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ABSTRACT

Macroalgae are a valuable energy source that can be transformed
into numerous products most notably fuels and chemicals due to their high
content of carbohydrates, proteins, and vitamins. This study evaluates
optimal designs for biofuels and biochemicals production from brown
algae species Saccharina japonica via biochemical platform i.e. sugar
platform and volatile fatty acid platform. Furthermore, this study
investigates optimal designs for integrated biorefineries to compare their
economics and environmental performance with standalone biorefinery
designs. A superstructure-based process synthesis approach was used to
develop optimization models that can investigate optimal design based on
several objective functions such as net present value, yield, and CO;
emissions. The developed models provide clear guidance on multi-criteria
analysis consisting of technical (yields, operating conditions, and
bottlenecks), economical (capital costs, energy consumption, minimum
product selling price, maximum seaweed price), and environmental
aspects (carbon dioxide emissions, water footprint, and cradle to gate life
cycle assessment) of biorefinery.

Chapter one elaborates the motivation for this work. First,

biorefinery concepts are explained to present an overview of possible raw

viii



materials and conversion routes that can be used to produce biofuels and
biochemicals. Social- and technical-challenges of producing biofuels from
first- and second-generation biomass are then highlighted. The benefits of
macroalgae, particularly of Saccharina japonica as a biorefinery feedstock
are described. The main challenges of the seaweed-based biorefinery are
then defined and role of process system engineering to address the major
challenges and supporting the development of biorefinery are explained.
Finally, literature review in the context of process synthesis and design of
biorefinery is presented, therefore, highlighting literature gaps and the
scope of the PhD thesis.

Chapter two explains the methodology used for synthesis and
design of biorefinery. A superstructure-based optimization framework is
presented by elaborating (1) different steps of framework, (2) objectives of
each step, (3) input needed at each step to perform analysis, and (5) outputs
from each step. The applied framework can perform optimization under
deterministic and stochastic conditions. A strategy to quantify economic
risk is discussed and the mathematical formulation of the optimization
framework is outlined. Afterwards, techno-economic and environmental
assessments methodologies are explained. Finally, input data used for

techno-economic assessment including factors to determine total capital



investment and total cost of manufacturing, equipment cost, chemicals
costs, and utility costs are detailed.

Chapter three presents the development of a mixed-integer linear
programming model to provide decision support for investigating optimal
design for integrated biorefinery producing bioethanol and proteins
through the sugar platform. The developed superstructure and its
mathematical formulation are outlined. Two objective functions were
studied: maximization of yield and maximization of net present value.
Minimum ethanol selling price and maximum seaweed price were
determined to evaluate the economic viability of an optimal design. Sub-
optimal process designs were also investigated, and sensitivity analysis
was performed to identify major cost drivers for economic improvement.
Finally, potential goals and research targets were proposed based on the
results of sensitivity analysis for potential improvements to plant
economics.

Chapter four demonstrates strategies to utilize all emissions from
macroalgal biorefinery through sugar platform. Indeed, the presented
superstructure is an extension of the one described in the previous chapter.
The central idea of optimization in this chapter is (1) to improve overall

process economics and environmental profile by utilizing waste streams



through process integration and (2) to compare the process economics- and
environmental-indicators with standalone process design of biorefinery.
The optimization model was formulated as a mixed-integer nonlinear
programming model and solved for two different objective functions:
maximization of net present value and minimization of CO, emissions.
Process economic indicators were determined. A comprehensive
sensitivity analysis model followed by a Monte Carlo simulation model
was formulated to find the key drivers of biorefinery. Finally, economic
risk assessment was performed to quantify economic risk based on
minimum ethanol selling price.

Chapter five evaluates optimal designs, economics, and
environmental performance of the mixed acids and mixed alcohols
production through the volatile fatty acid platform. Seventeen designs
alternatives were used to develop a superstructure. Mixed-integer
nonlinear programming model was developed. Process integrations were
incorporated into the model to maximize the sustainability of biorefinery.
The effect of uncertainties on the process economics was investigated, and
future targets were proposed for potential improvements to plant

£conomics.

Xi



Chapter six presents a strategy of bio-succinic acid production
through optimization of a superstructure that contains multiple biomass
sources and technology alternatives. A mixed-integer linear programming
model was developed that performs optimization under deterministic and
stochastic conditions. Besides, the optimization model also performs
economic risk assessment and cradle-to-gate life cycle assessment. The
main reason for this chapter is to investigate optimal process design of bio-
succinic acid that can be integrated with standalone bio-refineries to
improve their economics. Besides, all three generations of biomass are
studied to find optimal process design using the best feedstock.

Chapter seven provides a summary of this work and concludes with
a comparison of all the process designs based on their economic and

environmental merit.

xii
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1 INTRODUCTION

In order to attain the global 1.5 °C target, the World needs to achieve
virtually zero greenhouse gas emissions by 2050 [1]. On the contrary, the
energy and material need of human society are increasing. Besides,
continued economic growth still leads to the development of activities that
are highly energy-intensive and mainly dependent on petroleum
derivatives. The International Energy Agency (IEA) has estimated that oil
consumption will continue to increase by at least 50% in coming years;
consequently, oil production from post-peak oil fields is expected to
decline from 70 million barrels/day in 2007 to 27.1 million barrels/day by
2030 [2-4]. Based on the current energy consumption trends, it is expected
that by 2030, carbon dioxide emissions (CEs) will increase by 25-90%
from 9.7 Gt/yr in 2014 [5,6]. This is an alarming situation.

Several alternate energy sources including biomass, wind energy, solar
energy, geothermal energy etc. can be utilized to produce green energy in
order to reduce the detrimental effects of producing energy from burning
fossil fuels. The development of biorefineries to produce biofuels and
biochemicals from renewable sources such as biomass is emerging as a
promising alternative to meet the growing energy and chemicals demand

while producing less CEs [7]. This is because the global biomass



production has been estimated around 150 billion t/yr [7]. Only a meager
amount (1.25%) of it is utilized for useful purposes (food, energy sectors),
the rest is wasted or dumped [7]. Researchers suggest that such huge
wastage be curtailed, and maximum useful utilization be made possible out
of it. Less expensive chemicals and biofuels can potentially be obtained
from biomass which is wasted every year. Therefore, in this study, the
development of biorefineries was considered to reduce the high
consumption of fossil fuel.

Despite the tremendous potential of biorefineries to meet the World’s
future energy and chemicals demands, to date, a limited number of
commercial-scale biorefineries exist [8]. This is mainly due to the high cost
of biofuels and biochemicals compared to conventional fuels and
petrochemicals, respectively. The implementation of biorefineries can be
possible only when renewable products are economically viable against
existing competitors. To solve this challenge, energy-efficient and
integrated biorefineries are crucially needed [9].

1.1 Biorefinery concept
A biorefinery is a facility that sustainably processes biomass to produce

marketable products and energy [10]. Figure 1 gives an overview of



possible raw materials that can be processed using different conversion
routes in a biorefinery to produce value-added products [10].

The raw materials that can be utilized as a feedstock in a biorefinery
include food crops and residues, food waste (bakery waste, waste cooking
oil, and so on), lignocellulosic biomass, municipal solid waste, and aquatic
biomass (microalgae and macroalgae) [10]. In general, these feedstocks
can be classified into four sectors: agriculture, forestry, industries, and
aquaculture [11].

Likewise, based on the conversion technologies the biorefinery concept
can be classified into two major platforms (1) biochemical and (2)

thermochemical [10].

1.1.1 Biochemical platform

This conversion platform consists of three conversion routes: sugar
(fermentation), volatile fatty acid (partial anaerobic digestion), and
methane (complete anaerobic digestion).

The sugar platform (SP) uses hexose and pentose sugars extracted or
converted from the carbohydrate part of biomass to mainly produce
bioethanol [12]. Depending on the biomass different pretreatment
technologies can be used to break down the structure of feedstock [13].

Biomasses that are rich in lignin (e.g., second-generation biomass) usually



require harsh pretreatment techniques such as acid thermal hydrolysis,
alkaline thermal hydrolysis, ammonia fiber explosion, hydrogen peroxide,
deacetylation, and steam explosion [14]. On the contrary, biomasses that
are lean in lignin (e.g., brown algae, which is third-generation biomass)
require moderate pretreatments such as hot water wash or simple milling
[15]. Enzymatic pretreatment is also a very common technique that can be
used to convert carbohydrates of biomass into mono sugars using enzymes
such as cellulase [12]. In general, a combination of thermochemical- and
biochemical-pretreatments are used to increase the overall conversion of
carbohydrates to simple sugars [12]. The former mainly converts
hemicellulose carbohydrates (xylan, galactan, arabinan, mannan, etc.) in
the feedstock to sugars while the later converts cellulose carbohydrates
(glucan, laminarian etc.) in the feedstock to sugars. Once the feed is
pretreated and simple sugars are produced, microorganisms are then used
to convert sugars into alcohols. The choice of microorganisms and
fermenter are extremely important parameters to achieve high titer, yield,
and productivity [16].

In the volatile fatty acid platform (VFAP), volatile fatty acids (VFAS)
consisting of acetic acid, propionic acid, and butyric acid are produced by

the partial anaerobic digestion of biomass using a mixed culture bacterial



ecosystem [17]. Anaerobic digestion consists of four stages: hydrolysis,
acidogenesis, acetogenesis, and methanogenesis. In the first stage, the
complex structure of biomass including carbohydrates, proteins, and lipids
are broken down by bacteria into simple sugars, amino acids, and fatty
acids, respectively. Acidogenic bacteria then convert the simple sugars into
volatile fatty acids, ammonia, carbon dioxide, and hydrogen sulfide. These
resulting volatile fatty acids are then digested by acetogens to produce
acetic acids along with additional ammonia, hydrogen, carbon dioxide, and
other acids including propionic acid and butyric acid. Finally,
methanogens convert products from the preceding stages into methane,
carbon dioxide, and water. Methanogenesis must be prevented to produce
VFAs as the final product of fermentation. This is accomplished using
inhibitors such as iodoform or bromoform [18]. This conversion route can
produce two types of products i.e. mixed acids or mixed alcohols [19]. The
choice of the digester (batch vs. continuous), temperature (mesophilic vs,
thermophilic), fermentation time, and solid loading (high vs. low) are
important parameters to achieve high product yield [20-23].

Unlike the VFAP, the methane platform considers the complete
anaerobic digestion of biomass to produce biogas, consisting of carbon

dioxide, water, and methane [24]. The composition of biogas depends upon



the type of digester, operating temperature, and digestion time [24]. Biogas
has many industrial and domestic applications including electricity
generation via fuel cell [25], steam and power generation via
turbogenerator [26], and as an alternative to natural gas after gas
purification [10].

1.1.2 Thermochemical platform

This platform mainly comprises of four types of processes: gasification,
pyrolysis, hydrothermal liquefaction, and direct combustion.

The process of gasification is a thermal decomposition of biomass at
relatively high temperatures (600°C-1000°C) and residence times of 1-30
s. Here, the biomass is converted into the gaseous phase of the product
called syngas, consisting mainly of hydrogen, carbon monoxide, carbon
dioxide, and methane. The heat supply method and the gasifying agent are
the main drivers affecting the syngas yield [27].

The main product from pyrolysis is bio-oil, carbon-rich solid (charcoal),
and non-condensable gasses similar to syngas. Pyrolysis is generally
achieved at temperature ranges of 300°C to 600°C (depending on the
feedstock) and atmospheric pressure in low or no oxygen environment to

avoid combustion [28]. The main objective of this conversion route is



maximizing the liquid phase product by optimizing parameters such as
reactor type and temperature, residence time, and mineral contents.

Unlike other thermochemical pathways (gasification and pyrolysis)
which need intense drying, hydrothermal liquefaction utilizes water as a
raw material for the conversion of biomass to liquid fuel under moderate
temperature and high pressure. In general, hydrothermal liquefaction
operates between a range of 250-350°C of temperature and operating
pressures from 10-20 MPa based on the feedstock [29]. The efficiency of
this conversion pathway significantly depends on operating temperature,
residence time, and feed to solvent ratio.

In the direct combustion pathway, the feedstock is oxidized to produce

heat and power.
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1.2 Macroalgae as a biorefinery feedstock

As shown in Figure 1, biorefinery can process all kind of biomass
including food crops, lignocellulosic, and/or aquatic biomass to produce
biofuels, bioenergy, and biochemicals. However, all biomasses are not
well-suited for large-scale biofuel production due to limited biomass
availability or ethical issues. For example, biofuel production from food
crops, which is 1% generation biomass, presents several social and
environmental challenges such as the land, irrigation water, fertilizers, and
most importantly market competition between first-generation biofuels
and food [30]. Likewise, biofuel production from lignocellulosic biomass,
which is 2™ generation biomass, offers a promising alternative of food vs
fuel debate. However, 2" generation feedstock poses technological
challenges due to high lignin content and structural complexity, which
require harsh pretreatment to break the structure before enzymatic
hydrolysis and sugar liberation [31,32].

Aquatic biomass such as macroalgae and microalgae do not carry most
of the aforementioned challenges and are thus promising candidates for
edible crops and non-edible biomass [33]. Macroalgae, or seaweed, offer
multiple advantages over terrestrial biomass including an extremely rapid

growth rate and a CO- sequestration efficiency of 6-8%, which is higher



than that of terrestrial biomass, at 1.8-2.2% [34]. The advantage of
seaweed for biofuel is that (1) it does not compete directly or indirectly for
land that could otherwise be used for food, (2) it does not require irrigation
water and fertilizers for cultivation, and (3) it improve the marine
environment by capturing carbon dioxide, and dissolved nutrients that may
otherwise cause eutrophication [35].

Macroalgae are phenotypically classified into brown, red, and green
algae. To data 9000 species of macroalgae are known: 1200 species of
green algae, 6000 species of red algae, and 2000 species of brown algae
[35]. Brown algae represent the largest seaweed source, with a yearly
production of 15.8 million wet tons in 2010, and can be used as an
important precursor due to its high quantity of carbohydrates, proteins, and
vitamins [36].

Unlike microalgae, macroalgae have low lipid content and are high in
carbohydrates. Therefore, biofuel production from seaweed relies on the
conversion of carbohydrates instead of lipids. The primary carbohydrates
produced by brown algae include laminarin, cellulose, fucoidan, alginic
acid, and mannitol [35]. The chemical composition of seaweed varies
highly depending upon the species, growth conditions, and harvesting

times [37]. Among brown alga species, Saccharina japonica (SJ) remained
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the primary research focus [38]. This focus is probably due to the high
carbohydrate content, lack of lignin, high levels bioactive compounds,
simple pretreatment, easy carbohydrates processing, low levels of sugar
degradation, and extensively available feedstock [39]. Global production
of SJ increased from 5.1 Mt in 2010 to 8.2 Mt in 2016 [40]. This indicates
SJ harvesting infrastructure is well developed and its market is growing
rapidly.

Despite several advantages of brown algae and growing global market,
most of the biorefinery concepts presented in Section 1.1, regarding this
biomass, are still under development or at the demonstration (pilot) scale.
Therefore, research and development efforts are required that should focus
on giving clearer guidance based on multi-criteria analysis (technical,
economic, and environmental). In a broader term, the objective of this PhD
work is to investigate optimal process design for biofuel and biochemical
production from brown algae—Saccharina japonica—and to evaluate its
economic potential, opportunities, and challenges.

1.3 General seaweed-to-fuel refinery

In a typical seaweed biorefinery, as shown in Figure 2, seaweed can be

processed using appropriate  processing route  (biochemical,

thermochemical, chemical, or combustion) to produce a range of products
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including biofuels (liquid, gaseous, and solids) and byproducts (dry

distiller solids (DDS), succinic acid (SA), and microalgae). It can be seen

that due to a large number of processing routes and products, the design of

seaweed biorefinery is a challenging task.

The main challenges include:

1)

2)

3)

4)

to find optimal processing route and operating conditions of a
biorefinery that is energy efficient, has a less environmental impact,
and at the same time has reasonable capital investment cost, which
is an important parameter from the point of the investors

to find optimal product and its production rate from the range of
products keeping in view the fluctuating price of products with the
price of petroleum

to find an optimal strategy for utilizing biorefinery waste streams
(carbon dioxide, wastewater, and unreacted solids) into value-
added chemicals to reduce the water- and carbon-footprint

to find a systematic way to analyze the impact of uncertainties on
feedstock, biorefinery structure, product selection, and process
economic indicators including net present value (NPV), minimum
product selling price (MPSP), total capital investment (TCI), and

total cost of manufacturing (TCOM).

12



These challenges can be addressed using the process design framework
that allows to systematically analyze all biorefinery concept to find

best route to reach the highest economic performance.

13
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1.4 Process design framework

Chemical process design is a complex and open problem that involves
many activities at different levels. In other words, it is a multi-scale and
multi-level decision-making problem that involves several activities such
as process creation, development of basic concepts, experimental studies,
the detailed design, etc. [41]. In general, the chemical process development
life cycle consists of five distinct stages: concept stage, feasibility stage,
development stage, manufacturing stage, and product introduction stage
[42]. The outputs of each stage are the inputs to the following stage. At
each stage, a decision is made to either (1) advance the design project to
the next stage, (2) retain the design project at the current stage until
pending critical issues are resolved, or (3) cancel the design project when
a need is no longer recognized or when roadblocks have been encountered
that render the project infeasible [43].

As the macroalgae based biorefinery is at its infancy, the decision-
making process at the early stage level (concept stage) needs to be
improved (1) to understand opportunities, challenges and limitations of
seaweed biorefinery and (2) to support large and complex biorefinery
design problems which consist of multi-disciplinary, limited, and uncertain

data. This need can be fulfilled by the support from process system
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engineering (PSE) which is one of the main research areas in chemical

process development.

1.5 Role of PSE in the context of biorefinery concepts: introduction
and classification

The main objective of PSE is to focus on how to design, integrate, and
manage complex systems [44]. To achieve this objective, computer-aided
tools—maodel-based tools and system engineering methods—are used that
are considered the major backbone of PSE [45]. The most notable
advantages of PSE include (1) study the behavior of the system without
building it, (2) accelerate the product or process design-development life
cycle, (3) save time, minimize human error, and get better designs, (4) help
to find an un-expected phenomenon, the behavior of the system, (5) can be
used for “what-if” scenarios, and (6) can be used to reduce the cost of
changes required during the operation changes, and so on [45,46].

There are two primary paradigms in PSE: analysis and synthesis [47].
The analysis problem assumes that the process flowsheet, the equipment
and operating conditions are known. The mathematical model pertaining
to a specific task is then used to determine the process indicators or
performance through simulation studies. Whereas in the synthesis problem

process flowsheet and operating conditions are unknown, optimization
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models and algorithms are then used to systematically determine the
optimal flowsheet and operating conditions by a search in the space of the
decision variables.

In process synthesis, there are two main methodologies—nheuristic
approach and mathematical programming approach—that a design
engineer can consider to find the optimal process flowsheet and its
operating condition [48]. The heuristic approach is based on the experience
of an engineer, where he or she uses heuristic rules to find changes in
flowsheet that may lead to an improved solution. The mathematical
programming is an optimization-based approach that finds optimal
flowsheet and its operating condition based on defined objective function
such as maximization of profit. The mathematical programming strategy
is divided into three steps (1) superstructure development (2) mathematical
formulation, and (3) optimization-problem solution [49]. The
superstructure development involves gathering all feedstocks, processing
units, and products that can be potentially selected in the final flowsheet to
perform a specific task. In addition, interconnections of different
feedstocks, processing units, and products are defined in this stage. In the
second step, the mathematical representation of superstructure is

formulated that include equations pertaining to processing units and their
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connectivity, logical constraints of processing and operating conditioning,
and objective function. The mathematical formulation usually requires
discrete variables to represent the choice of feedstock, processing units,
and/or products, with which the optimization model become a mixed-
integer linear programming (MILP) or mixed-integer non-linear
programming (MINLP). The former (later) is the case when decision
variables are liner (non-linear). Finally, the last step involves the extraction
of an optimal solution by solving the formulated optimization problem.

Each of heuristic and mathematical programming methods has their
own merits and demerits when compared to each other. Therefore,
integrating these two methods has recently been developed and has
resulted in the so-called hybrid method [50]. The main objective of this
methodology is developing a systematic way to get optimal solutions by
combining the merits of both the heuristic and mathematical programming
approaches.
1.6 PSE contributions on process synthesis and design of a

biorefinery
This section briefly overviews the advances in the area of PSE in the

context of the biorefinery concepts.
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Karuppiah et al. developed an MINLP model to optimize the topology
and energy for the design of corn-based ethanol plants [51]. The
superstructure was developed and solved in two stages. In the first stage,
the optimal topology of biorefinery was determined by minimizing the
total energy of the plant, while in the second stage heat integration was
performed, where 40% reduction in steam consumption was achieved.
Based on these results, Ahmetovi¢ et al. developed an MINLP model to
reduce water consumption for the corn-based ethanol plants [52]. Voll and
Marquardt et al. introduced a reaction flux network analysis as a novel and
efficient tool for the systematic identification and screening of reaction
pathways in the context of biorefinery using biochemical platform [53].
Zondervan et al. used a biochemical platform to develop superstructure
[54]. The resulting formulation of the superstructure was an MINLP model
that determines the optimal structure of biorefinery, which can produce
multi-product including ethanol, butanol, succinic acid, gasoline and
gasohol. Baliban et. al investigated the thermochemical conversion of
biomass to liquid fuels using global optimization (branch-and-bound)
algorithm to mathematically guarantee the solution obtained from an
MINLP model [55]. The proposed superstructure and its mathematical

model can optimize the topology and operating conditions of biorefinery,
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and can simultaneously perform heat, power, and water integration. Kim
et al. developed an optimization framework by combining processing
alternatives from both biochemical and thermochemical platform to
identify the best strategy for converting biomass to fuel [56]. Chen et al.
investigated the optimal design and operation of flexible energy
polygeneration systems to produce power, liquid fuels, and chemicals from
coal and biomass [57]. The problem was solved to global optimality by a
tailored duality- based decomposition method. Rizwan et al. proposed a
two-stage stochastic optimization-based framework to determine the
optimal topology and product portfolio for a microalgae-based biorefinery
under techno-economic uncertainty [58]. Gong et al. developed models
and algorithms for simultaneous technological integration, economic
viability and environmental impact (global warming potential) of algal
biorefinery process [59]. The tailored branch-and-refine algorithm based
on successive piecewise linear approximation was used to globally
optimize the resulting nonconvex solution. Posada et al. applied a quick
screening method called early-stage sustainability assessment to identify
the most promising bioethanol derivatives resulting from catalytic
conversion [60]. The early-stage sustainability assessment consists of 5

main design criteria (economic, environmental impact from raw material
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and process, safety and hazard) which are the important factors for
designing a sustainable biorefinery. Gebreslassie et al. [61], and Zhang et
al. [62] proposed multiobjective MINLP models for superstructure
optimization of a hydrocarbon biorefinery via gasification and pyrolysis
pathways.

