μg) were separated by 12% SDS-

polyacrylamide gel electrophoresis (SDS-PAGE), transferred onto a 

polyvinylidene fluoride membrane (Amersham Pharmacia Biotech., 

England, UK), blocked with 5% skim milk, and hybridized with primary 

antibodies (diluted 1:1000). After incubation with horseradish-peroxidase-

conjugated secondary antibody at room temperature, immunoreactive 

proteins were detected using a chemiluminescent ECL assay kit (Amersham 

Pharmacia Biosciences, England, UK) according to the manufacturer's 

instructions. Western blot bands were visualized using a LAS3000® 

Luminescent image analyzer (Fujifilm Life Science, Tokyo, Japan). 
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Table 1. Chemicals used for reverse transcription PCR 

PCR Chemical Amount used Stock 

MMLV 

reverse ranscriptase 
0.5 μl 200 U/ μl 

dNTP mixture 0.5 μl 10 mM 

DTT 1 μl 100 mM 

5X reaction buffer 5 μl  

RNase inhibitor 0.5 μl 80 U/ μl 

 

 

 

Table 2. RT-PCR conditions 

Temperature Time 

37ºC 1h 

70ºC 5 min 

4ºC ∞ 
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Table 3. Chemicals used for PCR reaction 

PCR Chemical Amount used Stock 

Taq polymerase 0.125 μl 5 U/ μl 

dNTP 0.5 μl 2.5 mM 

Reverse Primer 0.5 μl 25 pmole/ μl 

Forward Primer 0.5 μl 25 pmole/ μl 

5X reaction buffer 5  μl  

DW 17.375 μl  

 

Table 4.  PCR conditions 

Temperature Time Cycle 

95ºC 2 min 1 

95ºC 

60ºC 

72ºC 

30 sec 

45 sec 

1 min 

28 

72ºC 5 min 1 

4ºC ∞  
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Table 5.  Gene-specific primers used for the RT-PCR  

Gene Direction Sequence 

iNOS 
 Forward 5'- CAC CTT GGA GTT CAC CCA GT -3'  

 Reverse 5'- ACC ACT CGT ACT TGG GAT GC -3'  

COX-2 
 Forward 5'- TGA AAC CCA CTC CAA ACA CA -3'  

 Reverse 5'- GAG AAG GCT TCC CAG CTT TT -3'  

TNF-α 
 Forward 5'-AGG CCT TGT GTT GTG TTT CCA-3'  

 Reverse 5'-TGG GGG ACA GCT TCC TTC TT-3'  

IL-1β 
 Forward 5'- CTG TCC TGC GTG TTG AAA GA -3'  

 Reverse 5'- TTC TGC TTG AGA GGT GCT GA -3’  

IL-6 
 Forward 5'- AGG AGA CTT GCC TGG TGA AA -3'  

 Reverse 5'- CAG GGG TGG TTA TTG CAT CT -3'  

β-actin 
 Forward 5'- CCA CAG CTG AGA GGG AAA TC-3'  

 Reverse 5'-AAG GAA GGC TGG AAA AGA GC-3'  
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Results and Discussion 

 

1. Effect of FSTs on RAW 264.7 cells viability  

 

The Effect of FSTs on the viability of LPS-activated RAW 264.7 cells 

was determined by MTT assay. LPS-activated RAW 264.7 cells were 

treated with or without FSTs at concentrations of 25, 50 and 100 μg per ml. 

As shown in (Fig. 2), FSTs did not show any significant cytotoxicity. These 

results revealed that FSTs are safe materials for in-vitro cell culture 

experiments up to a concentration of 100 μg per ml. 

 

2. Effect of FSTs on NO production in RAW 264.7 cells 

 

Macrophage-derived intercellular NO is a free radical with a short 

lifespan that plays an important role in the physiological and 

pathophysiological mechanisms in immunological systems (Asamitsu et al., 

2003). NO is synthesized from the amino acid arginine by nitric oxide 

synthase (NOS). Under pathological conditions, NO production is increased 

by the inducible NOS (iNOS) and, subsequently, brings about cytotoxicity 

and tissue damage (Kim et al., 1998). Compounds able to reduce NO 
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production by iNOS may be attractive as anti-inflammatory agents, and for 

this reason, the effects of polyphenoles on iNOS activity have been 

intensively studied to develop anti-inflammatory drugs (Santangelo et al., 

2007). LPS can induce the formation of iNOS and NO in macrophage cells 

(Mendis et al., 2008). Therefore, it was investigated whether FSTs could 

inhibit NO production in LPS- induced RAW 264.7 cells. As an indicator of 

NO production, nitrite (NO2-) accumulation in the cultured media was 

determined by the Griess method. FSTs inhibited LPS-induced NO 

production in RAW 264.7 macrophages compared to control group (Fig. 3). 

To my knowledge, this is the first report regarding the inhibitory effects of 

FSTs on NO production in RAW 264.7 cells. Hence, these findings suggest 

that the inhibition of NO production by FSTs might be due to the 

suppression of LPS-induced iNOS transcription. 

