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ABSTRACT 

Macroalgae are a valuable energy source that can be transformed 

into numerous products most notably fuels and chemicals due to their high 

content of carbohydrates, proteins, and vitamins. This study evaluates 

optimal designs for biofuels and biochemicals production from brown 

algae species Saccharina japonica via biochemical platform i.e. sugar 

platform and volatile fatty acid platform. Furthermore, this study 

investigates optimal designs for integrated biorefineries to compare their 

economics and environmental performance with standalone biorefinery 

designs. A superstructure-based process synthesis approach was used to 

develop optimization models that can investigate optimal design based on 

several objective functions such as net present value, yield, and CO2 

emissions. The developed models provide clear guidance on multi-criteria 

analysis consisting of technical (yields, operating conditions, and 

bottlenecks), economical (capital costs, energy consumption, minimum 

product selling price, maximum seaweed price), and environmental 

aspects (carbon dioxide emissions, water footprint, and cradle to gate life 

cycle assessment) of biorefinery. 

Chapter one elaborates the motivation for this work. First, 

biorefinery concepts are explained to present an overview of possible raw 



 

ix 

 

materials and conversion routes that can be used to produce biofuels and 

biochemicals. Social- and technical-challenges of producing biofuels from 

first- and second-generation biomass are then highlighted. The benefits of 

macroalgae, particularly of Saccharina japonica as a biorefinery feedstock 

are described. The main challenges of the seaweed-based biorefinery are 

then defined and role of process system engineering to address the major 

challenges and supporting the development of biorefinery are explained. 

Finally, literature review in the context of process synthesis and design of 

biorefinery is presented, therefore, highlighting literature gaps and the 

scope of the PhD thesis. 

Chapter two explains the methodology used for synthesis and 

design of biorefinery. A superstructure-based optimization framework is 

presented by elaborating (1) different steps of framework, (2) objectives of 

each step, (3) input needed at each step to perform analysis, and (5) outputs 

from each step. The applied framework can perform optimization under 

deterministic and stochastic conditions. A strategy to quantify economic 

risk is discussed and the mathematical formulation of the optimization 

framework is outlined. Afterwards, techno-economic and environmental 

assessments methodologies are explained. Finally, input data used for 

techno-economic assessment including factors to determine total capital 
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investment and total cost of manufacturing, equipment cost, chemicals 

costs, and utility costs are detailed. 

Chapter three presents the development of a mixed-integer linear 

programming model to provide decision support for investigating optimal 

design for integrated biorefinery producing bioethanol and proteins 

through the sugar platform. The developed superstructure and its 

mathematical formulation are outlined. Two objective functions were 

studied: maximization of yield and maximization of net present value. 

Minimum ethanol selling price and maximum seaweed price were 

determined to evaluate the economic viability of an optimal design. Sub-

optimal process designs were also investigated, and sensitivity analysis 

was performed to identify major cost drivers for economic improvement. 

Finally, potential goals and research targets were proposed based on the 

results of sensitivity analysis for potential improvements to plant 

economics.  

Chapter four demonstrates strategies to utilize all emissions from 

macroalgal biorefinery through sugar platform. Indeed, the presented 

superstructure is an extension of the one described in the previous chapter. 

The central idea of optimization in this chapter is (1) to improve overall 

process economics and environmental profile by utilizing waste streams 
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through process integration and (2) to compare the process economics- and 

environmental-indicators with standalone process design of biorefinery. 

The optimization model was formulated as a mixed-integer nonlinear 

programming model and solved for two different objective functions: 

maximization of net present value and minimization of CO2 emissions. 

Process economic indicators were determined. A comprehensive 

sensitivity analysis model followed by a Monte Carlo simulation model 

was formulated to find the key drivers of biorefinery. Finally, economic 

risk assessment was performed to quantify economic risk based on 

minimum ethanol selling price. 

 Chapter five evaluates optimal designs, economics, and 

environmental performance of the mixed acids and mixed alcohols 

production through the volatile fatty acid platform. Seventeen designs 

alternatives were used to develop a superstructure. Mixed-integer 

nonlinear programming model was developed. Process integrations were 

incorporated into the model to maximize the sustainability of biorefinery. 

The effect of uncertainties on the process economics was investigated, and 

future targets were proposed for potential improvements to plant 

economics. 
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Chapter six presents a strategy of bio-succinic acid production 

through optimization of a superstructure that contains multiple biomass 

sources and technology alternatives. A mixed-integer linear programming 

model was developed that performs optimization under deterministic and 

stochastic conditions. Besides, the optimization model also performs 

economic risk assessment and cradle-to-gate life cycle assessment. The 

main reason for this chapter is to investigate optimal process design of bio-

succinic acid that can be integrated with standalone bio-refineries to 

improve their economics. Besides, all three generations of biomass are 

studied to find optimal process design using the best feedstock. 

Chapter seven provides a summary of this work and concludes with 

a comparison of all the process designs based on their economic and 

environmental merit.  
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개요 

거대 조류는 탄수화물, 단백질 및 비타민의 함량이 높기 때문에 

바이오 연료 및 화학 물질과 같은 여러 제품으로 전환될 수 있는 

귀중한 자원이다. 이 연구는 생화학적 플랫폼, 즉 당 플랫폼 및 휘발성 

지방산 플랫폼을 이용하여 갈조류인 다시마로부터 바이오 연료와 

화학 물질을 생산하는 최적의 바이오 리파이너리 설계를 평가한다. 

또한, 이 연구는 통합 바이오 리파이너리의 최적의 설계를 조사하여 

경제성과 환경성 측면에서 독립형 바이오 리파이너리와 비교한다. 

최적화 모델을 개발하는데 상부구조 공정 합성 접근법이 사용되었고, 

최적설계를 조사하기 위해 순현재가치, 수율, 이산화탄소 배출 등의 

몇가지 목적함수가 사용되었다. 개발된 모델은 바이오 리파이너리의 

기술적, 경제적, 환경적 측면의 분석에 대한 분명한 가이드 라인을 

제공한다. 
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1 장은 이 연구의 동기에 대해 자세히 설명한다. 우선 바이오 

연료와 화학 물질 생산에 사용될 수 있는 원료와 전환 경로의 개요를 

제시하기 위해 일반적인 바이오 리파이너리 개념이 설명된다. 이 때 

1 세대 및 2 세대 바이오 연료 생산이 직면한 사회적 및 기술적 과제 

또한 강조된다. 그리고 나서 바이오 리파이너리 공급 원료로서의 

거대 조류, 특히 다시마의 이점이 기술되며, 주요 과제를 해결하고 

바이오 리파이너리의 개발을 지원하는 공정 시스템 공학의 역할이 

설명된다. 마지막으로 바이오 리파이너리의 공정 합성 및 설계와 

관련한 문헌 검토를 통해 현행 연구의 간극이 확인되고 이 연구의 

범위가 설명된다.  

2 장은 이 연구에서 바이오 리파이너리의 합성 및 설계에 사용된 

방법론을 서술한다. 상부 구조 기반 최적화 프레임 워크는 다음의 

순서로 설명된다: (1) 서로 다른 프레임 워크 단계, (2) 각 단계의 목표, 

(3) 분석을 수행하기 위해 각 단계에서 필요한 입력, (4) 각 단계의 
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출력. 이 최적화 프레임 워크는 결정적 조건을 물론 확률적인 

조건에서도 최적화를 수행할 수 있다. 경제적 위험을 정량화하는 

전략이 논의되며 최적화 프레임 워크의 수학식 역시 요약되었다. 

기술 경제 및 환경 평가 방법론의 설명엔 총 자본 투자 및 총 제조 비용, 

장치 비용, 화학 물질 비용 및 유틸리티 비용을 결정하는 요소를 

포함하여 기술 경제 평가에 사용되는 상세한 입력 데이터가 포함되어 

있다. 

3 장에서는 당 플랫폼을 이용하여 바이오 에탄올 및 단백질을 

생산하는 통합 바이오 리파이너리의 최적 설계를 조사하고 의사 

결정을 지원하기 혼합 정수 선형 계획법 모델이 제공된다. 이를 위해 

개발된 공정의 상부구조와 수학식 또한 요약되었다. 수율 극대화와 

순현재가치의 극대화라는 두 가지 목적 함수가 연구되었다. 최적의 

디자인의 경제적 생존 가능성을 평가하는 척도로서 최소 에탄올 판매 

가격과 최대 해조류 가격이 결정되었다. 이 연구에서는 차선의 공정 
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설계도 조사되었으며, 경제성 개선을 위해 주요 비용 변동인자를 

파악하기 위한 감도 분석 또한 수행되었다. 마지막으로, 공장의 

경제성을 개선시키는 잠재적 요인과 민감도 분석 결과를 바탕으로 

향후의 개선방향이 제시되었다.  

4 장은 3 장에서 제시된 상부 구조를 확장하여 거대 조류 바이오 

리파이너리에서 당 플랫폼을 통해 모든 배출물을 활용하는 전략을 

설명한다. 이 장에서 최적화의 중심 아이디어는 (1) 공정 통합을 통해 

모든 폐기물 흐름을 이용하여 전체 공정의 경제적, 환경적 

프로파일을 개선하고, (2) 개선된 공정 경제적, 환경적 지표를 독립형 

바이오 리파이너리와 비교하는 것이다. 최적화 모델은 혼합 정수 

비선형 계획법 모델로 수식화되었으며, 순현재가치의 극대화와 CO2 

배출의 최소화라는 두 가지 목적 함수가 사용되었다. 이 장에서는 

공정의 경제적 지표가 결정되었고, 바이오 리파이너리 경제성의 주요 

변동요인을 찾기 위해 Monte Carlo 모사 후 포괄적인 민감도 분석 
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모델 또한 개발되었다. 마지막으로, 공정의 경제적 위험을 

정량화하기 위해 최소 에탄올 판매 가격을 기준으로 경제적 위험 

평가가 수행되었다. 

5 장은 휘발성 지방산 플랫폼을 이용해 혼합 유기산 및 혼합 

알코올을 생산하는 최적 설계의 경제적 환경적 성능을 평가한다. 

이를 위한 공정의 상부 구조를 개발하는데 총 17 개의 공정 설계 

대안이 사용되었으며, 이를 토대로 혼합 정수 비선형 계획법 모델이 

개발되었다. 이 때 바이오 리파이너리의 지속 가능성을 극대화하기 

위해 공정 통합이 모델에 고려되었다. 이를 이용하여 공정 경제성에 

대한 불확실성의 영향이 조사되었고, 공장 경제성의 잠재적 개선을 

위한 미래의 목표 또한 제시되었다.  

6 장에서는 여러 바이오 매스 원료와 기술적 대안이 포함된 상부 

구조의 최적화를 이용하여 바이오 숙신산의 생산 전략을 제시한다. 

이 장의 주요 목적은 경제성을 향상시키기 위해 독립형 바이오 
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리파이너리와 통합될 수 있는 바이오 숙신산 공정의 최적 설계를 

조사하는 것이다. 이 때, 최적의 바이오 매스 원료를 사용하는 최적의 

공정 설계를 찾기 위해 3 세대 바이오 매스 모두가 조사되었다. 이를 

위해 결정적, 확률적 조건에서 최적화를 수행하는 혼합 정수 선형 

프로그래밍 모델이 개발되었는데, 이 최적화 모델은 경제적 위험 

평가 및 cradle-to gate 전과정 평가도 수행한다. 

마지막으로 7 장은 이 논문의 주요 결과를 요약하고 경제적, 

환경적 장점에 근거한 모든 공정 설계를 비교한 결론을 제시한다. 
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1 INTRODUCTION 

In order to attain the global 1.5 °C target, the World needs to achieve 

virtually zero greenhouse gas emissions by 2050 [1]. On the contrary, the 

energy and material need of human society are increasing. Besides, 

continued economic growth still leads to the development of activities that 

are highly energy-intensive and mainly dependent on petroleum 

derivatives. The International Energy Agency (IEA) has estimated that oil 

consumption will continue to increase by at least 50% in coming years; 

consequently, oil production from post-peak oil fields is expected to 

decline from 70 million barrels/day in 2007 to 27.1 million barrels/day by 

2030 [2–4]. Based on the current energy consumption trends, it is expected 

that by 2030, carbon dioxide emissions (CEs) will increase by 25–90% 

from 9.7 Gt/yr in 2014 [5,6]. This is an alarming situation.  

Several alternate energy sources including biomass, wind energy, solar 

energy, geothermal energy etc. can be utilized to produce green energy in 

order to reduce the detrimental effects of producing energy from burning 

fossil fuels. The development of biorefineries to produce biofuels and 

biochemicals from renewable sources such as biomass is emerging as a 

promising alternative to meet the growing energy and chemicals demand 

while producing less CEs [7]. This is because the global biomass 
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production has been estimated around 150 billion t/yr [7]. Only a meager 

amount (1.25%) of it is utilized for useful purposes (food, energy sectors), 

the rest is wasted or dumped [7]. Researchers suggest that such huge 

wastage be curtailed, and maximum useful utilization be made possible out 

of it. Less expensive chemicals and biofuels can potentially be obtained 

from biomass which is wasted every year. Therefore, in this study, the 

development of biorefineries was considered to reduce the high 

consumption of fossil fuel.  

Despite the tremendous potential of biorefineries to meet the World’s 

future energy and chemicals demands, to date, a limited number of 

commercial-scale biorefineries exist [8]. This is mainly due to the high cost 

of biofuels and biochemicals compared to conventional fuels and 

petrochemicals, respectively. The implementation of biorefineries can be 

possible only when renewable products are economically viable against 

existing competitors. To solve this challenge, energy-efficient and 

integrated biorefineries are crucially needed [9].  

1.1 Biorefinery concept 

A biorefinery is a facility that sustainably processes biomass to produce 

marketable products and energy [10]. Figure 1 gives an overview of 
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possible raw materials that can be processed using different conversion 

routes in a biorefinery to produce value-added products [10]. 

The raw materials that can be utilized as a feedstock in a biorefinery 

include food crops and residues, food waste (bakery waste, waste cooking 

oil, and so on), lignocellulosic biomass, municipal solid waste, and aquatic 

biomass (microalgae and macroalgae) [10]. In general, these feedstocks 

can be classified into four sectors: agriculture, forestry, industries, and 

aquaculture [11]. 

Likewise, based on the conversion technologies the biorefinery concept 

can be classified into two major platforms (1) biochemical and (2) 

thermochemical [10].  

1.1.1 Biochemical platform 

This conversion platform consists of three conversion routes: sugar 

(fermentation), volatile fatty acid (partial anaerobic digestion), and 

methane (complete anaerobic digestion). 

The sugar platform (SP) uses hexose and pentose sugars extracted or 

converted from the carbohydrate part of biomass to mainly produce 

bioethanol [12]. Depending on the biomass different pretreatment 

technologies can be used to break down the structure of feedstock [13]. 

Biomasses that are rich in lignin (e.g., second-generation biomass) usually 
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require harsh pretreatment techniques such as acid thermal hydrolysis, 

alkaline thermal hydrolysis, ammonia fiber explosion, hydrogen peroxide, 

deacetylation, and steam explosion [14]. On the contrary, biomasses that 

are lean in lignin (e.g., brown algae, which is third-generation biomass) 

require moderate pretreatments such as hot water wash or simple milling 

[15]. Enzymatic pretreatment is also a very common technique that can be 

used to convert carbohydrates of biomass into mono sugars using enzymes 

such as cellulase [12]. In general, a combination of thermochemical- and 

biochemical-pretreatments are used to increase the overall conversion of 

carbohydrates to simple sugars [12]. The former mainly converts 

hemicellulose carbohydrates (xylan, galactan, arabinan, mannan, etc.) in 

the feedstock to sugars while the later converts cellulose carbohydrates 

(glucan, laminarian etc.) in the feedstock to sugars. Once the feed is 

pretreated and simple sugars are produced, microorganisms are then used 

to convert sugars into alcohols. The choice of microorganisms and 

fermenter are extremely important parameters to achieve high titer, yield, 

and productivity [16].  

In the volatile fatty acid platform (VFAP), volatile fatty acids (VFAs) 

consisting of acetic acid, propionic acid, and butyric acid are produced by 

the partial anaerobic digestion of biomass using a mixed culture bacterial 
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ecosystem [17]. Anaerobic digestion consists of four stages: hydrolysis, 

acidogenesis, acetogenesis, and methanogenesis. In the first stage, the 

complex structure of biomass including carbohydrates, proteins, and lipids 

are broken down by bacteria into simple sugars, amino acids, and fatty 

acids, respectively. Acidogenic bacteria then convert the simple sugars into 

volatile fatty acids, ammonia, carbon dioxide, and hydrogen sulfide. These 

resulting volatile fatty acids are then digested by acetogens to produce 

acetic acids along with additional ammonia, hydrogen, carbon dioxide, and 

other acids including propionic acid and butyric acid. Finally, 

methanogens convert products from the preceding stages into methane, 

carbon dioxide, and water. Methanogenesis must be prevented to produce 

VFAs as the final product of fermentation. This is accomplished using 

inhibitors such as iodoform or bromoform [18]. This conversion route can 

produce two types of products i.e. mixed acids or mixed alcohols [19]. The 

choice of the digester (batch vs. continuous), temperature (mesophilic vs, 

thermophilic), fermentation time, and solid loading (high vs. low) are 

important parameters to achieve high product yield [20–23].  

Unlike the VFAP, the methane platform considers the complete 

anaerobic digestion of biomass to produce biogas, consisting of carbon 

dioxide, water, and methane [24]. The composition of biogas depends upon 
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the type of digester, operating temperature, and digestion time [24]. Biogas 

has many industrial and domestic applications including electricity 

generation via fuel cell [25], steam and power generation via 

turbogenerator [26], and as an alternative to natural gas after gas 

purification [10].  

1.1.2 Thermochemical platform 

This platform mainly comprises of four types of processes: gasification, 

pyrolysis, hydrothermal liquefaction, and direct combustion.  

The process of gasification is a thermal decomposition of biomass at 

relatively high temperatures (600˚C-1000˚C) and residence times of 1-30 

s. Here, the biomass is converted into the gaseous phase of the product 

called syngas, consisting mainly of hydrogen, carbon monoxide, carbon 

dioxide, and methane. The heat supply method and the gasifying agent are 

the main drivers affecting the syngas yield [27]. 

The main product from pyrolysis is bio-oil, carbon-rich solid (charcoal), 

and non-condensable gasses similar to syngas. Pyrolysis is generally 

achieved at temperature ranges of 300˚C to 600˚C (depending on the 

feedstock) and atmospheric pressure in low or no oxygen environment to 

avoid combustion [28]. The main objective of this conversion route is 
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maximizing the liquid phase product by optimizing parameters such as 

reactor type and temperature, residence time, and mineral contents. 

Unlike other thermochemical pathways (gasification and pyrolysis) 

which need intense drying, hydrothermal liquefaction utilizes water as a 

raw material for the conversion of biomass to liquid fuel under moderate 

temperature and high pressure. In general, hydrothermal liquefaction 

operates between a range of 250-350˚C of temperature and operating 

pressures from 10-20 MPa based on the feedstock [29]. The efficiency of 

this conversion pathway significantly depends on operating temperature, 

residence time, and feed to solvent ratio.  

In the direct combustion pathway, the feedstock is oxidized to produce 

heat and power.  
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1.2 Macroalgae as a biorefinery feedstock 

As shown in Figure 1, biorefinery can process all kind of biomass 

including food crops, lignocellulosic, and/or aquatic biomass to produce 

biofuels, bioenergy, and biochemicals. However, all biomasses are not 

well-suited for large-scale biofuel production due to limited biomass 

availability or ethical issues. For example, biofuel production from food 

crops, which is 1st generation biomass, presents several social and 

environmental challenges such as the land, irrigation water, fertilizers, and 

most importantly market competition between first-generation biofuels 

and food [30]. Likewise, biofuel production from lignocellulosic biomass, 

which is 2nd generation biomass, offers a promising alternative of food vs 

fuel debate. However, 2nd generation feedstock poses technological 

challenges due to high lignin content and structural complexity, which 

require harsh pretreatment to break the structure before enzymatic 

hydrolysis and sugar liberation [31,32]. 

Aquatic biomass such as macroalgae and microalgae do not carry most 

of the aforementioned challenges and are thus promising candidates for 

edible crops and non-edible biomass [33]. Macroalgae, or seaweed, offer 

multiple advantages over terrestrial biomass including an extremely rapid 

growth rate and a CO2 sequestration efficiency of 6–8%, which is higher 
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than that of terrestrial biomass, at 1.8–2.2% [34]. The advantage of 

seaweed for biofuel is that (1) it does not compete directly or indirectly for 

land that could otherwise be used for food, (2) it does not require irrigation 

water and fertilizers for cultivation, and (3) it improve the marine 

environment by capturing carbon dioxide, and dissolved nutrients that may 

otherwise cause eutrophication [35]. 

Macroalgae are phenotypically classified into brown, red, and green 

algae. To data 9000 species of macroalgae are known: 1200 species of 

green algae, 6000 species of red algae, and 2000 species of brown algae 

[35]. Brown algae represent the largest seaweed source, with a yearly 

production of 15.8 million wet tons in 2010, and can be used as an 

important precursor due to its high quantity of carbohydrates, proteins, and 

vitamins [36]. 

Unlike microalgae, macroalgae have low lipid content and are high in 

carbohydrates. Therefore, biofuel production from seaweed relies on the 

conversion of carbohydrates instead of lipids. The primary carbohydrates 

produced by brown algae include laminarin, cellulose, fucoidan, alginic 

acid, and mannitol [35]. The chemical composition of seaweed varies 

highly depending upon the species, growth conditions, and harvesting 

times [37]. Among brown alga species, Saccharina japonica (SJ) remained 
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the primary research focus [38]. This focus is probably due to the high 

carbohydrate content, lack of lignin, high levels bioactive compounds, 

simple pretreatment, easy carbohydrates processing, low levels of sugar 

degradation, and extensively available feedstock [39]. Global production 

of SJ increased from 5.1 Mt in 2010 to 8.2 Mt in 2016 [40]. This indicates 

SJ harvesting infrastructure is well developed and its market is growing 

rapidly. 

Despite several advantages of brown algae and growing global market, 

most of the biorefinery concepts presented in Section 1.1, regarding this 

biomass, are still under development or at the demonstration (pilot) scale. 

Therefore, research and development efforts are required that should focus 

on giving clearer guidance based on multi-criteria analysis (technical, 

economic, and environmental). In a broader term, the objective of this PhD 

work is to investigate optimal process design for biofuel and biochemical 

production from brown algae—Saccharina japonica—and to evaluate its 

economic potential, opportunities, and challenges.  

1.3 General seaweed-to-fuel refinery 

In a typical seaweed biorefinery, as shown in Figure 2, seaweed can be 

processed using appropriate processing route (biochemical, 

thermochemical, chemical, or combustion) to produce a range of products 
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including biofuels (liquid, gaseous, and solids) and byproducts (dry 

distiller solids (DDS), succinic acid (SA), and microalgae). It can be seen 

that due to a large number of processing routes and products, the design of 

seaweed biorefinery is a challenging task.  

The main challenges include: 

1) to find optimal processing route and operating conditions of a 

biorefinery that is energy efficient, has a less environmental impact, 

and at the same time has reasonable capital investment cost, which 

is an important parameter from the point of the investors 

2) to find optimal product and its production rate from the range of 

products keeping in view the fluctuating price of products with the 

price of petroleum 

3) to find an optimal strategy for utilizing biorefinery waste streams 

(carbon dioxide, wastewater, and unreacted solids) into value-

added chemicals to reduce the water- and carbon-footprint 

4) to find a systematic way to analyze the impact of uncertainties on 

feedstock, biorefinery structure, product selection, and process 

economic indicators including net present value (NPV), minimum 

product selling price (MPSP), total capital investment (TCI), and 

total cost of manufacturing (TCOM). 
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These challenges can be addressed using the process design framework 

that allows to systematically analyze all biorefinery concept to find 

best route to reach the highest economic performance. 
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1.4 Process design framework 

Chemical process design is a complex and open problem that involves 

many activities at different levels. In other words, it is a multi-scale and 

multi-level decision-making problem that involves several activities such 

as process creation, development of basic concepts, experimental studies, 

the detailed design, etc. [41]. In general, the chemical process development 

life cycle consists of five distinct stages: concept stage, feasibility stage, 

development stage, manufacturing stage, and product introduction stage 

[42]. The outputs of each stage are the inputs to the following stage. At 

each stage, a decision is made to either (1) advance the design project to 

the next stage, (2) retain the design project at the current stage until 

pending critical issues are resolved, or (3) cancel the design project when 

a need is no longer recognized or when roadblocks have been encountered 

that render the project infeasible [43].  

As the macroalgae based biorefinery is at its infancy, the decision-

making process at the early stage level (concept stage) needs to be 

improved (1) to understand opportunities, challenges and limitations of 

seaweed biorefinery and (2) to support large and complex biorefinery 

design problems which consist of multi-disciplinary, limited, and uncertain 

data. This need can be fulfilled by the support from process system 
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engineering (PSE) which is one of the main research areas in chemical 

process development. 

1.5 Role of PSE in the context of biorefinery concepts: introduction 

and classification 

The main objective of PSE is to focus on how to design, integrate, and 

manage complex systems [44]. To achieve this objective, computer-aided 

tools—model-based tools and system engineering methods—are used that 

are considered the major backbone of PSE [45]. The most notable 

advantages of PSE include (1) study the behavior of the system without 

building it, (2) accelerate the product or process design-development life 

cycle, (3) save time, minimize human error, and get better designs, (4) help 

to find an un-expected phenomenon, the behavior of the system, (5) can be 

used for “what-if” scenarios, and (6) can be used to reduce the cost of 

changes required during the operation changes, and so on [45,46].  

There are two primary paradigms in PSE: analysis and synthesis [47]. 

The analysis problem assumes that the process flowsheet, the equipment 

and operating conditions are known. The mathematical model pertaining 

to a specific task is then used to determine the process indicators or 

performance through simulation studies. Whereas in the synthesis problem 

process flowsheet and operating conditions are unknown, optimization 
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models and algorithms are then used to systematically determine the 

optimal flowsheet and operating conditions by a search in the space of the 

decision variables.  

In process synthesis, there are two main methodologies—heuristic 

approach and mathematical programming approach—that a design 

engineer can consider to find the optimal process flowsheet and its 

operating condition [48]. The heuristic approach is based on the experience 

of an engineer, where he or she uses heuristic rules to find changes in 

flowsheet that may lead to an improved solution. The mathematical 

programming is an optimization-based approach that finds optimal 

flowsheet and its operating condition based on defined objective function 

such as maximization of profit. The mathematical programming strategy 

is divided into three steps (1) superstructure development (2) mathematical 

formulation, and (3) optimization-problem solution [49]. The 

superstructure development involves gathering all feedstocks, processing 

units, and products that can be potentially selected in the final flowsheet to 

perform a specific task. In addition, interconnections of different 

feedstocks, processing units, and products are defined in this stage. In the 

second step, the mathematical representation of superstructure is 

formulated that include equations pertaining to processing units and their 
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connectivity, logical constraints of processing and operating conditioning, 

and objective function. The mathematical formulation usually requires 

discrete variables to represent the choice of feedstock, processing units, 

and/or products, with which the optimization model become a mixed-

integer linear programming (MILP) or mixed-integer non-linear 

programming (MINLP). The former (later) is the case when decision 

variables are liner (non-linear). Finally, the last step involves the extraction 

of an optimal solution by solving the formulated optimization problem. 