The aforementioned developments in PSE are great contributions in
their own right. But limited work has been done to systematically find the
optimal process design for seaweed-based biorefinery. Besides, till to date,
only a few biorefineries exist, more specifically seaweed biorefineries are
not available at commercial scale. According to Kokossis et al., unless
system engineers take breakthrough initiatives to develop advance tools
and methodologies, that can simultaneously perform multi-level and multi-
stage analysis, the concept of biorefinery will merely remain in scientific
papers [63].

1.7 Scope of this study

Based on the presented arguments, the main objective of this PhD study
is process synthesis of macroalgal biorefinery using superstructure-based
optimization, where both the structure as well as the operating conditions
of the biorefinery are determined by optimization. Based on the

superstructures, optimization models were developed that can
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systematically analyze biochemical pathways—sugar platform and
volatile fatty acid platform—to find optimal processing pathways for
biofuel and biochemical production from brown algae, Saccharina
japonica. To determine the optimal biorefinery configuration we have
applied the methodology that systematically (1) scan all alternatives, (2)
perform ranking of the promising biorefinery configurations, (3) consider
uncertainties to perform assessments under techno-economic and
environmental uncertainties, (4) perform a risk assessment to present
robust decision. The developed models can provide multicriteria analysis
decision making support in a technical, economic, and environmental

perspective.
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2 METHODOLOGY

2.1 A systematic framework for sustainable biorefinery design

The overall framework used in this work is divided into five steps as
shown in Figure 3. The framework uses superstructure-based optimization
strategy to find optimal configurations of biorefinery under deterministic
and stochastic conditions.
2.1.1 Problem statement definition

As shown in Figure 3, the framework starts with the problem statement
definition, where the scope of the study is defined by selecting appropriate
objective function(s) related to economic metrics (NPV, MPSP etc.),
process performance (yield, resource utilization etc.), and life cycle

assessment (global warming potential, human toxicity potential etc.).
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Inputs Step 1: Define problem statement Outputs
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=p: find optimal processing route
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CAPEX = Capital expenditure; OPEX = Operating expenditure; TRL = technology readiness level; EDC = Environmental damage factor; NPV = Net
present value; MSP = Minimum product selling price; GWP =Global warming potential

Figure 3. A procedure to determine sustainable biorefinery design.
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2.1.2  Superstructure development and mathematical formulation

In this step, the superstructure is developed based on the literature
review. During the literature review, data consisting of yields, capital
costs, utility costs, chemical costs, feedstock availability, technological
limitations, and environment damage factors etc. are also collected, which
is later used by optimization model to find an optimal flowsheet from the
superstructure. As shown in Figure 4, a superstructure is a representation
of all processing alternatives including feedstocks, conversion
technologies, and product portfolio as well as their interconnections that
can be selected in the final flowsheet [48].

In the superstructure, each alternative is represented by two indices of
which the first refers to the alternative, and the second refers to the
processing stage [58]. For example, “1, 1” refers to alternative 1 in
processing stage 1. White blocks are used in the superstructure to represent
certain processing stages that do not involve topology (structural)

decisions.
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Once the superstructure is developed then the mathematical model of
the superstructure is formulated using mixed-integer linear or non-linear

programming approach that yields a synthesis problem of the form [64]

maxz = f(x,y), (1)
s.t. g(x,y) =0, (2)
h(x,y) =0, ©)
<x < x'P, (4)

x € X,y-e (05" (5)

where z is the objective function, x is the vector of continuous variables
defined by their upper and lower bounds in a continuous feasible region X,
y is the vector of discrete variables. The continuous variables x are related
with flowrates, temperature, pressure, composition, equipment sizes, and
environment (e.g. global warming potential), while discrete variables y are
related to the existence of feedstocks, conversion technologies, and
products that are postulated for the optimal flowsheet in the superstructure
[65]. The inequality and equality constraints can be obtained from the
superstructure to represent mass balances, energy balances, design
equations, design specifications, total capital cost constraints, total

manufacturing cost constraints, environmental constraints, physical
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constraints, or logical conditions that should be satisfied in the flowsheet
to exclude infeasible networks from the search space [64].
The single-point sensitivity analysis to investigate the main drivers of
biorefinery design can be defined by [66]:
Omin = (1 —%variation) X Opean, (6)
Omax = (1 + %variation) X Opean, (7
where 6 is the vector of uncertain parameters, 0,,;, and 6,,,, are the
maximum and minimum values of parameters due to uncertainty in data.
These variations can be either the result of market forces (changing raw
material costs, utility costs, or products demand and price), natural
occurrences (variation in feedstock composition, culture crash in
fermentation, or equipment failures) or physical properties
(thermodynamic data or Kinetic parameters) which are measured with
finite accuracy equipment. Besides, models and tools that are used to
support decision making of product-process development may not be
accurate and hence additional uncertainty has to be considered [67]. The
range (i.e. maximum and minimum values) of variations in parameters can
be obtained from a literature review, process experts, or market analysis.
However, some of the data used in process synthesis problems are usually

limited or not available in the literature. In such cases, uncertainty in
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parameters can be classified into low, medium, and high scenarios, which
correspond to 5%, 25%, and 50% variations around the mean value,
respectively [58,66,68]. In other words, data with high accuracy can be
classified as a parameter of low uncertainty, inconsistent data as a
parameter of medium uncertainty, and highly inconsistent data as a
parameter of high uncertainty [58,66,68].

Finally, a general representation of the design problem under

uncertainty is of the following form [69]:

max z = Eg[f (x,y, 0)], (8)
s.t.g(x,y,0) =0, ©
h(x,y,0) = 0, (10)

xiC < (11)

x €X, (12)

y € {0, 1}, (13)

6 € {6'°,9VP}™ (14)

where 8 is the vector of uncertain parameters which is assumed to follow
a uniform distribution, Eg(f) is the expected value of the objective
function over the 8 space, and g(x,y,0) and h(x,y,8) =0 are the
vectors of model equality and inequality constraints. The calculation of the

expected value of the objective function requires the evaluation of
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multidisciplinary integral, which can be approximated using the Sample

Average Approximation technique [70] as follows:

Eg[f(x,y, 9)]~ {svglps X f(x'y' S)’ (15)
s.t. gs(x,y,s) =0, (16)
hs(x,y,5) =0, (17)

where NS is the number of samples in the sample matrix S and P; the
probability of realization of sample s. It is also important to mention that
in stochastic optimization, the number of scenarios used to approximate
expected value of the decision variables (process indicators) and frequency
of the occurrence of resulting optimal topology is a critical factor.
Generally, the average approximation of decision variables become more
accurate as the number of scenarios increased. However, increasing the
number of scenarios also increase the complexity of the optimization
problem due to the increased size of the synthesis problem. For a
reasonable compromise, 200-500 samples are considered appropriate for
synthesis problems [71].

The general optimization formulation presented by Egs. 1-17 can
simultaneously perform optimization of biorefinery topology and its
operating conditions. The mathematical formulation can be written and

solved using appropriate software such as General Algebraic modelling
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systems (GAMS) by selecting suitable solver. The most well-known and
efficient solvers for solving MILP model include CPLEX, while for
MINLP model include DICOPT if a local solution is desired, alternatively,

BARON or LINDOGLOBAL can be used for a global optimal solution.

2.1.3 Deterministic analysis

Step 3 deals with the deterministic analysis, where optimal processing
pathway(s) of the biorefinery along with process indicators (economics
and environmental) are determined by (Egs. 1-5) maximization of the
objective function z with nominal parameter values while disregarding the
uncertainties in them. The ranking of optimal solutions can also be
performed by systematically screening alternative solutions using an

integer cut constraint algorithm, which can be expressed as [72]:
Spear(Ves), = Zpesn(Vies), SIB™ =1 n =1,...,N, (18)
where P are the subsets of the integer variables y, ;, A" = {p|(yxj)p = 1}, B"

= {p|(y«;)p = 0}, n=1,..,N. The integer cut constraint algorithm avoids the
duplication of already found solutions and allows to systematically

evaluate various pathways in the superstructure.

2.1.4 Stochastic analysis
In this stage, stochastic analysis (robust optimization) is performed

where single-point sensitivity analysis is performed to first identify the
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critical parameters to the biorefinery design using Eqs. 6-7. The critical
parameters that are identified in the single-point sensitive analysis are then
used in stochastic optimization (Egs. 15-17) to investigate the impact of
uncertainties on biorefinery topology and process indicators. Unlike
single-point sensitivity analysis, where only one parameter is changed at a
time while other parameter remained fixed around their mean values, in
stochastic optimization, all uncertain parameters are changed
simultaneously in their predefined range using suitable sampling (e.g.
Latin hypercube) method [73]. Once sampling method is selected, then the
deterministic model (Egs. 1-5) is solved repeatedly for each scenario
generated by the selected sampling method to calculate the average
expected value of decision variables including the frequency of the
occurrence of resulting optimal topology. Here, a topology that maximally
selected and remained economically viable is considered robust design.
Thus, results from this step provide technical insights about the optimal
configurations of the biorefinery from the perspective of both process

indicators and topology robustness under uncertainty.

2.1.5 Risk assessment
Finally, in step 5, risk assessment is performed where economic risk is

quantified based on the minimum product selling price. To perform this
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analysis, the optimal solutions obtained from the previous step are
analyzed as a risk. Here, we analyzed the probability of obtaining a
minimum product selling price that is higher than the targeted market
price. In other words, the risk assessment will reflect the probability of the
biorefinery being economically non-viable, which corresponds to
determining the minimum product price that is higher than the market
price.
2.2 Techno-economic assessment methodology

The primary goal of the techno-economic assessment (TEA) model is
to evaluate the profitability of biorefinery designs by estimating economic
indicators such as NPV, MPSP, and maximum feedstock purchasing price.
A 20-year discounted cash flow rate of return analysis model was
developed to estimate MPSP and maximum feedstock purchasing price
that makes the NPV of the project equal to zero. The assumptions in the
TEA model include a discount rate of 10%, a straight-line depreciation
method over 7 years, a tax rate of 30%, a 2-year construction time, a plant
startup during the 3" year, financing equity of 100%, and 8000 operating
hours per year.

The TCI include total direct and indirect costs, land costs, and working

capital. Note that total direct and indirect costs are subdivided into many
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costs which are reported in Table 1, and the sum of these costs correspond
to fixed capital investment. A factor methodology is used in which suitable
multipliers reported in Table 1 are applied to the installed costs of
equipment to estimate total capital investment [12]. Whereas, in this study,
the installed costs are scaled (using Eqg. 19) to new capacity from vendor
quoted equipment costs and capacity using installing factor and scaling
factors that are equipment specific. Later, the installed costs of equipment
are updated to the year of analysis i.e. 2019-dollar value using the
Chemical Engineering Plant Cost Index in Eqg. 20. Table 2 provides a
summary of the main equipment costs along with cost year, scaling

exponent, and installation factors.

Cu= () (Gna) (2) (19)

where Chn, is the cost of the baseline equipment item n with the baseline
capacity Qno. Cnis the cost of the equipment item n with the new/real
capacity Qn, an is the scaling exponent for the kind of unit n, and I, is the

installation factor of the equipment item n.

uc, = C, (%) (20)

CEPClyef
where UC, is the updated cost of the equipment in the year of interest and
CEPCl2019 and CEPClyer are the index values in the year 2019 and the

baseline year, respectively.
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Total manufacturing costs consist of direct (variable), fixed, and general
manufacturing costs. Direct manufacturing costs include raw material
costs and utility costs. Fixed manufacturing costs include operating labor
costs, maintenance and repairs, depreciation, local taxes, insurance, and
plant overhead. General costs are related to administration and research
and development costs. A factor methodology proposed by Turton et al.
[74] is used (Eqg. 21) to calculate total manufacturing cost (T¢op)-

Tecom = frlor + f2Fer + f3(Cyr + Cru + Cwr), (21)

where f1, f2, and f3 are multipliers, C, is the cost of operating labor,
F¢; is fixed capital investment, Cy is the cost of utility, Cgy, is the cost of
raw material, and Cy,; IS the cost of wastewater treatment. Cost of utility
and raw materials such as biomass, process water, enzymes, and chemicals
are estimated by mass and energy balance constraints. Cost of labor is
calculated as 1.6% of total installed costs. The unit price of chemicals,
utility and wastewater treatment are summarized in Table 3 and Table 4.

The non-discounted cash flow, NCE, for the year n is given as:
NCE, = —1,T¢; + a,W¢e + (Rev — Teom)(1 — tax) + D - tax, (22)

where 7;, is the ratio of total capital investment consumed during year n, D
is depreciation, W, is working capital, and Rev is the process revenues
obtained from the sale of products. an is a parameter equal to -1 during the

year 3, 1 during the last year of the project, and zero for all other years.
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The process revenues (Rev) obtained from the sale of products are
given by:
Rev = 2:ilprp, (23)
where np is the number of products, fp is the mass flow rate of product
p, and Py is the wholesale price of product p.

The NPV is defined as:

NCF,,
NPV = 2ot

(24)
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Table 1. Methodology to determine total capital investment and total cost
of manufacturing.

Parameters Value Ref
X1, Total installed cost 100% [12]
X2, Warehouse 4% of Inside battery [12]
limits (ISBL)
X3, Site development 9% of ISBL [12]
X4, Additional piping 5% of ISBL [12]
Total direct costs (TDC) L [12]
y1, Prorateable costs 10% of TDC [12]
Y2, Field expenses 10% of TDC [12]
y3, Home office & construction fee 20% of TDC [12]
Y4, Project contingency 10% of TDC [12]
ys, Other costs (start-up, permits, etc.) 10% of TDC [12]
Total indirect costs (TIDC) > Vi [12]
Fixed capital investment (FCI) TDC + TIDC [12]
Land 6% of installed costs [12]
Working capital 5% of FCI [12]
Total capital investment (TCI) FCI + Land + Working [12]
capital
fl 2.2 times of the cost of [74]
labor
2 1.1 times of FCI [74]
3 1.05 times of the cost of [74]

utility and raw material

Ref = Reference

37



Table 2. Equipment cost quoted by vendors and literature.

Equipment uUsD n IF  Year Ref
Pump 22500 0.80 230 2009 [12]
Flash 511,000 0.70 2.00 2009  [12]
Mechanical separator 3,294,700 0.80 1.70 2010 [12]
Condenser 34,000 0.70 2.20 2009 [12]
Heater 92,000 0.70 2.20 2010 [12]
Cooler 85,000 0.70 2.20 2010 [12]
Acid thermal hydrolysis reactor 19’832’40 0.60 1.50 2009 [12]
Acid thermal hydrolysis reactor 24,600,00 75
after deacetylat>i/on Y 0 0.60 150 2013 7o)
Alkaline hydrolysis reactor 614,000 0.70 2.20 2018 [74]
Conditioning vessel 236,000 0.70 2.00 2009 [12]
Hot water wash reactor 3,840,000 0.70 2.00 2009 [12]
Saccharification reactor 3,840,000 0.70 2.00 2009 [12]
Belt filter press 3,294,700 0.80 1.70 2010 [12]
Succinic acid fermenter 1,611,100 1.00 1.45 2007 [76]
Ethanol fermenter 10’138’00 1.00 150 2009 [12]
Deacetylation vessel 1 780,000 0.70 1.70 2013 [75]
Deacetylation vessel 2 110,000 0.80 1.70 2013 [75]
Micro- and nano- filtration 1000/m2 1.00 1.00 - [33]
Centrifuge 170,000 1.00 1.45 1990 [74]
Evaporator 3,801,095 0.60 1.00 2010 [12]
Vacuum distillation 511,000 0.70 2.00 2009 [12]
Activate carbon vessel 614,000 0.70 1.00 2018 [74]
Acidification vessel 614,000 0.70 1.00 2018 [74]
Extraction column 511,000 0.70 2.00 2009 [12]
Back extraction column 511,000 0.70 2.00 2009 [12]
lon exchange column 5,250,000 0.90 1.80 2014 [77]
Electrodialysis 1,410,000 0.70 1.00 1993 [78]
Water splitting electrodialysis 1,410,000 0.70 1.00 1993 [78]
Vacuum rotary filters 671,000 0.65 1.50 2014 [79]
Crystallizer 428,200 0.67 2.00 2014 [79]
Reactive crystallizer 428,200 0.67 2.00 2014 [79]
Thermal cracker 241,400 0.70 150 2011 [79]
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Solvent purification vessel
Dryer
Washer

Beer and rectification column
Rectification column condenser

Open ponds

Photobioreactors
Inoculum system
Covered pond

Open lined pond

Lining for covered inoculum pond
Air supported greenhouse for

covered inoculum ponds

Lining for open inoculum pond

CO; piping

Storage tank immersion
Trunk line

Branch line

Within plot piping
Makeup delivery section
Primary settler

Hollow filter membranes

Centrifuge for dewatering
microalgae

Membrane

Extraction column
Stripping column
Decanter

Hydrogenation reactor
Molecular sieves

614,000
10,500,00
0
614,000
3,407,000
487,000
158,506,9
10
109,000
18.22/m2
233,000
87,000
3,097,827

3/ft?

3,097,827
1,400,800
70,500
1,661,900
912,300
2,210,000
5,421,935
1,715,000
12,864,00
0
560,000

1,000
1,210,000
114,000
569,000
2,026,515
901,362

0.70
0.60

0.70
0.60
0.60

1.00

1.00
1.00
1.00
1.00
1.00

1.00

1.00
1.25
1.76
1.76
1.76
1.00
1.37
1.00
1.00

1.00

0.60
0.60
0.56
0.70

1.00
1.00

1.00

2.40
2.80
1.00

1.00
1.00
1.00
1.00
1.00

1.00

1.00
0.60
1.00
1.00
1.00
1.00
1.00
1.00

0.75

1.00

5.00
3.00
2.00
2.47
2.47

2018
1990

2018
2009
2010

2011

2011
2011
2011
2011
2014

2014

2014
2014
2014
2014
2014
2014
2014
2014

2014

2013

2010
2012
2018
2015
2002
1998

[74]
[80]

[74]
[12]

[81]

[81]
[81]
[81]
[81]
[81]
[81]

[81]
[81]
[81]
[81]
[81]
[81]
[81]
[81]
[81]

[81]

[33]
[33]
[33]
[33]
[33]
[33]

n = scaling exponent
IF = Installation factor
Ref = Reference
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Table 3. The unit price of chemicals.

Chemicals Price (USD/t) Year
Corn stover [82] 80 2004
S. japonica [83] 68 2008
Steam [74] 12.68 2013
Glucose [84] 988 2019
Glycerol [85,86] 750 2011
Acid [12] 87.78 2007
Ammonia [75] 550 2011
Enzymes [87] 5000 2016
Succinic acid [88] 2800 2019
Carbon dioxide [86] 30 2010
Sodium hydroxide [12] 149.16 2007
Magnesium carbonate [89] 480 2015
Magnesium hydroxide [86] 270 2001
Sodium carbonate [90] 300 2014
Activated carbon [91] 1300 1999
Octanol [87] 5000 2016
Tri-octylamine 1000 -
Tri-methyl amine 1000 -
Methanol [86] 547 2011
Ammonium bisulfate [86] 260 2011
Phosphoric acid [86] 420 2011
Dry distiller solids [84] 70 2004
Fresh water [74] 0.22 2013
Hydrogen [92] 1600 2011
Corn steep liquor [92] 12 2011
Enzyme nutrients [92] 1007 2011
Ethanol [93] 610 2017
Microalgae [94] 1000 2008




Table 4. Cost of utility and wastewater treatment.

Utility Price Year
Electricity [95] 0.07 USD/kWh 2019
Steam [95] 6.13 USD/GJ 2016
Cooling water [17] 0.28 USD/GJ 2015
Chilled water [96] 5 USD/GJ 2009
Wastewater [96] 0.041 USD/m?® 2009
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2.3 Environmental assessment methodology

To evaluate environmental impact at the early-stage design we have
developed a model to calculate the life cycle profile of biorefinery from
feedstock extraction, transportation, processing, and disposal. The scope
of environmental assessment model is cradle-to-gate that takes into
account emissions produced from (1) raw material extraction and
transportation to biorefinery (2) chemical used in different stages of
processing/biorefinery (3) heat and power consumption in biorefinery, and
(4) byproducts and waste released to environment. Therefore, in this study,
the main goal of life cycle assessment is to identify process hotspots and
to compare the environmental impact of different topologies in order to
evaluate the main driver affecting the environmental profile and
sustainability.

The inventory data or characterization factors required to perform life
cycle assessment was taken from SimaPro V8.2.3 software using CML-1A
baseline VV3.03 characterization method. Eleven environmental indicators
are considered in the present model: abiotic fossil fuel depletion potential
(ADFF), acidification potential (AP), abiotic depletion potential (ADP),
which is relative to the extraction minerals, eutrophication potential (EP),

global warming potential 100 years (GWP), ozone depletion potential
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(ODP), photochemical oxidation potential (POCP), terrestrial ecotoxicity
potential (TEP), marine aquatic ecotoxicity potential (MAETP),
freshwater aquatic ecotoxicity potential (FWAETP), and human toxicity
potential (HTP). One kg product was considered as a functional unit to

compare the life cycle profile of different biorefinery configuration.
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3 PROCESS SYNTHESIS OF SUGAR PLATFORM: PART 1

This chapter is modified version of a research article which has been
published in Energy as Rofice Dickson, Jun-Hyung Ryu, and J. Jay Liu
(2018), “Optimal plant design for integrated biorefinery producing
bioethanol and protein from Saccharina japonica: A superstructure-based

approach.” 164(1), 1257-1270, doi:10.1016/j.energy.2018.09.007.
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3.1 Introduction

The demand for biofuels is rising rapidly due to increased
environmental concerns, finite fossil fuel reserves, and fluctuating
petroleum prices [97]. Biofuels produce less carbon dioxide, and their
application as a transport fuel has the potential to reduce atmospheric
carbon dioxide levels [98]. Macroalgae, namely seaweed, are a promising
biofuel feedstock owing to their fast growth and high carbohydrate content
as well as low lignin levels.

