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1.INTRODUCTION

Let K be a knot in S%. If Dehn surgery on K yields a lens space
L=L(p,q) with 0<lg<p and ged(p,q) =1, then the core K of the
attatched solid torus becomes a knot in L which is called the dual

knot of K.
Let 7m:8%>L be the universal covering projection , that is the p—

fold regular cyclic covering projection. Since K represents a

generator of H,(I;7Z) the lifting K== '(K) of K turns out to be
a knot in S°./ By choosing regular neihbourhoods N(K') and N(K')

of K and K respectively so that w(N(K))=N(K"), we can make
5% —N(K)° the p— fold regular cyclic covering space of L—N(K")°
which is | ‘homeomorphic to 8°—N(K)° for ~some regular

neihbourhood N(X) of K. Thus we call & iho p— fold covering
knot for K. After Rintushel-Stern's discovery .{4] of'a pretzel knot
p(—2,3,7) with lens spacersurgery. slopes 18 and 19, Bergel2]
suggested a systematic method, called doubly primitive construction,
of obtaining knots in S® with integral lens space surgery slopes.
They are referred to as doubly primitive knots or Berge knots in
short. Among the Berge knots, the covering knots for torus knots
and cabled knots are well understood, for instance, see [8,13]. But
regarding the covering knots for hyperbolic Berge knots, to the
author's knowledge, only Gabai's work [5] on p(—2,3,7) is known so
far. Indeed by executing Kirby moves to the Fintushel-Stern's

surgery desctiption of —p(—2,3,7)(—18)=L(18,7), he came up with



the dual knot in figure 1(a)(which turns out to be the mirror image
of K(11,8,6)). Concatenating 18-copies of the braided part of the
dual knot and 11 righthand full twists (of 11-strands), he eventually
ended up with the covering knot with its minimal genus Seifert

surface in figure 1(b) after working for 40 hours!

(a) (b)

Figurel

Later on he showed that the dual knot of a 1-bridge braid type
Berge knot also admits a 1-bridge braid presentation such that the
winding numbers of both 1-bridge braids are the same([7,Corollary
3.3D.

For instance it is known that p(—2,3,7) is represented by K(7,4,2)
([1, Fig.11D); the dual knot of p(—2,3,7) inp(—2,3,7)(18)= L(18,11)
admits K(7,2,4) as a 1-bridge presentation(cf. figure 7). At last
Berge claimed that the dual knot of any doubly primitive knot may

be simultaneously braided with respect to both of the solid tori of a



genus one heegaard splitting of L ([2, Remark in p.3]). Using this
property we show that the dual knot of p(—2,3,7) in L(18,5) can be
represented by a simpler 1-bridge braid K(5,2,1) which eventually
allows us to present a knot diagram of the 18-fold covering knot
without much pains (cf. figure 11(d)). From a 1l-bridge position
(Vit,)Up(Vyty) for the dual knot ofp(—2,3,7) in L(18,5) discovered
by Saito([11]), we get a pair of l-bridge prensentations t,Ut, in
V, and t',Ut, in V, where t’; are projections of the trivial arcs ¢, on

the Heegaard torus F (i=1,2). Then the former vyields K(5,2,1)
whereas the latter does K(7,2,4). It may be compared with Wu's
treatment of l-bridge braids in [15]. He used them to detect the

core knots in O(%),%— surgery of an unknot which admit braidings

in the complement of O. There are only finitely many 1-bridge
braids associated with' the simultaneous braiding of the dual knot of

a given Berge knot whereas there are = infinitely many 1-bridge
braids representing .a -given core knot in O(%) for a fixed slope %

See [15, Corollary 3:3] "or: figure 8 perhaps for more instructive

view on the Wu's observation.



2. PRELIMINARIES

2.1 The covering knots as freely periodic knots

In this section we briefly recall how to construct the covering knots

by means of the spherical geometry of a lens space. Let A be a
p— th root of unity ,.e., A=¢e2"? Then the cyclic group

Z,=<AX =1>, acts freely on §°= {(21722)6((32 Hzy P +lz,)* = 1} by
)\(21722) = ()\zL)\qu).

Then we have the covering projection w:S8*—~L=5/Z,. Note that S*
admits a 7, - equivariant genus one heegaard splitting 53 = WU W,
where W, = {(z,2,)€8%: [2,l <z |} and Wi ={(z,2,)€5% || < |2}

Thus if we take .solid tori V,= Wj/Z, for i=1,2, then we have
agenus one Heegaard splitting 'of 'IL "and. the- covering projection
respecting heegaard solid tori 7:S8*=W,UW,—>L=V,UV,.