Each of heuristic and mathematical programming methods has their 

own merits and demerits when compared to each other. Therefore, 

integrating these two methods has recently been developed and has 

resulted in the so-called hybrid method [50]. The main objective of this 

methodology is developing a systematic way to get optimal solutions by 

combining the merits of both the heuristic and mathematical programming 

approaches. 

1.6 PSE contributions on process synthesis and design of a 

biorefinery 

This section briefly overviews the advances in the area of PSE in the 

context of the biorefinery concepts.  
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Karuppiah et al. developed an MINLP model to optimize the topology 

and energy for the design of corn-based ethanol plants [51]. The 

superstructure was developed and solved in two stages. In the first stage, 

the optimal topology of biorefinery was determined by minimizing the 

total energy of the plant, while in the second stage heat integration was 

performed, where 40% reduction in steam consumption was achieved. 

Based on these results, Ahmetović et al. developed an MINLP model to 

reduce water consumption for the corn-based ethanol plants [52]. Voll and 

Marquardt et al. introduced a reaction flux network analysis as a novel and 

efficient tool for the systematic identification and screening of reaction 

pathways in the context of biorefinery using biochemical platform [53]. 

Zondervan et al. used a biochemical platform to develop superstructure 

[54]. The resulting formulation of the superstructure was an MINLP model 

that determines the optimal structure of biorefinery, which can produce 

multi-product including ethanol, butanol, succinic acid, gasoline and 

gasohol. Baliban et. al investigated the thermochemical conversion of 

biomass to liquid fuels using global optimization (branch-and-bound) 

algorithm to mathematically guarantee the solution obtained from an 

MINLP model [55]. The proposed superstructure and its mathematical 

model can optimize the topology and operating conditions of biorefinery, 
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and can simultaneously perform heat, power, and water integration. Kim 

et al. developed an optimization framework by combining processing 

alternatives from both biochemical and thermochemical platform to 

identify the best strategy for converting biomass to fuel [56]. Chen et al. 

investigated the optimal design and operation of flexible energy 

polygeneration systems to produce power, liquid fuels, and chemicals from 

coal and biomass [57]. The problem was solved to global optimality by a 

tailored duality- based decomposition method. Rizwan et al. proposed a 

two-stage stochastic optimization-based framework to determine the 

optimal topology and product portfolio for a microalgae-based biorefinery 

under techno-economic uncertainty [58]. Gong et al. developed models 

and algorithms for simultaneous technological integration, economic 

viability and environmental impact (global warming potential) of algal 

biorefinery process [59]. The tailored branch-and-refine algorithm based 

on successive piecewise linear approximation was used to globally 

optimize the resulting nonconvex solution. Posada et al. applied a quick 

screening method called early-stage sustainability assessment to identify 

the most promising bioethanol derivatives resulting from catalytic 

conversion [60]. The early-stage sustainability assessment consists of 5 

main design criteria (economic, environmental impact from raw material 
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and process, safety and hazard) which are the important factors for 

designing a sustainable biorefinery. Gebreslassie et al. [61], and Zhang et 

al. [62] proposed multiobjective MINLP models for superstructure 

optimization of a hydrocarbon biorefinery via gasification and pyrolysis 

pathways.  

The aforementioned developments in PSE are great contributions in 

their own right. But limited work has been done to systematically find the 

optimal process design for seaweed-based biorefinery. Besides, till to date, 

only a few biorefineries exist, more specifically seaweed biorefineries are 

not available at commercial scale. According to Kokossis et al., unless 

system engineers take breakthrough initiatives to develop advance tools 

and methodologies, that can simultaneously perform multi-level and multi-

stage analysis, the concept of biorefinery will merely remain in scientific 

papers [63].  

1.7 Scope of this study 

Based on the presented arguments, the main objective of this PhD study 

is process synthesis of macroalgal biorefinery using superstructure-based 

optimization, where both the structure as well as the operating conditions 

of the biorefinery are determined by optimization. Based on the 

superstructures, optimization models were developed that can 
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systematically analyze biochemical pathways—sugar platform and 

volatile fatty acid platform—to find optimal processing pathways for 

biofuel and biochemical production from brown algae, Saccharina 

japonica. To determine the optimal biorefinery configuration we have 

applied the methodology that systematically (1) scan all alternatives, (2) 

perform ranking of the promising biorefinery configurations, (3) consider 

uncertainties to perform assessments under techno-economic and 

environmental uncertainties, (4) perform a risk assessment to present 

robust decision. The developed models can provide multicriteria analysis 

decision making support in a technical, economic, and environmental 

perspective. 
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2 METHODOLOGY 

2.1 A systematic framework for sustainable biorefinery design  

The overall framework used in this work is divided into five steps as 

shown in Figure 3. The framework uses superstructure-based optimization 

strategy to find optimal configurations of biorefinery under deterministic 

and stochastic conditions.  

2.1.1 Problem statement definition 

As shown in Figure 3, the framework starts with the problem statement 

definition, where the scope of the study is defined by selecting appropriate 

objective function(s) related to economic metrics (NPV, MPSP etc.), 

process performance (yield, resource utilization etc.), and life cycle 

assessment (global warming potential, human toxicity potential etc.). 
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Figure 3. A procedure to determine sustainable biorefinery design. 
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2.1.2  Superstructure development and mathematical formulation 

In this step, the superstructure is developed based on the literature 

review. During the literature review, data consisting of yields, capital 

costs, utility costs, chemical costs, feedstock availability, technological 

limitations, and environment damage factors etc. are also collected, which 

is later used by optimization model to find an optimal flowsheet from the 

superstructure. As shown in Figure 4, a superstructure is a representation 

of all processing alternatives including feedstocks, conversion 

technologies, and product portfolio as well as their interconnections that 

can be selected in the final flowsheet [48]. 

In the superstructure, each alternative is represented by two indices of 

which the first refers to the alternative, and the second refers to the 

processing stage [58]. For example, “1, 1” refers to alternative 1 in 

processing stage 1. White blocks are used in the superstructure to represent 

certain processing stages that do not involve topology (structural) 

decisions.   
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Once the superstructure is developed then the mathematical model of 

the superstructure is formulated using mixed-integer linear or non-linear 

programming approach that yields a synthesis problem of the form [64] 

                                       max 𝑧 = 𝑓(𝑥, 𝑦),                                        (1) 

                                      𝑠. 𝑡.  𝑔(𝑥, 𝑦)  ≥ 0,                                        (2) 

                                             ℎ(𝑥, 𝑦) = 0,                                          (3) 

                                             ≤ 𝑥 ≤  𝑥𝑈𝑃,                                         (4) 

                                          𝑥 ∈ 𝑋, 𝑦 ∈  (0, 1)𝑛,                                (5) 

where z is the objective function, x is the vector of continuous variables 

defined by their upper and lower bounds in a continuous feasible region X, 

y is the vector of discrete variables. The continuous variables x are related 

with flowrates, temperature, pressure, composition, equipment sizes, and 

environment (e.g. global warming potential), while discrete variables y are 

related to the existence of feedstocks, conversion technologies, and 

products that are postulated for the optimal flowsheet in the superstructure 

[65]. The inequality and equality constraints can be obtained from the 

superstructure to represent mass balances, energy balances, design 

equations, design specifications, total capital cost constraints, total 

manufacturing cost constraints, environmental constraints, physical 
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constraints, or logical conditions that should be satisfied in the flowsheet 

to exclude infeasible networks from the search space [64].  

The single-point sensitivity analysis to investigate the main drivers of 

biorefinery design can be defined by [66]: 

                         𝜃𝑚𝑖𝑛 =  (1 − %𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛) × 𝜃𝑚𝑒𝑎𝑛,                             (6) 

                         𝜃𝑚𝑎𝑥 =  (1 + %𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛) × 𝜃𝑚𝑒𝑎𝑛,                           (7) 

where 𝜃  is the vector of uncertain parameters, 𝜃𝑚𝑖𝑛  and 𝜃𝑚𝑎𝑥  are the 

maximum and minimum values of parameters due to uncertainty in data. 

These variations can be either the result of market forces (changing raw 

material costs, utility costs, or products demand and price), natural 

occurrences (variation in feedstock composition, culture crash in 

fermentation, or equipment failures) or physical properties 

(thermodynamic data or kinetic parameters) which are measured with 

finite accuracy equipment. Besides, models and tools that are used to 

support decision making of product-process development may not be 

accurate and hence additional uncertainty has to be considered [67]. The 

range (i.e. maximum and minimum values) of variations in parameters can 

be obtained from a literature review, process experts, or market analysis. 

However, some of the data used in process synthesis problems are usually 

limited or not available in the literature. In such cases, uncertainty in 
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parameters can be classified into low, medium, and high scenarios, which 

correspond to 5%, 25%, and 50% variations around the mean value, 

respectively [58,66,68]. In other words, data with high accuracy can be 

classified as a parameter of low uncertainty, inconsistent data as a 

parameter of medium uncertainty, and highly inconsistent data as a 

parameter of high uncertainty [58,66,68]. 

Finally, a general representation of the design problem under 

uncertainty is of the following form [69]:  

                                           max 𝑧 = 𝐸𝜃[𝑓(𝑥, 𝑦, 𝜃)],                               (8) 

                                              𝑠. 𝑡. 𝑔(𝑥, 𝑦, 𝜃)  ≥ 0,                                   (9) 

                                                    ℎ(𝑥, 𝑦, 𝜃) = 0,                                    (10) 

                                                  𝑥𝐿𝑂 ≤ 𝑥 ≤  𝑥𝑈𝑃,                                  (11) 

                                                        𝑥 ∈ 𝑋,                                            (12) 

                                                     𝑦 ∈  {0, 1}𝑛,                                      (13) 

                                                 𝜃 ∈  {𝜃𝐿𝑂 , 𝜃𝑈𝑃} 𝑚,                                (14) 

where 𝜃 is the vector of uncertain parameters which is assumed to follow 

a uniform distribution, 𝐸𝜃(𝑓)  is the expected value of the objective 

function over the 𝜃  space, and 𝑔(𝑥, 𝑦, 𝜃)  and ℎ(𝑥, 𝑦, 𝜃) = 0  are the 

vectors of model equality and inequality constraints. The calculation of the 

expected value of the objective function requires the evaluation of 
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multidisciplinary integral, which can be approximated using the Sample 

Average Approximation technique [70] as follows:  

                              𝐸𝜃[𝑓(𝑥, 𝑦, 𝜃)]~ ∑ 𝑃𝑠 × 𝑓(𝑥, 𝑦, 𝑠)𝑁𝑆
𝑠=1 ,                       (15) 

                                            𝑠. 𝑡.  𝑔𝑠(𝑥, 𝑦, 𝑠)  ≥ 0,                                      (16) 

                       ℎ𝑠(𝑥, 𝑦, 𝑠) = 0,                                  (17) 

where NS is the number of samples in the sample matrix S and 𝑃𝑠  the 

probability of realization of sample s. It is also important to mention that 

in stochastic optimization, the number of scenarios used to approximate 

expected value of the decision variables (process indicators) and frequency 

of the occurrence of resulting optimal topology is a critical factor. 

Generally, the average approximation of decision variables become more 

accurate as the number of scenarios increased. However, increasing the 

number of scenarios also increase the complexity of the optimization 

problem due to the increased size of the synthesis problem. For a 

reasonable compromise, 200-500 samples are considered appropriate for 

synthesis problems [71].  

The general optimization formulation presented by Eqs. 1-17 can 

simultaneously perform optimization of biorefinery topology and its 

operating conditions. The mathematical formulation can be written and 

solved using appropriate software such as General Algebraic modelling 
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systems (GAMS) by selecting suitable solver. The most well-known and 

efficient solvers for solving MILP model include CPLEX, while for 

MINLP model include DICOPT if a local solution is desired, alternatively, 

BARON or LINDOGLOBAL can be used for a global optimal solution. 

2.1.3 Deterministic analysis 

Step 3 deals with the deterministic analysis, where optimal processing 

pathway(s) of the biorefinery along with process indicators (economics 

and environmental) are determined by (Eqs. 1-5) maximization of the 

objective function z with nominal parameter values while disregarding the 

uncertainties in them. The ranking of optimal solutions can also be 

performed by systematically screening alternative solutions using an 

integer cut constraint algorithm, which can be expressed as [72]: 

∑ (𝑦𝑘,𝑗)
𝑝𝑝Є𝐴𝑛 − ∑ (𝑦𝑘,𝑗)

𝑝 
≤𝑝Є𝐵𝑛 |𝐵𝑛| −  1    𝑛 = 1, … . . , 𝑁,                   (18) 

where P are the subsets of the integer variables 𝑦𝑘,𝑗, An = {p|(yk,j)p = 1}, Bn 

= {p|(yk,j)p = 0}, n=1,..,N. The integer cut constraint algorithm avoids the 

duplication of already found solutions and allows to systematically 

evaluate various pathways in the superstructure. 

2.1.4 Stochastic analysis 

In this stage, stochastic analysis (robust optimization) is performed 

where single-point sensitivity analysis is performed to first identify the 
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critical parameters to the biorefinery design using Eqs. 6-7. The critical 

parameters that are identified in the single-point sensitive analysis are then 

used in stochastic optimization (Eqs. 15-17) to investigate the impact of 

uncertainties on biorefinery topology and process indicators. Unlike 

single-point sensitivity analysis, where only one parameter is changed at a 

time while other parameter remained fixed around their mean values, in 

stochastic optimization, all uncertain parameters are changed 

simultaneously in their predefined range using suitable sampling (e.g. 

Latin hypercube) method [73]. Once sampling method is selected, then the 

deterministic model (Eqs. 1-5) is solved repeatedly for each scenario 

generated by the selected sampling method to calculate the average 

expected value of decision variables including the frequency of the 

occurrence of resulting optimal topology. Here, a topology that maximally 

selected and remained economically viable is considered robust design. 

Thus, results from this step provide technical insights about the optimal 

configurations of the biorefinery from the perspective of both process 

indicators and topology robustness under uncertainty.  

2.1.5 Risk assessment  

Finally, in step 5, risk assessment is performed where economic risk is 

quantified based on the minimum product selling price. To perform this 
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analysis, the optimal solutions obtained from the previous step are 

analyzed as a risk. Here, we analyzed the probability of obtaining a 

minimum product selling price that is higher than the targeted market 

price. In other words, the risk assessment will reflect the probability of the 

biorefinery being economically non-viable, which corresponds to 

determining the minimum product price that is higher than the market 

price. 

2.2 Techno-economic assessment methodology  

The primary goal of the techno-economic assessment (TEA) model is 

to evaluate the profitability of biorefinery designs by estimating economic 

indicators such as NPV, MPSP, and maximum feedstock purchasing price. 

A 20-year discounted cash flow rate of return analysis model was 

developed to estimate MPSP and maximum feedstock purchasing price 

that makes the NPV of the project equal to zero. The assumptions in the 

TEA model include a discount rate of 10%, a straight-line depreciation 

method over 7 years, a tax rate of 30%, a 2-year construction time, a plant 

startup during the 3rd year, financing equity of 100%, and 8000 operating 

hours per year. 

The TCI include total direct and indirect costs, land costs, and working 

capital. Note that total direct and indirect costs are subdivided into many 
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costs which are reported in Table 1, and the sum of these costs correspond 

to fixed capital investment. A factor methodology is used in which suitable 

multipliers reported in Table 1 are applied to the installed costs of 

equipment to estimate total capital investment [12]. Whereas, in this study, 

the installed costs are scaled (using Eq. 19) to new capacity from vendor 

quoted equipment costs and capacity using installing factor and scaling 

factors that are equipment specific. Later, the installed costs of equipment 

are updated to the year of analysis i.e. 2019-dollar value using the 

Chemical Engineering Plant Cost Index in Eq. 20. Table 2 provides a 

summary of the main equipment costs along with cost year, scaling 

exponent, and installation factors.  

                                   𝐶𝑛 =  (𝐼𝑛)(𝐶𝑛,𝑜) (
𝑄𝑛

𝑄𝑛,𝑜
)

𝑎𝑛

,                                     (19) 

where Cn,o is the cost of the baseline equipment item n with the baseline 

capacity Qn,o. Cn is the cost of the equipment item n with the new/real 

capacity Qn, an is the scaling exponent for the kind of unit n, and In is the 

installation factor of the equipment item n.  

                                            𝑈𝐶𝑛 =  𝐶𝑛 (
𝐶𝐸𝑃𝐶𝐼2019

𝐶𝐸𝑃𝐶𝐼𝑟𝑒𝑓
),                               (20) 

where UCn is the updated cost of the equipment in the year of interest and 

CEPCI2019 and CEPCIref are the index values in the year 2019 and the 

baseline year, respectively. 
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Total manufacturing costs consist of direct (variable), fixed, and general 

manufacturing costs. Direct manufacturing costs include raw material 

costs and utility costs. Fixed manufacturing costs include operating labor 

costs, maintenance and repairs, depreciation, local taxes, insurance, and 

plant overhead. General costs are related to administration and research 

and development costs. A factor methodology proposed by Turton et al. 

[74] is used (Eq. 21) to calculate total manufacturing cost (𝑇𝐶𝑂𝑀).  

                       𝑇𝐶𝑂𝑀 = 𝑓1𝐶𝑂𝐿 + 𝑓2𝐹𝐶𝐼 + 𝑓3(𝐶𝑈𝑇 + 𝐶𝑅𝑀 + 𝐶𝑊𝑇),          (21) 

where f1, f2, and f3 are multipliers, 𝐶𝑂𝐿 is the cost of operating labor, 

𝐹𝐶𝐼 is fixed capital investment, 𝐶𝑈𝑇 is the cost of utility, 𝐶𝑅𝑀 is the cost of 

raw material, and 𝐶𝑊𝑇 is the cost of wastewater treatment. Cost of utility 

and raw materials such as biomass, process water, enzymes, and chemicals 

are estimated by mass and energy balance constraints. Cost of labor is 

calculated as 1.6% of total installed costs. The unit price of chemicals, 

utility and wastewater treatment are summarized in Table 3 and Table 4.  

The non-discounted cash flow, 𝑁𝐶𝐹𝑛 for the year n is given as: 

      𝑁𝐶𝐹𝑛 =  −𝑟𝑛𝑇𝐶𝐼 + 𝑎𝑛𝑊𝐶 + (𝑅𝑒𝑣 − 𝑇𝐶𝑂𝑀)(1 − 𝑡𝑎𝑥) + 𝐷 ∙ 𝑡𝑎𝑥,   (22) 

where 𝑟𝑛 is the ratio of total capital investment consumed during year n, D 

is depreciation, 𝑊𝐶  is working capital, and 𝑅𝑒𝑣 is the process revenues 

obtained from the sale of products. an is a parameter equal to -1 during the 

year 3, 1 during the last year of the project, and zero for all other years. 
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The process revenues (𝑅𝑒𝑣) obtained from the sale of products are 

given by: 

                                              𝑅𝑒𝑣 =  ∑ 𝑓𝑝𝑃𝑝
𝑛𝑝

𝑝=1 ,                                    (23) 

where np is the number of products, fp is the mass flow rate of product 

p, and Pp is the wholesale price of product p.  

The NPV is defined as:  

                                     𝑁𝑃𝑉 =  ∑
𝑁𝐶𝐹𝑛

(1+𝑟)𝑛
20
𝑛=0  .                                  (24) 
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Table 1. Methodology to determine total capital investment and total cost 

of manufacturing. 

Parameters Value Ref 

x1, Total installed cost 100% [12] 

x2, Warehouse 4% of Inside battery 

limits (ISBL) 

[12] 

x3, Site development 9% of ISBL [12] 

x4, Additional piping 5% of ISBL [12] 

Total direct costs (TDC) ∑ 𝑥𝑖
4
𝑖=1   [12] 

y1, Prorateable costs 10% of TDC [12] 

y2, Field expenses 10% of TDC [12] 

y3, Home office & construction fee 20% of TDC [12] 

y4, Project contingency 10% of TDC [12] 

y5, Other costs (start-up, permits, etc.) 10% of TDC [12] 

Total indirect costs (TIDC) ∑ 𝑦𝑖
5
𝑖=1   [12] 

Fixed capital investment (FCI) TDC + TIDC [12] 

Land 6% of installed costs [12] 

Working capital 5% of FCI [12] 

Total capital investment (TCI) FCI + Land + Working 

capital 

[12] 

f1 2.2 times of the cost of 

labor 

[74] 

f2 1.1 times of FCI [74] 

f3 1.05 times of the cost of 

utility and raw material 

[74] 

Ref = Reference 
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Table 2. Equipment cost quoted by vendors and literature.  

Equipment USD n IF Year Ref 

Pump 22,500 0.80 2.30 2009 [12] 

Flash 511,000 0.70 2.00 2009 [12] 

Mechanical separator 3,294,700 0.80 1.70 2010 [12] 

Condenser 34,000 0.70 2.20 2009 [12] 

Heater 92,000 0.70 2.20 2010 [12] 

Cooler 85,000 0.70 2.20 2010 [12] 

Acid thermal hydrolysis reactor 
19,812,40

0 
0.60 1.50 2009 

[12] 

Acid thermal hydrolysis reactor 

after deacetylation  

24,600,00

0 
0.60 1.50 2013 

[75] 

Alkaline hydrolysis reactor 614,000 0.70 2.20 2018 [74] 

Conditioning vessel 236,000 0.70 2.00 2009 [12] 

Hot water wash reactor 3,840,000 0.70 2.00 2009 [12] 

Saccharification reactor 3,840,000 0.70 2.00 2009 [12] 

Belt filter press 3,294,700 0.80 1.70 2010 [12] 

Succinic acid fermenter 1,611,100 1.00 1.45 2007 [76] 

Ethanol fermenter 
10,128,00

0 
1.00 1.50 2009 

[12] 

Deacetylation vessel 1 780,000 0.70 1.70 2013 [75] 

Deacetylation vessel 2 110,000 0.80 1.70 2013 [75] 

Micro- and nano- filtration 1000/m2 1.00 1.00 - [33] 

Centrifuge 170,000 1.00 1.45 1990 [74] 

Evaporator 3,801,095 0.60 1.00 2010 [12] 

Vacuum distillation 511,000 0.70 2.00 2009 [12] 

Activate carbon vessel 614,000 0.70 1.00 2018 [74] 

Acidification vessel 614,000 0.70 1.00 2018 [74] 

Extraction column 511,000 0.70 2.00 2009 [12] 

Back extraction column 511,000 0.70 2.00 2009 [12] 

Ion exchange column 5,250,000 0.90 1.80 2014 [77] 

Electrodialysis 1,410,000 0.70 1.00 1993 [78] 

Water splitting electrodialysis 1,410,000 0.70 1.00 1993 [78] 

Vacuum rotary filters 671,000 0.65 1.50 2014 [79] 

Crystallizer 428,200 0.67 2.00 2014 [79] 

Reactive crystallizer 428,200 0.67 2.00 2014 [79] 

Thermal cracker 241,400 0.70 1.50 2011 [79] 
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Solvent purification vessel 614,000 0.70 1.00 2018 [74] 

Dryer 
10,500,00

0 
0.60 

1.00 
1990 

[80] 

Washer 614,000 0.70 1.00 2018 [74] 

Beer and rectification column 3,407,000 0.60 2.40 2009 [12] 

Rectification column condenser 487,000 0.60 2.80 2010  

Open ponds 
158,506,9

10 
1.00 

1.00 
2011 

[81] 

Photobioreactors 109,000 1.00 1.00 2011 [81] 

Inoculum system 18.22/m2 1.00 1.00 2011 [81] 

Covered pond 233,000 1.00 1.00 2011 [81] 

Open lined pond 87,000 1.00 1.00 2011 [81] 

Lining for covered inoculum pond 3,097,827 1.00 1.00 2014 [81] 

Air supported greenhouse for 

covered inoculum ponds 
3/ft2 1.00 1.00 2014 

[81] 

Lining for open inoculum pond 3,097,827 1.00 1.00 2014 [81] 

CO2 piping 1,400,800 1.25 0.60 2014 [81] 

Storage tank immersion 70,500 1.76 1.00 2014 [81] 

Trunk line 1,661,900 1.76 1.00 2014 [81] 

Branch line 912,300 1.76 1.00 2014 [81] 

Within plot piping 2,210,000 1.00 1.00 2014 [81] 

Makeup delivery section 5,421,935 1.37 1.00 2014 [81] 

Primary settler 1,715,000 1.00 1.00 2014 [81] 

Hollow filter membranes 
12,864,00

0 

1.00 
0.75 2014 

[81] 

Centrifuge for dewatering 

microalgae 
560,000 1.00 1.00 2013 

[81] 

Membrane 1,000 - - 2010 [33] 

Extraction column 1,210,000 - 5.00 2012 [33] 

Stripping column 114,000 0.60 3.00 2018 [33] 

Decanter 569,000 0.60 2.00 2015 [33] 

Hydrogenation reactor 2,026,515 0.56 2.47 2002 [33] 

Molecular sieves 901,362 0.70 2.47 1998 [33] 
n = scaling exponent 

IF = Installation factor 

Ref = Reference 
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Table 3. The unit price of chemicals. 

Chemicals Price (USD/t) Year 

Corn stover [82] 80 2004 

S. japonica [83] 68 2008 

Steam [74] 12.68 2013 

Glucose [84] 988 2019 

Glycerol [85,86] 750 2011 

Acid [12] 87.78 2007 

Ammonia [75] 550 2011 

Enzymes  [87] 5000 2016 

Succinic acid [88] 2800 2019 

Carbon dioxide [86] 30 2010 

Sodium hydroxide [12] 149.16 2007 

Magnesium carbonate [89] 480 2015 

Magnesium hydroxide [86] 270 2001 

Sodium carbonate [90] 300 2014 

Activated carbon [91] 1300 1999 

Octanol [87] 5000 2016 

Tri-octylamine  1000 - 

Tri-methyl amine 1000 - 

Methanol [86] 547 2011 

Ammonium bisulfate [86] 260 2011 

Phosphoric acid [86] 420 2011 

Dry distiller solids [84] 70 2004 

Fresh water [74] 0.22 2013 

Hydrogen [92] 1600 2011 

Corn steep liquor [92] 12 2011 

Enzyme nutrients  [92] 1007 2011 

Ethanol [93] 610 2017 

Microalgae [94] 1000 2008 
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Table 4. Cost of utility and wastewater treatment. 

Utility Price Year 

Electricity [95] 0.07 USD/kWh 2019 

Steam [95] 6.13 USD/GJ 2016 

Cooling water [17] 0.28 USD/GJ 2015 

Chilled water [96] 5 USD/GJ 2009 

Wastewater [96] 0.041 USD/m3 2009 
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2.3 Environmental assessment methodology  

To evaluate environmental impact at the early-stage design we have 

developed a model to calculate the life cycle profile of biorefinery from 

feedstock extraction, transportation, processing, and disposal. The scope 

of environmental assessment model is cradle-to-gate that takes into 

account emissions produced from (1) raw material extraction and 

transportation to biorefinery (2) chemical used in different stages of 

processing/biorefinery (3) heat and power consumption in biorefinery, and 

(4) byproducts and waste released to environment. Therefore, in this study, 

the main goal of life cycle assessment is to identify process hotspots and 

to compare the environmental impact of different topologies in order to 

evaluate the main driver affecting the environmental profile and 

sustainability.  