Although macroalgae based biofuels are quite promising, their
commercial production is currently limited due to the high cost of seaweed
[83]. This challenge can be addressed by utilizing all of the components of
seaweed, not merely carbohydrates. This can be achieved with a broad
concept of biorefinery where carbohydrates can be processed to produce
bioethanol while solid residue from the fermenter can be utilized to
produce other products such as animal feed, fertilizers, and chemicals [99].
The residual solids obtained from the anaerobic digestion of brown algae
are rich in protein, which can comprise as much as 50% of the residuals
[100]. Tompkins has shown that the protein value of such solids could be
similar to distillers’ dried grain with soluble, the protein-rich byproduct of

corn fermentation [101]. Similar evidence on the high protein value of
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these solid residues supports its potential as a functional food [102-104].
Recently, Hou et al. have shown that the protein concentration in the solid
residues collected after brown algae fermentation is 2-3 orders magnitude
greater than those present in raw brown algae. They further established that
the amino acid distribution in these residues is not changed [105].

Due to the aforementioned unique chemical composition of brown
algae, carbohydrates in brown algae require moderate processing
conditions such as low temperature and pressure [106]. This is beneficial
for the recovery and extraction of sensitive bioactive components, such as
vitamins, proteins, and antioxidants, from the solid residues of
fermentation. Furthermore, the high demand for functional food and cheap
protein products indicated the need for an integrated bioethanol and protein
production biorefinery to meet these requirements.

The rest of the chapter is constructed as follows: The optimization of
the superstructure is formulated as an MINLP problem. To obtain the
global optimal solution, separable programming was used to approximate
the MINLP problem to equivalent MILP problem. The maximum seaweed
price (MSP), minimum dried distilled solid price (MDDS) and minimum
ethanol selling price (MESP) were also determined. A comprehensive

sensitivity analysis was conducted to identify influential model parameters
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with an impact on the overall economics, thus suggesting where to focus

for further improvements.
3.2 Methodology

3.2.1 Problem statement

The main objective of the optimization problem is to decide how
bioethanol and dry distiller solids should be produced from SJ in the most
economically way. To achieve the targets, a superstructure-based
optimization model was developed that can systematically find the best

strategy to produce desired products.

3.2.2 Superstructure development and process optimization

A superstructure shown in Figure 5 is developed and optimized to find
integrated biorefinery design producing bioethanol and dry distiller solids.

There are five different sections in superstructure, (1) pretreatment of
biomass; (2) saccharification and fermentation; (3) production of enzymes;
(4) purification of ethanol; and (5) processing of unreacted solids into
useful product by centrifuge, protein recovery, and drying. For each
section, a number of design alternatives are modeled to carry out the
respective task. For instance, there are two different options for feed
pretreatment. Feed can either be pretreated with a traditional acid

pretreatment route or treated with a hot water wash method. Likewise,
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there are two different technologies for separating solids and liquids
coming out of the fermenter. Solid purification can be done before the beer
column, in which case centrifugation (separation) can be performed at the
outlet of fermenter. Alternatively, solid separation can be implemented
after the beer column. Solids loading rate to beer column differs between
separation routes. In the former route, solid loading to beer column is
lower, while in the latter solid loading to the beer column is higher. There
are two different options for obtaining enzymes for saccharification and
fermentation. Enzymes can be manufactured onsite or they can be
purchased. In the former case, capital and manufacturing costs are
incurred, whereas in the latter case only purchase cost of enzyme will
incur.

With reference to superstructure configuration, if a separation of solids
and liquids take place before stripping column, then flows of stream from
spl2 to M3 and spl3 to centrfiguge2 are eliminated. In the reverse scenario,
when separation of solids and liquids takes place after stripping column,
flows spl2 to centrifugel and spl3 to c5 do not occur. Disjunctions are used
to model these two alternatives and are shown in Section 3.2.4 [107].

Colored blocks shown in the superstructure were used for the selection

of option k from stage j (conditional task). Here binary variables and
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conditional constraints with disjunctions are used to determine the optimal
processing pathways [48]. These are the primary decision variables for the
selection of optimal configuration. For example, spl1 divides the incoming
stream into two streams. They go to their respective technology and are
analyzed based on the objective function. There is a restriction on spl1 that
only one processing stage can be selected among various alternatives.
Although M1 can take multiple inputs from respective technologies and
give single output. However, due to restrictions on spll to select only one
alternative, M1 can only have one optimal input from the different
technologies. The optimal input is based purely on the merit of the
objective function.

The chemical composition of the SJ species is given in Table 5 and
used in this study as the input for feed in simulations. Experimental data
regarding the process stage and main operating conditions for the modeling
of each stage are summarized in Table 6.

3.2.3 Nomenclature of superstructure

Nomenclature for all alternatives in the superstructure is performed

according to the methodology presented in Section 2.1.2 and is provided

in Table 7.

49



Water
Dry '

Feed
- ca
5
>0
@9
a
3

To enzymatic
& SSF reactor

Enzyme Purchase

On Site Enzyme
Production

Acid treatment
@ s

[=
o

Cond1 HWW

T
I="|]
Dryerl Centrifugel

=—LJk

Stripper

By-
Product
Y

Cc2

H,0

Figure 5. Superstructure of an integrated biorefinery.

Rectifier

HX4

Pervaporating

Conditional Task

o,

System



Table 5. Chemical composition of the brown algae species Saccharina
japonica [35].

Proximate analysis Dry basis, % wi/w

Ash 26
Volatile solids 74
Proteins 12
Lipids 2
Mannitol 12
Laminarin 14
Alginate 23
Cellulose 6
Fucoidan 5
Components Wet basis, % wi/w
Water 88
Total Solids 12
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Table 6. Operating conditions for the process stage employed in
simulation.

Process stage Operating Reference
Condition
Acid Pretreatment 0.5 hr 120 °C [12]
Hot water wash 85°C [108] [109]
pretreatment 0.5 hr
Enzymatic 48 °C [110]
saccharification 64 hr
Fermentation 64 hr 30°C [111]
Acid loading 18 mg/g dry [12]
biomass
Cellulase loading 20 mg protein /g [12]
(Laminarin + cellulose)
Corn steep liquor in 0.225 wt% [12]
fermentation reactors
Diammonium phosphate 0.33g/L [12]
level in fermentation fermentation broth
reactors (whole slurry)
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Table 7. Nomenclature of superstructure.

Nomenclature Description Reference
1,1 Acid route for feed pretreatment [12]
2,1 Hot water wash route for feed [15]
pretreatment

1,2 Solid separation before stripping [51]
column

2,2 Solid separation after stripping [112]
column

1,3 In situ enzyme production [12]

2,3 Purchase of enzymes [92]
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3.2.4 Superstructure mathematical modeling
Numerical representation of given superstructure contains mass and
energy balance constraints, capital and operating cost constraints, and an
objective function.
3.2.4.1 Mass balance constraints
Mass balance at each processing stage must be satisfied. Linear
modeling is performed for mass balance constraints. The balance equation
for mixers, pumps, and heat exchangers is as follows:
FP¥t = Yok Ffviel, (25)
where Ff* is the component i mass flow rate of the inlet stream k, F2**
is the component i mass flow rate of the outlet stream, and n;, is the number
of streams for any particular stage.
The amount of solids at any stage is controlled by the following
constraint:
F“ < Sk Ffaviel, vjel, (26)
where Fj"”t is the mass flow rate of component j in the outlet stream
and a; is the mass fraction of component j in the outlet stream.
Reactors in which reactant j is converted to product i are defined by:

Fout = F"on,  + M Vi€l vj€l, 27)

54



where Fji" is the reactant j inlet flow rate and ), ; is the parameter and
yield of product j from reactant i.
Splitters are used for the selection of option k from stage j and modeled
by the following constraints:
FPut = Yok Ffviel, (28)
and YR FF < v UBYRE FEViEL Ve (29)
where y, ; is the binary variable for the selection of option k from stage
j, UB is the upper bound. The restriction for the selection on only one
alternative is modeled as:
Yty Vi S 1L,V) €] (30)
In the dryer model, the recovery of water ({,) is defined as the fraction
of water in the feed solids that goes into the vapor stream. The recovery of
ethanol (¢;) is related with the recovery of water by a simple flash

calculation [46]:

_ @1/2:$2
G = 1+(a1/2-1).82 (31)

where a; /, is the relative volatility of ethanol with respect to water and
taken to be constant (2.24) over temperature. The mass balance for ethanol

and water in the vapor stream is given by Eq. (27) by replacing n, ; with

¢rand {;.
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Fo' = F*.g,viel,vjel (32)
The mass balance of ethanol and water in outlet dried solids is given by:
FP“ = F*.(1-¢),VielLVj€el (33)
The beer and rectification columns are modeled according to the
method proposed by Grossmann [51], in which recovery of ethanol at the
top of the column is fixed to 99.6% to reduce ethanol losses. A reflux ratio
of 2 is taken for beer column and rectification column. Recovery of water
is treated as a variable to provide operation flexibility. Then mass balance
IS given by:
Ff=FMN.¢,, Vi€el,Vk €K, (34)
where F[ is the component i mass flow rate of the outlet stream, F/" is
the component i inlet flow rate, and ¢;, is the fractional recovery of
component i in the outlet stream k.
Limit on feedstock is modeled as:
Feed < supply. (35)
Disjunctions are used for modeling solid separation alternatives. For
example, if the separation of solids and liquids takes place before the
stripping column, then flow from spl3 to ¢5 must exist and can be modeled

as:

Yiayk 22, (36)
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where y* is the binary variable for outlet stream k. On the contrary, if
separation of solids takes place after the stripping column, then flow from
spl3 to centrifuge2 must exist and can modeled as in Eq. (36). Finally,
restriction on spl2 and spl3 to select only one option from several options
is applied by using Eq. (30).
3.2.4.2 Energy balance constraints

For each unit operation, the following energy balance constraint was
used:
S FN. ' TV + Qopy + Qaxr = Sty FOVT.cp?VT TV Vi€ 1, (37)

where ¢p/N and cpPUT are the specific heat of component i at the inlet
and outlet conditions respectively. TN and T°UTare the temperature of
inlet and outlet conditions, and F/N and FPYT are the flow at inlet and
outlet conditions. The above relationships are nonlinear due to the
multiplication of continuous variables such as temperature and flow rate.
An approximation of nonlinear equations is presented in Section 3.2.4.5.

Heat balance in the reboiler is determined by a simple relation proposed
by [46] and rearranged as:

Qexr = (1 +R) Z?:ll fB,idi- (38)

The cooling heat load needed for the condenser is given by:

Qexr = —(1+R) Z?:H fp,idis (39)
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where f4;, fpi» R, and A; are the component molar flowrate in the
distillate, component molar flowrate at the bottom, reflux ratio, and latent

heat of component i, respectively.

3.2.4.3 Economic analysis constraints

The TEA model was formulated based on the strategy presented in
Section 2.2. The TEA model consists of capital and manufacturing
constraints to calculate discounted cash flow, which is later used to
calculate the minimum selling price of products and the maximum
purchasing price of feedstock. Equipment cost data including their scaling
exponents and installation factors are reported in Table 2. Likewise,
chemicals costs and utility costs are presented in Table 3 and Table 4 of

Section 2.2, respectively.

3.2.4.4 Objective functions
Two different objective functions were used for this optimization,
maximization of net present value and maximization of bioethanol yield.

The NPV is defined according to Eq. (24) as:

20 NCF,
n=0 (147)n’

NPV = ¥,

The yield of bioethanol can be defined as the flow of bioethanol out of
the final stage and modeled as;

Yield = ¥, FP™, (40)
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where F?"t is the component i mass flow rate of the outlet final stream.

3.2.4.5 Approximation of nonlinear constraints

Energy balance equations and design constraints are the main sources
of nonlinearity that may cause difficulty in solution convergence and
computation of a global optimal solution [87]. In order to avoid such
issues, the separable programming technique was applied to linearize the
problem [113]. For example, transformation of the energy balance Eq. (37)
can be expressed as follows:
Yol FN.epN.T™ + Qepw + Qexr = Xity FPUT.cp?UT.TOVT fori =

1, ..., ncomp

where the product of two variables, mass flow rate and temperature, is
taking place and causing non-linearity. The model can be transformed into
a separable form by the following transformation:

1. Introduce two new variables, Y1 and Y2, into the model,

2. Relate Y1 and Y2 to F/N and TV by:

1
Y1 =_(FN+ TV), (41)
and v2 =—(F[N - TIV), (42)
3. Replace the term F/V - T™ in the model by:
Y2 —YZ. (43)
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The model now contains the nonlinear functions Y;?and Y? of single
variables and is therefore separable. These nonlinear terms can be dealt
with by piecewise linear approximations in which the lower and upper
bounds of these variables are set and the graph is plotted between Y1 and
Y2 and Y2 and Y.

For design equations, approximations were done by using logarithms to
form a separable model. Once separable equations are obtained,
approximation can be done by similar methodology as described above.
Care must be taken when logarithmic transformations are made to ensure
that neither Y1 nor Y2 ever take the value 0. If this were to happen, their
logarithms would go to negative infinity. It may be necessary to limit Y1

and Y2 to certain bounds to avoid this occurrence.

3.2.4.6 Verification of approximations

Statistically, no model is 100% accurate. It is therefore of utmost
importance to investigate the results from approximations. To assess
approximations, an automated model was developed in Microsoft Excel
and linked with the GAMS environment by GDXXRW utility. Each time
amodel is compiled in GAMS; optimized variables were transported to the
excel model. The model in excel then uses this information to insert the

optimized variable into original nonlinear equations and compare the result
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of original solution with the approximated one. Finally, it calculates the
amount of error in the approximation. If the error rate is higher than 1%,
then it suggests new coefficients for approximation. The newly suggested
coefficient is updated in GAMS and this process continues. Normally, this
process needs just one revision of the coefficient to provide the desired

results.

3.3 Model solution

The previously mentioned model has been implemented in GAMS
v.25.0.2. Its solution has been computed in GAMS using CPLEX solver.
The model contained 1,795 continuous variables, 8 binary variables, and
2,106 equality and inequality constraints. Furthermore, the optimal

solution is found in 129 iterations with an optimally gap of 0.

3.4 Results and discussions

The proposed modeling framework is implemented to determine the
optimal structure for an SJ based bioethanol plant. To gain more insight
into a macroalgae based biorefinery, two different optimization scenarios
are investigated by using different objective functions where (i) scenario 1
sought to maximize product yield and (ii) scenario 2 sought to maximize

the net present value.

61



3.4.1 Scenario-1: Maximization of product yield

The optimal flowsheet obtained from the superstructure for maximizing
ethanol yield is given in Figure 6, in which the optimal pathway is
composed of an acid feed pretreatment, solid separation after the stripping
column, and in-situ enzyme production. The optimization results are
presented in Table 8. The maximum yield of bioethanol was found to be
84.41 gal/ton of dry feed. DDS is obtained as a byproduct, and its yield is
estimated to be 0.49 ton/ton of dry feed. Based on these yields, bioethanol
and DDS productions of 52 Mgal/yr and 297.6 kton/yr were obtained
respectively. The NPV for this plant design is found to be 3.90 million

USD for 20 years project life.
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Figure 6. Optimal plant structure for scenario-1.
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Table 8. Optimization results.

Bioethanol DDS

production  production

Bioethanol DDS NPV

yield? Yield® (MM$)
Mgallyr kton/yr

Casel 84.41 0.49 3.9 52 297.6
Case2 80.57 0.51 61.5 49 311.3

agal/ton
“ton/ton dry feed
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3.4.2 Scenario-2: Maximization of NPV of the process

Scenario-2 deals with the maximization of a rigorous economic
objective function, such as NPV.

The optimal processing pathway according to scenario-2 has been
computed and illustrated in Figure 7. Interestingly, the optimal design for
this scenario is completely different than the previous scenario except for
the enzyme production decision. Hot water wash, solid recovery before
beer column use, and production of enzymes at plant site were selected as
the optimal plant configuration.

The bioethanol and DDS yields are estimated to be 80.6 gal/ton of dry
feed and 0.51 ton/ton of dry feed respectively. Based on these yields,
bioethanol and DDS productions of 49 Mgal/yr and 311.3 kton/yr were
obtained respectively. NPV for this plant design is 61.5 million USD.

Even though the bioethanol yield in scenario-1 is 5% higher than that
in scenario-2, the economic potential comparison of these two scenarios
clearly shows that a plant design with respect to maximization of NPV is
the better option. Hence, scenario 1 is not economically favorable and

scenario-2 was selected as a base case for further investigation.
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3.4.3 MESP and MDDS

MESP can be defined as the price of ethanol at which NPV corresponds
to zero. MESP is calculated to be 1.97 USD/gal, which is on average 19.8%
lower than the MESP from lignocellulose biomass [12,72,114,115].
Similarly, MDDS is also estimated by fixing the cost of ethanol to a base
cost (2.24 USD/gal). The breakeven point obtained from the MDDS is 90
USD/ton, which is 30% lower than current wholesale price (130-140
USD/ton) of distillers’ dried grain with soluble [116]. As MESP and
MDDS are lower than their current wholesale market price, this shows that
the production of bioethanol and protein rich solid from seaweed is
economically viable.
3.4.4 Maximum seaweed price

Cost of seaweed is one of the biggest expenses contributing to the total
manufacturing cost. It can be seen from Figure 8A that almost 54% of the
total manufacturing cost consists of raw material cost. An increase in the
cost of seaweed causes a direct increase in the cost of ethanol production.
Therefore, upper limit for the price of seaweed, at which NPV become
zero, was evaluated. MSP is estimated by maintaining the price of both
products at base case and varying the cost of feed until the NPV value

reached zero. The target seaweed price is calculated to be 88 USD/ton.
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3.4.5 Manufacturing cost summary

The TCOM for the optimal base design was calculated to be 105 million
USD per year. The method used to estimate TCOM is similar to that
employed by Turton et al [74]. Manufacturing cost break down is reported
in Figure 8A. Raw material cost accounts for the largest operating cost.
This cost also includes the cost of transporting seaweed from the collection
area to the plant site. Utilities are the second-largest portion of the
manufacturing costs, which are mostly used to run distillation columns and
dryer. It is expected that using heat integration and multi-effect distillation
columns may decrease utility consumption at the expense of high capital

cost.

3.4.6 Total capital investment

The results in Figure 8B illustrate that the total capital cost for optimal
plant design is 220 million USD. The largest contribution to capital
investment is the manufacturing capital required to purchase plant
equipment. Ethanol purification and solid recovery are among the most
expensive areas in terms of capital investment, due to large number of unit
operations involved in dehydrating and recovering proteins. Interestingly,
in this plant configuration, the capital cost of the hot water pretreatment is

considerably lower than that of conventional acidic pretreatment.
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3.4.7 Ildentification of alternative promising strategies

The generation of alternative promising strategies is done by adding
integer cut constraints (Eg. 18). These promising pathways are known as
sub-optimal solutions. Various solutions in Table 9 represent the top four
ordered pathways apart from pathway 1 (base case), which is the optimal
solution. Pathway 6 is the least optimal pathway, which is estimated by
minimizing the objective function. As it can be seen in Table 9, the NPV
differences between the first three sub-optimal pathways is not substantial.
The same is true for MESP, MDDS, and MSP. However, the solution for
pathway 5 differs from the optimal pathway considerably. This is due to
the selection of an acidic pretreatment instead of a hot water wash. It is
further estimated that the selection of an acidic pretreatment for a brown
alga based bioethanol plant would increase the TCI from 220 million USD
to 289 million USD. Likewise, MESP rises from 1.97 USD/gal to 2.20
USD/gal. Additionally, the NPV for pathway 5 is close to breakeven point
and becomes negative in pathway 6, which is the worst combination of unit
processes corresponding to acid pretreatment, solid recovery after the beer
column, and enzyme purchase. In this case, MESP rose to 2.24 USD/gal.
These data strongly support the effectiveness of a hot water wash

pretreatment over an acidic route.
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Table 9. A set of ordered potential processing pathways.

NPV Yield MESP MSP Promising
(MMS$) (gal/ton) ($/gal) ($/ton) pathways

Pathway1

61.5 80.5 1.97 90 211213
(base case)
Pathway?2 58.7 80.5 1.98 90.2 211223
Pathway3 57.2 80.7 1.99 90.3 212213
Pathway4 54.5 80.7 2.0 93.1 212223
Pathway5 8.1 84.3 220 1243 111213
Pathway6

0.68 84.4 224 1304 112222
(Worst case)
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3.4.8 Sensitivity analysis

To investigate and evaluate the effect of the key model parameters on
MESP and ethanol yield, a single-point sensitivity analysis was performed.
The variables evaluated in the sensitivity analysis along with their
variations are reported in Table 10 and results of the sensitivity analysis
on MESP are presented as a tornado chart in Figure 9, where the value of
MESP obtained in base case is used as a reference.

Sensitivity analysis indicates that MESP is the most sensitive to the total
capital investment, cost of feed, sales of DDS, amount of solid loading and
glucose conversion to ethanol.

During sensitivity analysis of some variables, such as TCI and enzymes
cost, the optimal design of the base case was changed to other
configurations where purchased enzymes are selected as the optimal
alternative. The differences between the flowsheet, relative to optimal
flowsheet, during sensitivity analysis of TCI and enzyme cost are due to
the total capital cost, which is increases dramatically with a 15%
incremental change in these variables. Consequently, purchase of enzymes
become the most favorable option.

For all other variables, there is no change in the optimal processing

pathways because these variations are globally applied to whole
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superstructure, thus results affect the value of objective function only with
no change in optimal production route.