Here Zp action on W, is understood as follows.



(a) (b)

Figure?

In figure /2(a), let R be 2xw/p-rotation with respect to the core of
the complementary solid torus of W, and let S be 2¢r/p-rotation
with respect to the core of W,.

Then we can realize X as composition R ¢ S of the two rotations.
Let K be a“knot in L. Then without loss of generality we may
assume that K may+lie.in one of the heegaard solid tori, say V.

In general the lifting of K K== ‘(K)is-a link in W, whose
component is given by gcd(p,w) where w is the winding number of

K in V), ie., the algebraic intersection number of K with a meridian
disk of V,. In particular, if K represents a generator of H,(LZ),
then K is indeed a knot. Let w be the wrapping number of K inVj,

1.e., the minimal geometric intersection number of K with a meridian

disk D, of V; and let (B,T) be a w— strand tangle obtained by
cutting (V; K) along D,. By concatenating p—copies of the tangle T

and ¢-full twist (lefthand for ¢>0 and righthand for ¢<0) of w



-strands we have the covering tangle of T

T= TP(UL 0, g0, )™
where o, are the standard generators of the braid group B, of w

—-strands. Then we can get K by closing T as illustrated in figure

2(b). Thus K is a freely periodic link of order p. Chbili[3] called it
a (p,¢)-lens link. Indeed Thurston's geometrization conjecture
implies that any free cyclic action of order p is conjugated to the

linear Zp-action described in the above. In-turn it implies that any

freely periodic link of order p is isotopic to a (p,q)=lens link.

2.2 'The dual knots of Berge knots as special
(1,1)-knots

In this section we recall some known results and terms for
investigation of dualsknots of Berge knots. <A propéerly embedded
arc t in a solid torus™V iSrsaid to be ~trivial if we have an arc ¢’
on 8V with ot=0ot" and a-disk C'in 'V _such that aA=tUt. Such a
disk C and arc t' are called a spanning disk and projection of t
respectively. Let F be a genus one Heegaard torus of a lens space
L. For a knot K in L, we say that K admits a 1-bridge poistion
(with respect to F) or it is called a (1,1)-knot in short if (L,K) can
be decomposed into a union (V;t,)Up(Vyt,) where ¢, is a trivial arc
in a solid torus V, (i=1,2). Given a 1-bridge position of K,choosing
meridian disks D, of V, so that D,Nt;= & (i=1,2) and taking a pair

of points {P,Q} on F—aD,UaD, such that KNF=at, =at,, we have a



triple (F,{6D,,0D,},{P,Q}) called a 1-bridge diagram of K. Note that
for a meridian disk D of a solid torus V any two trivial arcs in V
with the same end points and disjoint from D are relatively isotopic
in V. Thus from a given genus one Heegaard diagram (F,{0D,,daD,})
choosing a pair of points {P,Q} on F—aD,UaD, we have triple
representing a 1-bridge diagram of a (1,1)-knot in L. On the other
hand, given a 1-bridge position of K, we may view K as a knot In
one of the Heegaard solid tori, say V, by taking a projection t, of
t, on F so that K=t Ut#,. Such a representation of K is called a
1-bridge presentation of K. Now we recall a family of knots in a

standard solid torus D?*xS' introduced by Gabail6]. which admit

rather simple 1-bridge presentations. A braid o is represented by a
set of w strings in D?®XI Thus by gluing D*<0 to D?x1 we have
the closure of ¢ which is a knot or link in the solid torus D*x<S'. A
1-bridge braid is ‘a knot Klw,b,t) in V which is the closure of the
braid

o =g, 050, (0, royop)

Call t the twist number and b the-bridge width.

REMARK 1.

In [10], Menasco and Zhang utilized the mirror image versions of
the 1-bridge braids defined in the above, which are denoted by
Ky (w,bt). For example the two 1-bridge braids K(5,2,1) and

K,,(5.2,3) in figure 3 are isotopic to each other in D*x S



K(5.2.1)
(a)

Figured
Berge showed that the dual knot K in a lens space L=L(p,q) of a
doubly primitive knot admits a very pleasant 1-bridge position ([2,

Theorem 21). Namely, (L, K) can be decomposed into (V;t,)U(V,t,)
so that for each solid torus-V, we may take a meridian disk A, with

7

following properties;

() an oriented Heegaard diagram (F{9A,04,}) is normaized; 04,
meets 94, at exactly p—points in the same direction up to isotopy

in F and

(ii) each trivial arc ¢, in V, lies in 4, (i=1,2).

We call a (1,1)-knot or its 1-bridge position with properties (i)

and (ii) special.