The inventory data or characterization factors required to perform life 

cycle assessment was taken from SimaPro V8.2.3 software using CML-IA 

baseline V3.03 characterization method. Eleven environmental indicators 

are considered in the present model: abiotic fossil fuel depletion potential 

(ADFF), acidification potential (AP), abiotic depletion potential (ADP), 

which is relative to the extraction minerals, eutrophication potential (EP), 

global warming potential 100 years (GWP), ozone depletion potential 
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(ODP), photochemical oxidation potential (POCP), terrestrial ecotoxicity 

potential (TEP), marine aquatic ecotoxicity potential (MAETP), 

freshwater aquatic ecotoxicity potential (FWAETP), and human toxicity 

potential (HTP). One kg product was considered as a functional unit to 

compare the life cycle profile of different biorefinery configuration. 
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3 PROCESS SYNTHESIS OF SUGAR PLATFORM: PART 1 

This chapter is modified version of a research article which has been 

published in Energy as Rofice Dickson, Jun-Hyung Ryu, and J. Jay Liu 

(2018), “Optimal plant design for integrated biorefinery producing 

bioethanol and protein from Saccharina japonica: A superstructure-based 

approach.” 164(1), 1257-1270, doi:10.1016/j.energy.2018.09.007. 
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3.1 Introduction 

The demand for biofuels is rising rapidly due to increased 

environmental concerns, finite fossil fuel reserves, and fluctuating 

petroleum prices [97]. Biofuels produce less carbon dioxide, and their 

application as a transport fuel has the potential to reduce atmospheric 

carbon dioxide levels [98]. Macroalgae, namely seaweed, are a promising 

biofuel feedstock owing to their fast growth and high carbohydrate content 

as well as low lignin levels. 

Although macroalgae based biofuels are quite promising, their 

commercial production is currently limited due to the high cost of seaweed 

[83]. This challenge can be addressed by utilizing all of the components of 

seaweed, not merely carbohydrates. This can be achieved with a broad 

concept of biorefinery where carbohydrates can be processed to produce 

bioethanol while solid residue from the fermenter can be utilized to 

produce other products such as animal feed, fertilizers, and chemicals [99]. 

The residual solids obtained from the anaerobic digestion of brown algae 

are rich in protein, which can comprise as much as 50% of the residuals 

[100]. Tompkins has shown that the protein value of such solids could be 

similar to distillers’ dried grain with soluble, the protein-rich byproduct of 

corn fermentation [101]. Similar evidence on the high protein value of 
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these solid residues supports its potential as a functional food [102–104]. 

Recently, Hou et al. have shown that the protein concentration in the solid 

residues collected after brown algae fermentation is 2-3 orders magnitude 

greater than those present in raw brown algae. They further established that 

the amino acid distribution in these residues is not changed [105].  

Due to the aforementioned unique chemical composition of brown 

algae, carbohydrates in brown algae require moderate processing 

conditions such as low temperature and pressure [106]. This is beneficial 

for the recovery and extraction of sensitive bioactive components, such as 

vitamins, proteins, and antioxidants, from the solid residues of 

fermentation. Furthermore, the high demand for functional food and cheap 

protein products indicated the need for an integrated bioethanol and protein 

production biorefinery to meet these requirements. 

The rest of the chapter is constructed as follows: The optimization of 

the superstructure is formulated as an MINLP problem. To obtain the 

global optimal solution, separable programming was used to approximate 

the MINLP problem to equivalent MILP problem. The maximum seaweed 

price (MSP), minimum dried distilled solid price (MDDS) and minimum 

ethanol selling price (MESP) were also determined. A comprehensive 

sensitivity analysis was conducted to identify influential model parameters 



 

47 

 

with an impact on the overall economics, thus suggesting where to focus 

for further improvements. 

3.2 Methodology 

3.2.1 Problem statement  

The main objective of the optimization problem is to decide how 

bioethanol and dry distiller solids should be produced from SJ in the most 

economically way. To achieve the targets, a superstructure-based 

optimization model was developed that can systematically find the best 

strategy to produce desired products.  

3.2.2 Superstructure development and process optimization 

A superstructure shown in Figure 5 is developed and optimized to find 

integrated biorefinery design producing bioethanol and dry distiller solids. 

There are five different sections in superstructure, (1) pretreatment of 

biomass; (2) saccharification and fermentation; (3) production of enzymes; 

(4) purification of ethanol; and (5) processing of unreacted solids into 

useful product by centrifuge, protein recovery, and drying. For each 

section, a number of design alternatives are modeled to carry out the 

respective task. For instance, there are two different options for feed 

pretreatment. Feed can either be pretreated with a traditional acid 

pretreatment route or treated with a hot water wash method. Likewise, 
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there are two different technologies for separating solids and liquids 

coming out of the fermenter. Solid purification can be done before the beer 

column, in which case centrifugation (separation) can be performed at the 

outlet of fermenter. Alternatively, solid separation can be implemented 

after the beer column. Solids loading rate to beer column differs between 

separation routes. In the former route, solid loading to beer column is 

lower, while in the latter solid loading to the beer column is higher. There 

are two different options for obtaining enzymes for saccharification and 

fermentation. Enzymes can be manufactured onsite or they can be 

purchased. In the former case, capital and manufacturing costs are 

incurred, whereas in the latter case only purchase cost of enzyme will 

incur.  

With reference to superstructure configuration, if a separation of solids 

and liquids take place before stripping column, then flows of stream from 

spl2 to M3 and spl3 to centrfiguge2 are eliminated. In the reverse scenario, 

when separation of solids and liquids takes place after stripping column, 

flows spl2 to centrifuge1 and spl3 to c5 do not occur. Disjunctions are used 

to model these two alternatives and are shown in Section 3.2.4 [107].  

Colored blocks shown in the superstructure were used for the selection 

of option k from stage j (conditional task). Here binary variables and 
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conditional constraints with disjunctions are used to determine the optimal 

processing pathways [48]. These are the primary decision variables for the 

selection of optimal configuration. For example, spl1 divides the incoming 

stream into two streams. They go to their respective technology and are 

analyzed based on the objective function. There is a restriction on spl1 that 

only one processing stage can be selected among various alternatives. 

Although M1 can take multiple inputs from respective technologies and 

give single output. However, due to restrictions on spl1 to select only one 

alternative, M1 can only have one optimal input from the different 

technologies. The optimal input is based purely on the merit of the 

objective function.  

The chemical composition of the SJ species is given in Table 5 and 

used in this study as the input for feed in simulations. Experimental data 

regarding the process stage and main operating conditions for the modeling 

of each stage are summarized in Table 6. 

3.2.3 Nomenclature of superstructure  

Nomenclature for all alternatives in the superstructure is performed 

according to the methodology presented in Section 2.1.2 and is provided 

in Table 7.  
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Figure 5. Superstructure of an integrated biorefinery. 
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Table 5. Chemical composition of the brown algae species Saccharina 

japonica [35]. 

Proximate analysis Dry basis, % w/w 

Ash 26 

Volatile solids 74 

Proteins 12 

Lipids 2 

Mannitol 12 

Laminarin 14 

Alginate 23 

Cellulose 6 

Fucoidan 5 

Components Wet basis, % w/w 

Water 88 

Total Solids 12 
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Table 6. Operating conditions for the process stage employed in 

simulation. 

Process stage Operating 

Condition 

Reference 

Acid Pretreatment 0.5 hr 120 oC [12] 

Hot water wash 

pretreatment 0.5 hr 

85 oC [108] [109] 

Enzymatic 

saccharification 64 hr 

48 oC [110] 

Fermentation 64 hr 30 oC [111] 

Acid loading 18 mg/g dry 

biomass 

[12] 

Cellulase loading 20 mg protein /g 

(Laminarin + cellulose) 

[12] 

Corn steep liquor in 

fermentation reactors 

0.225 wt% [12] 

Diammonium phosphate 

level in fermentation 

reactors 

0.33 g/L 

fermentation broth 

(whole slurry) 

[12] 
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Table 7. Nomenclature of superstructure. 

Nomenclature Description Reference 

1,1 Acid route for feed pretreatment [12] 

2,1 Hot water wash route for feed 

pretreatment 

[15] 

1,2 Solid separation before stripping 

column 

[51] 

2,2 Solid separation after stripping 

column 

[112] 

1,3 In situ enzyme production [12] 

2,3 Purchase of enzymes [92] 
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3.2.4 Superstructure mathematical modeling 

Numerical representation of given superstructure contains mass and 

energy balance constraints, capital and operating cost constraints, and an 

objective function. 

3.2.4.1 Mass balance constraints 

Mass balance at each processing stage must be satisfied. Linear 

modeling is performed for mass balance constraints. The balance equation 

for mixers, pumps, and heat exchangers is as follows: 

                                  𝐹𝑖
𝑜𝑢𝑡 =  ∑ 𝐹𝑖

𝑘, ∀𝑖 ∈ 𝐼
𝑛𝑘
𝑘=1 ,                                    (25) 

where 𝐹𝑖
𝑘 is the component i mass flow rate of the inlet stream k, 𝐹𝑖

𝑜𝑢𝑡 

is the component i mass flow rate of the outlet stream, and 𝑛𝑘 is the number 

of streams for any particular stage. 

The amount of solids at any stage is controlled by the following 

constraint:  

                             𝐹𝑗
𝑜𝑢𝑡 ≤  ∑ 𝐹𝑖

𝑘 . 𝛼𝑗 , ∀𝑖 ∈ 𝐼
𝑛𝑘
𝑘=1 , ∀𝑗 ∈ 𝐼,                      (26) 

where 𝐹𝑗
𝑜𝑢𝑡 is the mass flow rate of component j in the outlet stream 

and 𝛼𝑗 is the mass fraction of component j in the outlet stream.  

Reactors in which reactant j is converted to product i are defined by: 

                        𝐹𝑖
𝑜𝑢𝑡 =  𝐹𝑗

𝑖𝑛 ∙ η𝑖,𝑗 + 𝐹𝑖
𝑖𝑛, ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐼,                     (27) 
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where 𝐹𝑗
𝑖𝑛 is the reactant j inlet flow rate and 𝜂𝑖,𝑗 is the parameter and 

yield of product j from reactant i.  

Splitters are used for the selection of option k from stage j and modeled 

by the following constraints:  

                                      𝐹𝑖
𝑜𝑢𝑡 =  ∑ 𝐹𝑖

𝑘, ∀𝑖 ∈ 𝐼
𝑛𝑘
𝑘=1 ,                            (28) 

and                   ∑ 𝐹𝑖
𝑘 ≤  𝑦𝑘,𝑗 . 𝑈𝐵 ∑ 𝐹𝑖

𝑘, ∀𝑖 ∈ 𝐼
𝑛𝑘
𝑘=1 , ∀𝑗 ∈ 𝐼

𝑛𝑘
𝑘=1 ,            (29) 

where 𝑦𝑘,𝑗 is the binary variable for the selection of option k from stage 

j, UB is the upper bound. The restriction for the selection on only one 

alternative is modeled as: 

                                         ∑ 𝑦𝑘,𝑗
𝑛𝑘
𝑘=1 ≤ 1, ∀𝑗 ∈ 𝐽.                              (30) 

In the dryer model, the recovery of water (𝜁2) is defined as the fraction 

of water in the feed solids that goes into the vapor stream. The recovery of 

ethanol ( 𝜁1 ) is related with the recovery of water by a simple flash 

calculation [46]: 

                                                 𝜁1 =  
𝛼1/2.𝜁2

1+(𝛼1/2−1).𝜁2
,                                 (31) 

where 𝛼1/2 is the relative volatility of ethanol with respect to water and 

taken to be constant (2.24) over temperature. The mass balance for ethanol 

and water in the vapor stream is given by Eq. (27) by replacing η𝑖,𝑗 with 

𝜁1 and 𝜁2. 
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                                      𝐹𝑖
𝑜𝑢𝑡 =  𝐹𝑗

𝑖𝑛. 𝜁𝑗 , ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐼.                         (32) 

The mass balance of ethanol and water in outlet dried solids is given by: 

                                  𝐹𝑖
𝑜𝑢𝑡 =  𝐹𝑗

𝑖𝑛. (1 − 𝜁𝑗), ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐼.                   (33) 

The beer and rectification columns are modeled according to the 

method proposed by Grossmann [51], in which recovery of ethanol at the 

top of the column is fixed to 99.6% to reduce ethanol losses. A reflux ratio 

of 2 is taken for beer column and rectification column. Recovery of water 

is treated as a variable to provide operation flexibility. Then mass balance 

is given by: 

                                    𝐹𝑖
𝑘 = 𝐹𝑖

𝐼𝑁 . 𝜁𝑖,𝑘, ∀𝑖 ∈ 𝐼, ∀𝑘 ∈ 𝐾,                          (34) 

where 𝐹𝑖
𝑘 is the component i mass flow rate of the outlet stream, 𝐹𝑖

𝐼𝑁 is 

the component i inlet flow rate, and 𝜁𝑖,𝑘  is the fractional recovery of 

component i in the outlet stream k. 

Limit on feedstock is modeled as: 

                                                 𝐹𝑒𝑒𝑑 ≤ 𝑠𝑢𝑝𝑝𝑙𝑦.                                    (35) 

Disjunctions are used for modeling solid separation alternatives. For 

example, if the separation of solids and liquids takes place before the 

stripping column, then flow from spl3 to c5 must exist and can be modeled 

as:  

                                                   ∑ 𝑦𝑘2
𝑘=1  ≥ 2,                                      (36) 
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where 𝑦𝑘 is the binary variable for outlet stream k. On the contrary, if 

separation of solids takes place after the stripping column, then flow from 

spl3 to centrifuge2 must exist and can modeled as in Eq. (36). Finally, 

restriction on spl2 and spl3 to select only one option from several options 

is applied by using Eq. (30). 

3.2.4.2 Energy balance constraints  

For each unit operation, the following energy balance constraint was 

used: 

∑ 𝐹𝑖
𝐼𝑁. 𝑐𝑝𝑖

𝐼𝑁 . 𝑇𝐼𝑁𝑛𝑖
𝑖=1 + 𝑄𝐺𝐸𝑁 + 𝑄𝐸𝑋𝑇 =  ∑ 𝐹𝑖

𝑂𝑈𝑇 . 𝑐𝑝𝑖
𝑂𝑈𝑇 . 𝑇𝑂𝑈𝑇 , ∀𝑖 ∈ 𝐼

𝑛𝑖
𝑖=1 ,     (37) 

where 𝑐𝑝𝑖
𝐼𝑁 and 𝑐𝑝𝑖

𝑂𝑈𝑇 are the specific heat of component i at the inlet 

and outlet conditions respectively. 𝑇𝐼𝑁 and 𝑇𝑂𝑈𝑇 are the temperature of 

inlet and outlet conditions, and 𝐹𝑖
𝐼𝑁  and 𝐹𝑖

𝑂𝑈𝑇  are the flow at inlet and 

outlet conditions. The above relationships are nonlinear due to the 

multiplication of continuous variables such as temperature and flow rate. 

An approximation of nonlinear equations is presented in Section 3.2.4.5.  

Heat balance in the reboiler is determined by a simple relation proposed 

by [46] and rearranged as: 

                                   𝑄𝐸𝑋𝑇 = (1 + 𝑅) ∑ 𝑓𝐵,𝑖𝜆𝑖
𝑛𝑖
𝑖=1 .                              (38) 

The cooling heat load needed for the condenser is given by: 

                                     𝑄𝐸𝑋𝑇 = −(1 + 𝑅) ∑ 𝑓𝐷,𝑖𝜆𝑖
𝑛𝑖
𝑖=1 ,                         (39) 
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where 𝑓𝑑,𝑖 , 𝑓𝑏,𝑖 , 𝑅 , and 𝜆𝑖 are the component molar flowrate in the 

distillate, component molar flowrate at the bottom, reflux ratio, and latent 

heat of component i, respectively. 

3.2.4.3 Economic analysis constraints 

The TEA model was formulated based on the strategy presented in 

Section 2.2. The TEA model consists of capital and manufacturing 

constraints to calculate discounted cash flow, which is later used to 

calculate the minimum selling price of products and the maximum 

purchasing price of feedstock. Equipment cost data including their scaling 

exponents and installation factors are reported in Table 2. Likewise, 

chemicals costs and utility costs are presented in Table 3 and Table 4 of 

Section 2.2, respectively.  

3.2.4.4 Objective functions 

Two different objective functions were used for this optimization, 

maximization of net present value and maximization of bioethanol yield.  

The NPV is defined according to Eq. (24) as:  

𝑁𝑃𝑉 =  ∑
𝑁𝐶𝐹𝑛

(1+𝑟)𝑛
20
𝑛=0 . 

The yield of bioethanol can be defined as the flow of bioethanol out of 

the final stage and modeled as; 

                                          𝑌𝑖𝑒𝑙𝑑 =  ∑ 𝐹𝑖
𝑜𝑢𝑡

𝑖 ,                                   (40) 
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where 𝐹𝑖
𝑜𝑢𝑡 is the component i mass flow rate of the outlet final stream.  

3.2.4.5 Approximation of nonlinear constraints 

Energy balance equations and design constraints are the main sources 

of nonlinearity that may cause difficulty in solution convergence and 

computation of a global optimal solution [87]. In order to avoid such 

issues, the separable programming technique was applied to linearize the 

problem [113]. For example, transformation of the energy balance Eq. (37) 

can be expressed as follows: 

∑ 𝐹𝑖
𝐼𝑁 . 𝑐𝑝𝑖

𝐼𝑁 . 𝑇𝐼𝑁𝑛𝑖
𝑖=1 + 𝑄𝐺𝐸𝑁 + 𝑄𝐸𝑋𝑇 =  ∑ 𝐹𝑖

𝑂𝑈𝑇 . 𝑐𝑝𝑖
𝑂𝑈𝑇 . 𝑇𝑂𝑈𝑇𝑛𝑖

𝑖=1  𝑓𝑜𝑟 𝑖 =

1, … , 𝑛𝑐𝑜𝑚𝑝, 

where the product of two variables, mass flow rate and temperature, is 

taking place and causing non-linearity. The model can be transformed into 

a separable form by the following transformation:  

1. Introduce two new variables, 𝑌1 and 𝑌2, into the model, 

2. Relate 𝑌1 and 𝑌2 to 𝐹𝑖
𝐼𝑁 and 𝑇𝐼𝑁 by: 

                                        Y1 =
1

2
(Fi

IN +  TIN),                                 (41) 

and                                       Y2 =
1

2
(Fi

IN −  TIN),                                (42) 

3. Replace the term 𝐹𝑖
𝐼𝑁 ∙  𝑇𝐼𝑁 in the model by: 

                                                  Y1
2 − Y2

2 .                                         (43) 
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The model now contains the nonlinear functions 𝑌1
2and 𝑌2

2  of single 

variables and is therefore separable. These nonlinear terms can be dealt 

with by piecewise linear approximations in which the lower and upper 

bounds of these variables are set and the graph is plotted between Y1 and 

𝑌1
2 and Y2 and 𝑌2

2. 

For design equations, approximations were done by using logarithms to 

form a separable model. Once separable equations are obtained, 

approximation can be done by similar methodology as described above. 

Care must be taken when logarithmic transformations are made to ensure 

that neither Y1 nor Y2 ever take the value 0. If this were to happen, their 

logarithms would go to negative infinity. It may be necessary to limit Y1 

and Y2 to certain bounds to avoid this occurrence. 

3.2.4.6 Verification of approximations 

Statistically, no model is 100% accurate. It is therefore of utmost 

importance to investigate the results from approximations. To assess 

approximations, an automated model was developed in Microsoft Excel 

and linked with the GAMS environment by GDXXRW utility. Each time 

a model is compiled in GAMS; optimized variables were transported to the 

excel model. The model in excel then uses this information to insert the 

optimized variable into original nonlinear equations and compare the result 
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of original solution with the approximated one. Finally, it calculates the 

amount of error in the approximation. If the error rate is higher than 1%, 

then it suggests new coefficients for approximation. The newly suggested 

coefficient is updated in GAMS and this process continues. Normally, this 

process needs just one revision of the coefficient to provide the desired 

results.  

3.3 Model solution 

The previously mentioned model has been implemented in GAMS 

v.25.0.2. Its solution has been computed in GAMS using CPLEX solver. 

The model contained 1,795 continuous variables, 8 binary variables, and 

2,106 equality and inequality constraints. Furthermore, the optimal 

solution is found in 129 iterations with an optimally gap of 0. 

3.4 Results and discussions 

The proposed modeling framework is implemented to determine the 

optimal structure for an SJ based bioethanol plant. To gain more insight 

into a macroalgae based biorefinery, two different optimization scenarios 

are investigated by using different objective functions where (i) scenario 1 

sought to maximize product yield and (ii) scenario 2 sought to maximize 

the net present value. 
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3.4.1 Scenario-1: Maximization of product yield  

The optimal flowsheet obtained from the superstructure for maximizing 

ethanol yield is given in Figure 6, in which the optimal pathway is 

composed of an acid feed pretreatment, solid separation after the stripping 

column, and in-situ enzyme production. The optimization results are 

presented in Table 8. The maximum yield of bioethanol was found to be 

84.41 gal/ton of dry feed. DDS is obtained as a byproduct, and its yield is 

estimated to be 0.49 ton/ton of dry feed. Based on these yields, bioethanol 

and DDS productions of 52 Mgal/yr and 297.6 kton/yr were obtained 

respectively. The NPV for this plant design is found to be 3.90 million 

USD for 20 years project life.   
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Figure 6. Optimal plant structure for scenario-1. 

 

 

 

 

 



 

64 

 

 

 

 

 

 

 

Table 8. Optimization results. 

 
Bioethanol 

yielda  

DDS 

Yieldb  

NPV 

(MM$) 

Bioethanol 

production 

Mgal/yr 

DDS 

production 

kton/yr 

Case1 84.41 0.49 3.9 52 297.6 

Case2 80.57 0.51 61.5 49 311.3 

agal/ton 
bton/ton dry feed 
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3.4.2 Scenario-2: Maximization of NPV of the process 

Scenario-2 deals with the maximization of a rigorous economic 

objective function, such as NPV.  

The optimal processing pathway according to scenario-2 has been 

computed and illustrated in Figure 7. Interestingly, the optimal design for 

this scenario is completely different than the previous scenario except for 

the enzyme production decision. Hot water wash, solid recovery before 

beer column use, and production of enzymes at plant site were selected as 

the optimal plant configuration. 

The bioethanol and DDS yields are estimated to be 80.6 gal/ton of dry 

feed and 0.51 ton/ton of dry feed respectively. Based on these yields, 

bioethanol and DDS productions of 49 Mgal/yr and 311.3 kton/yr were 

obtained respectively. NPV for this plant design is 61.5 million USD. 

Even though the bioethanol yield in scenario-1 is 5% higher than that 

in scenario-2, the economic potential comparison of these two scenarios 

clearly shows that a plant design with respect to maximization of NPV is 

the better option. Hence, scenario 1 is not economically favorable and 

scenario-2 was selected as a base case for further investigation.   
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Figure 7. Optimal plant structure for scenario-2. 
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3.4.3 MESP and MDDS  

MESP can be defined as the price of ethanol at which NPV corresponds 

to zero. MESP is calculated to be 1.97 USD/gal, which is on average 19.8% 

lower than the MESP from lignocellulose biomass [12,72,114,115]. 

Similarly, MDDS is also estimated by fixing the cost of ethanol to a base 

cost (2.24 USD/gal). The breakeven point obtained from the MDDS is 90 

USD/ton, which is 30% lower than current wholesale price (130-140 

USD/ton) of distillers’ dried grain with soluble [116]. As MESP and 

MDDS are lower than their current wholesale market price, this shows that 

the production of bioethanol and protein rich solid from seaweed is 

economically viable. 

3.4.4 Maximum seaweed price  

Cost of seaweed is one of the biggest expenses contributing to the total 

manufacturing cost. It can be seen from Figure 8A that almost 54% of the 

total manufacturing cost consists of raw material cost. An increase in the 

cost of seaweed causes a direct increase in the cost of ethanol production. 

Therefore, upper limit for the price of seaweed, at which NPV become 

zero, was evaluated. MSP is estimated by maintaining the price of both 

products at base case and varying the cost of feed until the NPV value 

reached zero. The target seaweed price is calculated to be 88 USD/ton. 
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3.4.5 Manufacturing cost summary 

The TCOM for the optimal base design was calculated to be 105 million 

USD per year. The method used to estimate TCOM is similar to that 

employed by Turton et al [74]. Manufacturing cost break down is reported 

in Figure 8A. Raw material cost accounts for the largest operating cost. 

This cost also includes the cost of transporting seaweed from the collection 

area to the plant site. Utilities are the second-largest portion of the 

manufacturing costs, which are mostly used to run distillation columns and 

dryer. It is expected that using heat integration and multi-effect distillation 

columns may decrease utility consumption at the expense of high capital 

cost. 

3.4.6 Total capital investment  

The results in Figure 8B illustrate that the total capital cost for optimal 

plant design is 220 million USD. The largest contribution to capital 

investment is the manufacturing capital required to purchase plant 

equipment. Ethanol purification and solid recovery are among the most 

expensive areas in terms of capital investment, due to large number of unit 

operations involved in dehydrating and recovering proteins. Interestingly, 

in this plant configuration, the capital cost of the hot water pretreatment is 

considerably lower than that of conventional acidic pretreatment.   
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Figure 8. Total cost of the manufacturing breakdown [A]. Total capital 

investment breakdown [B]. 
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3.4.7 Identification of alternative promising strategies  

The generation of alternative promising strategies is done by adding 

integer cut constraints (Eq. 18). These promising pathways are known as 

sub-optimal solutions. Various solutions in Table 9 represent the top four 

ordered pathways apart from pathway 1 (base case), which is the optimal 

solution. Pathway 6 is the least optimal pathway, which is estimated by 

minimizing the objective function. As it can be seen in Table 9, the NPV 

differences between the first three sub-optimal pathways is not substantial. 

The same is true for MESP, MDDS, and MSP. However, the solution for 

pathway 5 differs from the optimal pathway considerably. This is due to 

the selection of an acidic pretreatment instead of a hot water wash. It is 

further estimated that the selection of an acidic pretreatment for a brown 

alga based bioethanol plant would increase the TCI from 220 million USD 

to 289 million USD. Likewise, MESP rises from 1.97 USD/gal to 2.20 

USD/gal. Additionally, the NPV for pathway 5 is close to breakeven point 

and becomes negative in pathway 6, which is the worst combination of unit 

processes corresponding to acid pretreatment, solid recovery after the beer 

column, and enzyme purchase. In this case, MESP rose to 2.24 USD/gal. 

These data strongly support the effectiveness of a hot water wash 

pretreatment over an acidic route.  
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Table 9. A set of ordered potential processing pathways. 

 
NPV 

(MM$) 

Yield 

(gal/ton) 

MESP 

($ /gal) 

MSP 

($/ton) 

Promising 

pathways 

Pathway1 

(base case) 
61.5 80.5 1.97 90 2,1 1,2 1,3 

Pathway2 58.7 80.5 1.98 90.2 2,1 1,2 2,3 

Pathway3 57.2 80.7 1.99 90.3 2,1 2,2 1,3 

Pathway4 54.5 80.7 2.0 93.1 2,1 2,2 2,3 

Pathway5 8.1 84.3 2.20 124.3 1,1 1,2 1,3 

Pathway6 

(Worst case) 
0.68 84.4 2.24 130.4 1,1 2,2 2,2 
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3.4.8 Sensitivity analysis 

To investigate and evaluate the effect of the key model parameters on 

MESP and ethanol yield, a single-point sensitivity analysis was performed. 

The variables evaluated in the sensitivity analysis along with their 

variations are reported in Table 10 and results of the sensitivity analysis 

on MESP are presented as a tornado chart in Figure 9, where the value of 

MESP obtained in base case is used as a reference. 