The results of sensitivity analysis on ethanol yield are shown in Figure
10, where the ethanol yield obtained in the base case is used as a reference.
Conversion of glucose to ethanol is the dominant parameter for increasing
the overall yield. An increase of 8%, relative to baseline yield, was
observed by 10% increase of conversion ability of glucose to ethanol. Also,
feed composition has a large effect on the overall ethanol yield. Increasing
the carbohydrates content of feed by 50% provides an additional 5 gallons

of ethanol per ton of dry seaweed.
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Table 10. Assumptions and variations of the sensitivity analysis.

_ _ Variation
Assumption Min  Base Max
(%)
Composition
Mannitol (% w/w) 6 12 18 +50
Cellulose and Laminarin
10 20 30 50
(% wiw)
Capital
TCI (%) -15 - 15 115
Internal rate of return (%) 8.5 10 115 +15
Brown algae cost (USD/ton) 57.8 68 78.2 +15
DDS price (USD/ton) 110.5 130 1495 %15
Pretreatment and
Saccharification reactor
Pretreatment % solid load 16 20 24 +20
Saccharification % solid load 16 20 24 +20
Pretreatment temperature (°C) 75 85 95 +12
Laminarin and cellulose to
72 80 88 110
glucose (%)
Fermentation
Glucose to ethanol (%) 72 80 88 +10
Mannitol to ethanol (%) 72.9 81 89.1 +10
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Figure 9. Sensitivity tornado chart for MESP.
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3.4.9 Potential improvements to plant economics
In this section, based on the results of sensitivity analysis, critical
parameters are identified, and suggestions are made for potential

improvements to plant economics.

3.4.9.1 Seaweed price

As can be seen in the sensitivity analysis, seaweed price is a key factor
for determining the economic feasibility of a bioethanol production
facility. Therefore, this is the first potential target for improvement. In this
work, the base case price of dry seaweed (68 USD/ton) included the cost
of macro-algae cultivation (80%) and transportation (20%) [102]. This
20% transportation cost contributes to an expenditure of 12.2 million USD
for the transportation of total feed per year. However, if the location of the
biorefinery is properly optimized, this can result in a significant decrease
in the transportation cost. In addition, some pretreatment strategies such as
drying and shredding can be applied at the feed collection area to decrease
the transportation of inert (Water) materials to the factory.

At this point, a 50% reduction in transportation cost of feed, when
assuming the plant location closest to feed collection area, corresponds to

61 USD/ton of dry feed. From the results given in Table 11, a 4.54% and
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30.65% improvement in MESP and NPV respectively can be achieved

relative to the base case.

3.4.9.2 Carbohydrates conversion

A goal was set for the conversion of carbohydrates to glucose. A higher
carbohydrate conversion demands the use of advanced enzymes with
accelerated activity for multiple substrates (cellulose, laminarin). In
addition, accessory enzymes such as ferulic acid esterase may also be used
for efficient hydrolysis [12]. By assuming a 10% increase in carbohydrate
conversion to glucose, and combining this with the case 1, a 47.8% and
5.58% improvement in NPV and MESP can be achieved respectively.
3.4.9.3 Sugar conversion

Conversion of sugars to bioethanol is essential for the economic success
of the bioethanol production process. In this study, an 80% sugar to ethanol
conversion rate is used. However, in the sensitivity analysis, it is shown
that a 10% increase in the conversion efficiency of sugar decreases the
production cost by 5%. In order to achieve this goal, genetically engineered
enzymes are required [12]. Once the activity and stability of the enzymes
are optimized and properly tuned, a remarkable increase in performance is
expected. In this case a 10% increase in the conversion capacity of sugar

to bioethanol is assumed, and then integrated with results of goal 2, would

78



result in 106.5% and 10.6% improvements in NPV and MESP

respectively.

3.4.9.4 DDS price

The current wholesale market price of DDS varies from 130-140
USD/ton [115]. The variation in the price of DDS is based on protein
contents. Whereas the quantity of protein in DDS depends upon various
factors such as protein contents present in feed (seaweed) and processing
conditions (temperature, time). Prolonged or excessive heating during the
process scorches the protein in DDS and reduces the availability of amino
acids, particularly lysine [117]. Therefore, it is important to focus on
optimal processing conditions and technologies to meet high-quality
standards for DDS. Assuming a wholesale price of 150 USD/ton for high-
quality DDS, and combining with previous results, would result in 150.7%

and 16.3% improvements in NPV and MESP respectively.
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Table 11. Effect of different policies/goals on MESP and NPV.

Base
Goall Goal2 Goal3 Goal4d
case
NPV 61.5 82.9 90.9 127.0 154.2
Improvement (%) 0 34.8 478 1065 150.7
MESP 1.97 1.89 1.86 1.76 1.65
Improvement (%) 0 4.1 5.6 “Topr 16.3
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3.5 Conclusions

In this work, a superstructure for the systematic assessment of a
multiproduct biorefinery using SJ was developed. A rigorous techno-
economic model was used to investigate different optimization scenarios
such as maximization of yield and maximization of NPV. Distinct optimal
structures were obtained for each optimization scenario. The MESP for
scenario 1 and 2 were calculated to be 2.20 USD/gal and 1.97 USD/gal
respectively. Results indicated that the acid pretreatment of feed (scenario
1) is not economically favorable over hot water wash (scenario 2) for
production of SJ-based bioethanol.

A comprehensive sensitivity analysis was also performed to evaluate
the major cost drivers. TCI and biomass prices were found to be the most
sensitive parameters to MESP. In terms of enzymes, the capacity for the
conversion of carbohydrates into sugars, and subsequently to ethanol, has
a strong relation with MESP. Finally, bottlenecks were investigated, and
new research targets were suggested to improve biofuel production. An
MESP improvement of 16.3% was obtained by implementing these targets

in simulation.
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4 PROCESS SYNTHESIS OF SUGAR PLATFORM: PART 2

This chapter is a modified version of the conference paper presented in
ESCAPE-19 conference. The full-length article of this chapter is under
review in Energy journal.

The superstructure presented in this chapter is the extension of the one
presented in Chapter 3. More alternative technologies were added in the
superstructure to utilize all emissions of biorefinery including carbon

dioxide, wastewater, unreacted solids.
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4.1 Introduction

Global warming is arguably one of the largest challenges faced by
modern society [97]. Among greenhouse gases, CO is of primary concern
owing to its continuous increase in emission levels [118]. Therefore, a
viable alternative is crucially needed in the form of biomass-derived
biofuels, which could yield lower CEs. In addition, process integration
techniques that can efficiently utilize CEs from industrial processes are
necessary to decrease its adverse effect on the environment.

Brown algae, more specifically SJ offer multiple advantages over
terrestrial biomass as presented in Section 1.2. The high levels of
carbohydrates in SJ can be utilized to produce bioethanol. The optimal
design determined in the previous chapter indicated that bioethanol
production from SJ is economically viable at 1.97 USD/gal.

Despite promising economics, bioethanol processing produces
significant amounts of waste streams and byproducts [119]. For example,
gaseous products from the fermenter contain large quantities of CO with
traces of ethanol vapors [120]. The CE from fermentation in a medium-
sized biorefinery processing 63 to 112 kg/s sugarcane ranges from 3.5 to
6.1 kg/s [121]. Furthermore, the stillage from the distillation column has a

high chemical oxygen demand, biochemical oxygen demand, and mineral
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content. Disposal of these wastes without treatment can contribute to
global warming and cause severe environmental issues such as
deoxygenation of water reservoirs, discoloration, odor, eutrophication, and
acidification [122]. Likewise, unreacted biomass from processing offers
additional challenges.

A report by the U.S. Department of Energy indicated that succinic acid
is a top value-added chemical owing to its growing global market and its
numerous applications in food and pharmaceutical industries [123,124].
Bai et al. [125] demonstrated that SJ biomass represents an economical
alternative to petroleum-based succinic acid with high yields. Utilizing
CO- also makes succinic acid production suitable as a method for
mitigating CE from bioethanol production. Another potential method for
this is microalgae-based biological utilization [126,127]. Microalgae can
grow anywhere, even in wastewater; thus, they can be cultivated in the
same area in which SJ is processed [128]. Davis et al. reported that 1 kg of
microalgae consumes 1.93 kg of CO2[129]. The algal mass produced from
bioethanol-emitted CO: is also a value-added product with applications in
food and fuels [130]. The unreacted biomass can be separated from liquid
products of fermentation and can be processed to produce high protein feed

for animals called DDS [101]. Likewise, wastewater from all processing
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can be collected to process in a wastewater treatment facility to produce
clean water for biorefinery and biogas as a byproduct [131,132].

Despite several concepts of utilizing waste streams, high capital
investment of such technologies is one of the major bottlenecks for their
integration with standalone biorefineries. Therefore, comprehensive
studies on large-scale optimization are required to investigate the optimal
design of integrated biorefineries in most cost-competitive fashion.

The remainder of this chapter is organized as follows. The optimization
of the superstructure is formulated as an MINLP. To determine the optimal
design, various scenarios are investigated by maximizing the NPV and
minimizing the CE. Once the optimal design is determined, the economic
indicators of the process—such as maximum seaweed price and minimum
selling prices of ethanol, dry distiller solids, succinic acid, and
microalgae—are evaluated. Comprehensive single-point sensitivity
analysis is then performed to identify the influential model parameters
affecting the overall economics. The most influential parameters
determined from sensitivity analysis are then analyzed using Monte Carlo
simulation to determine the range of economic indicators and to perform

the risk assessment. Finally, the impact of the biorefinery on the
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environment is also investigated by optimizing CO. utilization and

freshwater consumption.
4.2 Methodology

4.2.1 Problem statement

The optimization problem is defined as the determination of the optimal
design of biorefinery that produces bioethanol and utilizes all waste
streams of processing into value-added products. The optimal design in
this study is defined to have superior economic potential with minimum

detrimental effects on the environment.

4.2.2 Sustainable superstructure development

The traditional bioethanol process consists of acid thermal hydrolysis;
enzymatic hydrolysis; fermentation; and ethanol purification by stripping
column, rectification column, and molecular sieves [51]. To design an
environmentally sustainable biorefinery, new technologies and their
alternatives were added to the traditional bioethanol process. The
superstructure given in Figure 12 is capable of utilizing all components of
seaweed and waste streams from the bioethanol processing. Seven major
sections are included in the superstructure: feed pretreatment, enzymatic
hydrolysis and fermentation, enzyme production, CO. utilization,

microalgae harvesting, purification, and wastewater treatment. Multiple
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design alternatives are embedded in different sections of the superstructure
to perform specific tasks.

Nomenclature for all alternatives in the superstructure is performed
according to the methodology presented in Section 2.1.2 and is provided
in Table 12. The proposed superstructure contains 30 design alternatives
including different pretreatment and separation technologies and
alternatives for CO2 mitigation and enzyme production.

The biorefinery process in superstructure starts with the feed pre-
treatment. Feed can either be pre-treated with acid thermal hydrolysis or
hot water wash. The resulting treated feed then sent to the enzymatic
hydrolysis and fermentation section, where carbohydrates are converted
into glucose and ultimately to ethanol. There are two alternatives for
obtaining enzymes for saccharification. Enzymes can be manufactured on-
site or they can be purchased. The outlet streams from the saccharification
and fermentation section consist of the gaseous, liquid, and solid product
stream. The gaseous products primarily consist of CO. and sent to CO>
utilization section. Two design alternatives considered for CO> utilization
are microalgae production and succinic acid production. Based on the work
of Bai et al. [125] succinic acid production from SJ is promising and can

occur by consuming glucose and COz in the presence of E. Coli. Glucose
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required for the succinic acid fermentation is provided from the
saccharification and fermentation section (Figure 11) by splitting a part of
glucose to CO- utilization section. As glucose split for the succinic acid
production will decrease the bioethanol production, therefore, upper bound
on succinic acid production is applied. In alternative method, CO; can be
utilized to produce microalgae. Microalgae can be cultivated either in open
ponds or photobioreactors.

In harvesting section, five design alternatives are considered for
microalgae harvesting and dewatering. The microalgae are harvested in
gravity settler, which can be dewatered either by hallow filter membranes,
diffused air flocculation, or electrocoagulation followed by centrifugation.
Alternatively, belt filter press can be implemented at the outlet stream of
gravity settler. The final concentration of microalgae from all dewatering
alternative is 20 wt.%. The operating data considered for microalgae
production is based on the work of Davis et al. [129]. In the purification
section, various streams coming from the fermentation and CO utilization
section are processed to their desired level of purity. For example, succinic
acid can be purified either by extractive distillation or reactive distillation
processes. Unreacted solids from the fermenter can be processed either

before the beer column or after the beer column. Furthermore, solid
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processing can be performed either by centrifuge or belt filter press. As
ethanol purification is an energy-intensive process, therefore, multiple
design alternatives are considered in the superstructure to select optimal
topology for its purification. In general, two pathways included in the
superstructure are conventional unit operations and novel technologies
such as hybrid distillation. The conventional unit operations consist of beer
column, rectification column, and molecular sieves (zeolite beds) or
pervaporation membranes (cross-linked vinyl alcohol). However, hybrid
distillation includes the combination of distillation columns and
pervaporators in series. Furthermore, ethanol purification in the beer
column is energy-intensive. Therefore, to reduce energy consumption, the
beer column has two design alternatives: a single distillation column and
pressure swing distillation. To reduce freshwater consumption, a complete
wastewater treatment network incorporated into the superstructure that
will treat and recycle wastewater from various process units. Process
wastewater is treated using anaerobic digestion, aerobic digestion, and
reverse osmosis. The treated water is assumed to be pure and is recycled
to the process. The experimental data used in the optimization are listed in

Table 13.
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Figure 12. Superstructure of biorefinery for producing biofuel and
chemicals from Saccharina japonica.
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Table 12. Notations for the superstructure.

Notation Description Ref
1,1 Feed (SJ) [102]
Pretreatment
1,2 Acid thermal hydrolysis [15]
2,2 Hot water wash [15]
Enzymatic hydrolysis and fermentation
1,3 Saccharification and fermentation [133]
Enzyme production
1,4 Enzyme purchase [12]
2,4 On-site enzyme production [12]
COq utilization
15 Succinic acid fermentation [125]
2,5 Microalgae cultivation in open pond [134]
3,5 Microalgae cultivation in photobioreactor [134]
Microalgae harvesting
1,6 Gravity settler [135]
2,6 Hollow filter membranes [136]
3,6 Diffused air flocculation [137]
4,6 Electrocoagulation [138]
5,6 Centrifuge [139]
6,6 Belt filter press [140]
Purification
17 Reactive crystall_iz_atic_)n for succinic acid [141]
purification
2.7 Extractive dlstl[lqtlop for succinic acid [142]
purification
3,7 Solid purification before beer column [51]
47 Single beer_cplur_nn for ethanol [12]
purification
5.7 Thermally mtegratgq be_er column for [51]
ethanol purification
6.7 Pervaporatlpr_w units for ethanol [143]
purification
7,7 Molecular sieves for ethanol purification [51]
8,7 Hybrid distillation for ethanol purification [144]
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9,7

1,8

1,9
2,9
3,9
4,9
5,9

Solid purification after beer column
Wastewater treatment
Wastewater treatment
Products
Succinic acid
Recycle water
Dry distiller solids
Ethanol
Microalgae

[51]

[52]
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Table 13. Operating conditions used in the optimization.

Feed pretreatment operating conditions [15]

Process
alternatives

ATH?

HWW?

Acid
T Solid loading NH; loading
(K) RT (h) loading (ka/kg (g/L of
(wt.%) dry hydrolysate)
biomass)
393 0.5 30 0.018 4.8
358 0.5 20 - -

Operating conditions for various processing stages [12,108,125,133]

Processing
stage

SCRf

SCR¢

Ethanol
Fermentation

Seed train

SA
Fermentation

Cellulase

T RT loadindt CSLd Yield DAP®

(K) (h) 9 Wwt%) (%) (g/L)
(ko)
321 64 0.02 - 90 -
70-

321 64 0.02 - 80 -
303 96 - 0.25 83 0.33
301 64 - 0.5 24 0.67
310 72 - - 73 -
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Design parameters for microalgae cultivation alternatives [134]

Heat

Lipid Work for removed Paddlewheel
Process igl q Algae blower and b power
alternatives yo productivity mixing oy consumption
(%) (kI/m?) chillers (kW)
(Gl/day)
Open pond 25  0.25 (kg/m?/day) - - 11
PBR" 25  1.25 (kg/m®/day) 35 83.4 -

Operating data for alternative dewatering technologies [134]

Process alternatives Eycdptisian Fparajon Energy demand
(wt.%) efficiency (%) 9y
Gravity settler 1 90 Negligible
Hollo Thiter 13 99.5 0.144 MY/m?
membranes
Electrocoagulation 6 95 2.52 MJ/m3
Diffused air flotation 6 95 0.48 MJ/kg
Centrifuge 20 99.7 4.86 MJ/m?
Belt filter press 20 98 1.08 MJ/m?®
a Acid thermal hydrolysis
b Hot water wash

¢kg/kg (laminarian+ cellulose)

dCorn steep liquor

¢ Diammonium phosphate

f Saccharification after acid thermal hydrolysis
9 Saccharification after hot water wash

h Photobioreactor
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4.2.3 Mathematical modelling of superstructure
The mathematical model of the superstructure is formulated as an
MINLP model by considering mass and energy balance constraints, capital

and operating cost constraints, and objective functions.

4.2.3.1 Mass balance constraints

Linear modeling is performed for the mass balance constraints. The
superstructure includes two types of splitters. The first is a fractional
splitter that can take any value between 0 and 1, with several possible
parallel pathways available, and the second is a conditional splitter that can
take either O or 1 as an integer value. These splitters are required to select
one optimal technology from multiple alternatives. The first type of splitter
is abbreviated spl1 whereas the second is denoted spl2.

The mass balance constraints for the splitters are modeled as follows:

Ff=F"N x y*, vk e K Vi€ I, (44)

Yk, =1, (45)

FIV = ¥k Frvielvje], (46)

and Ff < yx; x UB,Vk EK,Vi € ,Vj €], (47)

where Ff, F/N, uk, FY, Ff5, v, ;, and UB are the mass flow rate of
component i in outlet stream k, the mass flow rate of component i in the

inlet stream, the split fraction for stream k, the mass flow rate of component
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i ininlet stream k from stage j, the mass flow rate of component i in outlet
stream k from stage j, the binary variable for the selection of option k from
stage j, and the upper bound, respectively. The logical constraint for the
selection of only one technology is enforced by the following:

Yy Yij < 1. (48)

Egs. (44) and (45) refer to spll, whereas Eqgs. (46-48) correspond to
spl2.

The mass balance equation for reactors such as pretreatment,
saccharification, fermentation, crystallizers, open pond, photobioreactor,
and harvesting technologies in which the reactant r is converted to product
p is given by

Ff = F" X ®f,. + " Vke K,Yp e P,YreR,  (49)

where Fp" is the mass flow rate of product p in outlet stream k, E™ is

the mass flow rate of reactant r in the inlet stream, Fpi” is the mass flow

rate of product p in the inlet stream, and dbz’,‘,r is the yield of product p of
reactant r in outlet stream k.

In the dryer model, the mass balance of component i in outlet stream k
is given by

Ff = F™ x ¢k,vkeK,viel, (50)

and el viel, (51)
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where ¢¥ is the recovery of component i in outlet stream k.
In the distillation model, the mass balance equation of component i in
outlet stream k is modeled as
Ff=F™ x w,VkEK, Vi€, (52)
where w; ; is the split of components i in outlet stream k and is
estimated by modeling the rigorous distillation column (Radfrac) in Aspen
Plus ® V10.

The mass balance constraint for the mixer, pumps, and heat exchangers

FP¥t = Yok Ffviel, (53)
where FF is the mass flow rate of component i in inlet steam k.

The quantity of solids present at any stage j is controlled by

Ff < af; x FF,vk e K,viel,vj €], (54)
and Ff = S FN vkeK,vj€], (55)

where Ff is the mass flow rate of component i in stream k of
stage j, Fj" is the total mass flow rate of stream k of stage j, and a{fj is the
mass fraction of component i in stream k of stage j.

The feedstock purchase is bounded by its availability (©) and minimum
purchase amount (Y):

© > Feed =Y. (56)
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4.2.3.2 Energy balance constraints
The energy balance constraints were formulated exactly based on the

strategy presented in Section 3.2.4.2.

4.2.3.3 Economic analysis constraints

Likewise, the TEA model was formulated based on the strategy
presented in Section 2.2.
4.2.3.4 Objective functions

Two optimization scenarios were studied in the form of objective
functions to fully examine the economic potential and environmental
impact of the optimal design. The objective functions chosen are
maximization of the NPV and minimization of CE.

The net present value is defined according to Eq. (24) as:

NCFy,
NPV = ¥ndo o

The CE from various processes can be modeled as
CE = Yp*Ff,,, (57)
where Ff,_is the mass flow rate of CO2 in outlet stream k.

4.2.4 Optimization scenarios
The following five optimization scenarios are proposed to design a

sustainable biorefinery.
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4.2.4.1 Scenario 1: base case

The process alternatives included in this design are pretreatment by acid
thermal hydrolysis or hot water wash, on-site enzyme production or
purchasing of enzymes, solid purification either before or after the beer
column, and ethanol purification by classical methods or hybrid
distillation. All of the remaining processes and their alternatives related to
carbon utilization were excluded from the superstructure. This condition
was met by forcing the binary variables involved in the selection of the
carbon utilization processes to take a zero value. The base case design was

solved with respect to maximizing the NPV.

4.2.4.2 Scenario 2: maximization of net present value

All restricted binary variables (carbon utilization) in the previous
scenario were relaxed to determine a sustainable design. The goal of this
scenario is to find candidates for the optimal flowsheet to gain the
maximum NPV. In addition, only one alternative can be selected to utilize
COa.
4.2.4.3 Scenario 3: minimizing CO2 emissions

The goal of this scenario is to determine the optimal design from the
given pool of alternatives having the least amount of CE. Therefore, the

chosen objective for this scenario is minimization of CE. Except for the
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objective function, all constraints are similar to those applied in Scenario

2.

