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지연 준선형 제어계에 대한 전사 이론

이 태 완

부경대학교 교육대학원 수학교육전공

요 약

이 논문에서는 지연 준선형 방정식에 대한 제어 가능 문제를 전사이론에 기초

하여 연구하였다. 이를 연구함의 목적은 자연과학, 경제학, 공학 등 많은 분야

에서 현재의 상태 뿐만 아니라 과거의 상태에도 의존하는 수학적 모델로 나타나

는 체계의 제어 가능성을 다루는 것으로, 초기치의 상태로부터 임의의 상태에서

제어 가능한가의 문제를 다루는 것이다.

Fredholm altnernative 이론과 유사한 전사 이론을 적용하기 위해 몇 가지 제

한된 가정하에서 다루었다. 작용소 는 odd   -homeomorphism이고, 작용
소 는 odd strong continuous 하며, -quais-homogeneous일 때,   는 전사함수임을 알게 된다. 이를 전사 이론에 근거하여 제어

가능성의 결과를 얻을 수 있었다.

2장에서는 결과를 이끌어내는 Fredholm alternative 이론과 유사한 전사이론

을 소개한다. 작용소 의    -homeomorphism을 정의하고, 작용소 의 
-quasi-homogeneous를 정의한다.

3장에서는 몇 가지 예비 이론과 비선형항이 없는 방정식의 해의 초기치에 대

한 정칙성과 연속성을 소개한다.

4장에서는 비선형항을 포함한 방정식의 정칙성을 다루고, 초기치와 컨트롤 항

으로부터 방정식의 해로의 사상이 연속임을 알아내었다.

5장에서는 컨트롤 항의 충분한 조건 아래 앞의 이론을 바탕으로 제어 가능성

을 증명하고, 예를 소개하며 마친다.

이 논문에서 다룬 방정식 외 다른 미분방정식의 제어 가능 문제도 생각해보았

고, 이 부분에서의 더 많은 연구의 필요성을 느꼈다.



1 Introduction

In this paper, we deal with the approximate controllability for the following

retarded functional differential control equation with the nonlinear integro-

diffrential type in the form
d
dt
x(t) = A0x(t) + A1x(t− h) +

∫ 0

−h a(s)A2x(t+ s)ds+ f(t, x) + (Bu)(t),

x(0) = φ0, x(s) = φ1(s) − h ≤ s < 0.

(1.1)

where

f(t, x) =

∫ t

0

k(t− s)g(s, x(s))ds

for a k belonging to L2(0, T ). Let V and H be complex Hilbert spaces forming

a Gelfand triple

V ↪→ H ≡ H∗ ↪→ V ∗

by identifying the antidual of H with H. Here, the principal operator A is as-

sociated with a sesquilinear form defined on V × V and satisfying G̊arding’s

inequality, and B is a bounded linear operator from another Hilbert space

L2(0, T ;U)(T > 0) to L2(0, T ;U). k belongs to L2(0, T ) and g is a nonlin-

ear mapping as detailed in Section 4.

The our purpose is to deal with the approximate controllability of semilinear

retarded system (1.1) which appears in a great many practical mathematical

models in the natural sciences, economics and engineering depends not only on

the present but on the past state. The controllability problem is a question

which is possible to steer a dynamic system from an initial state to an arbitrary

final state using the set of admissible controls. Approximate controllability for
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the systems in infinite dimensional spaces is well developed, we refer to [8, 26]

and references therein for the case of abstract linear control equations. In order

to obtain similar results on semilinear systems dominated by linear parts (in

case f ≡ 0), many researchers have used the following sufficient conditions as

(1) the corresponding linear system (1.1) when f ≡ 0 is approximately con-

trollable [22, 33, 34],

(2) S(t) is a compact operator or the embedding D(A) ⊂ V is compact

[6, 14, 13, 24, 32],

(3) use a fixed point theorem combined with technique of operator transfor-

mations by configuring the resolvent as seen in [4].

Recently, the approximate controllability of fractional order semilinear delay

systems has been studied by authors [20, 27] as a continuous study. Similar

considerations of semilinear stochastic systems have been dealt with in many

references [2, 10, 18, 21, 19, 29].