Sensitivity analysis indicates that MESP is the most sensitive to the total 

capital investment, cost of feed, sales of DDS, amount of solid loading and 

glucose conversion to ethanol.  

During sensitivity analysis of some variables, such as TCI and enzymes 

cost, the optimal design of the base case was changed to other 

configurations where purchased enzymes are selected as the optimal 

alternative. The differences between the flowsheet, relative to optimal 

flowsheet, during sensitivity analysis of TCI and enzyme cost are due to 

the total capital cost, which is increases dramatically with a 15% 

incremental change in these variables. Consequently, purchase of enzymes 

become the most favorable option.  

For all other variables, there is no change in the optimal processing 

pathways because these variations are globally applied to whole 
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superstructure, thus results affect the value of objective function only with 

no change in optimal production route.  

The results of sensitivity analysis on ethanol yield are shown in Figure 

10, where the ethanol yield obtained in the base case is used as a reference. 

Conversion of glucose to ethanol is the dominant parameter for increasing 

the overall yield. An increase of 8%, relative to baseline yield, was 

observed by 10% increase of conversion ability of glucose to ethanol. Also, 

feed composition has a large effect on the overall ethanol yield. Increasing 

the carbohydrates content of feed by 50% provides an additional 5 gallons 

of ethanol per ton of dry seaweed. 
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Table 10. Assumptions and variations of the sensitivity analysis. 

Assumption Min Base Max 
Variation 

(%) 

Composition     

Mannitol (% w/w) 6 12 18 ±50 

Cellulose and Laminarin 

(% w/w) 
10 20 30 ±50 

Capital     

TCI (%) -15 - 15 ±15 

Internal rate of return (%) 8.5 10 11.5 ±15 

Brown algae cost (USD/ton) 57.8 68 78.2 ±15 

DDS price (USD/ton) 110.5 130 149.5 ±15 

Pretreatment and 

Saccharification reactor 
    

Pretreatment % solid load 16 20 24 ±20 

Saccharification % solid load 16 20 24 ±20 

Pretreatment temperature (oC) 75 85 95 ±12 

Laminarin and cellulose to 

glucose (%) 
72 80 88 ±10 

Fermentation     

Glucose to ethanol (%) 72 80 88 ±10 

Mannitol to ethanol (%) 72.9 81 89.1 ±10 
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Figure 9. Sensitivity tornado chart for MESP. 
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Figure 10. Sensitivity tornado chart for ethanol yield. 
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3.4.9 Potential improvements to plant economics 

In this section, based on the results of sensitivity analysis, critical 

parameters are identified, and suggestions are made for potential 

improvements to plant economics.  

3.4.9.1 Seaweed price 

As can be seen in the sensitivity analysis, seaweed price is a key factor 

for determining the economic feasibility of a bioethanol production 

facility. Therefore, this is the first potential target for improvement. In this 

work, the base case price of dry seaweed (68 USD/ton) included the cost 

of macro-algae cultivation (80%) and transportation (20%) [102]. This 

20% transportation cost contributes to an expenditure of 12.2 million USD 

for the transportation of total feed per year. However, if the location of the 

biorefinery is properly optimized, this can result in a significant decrease 

in the transportation cost. In addition, some pretreatment strategies such as 

drying and shredding can be applied at the feed collection area to decrease 

the transportation of inert (Water) materials to the factory. 

At this point, a 50% reduction in transportation cost of feed, when 

assuming the plant location closest to feed collection area, corresponds to 

61 USD/ton of dry feed. From the results given in Table 11, a 4.54% and 
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30.65% improvement in MESP and NPV respectively can be achieved 

relative to the base case. 

3.4.9.2 Carbohydrates conversion 

A goal was set for the conversion of carbohydrates to glucose. A higher 

carbohydrate conversion demands the use of advanced enzymes with 

accelerated activity for multiple substrates (cellulose, laminarin). In 

addition, accessory enzymes such as ferulic acid esterase may also be used 

for efficient hydrolysis [12]. By assuming a 10% increase in carbohydrate 

conversion to glucose, and combining this with the case 1, a 47.8% and 

5.58% improvement in NPV and MESP can be achieved respectively. 

3.4.9.3 Sugar conversion 

Conversion of sugars to bioethanol is essential for the economic success 

of the bioethanol production process. In this study, an 80% sugar to ethanol 

conversion rate is used. However, in the sensitivity analysis, it is shown 

that a 10% increase in the conversion efficiency of sugar decreases the 

production cost by 5%. In order to achieve this goal, genetically engineered 

enzymes are required [12]. Once the activity and stability of the enzymes 

are optimized and properly tuned, a remarkable increase in performance is 

expected. In this case a 10% increase in the conversion capacity of sugar 

to bioethanol is assumed, and then integrated with results of goal 2, would 



 

79 

 

result in 106.5% and 10.6% improvements in NPV and MESP 

respectively. 

3.4.9.4 DDS price 

The current wholesale market price of DDS varies from 130-140 

USD/ton [115]. The variation in the price of DDS is based on protein 

contents. Whereas the quantity of protein in DDS depends upon various 

factors such as protein contents present in feed (seaweed) and processing 

conditions (temperature, time). Prolonged or excessive heating during the 

process scorches the protein in DDS and reduces the availability of amino 

acids, particularly lysine [117]. Therefore, it is important to focus on 

optimal processing conditions and technologies to meet high-quality 

standards for DDS. Assuming a wholesale price of 150 USD/ton for high-

quality DDS, and combining with previous results, would result in 150.7% 

and 16.3% improvements in NPV and MESP respectively. 
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Table 11. Effect of different policies/goals on MESP and NPV. 

 
Base 

case 
Goal1 Goal2 Goal3 Goal4 

NPV 61.5 82.9 90.9 127.0 154.2 

Improvement (%) 0 34.8 47.8 106.5 150.7 

MESP 1.97 1.89 1.86 1.76 1.65 

Improvement (%) 0 4.1 5.6 10.7 16.3 
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3.5 Conclusions 

In this work, a superstructure for the systematic assessment of a 

multiproduct biorefinery using SJ was developed. A rigorous techno-

economic model was used to investigate different optimization scenarios 

such as maximization of yield and maximization of NPV. Distinct optimal 

structures were obtained for each optimization scenario. The MESP for 

scenario 1 and 2 were calculated to be 2.20 USD/gal and 1.97 USD/gal 

respectively. Results indicated that the acid pretreatment of feed (scenario 

1) is not economically favorable over hot water wash (scenario 2) for 

production of SJ-based bioethanol.  

A comprehensive sensitivity analysis was also performed to evaluate 

the major cost drivers. TCI and biomass prices were found to be the most 

sensitive parameters to MESP. In terms of enzymes, the capacity for the 

conversion of carbohydrates into sugars, and subsequently to ethanol, has 

a strong relation with MESP. Finally, bottlenecks were investigated, and 

new research targets were suggested to improve biofuel production. An 

MESP improvement of 16.3% was obtained by implementing these targets 

in simulation.  
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4 PROCESS SYNTHESIS OF SUGAR PLATFORM: PART 2 

This chapter is a modified version of the conference paper presented in 

ESCAPE-19 conference. The full-length article of this chapter is under 

review in Energy journal.  

The superstructure presented in this chapter is the extension of the one 

presented in Chapter 3. More alternative technologies were added in the 

superstructure to utilize all emissions of biorefinery including carbon 

dioxide, wastewater, unreacted solids. 
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4.1 Introduction 

Global warming is arguably one of the largest challenges faced by 

modern society [97]. Among greenhouse gases, CO2 is of primary concern 

owing to its continuous increase in emission levels [118]. Therefore, a 

viable alternative is crucially needed in the form of biomass-derived 

biofuels, which could yield lower CEs. In addition, process integration 

techniques that can efficiently utilize CEs from industrial processes are 

necessary to decrease its adverse effect on the environment. 

Brown algae, more specifically SJ offer multiple advantages over 

terrestrial biomass as presented in Section 1.2. The high levels of 

carbohydrates in SJ can be utilized to produce bioethanol. The optimal 

design determined in the previous chapter indicated that bioethanol 

production from SJ is economically viable at 1.97 USD/gal. 

Despite promising economics, bioethanol processing produces 

significant amounts of waste streams and byproducts [119]. For example, 

gaseous products from the fermenter contain large quantities of CO2 with 

traces of ethanol vapors [120]. The CE from fermentation in a medium-

sized biorefinery processing 63 to 112 kg/s sugarcane ranges from 3.5 to 

6.1 kg/s [121]. Furthermore, the stillage from the distillation column has a 

high chemical oxygen demand, biochemical oxygen demand, and mineral 
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content. Disposal of these wastes without treatment can contribute to 

global warming and cause severe environmental issues such as 

deoxygenation of water reservoirs, discoloration, odor, eutrophication, and 

acidification [122]. Likewise, unreacted biomass from processing offers 

additional challenges.  

A report by the U.S. Department of Energy indicated that succinic acid 

is a top value-added chemical owing to its growing global market and its 

numerous applications in food and pharmaceutical industries [123,124]. 

Bai et al. [125] demonstrated that SJ biomass represents an economical 

alternative to petroleum-based succinic acid with high yields. Utilizing 

CO2 also makes succinic acid production suitable as a method for 

mitigating CE from bioethanol production. Another potential method for 

this is microalgae-based biological utilization [126,127]. Microalgae can 

grow anywhere, even in wastewater; thus, they can be cultivated in the 

same area in which SJ is processed [128]. Davis et al. reported that 1 kg of 

microalgae consumes 1.93 kg of CO2 [129]. The algal mass produced from 

bioethanol-emitted CO2 is also a value-added product with applications in 

food and fuels [130]. The unreacted biomass can be separated from liquid 

products of fermentation and can be processed to produce high protein feed 

for animals called DDS [101]. Likewise, wastewater from all processing 
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can be collected to process in a wastewater treatment facility to produce 

clean water for biorefinery and biogas as a byproduct [131,132].  

Despite several concepts of utilizing waste streams, high capital 

investment of such technologies is one of the major bottlenecks for their 

integration with standalone biorefineries. Therefore, comprehensive 

studies on large-scale optimization are required to investigate the optimal 

design of integrated biorefineries in most cost-competitive fashion.  

The remainder of this chapter is organized as follows. The optimization 

of the superstructure is formulated as an MINLP. To determine the optimal 

design, various scenarios are investigated by maximizing the NPV and 

minimizing the CE. Once the optimal design is determined, the economic 

indicators of the process—such as maximum seaweed price and minimum 

selling prices of ethanol, dry distiller solids, succinic acid, and 

microalgae—are evaluated. Comprehensive single-point sensitivity 

analysis is then performed to identify the influential model parameters 

affecting the overall economics. The most influential parameters 

determined from sensitivity analysis are then analyzed using Monte Carlo 

simulation to determine the range of economic indicators and to perform 

the risk assessment. Finally, the impact of the biorefinery on the 
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environment is also investigated by optimizing CO2 utilization and 

freshwater consumption.  

4.2 Methodology  

4.2.1 Problem statement 

The optimization problem is defined as the determination of the optimal 

design of biorefinery that produces bioethanol and utilizes all waste 

streams of processing into value-added products. The optimal design in 

this study is defined to have superior economic potential with minimum 

detrimental effects on the environment.  

4.2.2 Sustainable superstructure development  

The traditional bioethanol process consists of acid thermal hydrolysis; 

enzymatic hydrolysis; fermentation; and ethanol purification by stripping 

column, rectification column, and molecular sieves [51]. To design an 

environmentally sustainable biorefinery, new technologies and their 

alternatives were added to the traditional bioethanol process. The 

superstructure given in Figure 12 is capable of utilizing all components of 

seaweed and waste streams from the bioethanol processing. Seven major 

sections are included in the superstructure: feed pretreatment, enzymatic 

hydrolysis and fermentation, enzyme production, CO2 utilization, 

microalgae harvesting, purification, and wastewater treatment. Multiple 
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design alternatives are embedded in different sections of the superstructure 

to perform specific tasks.  

Nomenclature for all alternatives in the superstructure is performed 

according to the methodology presented in Section 2.1.2 and is provided 

in Table 12. The proposed superstructure contains 30 design alternatives 

including different pretreatment and separation technologies and 

alternatives for CO2 mitigation and enzyme production.  

The biorefinery process in superstructure starts with the feed pre-

treatment. Feed can either be pre-treated with acid thermal hydrolysis or 

hot water wash. The resulting treated feed then sent to the enzymatic 

hydrolysis and fermentation section, where carbohydrates are converted 

into glucose and ultimately to ethanol. There are two alternatives for 

obtaining enzymes for saccharification. Enzymes can be manufactured on-

site or they can be purchased. The outlet streams from the saccharification 

and fermentation section consist of the gaseous, liquid, and solid product 

stream. The gaseous products primarily consist of CO2 and sent to CO2 

utilization section. Two design alternatives considered for CO2 utilization 

are microalgae production and succinic acid production. Based on the work 

of Bai et al. [125] succinic acid production from SJ is promising and can 

occur by consuming glucose and CO2 in the presence of E. Coli. Glucose 
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required for the succinic acid fermentation is provided from the 

saccharification and fermentation section (Figure 11) by splitting a part of 

glucose to CO2 utilization section. As glucose split for the succinic acid 

production will decrease the bioethanol production, therefore, upper bound 

on succinic acid production is applied. In alternative method, CO2 can be 

utilized to produce microalgae. Microalgae can be cultivated either in open 

ponds or photobioreactors. 

In harvesting section, five design alternatives are considered for 

microalgae harvesting and dewatering. The microalgae are harvested in 

gravity settler, which can be dewatered either by hallow filter membranes, 

diffused air flocculation, or electrocoagulation followed by centrifugation. 

Alternatively, belt filter press can be implemented at the outlet stream of 

gravity settler. The final concentration of microalgae from all dewatering 

alternative is 20 wt.%. The operating data considered for microalgae 

production is based on the work of Davis et al. [129]. In the purification 

section, various streams coming from the fermentation and CO2 utilization 

section are processed to their desired level of purity. For example, succinic 

acid can be purified either by extractive distillation or reactive distillation 

processes. Unreacted solids from the fermenter can be processed either 

before the beer column or after the beer column. Furthermore, solid 
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processing can be performed either by centrifuge or belt filter press. As 

ethanol purification is an energy-intensive process, therefore, multiple 

design alternatives are considered in the superstructure to select optimal 

topology for its purification. In general, two pathways included in the 

superstructure are conventional unit operations and novel technologies 

such as hybrid distillation. The conventional unit operations consist of beer 

column, rectification column, and molecular sieves (zeolite beds) or 

pervaporation membranes (cross-linked vinyl alcohol). However, hybrid 

distillation includes the combination of distillation columns and 

pervaporators in series. Furthermore, ethanol purification in the beer 

column is energy-intensive. Therefore, to reduce energy consumption, the 

beer column has two design alternatives: a single distillation column and 

pressure swing distillation. To reduce freshwater consumption, a complete 

wastewater treatment network incorporated into the superstructure that 

will treat and recycle wastewater from various process units. Process 

wastewater is treated using anaerobic digestion, aerobic digestion, and 

reverse osmosis. The treated water is assumed to be pure and is recycled 

to the process. The experimental data used in the optimization are listed in 

Table 13. 
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Figure 11. Alternatives for carbon dioxide utilization. 
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Figure 12. Superstructure of biorefinery for producing biofuel and 

chemicals from Saccharina japonica. 
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Table 12. Notations for the superstructure. 

Notation Description Ref 

1,1 Feed (SJ) [102] 

 Pretreatment  

1,2 Acid thermal hydrolysis [15]  

2,2 Hot water wash [15]  

 Enzymatic hydrolysis and fermentation  

1,3 Saccharification and fermentation [133]  

 Enzyme production  

1,4 Enzyme purchase [12] 

2,4 On-site enzyme production [12] 

 CO2 utilization  

1,5 Succinic acid fermentation [125] 

2,5 Microalgae cultivation in open pond [134]  

3,5 Microalgae cultivation in photobioreactor [134]  

 Microalgae harvesting   

1,6 Gravity settler [135]  

2,6 Hollow filter membranes [136]  

3,6 Diffused air flocculation [137]  

4,6 Electrocoagulation [138]  

5,6 Centrifuge [139]  

6,6 Belt filter press [140]  

 Purification  

1,7 
Reactive crystallization for succinic acid 

purification  
[141] 

2,7 
Extractive distillation for succinic acid 

purification 
[142] 

3,7 Solid purification before beer column [51] 

4,7 
Single beer column for ethanol 

purification 
[12] 

5,7 
Thermally integrated beer column for 

ethanol purification 
[51] 

6,7 
Pervaporation units for ethanol 

purification 
[143]  

7,7 Molecular sieves for ethanol purification [51] 

8,7 Hybrid distillation for ethanol purification [144] 
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9,7 Solid purification after beer column [51] 

 Wastewater treatment  

1,8 Wastewater treatment [52]  

 Products  

1,9 Succinic acid - 

2,9 Recycle water - 

3,9 Dry distiller solids  - 

4,9 Ethanol - 

5,9 Microalgae - 
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Table 13. Operating conditions used in the optimization. 

Feed pretreatment operating conditions [15] 

Process 

alternatives 

T 

(K) 
RT (h) 

Solid 

loading 

(wt.%) 

Acid 

loading 

(kg/kg 

dry 

biomass) 

NH3 loading 

(g/L of 

hydrolysate) 

ATHa 393 0.5 30 0.018 4.8 

HWWb 358 0.5 20 - - 

          

Operating conditions for various processing stages [12,108,125,133] 

Processing 

stage 

T  

(K) 

RT  

(h) 

Cellulase 

loadingc 

(kg) 

CSLd 

 (wt.%) 

Yield 

(%) 

DAPe 

(g/L) 

SCRf 321 64 0.02 - 90 - 

SCRg 321 64 0.02 - 
70-

80 
- 

Ethanol 

Fermentation 
303 96 - 0.25 83 0.33 

Seed train 301 64 - 0.5 24 0.67 

SA 

Fermentation 
310 72 - - 73 - 
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Design parameters for microalgae cultivation alternatives [134] 

Process 

alternatives 

Lipid 

yield 

(%) 

Algae 

productivity 

Work for 

blower and 

mixing 

(kJ/m2) 

Heat 

removed 

by 

chillers 

(GJ/day) 

Paddlewheel 

power 

consumption 

(kW) 

Open pond 25 0.25 (kg/m2/day) - - 11 

PBRh 25 1.25 (kg/m3/day) 3.5 83.4 - 

          

Operating data for alternative dewatering technologies [134] 

Process alternatives 
Concentration 

(wt.%)  

Separation 

efficiency (%) 
Energy demand 

Gravity settler 1 90 Negligible 

Hollow filter 

membranes 
13 99.5 0.144 MJ/m3 

Electrocoagulation 6 95 2.52 MJ/m3 

Diffused air flotation 6 95 0.48 MJ/kg 

Centrifuge 20 99.7 4.86 MJ/m3 

Belt filter press 20 98 1.08 MJ/m3 
a Acid thermal hydrolysis  

b Hot water wash 

c kg/kg (laminarian+ cellulose) 
d Corn steep liquor 
e Diammonium phosphate  
f Saccharification after acid thermal hydrolysis  
g Saccharification after hot water wash 
h Photobioreactor   
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4.2.3 Mathematical modelling of superstructure 

The mathematical model of the superstructure is formulated as an 

MINLP model by considering mass and energy balance constraints, capital 

and operating cost constraints, and objective functions. 

4.2.3.1 Mass balance constraints  

Linear modeling is performed for the mass balance constraints. The 

superstructure includes two types of splitters. The first is a fractional 

splitter that can take any value between 0 and 1, with several possible 

parallel pathways available, and the second is a conditional splitter that can 

take either 0 or 1 as an integer value. These splitters are required to select 

one optimal technology from multiple alternatives. The first type of splitter 

is abbreviated spl1 whereas the second is denoted spl2.  

The mass balance constraints for the splitters are modeled as follows:  

                                       𝐹𝑖
𝑘 = 𝐹𝑖

𝐼𝑁 ×  𝜇𝑘, ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝐼,                     (44) 

                                                      ∑ 𝜇𝑘  =  1
𝑛𝑘
𝑘=1 ,                                   (45) 

                                        𝐹𝑖,𝑗
𝐼𝑁 =  ∑ 𝐹𝑖,𝑗

𝑘 , ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽
𝑛𝑘
𝑘=1 ,                     (46) 

and                           𝐹𝑖,𝑗
𝑘 ≤  𝑦𝑘,𝑗 ×  𝑈𝐵, ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽,           (47) 

where 𝐹𝑖
𝑘 , 𝐹𝑖

𝐼𝑁 , 𝜇𝑘 , 𝐹𝑖,𝑗
𝐼𝑁 , 𝐹𝑖,𝑗

𝑘 , 𝑦𝑘,𝑗 , and 𝑈𝐵 are the mass flow rate of 

component i in outlet stream k, the mass flow rate of component i in the 

inlet stream, the split fraction for stream k, the mass flow rate of component 
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i in inlet stream k from stage j, the mass flow rate of component i in outlet 

stream k from stage j, the binary variable for the selection of option k from 

stage j, and the upper bound, respectively. The logical constraint for the 

selection of only one technology is enforced by the following: 

                                           ∑ 𝑦𝑘,𝑗
𝑛𝑘
𝑘=1 ≤ 1.                                       (48) 

Eqs. (44) and (45) refer to spl1, whereas Eqs. (46–48) correspond to 

spl2.  

The mass balance equation for reactors such as pretreatment, 

saccharification, fermentation, crystallizers, open pond, photobioreactor, 

and harvesting technologies in which the reactant r is converted to product 

p is given by 

                     𝐹𝑝
𝑘 =  𝐹𝑟

𝑖𝑛  ×  𝛷𝑝,𝑟
𝑘 + 𝐹𝑝

𝑖𝑛, ∀𝑘 ∈ 𝐾, ∀𝑝 ∈ 𝑃, ∀𝑟 ∈ 𝑅,         (49) 

where 𝐹𝑝
𝑘 is the mass flow rate of product p in outlet stream k, 𝐹𝑟

𝑖𝑛 is 

the mass flow rate of reactant r in the inlet stream, 𝐹𝑝
𝑖𝑛 is the mass flow 

rate of product p in the inlet stream, and 𝛷𝑝,𝑟
𝑘    is the yield of product p of 

reactant r in outlet stream k.  

In the dryer model, the mass balance of component i in outlet stream k 

is given by  

                                   𝐹𝑖
𝑘 =  𝐹𝑖

𝑖𝑛  ×  𝜁𝑖
𝑘 , ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝐼,                         (50) 

and                                             ∑ 𝜁𝑖
𝑘 , ∀𝑖 ∈ 𝐼

𝑛𝑘
𝑘=1 ,                                    (51) 
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where 𝜁𝑖
𝑘 is the recovery of component i in outlet stream k. 

In the distillation model, the mass balance equation of component i in 

outlet stream k is modeled as 

                                   𝐹𝑖
𝑘 =  𝐹𝑖

𝑖𝑛  ×  𝜔𝑖,𝑘, ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝐼,                     (52) 

where 𝜔𝑖,𝑘  is the split of components i in outlet stream k and is 

estimated by modeling the rigorous distillation column (Radfrac) in Aspen 

Plus ® V10. 

The mass balance constraint for the mixer, pumps, and heat exchangers 

is  

                                          𝐹𝑖
𝑜𝑢𝑡 =  ∑ 𝐹𝑖

𝑘, ∀𝑖 ∈ 𝐼
𝑛𝑘
𝑘=1 ,                              (53) 

where 𝐹𝑖
𝑘 is the mass flow rate of component i in inlet steam k. 

The quantity of solids present at any stage j is controlled by  

                            𝐹𝑖,𝑗
𝑘 ≤  𝛼𝑖,𝑗

𝑘  ×  𝐹𝑗
𝑘, ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽,                  (54) 

and                              𝐹𝑗
𝑘  =   ∑ 𝐹𝑖,𝑗

𝑘𝑛𝑖
𝑖=1 , ∀𝑘 ∈ 𝐾, ∀𝑗 ∈ 𝐽,                        (55) 

where 𝐹𝑖,𝑗
𝑘  is the mass flow rate of component i in stream k of 

stage j, 𝐹𝑗
𝑘 is the total mass flow rate of stream k of stage j, and 𝛼𝑖,𝑗

𝑘  is the 

mass fraction of component i in stream k of stage j.  

The feedstock purchase is bounded by its availability (Ѳ) and minimum 

purchase amount (Υ): 

                                                   Ѳ ≥ 𝐹𝑒𝑒𝑑 ≥ Υ.                                   (56) 
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4.2.3.2 Energy balance constraints 

The energy balance constraints were formulated exactly based on the 

strategy presented in Section 3.2.4.2. 

4.2.3.3 Economic analysis constraints 

Likewise, the TEA model was formulated based on the strategy 

presented in Section 2.2.  

4.2.3.4 Objective functions 

Two optimization scenarios were studied in the form of objective 

functions to fully examine the economic potential and environmental 

impact of the optimal design. The objective functions chosen are 

maximization of the NPV and minimization of CE.  

The net present value is defined according to Eq. (24) as:  

𝑁𝑃𝑉 =  ∑
𝑁𝐶𝐹𝑛

(1+𝑟)𝑛
20
𝑛=0 . 

The CE from various processes can be modeled as  

                                                 𝐶𝐸 =  ∑ 𝐹𝐶𝑂2

𝑘𝑛𝑘
𝑘 ,                                     (57) 

where 𝐹𝐶𝑂2

𝑘  is the mass flow rate of CO2 in outlet stream k.  

4.2.4 Optimization scenarios 

The following five optimization scenarios are proposed to design a 

sustainable biorefinery.  
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4.2.4.1 Scenario 1: base case 

The process alternatives included in this design are pretreatment by acid 

thermal hydrolysis or hot water wash, on-site enzyme production or 

purchasing of enzymes, solid purification either before or after the beer 

column, and ethanol purification by classical methods or hybrid 

distillation. All of the remaining processes and their alternatives related to 

carbon utilization were excluded from the superstructure. This condition 

was met by forcing the binary variables involved in the selection of the 

carbon utilization processes to take a zero value. The base case design was 

solved with respect to maximizing the NPV. 

4.2.4.2 Scenario 2: maximization of net present value 

All restricted binary variables (carbon utilization) in the previous 

scenario were relaxed to determine a sustainable design. The goal of this 

scenario is to find candidates for the optimal flowsheet to gain the 

maximum NPV. In addition, only one alternative can be selected to utilize 

CO2. 

4.2.4.3 Scenario 3: minimizing CO2 emissions  

The goal of this scenario is to determine the optimal design from the 

given pool of alternatives having the least amount of CE. Therefore, the 

chosen objective for this scenario is minimization of CE. Except for the 
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objective function, all constraints are similar to those applied in Scenario 

2.  

4.2.4.4 Scenario 4: synergistic effect  

The goal of this scenario is to investigate the synergistic effect of 

succinic acid and microalgae processes on the economics and environment 

regarding the bioethanol process. This required the removal of restrictions 

to select only one alternative for CO2 utilization, as described in Sections 

4.2.4.2 and 4.2.4.3. The chosen objective for this scenario is maximization 

of the NPV, whereas the second objective function was applied as a 

constraint in which the upper limit of the CE obtained from Scenario 3 was 

used.  