4.2.4.4 Scenario 4: synergistic effect

The goal of this scenario is to investigate the synergistic effect of
succinic acid and microalgae processes on the economics and environment
regarding the bioethanol process. This required the removal of restrictions
to select only one alternative for CO> utilization, as described in Sections
4.2.4.2 and 4.2.4.3. The chosen objective for this scenario is maximization
of the NPV, whereas the second objective function was applied as a
constraint in which the upper limit of the CE obtained from Scenario 3 was

used.

4.2.4.5 Scenario 5: limited funds optimization

Owing to integration of the carbon utilization processes, the TCI of the
biorefinery can increase significantly. Therefore, in this scenario,
optimization based on limited funds was also performed, which enabled
the selection of the optimal design by comparing the various economic and
environmental potentials of all scenarios (1-5). Optimization was
conducted for three scenarios: Cases A, B, and C, where the fund allocation
to each scenario was 25%, 35%, and 45% of the base case TCI,

respectively. The primary objective function was maximization of the
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NPV, whereas the second objective function, minimization of CE, was
applied as a constraint. Contrary to that in Scenario 4, the CE upper limit
in Cases A, B, and C were relaxed by 6.2, 4.3, and 2.5 times, respectively.
This is because a limited investment will decrease the capacities of the

processes utilizing CO», which leads to poor CE utilization.

4.3 Results and discussion

The proposed process synthesis framework was implemented in GAMS
(25.0.2) to determine the optimal process design with potential zero
emissions from various process stages of the SJ-based biorefinery. To
accomplish this task, two objective functions were optimized: maximizing
the NPV and minimizing CE. The chemical composition (wt.%) of the SJ

species reported in Table 5 was used in the present study.

4.3.1 Scenario 1: base case

The optimal pathway obtained from the base case includes feed
pretreatment by hot water wash, saccharification and fermentation, on-site
enzyme production, ethanol purification by pressure swing distillation
followed by hybrid distillation, solid purification after the beer column,
and purification of polluted water in the wastewater treatment network
(Table 14). The products obtained in this scenario are bioethanol and dry

distiller solids.
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The results given in Table 15 indicate that the bioethanol yield obtained
in the base case was 84.54 gal/ton of dry feed. Based on this yield, this
biorefinery is able to produce 48.39 Mgal/yr of bioethanol to gain an NPV
of 16.5 million USD over the 20 years of the project life. The dry distiller
solids production was 296.35 kton/yr. The TCI, TCOM, and utility costs,
as shown in Figure 13A, correspond to 241.5 million USD, 111.0 million
USD/yr and 18.1 million USD/yr, respectively. The results obtained from
the base case will act as an initial point in designing a better process in
terms of economics and the environment.

4.3.2 Scenario 2: maximizing the net present value

The optimal flowsheet pathway given in Table 14 includes feed
pretreatment by hot water wash, saccharification and fermentation, on-site
enzyme production, ethanol purification by pressure swing distillation
followed by hybrid distillation, solid purification after the beer column,
and purification of polluted water in the wastewater treatment network.
Succinic acid was selected as the optimal technology for carbon utilization.
The products obtained in this scenario are bioethanol, dry distiller solids,
and succinic acid. The flow rate summary in Table 15 shows that the
utilization of glucose for succinic acid production led to a decrease in the

bioethanol yield from 84.54 gal/ton to 73.97 gal/ton of dry feed. The
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productions of bioethanol, dry distiller solids, and succinic acid were 42.38
Mgal/yr, 259.49 kton/yr, and 15 kton/yr, respectively. The NPV, TClI,
TCOM, and utilities costs are given in Figure 13A. Interestingly, the NPV
obtained in this scenario was 6.12 times higher than that of the base case.
This improvement is attributed to the high selling price of succinic acid,
which is almost 5 times that of the current wholesale price of ethanol. On
the contrary, the reduction in net CE was not encouraging; an improvement
of only 6% was obtained, as shown in Figure 13B.
4.3.3 Scenario 3: minimizing CO2 emissions

As shown in Figure 13B, Scenario 1 resulted in CE of approximately
4.86 kg/s. Similarly, Scenario 2 resulted in 4.01 kg/s of CE. Therefore, the
goal of Scenario 3 is to determine an environmentally friendly optimal
design capable of further reducing the CE by converting them into useful
products. The optimal flowsheet obtained for this scenario is different from
that of Scenario 2, as illustrated in Table 14. The optimal pathway obtained
for ethanol production and solid processing is similar to that for the base
case. For carbon utilization, microalgae cultivation in open ponds,
harvesting by gravity settler, and dewatering by hollow filter membranes
followed by centrifuging were selected as optimal technologies. The

results presented in Figure 13B show that a 90% reduction in net CE was
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achieved relative to the base case. The remaining CE, 0.42 kg/s, is
attributed to a surplus supply of CO, which is 10% more than the
stoichiometry requirement. This surplus can account for possible
variability in efficiency; otherwise, the CO; utilization would be too
optimistic. Under this scenario, the bioethanol yield and production were
84.54 gal/ton and 48.39 Mgall/yr, respectively. These results are similar to
those obtained in Scenario 1 owing to the lack of compromise on
bioethanol production, as was the case of Scenario 2 in producing succinic
acid. The dry distiller solids and microalgae production were 296.35
kton/yr and 58.46 kton/yr, respectively. The NPV, TCI, COM, and utilities
costs are shown in Figure 13A. The NPV was 61.7 million USD, which is
0.39 times lower than that for Scenario 2 but 3.74 times higher than that
for Scenario 1. Another interesting economic result of this scenario is the
TCI of 380.4 million USD, which is 45% higher than that of Scenario 2.
This large investment cost is attributed to two factors: (1) the large
investment required for constructing 158 individual ponds at 10 acres each
and (2) the limit on succinic acid production. It is believed that if the
restriction on succinic acid production is removed, the TCI difference

between the two scenarios will become marginal.
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4.3.4 Scenario 4: synergistic effect

A comparison of Scenarios 2 and 3, involving succinic acid production
and microalgae production, respectively, revealed that the former is an
economically better option. On the contrary, the latter showed better
environmental benefits. Therefore, the objective of this scenario is to study
the synergistic effects of both processes on economics and the
environment. The optimal pathway is given in Table 14, where the
productions of succinic acid and microalgae were selected as optimal
technologies to meet the required targets. For ethanol production, feed
pretreatment by hot water wash, saccharification and fermentation, on-site
enzyme production, ethanol purification by pressure swing distillation
followed by hybrid distillation, solid purification after the beer column,
and purification of polluted water in the wastewater treatment network
were the optimal technologies. For succinic acid purification, reactive
crystallization was selected as an optimal technology. For microalgae
production, cultivation in open ponds, harvesting by gravity settler, and
dewatering by hollow filter membranes followed by centrifuging were the
optimal technologies. The products obtained from the process design of
this scenario are bioethanol, dry distiller solids, succinic acid, and

microalgae, corresponding to productions of 42.38 Magallyr, 259.49
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kton/yr, 15 kton/yr, and 47.8 kton/yr, respectively. The NPV of this
scenario was 144.7 million USD, which is 8.77 times higher than that of
the standalone process and 1.43 and 2.34 times higher than the NPVs of

Scenarios 2 and 3, respectively. The CO. utilization was 90%.

4.3.5 Scenario 5: optimization under limited funds

The results of the aforementioned scenarios clearly show that the
process economics and environmental sustainability parameters improved
significantly. However, this improvement came at the cost of a higher
capital investment, at 56% more than that of the base case. Hence, the goal
here is to obtain a higher NPV and a minimum 75% reduction in CE than
that of base case under a limited budget for investing in carbon utilization
technologies. The results indicated that for all three cases, the optimal
process for CO utilization is the combination of succinic acid and
microalgae production and that optimal pathway is similar to that for
Scenario 4. In all three cases, bioethanol, dry distiller solids, succinic acid,
and microalgae were produced. As shown in Figure 13C, a 45%
investment in CO> utilization technologies resulted in a 79% reduction in

CE and a 6.24-fold increase in the NPV relative to the base case design.
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Table 15. Yield and flow rate summary of various scenarios.

Ethanol

Scenario yield Ethanol DDS MA SA
(gal/ton) (Mgallyr) (kton/yr) (kton/yr) (kton/yr)
1 84.54 48.39 296.35 0.00 0.00
2 73.97 42.38 259.49 0.00 15.00
3 84.54 48.39 296.35 58.46 0.00
4 73.97 42.38 259.49 47.81 15.00

DDS = Dry distiller solids; MA = Microalgae; SA = Succinic acid
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4.3.6 Optimal design

A comparison of all previous scenarios revealed that Scenario 4 is
superior both economically and environmentally. One can argue that the
TCI of scenario 4 is 56% more than that of the base case and 8% more than
that of Case C of Scenario 5. However, if we compare the economics of
Scenario 4 with those of the base case and Case C, 8.77-fold and 1.40-fold
improvements in NPV were achieved, respectively. Furthermore, the CE
reduction in Scenario 4 is 11% more than that of the Case C. Clearly, by
investing 8% more than that for Case C, the economic and environmental
benefits become significantly more favorable. Therefore, Scenario 4 was
selected as the optimal design for further investigation. A simplified block
flow diagram of the optimal design is shown in Figure 14. Unless

otherwise specified, “optimal design” hereafter refers to Scenario 4.
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4.3.7 Total manufacturing cost

The TCOM of the optimal design was calculated to be 161 million
USD/yr. Figure 15A shows that the ethanol section constitutes a major
portion of annual manufacturing cost. This is attributed to the large
consumption of seaweed, whereas the primary raw materials required for
production of succinic acid and microalgae are provided as byproducts
from ethanol production. Thus, costs associated with other sections are less
expensive than that in ethanol production. In the succinic acid section, the
variable costs were dominant, with a 78% contribution. The distribution of
manufacturing costs of the microalgae section suggests that the variable
manufacturing cost constitutes most of the manufacturing expenses, in
which raw material costs are dominant. Although the supply of CO; for
microalgae cultivation is free of charge, the utilization of a large amount
of fertilizers for microalgae growth results in high cost. The labor costs in
microalgae production are also significant owing to the large number of
operators required to maintain and service large numbers of individual

ponds, corresponding to 158 individual ponds of 10 acres each.

4.3.8 Total capital cost
Similar to the total manufacturing cost, the total capital cost of the

optimal design is the sum of the capital costs of individual sections. The
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TCI of the optimal design is 377 million USD. The ethanol section
consumes most of the capital investment required to purchase plant
equipment, as illustrated in Figure 15B. This high investment is attributed
to the large capacity of bioethanol production, whereas the capacities of
other sections depend on the CO2 evolved from ethanol fermentation.
Although the capital investment required to integrate the succinic acid and
microalgae carbon utilization processes is large, at approximately 42% of
the ethanol section, the overall economics and CE reduction are more
favorable. In the succinic acid section, purification, solid recovery, and
fermentation areas are the most expensive, with a cumulative contribution
of 82% of the total installed cost. Interestingly, the pretreatment sections
in the bioethanol and succinic acid processes are among the least
expensive. This is attributed to the unique chemical composition of
seaweed, which is lack of lignin, thus eliminating harsh pretreatments such
as acid thermal hydrolysis that require large amounts of steam and
chemicals as well as expensive equipment to resist the acidic environment.
In the microalgae section, cultivation of microalgae is the most dominant

area in terms of the investment, with a 69% contribution.
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4.3.9 Minimum product selling price

The minimum selling price of a product can be defined as the selling
price of a product that makes the NPV equal to zero. Table 16 shows that
the MESP of the optimal design, at 1.48 USD/gal. The minimum succinic
acid selling price (MSAP) is 2.00 USD/kg, which is 23% lower than that
of Scenario 2. Similarly, the minimum microalgae selling price (MMAP)
decreased from 0.79 USD/Kkg in Scenario 3 to 0.40 USD/kg in the optimal
design. The minimum selling price of DDS in the optimal design is 0.03

USD/Kg.

4.3.10 Maximum seaweed price

The maximum seaweed purchase price is an important economic
indicator because it defines the upper price for seaweed purchase that leads
to economically competitive fuel prices in the current market. Therefore,
the maximum price of seaweed at which the NPV becomes zero was also
calculated by keeping the price of all products to the base case price. The
results in Table 16 indicate that the base case is more sensitive to changes
in the price of seaweed. For example, if the seaweed price increases from
0.08 USD/kg to 0.08 USD/kg, the NPV of the base case decreases to zero.
On the contrary, the MSP for the optimal design is 0.13 USD/kg for

achieving zero NPV, which is 57% higher than that of the base case.
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Figure 15. Breakdowns of the total (A) manufacturing costs and
(B) capital costs of the optimal design.
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Table 16. Minimum selling prices of products from biorefinery.

MESP MDDS MSAP MMAP MSP
($/gal) ($/kg) ($/kg) ($/kg) ($/kg)

Scenario 1 2.16 0.14 - - 0.08
Scenario 2 1.67 0.06 2.60 - 0.11
Scenario 3 1.89 0.10 - 0.79 0.10
Optimal design 1.48 0.03 2.00 0.40 0.13
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4.3.11 Sensitivity analysis (Major cost drivers)

To estimate the major cost driver of the MESP and the ethanol yield, a
single-point sensitivity analysis was conducted. The sensitivity analysis
results presented in Figure 16 show that the TCI, biomass cost, succinic
acid and microalgae selling prices, internal rate of return, mannitol
composition in the feedstock, DDS price, and labor costs play an important
role in influencing the MESP.

The results of the sensitivity analysis on the ethanol yield are shown in
Figure 17. Feed composition was shown to be the most dominant and
important parameter for increasing the overall yield of bioethanol. In
addition, glucose conversion to ethanol has a significant effect on the

overall yield.
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4.3.12 Monte Carlo simulation (Risk assessment)

The critical parameters that were identified by single-point sensitive
analysis in the previous section are used here to determine the minimum
product selling range and risk using Monte Carlo simulation. 1000 samples
were generated using uniform distribution between the predefined range of
parameters. The most probable minimum selling price range was assumed
to be one standard deviation from the mean price. The results indicated that
the MESP range of the optimal design is 0.36-0.56 USD/L with a mean
value of 0.46 USD/L and standard deviation of 0.097 USD/L.

Risk assessment (Figure 18) was performed where economic risk was
quantified based on the minimum ethanol selling price. Here, we analyzed
the probability of obtaining a minimum ethanol selling price that was
higher than the targeted market price. Based on the current ethanol market
price of 0.4 USD/L in the United States, the probability of risk for the
optimal design is about 93.7% and 0% for the remaining scenarios, which
geographically make the optimal design economically unfavorable for the
country. However, seaweeds are largely cultivated in Asia and mainly in
China, Indonesia, and South Korea, where the ethanol price varies at 0.6—
0.72 USD/L. This leads to a 44-20% probability of loss for the optimal

design.
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4.3.13 Wastewater treatment and water consumption

Wastewater treatment and freshwater consumption are important
environmental factors in process sustainability. In the wastewater
treatment process, effluent streams from various stages of ethanol and
succinic acid sections are treated and recycled to the process.

The overall freshwater consumption is 6.31 gal of water/gal ethanol. It
is worth noting that the water lost by evaporation in the cooling tower
cannot be reused. However, it is believed that this water loss can be
decreased by heat integration in the heat exchanger network.

The water loss for microalgae production is higher than that from the
ethanol and succinic acid sections owing to evaporation of water from the
pond surfaces. Result shows that water evaporation alone resulted in water
losses of 82 wt.%. The loss of water in the blowdown is attributed to a
0.5% discharge of recovered water from the gravity settler. Microalgae
contain 80% moisture in the final product stream; therefore, 5% of the
water is lost in the product stream. The total makeup water required for the

microalgae section is 3.1 Mgal/day.
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4.4 Conclusion

In this study, a novel strategy is proposed to produce advanced biofuel
and to utilize all waste streams from Saccharina japonica-based
biorefinery. A rigorous optimization-based framework for simultaneous
process synthesis and process integration of a macroalgal biorefinery was
proposed. The process synthesis model features several design alternatives
for bioethanol processing as well as alternatives for utilizing all waste
streams from the processing in one combined superstructure. The detailed
mathematical modeling of the superstructure is incorporated as large-scale
mixed-integer non-linear optimization model that can be solved efficiently
to determine the optimal design with superior economic and environmental
performance. The framework was demonstrated by using five optimization
scenarios under different objective functions, and the economic viability
and environmental sustainability of each case study were presented.

The novelty of this work includes utilization of Saccharina japonica as
a feedstock, which itself is self-sustaining, and integration of the carbon
sequestration processes with traditional bioethanol processing to utilize all
waste streams. The minimum ethanol selling price range of the optimal
design is 0.36-0.56 USD/L. A comparison of the CO, emissions in the

optimal design with that in the base case revealed a strong potential for
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environmental sustainability, with a decrease from 4.86 kg/s in the latter
to 0.42 kg/s in the former, representing a 90% reduction. Similarly, the
freshwater requirement in the optimal design is 6.31 L H2O/L ethanol,
representing a 38.6% reduction compared with the base case. Risk
assessment suggested that the proposed seaweed-based biorefinery design
would be economically favorable in Asia, with a 20-44% probability of
risk. According to the sensitivity analysis, seaweed cost and chemical
composition are critical parameters that should be improved by intensified
farming via artificial cultivation techniques to decrease the probability of

risk.
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5 PROCESS SYNTHESIS OF VOLATILE FATTY ACIDS
PLATFORM
This chapter is a modified version of the conference paper presented in
ESCAPE-19 conference. The full-length article of this chapter is under

review in Green Chemistry.
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5.1 Introduction

The current pace of utilizing petroleum resources is causing ecosystem
damages. Global warming is a serious environmental issue, common to all
mankind [145]. CEs from burning fossil fuel are thought of as one major
contribution to global warming [2]. To mitigate climate change impacts,
highly efficient biorefineries utilizing sustainable biomass must be
developed to replace fossil-based energy infrastructure [145]. Macroalgae
(seaweed) have been considered as more sustainable biomass compared to
crops since they do not compete for land and freshwater [35]. In order to
use the macroalgae in a commercial scale biorefineries, it is necessary to
evaluate various potential pathways into value-added products as well as
intermediate components and technologies. Furthermore, the potential
processes must be designed with minimum carbon and other waste
emissions, while simultaneously have to be economically competitive to
operate. This in turn presents a large decision-making problem with a
significant combinatorial complexity.

Biofuels can be produced from SJ via VFAP. In this platform, VFAs
consisting of acetic acid, propionic acid, and butyric acid are produced by
the partial anaerobic digestion of biomass using a mixed culture bacterial

ecosystem [17]. VFAs have numerous applications in the chemical, food
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and pharmaceutical industries. They are important precursors of
biopolymers—e.g., polyhydroxyalkanoates —and other valuable products
such as aldehydes and ketones [146]. Therefore, VFAs can be separated
and sold as the main products of a biorefinery. Alternatively, VFAs can be
hydrogenated to produce mixed alcohols consisting of ethanol, propanol,
and butanol, which can be sold as renewable transportation fuels.

In the literature, numerous studies have demonstrated that the VFAP
has a higher product yield than the SP [147]. This is primarily owing to the
ability of anaerobes to digest all the non-lignin components of the biomass,
including carbohydrates, proteins, and lipids, whereas, in the case of the
SP, only the carbohydrate content of the biomass is converted to bioethanol
[17]. Furthermore, unlike the SP, the VFAP does not require aseptic
conditions and does not utilize expensive enzymes and capital-intensive
fermenters [18]. Despite the promising yields and simple digestion
process, the design of effective and economically viable separation
technologies for the dehydration of aqueous VFASs is a major obstacle to
the industrial-scale application of the VFAP [17]. This is mainly because
water and acetic acid have similar boiling points, which makes their
separation by distillation difficult and energy-intensive. Another challenge

associated with the VFAP is the significant production of carbon dioxide
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during the fermentation of biomass. Bonfim-Rocha et al. demonstrated that
the CEs produced by the fermentation-based biorefinery processing of 2—
3.5 Mt/yr amount to approximately 110-193 kton/yr [121]. A potential
method of mitigating direct CEs from the VFAP is microalgae-based
biological utilization. Davis et al. reported that 100 ton of algal biomass
fixes approximately 193 ton of carbon dioxide, which make it a suitable
candidate for reducing the CEs produced by the VFAP [129]. There is also
an indication that the water footprint of a biorefinery is quite high.
Approximately 13 gals of wastewater are produced when one gal of corn
ethanol is refined [4]. This level of water consumption is alarming and
must be reduced by reusing the wastewater from processing.

In order to address this problem, the study presented in this chapter
utilizes a superstructure process design approach for a seaweed biorefinery
producing mixed alcohols and mixed organic acids via anaerobic
digestion/volatile fatty acid route. Seventeen design alternatives have been
proposed to determine the optimal design and technical feasibility by
maximizing the NPV in the most environmentally beneficial fashion.

The remainder of this chapter is organized as follows. The optimization
of the superstructure is formulated as an MINLP. To determine the optimal

design, various scenarios are investigated by maximizing the NPV. Once
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the optimal design is determined, the economic indicators of the process
are evaluated. Comprehensive single-point sensitivity analysis is then
performed to identify the influential model parameters affecting the overall
economics. Finally, the impact of the biorefinery on the environment is
also investigated by optimizing CO. utilization and freshwater

consumption.

5.2 Methodology

The main objective of the optimization problem is to determine the
optimal design of the biorefinery from the given superstructure by
maximizing the NPV as well as minimizing the environmental impact of
the biorefinery by integrating waste streams utilization technologies. The
major decision variables include: technology selection for the VFAP and
carbon dioxide utilization; the mass flow rate of each species in every
stream; the heat and power consumption of each piece of equipment; the
capital cost and the operating cost required for economic evaluation; and
all emissions required for environmental evaluation.
5.2.1 Superstructure development

A superstructure containing seventeen design alternatives at the various
processing stage of a biorefinery is illustrated in Figure 19. Seven major

sections are included in the superstructure: anaerobic digestion, VFA
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extraction, mixed alcohol synthesis, carbon dioxide utilization, harvesting,
purification, and wastewater treatment.