 

3. Cellular radical scavenging effect 

 

Intracellular ROS scavenging was examined using fluorescence sensitive 

dye. The DCFH-DA fluorescent intensity was significantly decreased by 

FSTs extract in a time and concentration dependent manners on RAW 264.7 

cells. As shown in (Fig. 4), the progressive increments in DCF fluorescence 



17 
 

intensity due to the hydrogen peroxide generation were observed with the 

incubation time up to 100 min. The FSTs significantly reduced DCF 

fluorescence intensity, resulting in the increased scavenging activity against 

intracellular ROS in a concentration-dependent manner. The presence of 

FSTs extract at the concentrations of 50 and 100 μg per ml led to a 

remarkable reduction in fluorescent intensity. These results confirmed that 

FSTs could exert a substantial effect against intracellular ROS formation. 
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Fig. 2. Effect of fermented sea tangle extracts (FSTs) on cell cytotoxicity in RAW 

264.7 cells.  
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Fig. 3. Effect of fermented sea tangle extracts (FSTs) on nitric oxide (NO) 

production in lipopolysaccharide (LPS)-induced RAW 264.7 cells. FSTs were 

treated with in the presence of LPS (1 µg/mL). Blank: -LPS; LPS: LPS (1 µg/mL); 

FST I (>10 kDa), FST II (1-10 kDa) and FST III (<1kDa).  
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3. Cellular radical scavenging effect 

 

Intracellular ROS scavenging was examined using fluorescence sensitive 

dye. The DCFH-DA fluorescent intensity was significantly decreased by 

FSTs extract in a time and concentration dependent manners on RAW 264.7 

cells. As shown in (Fig. 4), the progressive increments in DCF fluorescence 

intensity due to the hydrogen peroxide generation were observed with the 

incubation time up to 100 min. The FSTs significantly reduced DCF 

fluorescence intensity, resulting in the increased scavenging activity against 

intracellular ROS in a concentration-dependent manner. The presence of 

FSTs extract at the concentrations of 50 and 100 μg per ml led to a 

remarkable reduction in fluorescent intensity. These results confirmed that 

FSTs could exert a substantial effect against intracellular ROS formation. 
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Fig. 4. Scavenging effect of fermented sea tangle extracts (FSTs) on intracellular 

generation of ROS in Lipopolysaccharide (LPS)-induced Raw 264.7 cells. FSTs 

were treated with in the presence of LPS (1 µg/mL). Blank: -LPS; LPS: +LPS (1 

µg/mL); FST I (>10 kDa), FST II (1-10 kDa) and FST III (<1kDa). 
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4. Inhibition of membrane lipid peroxidation 

 

The levels of lipid hydroperoxides in the presence or absence of FSTs 

were examined by use of specific fluorescence probe, DPPP (Fig. 5). DPPP 

has been used as a sensitive method for the measuring lipid hydroperoxides 

of cell membrane, since it successfully incorporate into membranes and 

oxidize with hydroperoxides to emit DPPP-oxide fluorescence (Rajapakse et 

al., 2007). When the DPPP-labeled RAW 264.7 cells were treated with LPS, 

the fluorescent intensity derived from DPPP oxide steadily increased about 

1.5- to 1.8-fold due to peroxyl radical mediated membrane lipid 

peroxidation. Treatment with FSTs led to concentration-dependent 

reduction in the fluorescent intensity. The reduction in fluorescent intensity 

was compared to the blank (LPS non-stimulated), confirming FSTs could 

exert a substantial effect against oxidation of membrane lipids. At high 

concentration more than 100 μg per ml, FSTs has exhibited a similar 

fluorescent intensity with blank group. In comparison analysis, FST III 

showed highest activity on the inhibition of NO and radical formation than 

FST I and FST II in LPS-induced RAW 264.7 cells. Accordingly, FST III 

was selected to evaluate further anti-inflammatory effect. 
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Fig. 5. Inhibition of fermented sea tangle extracts (FSTs) on membrane lipid 

peroxidation in lipopolysaccharide (LPS)-induced Raw 264.7 cells. FSTs were 

treated with in the presence of LPS (1 µg/mL). Blank: -LPS; LPS: +LPS (1 

µg/mL); FST I (>10 kDa), FST II (1-10 kDa) and FST III (<1kDa). 
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5. Effect of FSTs on the regulation of inflammatory response genes and 

proteins 

 

Inflammatory processes are mediated by multiple molecular mechanisms. 

iNOS and COX-2 play a pivotal role in immunity against infectious agents 

by producing an excess amount of NO and PGE2, respectively; these 

enzymes have attracted attention for their detrimental roles in inflammation 

related disease (Yun et al., 1996, Kim et al., 2009) 

TNF-a, IL-1β and IL-6 are primary inflammatory cytokines which play an 

essential role during the inflammatory process (Trikha et al., 2003). The 

pro-inflammatory cytokines such as TNF-α, IL-6 and IL-1β are small 

secreted proteins, which mediate and regulate immunity and inflammation 

(Huang et al., 2006). TNF-α production is crucially required for the 

synergistic induction of NO synthesis in LPS-induced macrophages. TNF-α 

elicits a number of physiological effects such as septic shock, inflammation, 

cachexia, and cytotoxicity. IL-1β is found in thecirculation following Gram-

negative sepsis, which is a mediator of the gost inflammatory response in 

innate immunity (Roshak st al., 1996). Additionally, the production of IL-6 

is induced by several factors, TNF-α, IL-1β as well as the bacterial 

endotoxin, LPS. IL-6, a pro-inflammatory cytokine, acts as an endogenous 
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pyrogen in addition to its multiple effects on the immune system and in 

particular on hematopotesis (Van Snick., 1990). 