In particular, with conditions the range condition of controller with a com-

pact semigroup, [32] established the approximate controllability for the equation

(1.1) assuming

lim sup
||u||L2(0,T ;H)→∞

||f(·, u)||L2(0,T ;H)

||u||L2(0,T ;H)

:= γ (1.2)

is sufficiently small. Sukavanam and Tomar [28] studied the approximate con-

trollability for the general retarded initial value problem by assuming that the

Lipschitz constant of the nonlinear term is less than 1. Moreover, [15] dealt

with the approximate controllability for the system (1.1) even if γ 6= 1 of (1.2)

by using so called Fredholm theory: (λI −F )(u) = f is solvable in L2(0, T ;H).
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In this paper, authors want to look at approaches from other perspectives.

Our used tool is the surjective theorems similar to the Fredholm alternative

for nonlinear operators under restrictive assumption, which is on the solution

of nonlinear operator equations λT (x) − F (x) = y in dependence on the real

number λ, where T be odd (K,L, a)- homeomorphism, that is, there exist real

numbers K > 0, L > 0, and α > 0 such that

L||x||αX ≤ ||T (x)||Y ≤ K||x||αX ,

and F : X → Y an odd strong continuous and b-quasi-homogeneous operator.

Here, F is said to be b-quasi-homogeneous if there exist nonlinear operators R

and F0 defined on X such that F0 is b-homogeneous, strong continuous satisfying

F (u) = R(u)F0(u) for every u ∈ H satisfying

lim
||u||X→∞

||Ru||Y = 1.

Based on this surjective results, we can obtain the approximate controllability

for (1.1) without restrictions such as (1)-(3) mentioned above.

The structure of this paper is as follows. In Section 2, we deal with some

surjectivity results similar to Fredholm alternative, which can be used to prove

the main results. Section 3 is devoted to constructing principal operators

Ai(i = 0, 1, 2) associated with a sesquilinear form defined on V ×V and satisfy-

ing G̊arding’s inequality, and gives the basic properties of the analytic semigroup

generated by the principal operator A0. Section 4 gives a variation of constant

formula of L2-regularity and properties of the strict solutions of (1.1)(see [7] in

the linear case). The assumption required here is that the embedding D(A) ⊂ V

is completely continuous. Then by virtue of [1], we can show that the solution
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mapping of a control space to the terminal state space is completely contin-

uous by means of regularities results, so is the nonlinear operator. Moreover,

the sufficient conditions on the controller and nonlinear terms for approximate

controllability for (1.1) can be obtained. Finally, we give an example of a par-

tial functional differential control equation as an application of the preceding

theory.

2 Surjectivity results

Let us introduce the theory of the degree for completely continuous pertur-

bations of the identity operator, which is the infinite dimensional version of

Borsuk’s theorem. Let 0 ∈ D be a bounded open set in a Banach space X, D

its closure and ∂D its boundary. The number d[I −T ;D, 0] is the degree of the

mapping I − T with respect to the set D and the point 0 (see [11] or [17]).

Theorem 2.1. (Borsuk’s theorem) Let D be a bounded open symmetric set in a

Banach space X, 0 ∈ D. Suppose that T : D → X be odd completely continuous

operator satisfying T (x) 6= x for x ∈ ∂D. Then d[I − T ;D, 0] is odd integer.

That is, there exists at least one point x0 ∈ D such that (I − T )(x0) = 0.

Definition 2.1. Let T be a mapping defined by on a Banach space X with

value in a real Banach space Y . The mapping T is said to be a (K,L, α)-

homeomorphism of X onto Y if

(i) T is a homeomorphism of X onto Y ;
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(ii) there exist real numbers K > 0, L > 0, and α > 0 such that

L||x||αX ≤ ||T (x)||Y ≤ K||x||αX , ∀x ∈ X.

Lemma 2.1. Let T be an odd (K,L, α)-homeomorphism of X onto Y and

F : X → Y a continuous operator satisfying

lim sup
||x||X→∞

||F (x)||Y
||x||αX

= N ∈ R+.

Then if |λ| /∈ [N
K
, N
L

] ∪ {0}, then

lim
||x||X→∞

||λT (x)− F (x)||Y =∞.

Proof. Suppose that there exist a constant M > 0 and a sequence {xn} ⊂ X

such that

||λT (xn)− F (xn)||Y ≤M

as xn →∞. From this it follows that

λT (xn)

||xn||αX
− F (xn)

||xn||αX
→ 0.

Hence, we have

lim sup
n→∞

|λ|||T (xn)||Y
||xn||αX

= N.