REMARK 2.

For example of a (1,1)-knot in a lens space which is not special,

see [4, Fig.8]. Moreover there are no nontrivial (1,1)-knots in S*
admitting special 1-bridge positions. Here we reproduce Wu's
explanation ([13]) on trivial arcs of a general (1,1)-knot in a lens
space;

Let (Vit,)Up(V,t,) be a 1-bridge position of an arbitrary (1,1)-knot
in L(p,q). Since t, is trivial in V,, we have a meridian disk D, of
V), such that ¢, € D,. On the other hand, we-have another meridian
disk D'y of V; such that 8D meets oD, at exactly p— points in the
same direction. However, in-general.one cannot choose D, and D,
to be the same disk up to isotopy in V; relative to ¢t,.

For the trivial arc ¢ of V, in a special 1-bridge position, we
choose its spanning disk .C lying in the meridian disk A4, of V;
(1=1,2). We call aCNF a special projection. of ¢, denoted by
Proj(t;). Note that each trivial arc ¢, admits two special projection
s a union of which constitutes 04;.

Then taking a meridian disk D, of V., from a small regular
neighbourhood of A, in V, so that DNt,=@ (i=1,2), we have a
following straightfoward characterization of a 1-bridge diagram of a

special (1,1)-knot.



Lemma 3.
Let a triple (F{oD;;0D,},{P,Q}) be a 1-bridge diagram of an

irreducible (1,1)-knot K in a lens space L=L(p,q),p=>2. Then K is
special if and only if the associated oriented Heegaard diagram

(F{aDy,6D,}) is normalized and P, @ lie in mutually distinct

components of F—oD,UaD,.

For the two special projections of ¢, we consider their
intersection numbers with 8D, the minimum-of which is called the
jumping number of ¢, by adopting the definition 2.1.in [13], denoted
by k=k(P,Q). Then position of P _and @ in. F—oD,UdD, can be
uniquely described by the jumping number k=k(P,Q) of ¢,. Indeed

Hempel([8]) has delt with such 1-bridge diagrams under the name

of OBL*(%;k) knots. By means of the universal abelian covering

projection of“a torus F w:R*5R?/7Z*> =F he constructed 1-bridge

diagrams
OBL+(2;I<:) = (F, {6]_71 = (the y—axis),6D2 =n(y= gx)},k)
p p

where the symbol + indicates that the meridians 8D, (i=1,2) are

oriented so that they may meet positively at each point. Thus we

see that Saito's (1,1)-knot K(L(p,q);k) , which is referred to as a
monotone (1,1)-knot in [12], is equivalent to OBL+(%;I€) However it

is more convenient to describe 1-bridge diagrams of special (1,1)-

_10_



knots by using the standard convention on the genus one Heegaard

diagrams of the lens spaces. We identify the solid tori V. with

D?x 8" with the standard orientation and the meridian and longitude
pair {m,l;} of V; being taken so that l=xxS" and m, =aD, =aD, Xy
for some (z,y)€aD*<S'. Then a meridian m, of the complementary
solid torus V, is represented by a simple closed curve on F
corresponding to pll,]+¢lm,|€H,(FZ). For example figure 4 shows

)
+ .
OBL (18 7).

m
84 9 10 11 12 13 14 15 16717 1

0
o

1 01 2'3 4 5 6 7 8 9 10 11 12 13 1415 16 17

UBL+(%;?) K(L(18.5);7)

Figure4

m
501333161151149417127215102

2] 5 013 8 3 16 11 6 1 14 9 4 17 12 7 2 15 10

Figureb

_11_



Note that there is an orientation preserving self—homeomorphism h
of a lens space L(p,q) swapping the side of the Heegaard splitting
V,U.V,, that is h(V,)=V, and h(V,)=V,. Thus h induces swapping
of the meridians m; of V, (i=1,2). There are two types of swapping
of the oriented meridians. One keeps the given orientations of the
meridians, that is h(m,)=m, and h(m,)=m,, which is called the
positive swapping. The other reverses the given orientations of both
meridians, that is h(m;)=—m, and h(m,)=—m,, which is called the
negative swapping. Then for the muliticative inverse ¢ ' of ¢ in
Z/pZ we may identify V,U,V, with a Heegaard splitting of L(p,q ')
such that m; is reprented by a simple <closed "curve on F

corresponding to ‘either pll,]+¢ '[m,] for the postive swapping or

—(plt,)+¢ '[m,]) for the negative swapping. Thus for the 1-bridge

position (Vy#,)U(V,t,) associated with OBLW%;I{) we have a 1-

—1
bridge diagram OBL*(%;Z} representing thé  swapped 1-bridge
position (Vyt,)Up(Vity). I figure § ‘we have description of the

. . . . . 11
negative swapping in a 1-bridge diagram OBL+(1—8;5).