4.2.4.5 Scenario 5: limited funds optimization 

Owing to integration of the carbon utilization processes, the TCI of the 

biorefinery can increase significantly. Therefore, in this scenario, 

optimization based on limited funds was also performed, which enabled 

the selection of the optimal design by comparing the various economic and 

environmental potentials of all scenarios (1–5). Optimization was 

conducted for three scenarios: Cases A, B, and C, where the fund allocation 

to each scenario was 25%, 35%, and 45% of the base case TCI, 

respectively. The primary objective function was maximization of the 
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NPV, whereas the second objective function, minimization of CE, was 

applied as a constraint. Contrary to that in Scenario 4, the CE upper limit 

in Cases A, B, and C were relaxed by 6.2, 4.3, and 2.5 times, respectively. 

This is because a limited investment will decrease the capacities of the 

processes utilizing CO2, which leads to poor CE utilization.  

4.3 Results and discussion 

The proposed process synthesis framework was implemented in GAMS 

(25.0.2) to determine the optimal process design with potential zero 

emissions from various process stages of the SJ-based biorefinery. To 

accomplish this task, two objective functions were optimized: maximizing 

the NPV and minimizing CE. The chemical composition (wt.%) of the SJ 

species reported in Table 5 was used in the present study. 

4.3.1 Scenario 1: base case  

The optimal pathway obtained from the base case includes feed 

pretreatment by hot water wash, saccharification and fermentation, on-site 

enzyme production, ethanol purification by pressure swing distillation 

followed by hybrid distillation, solid purification after the beer column, 

and purification of polluted water in the wastewater treatment network 

(Table 14). The products obtained in this scenario are bioethanol and dry 

distiller solids. 



 

103 

 

The results given in Table 15 indicate that the bioethanol yield obtained 

in the base case was 84.54 gal/ton of dry feed. Based on this yield, this 

biorefinery is able to produce 48.39 Mgal/yr of bioethanol to gain an NPV 

of 16.5 million USD over the 20 years of the project life. The dry distiller 

solids production was 296.35 kton/yr. The TCI, TCOM, and utility costs, 

as shown in Figure 13A, correspond to 241.5 million USD, 111.0 million 

USD/yr and 18.1 million USD/yr, respectively. The results obtained from 

the base case will act as an initial point in designing a better process in 

terms of economics and the environment. 

4.3.2 Scenario 2: maximizing the net present value 

The optimal flowsheet pathway given in Table 14 includes feed 

pretreatment by hot water wash, saccharification and fermentation, on-site 

enzyme production, ethanol purification by pressure swing distillation 

followed by hybrid distillation, solid purification after the beer column, 

and purification of polluted water in the wastewater treatment network. 

Succinic acid was selected as the optimal technology for carbon utilization. 

The products obtained in this scenario are bioethanol, dry distiller solids, 

and succinic acid. The flow rate summary in Table 15 shows that the 

utilization of glucose for succinic acid production led to a decrease in the 

bioethanol yield from 84.54 gal/ton to 73.97 gal/ton of dry feed. The 
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productions of bioethanol, dry distiller solids, and succinic acid were 42.38 

Mgal/yr, 259.49 kton/yr, and 15 kton/yr, respectively. The NPV, TCI, 

TCOM, and utilities costs are given in Figure 13A. Interestingly, the NPV 

obtained in this scenario was 6.12 times higher than that of the base case. 

This improvement is attributed to the high selling price of succinic acid, 

which is almost 5 times that of the current wholesale price of ethanol. On 

the contrary, the reduction in net CE was not encouraging; an improvement 

of only 6% was obtained, as shown in Figure 13B. 

4.3.3 Scenario 3: minimizing CO2 emissions 

As shown in Figure 13B, Scenario 1 resulted in CE of approximately 

4.86 kg/s. Similarly, Scenario 2 resulted in 4.01 kg/s of CE. Therefore, the 

goal of Scenario 3 is to determine an environmentally friendly optimal 

design capable of further reducing the CE by converting them into useful 

products. The optimal flowsheet obtained for this scenario is different from 

that of Scenario 2, as illustrated in Table 14. The optimal pathway obtained 

for ethanol production and solid processing is similar to that for the base 

case. For carbon utilization, microalgae cultivation in open ponds, 

harvesting by gravity settler, and dewatering by hollow filter membranes 

followed by centrifuging were selected as optimal technologies. The 

results presented in Figure 13B show that a 90% reduction in net CE was 



 

105 

 

achieved relative to the base case. The remaining CE, 0.42 kg/s, is 

attributed to a surplus supply of CO2, which is 10% more than the 

stoichiometry requirement. This surplus can account for possible 

variability in efficiency; otherwise, the CO2 utilization would be too 

optimistic. Under this scenario, the bioethanol yield and production were 

84.54 gal/ton and 48.39 Mgal/yr, respectively. These results are similar to 

those obtained in Scenario 1 owing to the lack of compromise on 

bioethanol production, as was the case of Scenario 2 in producing succinic 

acid. The dry distiller solids and microalgae production were 296.35 

kton/yr and 58.46 kton/yr, respectively. The NPV, TCI, COM, and utilities 

costs are shown in Figure 13A. The NPV was 61.7 million USD, which is 

0.39 times lower than that for Scenario 2 but 3.74 times higher than that 

for Scenario 1. Another interesting economic result of this scenario is the 

TCI of 380.4 million USD, which is 45% higher than that of Scenario 2. 

This large investment cost is attributed to two factors: (1) the large 

investment required for constructing 158 individual ponds at 10 acres each 

and (2) the limit on succinic acid production. It is believed that if the 

restriction on succinic acid production is removed, the TCI difference 

between the two scenarios will become marginal.  
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4.3.4 Scenario 4: synergistic effect 

A comparison of Scenarios 2 and 3, involving succinic acid production 

and microalgae production, respectively, revealed that the former is an 

economically better option. On the contrary, the latter showed better 

environmental benefits. Therefore, the objective of this scenario is to study 

the synergistic effects of both processes on economics and the 

environment. The optimal pathway is given in Table 14, where the 

productions of succinic acid and microalgae were selected as optimal 

technologies to meet the required targets. For ethanol production, feed 

pretreatment by hot water wash, saccharification and fermentation, on-site 

enzyme production, ethanol purification by pressure swing distillation 

followed by hybrid distillation, solid purification after the beer column, 

and purification of polluted water in the wastewater treatment network 

were the optimal technologies. For succinic acid purification, reactive 

crystallization was selected as an optimal technology. For microalgae 

production, cultivation in open ponds, harvesting by gravity settler, and 

dewatering by hollow filter membranes followed by centrifuging were the 

optimal technologies. The products obtained from the process design of 

this scenario are bioethanol, dry distiller solids, succinic acid, and 

microalgae, corresponding to productions of 42.38 Mgal/yr, 259.49 
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kton/yr, 15 kton/yr, and 47.8 kton/yr, respectively. The NPV of this 

scenario was 144.7 million USD, which is 8.77 times higher than that of 

the standalone process and 1.43 and 2.34 times higher than the NPVs of 

Scenarios 2 and 3, respectively. The CO2 utilization was 90%.  

4.3.5 Scenario 5: optimization under limited funds  

The results of the aforementioned scenarios clearly show that the 

process economics and environmental sustainability parameters improved 

significantly. However, this improvement came at the cost of a higher 

capital investment, at 56% more than that of the base case. Hence, the goal 

here is to obtain a higher NPV and a minimum 75% reduction in CE than 

that of base case under a limited budget for investing in carbon utilization 

technologies. The results indicated that for all three cases, the optimal 

process for CO2 utilization is the combination of succinic acid and 

microalgae production and that optimal pathway is similar to that for 

Scenario 4. In all three cases, bioethanol, dry distiller solids, succinic acid, 

and microalgae were produced. As shown in Figure 13C, a 45% 

investment in CO2 utilization technologies resulted in a 79% reduction in 

CE and a 6.24-fold increase in the NPV relative to the base case design.   
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Table 15. Yield and flow rate summary of various scenarios. 

Scenario 

Ethanol 

yield 

(gal/ton) 

Ethanol 

(Mgal/yr) 

DDS 

(kton/yr) 

MA 

(kton/yr) 

SA 

(kton/yr) 

1 84.54 48.39 296.35 0.00 0.00 

2 73.97 42.38 259.49 0.00 15.00 

3 84.54 48.39 296.35 58.46 0.00 

4 73.97 42.38 259.49 47.81 15.00 
DDS = Dry distiller solids; MA = Microalgae; SA = Succinic acid 
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4.3.6 Optimal design 

A comparison of all previous scenarios revealed that Scenario 4 is 

superior both economically and environmentally. One can argue that the 

TCI of scenario 4 is 56% more than that of the base case and 8% more than 

that of Case C of Scenario 5. However, if we compare the economics of 

Scenario 4 with those of the base case and Case C, 8.77-fold and 1.40-fold 

improvements in NPV were achieved, respectively. Furthermore, the CE 

reduction in Scenario 4 is 11% more than that of the Case C. Clearly, by 

investing 8% more than that for Case C, the economic and environmental 

benefits become significantly more favorable. Therefore, Scenario 4 was 

selected as the optimal design for further investigation. A simplified block 

flow diagram of the optimal design is shown in Figure 14. Unless 

otherwise specified, “optimal design” hereafter refers to Scenario 4. 
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4.3.7 Total manufacturing cost  

The TCOM of the optimal design was calculated to be 161 million 

USD/yr. Figure 15A shows that the ethanol section constitutes a major 

portion of annual manufacturing cost. This is attributed to the large 

consumption of seaweed, whereas the primary raw materials required for 

production of succinic acid and microalgae are provided as byproducts 

from ethanol production. Thus, costs associated with other sections are less 

expensive than that in ethanol production. In the succinic acid section, the 

variable costs were dominant, with a 78% contribution. The distribution of 

manufacturing costs of the microalgae section suggests that the variable 

manufacturing cost constitutes most of the manufacturing expenses, in 

which raw material costs are dominant. Although the supply of CO2 for 

microalgae cultivation is free of charge, the utilization of a large amount 

of fertilizers for microalgae growth results in high cost. The labor costs in 

microalgae production are also significant owing to the large number of 

operators required to maintain and service large numbers of individual 

ponds, corresponding to 158 individual ponds of 10 acres each.  

4.3.8 Total capital cost 

Similar to the total manufacturing cost, the total capital cost of the 

optimal design is the sum of the capital costs of individual sections. The 
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TCI of the optimal design is 377 million USD. The ethanol section 

consumes most of the capital investment required to purchase plant 

equipment, as illustrated in Figure 15B. This high investment is attributed 

to the large capacity of bioethanol production, whereas the capacities of 

other sections depend on the CO2 evolved from ethanol fermentation. 

Although the capital investment required to integrate the succinic acid and 

microalgae carbon utilization processes is large, at approximately 42% of 

the ethanol section, the overall economics and CE reduction are more 

favorable. In the succinic acid section, purification, solid recovery, and 

fermentation areas are the most expensive, with a cumulative contribution 

of 82% of the total installed cost. Interestingly, the pretreatment sections 

in the bioethanol and succinic acid processes are among the least 

expensive. This is attributed to the unique chemical composition of 

seaweed, which is lack of lignin, thus eliminating harsh pretreatments such 

as acid thermal hydrolysis that require large amounts of steam and 

chemicals as well as expensive equipment to resist the acidic environment. 

In the microalgae section, cultivation of microalgae is the most dominant 

area in terms of the investment, with a 69% contribution.  
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4.3.9 Minimum product selling price 

The minimum selling price of a product can be defined as the selling 

price of a product that makes the NPV equal to zero. Table 16 shows that 

the MESP of the optimal design, at 1.48 USD/gal. The minimum succinic 

acid selling price (MSAP) is 2.00 USD/kg, which is 23% lower than that 

of Scenario 2. Similarly, the minimum microalgae selling price (MMAP) 

decreased from 0.79 USD/kg in Scenario 3 to 0.40 USD/kg in the optimal 

design. The minimum selling price of DDS in the optimal design is 0.03 

USD/kg.  

4.3.10 Maximum seaweed price  

The maximum seaweed purchase price is an important economic 

indicator because it defines the upper price for seaweed purchase that leads 

to economically competitive fuel prices in the current market. Therefore, 

the maximum price of seaweed at which the NPV becomes zero was also 

calculated by keeping the price of all products to the base case price. The 

results in Table 16 indicate that the base case is more sensitive to changes 

in the price of seaweed. For example, if the seaweed price increases from 

0.08 USD/kg to 0.08 USD/kg, the NPV of the base case decreases to zero. 

On the contrary, the MSP for the optimal design is 0.13 USD/kg for 

achieving zero NPV, which is 57% higher than that of the base case.  
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Figure 15. Breakdowns of the total (A) manufacturing costs and 

(B) capital costs of the optimal design. 
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Table 16. Minimum selling prices of products from biorefinery. 

 
MESP 

($/gal) 

MDDS 

($/kg) 

MSAP 

($/kg) 

MMAP 

($/kg) 

MSP 

($/kg) 

Scenario 1 2.16 0.14 - - 0.08 

Scenario 2 1.67 0.06 2.60 - 0.11 

Scenario 3 1.89 0.10 - 0.79 0.10 

Optimal design 1.48 0.03 2.00 0.40 0.13 
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4.3.11 Sensitivity analysis (Major cost drivers)  

To estimate the major cost driver of the MESP and the ethanol yield, a 

single-point sensitivity analysis was conducted. The sensitivity analysis 

results presented in Figure 16 show that the TCI, biomass cost, succinic 

acid and microalgae selling prices, internal rate of return, mannitol 

composition in the feedstock, DDS price, and labor costs play an important 

role in influencing the MESP. 

The results of the sensitivity analysis on the ethanol yield are shown in 

Figure 17. Feed composition was shown to be the most dominant and 

important parameter for increasing the overall yield of bioethanol. In 

addition, glucose conversion to ethanol has a significant effect on the 

overall yield.  
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4.3.12 Monte Carlo simulation (Risk assessment) 

The critical parameters that were identified by single-point sensitive 

analysis in the previous section are used here to determine the minimum 

product selling range and risk using Monte Carlo simulation. 1000 samples 

were generated using uniform distribution between the predefined range of 

parameters. The most probable minimum selling price range was assumed 

to be one standard deviation from the mean price. The results indicated that 

the MESP range of the optimal design is 0.36–0.56 USD/L with a mean 

value of 0.46 USD/L and standard deviation of 0.097 USD/L.  

Risk assessment (Figure 18) was performed where economic risk was 

quantified based on the minimum ethanol selling price. Here, we analyzed 

the probability of obtaining a minimum ethanol selling price that was 

higher than the targeted market price. Based on the current ethanol market 

price of 0.4 USD/L in the United States, the probability of risk for the 

optimal design is about 93.7% and 0% for the remaining scenarios, which 

geographically make the optimal design economically unfavorable for the 

country. However, seaweeds are largely cultivated in Asia and mainly in 

China, Indonesia, and South Korea, where the ethanol price varies at 0.6–

0.72 USD/L. This leads to a 44–20% probability of loss for the optimal 

design.  
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4.3.13 Wastewater treatment and water consumption 

Wastewater treatment and freshwater consumption are important 

environmental factors in process sustainability. In the wastewater 

treatment process, effluent streams from various stages of ethanol and 

succinic acid sections are treated and recycled to the process.  

The overall freshwater consumption is 6.31 gal of water/gal ethanol. It 

is worth noting that the water lost by evaporation in the cooling tower 

cannot be reused. However, it is believed that this water loss can be 

decreased by heat integration in the heat exchanger network. 

The water loss for microalgae production is higher than that from the 

ethanol and succinic acid sections owing to evaporation of water from the 

pond surfaces. Result shows that water evaporation alone resulted in water 

losses of 82 wt.%. The loss of water in the blowdown is attributed to a 

0.5% discharge of recovered water from the gravity settler. Microalgae 

contain 80% moisture in the final product stream; therefore, 5% of the 

water is lost in the product stream. The total makeup water required for the 

microalgae section is 3.1 Mgal/day. 
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4.4 Conclusion 

In this study, a novel strategy is proposed to produce advanced biofuel 

and to utilize all waste streams from Saccharina japonica-based 

biorefinery. A rigorous optimization-based framework for simultaneous 

process synthesis and process integration of a macroalgal biorefinery was 

proposed. The process synthesis model features several design alternatives 

for bioethanol processing as well as alternatives for utilizing all waste 

streams from the processing in one combined superstructure. The detailed 

mathematical modeling of the superstructure is incorporated as large-scale 

mixed-integer non-linear optimization model that can be solved efficiently 

to determine the optimal design with superior economic and environmental 

performance. The framework was demonstrated by using five optimization 

scenarios under different objective functions, and the economic viability 

and environmental sustainability of each case study were presented. 

The novelty of this work includes utilization of Saccharina japonica as 

a feedstock, which itself is self-sustaining, and integration of the carbon 

sequestration processes with traditional bioethanol processing to utilize all 

waste streams. The minimum ethanol selling price range of the optimal 

design is 0.36–0.56 USD/L. A comparison of the CO2 emissions in the 

optimal design with that in the base case revealed a strong potential for 
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environmental sustainability, with a decrease from 4.86 kg/s in the latter 

to 0.42 kg/s in the former, representing a 90% reduction. Similarly, the 

freshwater requirement in the optimal design is 6.31 L H2O/L ethanol, 

representing a 38.6% reduction compared with the base case. Risk 

assessment suggested that the proposed seaweed-based biorefinery design 

would be economically favorable in Asia, with a 20–44% probability of 

risk. According to the sensitivity analysis, seaweed cost and chemical 

composition are critical parameters that should be improved by intensified 

farming via artificial cultivation techniques to decrease the probability of 

risk.  
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5 PROCESS SYNTHESIS OF VOLATILE FATTY ACIDS 

PLATFORM  

This chapter is a modified version of the conference paper presented in 

ESCAPE-19 conference. The full-length article of this chapter is under 

review in Green Chemistry. 
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5.1 Introduction  

The current pace of utilizing petroleum resources is causing ecosystem 

damages. Global warming is a serious environmental issue, common to all 

mankind [145]. CEs from burning fossil fuel are thought of as one major 

contribution to global warming [2]. To mitigate climate change impacts, 

highly efficient biorefineries utilizing sustainable biomass must be 

developed to replace fossil-based energy infrastructure [145]. Macroalgae 

(seaweed) have been considered as more sustainable biomass compared to 

crops since they do not compete for land and freshwater [35]. In order to 

use the macroalgae in a commercial scale biorefineries, it is necessary to 

evaluate various potential pathways into value-added products as well as 

intermediate components and technologies. Furthermore, the potential 

processes must be designed with minimum carbon and other waste 

emissions, while simultaneously have to be economically competitive to 

operate. This in turn presents a large decision-making problem with a 

significant combinatorial complexity.  

Biofuels can be produced from SJ via VFAP. In this platform, VFAs 

consisting of acetic acid, propionic acid, and butyric acid are produced by 

the partial anaerobic digestion of biomass using a mixed culture bacterial 

ecosystem [17]. VFAs have numerous applications in the chemical, food 
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and pharmaceutical industries. They are important precursors of 

biopolymers—e.g., polyhydroxyalkanoates —and other valuable products 

such as aldehydes and ketones [146]. Therefore, VFAs can be separated 

and sold as the main products of a biorefinery. Alternatively, VFAs can be 

hydrogenated to produce mixed alcohols consisting of ethanol, propanol, 

and butanol, which can be sold as renewable transportation fuels.  

In the literature, numerous studies have demonstrated that the VFAP 

has a higher product yield than the SP [147]. This is primarily owing to the 

ability of anaerobes to digest all the non-lignin components of the biomass, 

including carbohydrates, proteins, and lipids, whereas, in the case of the 

SP, only the carbohydrate content of the biomass is converted to bioethanol 

[17]. Furthermore, unlike the SP, the VFAP does not require aseptic 

conditions and does not utilize expensive enzymes and capital-intensive 

fermenters [18]. Despite the promising yields and simple digestion 

process, the design of effective and economically viable separation 

technologies for the dehydration of aqueous VFAs is a major obstacle to 

the industrial-scale application of the VFAP [17]. This is mainly because 

water and acetic acid have similar boiling points, which makes their 

separation by distillation difficult and energy-intensive. Another challenge 

associated with the VFAP is the significant production of carbon dioxide 
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during the fermentation of biomass. Bonfim-Rocha et al. demonstrated that 

the CEs produced by the fermentation-based biorefinery processing of 2–

3.5 Mt/yr amount to approximately 110–193 kton/yr [121]. A potential 

method of mitigating direct CEs from the VFAP is microalgae-based 

biological utilization. Davis et al. reported that 100 ton of algal biomass 

fixes approximately 193 ton of carbon dioxide, which make it a suitable 

candidate for reducing the CEs produced by the VFAP [129]. There is also 

an indication that the water footprint of a biorefinery is quite high. 

Approximately 13 gals of wastewater are produced when one gal of corn 

ethanol is refined [4]. This level of water consumption is alarming and 

must be reduced by reusing the wastewater from processing.  

In order to address this problem, the study presented in this chapter 

utilizes a superstructure process design approach for a seaweed biorefinery 

producing mixed alcohols and mixed organic acids via anaerobic 

digestion/volatile fatty acid route. Seventeen design alternatives have been 

proposed to determine the optimal design and technical feasibility by 

maximizing the NPV in the most environmentally beneficial fashion. 

The remainder of this chapter is organized as follows. The optimization 

of the superstructure is formulated as an MINLP. To determine the optimal 

design, various scenarios are investigated by maximizing the NPV. Once 
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the optimal design is determined, the economic indicators of the process 

are evaluated. Comprehensive single-point sensitivity analysis is then 

performed to identify the influential model parameters affecting the overall 

economics. Finally, the impact of the biorefinery on the environment is 

also investigated by optimizing CO2 utilization and freshwater 

consumption. 

5.2 Methodology 

The main objective of the optimization problem is to determine the 

optimal design of the biorefinery from the given superstructure by 

maximizing the NPV as well as minimizing the environmental impact of 

the biorefinery by integrating waste streams utilization technologies. The 

major decision variables include: technology selection for the VFAP and 

carbon dioxide utilization; the mass flow rate of each species in every 

stream; the heat and power consumption of each piece of equipment; the 

capital cost and the operating cost required for economic evaluation; and 

all emissions required for environmental evaluation. 

5.2.1 Superstructure development 

A superstructure containing seventeen design alternatives at the various 

processing stage of a biorefinery is illustrated in Figure 19. Seven major 

sections are included in the superstructure: anaerobic digestion, VFA 
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extraction, mixed alcohol synthesis, carbon dioxide utilization, harvesting, 

purification, and wastewater treatment.  

The biorefinery process starts with the anaerobic digestion of SJ. 

Anaerobic digestion consists of four stages; and in order to produce VFAs, 

partial anaerobic digestion is carried out using inhibitor such as iodoform, 

which eliminates methanogenesis step [17]. The operating conditions for 

anaerobic digestion are 13 wt.% solid loading; a retention time of 120 h; 

an inhibitor loading of 30 ppm; a digestion temperature of 35 °C, and a 

yield of 0.35 g VFA/g of dry feed [147]. After anaerobic fermentation, the 

outlet stream from the digester consists of solid, liquid, and gaseous 

products, which is sent to the purification section. In the purification 

section, gaseous- and solid-products are separated from liquid products. 

Liquid products consisting of VFAs are sent to VFA extraction section, in 

which two alternative technologies are considered: classical dehydration 

and hybrid dehydration [17,148]. The main equipment of the classical 

dehydration contains an extraction column, a rectification column, a 

stripping column, and a decanter. The hybrid process involves the 

combination of membranes and the classical dehydration process. The 

main goal in VFA extraction section is to concentrate VFAs from 5 wt.% 

to 95 wt.%. Once the VFAs are concentrated, they can be hydrogenated in 
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the mixed alcohols synthesis section to produce mixed alcohols consisting 

of ethanol, propanol, and butanol [149].  

Alternative, hydrogenation can be bypassed and concentrated VFAs are 

separated into pure compounds [150]. Mixed alcohols and mixed acids will 

be produced as the main products of biorefinery in the former 

(hydrogenation) and latter (bypass), respectively. If the latter is selected as 

an optimal decision, an upper limit of utilizing 30 wt.% of the VFAs is set 

for mixed acids production, because the main objective of the biorefinery 

is to produce biofuels. In CO2 utilization section, the key objective is to 

convert CO2 into microalgae either in open ponds or photobioreactor. If 

the production of microalgae is not economically favorable then the CO2 

is vented to the environment by paying a carbon tax of 20 USD/ton.  For 

microalgae harvesting and dewatering, six process alternatives are 

included in microalgae harvesting section. The microalgae can be 

harvested in gravity settler, which can be dewatered either by hollow filter 

membranes, diffused air flocculation, or electrocoagulation followed by 

centrifugation. Alternatively, a belt filter press can be implemented at the 

outlet stream of gravity settler. The operating data and equipment costs 

considered for microalgae production are based on the work of [134] and 

outlined in Table 13. In purification section, separation of non-
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condensable gases, VFAs, MAs, and DDS take place in pressure swing 

adsorption, distillation columns, pervaporation or molecular sieves 

followed by distillation, and centrifuge and dryer, respectively [150–154]. 

A complete wastewater network consisting of anaerobic digestion, aerobic 

digestion, and reverse osmosis is included in the superstructure that treats 

polluted water from various processing stages back to the process [12,51]. 
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5.2.2 Mathematical modeling of superstructure 

5.2.2.1 Mass balance constraints  

The mass balance constraints for the splitters were modeled using Eqs. 

(44-48).  

The mass balance equation for reactors such as the anaerobic digester, 

open ponds, photobioreactors, and harvesting technologies where the 

reactant r is converted to the product p is given by 

                  𝐹𝑝
𝑘 =  𝐹𝑟

𝑖𝑛  ×  𝛷𝑝,𝑟
𝑘 + 𝐹𝑝

𝑖𝑛, ∀𝑘 ∈ 𝐾, ∀𝑝 ∈ 𝑃, ∀𝑟 ∈ 𝑅,            (58) 

where 𝐹𝑝
𝑘 is the mass flow rate of product p in the outlet stream k, 𝐹𝑟

𝑖𝑛 

is the mass flow rate of reactant r in the inlet stream, 𝐹𝑝
𝑖𝑛 is the mass flow 

rate of product p in the inlet stream, and 𝛷𝑝,𝑟
𝑘  is the yield of product p from 

reactant r in the outlet stream k.  

The mass balance of component i in the outlet stream k in the pressure 

swing adsorption, mechanical separator, dryer, and decanter is given by  

                                     𝐹𝑖
𝑘 =  𝐹𝑖

𝑖𝑛  ×  𝜁𝑖
𝑘 , ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝐼,                      (59) 

and                                        ∑ 𝜁𝑖
𝑘 = 1, ∀𝑖 ∈ 𝐼

𝑛𝑘
𝑘=1 ,                                 (60) 

where 𝜁𝑖
𝑘 represents the recovery of component i in the outlet stream k. 

The mass composition (𝑋𝑖
𝑘) of component i in the stream k is given by 

                                      ∑ 𝑋𝑖
𝑘𝑛𝑘

𝑘=1 =  ∑
𝐹𝑖

𝑘

𝐹𝑘

𝑛𝑘
𝑘=1 , ∀𝑖 ∈ 𝐼,                            (61) 
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where 𝐹𝑘 is the overall mass flow rate of the stream k.  