Since T is an odd (K,L, α)-homeomorphism of X onto Y , |λ|K ≥ N ≥ |λ|L.

It is a contradiction with |λ| /∈ [N
K
, N
L

].

Proposition 2.1. Let T be an odd (K,L, α)-homeomorphism of X onto Y and

F : X → Y an odd completely continuous operator. Suppose that for λ 6= 0,

lim
||x||X→∞

||λT (x)− F (x)||Y =∞. (2.1)

Then λT − F maps X onto Y .
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Proof. We follow the proof Theorem 1.1 in Chapter II of [11]. Suppose that

there exists y ∈ Y such that λT (x) = y. Then from (2.1) it follows that

FT−1 : Y → Y is an odd completely continuous operator and

lim
||y||Y→∞

||y − FT−1(y
λ

)||Y =∞.

Let y0 ∈ Y . There exists r > 0 such that

||y − FT−1(y
λ

)||Y > ||y0||Y ≥ 0

for each y ∈ Y satisfying ||y||Y = r. Let Yr = {y ∈ Y : ||y||Y < r} be a open

ball. Then by view of Theorem 2.1, we have d[y − FT−1( y
λ
);Yr, 0] is an odd

number. For each y ∈ Y satisfying ||y||Y = r and t ∈ [0, 1], there is

||y − FT−1(y
λ

)− ty0||Y ≥ ||y − FT−1(
y

λ
)||Y − ||y0||Y > 0

and hence, by the homotopic property of degree, we have

d[y − FT−1(y
λ

);Yr, y0] = d[y − FT−1(y
λ

);Yr, 0] 6= 0.

Hence, by the existence theory of the Leray-Schauder degree, there exists a

y1 ∈ Yr such that

y1 − FT−1(
y1
λ

) = y0.

We can choose x0 ∈ X satisfying λT (x0) = y1, and so, λT (x0) − F (x0) = y0.

Thus, it implies that λT − F is a mapping of X onto Y .

Combining Lemma 2.1. and Proposition 2.1, we have the following results.
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Corollary 2.1. Let T be an odd (K,L, α)-homeomorphism of X onto Y and

F : X → Y an odd completely continuous operator satisfying

lim sup
||x||X→∞

||F (x)||Y
||x||αX

= N ∈ R+.

Then if |λ| /∈ [N
K
, N
L

] ∪ {0} then λT − F maps X onto Y . Therefore, if N = 0,

then for all λ 6= 0 the operator λT − F maps X onto Y .

Let X be a Banach space with the norm ‖ · ‖X . Denote by X∗ the adjoint

space of all bounded linear functionals on X. The pairing between x∗ ∈ X∗ and

x ∈ X is denoted by (x∗, x). Unless otherwise stated, we use symbols ” → ”

and ” ⇀ ” to denote the strong and weak convergence, respectively, i.e., the

sequence {xn}, xn ∈ X converges strongly (weakly) to the point x0 ∈ X, denote

by xn → x0 (xn ⇀ x0), if

lim
n→∞

‖xn − x0‖X = 0 ( lim
n→∞

(x∗, xn) = (x∗, x0) for each x∗ ∈ X∗).

Let F be mapping (nonlinear, in general) with the domain M ⊂ X and the

range in the Banach space Y . F is said to strongly (weakly) continuous on M

if xn → x0 (xn ⇀ x0) in X implies F (xn) → F (x0) in Y for xn, x0 ∈ M , and

F is said to be completely continuous on M if F is continuous on M and for

each bounded subset D ⊂M , F (D) is compact subset in Y .

Definition 2.2. Let F be a mapping defined by on a Banach space X with value

in a real Banach space Y and b > 0 a real number.

(a) F is said to be b-homogeneous if

tbF (u) = F (tu)

holds for each t ≥ 0 and all u ∈ X.
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(b) F is said to be b-quasi-homogeneous if there exist nonlinear operators R

and F0 defined on X with value in Y such that F0 is b-homogeneous and

F (u) = R(u)F0(u) for every u ∈ X satisfying

lim
||u||X→∞

||Ru||Y ∈ R+.

Example 2.1. Set X = Y = R and

F (u) =
|u|

1 + |u|
u3.

Then F is said to be 3-quasi-homogeneous considering as R(u) = |u|
1+|u| .

Remark 2.1. In [11], the relationship between F and F0 is defined in other

words as F is said to be b-strongly quasi-homogeneous with respect to F0, if

tn > 0→ 0, un ⇀ u0 ⇒ tbnF (un/tn)→ F0(u0) ∈ Y.