The biorefinery process starts with the anaerobic digestion of SJ.
Anaerobic digestion consists of four stages; and in order to produce VFAS,
partial anaerobic digestion is carried out using inhibitor such as iodoform,
which eliminates methanogenesis step [17]. The operating conditions for
anaerobic digestion are 13 wt.% solid loading; a retention time of 120 h;
an inhibitor loading of 30 ppm; a digestion temperature of 35 °C, and a
yield of 0.35 g VFA/g of dry feed [147]. After anaerobic fermentation, the
outlet stream from the digester consists of solid, liquid, and gaseous
products, which is sent to the purification section. In the purification
section, gaseous- and solid-products are separated from liquid products.
Liquid products consisting of VFASs are sent to VFA extraction section, in
which two alternative technologies are considered: classical dehydration
and hybrid dehydration [17,148]. The main equipment of the classical
dehydration contains an extraction column, a rectification column, a
stripping column, and a decanter. The hybrid process involves the
combination of membranes and the classical dehydration process. The
main goal in VFA extraction section is to concentrate VFAs from 5 wt.%

to 95 wt.%. Once the VFAs are concentrated, they can be hydrogenated in
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the mixed alcohols synthesis section to produce mixed alcohols consisting
of ethanol, propanol, and butanol [149].

Alternative, hydrogenation can be bypassed and concentrated VFASs are
separated into pure compounds [150]. Mixed alcohols and mixed acids will
be produced as the main products of biorefinery in the former
(hydrogenation) and latter (bypass), respectively. If the latter is selected as
an optimal decision, an upper limit of utilizing 30 wt.% of the VFAs is set
for mixed acids production, because the main objective of the biorefinery
is to produce biofuels. In CO; utilization section, the key objective is to
convert CO> into microalgae either in open ponds or photobioreactor. If
the production of microalgae is not economically favorable then the CO>
is vented to the environment by paying a carbon tax of 20 USD/ton. For
microalgae harvesting and dewatering, six process alternatives are
included in microalgae harvesting section. The microalgae can be
harvested in gravity settler, which can be dewatered either by hollow filter
membranes, diffused air flocculation, or electrocoagulation followed by
centrifugation. Alternatively, a belt filter press can be implemented at the
outlet stream of gravity settler. The operating data and equipment costs
considered for microalgae production are based on the work of [134] and

outlined in Table 13. In purification section, separation of non-
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condensable gases, VFAs, MAs, and DDS take place in pressure swing
adsorption, distillation columns, pervaporation or molecular sieves
followed by distillation, and centrifuge and dryer, respectively [150-154].
A complete wastewater network consisting of anaerobic digestion, aerobic
digestion, and reverse osmosis is included in the superstructure that treats

polluted water from various processing stages back to the process [12,51].
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5.2.2 Mathematical modeling of superstructure
5.2.2.1 Mass balance constraints

The mass balance constraints for the splitters were modeled using Egs.
(44-48).

The mass balance equation for reactors such as the anaerobic digester,
open ponds, photobioreactors, and harvesting technologies where the
reactant r is converted to the product p is given by

Ff = F™ x of +E" vk € K,Vp € P,Vr €R, (58)

where Fp" is the mass flow rate of product p in the outlet stream k, F™

is the mass flow rate of reactant r in the inlet stream, E™ is the mass flow

rate of product p in the inlet stream, and cbz’,fr is the yield of product p from
reactant r in the outlet stream k.

The mass balance of component i in the outlet stream Kk in the pressure

swing adsorption, mechanical separator, dryer, and decanter is given by
Ff=F™ x ¢k,vkeK,viel, (59)
and ek =1viel, (60)
where ¥ represents the recovery of component i in the outlet stream k.

The mass composition (X}) of component i in the stream k is given by

k _ B\
ke Xi = Tpk h ViE (61)
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where F¥ is the overall mass flow rate of the stream k.
In the flash column, the mass balance of component i in the outlet

stream k can be determined by

overall mass balance: F/* = Y% FF,vi €1, (62)
Antoine relation: log, VP = A} — Ti:-llei ,Viel, (63)

Henry relation: logVPii" = H. +-L H + HL x logT™ + H) X T™, Vi€

TlTL
I (64)
equilibrium relation: K1 = ‘;Pm Vi€l (65)
bottom composition: X1¥ = ( Wﬂm) x XK, vk1eK,viel, (66)
Lv+ K1
top composition: Y1¥2 = x1¥ x K1i",vi € I,Vk1,k2 € K, (67)
top overall flowrate: F*? = ( i ) Vi € I,Vk2 € K, (68)
LV+1
top component flowrate: F}2 = F¥2 x Y1¥?,vi e I,vk2 € K, (69)
logical constraint 1: ¥ X151 = 1, (70)
and logical constraint 2 : ¥ Y1 = 1, (71)

where VP™ is the vapor pressure of component i in the inlet stream, A%,

L and AL are the Antoine parameters of component i, H., H., H., and H}
are the Henry parameters of component i, T™" is the inlet temperature,
K1™ are the K-values of component i in the inlet stream, LV is the liquid
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to vapor ratio, X1¥! is the bottom composition of component i in the
stream k1, Y1¥2 is the top composition of component i in the stream k2,
F¥2 is the flowrate of the top stream, and F'" is the mass flowrate of the
inlet stream.

In the extraction column, the mass balance of component i in the outlet

stream k can be determined by

overall mass balance: F{™ + Fibpr = Yok, FX Vi€, (72)
extraction solvent: Fiftzp = F™ x 30 A x b1y, (73)
stages (N): N = Z5i%, S0 vee X b2sF, (74)
extract mass balance: Ff'=FM x Yom, 2 Sf" L&k X b285 k1 €
K,Vi€l, (75)
raffinate mass balance: F? = F/" — F}',vk2 e K,vi €I, (76)
logical Constraint 1: Zsf i =T, (77)
logical Constraint 2: $g;n, ¥o | p25t = 1, (78)
and logical Constraint 3: Zsf" bl =35, ;’:’;Ibzsf, (79)

where Fijt5 - is the mass flow rate of the extraction solvent in the inlet
stream, A is the parameter corresponding to the solid to feed ratio, b1
is the binary variable for selecting the optimal solid to feed ratio, vg; is the
parameter indicating the number of stages, b2§]’i is the binary variable for
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selecting the optimal number of stages, F/'is the mass flow rate of

component i in the extract stream, &7% 'sr 1S the split fraction of component i

in the outlet stream k, and F/*?is the mass flow rate of component i in the
raffinate stream.
In the stripping column, the mass balance of component i in the outlet

stream k can be determined by

overall mass balance: F/" + Ff& = ¥, * FF,vi€l, (80)
LP-steam balance (FiR): Fi® = % (81)
X2, K1
absorption factor (4;): (p,‘\’,’ ;11_1 =1-Y, (82)
stages (N): 4; = KlmF—Fm,Vl €l (83)
stripping factor (S;): S; = mipi—ff“’,vl' €l (84)

2

fraction of components not absorbed (y1;): y1; = A,§+—1 viel, (85)

4

fraction of components not stripped (y2;): y2; = ssT Vi€l (86)

bottom mass balance ( Ff' ). Ff'= F™ x y2,+ F# x(1—
v1,),Vk1 €K, Vi €1, (87)
and top mass balance (FX?): F¥? = F/" — Ff',vk2 e K,vi€ I, (88)

where ¢ is the stripping factor and Y is the recovery of the key

component.
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In the distillation model, it is assumed that all components heavier than
the heavy key component would accumulate in the bottom stream.
Similarly, all components lighter than the light key component will
accumulate in the distillate. The mass balance equations of the light key
(Ik) and heavy key (hk) components in the distillate (d) and bottom (b)

stream can be modeled as

Fi > F! x wh, vd €K, ViIk €1, (89)
FE < F' x(1-wh,), Vb EK,ViIk €, (90)
F& < Fi x wP, vd € K,Vhk €I, (91)
FP. = Fi x (1 - w?,), Vb€ K,Vhk €1, (92)

where w?, and w?, are the split fractions of the light key and heavy key
components in the distillate, which can be estimated by modeling the
rigorous distillation column (Radfrac) in the Aspen Plus ® V10 software.
The mass balance constraint for the mixers, pumps, compressors, and
heat exchangers is
Fo¥t = Yok Ffviel, (93)
where Ff* is the mass flowrate of component i in the inlet steam k.

The amount of solids at any stage j is controlled by

Ff < af; x FF,vk e K,viel,vj €], (94)
and Ff = Y FN vkeK,vje], (95)
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where Fi’fj is the mass flowrate of component i in the stream k of
stage j, Fj" is the total mass flowrate in stream k of stage j, and a{f]- is the

mass fraction of component i in the stream k of stage j.

The feedstock purchase is bounded by its availability (©) and minimum
purchase amount (Y):

O > Feed =Y. (96)

5.2.2.2 Energy balance constraints

The Eq. (37) energy balance constraint was used for each unit operation.
Heat balance in the reboiler and condenser is determined by Egs. (38-39).

The temperature and pressure of the outlet stream of the flash,
distillation, and stripping columns and membranes can be determined
using Egs. (63) and (64), and the bubble point and due point equations.

The power (kW) required for the pumps and compressors can be
determined by

E:l=11 pi X (Pout_Pin)

Power = , (97)
Npump
and Power = Y7 X n A X Tk xr x (L) X pR(#‘l) X — %
=144 MWik v-1 Ncomp
Necomp (98)

where p; is the volumetric density of component i, P°%t is the outlet

pressure, P™ is the inlet pressure, 7,,my is the pump efficiency, MW/ is
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the molecular weight of component i in the stream k, r is the general gas
constant, y is the heat capacity ratio, 7.,m, is the compressor efficiency,
Ncomp 1S the number of stages in the compressor, and PR is the pressure

ratio. PR can be determined by

Pout

(PR)ncomp —

o (99)

The inter-stage cooling load (kW) between the stages of a multi-stage
compressor can be determined using Eq. (37).
5.2.2.3 Economic analysis constraints

The TEA model was formulated based on the strategy presented in
Section 2.2.
5.2.2.4 Objective function

The objective functions chosen are maximization of the NPV, which is

defined according to Eq. (24) as:

NCFy,
NPV = X020 o

5.2.3 Optimization scenarios
Three optimization scenarios are investigated to design a sustainable
biorefinery. This approach will enable to quickly compare strength and

weakness of different processing configuration obtained in each scenario.
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5.2.3.1 Scenariol

The base case is an unrestricted scenario where no limit on TCI is set.
In addition, carbon dioxide utilization alternatives are deactivated in this
scenario. Therefore, according to this scenario, the result with a focus on
the process economics and CEs of the biorefinery process by maximizing
the NPV is obtained. The solution obtained from this scenario will act as a
reference point for evaluating other scenarios in terms of economics and

the environment issue.

5.2.3.2 Scenario 2

All binary variables denoting carbon utilization in the initial model and
the scenario 1 are relaxed. Regarding carbon emission, it is important to
mention that two sources of CEs from the biorefinery should be
considered: direct and indirect emissions. The former originate explicitly
from various process stages such as anaerobic digestion and degassing
from open ponds. Indirect emissions, however, originate from the heat and
power required to power-up the processing facilities. The objective here is
to focus on direct emissions only. The goal of this scenario is to find
optimal flowsheet that has better process economics and environmental

performance than that achieved in the base case by maximizing the NPV.
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5.2.3.3 Scenario 3

Owing to the integration of the carbon utilization processes, the TCI of
the biorefinery may increase significantly. Therefore, in this scenario,
further optimization based on limited funds is performed. Specifically,
optimization is conducted for three scenarios: Cases A, B, and C, where
the fund allocated to each scenario are 20%, 30%, and 40% of the base

case TCI, respectively.

5.3 Results and discussion

The proposed process synthesis MINLP model was implemented in
GAMS (25.0.2) and its solution was computed using DICOPT solver. The
model contained 7,476 continuous variables, in which 1,680 variables are
nonlinear, 22 variables are binary, and the remaining variables are linear,
and 6,517 equality and inequality constraints. The chemical composition
(wt.%) of the SJ species reported in Table 5 was used in the present study.
An upper limit of 400 kton/yr (dry basis) is set on the SJ supply. Three
different optimization scenarios were investigated to gain greater insight

into a macroalgae-based biorefinery.

5.3.1 Scenario 1 results
The optimal flowsheet of the base case is an integrated biorefinery

producing both mixed acid and mixed alcohols. The optimal pathway is
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given in Figure 20. It consists of anaerobic digestion, extraction followed
by distillation, partial bypass and hydrogenation, venting carbon dioxide
to the atmosphere, hydrogen purification via pressure swing adsorption,
the distillation of mixed acid, the dehydration of mixed alcohols using
molecular sieves followed by distillation, DDS purification, and
wastewater treatment. In the integrated design, 30 wt.% of the concentrated
VFAs are utilized to produce mixed acids, whereas the remaining VFAS
are utilized to produce mixed alcohols. The NPV, TCI, and TCOM are
19.49 million USD, 147.74 million USD, and 98.02 million USD/yr,
respectively.

The products obtained in this scenario are mixed alcohols, mixed acids,
hydrogen, and DDS. Their production rates are given in Table 17. The
biorefinery utilizes 400 kton/yr biomass. It produces 24 Mgal/yr mixed
alcohols and 11 Mgal/yr mixed acids as main products and 0.98 kton/yr
hydrogen and 111.8 kton/yr DDS as byproducts. The CEs of the base case
are 64 kton/yr. The cost of venting carbon dioxide to the atmosphere is 1.2

million USD/yr.

5.3.2 Scenario 2 results
The optimal flowsheet obtained for this scenario is different from that

for Scenario 1, as illustrated in Figure 20. The optimal pathway obtained
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for mixed acids and mixed alcohols production is similar to that of the base
case. Microalgae production was selected as the optimal pathway for
carbon dioxide utilization. The optimal pathway of microalgae production
includes cultivation in open ponds, harvesting by gravity settler, and
dewatering by hollow filter membranes followed by centrifuge were
selected as optimal technologies. The products obtained in this scenario
are mixed acids, mixed alcohols, hydrogen, DDS, and microalgae. Their
production rates are reported in Table 17. In this scenario, a 90% reduction
in net CEs was achieved relative to the base case. Only 6 kton/yr of carbon
dioxide is released to the environment. This surplus can accommodate the
possible variation in efficiency; otherwise, the carbon dioxide utilization
will be too optimistic. The cost of CEs to the environment is 0.12 million
USD/yr, which is 90% lower than the carbon tax in Scenario 1. In terms of
process economics, the NPV of this scenario is 2.23 times higher than in
the base case. The TCI and COM are 215.34 million USD and 102.39

million USD/yr, respectively.

5.3.3 Scenario 3 results
As indicated in Scenario 2, the NPV and CEs are improved by 223%
and 90%, respectively, compared to the base case. However, these

improvements are achieved by investing 1.46 times more than the capital
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investment in the base case. Therefore, it was of interest to investigate the
effect of investment on the process economic and environmental
performance of a sustainable biorefinery. As illustrated in Figure 21,
reducing the TCI budget by 17.6% (Case A) of the TCI in Scenario 2
increases the CEs by 6.32 times, and reduces the NPV by 60%. As
investment increases in the remaining cases, the process economics and
environmental performance start improving. The carbon taxes in Cases A,
B, and C are 0.76 million USD/yr, 0.51 million USD/yr, and 0.26 million

USD/yr, respectively.
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Table 17. Mass balance summary of various scenarios for 400 kton/yr
plant capacity.

Byproducts due to
Mixed alcohols Mixed acids utilizing waste
) (Mgall/yr) (Mgallyr) streams of
Scenarios biorefinery (kton/yr)

ETH PRO BUA | AA PA BA MA H. DDS

1 1400 6.00 400 6.00 3.00 200 0.00 0098 1118
2 10.00 400 3.00 11.00 5.00 3.00 2817 0.98 111.8

ETH = Ethanol; PRO = Propanol; BUA = Butanol; AA = Acetic acid; PA = Propanoic acid; BA = Butyric acid;

MA = Microalgae; DDS = Dry distiller solids.
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5.3.4 Optimal design

When all previous scenarios are compared, it can be seen that Scenario
2 is the most expensive process design: 46% more expensive than the base
case and 4% more expensive than Case C. Despite a capital-intensive
process design, Scenario 2 offers a 2.23-times higher NPV than the base
case and a 1.09-times higher NPV than Case C. Moreover, Scenario 2
utilizes 12% more CEs than Case C. Based on the improved performance,
Scenario 2 was selected as the optimal design. The topology of the optimal
design is shown in Figure 22. The overall product yield of anaerobic
digestion was calculated to be 29%, which is 7% higher than the yield
calculated by [155] via an SP.

The total capital cost was calculated to be 215 million USD. The VFA
section consumes 69% of the TCI owing to the large volume of mixed
alcohols and mixed acids produced, whereas the microalgae section
consumes 31% of the TCI, and its cost depends on the carbon dioxide
evolved from anaerobic digestion. The total installed cost breakdown of
the integrated biorefinery is shown in Figure 23A. Wastewater treatment,
cultivation of microalgae, and anaerobic digestion and DDS production are
the most dominant areas in terms of investment, with a 73% cumulative

contribution.
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The TCOM of the optimal design is 102.39 million USD/yr. The VFA
section accounts for 89% of the TCOM, whereas the microalgae section
accounts for only 11%. Variable costs are one of the main contributors to
the total manufacturing cost and are dominated by raw material costs. The
raw material costs of the VFA and microalgae sections account for 53%
and 22% of the TCOM, respectively. The seaweed purchasing cost alone
accounts for 35% of the TCOM. Utility costs are the second dominant
factor in the TCOM. The total utility cost of the biorefinery is 24.8 million
USDl/yr.

As already pointed out, the cost of seaweed is one of the biggest
expenses and accounts for up to 35% to the TCOM. Therefore, the MSP at
which the NPV becomes zero was also calculated. The results in Table 18
indicate that the base case is more sensitive to changes in the price of
seaweed. For example, if the seaweed price increases from 90 USD/t to
100 USD/t, the NPV of the base case decreases to zero. In contrast, the
MSP for the optimal design is 112 USD/t for achieving zero NPV, which
is 12% higher than that of the base case.

Table 18 shows that the MESP of the optimal design is 1.18 USD/gal,
which is 23% lower than the base case and 35% lower than the current

wholesale price (1.82 USD/gal) of ethanol. Moreover, the MESP obtained
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from the VFAP is 9.4% lower than the MESP reported by [155] via SP.
This demonstrates that the VFAP is superior to the SP.
5.3.5 Water consumption

The freshwater requirement is an important environmental factor in
process sustainability. The results presented in Table 19 highlight that the
overall freshwater consumption of the VFA section is 6.26 gal of water/gal
of alcohols and acids. Approximately 73% of the overall water makeup is
due to water evaporation in the cooling tower.

The water loss during microalgae production is higher than that from
the VFA section owing to the evaporation of water from the pond surfaces.
The water evaporation alone accounts for 90 wt.% of the total water loss.

The total water requirement for the microalgae section is 157.7 t/h.
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Table 18. Minimum selling and maximum purchasing price of ethanol and
seaweed.

MESP MSP (USD/ton)
(USD/gal)
Scenario 1 1.54 100
Scenario 2 (Optimal design) 1.18 112
Scenario 3 (Case A) 1.42 104
Scenario 3 (Case B) 1.28 109
Scenario 3 (Case C) 1.24 110
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Table 19. Makeup water requirement of biorefinery.

Sections Makeup water Freshwater consumption
(t/h) (gal of A?%/BP)
VFA 103.7 6.26
Microalgae 157.7 9.52
a. A: water

b. B: mixed alcohols and acids
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5.3.6 Sensitivity analysis

The optimization model also performs sensitivity analysis on 16
parameters of the biorefinery to evaluate the impact of key model
parameters on the NPV. The investigated parameters are given in the
tornado chart (Figure 23B) along with their limits and percentage
variations.

The results indicate that fixed capital investment, the seaweed price,
and the internal rate of return are the most important parameters for
determining the economic viability of a biorefinery. As it is already
indicated, 35% of the TCOM is due to the seaweed purchasing cost. When
the seaweed purchasing price increases by 20%, the NPV decreases from
44 million USD to 9 million USD. Therefore, to ensure the economic
viability of a seaweed-based biorefinery, efficient farming is necessary to
increase the seaweed productivity. The selling prices of ethanol and

microalgae are critical parameters for viable biofuel production.
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A B Waste water treatment
H Cutltivation
m Anaerobic digestion and DDS production
VFA extraction
m Dewatering
u Inoculum Ponds
m MAs storage
H Mixed alcohols purification
B Hydrogenation section
m Make-up water
B Mixed acid purification
B MA storage
B CO2 delivery

[ ]
ANPV, Base Value : $44 MM m

-540 -$30 -$20 -510 S0 $10 $20 $30

H Max EMin

FCI [+ 25%]

Biomass price (50.09/kg) [+ 20%]

IRR (10%) [+ 20%]

Ethanol Price ($0.61/kg) [+ 20%]
Microalgae Price ($0.9/kg) [+ 20%]
Propanol Price ($1/kg) [+ 20%]

Acetic acid Price ($0.77/kg) [+ 20%]
DDS price ($0.14/kg) [+ 20%]

Propionic acid Price ($1.48/kg) [+ 20%]
Butanol price Price ($1.13/kg) [+ 20%]
Carbohydrates to VFAs (70 wt.%) [+ 10%]
Butyric acid Price ($1.21/kg) [+ 20%]
Manitol to VFAs (70 wt.%) [+ 10%]
Carbohydrates (20 wt.%) [+ 50%]
Manitol {12 wt.%) [+ 50%]

H2 Price ($1.6/kg) [+ 20%]

Figure 23. Total installed cost breakdown [A]; Sensitivity analysis of

biorefinery parameters [B].
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5.3.7 Potential improvements to plant economics

The results of the sensitivity analysis suggest several potential
improvements to plant economics. It is important to note that some of the
biorefinery parameters—such as the market prices of the products—are
based on the geographical and political situation, and therefore cannot be
controlled. However, parameters related to biorefinery processing can be

tuned, thereby providing room for further improvements.