In the flash column, the mass balance of component i in the outlet 

stream k can be determined by   

overall mass balance: 𝐹𝑖
𝑖𝑛 =  ∑ 𝐹𝑖

𝑘 , ∀𝑖 ∈ 𝐼
𝑛𝑘
𝑘=1 ,                                       (62) 

Antoine relation: 𝑙𝑜𝑔10𝑉𝑃𝑖
𝑖𝑛 =  𝐴𝑎

𝑖 −
𝐴𝑏

𝑖

𝑇𝑖𝑛+𝐴𝑐
𝑖  , ∀𝑖 ∈ 𝐼,                           (63) 

Henry relation: 𝑙𝑜𝑔𝑉𝑃𝑖
𝑖𝑛 =  𝐻𝑎

𝑖 +
𝐻𝑏

𝑖

𝑇𝑖𝑛 + 𝐻𝑐
𝑖  × 𝑙𝑜𝑔𝑇𝑖𝑛 + 𝐻𝑑

𝑖  × 𝑇𝑖𝑛, ∀𝑖 ∈

𝐼,                                                                                                             (64) 

equilibrium relation: 𝐾1𝑖
𝑖𝑛 =  

𝑉𝑃𝑖
𝑖𝑛

𝑃𝑖𝑛 , ∀𝑖 ∈ 𝐼,                                              (65) 

bottom composition: 𝑋1𝑖
𝑘1 =  (

𝐿𝑉+1

𝐿𝑉+ 𝐾1𝑖
𝑖𝑛 

) ×  𝑋𝑖
𝑘, ∀𝑘1 ∈ 𝐾, ∀𝑖 ∈ 𝐼,        (66) 

top composition: 𝑌1𝑖
𝑘2 =  𝑋1𝑖

𝑘1  ×  𝐾1𝑖
𝑖𝑛, ∀𝑖 ∈ 𝐼, ∀𝑘1, 𝑘2 ∈ 𝐾,             (67) 

top overall flowrate: 𝐹𝑘2 =  (
𝐹𝑖𝑛

𝐿𝑉+ 1 
) , ∀𝑖 ∈ 𝐼, ∀𝑘2 ∈ 𝐾,                         (68) 

top component flowrate: 𝐹𝑖
𝑘2 =  𝐹𝑘2  ×  𝑌1𝑖

𝑘2, ∀𝑖 ∈ 𝐼, ∀𝑘2 ∈ 𝐾,            (69) 

logical constraint 1: ∑ 𝑋1𝑖
𝑘1 = 1

𝑛𝑖
𝑖 ,                                                         (70) 

and logical constraint 2 : ∑ 𝑌1𝑖
𝑘2 = 1

𝑛𝑖
𝑖 ,                                                 (71) 

where 𝑉𝑃𝑖
𝑖𝑛 is the vapor pressure of component i in the inlet stream, 𝐴𝑎

𝑖 , 

𝐴𝑏
𝑖 , and 𝐴𝑐

𝑖  are the Antoine parameters of component i, 𝐻𝑎
𝑖 , 𝐻𝑏

𝑖 , 𝐻𝑐
𝑖 , and 𝐻𝑑

𝑖  

are the Henry parameters of component i, 𝑇𝑖𝑛  is the inlet temperature, 

𝐾1𝑖
𝑖𝑛 are the K-values of component i in the inlet stream, LV is the liquid 
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to vapor ratio,  𝑋1𝑖
𝑘1  is the bottom composition of component i in the 

stream k1,  𝑌1𝑖
𝑘2 is the top composition of component i in the stream k2, 

𝐹𝑘2 is the flowrate of the top stream, and 𝐹𝑖𝑛 is the mass flowrate of the 

inlet stream.  

In the extraction column, the mass balance of component i in the outlet 

stream k can be determined by   

overall mass balance: 𝐹𝑖
𝑖𝑛 +  𝐹𝑀𝑇𝐵𝐸

𝑖𝑛 =  ∑ 𝐹𝑖
𝑘, ∀𝑖 ∈ 𝐼

𝑛𝑘
𝑘=1 ,                          (72) 

extraction solvent: 𝐹𝑀𝑇𝐵𝐸
𝑖𝑛 =  𝐹𝑖𝑛  ×  ∑  𝜆𝑠𝑓 × 𝑏1𝑠𝑓

𝑠𝑓𝑛
𝑠𝑓=1 ,                          (73) 

stages (N): 𝑁 =  ∑ ∑ 𝜈𝑠𝑡  ×  𝑏2𝑠𝑓
𝑠𝑡𝑠𝑓𝑛

𝑠𝑓=1
𝑠𝑡𝑛
𝑠𝑡=1 ,                                               (74) 

extract mass balance: 𝐹𝑖
𝑘1 = 𝐹𝑖

𝑖𝑛  ×   ∑ ∑ 𝜉𝑖,𝑠𝑓
𝑠𝑡  × 𝑏2𝑠𝑓

𝑠𝑡𝑠𝑓𝑛
𝑠𝑓=1

𝑠𝑡𝑛
𝑠𝑡=1 , ∀𝑘1 ∈

𝐾, ∀𝑖 ∈ 𝐼,                                                                                                   (75) 

raffinate mass balance: 𝐹𝑖
𝑘2 =  𝐹𝑖

𝑖𝑛 −  𝐹𝑖
𝑘1, ∀𝑘2 ∈ 𝐾, ∀𝑖 ∈ 𝐼,                   (76) 

logical Constraint 1: ∑ 𝑏1𝑠𝑓 = 1
𝑠𝑓𝑛
𝑠𝑓=1 ,                                                      (77) 

logical Constraint 2: ∑ ∑ 𝑏2𝑠𝑓
𝑠𝑡 =  1

𝑠𝑓𝑛
𝑠𝑓=1

𝑠𝑡𝑛
𝑠𝑡=1 ,                                          (78) 

and logical Constraint 3: ∑ 𝑏1𝑠𝑓
𝑠𝑓𝑛
𝑠𝑓=1 = ∑ ∑ 𝑏2𝑠𝑓

𝑠𝑡𝑠𝑓𝑛
𝑠𝑓=1

𝑠𝑡𝑛
𝑠𝑡=1 ,                    (79) 

where 𝐹𝑀𝑇𝐵𝐸
𝑖𝑛  is the mass flow rate of the extraction solvent in the inlet 

stream,  𝜆𝑠𝑓 is the parameter corresponding to the solid to feed ratio, 𝑏1𝑠𝑓 

is the binary variable for selecting the optimal solid to feed ratio, 𝜈𝑠𝑡 is the 

parameter indicating the number of stages, 𝑏2𝑠𝑓
𝑠𝑡  is the binary variable for 
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selecting the optimal number of stages,  𝐹𝑖
𝑘1 is the mass flow rate of 

component i in the extract stream, 𝜉𝑖,𝑠𝑓
𝑠𝑡  is the split fraction of component i 

in the outlet stream k, and 𝐹𝑖
𝑘2is the mass flow rate of component i in the 

raffinate stream. 

In the stripping column, the mass balance of component i in the outlet 

stream k can be determined by   

overall mass balance: 𝐹𝑖
𝑖𝑛 +  𝐹𝐿𝑃

𝑖𝑛 =  ∑ 𝐹𝑖
𝑘, ∀𝑖 ∈ 𝐼

𝑛𝑘
𝑘=1 ,                           (80) 

LP-steam balance (𝐹𝐿𝑃
𝑖𝑛): 𝐹𝐿𝑃

𝑖𝑛 =   
𝐹𝑖𝑛×𝜑

∑ 𝐾1𝑖
𝑖𝑛 

𝑛𝑖
𝑖=1

,                                              (81) 

absorption factor (𝐴𝑖): 
𝜑−1

𝜑𝑁+1−1
= 1 −  ϒ,                                                    (82) 

stages (N): 𝐴𝑖 =
𝐹𝑖

𝑖𝑛

𝐾1𝑖
𝑖𝑛 × 𝐹𝐿𝑃

𝑖𝑛   
, ∀𝑖 ∈ 𝐼,                                                        (83) 

stripping factor (𝑆𝑖): 𝑆𝑖 =
𝐾1𝑖

𝑖𝑛 × 𝐹𝐿𝑃
𝑖𝑛  

 𝐹𝑖
𝑖𝑛  

, ∀𝑖 ∈ 𝐼,                                           (84) 

fraction of components not absorbed (γ1𝑖): γ1𝑖 =
𝐴𝑖−1 

 𝐴𝑖
𝑁+1−1  

, ∀𝑖 ∈ 𝐼,     (85) 

fraction of components not stripped (γ2𝑖): γ2𝑖 =
𝑆𝑖−1 

 𝑆𝑖
𝑁+1−1  

, ∀𝑖 ∈ 𝐼,        (86) 

bottom mass balance ( 𝐹𝑖
𝑘1 ): 𝐹𝑖

𝑘1 =  𝐹𝑖
𝑖𝑛  ×  γ2𝑖 +  𝐹𝐿𝑃

𝑖𝑛  × (1 −

γ1𝑖), ∀𝑘1 ∈ 𝐾, ∀𝑖 ∈ 𝐼,                                                                             (87) 

and top mass balance (𝐹𝑖
𝑘2): 𝐹𝑖

𝑘2 =  𝐹𝑖
𝑖𝑛 − 𝐹𝑖

𝑘1, ∀𝑘2 ∈ 𝐾, ∀𝑖 ∈ 𝐼,        (88) 

where 𝜑  is the stripping factor and ϒ  is the recovery of the key 

component. 
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In the distillation model, it is assumed that all components heavier than 

the heavy key component would accumulate in the bottom stream. 

Similarly, all components lighter than the light key component will 

accumulate in the distillate. The mass balance equations of the light key 

(lk) and heavy key (hk) components in the distillate (d) and bottom (b) 

stream can be modeled as 

                              𝐹𝑙𝑘
𝑑  ≥  𝐹𝑙𝑘

𝑖𝑛  ×  𝜔𝑙𝑘
𝐷 , ∀𝑑 ∈ 𝐾, ∀𝑙𝑘 ∈ 𝐼,                         (89) 

                           𝐹𝑙𝑘
𝑏  ≤  𝐹𝑙𝑘

𝑖𝑛  × (1 − 𝜔𝑙𝑘
𝐷 ), ∀𝑏 ∈ 𝐾, ∀𝑙𝑘 ∈ 𝐼,                    (90) 

                              𝐹ℎ𝑘
𝑑  ≤  𝐹ℎ𝑘

𝑖𝑛  ×  𝜔ℎ𝑘
𝐷 , ∀𝑑 ∈ 𝐾, ∀ℎ𝑘 ∈ 𝐼,                     (91) 

                        𝐹ℎ𝑘
𝑏  ≥  𝐹ℎ𝑘

𝑖𝑛  × (1 − 𝜔ℎ𝑘
𝐷 ), ∀𝑏 ∈ 𝐾, ∀ℎ𝑘 ∈ 𝐼,                (92) 

where 𝜔𝑙𝑘
𝐷  and 𝜔ℎ𝑘

𝐷  are the split fractions of the light key and heavy key 

components in the distillate, which can be estimated by modeling the 

rigorous distillation column (Radfrac) in the Aspen Plus ® V10 software.   

The mass balance constraint for the mixers, pumps, compressors, and 

heat exchangers is  

                                         𝐹𝑖
𝑜𝑢𝑡 =  ∑ 𝐹𝑖

𝑘, ∀𝑖 ∈ 𝐼
𝑛𝑘
𝑘=1 ,                                  (93) 

where 𝐹𝑖
𝑘 is the mass flowrate of component i in the inlet steam k. 

The amount of solids at any stage j is controlled by  

                            𝐹𝑖,𝑗
𝑘 ≤  𝛼𝑖,𝑗

𝑘  ×  𝐹𝑗
𝑘, ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽,                    (94) 

and                              𝐹𝑗
𝑘  =   ∑ 𝐹𝑖,𝑗

𝑘𝑛𝑖
𝑖=1 , ∀𝑘 ∈ 𝐾, ∀𝑗 ∈ 𝐽,                       (95) 
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where 𝐹𝑖,𝑗
𝑘  is the mass flowrate of component i in the stream k of 

stage j, 𝐹𝑗
𝑘 is the total mass flowrate in stream k of stage j, and 𝛼𝑖,𝑗

𝑘  is the 

mass fraction of component i in the stream k of stage j.  

The feedstock purchase is bounded by its availability (Ѳ) and minimum 

purchase amount (Υ): 

                                                Ѳ ≥ 𝐹𝑒𝑒𝑑 ≥ Υ.                                         (96) 

5.2.2.2 Energy balance constraints 

The Eq. (37) energy balance constraint was used for each unit operation. 

Heat balance in the reboiler and condenser is determined by Eqs. (38-39). 

The temperature and pressure of the outlet stream of the flash, 

distillation, and stripping columns and membranes can be determined 

using Eqs. (63) and (64), and the bubble point and due point equations.  

The power (kW) required for the pumps and compressors can be 

determined by 

                                    𝑃𝑜𝑤𝑒𝑟 =  
∑ 𝜌𝑖

𝑛𝑖
𝑖=1

 × (𝑃𝑜𝑢𝑡−𝑃𝑖𝑛)

𝜂𝑝𝑢𝑚𝑝
,                             (97) 

and   𝑃𝑜𝑤𝑒𝑟 = ∑ ∑
𝐹𝑖

𝑘

𝑀𝑊𝑖
𝑘 × 𝑇𝑘 × 𝑟 × (

𝛾

𝛾−1
) × 𝑃𝑅

(
𝛾

𝛾−1
 − 1)

×
1

𝜂𝑐𝑜𝑚𝑝
×

𝑛𝑖
𝑖

𝑛𝑘
𝑘=1

𝑛𝑐𝑜𝑚𝑝,                                                                                                       (98) 

where 𝜌𝑖  is the volumetric density of component i, 𝑃𝑜𝑢𝑡  is the outlet 

pressure, 𝑃𝑖𝑛 is the inlet pressure, 𝜂𝑝𝑢𝑚𝑝 is the pump efficiency, 𝑀𝑊𝑖
𝑘 is 
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the molecular weight of component i in the stream k, r is the general gas 

constant, 𝛾 is the heat capacity ratio, 𝜂𝑐𝑜𝑚𝑝 is the compressor efficiency, 

𝑛𝑐𝑜𝑚𝑝 is the number of stages in the compressor, and PR is the pressure 

ratio. PR can be determined by   

                                            (𝑃𝑅)𝑛𝑐𝑜𝑚𝑝 =  
𝑃𝑜𝑢𝑡

𝑃𝑖𝑛 .                                      (99) 

The inter-stage cooling load (kW) between the stages of a multi-stage 

compressor can be determined using Eq. (37). 

5.2.2.3 Economic analysis constraints 

The TEA model was formulated based on the strategy presented in 

Section 2.2.  

5.2.2.4 Objective function 

The objective functions chosen are maximization of the NPV, which is 

defined according to Eq. (24) as:  

𝑁𝑃𝑉 =  ∑
𝑁𝐶𝐹𝑛

(1+𝑟)𝑛
20
𝑛=0 . 

5.2.3 Optimization scenarios 

Three optimization scenarios are investigated to design a sustainable 

biorefinery. This approach will enable to quickly compare strength and 

weakness of different processing configuration obtained in each scenario. 
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5.2.3.1 Scenario 1 

The base case is an unrestricted scenario where no limit on TCI is set. 

In addition, carbon dioxide utilization alternatives are deactivated in this 

scenario. Therefore, according to this scenario, the result with a focus on 

the process economics and CEs of the biorefinery process by maximizing 

the NPV is obtained. The solution obtained from this scenario will act as a 

reference point for evaluating other scenarios in terms of economics and 

the environment issue. 

5.2.3.2 Scenario 2 

All binary variables denoting carbon utilization in the initial model and 

the scenario 1 are relaxed. Regarding carbon emission, it is important to 

mention that two sources of CEs from the biorefinery should be 

considered: direct and indirect emissions. The former originate explicitly 

from various process stages such as anaerobic digestion and degassing 

from open ponds. Indirect emissions, however, originate from the heat and 

power required to power-up the processing facilities. The objective here is 

to focus on direct emissions only. The goal of this scenario is to find 

optimal flowsheet that has better process economics and environmental 

performance than that achieved in the base case by maximizing the NPV. 
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5.2.3.3 Scenario 3 

Owing to the integration of the carbon utilization processes, the TCI of 

the biorefinery may increase significantly. Therefore, in this scenario, 

further optimization based on limited funds is performed. Specifically, 

optimization is conducted for three scenarios: Cases A, B, and C, where 

the fund allocated to each scenario are 20%, 30%, and 40% of the base 

case TCI, respectively.  

5.3 Results and discussion 

The proposed process synthesis MINLP model was implemented in 

GAMS (25.0.2) and its solution was computed using DICOPT solver. The 

model contained 7,476 continuous variables, in which 1,680 variables are 

nonlinear, 22 variables are binary, and the remaining variables are linear, 

and 6,517 equality and inequality constraints. The chemical composition 

(wt.%) of the SJ species reported in Table 5 was used in the present study. 

An upper limit of 400 kton/yr (dry basis) is set on the SJ supply. Three 

different optimization scenarios were investigated to gain greater insight 

into a macroalgae-based biorefinery.  

5.3.1 Scenario 1 results 

The optimal flowsheet of the base case is an integrated biorefinery 

producing both mixed acid and mixed alcohols. The optimal pathway is 
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given in Figure 20. It consists of anaerobic digestion, extraction followed 

by distillation, partial bypass and hydrogenation, venting carbon dioxide 

to the atmosphere, hydrogen purification via pressure swing adsorption, 

the distillation of mixed acid, the dehydration of mixed alcohols using 

molecular sieves followed by distillation, DDS purification, and 

wastewater treatment. In the integrated design, 30 wt.% of the concentrated 

VFAs are utilized to produce mixed acids, whereas the remaining VFAs 

are utilized to produce mixed alcohols. The NPV, TCI, and TCOM are 

19.49 million USD, 147.74 million USD, and 98.02 million USD/yr, 

respectively.  

The products obtained in this scenario are mixed alcohols, mixed acids, 

hydrogen, and DDS. Their production rates are given in Table 17. The 

biorefinery utilizes 400 kton/yr biomass. It produces 24 Mgal/yr mixed 

alcohols and 11 Mgal/yr mixed acids as main products and 0.98 kton/yr 

hydrogen and 111.8 kton/yr DDS as byproducts. The CEs of the base case 

are 64 kton/yr. The cost of venting carbon dioxide to the atmosphere is 1.2 

million USD/yr. 

5.3.2 Scenario 2 results 

The optimal flowsheet obtained for this scenario is different from that 

for Scenario 1, as illustrated in Figure 20. The optimal pathway obtained 
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for mixed acids and mixed alcohols production is similar to that of the base 

case. Microalgae production was selected as the optimal pathway for 

carbon dioxide utilization. The optimal pathway of microalgae production 

includes cultivation in open ponds, harvesting by gravity settler, and 

dewatering by hollow filter membranes followed by centrifuge were 

selected as optimal technologies. The products obtained in this scenario 

are mixed acids, mixed alcohols, hydrogen, DDS, and microalgae. Their 

production rates are reported in Table 17. In this scenario, a 90% reduction 

in net CEs was achieved relative to the base case. Only 6 kton/yr of carbon 

dioxide is released to the environment. This surplus can accommodate the 

possible variation in efficiency; otherwise, the carbon dioxide utilization 

will be too optimistic. The cost of CEs to the environment is 0.12 million 

USD/yr, which is 90% lower than the carbon tax in Scenario 1. In terms of 

process economics, the NPV of this scenario is 2.23 times higher than in 

the base case. The TCI and COM are 215.34 million USD and 102.39 

million USD/yr, respectively. 

5.3.3 Scenario 3 results 

As indicated in Scenario 2, the NPV and CEs are improved by 223% 

and 90%, respectively, compared to the base case. However, these 

improvements are achieved by investing 1.46 times more than the capital 
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investment in the base case. Therefore, it was of interest to investigate the 

effect of investment on the process economic and environmental 

performance of a sustainable biorefinery. As illustrated in Figure 21, 

reducing the TCI budget by 17.6% (Case A) of the TCI in Scenario 2 

increases the CEs by 6.32 times, and reduces the NPV by 60%. As 

investment increases in the remaining cases, the process economics and 

environmental performance start improving. The carbon taxes in Cases A, 

B, and C are 0.76 million USD/yr, 0.51 million USD/yr, and 0.26 million 

USD/yr, respectively. 
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Table 17. Mass balance summary of various scenarios for 400 kton/yr 

plant capacity. 

Scenarios 

Mixed alcohols 

(Mgal/yr) 

Mixed acids 

(Mgal/yr) 

Byproducts due to 

utilizing waste 

streams of 

biorefinery (kton/yr) 

ETH PRO BUA AA PA BA MA H2 DDS 

1 14.00 6.00 4.00 6.00 3.00 2.00 0.00 0.98 111.8 

2 10.00 4.00 3.00 11.00 5.00 3.00 28.17 0.98 111.8 

ETH = Ethanol; PRO = Propanol; BUA = Butanol; AA = Acetic acid; PA = Propanoic acid; BA = Butyric acid; 

MA = Microalgae; DDS = Dry distiller solids. 
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5.3.4 Optimal design 

When all previous scenarios are compared, it can be seen that Scenario 

2 is the most expensive process design: 46% more expensive than the base 

case and 4% more expensive than Case C. Despite a capital-intensive 

process design, Scenario 2 offers a 2.23-times higher NPV than the base 

case and a 1.09-times higher NPV than Case C. Moreover, Scenario 2 

utilizes 12% more CEs than Case C. Based on the improved performance, 

Scenario 2 was selected as the optimal design. The topology of the optimal 

design is shown in Figure 22. The overall product yield of anaerobic 

digestion was calculated to be 29%, which is 7% higher than the yield 

calculated by [155] via an SP. 

The total capital cost was calculated to be 215 million USD. The VFA 

section consumes 69% of the TCI owing to the large volume of mixed 

alcohols and mixed acids produced, whereas the microalgae section 

consumes 31% of the TCI, and its cost depends on the carbon dioxide 

evolved from anaerobic digestion. The total installed cost breakdown of 

the integrated biorefinery is shown in Figure 23A. Wastewater treatment, 

cultivation of microalgae, and anaerobic digestion and DDS production are 

the most dominant areas in terms of investment, with a 73% cumulative 

contribution. 
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The TCOM of the optimal design is 102.39 million USD/yr. The VFA 

section accounts for 89% of the TCOM, whereas the microalgae section 

accounts for only 11%. Variable costs are one of the main contributors to 

the total manufacturing cost and are dominated by raw material costs. The 

raw material costs of the VFA and microalgae sections account for 53% 

and 22% of the TCOM, respectively. The seaweed purchasing cost alone 

accounts for 35% of the TCOM. Utility costs are the second dominant 

factor in the TCOM. The total utility cost of the biorefinery is 24.8 million 

USD/yr. 

As already pointed out, the cost of seaweed is one of the biggest 

expenses and accounts for up to 35% to the TCOM. Therefore, the MSP at 

which the NPV becomes zero was also calculated. The results in Table 18 

indicate that the base case is more sensitive to changes in the price of 

seaweed. For example, if the seaweed price increases from 90 USD/t to 

100 USD/t, the NPV of the base case decreases to zero. In contrast, the 

MSP for the optimal design is 112 USD/t for achieving zero NPV, which 

is 12% higher than that of the base case. 

Table 18 shows that the MESP of the optimal design is 1.18 USD/gal, 

which is 23% lower than the base case and 35% lower than the current 

wholesale price (1.82 USD/gal) of ethanol. Moreover, the MESP obtained 
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from the VFAP is 9.4% lower than the MESP reported by [155] via SP. 

This demonstrates that the VFAP is superior to the SP. 

5.3.5 Water consumption 

The freshwater requirement is an important environmental factor in 

process sustainability. The results presented in Table 19 highlight that the 

overall freshwater consumption of the VFA section is 6.26 gal of water/gal 

of alcohols and acids. Approximately 73% of the overall water makeup is 

due to water evaporation in the cooling tower. 

The water loss during microalgae production is higher than that from 

the VFA section owing to the evaporation of water from the pond surfaces. 

The water evaporation alone accounts for 90 wt.% of the total water loss. 

The total water requirement for the microalgae section is 157.7 t/h. 
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Table 18. Minimum selling and maximum purchasing price of ethanol and 

seaweed. 

 MESP 

(USD/gal) 

MSP (USD/ton) 

Scenario 1 1.54 100 

Scenario 2 (Optimal design) 1.18 112 

Scenario 3 (Case A) 1.42 104 

Scenario 3 (Case B) 1.28 109 

Scenario 3 (Case C) 1.24 110 
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Table 19. Makeup water requirement of biorefinery. 

Sections 
Makeup water 

(t/h) 

Freshwater consumption 

(gal of Aa/Bb) 

VFA 103.7 6.26 

Microalgae 157.7 9.52 
a. A: water 

b. B: mixed alcohols and acids 
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5.3.6 Sensitivity analysis 

The optimization model also performs sensitivity analysis on 16 

parameters of the biorefinery to evaluate the impact of key model 

parameters on the NPV. The investigated parameters are given in the 

tornado chart (Figure 23B) along with their limits and percentage 

variations.  

The results indicate that fixed capital investment, the seaweed price, 

and the internal rate of return are the most important parameters for 

determining the economic viability of a biorefinery. As it is already 

indicated, 35% of the TCOM is due to the seaweed purchasing cost. When 

the seaweed purchasing price increases by 20%, the NPV decreases from 

44 million USD to 9 million USD. Therefore, to ensure the economic 

viability of a seaweed-based biorefinery, efficient farming is necessary to 

increase the seaweed productivity. The selling prices of ethanol and 

microalgae are critical parameters for viable biofuel production. 
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Figure 23. Total installed cost breakdown [A]; Sensitivity analysis of 

biorefinery parameters [B]. 
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5.3.7 Potential improvements to plant economics 

The results of the sensitivity analysis suggest several potential 

improvements to plant economics. It is important to note that some of the 

biorefinery parameters—such as the market prices of the products—are 

based on the geographical and political situation, and therefore cannot be 

controlled. However, parameters related to biorefinery processing can be 

tuned, thereby providing room for further improvements.  

5.3.7.1 Seaweed price (Goal 1) 

The sensitivity analysis demonstrated that the biomass purchasing price 

is a key factor for determining the economic feasibility of a biorefinery. 

The base case price of dry biomass (90 USD/t) includes the cost of 

macroalgae cultivation (80%) and transportation (20%) [102]. The latter 

accounts for 18 USD/t of the total biomass cost. In other words, the cost of 

transporting biomass from the seaweed farm to the biorefinery is equal to 

7.2 million USD/yr. If the location of the biorefinery is properly optimized 

the transportation cost can be reduced significantly. A 25% reduction in 

the transportation cost of biomass owing to optimized biorefinery location 

corresponds to 84.5 USD/t of dry feed. The results presented in Table 20 

demonstrate that a 24.5% improvement in NPV can be achieved relative to 

the NPV of the optimal design.  
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5.3.7.2 Carbohydrates conversion (Goal 2) 

Another important parameter of biorefinery processing is the 

conversion of carbohydrates to VFAs. In the present study, carbohydrates 

to VFAs conversion rate of 70 wt.% was assumed. Higher rates of 

carbohydrate conversion require the use of novel bioreactors such as 

multistage continuous high cell density reactors, in which the VFAs are 

extracted continuously with a solvent mixture. Once these targets are met 

and properly tuned, a marked improvement in the performance of up to 0.5 

g VFA/g of seaweed can be expected, as reported by Chang et al. [156]. 