_12_



2.3 The 1-bridge braid presentations of the
special (1,1)-knots

For a knot K with a special 1-bridge position (Vyt,)U(V,t,) defin-
ed by OBL+(%;I€), we try to get its 1-bridge presentations in one

of the Heegaard tori of L. From the special projections Proj(t;) of t,
(1=1,2), we have a closed curve Proj(t;)UProj(t,) on F (with self

intersection points in~ general). It is called-. a special projection
diagram of K . A given special projection diagram “of K, we have a
1-bridge presentation either. t,UProj(t,) in V, or t,UProj(t;) in V,
which form O- or 1-bridge braids with respect: to the Heegaard
torus of the lens space because ¢; lies in the meridian disk A4, of V;

(i=1,2) and Proj(t,), Proj(t,) meet 84,, 84, at each pont in the same

direction respectively. Thus we have

Theorem 4.
([2, Remark in p.3]). Any special (1,1)-knot K in a lens space L is
simultaneously braided with respect to both of the solid tori of a

genus one Heegaard splitting of L.

The special projection diagram of OBL*(%;k) 1s always oriented

so that Proj(t,) may meet m, =8D, postively at each point which

assures that a 1-bridge braid presentation ¢, UProj(t,) in V, has a

_13_



positive winding number. Figure 6 shows that four possible choices

. .. . )
of special projection diagrams of OBL (18 :7)
01 2 3 4 56 78 9 101112 1314151617 l12\n<]11121314151517
012 3 456 7 8 9 101112131415 16 17 01 6 7 8 9 101112131415 16 17
(a)
D1 2 3 4 56 7 8 9 101112 1314 151617 012 57391011121314151317
10 11 12 13 14 15 16-17 6 7 & 9 10 11 12 13 14 15 16 17

(d)

Figure6

We immediately  noticew.that figure 6(a) and 6(d) respectively
vield K(5,2,1) ‘and .K(13,8,3) for l-bridge presentations t¢,UProj(t,)
(cf. Figure 3). On the othér hand!we see that the 1-bridge braids
in—duced by figure (b) and (¢)-are isotopic to K(5,2,1) and K(13,8,3)

respectively. Considering the negatively swapped 1-bridge diagram

of OBL (15

g :7) we can obtain 1-bridge braids corresponding to

t,UProj(t,). Here we take the negative swapping which assures that

the oriented special projection diagrams carried by the swapping

yield 1-bridge braids with positive winding numbers.

_14_



5 013 8 3 16 11 6 1 14 9 4 17 12 7 2 15 10

5 0158 3 16 11 6 1 14 9 &4 17 12 7 2. 15 10

K(7.2,4) in L(18,11)

Figure7

In figure 7 we have the special projection diagram of Figure

6(a) in the 'swapped 1-bridge diagram of OBL+(1—58;7) which yields

K(7,2,4) for a“1-bridge presentation t,UProj(t,). Considering the
special projection diagrams. of Figure -6(b), 6(c) and 6(d) in the
swapped 1-bridge diagram, we have 1-bridge braids K(11,8,6),
K(7,2,4) and K(11,8,6) respectively.

For a genus one Heegaard splitting V UV, of a lens space

L(p,q), let C be the core of V, (i=1,2) and take g=I[C)] as a

generator of m,(L(p,q)), i.e., m (L(p,q)) =<glg” >. Then we have

_15_



Lemma 5.

For a special (1,1)-knot K with a 1-bridge diagram OBL*(%;k), k

represents the order of [K] in m,(L(p,q) =<glg" >, i.e., [K]=d".
Proof. Note that K admits a 1-bridge braid presentation t,UProj(t,)
in V, such that I[Proj(t,)NaD,/=k Thus [K]=g¢" because k

represents the winding number of K in V.

Although 1-bridge _braids arising from a special projection
diagram serve our purpose of constructing the “covering knot of a
special (1,1)-knot K, it is pointed out that we have more

projections of ¢, on F which induce l-bridge braid presentations of
K other than t,UProj(t,). Take a parallel copy 6 of 8D, on F so
that it may be disjoint from Proj(t,). Further we assume that both
Proj(t,) and § meet oD, at at each point in the same direction.
Then consider. components of Proj(tQ) and ¢ lying in p— rectangular
blocks in F—oaDUoD,: Nete that each bock .contains at most one
component of Proj(t,) and one component of 4.