If F is the strong continuous and b-quasi-homogeneous, then F is a b-strongly

quasi-homogeneous with respect to F0. So our basic results follow theorems of

[11].

Theorem 2.2. Let X be a reflexive space, and let T be odd (K,L, α)- home-

omorphism of X onto Y , F : X → Y an odd strong continuous and b-quasi-

homogeneous operator. If α > b, then λT − F maps X onto Y for any λ 6= 0.

Proof. Since X is a reflexive space, we know that every strong continuous op-

erator F : X → Y is also completely continuous. Hence according to Corollary

2.1 it is sufficient to prove that

lim
x→∞

‖F (x)‖Y
‖x‖αX

= 0.
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Since F is b-quasi-homogeneous, there exist R and F0 be a mappings defined by

on a Banach space X with value in Y and a real Banach space Y , respectively,

such that F = RF0 satisfying

lim
‖u‖X→∞

‖R(u)‖Y = c0

for some a constant c0 > 0 holds and F0 is b-homogeneous. Suppose that there

exist ε > 0 and a sequence {xn} , xn ∈ X , ‖xn‖X →∞ such that

xn
‖xn‖X

= vn ⇀ v0

and

‖F (xn)‖Y
‖x‖αX

≥ ε

for any positive integer n. Then

F (xn)

‖xn‖bX
=
F (‖xn‖Xvn)

‖xn‖bX
= R(‖xn‖Xvn)F0(vn)→ c0F0(v0).

Since a > b,

‖xn‖bX
‖xn‖αX

→ 0.

Thus

0 < ε ≤ ‖F (xn)‖Y
‖xn‖α

=
‖xn‖b

‖xn‖α
· ‖F (xn)‖Y
‖xn‖b

→ 0,

which is a contradiction.

Theorem 2.3. Let X be a Hilbert space, and let T be odd (K,L, α)- homeo-

morphism of X onto Y , F : X → Y an odd strongly continuous and b-quasi-

homogeneous operator. If F0(v) = 0 imply v = 0, and α < b, then λT −F maps

X onto Y for any λ 6= 0.
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Proof. According to Proposition 2.1, we shall prove

lim
x→∞
‖λT (x)− F (x)‖Y =∞.

Since F is b-quasi-homogeneous, there exist R and F0 be mappings defined by

on a Banach space X with value in Y and a real Banach space Y , respectively,

such that F = RF0 satisfying

lim
‖u‖X→∞

‖R(u)‖Y = c0

for some a constant c0 > 0 holds and F0 is b-homogeneous. Suppose that there

exist a constant M > 0 and a sequence {xn}, xn ∈ X, ‖xn‖X →∞ such that

xn
‖xn‖X

= vn ⇀ v0

and

‖λT (xn)− F (xn)‖Y ≤M

for any positive integer n. Here, we note that vn → v0 since X is a Hilbert

space and ‖v0‖X = 1. Then

λT (‖xn‖X vn)

‖xn‖b
− F (‖xn‖X vn)

‖xn‖b
→ 0,

and so

λT (‖xn‖X vn)

‖xn‖b
→ c0F0(v0).

But since T is (K,L, α)- homeomorphism, we have

K|λ|‖xn‖
α

‖xn‖b
≥ ‖λT (xn)‖Y

‖xn‖b
≥ L|λ|‖xn‖

α

‖xn‖b
.

Thus, noting that α < b, it holds

‖λT (xn)‖Y
‖xn‖b

→ 0,
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and F0(v0) = 0. From our assumption v0 = 0 and this is a contradiction with

‖v0‖X = 1.

3 Preliminaries

The notations | · |, || · || and || · ||∗ denote the norms of H, V and V ∗, respectively

as usual. Therefore, for the brevity, we may regard that

||u||∗ ≤ |u| ≤ ||u||, ∀u ∈ V.

Let a(u, v) be a bounded sesquilinear form defined in V ×V satisfying G̊arding’s

inequality

Re a(u, u) ≥ c0||u||2 − c1|u|2, c0 > 0, c1 ≥ 0.

Let A be the operator associated with this sesquilinear form:

(Au, v) = −a(u, v), u, v ∈ V.