By assuming a 10% increase in carbohydrate conversion to VFA, and 

combining this with goal 1, a 48.7% improvement in the NPV can be 

achieved. 
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Table 20. Effect of different goals on NPV. 

 Base case Goal 1 Goal 2 

NPV 44.25 55.11 65.80 

% improvement in NPV 0 24.5 48.7 
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5.4 Conclusions 

The optimal design for the SJ based biorefinery using the volatile fatty 

acid platform was determined using a superstructure-based approach. To 

determine the optimal design, a rigorous process synthesis mixed-integer 

non-linear model was developed that takes into accounts both process 

economics and the environmental impact. A techno-economic assessment 

indicated that the production of biofuels and value-added chemicals results 

in a minimum ethanol selling price of 1.18 USD/gal, which is 9.4% lower 

than the minimum ethanol selling price achieved through sugar platform. 

The NPV of the optimal design is 43 million USD for 20-year project life. 

An environmental assessment indicated that the optimal design is 

environmentally friendly process because it utilizes 90% of CEs produced 

by the biorefinery processing. The VFA section consumes approximately 

6 gallons of water per gallon of mixed acids and mixed alcohols. A 

sensitivity analysis suggested a few goals that could improve the process 

economics of optimal design by up to 49%. Therefore, R&D on artificial 

seaweed cultivation is vital to increase the yield and lower the cultivation 

costs to make brown algae an economical and sustainable biomass 

resource for biofuels production. Furthermore, optimization of biorefinery 

location is crucial to decrease biomass transportation cost, and 
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development of low energy and capital cost processes coupled with novel 

digester design are important targets for the enhancement of the process 

economics. 
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6 PROCESS SYNTHESIS OF BIO-SUCCINIC ACID 

This chapter presents a strategy of bio-succinic acid production through 

optimization of a superstructure that contains multiple biomass sources and 

technology alternatives as potential candidates of the optimal flowsheet. A 

MILP model was developed that performs optimization under 

deterministic and stochastic conditions. Besides, the optimization model 

also performs economic risk assessment and cradle-to-gate life cycle 

assessment.  

The main reason of this chapter is to find best process design of bio-SA 

that can be integrated with standalone bio-refineries to improve their 

economics – as the market value of succinic acid is 2–3 times higher than 

that of ethanol. Besides, all three generations of biomass are studied to find 

optimal process design using the best feedstock. 

The presented chapter is an extended version of the conference paper 

submitted to ESCAPE-2020, while the full-length article is in progress. 
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6.1 Introduction 

SA is an important precursor for producing more than 30 commercially 

valuable products in pharmaceutical, food, and agriculture industries 

[157]. SA is largely produced from petroleum feedstock. However, 

technological advances in biorefinery have facilitated its production from 

renewable feedstock [158]. Bio-SA acid is reported by both the European 

Commission and the U.S. Department of Energy one of the top growing 

products within bio-based market, which is projected to reach 7–10 billion 

USD per year [123,159]. Despite its numerous applications and growing 

market, bio-SA production is still at its fancy and not economically 

lucrative compared with that from petroleum.  

It has been estimated that bio-SA leads to greenhouse gas saving of 4.5–

5 kg per kg of SA when compared to petrochemical-based SA [160]. 

However, bio-SA is not cost-competitive with its petrochemical rival, 

mainly due to its high production cost. Purification of SA from the 

fermentation broth is estimated to account 60–70% of the total production 

costs, while only 20–25% of the costs can be allocated to the upstream 

process including biomass pretreatment and fermentation process, and 

only 10–15% to the purchase of the feedstock itself [161]. Therefore, bio-

SA can only be a viable replacement for petroleum-derived SA if upstream 
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and downstream technologies can lower the production cost by increasing 

the product yield and selectivity in former while lowering the purification 

cost in latter [159].  

The necessity of major technological improvements to lower 

production cost makes the bio-SA process design, a complex 

combinatorial optimization problem. For instance, bio-SA can be produced 

from different feedstock including 1st (sugar/starch), 2nd (lignocellulose) 

and 3rd (aquatic biomass) generation [76,125,158,162,163]. Different 

feedstock sources require different pretreatments, which in turn decides the 

formation of fermentation process inhibitors. To achieve high yield and 

selectivity of SA, fermenter design and its operating condition, selection 

of appropriate microorganism and buffer are crucial decision variables that 

will decide the downstream purification [88,164]. The potential 

technological decision variables in bio-SA purification include: 

centrifugation or microfiltration for cell separation, evaporation, solvent 

extraction, activated carbon, ultrafiltration, precipitation, ion exchange, 

reactive extraction, bipolar membrane, electrodialysis, direct 

crystallization and nanofiltration for SA separation [88]. Combining all 

process alternatives from feedstock selection to downstream processing 

makes the bio-SA production process very complicated in order to find 
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best flowsheet for large-scale production taking into account technology 

readiness level of these various technologies. Therefore, the goal of this 

study is to provide clearer guidance based on multicriteria analysis 

(technical, economic, and environmental) about (1) what feedstock should 

be used to produce bio-SA? (2) what utilization strategy (processing route) 

should be used for specific feedstock to decrease the production cost of 

bio-SA? and (3) what is the impact of the processing on the environmental? 

6.2 Methodology 

To achieve research targets, a multi-stage framework shown in Figure 

3 and described in Section 2 was used that systematically perform (1) 

deterministic optimization and analysis, (2) sensitivity analysis, and 

stochastic optimization and analysis, (3) economic risk assessment, and (4) 

environment assessment.  

6.2.1 Problem statement  

The scope of this study is to identify the best process for commercial-

scale bio-SA production that has maximum economics as well as minimum 

investment, risk, and environmental impact in the given search space of 

processing alternatives. To solve this problem, we have selected a rigorous 

economic objective function i.e., NPV that should be maximized under 

deterministic and stochastic conditions. To evaluate environmental impact 
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at the early-stage design we have developed a model that performs cradle-

to-gate analysis in order to evaluate the life cycle profile of different 

manufacturing configurations/topologies. 

6.2.2  Superstructure development  

This section will outline the key sections of the bio-SA biorefinery 

superstructure given in Figure 24. The novelty of the proposed process 

synthesis superstructure features a comprehensive network of 39 process 

alternatives with technology readiness level of 5–9 as the basis for optimal 

design identification. This is to ensure that the resulting solution from 

superstructure optimization is appealing from an implementation point of 

view. Ten major sections or processing intervals are included in the 

superstructure: feedstock, pretreatment, fermentation, cell mass removal, 

concentration pre-isolation, isolation, concentration post-isolation, color 

impurities removal, purification, and drying.  
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As indicated in Figure 24, bio-SA can be produced using glucose, 

glycerol, corn stover, and SJ. It is assumed that glycerol is obtained from 

biodiesel industries, whereas glucose is obtained from sugar beet 

industries. The chemical composition reported by NREL [12] and in Table 

5 is used for corn stover and SJ, respectively. For effective utilization of 

biomass (corn stover and SJ) in fermentation, five pretreatment 

technologies are included in the superstructure: acid thermal hydrolysis of 

corn stover, deacetylation followed by acid thermal hydrolysis, alkaline 

(sodium hydroxide) hydrolysis, acid thermal hydrolysis of SJ, and hot 

water wash hydrolysis. The experimental data pertaining to pretreatment 

technologies are shown in Table 21. Note that glucose and glycerol are 

pure at refinery gates and do not require any pretreatment and therefore, 

they will bypass this processing interval as shown in Figure 24. Once the 

biomass is pretreated, it is processed using enzymatic hydrolysis in the 

presence of cellulase enzyme. The fermentation (production) of sugars can 

be carried out in batch or fed-batch fermenter in the presence of different 

microorganism and buffers. Nine fermentation technologies are included 

in the superstructure, which corresponds to different titer (g/l), yield (g/g), 

and productivity (g/l/h) of SA. The relevant operating data of fermentation 

technologies are given in Table 22. As indicated before the choice of a 
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buffering agent is very important regarding economics, therefore, five 

buffering agents including magnesium hydroxide, magnesium carbonate, 

sodium hydroxide, sodium carbonate, and ammonia are included in the 

superstructure. The choice of the appropriate buffer will be made based on 

the cost of a buffering agent and downstream purification technology cost. 

After fermentation, cell mass can be removed using microfiltration or 

centrifuge [76,165]. The broth can be then concentred either before or after 

isolation of SA using evaporation or vacuum distillation [88]. Isolation can 

be defined as recovering SA from its salt. Since isolation is energy-

intensive, six processing alternatives namely electrodialysis [166], direct 

crystallization [167], reactive extraction [168], ion exchange column 

[169], reactive crystallization [170], and membrane technology (a 

combination of micro- and nano-filtration) [165] are included in the 

superstructure. The colour impurities and protein can be removed from the 

free acid (isolated) broth using activated carbon or nanofiltration [165], 

which is then purified using solvents, (such as methanol) or crystallization 

[87], and finally dried to remove moisture to desired purity. 
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P1-P5 = pretreatment; ATH = Acid thermal hydrolysis; EH = Enzymatic hydrolysis; DEA = Deacetylation; ALTH = Alkaline 

thermal hydrolysis 

P1 and P4: acid thermal hydrolysis followed by enzymatic hydrolysis for corn stover [12,171] and S.japonica [15,125], 

respectively 

P2: Deacetylation followed by acid thermal- and enzymatic – hydrolysis [172,173] 

P3: Alkaline hydrolysis followed by enzymatic hydrolysis [174] 

P5: Hot water wash followed by enzymatic hydrolysis [163] 
amg/g dry biomass; bmg/g cellulose; cw/w% 

 

 

 

 

 

 

 

 

 

 

 

Table 21. Summary of operating conditions and yields for various 

pretreatment technologies. 

Processing conditions 
P1 P2 P3 P4 P5 

ATH EH DEA ATH EH ALTH EH ATH EH HWW EH 

Solid loading (w/w%) 30 20 8 12 12 10 20 30 20 25 25 

Residence time (mins) 5 84 120 10 84 10 120 (5 days) 15 84 20 48 

Temperature © 158 50 80 160 50 120 50 121 50 121 50 

Catalysis loading  22.1a 20b 0.4c 8a 20b 55a 20b 18a 20b 0 20b 

Glucose yield (%) - 91 6.2 - 91 - 90 - 91 - 78.2 

Xylose yield (%) 90 - - 81 - 70 - - - - - 

Mannitol yield (%) - - - - - - - 95 - 78.2 - 
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F1–F9: Fermentation 1–9; SHF: Separate hydrolysis and fermentation; SSF: Simultaneous hydrolysis and fermentation  

Glu: Glucose; Xyl: Xylose; Man: Mannitol; Gly: Glycerol 

 

 

 

 

 

 

No. Strain name 
Fermentation 

Type 
Caron Source 

Titer 

(g/L) 

Yield 

(g/g) 

Productivity 

(g/L/h) 

Ref 

F1 A. succinogen SHF Glu and Xyl 56.40 0.73 1.08 [1] 

F2 A. succinogen Batch Glu and Xyl 42.80 0.74 0.30 [5] 

F3 A. succinogen SSF Glu and Xyl 47.40 0.72 0.99 [9] 

F4 E. coli Dual Phase Glu and Man 17.40 0.73 0.24 [3] 

F5 A. succinogen SHF Glu and Man 33.78 0.63 0.70 [8] 

F6 E. coli Dual Phase Glu  99.20 1.10 1.31 [10] 

F7 A. succinogen Batch Glu  105.80 0.82 1.36 [11] 

F8 E. coli Fed-batch Gly 66.78 1.24 0.93 [12] 

F9 A. succinogen Fed-batch Gly 49.62 0.87 0.64 [13] 

 

Table 22. Summary of operating conditions and yields for various 

fermentation technologies for corn stover (F1-F3), S. japonica (F4-F5), 

glucose (F6-F7), and glycerol (F8-F9). 
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6.2.3 Mathematical modeling of superstructure  

The mathematical model of the superstructure represents large-scale 

MILP model that considers mass and energy balance constraints, capital 

and operating cost constraints, environmental constraints and an objective 

function. Note that energy balance equations and design constraints are 

non-convex that may cause difficulty in solution convergence and 

computation of a global optimal solution due to large combinatorial 

problem involving more than 125 binary decision variables. Therefore, 

separable programming and piecewise linearization are employed by 

approximating the initial mixed-integer non-linear programming problem 

into mixed-integer linear programming.  

6.2.3.1 Mass balance constraints  

The component mass flow rate of feedstock b in the stream k can be 

modelled as follows: 

                          𝐹𝑏,𝑖
𝑘 =  𝐹𝑏

𝑘  × 𝑥𝑏,𝑖
𝑘 , ∀𝑏 ∈ 𝐵, ∀𝑖 ∈ 𝐼∀, 𝑘 ∈ 𝐾,                 (100) 

where 𝐹𝑏,𝑖
𝑘  is the mass flow rate of component i in the stream k, 𝐹𝑏

𝑘 is 

the overall mass flow rate in the stream k, and 𝑥𝑏,𝑖
𝑘  is the feedstock 

composition of component i in the stream k. 

The overall mass balance of feedstock b in the stream k is given by: 

                                   𝐹𝑏
𝑘 =  ∑ 𝑓𝑏,𝑖

𝑘
𝑖 , ∀𝑏 ∈ 𝐵, ∀𝑘 ∈ 𝐾.                          (101) 
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The logical constraint to select feedstock b is modeled as: 

                                𝐹𝑏
𝑘 ≤ ɸ ×  𝑦1𝑏

𝑘, ∀𝑏 ∈ 𝐵, ∀𝑘 ∈ 𝐾,                       (102) 

where ɸ represents upper bound for mass flow rate according to the 

big-M method and 𝑦1𝑏
𝑘  represent binary variables to select feedstock b. 

These binary variables must select one optimal feedstock. 

The logical constraint to select multiple feedstocks is modeled as: 

                                   ∑ 𝑦1𝑏
𝑘

𝑏 ≤ 4, ∀𝑏 ∈ 𝐵, ∀𝑘 ∈ 𝐾.                             (103) 

Splitters are used for optimizing the topology of biorefinery by the 

selecting option g from stage j. The constraints pertaining to the splitters 

are given by:  

                     ∑ 𝐹𝑏,𝑖,𝑗
𝑘1

𝑘1 −  ∑ 𝐹𝑏,𝑖,𝑗
𝑘2

𝑘2 = 0, ∀𝑏 ∈ 𝐵, ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽,         (104) 

and                           𝐹𝑏,𝑗
𝑘2 ≤ ɸ ×  𝑦2𝑏,𝑗

𝑘2 , ∀𝑏 ∈ 𝐵, ∀𝑘2 ∈ 𝐾, ∀𝑗 ∈ 𝐽,                

(105) 

where 𝐹𝑏,𝑖,𝑗
𝑘1  and 𝐹𝑏,𝑖,𝑗

𝑘2 are the mass flow rate of component i in the inlet 

(k1) and the outlet (k2) stream of stage j when utilizing feedstock b, and 

𝑦2𝑏,𝑗
𝑘2  are the binary variables for the selection of option g from stage j. 

The constraint that enforces the selection of only one technology is 

given by: 

                                    ∑ 𝑦2𝑏,𝑗
𝑘

𝑏 ≤ 1, ∀𝑘 ∈ 𝐾, ∀𝑗 ∈ 𝐽.                             (106) 
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Disjunctions are used for implementing a concentration step either 

before or after the isolation step as follow: 

                               ∑ 𝑦2𝑏,𝑗1
𝑘22

𝑘2=1  ≤ 1, ∀𝑏 ∈ 𝐵, ∀𝑗1 ∈ 𝐽,                      (107) 

where 𝑦2𝑏,𝑗1
𝑘2  are the binary variables pertaining to the outlet stream k2 

of concertation stage j1 in the superstructure. 

To find a realistic processing pathway from the superstructure, logical 

constraints are used to ensure a feasible match of various processing 

stages. For instance, electrodialysis cannot deal with the divalent ions such 

as Mg+2 and Ca+2, therefore, in fermentation, the feasible match should be 

monovalent buffer i.e., sodium hydroxide that will generate monovalent 

ion such as Na+1. Likewise, the acidification of broth before electrodialysis 

would be an infeasible match. These logical conditions are modeled as: 

                    ∑ 𝑦2𝑏,𝑗1
𝑘2

𝑘2 − 𝑦2𝑏,𝑗2
𝑘2  ≤ 0, ∀𝑏 ∈ 𝐵, ∀𝑗1𝑎𝑛𝑑 𝑗2 ∈ 𝐽,            (108) 

where 𝑦2𝑏,𝑗1
𝑘2  and 𝑦2𝑏,𝑗2

𝑘2  are the binary variables corresponding to the 

outlet stream k2 of stage j1 and j2. 

The mass balance equation for reactors and purification technologies 

such as the pretreatment, deacetylation, enzymatic hydrolysis, fermenter, 

conditioning vessel, acidification vessel, water splitting electrodialysis, 

reactive crystallization, and thermal cracker, where the reactant r is 

converted to the product p is given by 
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𝐹𝑏,𝑝,𝑗
𝑘2 =  𝐹𝑏,𝑟,𝑗

𝑘1  ×  𝛷𝑏,𝑝,𝑟,𝑗
𝑘2 + 𝐹𝑏,𝑝,𝑗

𝑘1 , ∀𝑏 ∈ 𝐵, ∀𝑘1 & 𝑘2 ∈ 𝐾, ∀𝑝 & 𝑟 ∈ 𝐼 , 

(109) 

where 𝐹𝑏,𝑝,𝑗
𝑘2  is the mass flow rate of product p in the outlet stream k2 of 

stage j when utilizing feedstock b, 𝐹𝑏,𝑟,𝑗
𝑘1  is the mass flow rate of reactant r 

in the inlet stream k1 of stage j when utilizing feedstock b, 𝐹𝑏,𝑝,𝑗
𝑘1  is the mass 

flow rate of product p in the inlet stream of stage j when utilizing feedstock 

b, and 𝛷𝑏,𝑝,𝑟,𝑗
𝑘2  is the yield of product p from reactant r in the outlet stream 

k of stage j when utilizing feedstock b.  

The mass balance constraint for the feedstock storage and handling, 

mixers, pumps, bypass, and heat exchangers are given by 

                             𝐹𝑏,𝑖
𝑘2 =  ∑ 𝐹𝑏,𝑖

𝑘1, ∀𝑖 ∈ 𝐼, ∀𝑘2 ∈ 𝐾
𝑛𝑘
𝑘1=1 ,                       (110) 

where 𝐹𝑏,𝑖
𝑘1 is the mass flow rate of component i in the inlet stream k 

when utilizing feedstock b and 𝐹𝑏,𝑖
𝑘2 is the mass flowrate of component i in 

the outlet stream k2 when utilizing feedstock b. 

The amount of solids at any stage j is controlled by  

                  𝐹𝑏,𝑖,𝑗
𝑘 ≤  𝛼𝑏,𝑖,𝑗

𝑘  ×  𝐹𝑏,𝑗
𝑘 , ∀𝑏 ∈ 𝐵, ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽,      (111) 

and                        𝐹𝑏,𝑗
𝑘  =   ∑ 𝐹𝑏,𝑖,𝑗

𝑘𝑛𝑖
𝑖=1 , ∀𝑏 ∈ 𝐵, ∀𝑘 ∈ 𝐾, ∀𝑗 ∈ 𝐽,              (112) 
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where 𝐹𝑏,𝑖,𝑗
𝑘 , 𝐹𝑏,𝑗

𝑘 , and 𝛼𝑏,𝑖,𝑗
𝑘  is the mass flow rate of component i-, the 

total mass flow rate-, and the mass fraction of component i- in the 

stream k of stage j when utilizing feedstock b, respectively.   

The catalyst loading at any stage j is controlled by  

                           𝐹𝑏,𝑗
𝑘 ≤  ∑  𝐹𝑏,𝑖,𝑗

𝑘
𝑖´  ×  𝛽𝑏,𝑗

𝑘  , ∀𝑘 ∈ 𝐾, ∀𝑗 ∈ 𝐽,              (113) 

where 𝛽𝑏,𝑗
𝑘  is the catalyst loading per kg of incoming feed in the 

stream k of stage j when utilizing feedstock b.  

The mass balance of component i in the outlet key-stream k in the 

separator, washer, microfiltration, belt filter press, centrifuge, 

nanofiltration, evaporation, distillation, activated carbon column, reactive 

extraction, back extraction, electrodialysis, crystallization, ion exchange 

column, solvent purification, flash column, and dryer is given by 

𝐹𝑏,𝑖,𝑗
𝑘2 =  𝐹𝑏,𝑖,𝑗

𝑘1  ×  𝜁𝑏,𝑖,𝑗
𝑘2 , ∀𝑏 ∈ 𝐵, ∀𝑘1 𝑎𝑛𝑑 𝑘2 ∈ 𝐾, ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽,       (114) 

and 𝐹𝑏,𝑖,𝑗
𝑘1 =  𝐹𝑏,𝑖,𝑗

𝑘1  × (1 − 𝜁𝑏,𝑖,𝑗
𝑘2 ), ∀𝑏 ∈ 𝐵, ∀𝑘1 ∈ 𝐾, ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽,    (115) 

where 𝜁𝑏,𝑖,𝑗
𝑘2  represents the recovery of component i in the outlet stream 

k when utilizing feedstock b, 𝐹𝑏,𝑖,𝑗
𝑘1  is the mass flowrate of component i in 

the inlet stream k when utilizing feedstock b and 𝐹𝑏,𝑖,𝑗
𝑘2  is the mass flowrate 

of component i in the outlet stream k2 when utilizing feedstock b. 
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The feedstock purchase is bounded by its availability (Ѳ) and the 

minimum purchase amount (Υ): 

                                                  Ѳ ≥ 𝐹𝑒𝑒𝑑 ≥ Υ.                                    (116) 

6.2.3.2 Energy balance constraints 

The power (𝑃𝑏,𝑗1) consumed during the processing of feedstock b in 

stage j1 is given by 

                              𝑃𝑏,𝑗1 =  ∑ 𝐹𝑏
𝑘1

𝑘1 × Ø𝑗1, ∀𝑏 ∈ 𝐵, ∀𝑗1 ∈ 𝐽,                 (117) 

where Ø𝑗1is the power required per kg of feed rate in stage j1.  

The power consumed during the processing of feedstock b in desalting 

electrodialysis (𝑃𝑏,𝐷𝐸𝐷 ) and water splitting electrodialysis (𝑃𝑏,𝑊𝑆𝐸𝐷 ) is 

given by 

                          𝑃𝑏,𝐷𝐸𝐷 =  ∑ 𝐹𝑏,𝑖
𝑘1

𝑘1 × Ø𝐷𝐸𝐷, ∀𝑏 ∈ 𝐵, ∀𝑖1 ∈ 𝐼,            (118) 

and                     𝑃𝑏,𝑊𝑆𝐸𝐷 =  ∑ 𝐹𝑏,𝑖
𝑘1

𝑘1 × Ø𝑊𝑆𝐸𝐷 , ∀𝑏 ∈ 𝐵, ∀𝑖1 ∈ 𝐼,        (119) 

where Ø𝐷𝐸𝐷 and Ø𝑊𝑆𝐸𝐷 are power required per kg of sodium succinate 

in desalting electrodialysis and water splitting electrodialysis, which is 

~3.5 and ~2.5 kWh per kg of sodium succinate, respectively [161]. 

The power consumed during the processing of feedstock b in 

crystallizer (Pb,CRYS) is given by  

                               𝑉𝑏,𝐶𝑅𝑌𝑆 =  ∑
𝐹𝑏,𝑖

𝑘1

𝜌𝑏,𝑖
𝑘1(𝑘1,𝑖) × 𝜏𝐶𝑅𝑌𝑆, ∀𝑏 ∈ 𝐵,                   (120) 



 

179 

 

and                        𝑃𝑏,𝐶𝑅𝑌𝑆 =  𝑉𝑏,𝐶𝑅𝑌𝑆 × Ø𝐶𝑅𝑌𝑆, ∀𝑏 ∈ 𝐵,                      (121) 

where 𝑉𝑏,𝐶𝑅𝑌𝑆 is the volume of crystallizer in m3, 𝜌𝑏,𝑖
𝑘1 is the density of 

component i in the inlet stream k1, 𝜏𝐶𝑅𝑌𝑆  residence time (1200 s), and 

Ø𝐶𝑅𝑌𝑆is the power required in a crystallizer, which is 2 kW per m3 [76]. 

The power consumed during the processing of feedstock b in filtration 

(Pb,FIL) is given by  

                                    𝐴𝑏,𝐹𝐼𝐿 =  

∑
𝐹𝑏,𝑖

𝑘1

𝜌𝑏,𝑖
𝑘1(𝑘1,𝑖)

𝜓𝐹𝐼𝐿
 , ∀𝑏 ∈ 𝐵,                              (122) 

and                            𝑃𝑏,𝐹𝐼𝐿 =  𝐴𝑏,𝐹𝐼𝐿 × Ø𝐹𝐼𝐿 , ∀𝑏 ∈ 𝐵,                         (123) 

where 𝐴𝑏,𝐹𝐼𝐿  is the area of rotary vacuum filter in m2, 𝜓𝐹𝐼𝐿  is flux, 

which is 400 L.m-2.h-1, and Ø𝐹𝐼𝐿is the power required (0.8 kW per m2) in 

crystallizer [76]. 

The energy (Eb,j1) required in kWh per m2 during the processing of 

feedstock b is determined by a relation proposed by[175] and as follows:  

                                   𝐸𝑏,𝑗1 =  
𝛽𝑗1

(𝜓𝑗1× 𝜂𝑗1)
, ∀𝑏 ∈ 𝐵, ∀𝑗1 ∈ 𝐽,                  (124) 

where J = {Microfiltration, Nanofiltration}, 𝛽𝑗1 is the energy required 

at the membrane surface, which is 50 W per m2, 𝜓𝑗1 is membrane flux, 

which is 20 L.m-2.h-1 for microfiltration and 50 L.m-2.h-1 for nanofiltration, 

and 𝜂𝑗1 is membrane efficiency (50%).   
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Once the energy required is calculated then the power consumption 

(𝑃𝑏,𝑗2) in the membrane can be calculated as follows: 

                            𝐴𝑏,𝑗1 =  

∑
𝐹𝑏,𝑖

𝑘1

𝜌𝑏,𝑖
𝑘1(𝑘1,𝑖)

𝜓𝑗1
 , ∀𝑏 ∈ 𝐵, ∀, ∀𝑖 ∈ 𝐼, ∀𝑗1 ∈ 𝐽,         (125) 

and                         𝑃𝑏,𝑗2 =  𝐴𝑏,𝑗1 × 𝐸𝑏,𝑗1, ∀𝑏 ∈ 𝐵, ∀𝑗1 ∈ 𝐽,                 (126) 

where 𝐴𝑏,𝑗1 is an area of micro- and nano-filtration in m2.  

The power (𝑃𝑏,𝑝𝑢𝑚𝑝) consumed in the pump can be calculated as: 

                               𝑃𝑏,𝑝𝑢𝑚𝑝 =
∑ 𝜌𝑏,𝑖

𝑛𝑖
𝑖=1

 × (𝑃𝑏
𝑘2 − 𝑃𝑏

𝑘1)

𝜂𝑝𝑢𝑚𝑝
,                             (127) 

where 𝜌𝑏,𝑖 is the volumetric density of component i, 𝑃𝑏
𝑘2 is the outlet 

pressure, 𝑃𝑏
𝑘1is the inlet pressure, 𝜂𝑝𝑢𝑚𝑝 is the pump efficiency.  