Choosing a rectangular block which contains a component of Proj(tQ)
with one of its two endpoints and taking a band sum of Proj(tQ) and

6 along b for a band b in this block , we have another projection

t'y = Proj(t,)H,0 of t, disjoint from 8D,. Then a newly obtained
1-bridge presentation t,Ut’, of K in V, constitutes a 1-bridge braid
(eventhough t,UProj(t,) is a O-bridge braid). But it cannot lie in the
boundary of any meridian disk of V, because it meets 9D, at

more than p— times in the same direction.

_16_
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— 15 —> =Proilt,) Proj(tz)#hB K(5.2.1)
(a) (b) (c)

Figure&

Here we' illustrate the“above idea.with an example in figure &

which shows that a 1=bridge braid K(5,2,1) represents a core knot

. . . 1 |
in L(3,1). For a l-bridge diagram OBL*(g;l) which represents a

core knot in L(3,1), we have a special projection Proj(t,) of t,

which induces a O-bridge braid K(2,1,1) as a 1-bridge presentation
in V,. Then taking band 'sum of Proj(t,) and:§, a parallel copy of

m, =00, , we have a l=bridge braid K(5,2,1). Taking one more
band sum of another parallel copy ¢' of m, and the projection of ¢,

in figure 8(c), we have a 1-bridge braid K(8,3,2) representing the
same core knot ([13, TABLE 1]). Thus iterating the above band
sum operation with arbitray many parallel copies of m,, we can
have infinitely many 1-bridge braids occurring as 1-bridge
representation of the given core knot or special (1,1)-knot in

general.

_17_



REMARK 6.

We take this opportunity to briefly review on Wu's work [15] for
its comparison with ours. The first part of his work(Theorem 2.2
and Corollary 2.6) may be thought of as identification of the core
knots among (1,1)-knots in lens spaces.lt was also delt by
Hempel([8, Lemma 6.2]). Indeed he identified all core knots among

special (1,1)-knots;

A special (1,1)-knot K= OBL*(%;k) is a core knot in L(p,q) if and

only if the jumping number k is either 1 or min{gp—gq}.

And the second part of his work, which guides us to. understand re-
lationship between 1-bridge-braidsrand dual knots of“Berge knots,
amounts to identifying  1-bridge braids « which occur as 1-bridge

presentations of the core knots in lens spaces.

3. construction of the 18-fold covering knot for

p(_ 27377>

In [11, EXAMPLE 5.2], Saito showed that a special (1,1)-knot
K((18,5);7) is the dual knot of p(—2,3,7). Using this fact, we derive
the covering knot for p(—2,3,7).

_18_
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K(5.2.1)
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Figure9

With a view of the dual knot in figure 9 where we identify the

Heegaard solid torus V <of L(18,5) with the exterior of the unknot

O, we can confirm that it admits a S°— surgery slope. Indeed by
taking a surgery slope 7 for K(5,2,1) and observing that OUK(5,2,1)
is a pretzel link p(—2,3,8) which is also known as the Whitehead

. . 1 .
sister link, we. see that OUK(5,2,1)(?8,7)=S?’ through the Montesi-

nos trick as shown-in figure 10.,Perhaps for more elegant replace-

ment of the above geomeftric-argument,-note that 7 is a 8—reducing

slope of K(5,2,1) in D*<S'. And a new solid torus has a meridian
disk D with aD represented by a slope % in oE(0)(= aD?*x8Y), the
boundary torus of the exteror of the unknot O ([9, Lemma 3.3(ii)]).

Thus by taking slopes % in 9E(O) so that

p 25 (p25) p  25k+T7
AE, )= =1; —= keZ
(q 7> |detq7 | g Tk+2

_19_



we have infinitely many dual knots of Berge knots which admits
K(5,2,1) as 1-bridge presentations including the one in figure 9 (cf.
Table with the dual knots K represented by 5 in [2]) . Finally with
a view of K(5,2,1) in V,, we have the desired covering knot by
concatenating 18-copies of its braided part with 5 lefthand full
twists (of 5-strands). Note that a full twisting is commutable with
any braiding. Thus by concatenating 3—-copies of the braided part of
K(5,2,1) with a single lefthand full twist we have figure 11(a) which
is simplified to a braid in figure 11(b).. By concatenating 5-copies
of the braid in figure (b) with the remaining 3—copies of the braided
part of K(5,2,1), we get a braid in figure 11(c) closing of which
yields the desired covering knot in figure 11(d). The knot diagram
in figure 11(d) is managed to be inputed in SnapPeall4] which
shows that the covering knot has the volume 50.90619759, 18 times

the volume, of p(—2,3,7) and its symmetry group is Djg.
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