5.3.7.1 Seaweed price (Goal 1)

The sensitivity analysis demonstrated that the biomass purchasing price
is a key factor for determining the economic feasibility of a biorefinery.
The base case price of dry biomass (90 USD/t) includes the cost of
macroalgae cultivation (80%) and transportation (20%) [102]. The latter
accounts for 18 USD/t of the total biomass cost. In other words, the cost of
transporting biomass from the seaweed farm to the biorefinery is equal to
7.2 million USD/yr. If the location of the biorefinery is properly optimized
the transportation cost can be reduced significantly. A 25% reduction in
the transportation cost of biomass owing to optimized biorefinery location
corresponds to 84.5 USD/t of dry feed. The results presented in Table 20
demonstrate that a 24.5% improvement in NPV can be achieved relative to

the NPV of the optimal design.
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5.3.7.2 Carbohydrates conversion (Goal 2)

Another important parameter of biorefinery processing is the
conversion of carbohydrates to VFAs. In the present study, carbohydrates
to VFAs conversion rate of 70 wt.% was assumed. Higher rates of
carbohydrate conversion require the use of novel bioreactors such as
multistage continuous high cell density reactors, in which the VFAs are
extracted continuously with a solvent mixture. Once these targets are met
and properly tuned, a marked improvement in the performance of up to 0.5
g VFA/g of seaweed can be expected, as reported by Chang et al. [156].
By assuming a 10% increase in carbohydrate conversion to VFA, and
combining this with goal 1, a 48.7% improvement in the NPV can be

achieved.
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Table 20. Effect of different goals on NPV.

Base case Goal 1 Goal 2
NPV 44.25 55.11 65.80
% improvement in NPV 0 24.5 48.7
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5.4 Conclusions

The optimal design for the SJ based biorefinery using the volatile fatty
acid platform was determined using a superstructure-based approach. To
determine the optimal design, a rigorous process synthesis mixed-integer
non-linear model was developed that takes into accounts both process
economics and the environmental impact. A techno-economic assessment
indicated that the production of biofuels and value-added chemicals results
in a minimum ethanol selling price of 1.18 USD/gal, which is 9.4% lower
than the minimum ethanol selling price achieved through sugar platform.
The NPV of the optimal design is 43 million USD for 20-year project life.
An environmental assessment indicated that the optimal design is
environmentally friendly process because it utilizes 90% of CEs produced
by the biorefinery processing. The VFA section consumes approximately
6 gallons of water per gallon of mixed acids and mixed alcohols. A
sensitivity analysis suggested a few goals that could improve the process
economics of optimal design by up to 49%. Therefore, R&D on artificial
seaweed cultivation is vital to increase the yield and lower the cultivation
costs to make brown algae an economical and sustainable biomass
resource for biofuels production. Furthermore, optimization of biorefinery

location is crucial to decrease biomass transportation cost, and
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development of low energy and capital cost processes coupled with novel
digester design are important targets for the enhancement of the process

economics.
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6 PROCESS SYNTHESIS OF BIO-SUCCINIC ACID

This chapter presents a strategy of bio-succinic acid production through
optimization of a superstructure that contains multiple biomass sources and
technology alternatives as potential candidates of the optimal flowsheet. A
MILP model was developed that performs optimization under
deterministic and stochastic conditions. Besides, the optimization model
also performs economic risk assessment and cradle-to-gate life cycle
assessment.

The main reason of this chapter is to find best process design of bio-SA
that can be integrated with standalone bio-refineries to improve their
economics — as the market value of succinic acid is 2—3 times higher than
that of ethanol. Besides, all three generations of biomass are studied to find
optimal process design using the best feedstock.

The presented chapter is an extended version of the conference paper

submitted to ESCAPE-2020, while the full-length article is in progress.
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6.1 Introduction

SA is an important precursor for producing more than 30 commercially
valuable products in pharmaceutical, food, and agriculture industries
[157]. SA is largely produced from petroleum feedstock. However,
technological advances in biorefinery have facilitated its production from
renewable feedstock [158]. Bio-SA acid is reported by both the European
Commission and the U.S. Department of Energy one of the top growing
products within bio-based market, which is projected to reach 7-10 billion
USD per year [123,159]. Despite its numerous applications and growing
market, bio-SA production is still at its fancy and not economically
lucrative compared with that from petroleum.

It has been estimated that bio-SA leads to greenhouse gas saving of 4.5—
5 kg per kg of SA when compared to petrochemical-based SA [160].
However, bio-SA is not cost-competitive with its petrochemical rival,
mainly due to its high production cost. Purification of SA from the
fermentation broth is estimated to account 60-70% of the total production
costs, while only 20-25% of the costs can be allocated to the upstream
process including biomass pretreatment and fermentation process, and
only 10-15% to the purchase of the feedstock itself [161]. Therefore, bio-

SA can only be a viable replacement for petroleum-derived SA if upstream
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and downstream technologies can lower the production cost by increasing
the product yield and selectivity in former while lowering the purification
cost in latter [159].

The necessity of major technological improvements to lower
production cost makes the bio-SA process design, a complex
combinatorial optimization problem. For instance, bio-SA can be produced
from different feedstock including 1% (sugar/starch), 2" (lignocellulose)
and 3 (aquatic biomass) generation [76,125,158,162,163]. Different
feedstock sources require different pretreatments, which in turn decides the
formation of fermentation process inhibitors. To achieve high yield and
selectivity of SA, fermenter design and its operating condition, selection
of appropriate microorganism and buffer are crucial decision variables that
will decide the downstream purification [88,164]. The potential
technological decision variables in bio-SA purification include:
centrifugation or microfiltration for cell separation, evaporation, solvent
extraction, activated carbon, ultrafiltration, precipitation, ion exchange,
reactive  extraction, bipolar membrane, electrodialysis, direct
crystallization and nanofiltration for SA separation [88]. Combining all
process alternatives from feedstock selection to downstream processing

makes the bio-SA production process very complicated in order to find
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best flowsheet for large-scale production taking into account technology
readiness level of these various technologies. Therefore, the goal of this
study is to provide clearer guidance based on multicriteria analysis
(technical, economic, and environmental) about (1) what feedstock should
be used to produce bio-SA? (2) what utilization strategy (processing route)
should be used for specific feedstock to decrease the production cost of

bio-SA? and (3) what is the impact of the processing on the environmental?

6.2 Methodology

To achieve research targets, a multi-stage framework shown in Figure
3 and described in Section 2 was used that systematically perform (1)
deterministic optimization and analysis, (2) sensitivity analysis, and
stochastic optimization and analysis, (3) economic risk assessment, and (4)

environment assessment.

6.2.1 Problem statement

The scope of this study is to identify the best process for commercial-
scale bio-SA production that has maximum economics as well as minimum
investment, risk, and environmental impact in the given search space of
processing alternatives. To solve this problem, we have selected a rigorous
economic objective function i.e., NPV that should be maximized under

deterministic and stochastic conditions. To evaluate environmental impact
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at the early-stage design we have developed a model that performs cradle-
to-gate analysis in order to evaluate the life cycle profile of different

manufacturing configurations/topologies.

6.2.2  Superstructure development

This section will outline the key sections of the bio-SA biorefinery
superstructure given in Figure 24. The novelty of the proposed process
synthesis superstructure features a comprehensive network of 39 process
alternatives with technology readiness level of 5-9 as the basis for optimal
design identification. This is to ensure that the resulting solution from
superstructure optimization is appealing from an implementation point of
view. Ten major sections or processing intervals are included in the
superstructure: feedstock, pretreatment, fermentation, cell mass removal,
concentration pre-isolation, isolation, concentration post-isolation, color

impurities removal, purification, and drying.
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As indicated in Figure 24, bio-SA can be produced using glucose,
glycerol, corn stover, and SJ. It is assumed that glycerol is obtained from
biodiesel industries, whereas glucose is obtained from sugar beet
industries. The chemical composition reported by NREL [12] and in Table
5 is used for corn stover and SJ, respectively. For effective utilization of
biomass (corn stover and SJ) in fermentation, five pretreatment
technologies are included in the superstructure: acid thermal hydrolysis of
corn stover, deacetylation followed by acid thermal hydrolysis, alkaline
(sodium hydroxide) hydrolysis, acid thermal hydrolysis of SJ, and hot
water wash hydrolysis. The experimental data pertaining to pretreatment
technologies are shown in Table 21. Note that glucose and glycerol are
pure at refinery gates and do not require any pretreatment and therefore,
they will bypass this processing interval as shown in Figure 24. Once the
biomass is pretreated, it is processed using enzymatic hydrolysis in the
presence of cellulase enzyme. The fermentation (production) of sugars can
be carried out in batch or fed-batch fermenter in the presence of different
microorganism and buffers. Nine fermentation technologies are included
in the superstructure, which corresponds to different titer (g/l), yield (g/g),
and productivity (g/I/h) of SA. The relevant operating data of fermentation

technologies are given in Table 22. As indicated before the choice of a
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buffering agent is very important regarding economics, therefore, five
buffering agents including magnesium hydroxide, magnesium carbonate,
sodium hydroxide, sodium carbonate, and ammonia are included in the
superstructure. The choice of the appropriate buffer will be made based on
the cost of a buffering agent and downstream purification technology cost.
After fermentation, cell mass can be removed using microfiltration or
centrifuge [76,165]. The broth can be then concentred either before or after
isolation of SA using evaporation or vacuum distillation [88]. Isolation can
be defined as recovering SA from its salt. Since isolation is energy-
intensive, six processing alternatives namely electrodialysis [166], direct
crystallization [167], reactive extraction [168], ion exchange column
[169], reactive crystallization [170], and membrane technology (a
combination of micro- and nano-filtration) [165] are included in the
superstructure. The colour impurities and protein can be removed from the
free acid (isolated) broth using activated carbon or nanofiltration [165],
which is then purified using solvents, (such as methanol) or crystallization

[87], and finally dried to remove moisture to desired purity.
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Table 21. Summary of operating conditions and yields for various
pretreatment technologies.

Processing conditions & P2 ¥ & PS
ATH EH|DEA ATH EH|ALTH EH ATH EH |HWW EH
Solid loading (W/w%) 30 20 8 12 12 10 20 30 20 25 25
Residencetime(mins) 5 84 120 10 84 10 120(5days) 15 84 20 48
Temperature © 158 50 80 160 50 120 50 121 50 121 50
Catalysis loading ~ 22.1* 20° 04° 8 20° 55° 20° 8 20° 0 20°
Glucose yield (%) - 191 62 - 9 - 90 - FisL - 782
Xylose yield (%) 0 - - 81 - 70 - - - - -
Mannitol yield (%) - - - - - - - 9%5 - 782

P1-P5 = pretreatment; ATH = Acid thermal hydrolysis; EH = Enzymatic hydrolysis; DEA = Deacetylation; ALTH = Alkaline
thermal hydrolysis

P1 and P4: acid thermal hydrolysis followed by enzymatic hydrolysis for corn stover [12,171] and S.japonica [15,125],
respectively

P2: Deacetylation followed by acid thermal- and enzymatic — hydrolysis [172,173]

P3: Alkaline hydrolysis followed by enzymatic hydrolysis [174]

P5: Hot water wash followed by enzymatic hydrolysis [163]

mg/g dry biomass; ’mg/g cellulose; ‘w/w%
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Table 22. Summary of operating conditions and yields for various
fermentation technologies for corn stover (F1-F3), S. japonica (F4-F5),
glucose (F6-F7), and glycerol (F8-F9).

. Fermentation Titer  Yield Productivity Ref
No.  Strain name Type Caron Source @) (gl (g/L/h) y
F1 A succinogen SHF Gluand Xyl 56.40 -~ 0.73 1.08 [1]
F2  A.succinogen Batch Gluand Xyl 42.80 0.74 0.30 [5]
F3 A succinogen SSF Gluand Xyl 4740 0.72 0.99 []
F4 E. coli Dual Phase  Gluand Man 17.40 0.73 0.24 [3]
F5 A.succinogen SHF Gluand Man 33.78 0.63 0.70 [8]
F6 E. coli Dual Phase Glu 99.20 1.10 1.31 [10]
F7 A succinogen Batch Glu 105.80 0.82 136 [11]
F8 E. coli Fed-batch Gly 66.78 1.24 093  [12]
F9 A.succinogen  Fed-batch Gly 49.62  0.87 0.64 [13]

F1-F9: Fermentation 1-9; SHF: Separate hydrolysis and fermentation; SSF: Simultaneous hydrolysis and fermentation
Glu: Glucose; Xyl: Xylose; Man: Mannitol; Gly: Glycerol
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6.2.3 Mathematical modeling of superstructure

The mathematical model of the superstructure represents large-scale
MILP model that considers mass and energy balance constraints, capital
and operating cost constraints, environmental constraints and an objective
function. Note that energy balance equations and design constraints are
non-convex that may cause difficulty in solution convergence and
computation of a global optimal solution due to large combinatorial
problem involving more than 125 binary decision variables. Therefore,
separable programming and piecewise linearization are employed by
approximating the initial mixed-integer non-linear programming problem
into mixed-integer linear programming.
6.2.3.1 Mass balance constraints

The component mass flow rate of feedstock b in the stream k can be
modelled as follows:

Ff, = Ff xxf,VbeB,Vielv, k€K, (100)

where Ff; is the mass flow rate of component i in the stream k, Ff is
the overall mass flow rate in the stream k, and xf; is the feedstock
composition of component i in the stream k.

The overall mass balance of feedstock b in the stream k is given by:

Ff = Y. fk ., vbeB, vk €K, (101)
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The logical constraint to select feedstock b is modeled as:
FF <o x y1%,vb € B,Vk € K, (102)
where ¢ represents upper bound for mass flow rate according to the
big-M method and y1% represent binary variables to select feedstock b.
These binary variables must select one optimal feedstock.
The logical constraint to select multiple feedstocks is modeled as:
Y,y1¥ < 4,vb € B,Vk € K. (103)
Splitters are used for optimizing the topology of biorefinery by the
selecting option g from stage j. The constraints pertaining to the splitters
are given by:

Yir Faij = Yi2 Pyt = 0,Yb EB,Vi € I,Vj €], (104)
and Fi% < ¢ x y25%,vb € B,Vk2 € K,Vj €],
(105)

where Fi} ; and Fj? ;are the mass flow rate of component i in the inlet
(k1) and the outlet (k2) stream of stage j when utilizing feedstock b, and
yz’g?j are the binary variables for the selection of option g from stage j.

The constraint that enforces the selection of only one technology is
given by:

Y»y25; <1,Vk €K, Vj€]. (106)
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Disjunctions are used for implementing a concentration step either
before or after the isolation step as follow:

Yra-1¥255 <LVb€EB,Vjl€], (107)

where yz’,;?jl are the binary variables pertaining to the outlet stream k2

of concertation stage j1 in the superstructure.

To find a realistic processing pathway from the superstructure, logical
constraints are used to ensure a feasible match of various processing
stages. For instance, electrodialysis cannot deal with the divalent ions such
as Mg*? and Ca*?, therefore, in fermentation, the feasible match should be
monovalent buffer i.e., sodium hydroxide that will generate monovalent
ion such as Na*!. Likewise, the acidification of broth before electrodialysis
would be an infeasible match. These logical conditions are modeled as:

Y2 y2551 — 255, <0,Vb € B,Vjland j2 €], (108)
where yz’g?jl and yz’g?jz are the binary variables corresponding to the

outlet stream k2 of stage j1 and j2.

The mass balance equation for reactors and purification technologies
such as the pretreatment, deacetylation, enzymatic hydrolysis, fermenter,
conditioning vessel, acidification vessel, water splitting electrodialysis,
reactive crystallization, and thermal cracker, where the reactant r is

converted to the product p is given by
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Fy2 = Fjr; X @8 +F), . Vb €BVk1&k2€K,Vvp&rel
(109)

where F}2 »,j 1S the mass flow rate of product p in the outlet stream k2 of
stage j when utilizing feedstock b, F, b 1 j Is the mass flow rate of reactant r
in the inlet stream k1 of stage j when utilizing feedstock b, F* p j Isthe mass
flow rate of product p in the inlet stream of stage j when utilizing feedstock
b, and (pbpr] is the yield of product p from reactant r in the outlet stream

k of stage j when utilizing feedstock b.
The mass balance constraint for the feedstock storage and handling,
mixers, pumps, bypass, and heat exchangers are given by
Ff? = Ypk_ FfLvielvk2 €K, (110)
where F/} is the mass flow rate of component i in the inlet stream k
when utilizing feedstock b and F;7 is the mass flowrate of component i in
the outlet stream k2 when utilizing feedstock b.
The amount of solids at any stage j is controlled by
Ff.; < af,; X Ff;,VbeB,VkeK,viel,vje], (111)

and F¥; = YU Ff.; Vb E€B, Yk €K, Vj€], (112)
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where FY; i, Ff;, and af; ; is the mass flow rate of component i-, the
total mass flow rate-, and the mass fraction of componenti-in the
stream Kk of stage j when utilizing feedstock b, respectively.

The catalyst loading at any stage j is controlled by

Ff, < Yo Ffj x BE; Yk €K, Vj €], (113)
where B,’,‘J is the catalyst loading per kg of incoming feed in the
stream k of stage j when utilizing feedstock b.

The mass balance of component i in the outlet key-stream k in the
separator, washer, microfiltration, belt filter press, centrifuge,
nanofiltration, evaporation, distillation, activated carbon column, reactive
extraction, back extraction, electrodialysis, crystallization, ion exchange
column, solvent purification, flash column, and dryer is given by
Fi%, = Fil; x §f3,vb e B,Vkland k2 e K,Vi€l,vj €], (114)
and Fy7; = Fy; x(1—¢f%;),vb€B,Vk1 €K, viel,vje], (115)

where (b i j represents the recovery of component i in the outlet stream
k when utilizing feedstock b, F¥ ” is the mass flowrate of component i in
the inlet stream k when utilizing feedstock b and Ff u is the mass flowrate

of component i in the outlet stream k2 when utilizing feedstock b.
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The feedstock purchase is bounded by its availability (©) and the
minimum purchase amount (Y):

O > Feed =Y. (116)
6.2.3.2 Energy balance constraints

The power (P, ;1) consumed during the processing of feedstock b in
stage j1 is given by

Ppjs = Yk Fft X @;1,Vb € B,Vj1 €], (117)
where @, is the power required per kg of feed rate in stage j1.

The power consumed during the processing of feedstock b in desalting
electrodialysis (P, pgp) and water splitting electrodialysis (P, wsep) 1S
given by

Pyppep = Y Fiii X @pep, Vb € B, Vil €1, (118)

and Powsep = Y1 Fii X Owsep, Vb €B, Vil €1, (119)

where @prp and @y,sgp are power required per kg of sodium succinate

in desalting electrodialysis and water splitting electrodialysis, which is
~3.5 and ~2.5 kWh per kg of sodium succinate, respectively [161].

The power consumed during the processing of feedstock b in

crystallizer (Pp,crys) is given by

Ff
Vb,crys = Z(kl,i)% X Tcrys) Vb € B, (120)
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and Pycrys = Vb,crys X Bcrys, Vb € B, (121)
where V;, crys is the volume of crystallizer in m?, p,’,"li is the density of

component i in the inlet stream k1, 7-zys residence time (1200 s), and

@ crysis the power required in a crystallizer, which is 2 kW per m® [76].
The power consumed during the processing of feedstock b in filtration

(Po.FiL) is given by

FEL
SN Ze Ny 2
Ppi
Ay B, 3 =0 fhle By (122)
’ YFIL
and Pb,FIL =~ Ab,FIL X QFIL:Vb € B, (123)

where Ay g, is the area of rotary vacuum filter in m?, g, is flux,
which is 400 L.m2.h, and @, is the power required (0.8 KW per m?) in
crystallizer [76].

The energy (Ebji) required in kWh per m? during the processing of

feedstock b is determined by a relation proposed by[175] and as follows:

Bj1

m,VbEB,V]l E], (124)

Eb,jl =

where J = {Microfiltration, Nanofiltration}, g;; is the energy required
at the membrane surface, which is 50 W per m?, Yy is membrane flux,

which is 20 L.m2.h’! for microfiltration and 50 L.m™.h" for nanofiltration,

and n;; is membrane efficiency (50%).
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Once the energy required is calculated then the power consumption

(Pp,j2) in the membrane can be calculated as follows:

k1

E(m,i)%
Apjr = w—b ,Vb € B,V,Vi € I,Vj1 €], (125)
j1
and Pb,jZ = Ab,jl X Eb,jlﬂVb (S B,V]l E], (126)

where A, ;; is an area of micro- and nano-filtration in m2.

The power (Pp pump) cOnsumed in the pump can be calculated as:

Zn_z 5 pk2 _ pki1
Pb,pump = 2= b X( : = )1 (127)

Npump

where p,, ; is the volumetric density of component i, P2 is the outlet
pressure, Pytis the inlet pressure, Npumyp 1S the pump efficiency.

For each unit operation involved in the processing of feedstock b, the
following energy balance constraint was used:
Sty P oL T+ Quy = ik, R ookl THS, Wb € Bvj €
J,Vk1l and k2 € K, (128)

where Q, ; is the heat duty of stage j, cpj; jand cpy3 ; are the specific
heat of component i at the inlet (k1) and outlet (k2) conditions of stage j

respectively. Tlﬁf} and Té‘jare the temperature of inlet and outlet conditions

of stage j.
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Heat balance in the reboiler is determined by a relation proposed by [46]

and rearranged as:
Qvj1 = A+ R)XI, A (129)
The cooling heat load needed for the condenser is given by:
Qvji =~ +R I, ff (130)
where £45 and £,’f™ are component molar flow rate in distillate and
bottom, respectively, and A; is the latent heat component i.
6.2.3.3 Economic analysis constraints

The TEA model was formulated based on the strategy presented in

Section 2.2.