For each unit operation involved in the processing of feedstock b, the 

following energy balance constraint was used: 

∑ 𝐹𝑏,𝑖,𝑗
𝑘1 . 𝑐𝑝𝑏,𝑖,𝑗

𝑘1 . 𝑇𝑏,𝑗
𝑘1𝑛𝑖

𝑖=1 + 𝑄𝑏,𝑗 =  ∑ 𝐹𝑏,𝑖,𝑗
𝑘2 . 𝑐𝑝𝑏,𝑖,𝑗

𝑘2 . 𝑇𝑏,𝑗
𝑘2,

𝑛𝑖
𝑖=1  ∀𝑏 ∈ 𝐵, ∀𝑗 ∈

𝐽, ∀𝑘1 𝑎𝑛𝑑 𝑘2 ∈ 𝐾,                                                                              (128) 

where 𝑄𝑏,𝑗 is the heat duty of stage j, 𝑐𝑝𝑏,𝑖,𝑗
𝑘1 and 𝑐𝑝𝑏,𝑖,𝑗

𝑘2  are the specific 

heat of component i at the inlet (k1) and outlet (k2) conditions of stage j 

respectively. 𝑇𝑏,𝑗
𝑘1 and 𝑇𝑏,𝑗

𝑘2are the temperature of inlet and outlet conditions 

of stage j.  



 

181 

 

Heat balance in the reboiler is determined by a relation proposed by [46] 

and rearranged as: 

                                   𝑄𝑏,𝑗1 = (1 + 𝑅) ∑ 𝑓𝑏,𝑖
𝑏𝑡𝑚𝜆𝑖

𝑛𝑖
𝑖=1 .                           (129) 

The cooling heat load needed for the condenser is given by: 

                                   𝑄𝑏,𝑗1 = −(1 + 𝑅) ∑  𝑓𝑏,𝑖
𝑑𝑖𝑠𝜆𝑖

𝑛𝑖
𝑖=1 ,                         (130) 

where 𝑓𝑏,𝑖
𝑑𝑖𝑠  and 𝑓𝑏,𝑖

𝑏𝑡𝑚 are component molar flow rate in distillate and 

bottom, respectively, and 𝜆𝑖 is the latent heat component i. 

6.2.3.3 Economic analysis constraints  

The TEA model was formulated based on the strategy presented in 

Section 2.2.  

6.2.3.4 Environmental analysis constraints  

An environmental assessment model was developed to calculate the life 

cycle profile of bio-SA acid production. The scope of analysis is cradle-to-

gate that consider environmental impact caused by four categories: raw 

material extraction and transportation to biorefinery (𝛿1𝑏,𝑒 ), chemicals 

used in different stages of processing/biorefinery (𝛿2𝑏,𝑖,𝑒), heat and power 

consumption in biorefinery 𝛿3𝑏,𝑙,𝑒, and byproducts and waste released to 

the environment 𝛿4𝑏,𝑚,𝑒. These categories are quantified using Eqs. (131-

134), respectively. 
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                               𝛿1𝑏,𝑒 =  
𝐹𝑏

𝑘 ×𝛾1𝑏,𝑒

𝑃𝑐
, ∀𝑏 ∈ 𝐵, ∀𝑒 ∈ 𝐸,                        (131) 

                     𝛿2𝑏,𝑖,𝑒 =  
𝐹𝑏,𝑖

𝑘  ×𝛾2𝑏,𝑖,𝑒

𝑃𝑐
, ∀𝑏 ∈ 𝐵, ∀𝑖 ∈ 𝐼, ∀𝑒 ∈ 𝐸,                  (132) 

                       𝛿3𝑏,𝑙,𝑒 =  
𝑈𝑙 ×𝛾3𝑏,𝑙,𝑒

𝑃𝑐
, ∀𝑏 ∈ 𝐵, ∀𝑙 ∈ 𝐿, ∀𝑒 ∈ 𝐸,                  (133) 

and                 𝛿4𝑏,𝑚,𝑒 =  
𝐹𝑏,𝑖

𝑘  ×𝛾4𝑏,𝑚,𝑒

𝑃𝑐
, ∀𝑏 ∈ 𝐵, ∀𝑚 ∈ 𝑀, ∀𝑒 ∈ 𝐸,       (134) 

where 𝛾1𝑏,𝑒, 𝛾2𝑏,𝑖,𝑒, 𝛾3𝑏,𝑙,𝑒, 𝛾4𝑏,𝑚,𝑒 are the characterization factors or 

inventory data to describe the environmental influence of each impact 

category e caused by the aforementioned categories 

(𝛿1𝑏,𝑒 , 𝛿2𝑏,𝑖,𝑒 , 𝛿3𝑏,𝑙,𝑒 , and 𝛿4𝑏,𝑚,𝑒).  

The total impact category 𝛿𝑏,𝑒 is determined as follows: 

                         𝛿𝑏,𝑒 =  𝛿1𝑏,𝑒 + 𝛿2𝑏,𝑒 + ∑ 𝛿3𝑏,𝑙,𝑒𝑙 + ∑ 𝛿4𝑏,𝑚,𝑒𝑚 .        (135) 

The inventory data or characterization factors required to perform life 

cycle assessment was taken from SimaPro V8.2.3 software using CML-IA 

baseline V3.03 characterization method. Eleven environmental indicators 

described in Section 2.3 are considered in the present model. One kg 

product (bio-SA) was considered as a functional unit to compare the life 

cycle profile of different biorefinery configuration. 
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6.3 Results and discussion 

6.3.1  Deterministic analysis 

6.3.1.1 Optimal feedstock and its processing route 

The optimal feedstock and its processing route to produce bio-SA is 

investigated by maximizing the NPV with the nominal parameters reported 

in Table 23 and Table 24. Note that all uncertainties in the parameters are 

disregarded here. The summary of process indicators including NPV, TCI, 

TCOM, and MPSP are presented in Figure 25A, while the total capital 

cost breakdown is presented in Figure 25B. Results in Figure 25A 

indicate that utilizing glycerol via the processing pathway presented in 

Figure 26A leads to the highest NPV of 50 million USD compared to 

processing pathways of all remaining feedstock for a plant scale of 15,000 

t/y and 20 years of project life. The optimal upstream processing route 

encompasses a fed-batch fermenter using E. coli and sodium hydroxide as 

a bacterial strain and buffer, respectively. The optimal downstream 

processing route consists of microfiltration, nanofiltration, vacuum 

distillation, crystallization, and drying to produce high-grade SA of 99.2 

wt% purity. The total investment cost of the biorefinery is 43 million USD, 

where 71% of the TCI corresponds to fermentation and 29% to 

purification, as shown in Figure 25A and Figure 25B, respectively. The 
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main reason for high upstream investment is found to be the utilization of 

large volume fermenters up to 2600 m3 due to the long fermentation time 

of 72 hours. Therefore, efficient strains are crucial to decrease the 

fermentation time in order to decrease capital investment. The minimum 

product selling price is calculated to be 2.07 USD/kg.  
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Figure 25. Process economic indicators of optimal topologies [A]. Total 

capital investment breakdown of optimal topologies [B]. 
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Figure 26. Optimal processing pathway for glycerol (A), corn stover (B), 

glucose (C), and S. japonica (D) through deterministic optimization (dark 

blue solid arrows) and stochastic optimization (dark blue dashed arrows). 

Black solid lines are common unit operations in both deterministic and 

stochastic optimization. 
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6.3.2 Comparison of optimal feedstock and its processing route 

with suboptimal solutions 

An integer cut algorithm (Eq. 18) is used to find suboptimal topologies 

[72]. Corn stover is found the second-, glucose is third-, and SJ is the least-

optimal feedstock to produce bio-SA via the processing pathway presented 

in Figure 26B–5D that leads to an NPV value of 47.6, 44.4, 15.29 million 

USD, respectively. The optimal processing route of corn stover consists of 

acid thermal hydrolysis, separate hydrolysis and fermentation using A. 

succinogenes and sodium hydroxide buffer, centrifuge, ion exchange 

column, crystallization and drying. As in the processing pathway of 

glycerol, bio-SA production from glucose does not require pretreatment. 

Indeed, its upstream processing pathway consists of dual-phase 

fermentation using E. coli and sodium hydroxide as a bacterial strain and 

buffer, respectively. The downstream processing pathway is similar to that 

of glycerol. For SJ, the hot water wash was found to be the optimal 

pretreatment technology compared to acid thermal hydrolysis in the case 

of corn stover. Regarding the optimal topology of SJ, the fermenter type, 

bacterial strain, buffer, and downstream processing pathway is similar to 

that of corn stover.  
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Overall economic results shown in Figure 25 indicate large variability 

in bio-SA selling price from 2.07–2.58 USD/kg. Likewise, the total cost of 

investment varies between 34–89 million USD, being lowest for the 

glucose processing pathway and highest for the SJ processing pathway. 

The total capital cost breakdown shows that in the processing pathway of 

all feedstock, fermentation and purification are the most expensive process 

areas with 56–70% and 23–32% contributions to the total capital cost, 

respectively.   

6.3.3 Sensitivity analysis  

A single-point sensitivity analysis was performed on the optimal 

topologies mentioned in Figure 26 in order to evaluate the most critical 

parameters on the NPV. The variables evaluated include the cost of feed, 

price of the product, utility cost, TCI, income tax rate, and plant capacity, 

while the variation i.e., maxima and minima pertaining to these variables 

are reported in Table 23 and Table 24. Results in Figure 27 indicate that 

optimal topologies of different feedstock have different critical parameters 

that affect the process economics. Except for the feedstock cost, glucose 

topology was found to be the least sensitive to uncertainties compared to 

topologies of other raw materials. Product price, total capital investment, 

and feedstock cost are the most influential parameters to NPV in all cases. 
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In all topologies, the bio-SA selling price was found to be one of the most 

dominant parameters for the economic viability of the process. Likewise, 

increasing plant capacity was found economically favorable for all 

processing pathways. Feedstock cost was found to be a very crucial 

parameter for all processing pathways, most sensitive in processing 

pathway of glucose that can increase NPV up to 30 million USD when 

glucose cost is at 0.58 USD/kg or can decrease NPV to 15 million USD 

when glucose cost is 15% more than the current market price of 0.99 

USD/kg. The above-mentioned sources of uncertainty indicate that 

recommending an optimal feedstock and its processing route based on 

deterministic condition alone is not reliable. It is quite possible that the 

deterministic optimal pathways only perform well under the nominal 

scenarios and is not a robust solution when the uncertainties are present. 

Thus, in this study, the above-mentioned sources of uncertainty are taken 

into account and analyzed further to find optimal feedstock and its 

processing pathway under uncertainty. 
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Table 23. Uncertainties in chemical prices based on historical prices. 

Uncertainties presented in color cells applicable to both single-point 

sensitive analysis and stochastic analysis. 

Chemicals Min Max Chemicals Min Max 

Corn Stover 31.3% 37.5% Steam 19.6% 8.8% 

S. Japonica 0.0% 50.0% Acid 15.0% 16.2% 

Glucose 41.3% 15.0% H3PO4 48.1% 7.1% 

Glycerol 20.0% 15.0% DDS 40.0% 57.1% 

Succinic acid 20.0% 20.0% CO2 15.0% 15.0% 

Trioctylamine 15.0% 15.0% NH3 58.7% 54.7% 

Trimethylamine 15.0% 15.0% Enzymes 15.0% 15.0% 

Ammonium 

bisulphate 

36.5% 15.4% Methanol 48.4% 0.0% 

Note that ±15 variation is assumed for chemicals that don’t have historical cost 

data available in literature. The variation of chemical prices is around mean value 

which is reported in Table 3. 
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Table 24. Uncertainties in the process economic and environmental 

indicators [12,34,74,176]. Uncertainties presented in color cells applicable 

to both single-point sensitive analysis and stochastic analysis. 

 Min Max 

Equipment costs 20% 50% 

Utility costs 20% 20% 

Environmental parameters 20% 20% 

Plant capacity 20% 20% 

Discount rate 20% 20% 

Income tax rate 20% 20% 

Yield in reactorsa 10% 10% 

Efficiency in purification 

technologyb 

10% 10% 

aReactors = Acid thermal hydrolysis, deacetylation followed by acid thermal 

hydrolysis, alkaline pretreatment, hot water wash, enzymatic hydrolysis, 

fermentation 1–9  

 
bPurification = Electrodialysis, direct crystallization, reactive extraction, ion 

exchange column, reactive crystallization and membrane technology 

 

The variation of indicators is around mean value which is reported in Table 2 and 

Table 4. 
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6.3.4 Stochastic optimization 

Robust (stochastic) optimization was performed to determine the most 

promising feedstock and its processing pathway. The main objective here 

is to determine the processing pathway that maximally remains 

economically viable compared to all other processing pathways under 

uncertain conditions. Therefore, the most influential sources of 

uncertainties determined by the single-point sensitivity analysis are now 

characterized using a uniform distribution function. In addition, 

parameters related to life cycle assessment, and yields in pretreatment, 

enzymatic hydrolysis, fermentation, and purification are taken into account 

to calculate process indicators and risk assessment under uncertainty. 

Therefore, for further analysis, the scenario to be analyzed was set-up 

based on historical cost data on the raw materials and uncertainty range 

suggested in literature for process indicators. The data regarding the range 

of uncertain parameters are given in Table 23 and Table 24. 

6.3.5 Optimal feedstock and processing route under uncertainty 

In order to identify an optimal feedstock and its processing route under 

uncertainty, 500 scenarios were generated, and the results are mapped and 

statistically analyzed. The frequency of selection of glucose, glycerol, and 

corn stover are 235/500 (47.0%), 145/500 (29.0%), and 120/500 (24.0%), 
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respectively, which makes the glucose 1st in the ranking, followed by 

glycerol and corn stover. It can be seen that the results of the feedstock-

ranking from robust optimization are different than those from 

deterministic optimization, which indicate that the uncertainty in the 

dataset indeed has a large impact on the selection of optimal feedstock. SJ 

is not selected a single time in 500 scenarios which indicate that at the 

current technology level of efficiency and feedstock cost, the production 

of bio-SA is not economically viable from it.  

Regarding the topologies of the selected feedstock, 37 unique pathways 

are found as shown in Figure 28; 11 for glucose, 10 for glycerol, and 16 

for corn stover. Here, only the highest frequency pathway can be 

considered as a robust optimal processing pathway for further analysis. 

Results presented in Figure 28 show that the highest frequency processing 

pathway for glucose, glycerol, and corn stover are similar to their 

deterministic pathway except for the glucose where different buffering 

agent i.e., ammonia instead of sodium hydroxide is selected. The 

similarities of stochastic based biorefinery structures to the one achieved 

in the deterministic optimization indicate the robustness of deterministic 

based processing pathways. Even though SJ is not selected even a single 

time in 500 scenarios, however, to present a rigorous comparative analysis 
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between all feedstock and their processing pathways, an optimal 

processing route of SJ obtained from deterministic calculation was also 

included in further calculations. 
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Figure 28. Frequency of selection of pathways for 

glucose, glycerol, and corn stover using stochastic 

optimization for 500 scenarios. 
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6.3.6 Process indicators distribution 

The highest frequency optimal topologies shown in Figure 28 i.e. 

pathway 1 for glucose, glycerol, and corn stover as well as a deterministic 

optimal pathway for SJ presented in Figure 26D are further analyzed to 

evaluate the distribution of process indicators under uncertainty. Here the 

binary variables corresponding to the aforementioned optimal pathways of 

all feedstock are fixed and the optimization problem is solved for 1000 

times using Monte Carlo simulation for all uncertain parameters listed in 

Table 23 and Table 24 to evaluate the distribution of process indicators.  

Results in Figure 29A–B indicate that SA production from glucose and 

glycerol have comparable NPV and MPSP, 37.74 million USD and 2.26 

USD/kg in former and 34.50 million USD and 2.31 USD/kg in later, 

respectively. However, variations in NPV and MPSP of glucose-based SA 

is slightly higher than glycerol-based SA, which is according to the results 

of single-point sensitivity analysis where glucose is found most sensitive 

to feedstock cost. Despite the comparable process economic indicators and 

aforementioned variations, SA production from glucose through pathway 

1 is still much more promising due to the fact that TCI required is 31% 

lower compared to SA production from glycerol through pathway 1. This 

indicates that the rate of return on investment is much higher in glucose-
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based biorefinery, which is a very important economic parameter from the 

perspective of investors. A significant change in NPV and MPSP are 

observed in processing pathway of corn stover in which 30% decrease and 

7% increase in former was observed compared to glucose-based SA. SJ 

has the worst process economics with a negative NPV that corresponds to 

the average of -20.26 million USD and MPSP of 3.10 USD/kg, which is 

154% lower and 37% higher than that of pathway 1 for glucose, 

respectively. 
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6.3.7 Risk assessment 

Risk is evaluated based on the MPSP by comparing the current market 

selling price of petro-chemical based SA with the bio-based SA. In this 

study, the risk is defined as the probability at which the manufacturing 

process produces bio-SA at a price higher than the target petro-chemical 

based SA price. To evaluate the risk, we assumed that the petro-chemical 

based SA price lies between 1.6–2.0 USD/kg. Results in Figure 30 show 

that the bio-SA production through pathway 1 of glucose is potentially the 

best investment alternative since it has lower risk. The risk associated with 

bio-SA production via the optimal processing pathway of glucose, 

glycerol, corn stover and SJ at the market selling price of 2 USD/kg is 85%, 

97%, 99%, and 100%, respectively. It was of interest to calculate the 

market selling price of bio-SA at which the probability of risk becomes 

100% for all optimal topologies. The results indicate that the selling price 

of bio-SA at 1.65 USD/kg for glucose, 1.85 USD/kg for glycerol, 1.87 

USD/kg for corn stover, and 2.30 USD/kg for SJ leads to 100% of the risk. 
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6.3.8 Environmental assessment  

The overall environmental assessment results shown in Figure 31 

indicate that bio-SA production from the processing pathway of glucose is 

the most environment-friendly option compared to the processing 

pathways of glycerol > corn stover > and SJ. The main reason of better life 

cycle profile for the processing pathway of glucose is found to be high 

yield and titer, which decrease both upstream and downstream size 

(capacity) as well as process energy and chemical requirement compared 

to other processing pathways. SJ is the worst environmental scenario due 

to the large consumption of feedstock, which increases the size of 

biorefinery, utility and chemical consumption in both upstream and 

downstream. In addition, the necessity of two extra processing areas i.e., 

pretreatment and DDS purification in corn stover and SJ, increase their 

environmental impact scores more than that of glucose and glycerol. 
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A better insight can be obtained by comparing the breakdown of 

feedstock and all biorefinery areas including pretreatment, fermentation, 

and purification in order to understand the critical parameters to 

environmental indicators. Figure 32 presents the relative contribution of 

feedstock and biorefinery areas to the life cycle profile. Abiotic depletion 

potential is largely affected by the emissions from the purification area, in 

which a large amount of sulfuric acid used to regenerate free SA from its 

salts is the main cause. About 0.92–1.15 kg of sulfuric acid is consumed to 

produce one kg of SA. High agitation power needed in the fermenter and 

large consumption of heating utility in the purification area is the main 

contributor of abiotic fossil fuel depletion potential. The greenhouses gases 

released (1) during the consumption of fossil fuels to power the 

biorefinery, (2) from the processing to the atmosphere, and (3) from the 

extraction, preprocessing, and transportation of the raw materials to 

biorefinery gates have a significant impact on the global warming potential 

indicator. The heating utility in the purification area is the main driver for 

global warming potential. Indeed 66.0%, 78.7%, 72.3%, and 71.5% of the 

total process energy consumption is dedicated to downstream in the 

processing pathway of glycerol, corn stover, glucose, and SJ, respectively. 

Consequently, 50–70% greenhouse gases emissions that are generated 
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from the utility consumption are contributed to downstream, where phase 

change operations such as distillation, evaporation, and drying take place. 

In the upstream, power consumption due to agitation in the fermenter is 

found the main contributor to global warming indicator. Overall, cradle to 

gate analysis indicates that the optimal processing pathway of glucose, 

glycerol, corn stover, and SJ has global warming potential of 3.99, 4.33, 

8.19, 12.02 kg CO2/kg SA, respectively. A large amount of buffering agent 

(2 moles of NaOH per mole of SA) in fermentation area and acid utilization 

in downstream purification are the main contributors to ozone depletion 

potential, human toxicity potential, freshwater aquatic ecotoxicity 

potential, marine ecotoxicity potential and terrestrial ecotoxicity potential. 

Besides, utility consumption, especially in downstream, is found another 

critical parameter to these indicators. Note that the environmental burden 

only from the buffering agent is 38.3–48.3%, 38.5–46.2%, 43.3–49.8%, 

and 22.7–28.9% to human toxicity potential, freshwater aquatic 

ecotoxicity potential, marine ecotoxicity potential, and terrestrial 

ecotoxicity potential, respectively. Drivers for the acidification potential 

include sulfuric acid (20.7–31.5%), utility (26.6–54.7%), and a buffering 

agent (15.5–24.5%). In the pretreatment of corn stover by acid thermal 

hydrolysis, the contribution of ammonia in the feed neutralization step is 
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about 6%. In photo-oxidant formation potential, the almost identical trend 

to acidification potential is observed. The emissions from the wastewater 

treatment area are the key driver for eutrophication indicator.  

To this end, analysis of the distribution of environmental impacts and 

their comparison with other topologies suggest (1) neutral fermentation 

should be replaced with the acidic fermentation to avoid utilization of a 

large amount of buffer in upstream and a large amount of acid in 

downstream, (2) heat integration should be performed to reduce high utility 

requirement. It is believed that the efficient use of utility via heat 

integration not only improves the energy utilization but would also 

significantly decrease numerous impacts (abiotic depletion, ozone 

depletion, radiation, global warming potential, and to lower extent 

acidification and human toxicity) and will hence improve the overall 

environmental performance. 
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6.4 Conclusion  

A superstructure-based optimization model is developed for the 

synthesis of bio-succinic acid from different biomass sources. The 

proposed model performs multi-level analysis to provide robust decision-

making support. 

The overall results indicated that bio-succinic acid production via the 

optimal pathway of glucose is economically and environmentally better 

option. 
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7 CONCLUSIONS AND FUTURE PERSPECTIVES 

The objective of this thesis was the process synthesis of macroalgal 

biorefinery through biochemical pathways. A superstructure-based 

optimization approach was used to develop models to find optimal raw 

material, product portfolio, and process technology via sugar platform and 

volatile fatty acid platform. The results showed that the production of 

biofuels and biochemicals from brown algae, Saccharina japonica are 

economically viable. Process integrations showed that both process 

economics and environmental profile can be improved significantly 

compared to standalone biorefinery design. 

The results of the chapter of 3 and 4 for sugar platform indicated 

that bioethanol and biochemicals production from Saccharina japonica is 

economically viable over lignocellulosic biomass by having lower capital 

costs, energy consumption, and minimum ethanol selling price. The 

process economic results detailed in chapter 3 indicated that the MESP of 

the optimal design was 1.97 USD/gal. On the contrary, in chapter 4, when 

process integrations were performed via bio-SA- and microalgae-

production with the standalone bioethanol processing, the MESP of 

optimal design decreased to 1.31 USD/gal. This represents an 

improvement of 33% in MESP. Concerning environmental sustainability, 
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the optimal design in chapter 4 achieved a 90% reduction in CO2 

emissions, as well as a 38.6% reduction in freshwater consumption. The 

risk of the optimal design was found to be 20–44% based on the MESP. 

The results of chapter 5 for volatile fatty acid platform indicated 

that the production of biofuels and value-added chemicals via optimal 

design results in a minimum ethanol selling price of 1.18 USD/gal, which 

is 9.4% lower than the minimum ethanol selling price achieved through 

sugar platform. An environmental assessment indicated that the optimal 

design is an environmentally friendly process because it utilizes 90% of 

CEs produced by biorefinery processing. The water footprint is calculated 

to be 6 gals/gal of mixed acids and alcohols from VFA section.  The 

techno-economic results revealed that biofuel and biochemical production 

via the volatile fatty acid platform consumes less capital investment 

compared to that of sugar platform. This because the VFAP does not 

require aseptic conditions and does not utilize expensive enzymes and 

capital-intensive fermenters. Furthermore, the VFAP has a higher product 

yield than the SP. This is primarily owing to the ability of anaerobes to 

digest all the non-lignin components of the biomass, including 

carbohydrates, proteins, and lipids, whereas, in the case of the SP, only the 

carbohydrate content of the biomass is converted to bioethanol. 
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In chapter 6, results from robust optimization indicated that glucose 

is the first- and glycerol is the second-best feedstock to produce bio-SA at 

the lowest selling price of 1.7–2.6 USD/kg and 1.9-2.5 USD/kg assuming 

one standard deviation, respectively through their optimal processing 

pathways. Corn stover can be excellent feedstock to produce bio-SA, 

however, it needs a major technological breakthrough to avoid expensive 

pretreatment and high capital investment up to 67–87 USD million which 

is much higher compared to optimal processing pathway of glucose. SJ is 

not suitable for standalone bio-SA production due to the inability of 

enzymes to process alginate which is a major carbohydrate 25–30 wt% to 

bio-SA. However, as presented in chapter 4 (See Scenario 2 in Table 16), 

integration of bioethanol production from alginate and bio-SA production 

from laminaria and mannitol increase the process economics compared to 

standalone production of bio-SA. Risk assessment shows that bio-SA 

production from an optimal pathway of glucose is the best alternative due 

to less associated risk. The environmental profile indicates that the optimal 

pathway of glucose is the most environmentally friendly process followed 

by glycerol, corn stover, and SJ. 

Overall conclusions indicate that future seaweed biorefinery design 

through a biochemical pathway should be like as shown in Figure 33. The 
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seaweed is first processed to extract the most valuable components from 

it, second, production of biofuels through anaerobic digestion to produce 

mixed alcohols, and finally, process integrations through succinic acid 

production and wastewater treatment facility to improve process 

economics and environmental sustainability.  

Considering the general trend of increasing energy demand, the 

efforts required for diversifying energy supplying sources cannot be 

underestimated: more environment friendly energy sources should replace 

the existing climate change causing ones. At the same time the 

corresponding energy generation processes should be improved in terms 

of reducing the carbon emission. In order to transform the efforts into 

reality, the new energy sources and the associated energy generation 

processes should be economically competitive. Consequently, significant 

research and development efforts are required in evaluating their economic 

feasibility due to the existence of a large number of intermediate 

processing routes. The presented superstructure-based framework plays an 

important role in evaluating optimal design, economics, and environmental 

sustainability of a macroalgae-based biorefinery under uncertainty. It can 

be further utilized in the decision-making framework of new energy 

systems.  
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Figure 33. Proposed block flow diagram for seaweed biorefinery. 
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7.1 Future perspectives and research directions 

This study has used superstructure-based optimization approach to 

support the development of seaweed-based biorefinery concepts. 

However, several issues presented below could still benefit substantially 

from further development. 

1) The optimal topologies are the function of number of alternatives 

included in the superstructure. Therefore, the design space 

should be further extended to identify more promising solutions 

2) The developed superstructures should be combined and extended 

to incorporate thermochemical conversion concepts to find more 

sustainable solutions for seaweed based biorefinery 

3) Process synthesis approach should be integrated with supply 

chain network analysis for more robust solutions 

4) Generic models should be formulated that allows managing a 

large complex process synthesis problem in a reasonable time 

5) The databases and optimization models, which are formulated to 

investigate seaweed biorefinery design are not fully user-friendly. 

A graphical interface would eliminate such demerits. 
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