It was evaluated whether FST III affects the inflammatory response 

cytokine mRNA and protein expression in LPS-induced RAW 264.7 cells, 

using RT-PCR and Western blot analysis, respectively (Fig. 6). The mRNA 

transcription and protein levels of iNOS, COX-2, IL-6, IL-1β and TNF-α 

were reduced by FST III treatment, which was consistent with the results 

obtained from NO production. Therefore, FST III prevented the production 

of NO and inflammatory cytokines by suppressing their mRNA 

transcription and protein expression in LPS-induced RAW 264.7 cells (Fig. 

7). As a result, FST III was shown to have anti-inflammatory activities by 

reducing mRNA and protein expression levels of inflammatory cytokines. 

 

 



26 
 

 

 

(A) 

 

(B) 

 

 

Fig. 6. Effect of fermented sea tangle extract sub-fraction III (FST III) on the 

regulation of iNOS and COX-2 expression in LPS- induced in RAW 264.7 cells. 

RAW264.7 cells were co-cultured with various concentrations of FST III for 1 h 

and then stimulated with lipopolysaccharide (LPS; 1 µg/ml) for 24 h. Gene (a) and 

protein (b) expression levels were determined by RT-PCR and Western blot 

analysis, respectively. 
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(A) 

 

(B) 

 

 

Fig. 7. Effect of fermented sea tangle extract sub-fraction III (FST III) on the 

regulation of pro-inflammatory cytokines such as TNF-α, IL-6 and IL-1β in RAW 

264.7 cells. RAW 264.7 cells were co-cultured with various concentrations of FSTs 

for 1 h and then stimulated with lipopolysaccharide (LPS; 1 µg/ml) for 24 h. Gene 

(a) and protein (b) expression levels were determined by RT-PCR and Western blot 

analysis, respectively  
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6. Effect of FSTs on NF-κB signaling pathway 

 

Nuclear factor kappa B (NF-κB) is known to be involved in the inducible 

expression of various genes that regulate inflammatory actions. (Aggarwal 

et al., 2006). In unstimulated cells, NF-κB is constitutively localized in the 

cytosol as a heterodimer by physical association with an inhibitory protein 

called inhibitor κB (IκB). Various stimuli, such as LPS, cytokines, 

activators of protein kinase C, oxidants and viruses, activate several signal 

transduction pathways that all lead to phosphorylation and degradation of 

IκB and subsequent activation of NF-κB (Hawiger, 2001). Following 

activation, the NF-κB heterodimer is rapidly translocated to nucleus, where 

it activates the transcription of target genes, including genes encoding for 

pro-inflammatory cytokines, adhesion molecules, chemokines and inducible 

enzymes such as iNOS and COX-2 (Hayden et al., 2006; Ghosh et al., 

2008). 

The role of the NF-κB signaling pathway in the anti-inflammatory 

responses in RAW 264.7 cells treated with FST III was confirmed using 

Western blot analysis (Fig. 8). Inflammatory gene expression can be 

regulated by NF-κB, which is important for mediating cytokine production 

in LPS- induced macrophages. As shown in (Fig. 8), NF-κB p65 and p50 



29 
 

were suppressed depending on the concentrations of FSTs treatment. These 

results indicated that signal transduction of NF-κB might be suppressed by 

FST III. 
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Fig. 8. Effect of fermented sea tangle extract sub-fraction III (FST III) on the 

transcriptional activation of nuclear factor kappa B (NF-κB) in lipopolysaccharide 

(LPS)-induced RAW 264.7 cells. RAW 264.7 cells were co-cultured with various 

concentrations of FST III for 1 h and then stimulated with LPS (1 µg/ml) for 24 h. 
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Conclusion 

 

 

 

 

Fig. 9. Effect of fermented sea tangle extracts (FSTs) against lipopolysaccharide 

(LPS)-induced inflammation in RAW 264.7 cells 

 

This study demonstrated that FST effectively inhibited excessive 

production in inflammatory mediators such as NO, TNF-α, IL-1β and IL-6. 

These results suggest that FSTs inhibited NO production, biosynthesis of 

cytokines and expression of inflammatory-related genes in LPS-activated 

RAW 264.7 cells. Moreover, these anti-inflammatory profiles of FSTs were 
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mediated through the inhibition of NF-κB transcriptional inductions. 

Accordingly, these results underscore the nutraceutical value of FSTs as a 

potential anti-inflammatory agent via attenuation of inflammatory responses 

or processes. 
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