6.2.3.4 Environmental analysis constraints

An environmental assessment model was developed to calculate the life
cycle profile of bio-SA acid production. The scope of analysis is cradle-to-
gate that consider environmental impact caused by four categories: raw
material extraction and transportation to biorefinery (61, .), chemicals
used in different stages of processing/biorefinery (62, .), heat and power
consumption in biorefinery 63, , ., and byproducts and waste released to
the environment 64, ,,, .. These categories are quantified using Eqgs. (131-

134), respectively.
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k
81y, = 2202 vb € B,Ve € E, (131)

K. ,
82y, = 27T2bie vy € B Vi€ I, Ve € E, (132)
a Pc
83, = LI3le yp e B vi€ELVe€E, (133)
L Pc
Flfix]"lb,m,e

and 04pme = , Vb€ B,Yyme M,Ve € E, (134)

where y1p, ., ¥2p e ¥3b1es Y4bme are the characterization factors or
inventory data to describe the environmental influence of each impact
category e  caused by the aforementioned  categories
(61pe,62pie,03p 1 and 64p o).
The total impact category &, . is determined as follows:
Ope = O0lpe+02pe +2103p 16+ 2m4pme- (135)
The inventory data or characterization factors required to perform life
cycle assessment was taken from SimaPro V8.2.3 software using CML-IA
baseline VV3.03 characterization method. Eleven environmental indicators
described in Section 2.3 are considered in the present model. One kg
product (bio-SA) was considered as a functional unit to compare the life

cycle profile of different biorefinery configuration.
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6.3 Results and discussion
6.3.1 Deterministic analysis
6.3.1.1 Optimal feedstock and its processing route

The optimal feedstock and its processing route to produce bio-SA is
investigated by maximizing the NPV with the nominal parameters reported
in Table 23 and Table 24. Note that all uncertainties in the parameters are
disregarded here. The summary of process indicators including NPV, TCI,
TCOM, and MPSP are presented in Figure 25A, while the total capital
cost breakdown is presented in Figure 25B. Results in Figure 25A
indicate that utilizing glycerol via the processing pathway presented in
Figure 26A leads to the highest NPV of 50 million USD compared to
processing pathways of all remaining feedstock for a plant scale of 15,000
t/y and 20 years of project life. The optimal upstream processing route
encompasses a fed-batch fermenter using E. coli and sodium hydroxide as
a bacterial strain and buffer, respectively. The optimal downstream
processing route consists of microfiltration, nanofiltration, vacuum
distillation, crystallization, and drying to produce high-grade SA of 99.2
wt% purity. The total investment cost of the biorefinery is 43 million USD,
where 71% of the TCI corresponds to fermentation and 29% to

purification, as shown in Figure 25A and Figure 25B, respectively. The
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main reason for high upstream investment is found to be the utilization of
large volume fermenters up to 2600 m* due to the long fermentation time
of 72 hours. Therefore, efficient strains are crucial to decrease the
fermentation time in order to decrease capital investment. The minimum

product selling price is calculated to be 2.07 USD/kg.
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Figure 26. Optimal processing pathway for glycerol (A), corn stover (B),
glucose (C), and S. japonica (D) through deterministic optimization (dark
blue solid arrows) and stochastic optimization (dark blue dashed arrows).
Black solid lines are common unit operations in both deterministic and
stochastic optimization.
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6.3.2 Comparison of optimal feedstock and its processing route
with suboptimal solutions

An integer cut algorithm (Eq. 18) is used to find suboptimal topologies
[72]. Corn stover is found the second-, glucose is third-, and SJ is the least-
optimal feedstock to produce bio-SA via the processing pathway presented
in Figure 26B-5D that leads to an NPV value of 47.6, 44.4, 15.29 million
USD, respectively. The optimal processing route of corn stover consists of
acid thermal hydrolysis, separate hydrolysis and fermentation using A.
succinogenes and sodium hydroxide buffer, centrifuge, ion exchange
column, crystallization and drying. As in the processing pathway of
glycerol, bio-SA production from glucose does not require pretreatment.
Indeed, its upstream processing pathway consists of dual-phase
fermentation using E. coli and sodium hydroxide as a bacterial strain and
buffer, respectively. The downstream processing pathway is similar to that
of glycerol. For SJ, the hot water wash was found to be the optimal
pretreatment technology compared to acid thermal hydrolysis in the case
of corn stover. Regarding the optimal topology of SJ, the fermenter type,
bacterial strain, buffer, and downstream processing pathway is similar to

that of corn stover.
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Overall economic results shown in Figure 25 indicate large variability
in bio-SA selling price from 2.07-2.58 USD/kg. Likewise, the total cost of
investment varies between 34-89 million USD, being lowest for the
glucose processing pathway and highest for the SJ processing pathway.
The total capital cost breakdown shows that in the processing pathway of
all feedstock, fermentation and purification are the most expensive process
areas with 56-70% and 23-32% contributions to the total capital cost,
respectively.

6.3.3 Sensitivity analysis

A single-point sensitivity analysis was performed on the optimal
topologies mentioned in Figure 26 in order to evaluate the most critical
parameters on the NPV. The variables evaluated include the cost of feed,
price of the product, utility cost, TCI, income tax rate, and plant capacity,
while the variation i.e., maxima and minima pertaining to these variables
are reported in Table 23 and Table 24. Results in Figure 27 indicate that
optimal topologies of different feedstock have different critical parameters
that affect the process economics. Except for the feedstock cost, glucose
topology was found to be the least sensitive to uncertainties compared to
topologies of other raw materials. Product price, total capital investment,

and feedstock cost are the most influential parameters to NPV in all cases.
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In all topologies, the bio-SA selling price was found to be one of the most
dominant parameters for the economic viability of the process. Likewise,
increasing plant capacity was found economically favorable for all
processing pathways. Feedstock cost was found to be a very crucial
parameter for all processing pathways, most sensitive in processing
pathway of glucose that can increase NPV up to 30 million USD when
glucose cost is at 0.58 USD/kg or can decrease NPV to 15 million USD
when glucose cost is 15% more than the current market price of 0.99
USD/kg. The above-mentioned sources of uncertainty indicate that
recommending an optimal feedstock and its processing route based on
deterministic condition alone is not reliable. It is quite possible that the
deterministic optimal pathways only perform well under the nominal
scenarios and is not a robust solution when the uncertainties are present.
Thus, in this study, the above-mentioned sources of uncertainty are taken
into account and analyzed further to find optimal feedstock and its

processing pathway under uncertainty.
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Table 23. Uncertainties in chemical prices based on historical prices.
Uncertainties presented in color cells applicable to both single-point
sensitive analysis and stochastic analysis.

Chemicals Min Max Chemicals Min Max

Corn Stover 31.3% 37.5% Steam 19.6% 8.8%

S. Japonica 0.0% 50.0% Acid 15.0% 16.2%

Glucose 41.3%  15.0% H3PO4  48.1% 7.1%
Glycerol 20.0%  15.0% DDS 40.0% 57.1%
Succinic acid 20.0%  20.0% CO2 15.0% 15.0%
Trioctylamine 15.0%  15.0% NH3 58.7% 54.7%

Trimethylamine  15.0%  15.0% Enzymes  15.0% 15.0%

Ammonium
36.5% 15.4% Methanol 48.4% 0.0%

bisulphate

Note that £15 variation is assumed for chemicals that don’t have historical cost
data available in literature. The variation of chemical prices is around mean value
which is reported in Table 3.
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Table 24. Uncertainties in the process economic and environmental
indicators [12,34,74,176]. Uncertainties presented in color cells applicable
to both single-point sensitive analysis and stochastic analysis.

Min Max

Equipment costs 20% 50%
Utility costs 20% 20%
Environmental parameters 20% 20%
Plant capacity 20% 20%
Discount rate 20% 20%
Income tax rate 20% 20%
Yield in reactors? 10% 10%

Efficiency in purification
10% 10%
technology®

aReactors = Acid thermal hydrolysis, deacetylation followed by acid thermal
hydrolysis, alkaline pretreatment, hot water wash, enzymatic hydrolysis,
fermentation 1-9

bPyrification = Electrodialysis, direct crystallization, reactive extraction, ion
exchange column, reactive crystallization and membrane technology

The variation of indicators is around mean value which is reported in Table 2 and
Table 4.
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6.3.4 Stochastic optimization

Robust (stochastic) optimization was performed to determine the most
promising feedstock and its processing pathway. The main objective here
is to determine the processing pathway that maximally remains
economically viable compared to all other processing pathways under
uncertain conditions. Therefore, the most influential sources of
uncertainties determined by the single-point sensitivity analysis are now
characterized using a uniform distribution function. In addition,
parameters related to life cycle assessment, and yields in pretreatment,
enzymatic hydrolysis, fermentation, and purification are taken into account
to calculate process indicators and risk assessment under uncertainty.
Therefore, for further analysis, the scenario to be analyzed was set-up
based on historical cost data on the raw materials and uncertainty range
suggested in literature for process indicators. The data regarding the range

of uncertain parameters are given in Table 23 and Table 24.

6.3.5 Optimal feedstock and processing route under uncertainty

In order to identify an optimal feedstock and its processing route under
uncertainty, 500 scenarios were generated, and the results are mapped and
statistically analyzed. The frequency of selection of glucose, glycerol, and

corn stover are 235/500 (47.0%), 145/500 (29.0%), and 120/500 (24.0%),
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respectively, which makes the glucose 1% in the ranking, followed by
glycerol and corn stover. It can be seen that the results of the feedstock-
ranking from robust optimization are different than those from
deterministic optimization, which indicate that the uncertainty in the
dataset indeed has a large impact on the selection of optimal feedstock. SJ
is not selected a single time in 500 scenarios which indicate that at the
current technology level of efficiency and feedstock cost, the production
of bio-SA is not economically viable from it.

Regarding the topologies of the selected feedstock, 37 unique pathways
are found as shown in Figure 28; 11 for glucose, 10 for glycerol, and 16
for corn stover. Here, only the highest frequency pathway can be
considered as a robust optimal processing pathway for further analysis.
Results presented in Figure 28 show that the highest frequency processing
pathway for glucose, glycerol, and corn stover are similar to their
deterministic pathway except for the glucose where different buffering
agent i.e., ammonia instead of sodium hydroxide is selected. The
similarities of stochastic based biorefinery structures to the one achieved
in the deterministic optimization indicate the robustness of deterministic
based processing pathways. Even though SJ is not selected even a single

time in 500 scenarios, however, to present a rigorous comparative analysis
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between all feedstock and their processing pathways, an optimal
processing route of SJ obtained from deterministic calculation was also

included in further calculations.
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6.3.6 Process indicators distribution

The highest frequency optimal topologies shown in Figure 28 i.e.
pathway 1 for glucose, glycerol, and corn stover as well as a deterministic
optimal pathway for SJ presented in Figure 26D are further analyzed to
evaluate the distribution of process indicators under uncertainty. Here the
binary variables corresponding to the aforementioned optimal pathways of
all feedstock are fixed and the optimization problem is solved for 1000
times using Monte Carlo simulation for all uncertain parameters listed in
Table 23 and Table 24 to evaluate the distribution of process indicators.

Results in Figure 29A-B indicate that SA production from glucose and
glycerol have comparable NPV and MPSP, 37.74 million USD and 2.26
USD/Kkg in former and 34.50 million USD and 2.31 USD/kg in later,
respectively. However, variations in NPV and MPSP of glucose-based SA
is slightly higher than glycerol-based SA, which is according to the results
of single-point sensitivity analysis where glucose is found most sensitive
to feedstock cost. Despite the comparable process economic indicators and
aforementioned variations, SA production from glucose through pathway
1 is still much more promising due to the fact that TCI required is 31%
lower compared to SA production from glycerol through pathway 1. This

indicates that the rate of return on investment is much higher in glucose-
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based biorefinery, which is a very important economic parameter from the
perspective of investors. A significant change in NPV and MPSP are
observed in processing pathway of corn stover in which 30% decrease and
7% increase in former was observed compared to glucose-based SA. SJ
has the worst process economics with a negative NPV that corresponds to
the average of -20.26 million USD and MPSP of 3.10 USD/kg, which is
154% lower and 37% higher than that of pathway 1 for glucose,

respectively.
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6.3.7 Risk assessment

Risk is evaluated based on the MPSP by comparing the current market
selling price of petro-chemical based SA with the bio-based SA. In this
study, the risk is defined as the probability at which the manufacturing
process produces bio-SA at a price higher than the target petro-chemical
based SA price. To evaluate the risk, we assumed that the petro-chemical
based SA price lies between 1.6-2.0 USD/kg. Results in Figure 30 show
that the bio-SA production through pathway 1 of glucose is potentially the
best investment alternative since it has lower risk. The risk associated with
bio-SA production via the optimal processing pathway of glucose,
glycerol, corn stover and SJ at the market selling price of 2 USD/Kkg is 85%,
97%, 99%, and 100%, respectively. It was of interest to calculate the
market selling price of bio-SA at which the probability of risk becomes
100% for all optimal topologies. The results indicate that the selling price
of bio-SA at 1.65 USD/kg for glucose, 1.85 USD/kg for glycerol, 1.87

USD/kg for corn stover, and 2.30 USD/kg for SJ leads to 100% of the risk.
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6.3.8 Environmental assessment

The overall environmental assessment results shown in Figure 31
indicate that bio-SA production from the processing pathway of glucose is
the most environment-friendly option compared to the processing
pathways of glycerol > corn stover > and SJ. The main reason of better life
cycle profile for the processing pathway of glucose is found to be high
yield and titer, which decrease both upstream and downstream size
(capacity) as well as process energy and chemical requirement compared
to other processing pathways. SJ is the worst environmental scenario due
to the large consumption of feedstock, which increases the size of
biorefinery, utility and chemical consumption in both upstream and
downstream. In addition, the necessity of two extra processing areas i.e.,
pretreatment and DDS purification in corn stover and SJ, increase their

environmental impact scores more than that of glucose and glycerol.
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A better insight can be obtained by comparing the breakdown of
feedstock and all biorefinery areas including pretreatment, fermentation,
and purification in order to understand the critical parameters to
environmental indicators. Figure 32 presents the relative contribution of
feedstock and biorefinery areas to the life cycle profile. Abiotic depletion
potential is largely affected by the emissions from the purification area, in
which a large amount of sulfuric acid used to regenerate free SA from its
salts is the main cause. About 0.92-1.15 kg of sulfuric acid is consumed to
produce one kg of SA. High agitation power needed in the fermenter and
large consumption of heating utility in the purification area is the main
contributor of abiotic fossil fuel depletion potential. The greenhouses gases
released (1) during the consumption of fossil fuels to power the
biorefinery, (2) from the processing to the atmosphere, and (3) from the
extraction, preprocessing, and transportation of the raw materials to
biorefinery gates have a significant impact on the global warming potential
indicator. The heating utility in the purification area is the main driver for
global warming potential. Indeed 66.0%, 78.7%, 72.3%, and 71.5% of the
total process energy consumption is dedicated to downstream in the
processing pathway of glycerol, corn stover, glucose, and SJ, respectively.

Consequently, 50-70% greenhouse gases emissions that are generated
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from the utility consumption are contributed to downstream, where phase
change operations such as distillation, evaporation, and drying take place.
In the upstream, power consumption due to agitation in the fermenter is
found the main contributor to global warming indicator. Overall, cradle to
gate analysis indicates that the optimal processing pathway of glucose,
glycerol, corn stover, and SJ has global warming potential of 3.99, 4.33,
8.19, 12.02 kg CO./kg SA, respectively. A large amount of buffering agent
(2 moles of NaOH per mole of SA) in fermentation area and acid utilization
in downstream purification are the main contributors to ozone depletion
potential, human toxicity potential, freshwater aquatic ecotoxicity
potential, marine ecotoxicity potential and terrestrial ecotoxicity potential.
Besides, utility consumption, especially in downstream, is found another
critical parameter to these indicators. Note that the environmental burden
only from the buffering agent is 38.3-48.3%, 38.5-46.2%, 43.3-49.8%,
and 22.7-28.9% to human toxicity potential, freshwater aquatic
ecotoxicity potential, marine ecotoxicity potential, and terrestrial
ecotoxicity potential, respectively. Drivers for the acidification potential
include sulfuric acid (20.7-31.5%), utility (26.6-54.7%), and a buffering
agent (15.5-24.5%). In the pretreatment of corn stover by acid thermal

hydrolysis, the contribution of ammonia in the feed neutralization step is
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about 6%. In photo-oxidant formation potential, the almost identical trend
to acidification potential is observed. The emissions from the wastewater
treatment area are the key driver for eutrophication indicator.

To this end, analysis of the distribution of environmental impacts and
their comparison with other topologies suggest (1) neutral fermentation
should be replaced with the acidic fermentation to avoid utilization of a
large amount of buffer in upstream and a large amount of acid in
downstream, (2) heat integration should be performed to reduce high utility
requirement. It is believed that the efficient use of utility via heat
integration not only improves the energy utilization but would also
significantly decrease numerous impacts (abiotic depletion, ozone
depletion, radiation, global warming potential, and to lower extent
acidification and human toxicity) and will hence improve the overall

environmental performance.
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6.4 Conclusion

A superstructure-based optimization model is developed for the
synthesis of bio-succinic acid from different biomass sources. The
proposed model performs multi-level analysis to provide robust decision-
making support.

The overall results indicated that bio-succinic acid production via the
optimal pathway of glucose is economically and environmentally better

option.
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7 CONCLUSIONS AND FUTURE PERSPECTIVES

The objective of this thesis was the process synthesis of macroalgal
biorefinery through biochemical pathways. A superstructure-based
optimization approach was used to develop models to find optimal raw
material, product portfolio, and process technology via sugar platform and
volatile fatty acid platform. The results showed that the production of
biofuels and biochemicals from brown algae, Saccharina japonica are
economically viable. Process integrations showed that both process
economics and environmental profile can be improved significantly
compared to standalone biorefinery design.

The results of the chapter of 3 and 4 for sugar platform indicated
that bioethanol and biochemicals production from Saccharina japonica is
economically viable over lignocellulosic biomass by having lower capital
costs, energy consumption, and minimum ethanol selling price. The
process economic results detailed in chapter 3 indicated that the MESP of
the optimal design was 1.97 USD/gal. On the contrary, in chapter 4, when
process integrations were performed via bio-SA- and microalgae-
production with the standalone bioethanol processing, the MESP of
optimal design decreased to 1.31 USD/gal. This represents an

improvement of 33% in MESP. Concerning environmental sustainability,
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the optimal design in chapter 4 achieved a 90% reduction in CO;
emissions, as well as a 38.6% reduction in freshwater consumption. The
risk of the optimal design was found to be 20-44% based on the MESP.
The results of chapter 5 for volatile fatty acid platform indicated
that the production of biofuels and value-added chemicals via optimal
design results in a minimum ethanol selling price of 1.18 USD/gal, which
is 9.4% lower than the minimum ethanol selling price achieved through
sugar platform. An environmental assessment indicated that the optimal
design is an environmentally friendly process because it utilizes 90% of
CEs produced by biorefinery processing. The water footprint is calculated
to be 6 gals/gal of mixed acids and alcohols from VFA section. The
techno-economic results revealed that biofuel and biochemical production
via the volatile fatty acid platform consumes less capital investment
compared to that of sugar platform. This because the VFAP does not
require aseptic conditions and does not utilize expensive enzymes and
capital-intensive fermenters. Furthermore, the VFAP has a higher product
yield than the SP. This is primarily owing to the ability of anaerobes to
digest all the non-lignin components of the biomass, including
carbohydrates, proteins, and lipids, whereas, in the case of the SP, only the

carbohydrate content of the biomass is converted to bioethanol.
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In chapter 6, results from robust optimization indicated that glucose
is the first- and glycerol is the second-best feedstock to produce bio-SA at
the lowest selling price of 1.7-2.6 USD/kg and 1.9-2.5 USD/kg assuming
one standard deviation, respectively through their optimal processing
pathways. Corn stover can be excellent feedstock to produce bio-SA,
however, it needs a major technological breakthrough to avoid expensive
pretreatment and high capital investment up to 67-87 USD million which
is much higher compared to optimal processing pathway of glucose. SJ is
not suitable for standalone bio-SA production due to the inability of
enzymes to process alginate which is a major carbohydrate 25-30 wt% to
bio-SA. However, as presented in chapter 4 (See Scenario 2 in Table 16),
integration of bioethanol production from alginate and bio-SA production
from laminaria and mannitol increase the process economics compared to
standalone production of bio-SA. Risk assessment shows that bio-SA
production from an optimal pathway of glucose is the best alternative due
to less associated risk. The environmental profile indicates that the optimal
pathway of glucose is the most environmentally friendly process followed
by glycerol, corn stover, and SJ.

Overall conclusions indicate that future seaweed biorefinery design

through a biochemical pathway should be like as shown in Figure 33. The
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seaweed is first processed to extract the most valuable components from
it, second, production of biofuels through anaerobic digestion to produce
mixed alcohols, and finally, process integrations through succinic acid
production and wastewater treatment facility to improve process
economics and environmental sustainability.

Considering the general trend of increasing energy demand, the
efforts required for diversifying energy supplying sources cannot be
underestimated: more environment friendly energy sources should replace
the existing climate change causing ones. At the same time the
corresponding energy generation processes should be improved in terms
of reducing the carbon emission. In order to transform the efforts into
reality, the new energy sources and the associated energy generation
processes should be economically competitive. Consequently, significant
research and development efforts are required in evaluating their economic
feasibility due to the existence of a large number of intermediate
processing routes. The presented superstructure-based framework plays an
important role in evaluating optimal design, economics, and environmental
sustainability of a macroalgae-based biorefinery under uncertainty. It can
be further utilized in the decision-making framework of new energy

systems.
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Figure 33. Proposed block flow diagram for seaweed biorefinery.
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7.1 Future perspectives and research directions

This study has used superstructure-based optimization approach to

support

the development of seaweed-based biorefinery concepts.

However, several issues presented below could still benefit substantially

from further development.

1)

2)

3)

4)

5)

The optimal topologies are the function of number of alternatives
included in the superstructure. Therefore, the design space
should be further extended to identify more promising solutions
The developed superstructures should be combined and extended
to incorporate thermochemical conversion concepts to find more
sustainable solutions for seaweed based biorefinery

Process synthesis approach should be integrated with supply
chain network analysis for more robust solutions

Generic models should be formulated that allows managing a
large complex process synthesis problem in a reasonable time
The databases and optimization models, which are formulated to
investigate seaweed biorefinery design are not fully user-friendly.

A graphical interface would eliminate such demerits.
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