Then A is a bounded linear operator from V to V ∗. The realization of A in H

which is the restriction of A to

D(A) = {u ∈ V : Au ∈ H}

is also denoted by A. Moreover, for each T > 0, by using interpolation theory,

we have

L2(0, T ;V ) ∩W 1,2(0, T ;V ∗) ⊂ C([0, T ];H).

From the following inequalities

c0||u||2 ≤ Re a(u, u) + c1|u|2 ≤ |Au| |u|+ c1|u|2 ≤ (|Au|+ c1|u|)|u|,
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it follows that there exists a constant C0 > 0 such that

||u|| ≤ C0||u||1/2D(A)|u|
1/2.

Therefore, in terms of the intermediate theory, we can see that

(D(A), H)1/2,2 = V, and (V, V ∗)1/2,2 = H,

where (V, V ∗)1/2,2 denotes the real interpolation space between V and V ∗(Section

1.3.3 of [3], [31]). For the sake of simplicity, we assume that c1 = 0 and hence

the closed half plane {λ : Reλ ≥ 0} is contained in the resolvent set of A. It

is known that A generates an analytic semigroup S(t) in both H and V ∗. As

seen in Lemma 3.6.2 of [30], there exists a constant M > 0 such that

|S(t)x| ≤M |x| and ||S(t)x||∗ ≤M ||x||∗, (3.1)

moreover, for all t > 0 and every x ∈ H or V ∗:

|S(t)x| ≤Mt−1/2||x||∗, ||S(t)x|| ≤Mt−1/2|x|.

We consider the following initial value problem
d
dt
x(t) = A0x(t) + A1x(t− h) +

∫ 0

−h a(s)A2x(t+ s)ds+ h(t),

x(0) = φ0, x(s) = φ1(s) − h ≤ s < 0.

(3.2)

The operators A1 and A2 are bounded linear operators from V to V ∗ such that

their restrictions to D(A0) are bounded linear operators from D(A0) equipped

with the graph norm of A0 to H. The function a(·) is assumed to be real valued

and Hölder continuous in the interval [−h, 0].

By virtue of Theorem 3.3 of [7](or Theorem 3.1 of [14]), we have the following

results on the corresponding linear equation (3.2).
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Proposition 3.1. Suppose that the assumptions for the principal operator A0

stated above are satisfied. Then the following properties hold:

1) Let V = (D(A0), H)1/2,2. For (φ0, φ1) ∈ V × L2(−h, 0;D(A0)) and h ∈

L2(0, T ;H), T > 0, there exists a unique solution x of (3.2) belonging to

L2(0, T ;D(A0)) ∩W 1,2(0, T ;H) ⊂ C([0, T ];V )

and satisfying

||x||L2(0,T ;D(A0))∩W 1,2(0,T ;H) ≤ C1(||φ0||+ ||φ1||L2(−h,0;D(A0)) + ||h||L2(0,T ;H)), (3.3)

where C1 is a constant depending on T .

2) For (φ0, φ1) ∈ H×L2(−h, 0;V ) and h ∈ L2(0, T ;V ∗), T > 0, there exists

a unique solution x of (3.2) belonging to

L2(0, T ;V ) ∩W 1,2(0, T ;V ∗) ⊂ C([0, T ];H)

and satisfying

||x||L2(0,T ;V )∩W 1,2(0,T ;V ∗) ≤ C1(|φ0|+ ||φ1||L2(−h,0;V ) + ||h||L2(0,T ;V ∗)), (3.4)

where C1 is a constant depending on T .

Lemma 3.1. Suppose that k ∈ L2(0, T ;H) and x(t) =
∫ t
0
S(t − s)k(s)ds for

0 ≤ t ≤ T . Then there exists a constant C2 such that

||x||L2(0,T ;H) ≤ C2T ||k||L2(0,T ;H), (3.5)

and

||x||L2(0,T ;V ) ≤ C2

√
T ||k||L2(0,T ;H). (3.6)
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Proof. By a consequence of (3.3), it is immediate that

||x||L2(0,T ;D(A0)) ≤ C1||k||L2(0,T ;H). (3.7)

Since

||x||2L2(0,T ;H) =
∫ T
0
|
∫ t
0
S(t− s)k(s)ds|2dt ≤M

∫ T
0

(
∫ t
0
|k(s)|ds)2dt

≤M
∫ T
0
t
∫ t
0
|k(s)|2dsdt ≤M T 2

2

∫ T
0
|k(s)|2ds,

where M is the constant of (3.1), it follows that

||x||L2(0,T ;H) ≤ T
√
M/2||k||L2(0,T ;H). (3.8)

From (3.7), and (3.8) it holds that

||x||L2(0,T ;V ) ≤ C0

√
C1T (M/2)1/4||k||L2(0,T ;H).

So, if we take a constant C2 > 0 such that

C2 = max{
√
M/2, C0

√
C1(M/2)1/4}.

Thus (3.5) and (3.6) are satisfied.

4 Semilinear equation systems

We consider the following retarded semilinear equation systems
d
dt
x(t) = A0x(t) + A1x(t− h) +

∫ 0

−h a(s)A2x(t+ s)ds+ f(t, x) + (Bu)(t),

x(0) = φ0, x(s) = φ1(s) − h ≤ s < 0.

(4.1)
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Let U be a Hilbert space and the controller operator B be a bounded linear

operator from L2(0, T ;U) to L2(0, T ;H). Let g : R+ × V → H be a nonlinear

mapping satisfying the following:

Assumption (F)

(i) For any x ∈ V , the mapping g(·, x) is strongly measurable;

(ii) There exist positive constants L0, L1 such that

(a) x 7→ g(t, x) is odd mapping (g(·,−x) = −g(·, x));

(b) for all t ∈ R+, x, x̂ ∈ V ,

|g(t, x)− g(t, x̂)| ≤ L1||x− x̂||,

|g(t, 0)| ≤ L0.

For x ∈ L2(0, T ;V ), we set

f(t, x) =

∫ t

0

k(t− s)g(s, x(s))ds

where k belongs to L2(0, T ).

Lemma 4.1. Let Assumption (F) be satisfied. Assume that x ∈ L2(0, T ;V ) for

any T > 0. Then f(·, x) ∈ L2(0, T ;H) and

||f(·, x)||L2(0,T ;H) ≤ L0||k||L2(0,T )

√
T + L1||k||L2(0,T )

√
T ||x||L2(0,T ;V ). (4.2)

Moreover if x, x̂ ∈ L2(0, T ;V ), then

||f(·, x)− f(·, x̂)||L2(0,T ;H) ≤ L1||k||L2(0,T )

√
T ||x− x̂||L2(0,T ;V ). (4.3)
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Proof. From Assumption (F) and using the Hölder inequality, it is easily seen

that

||f(·, x)||L2(0,T ;H) ≤ ||f(·, 0)||L2(0,T ;H) + ||f(·, x)− f(·, 0)||L2(0,T ;H)

≤
(∫ T

0

|
∫ t

0

k(t− s)g(s, 0)ds|2dt
)1/2

+

(∫ T

0

|
∫ t

0

k(t− s){g(s, x(s))− g(s, 0)}ds|2dt
)1/2

≤ L0

(∫ T

0

12ds

)1/2(∫ T

0

(k(t− s))2ds
)1/2

+ L1||x||L2(0,T ;V )

(∫ T

0

12ds

)1/2(∫ T

0

(k(t− s))2ds
)1/2

≤ L0||k||L2(0,T )

√
T + ||k||L2(0,T )

(∫ T

0

|L1‖|x(s)− 0)|| ds|2dt
)1/2

≤ L0||k||L2(0,T )

√
T + L1||k||L2(0,T )

√
T ||x||L2(0,T ;V ).

The proof of (4.3) is similar.

By virtue of Theorem 2.1 of [12], we have the following result on (4.1).

Proposition 4.1. Suppose that the Assumption (F) is satisfied.

1) For any (φ0, φ1) ∈ H × L2(−h, 0;V ) and u ∈ L2(0, T ;U), T > 0, the

solution x of (4.1) exists and is unique in L2(0, T ;V ) ∩ W 1,2(0, T ;V ∗), and

there exists a constant C3 depending on T such that

||x||L2(0,T ;V )∩W 1,2(0,T ;V ∗) ≤ C3(1 + |φ0|+ ||φ1||L2(−h,0;V ) + ||u||L2(0,T ;U)). (4.4)

2) For any (φ0, φ1) ∈ V ×L2(−h, 0;D(A0)) and u ∈ L2(0, T ;U), T > 0, the

solution x of (4.1) is unique in L2(0, T ;D(A0)) ∩W 1,2(0, T ;H).

16



3) The mapping V × L2(−h, 0;D(A0))× L2(0, T ;U) 3 (φ0, φ1, u) 7→ x ∈

L2(0, T ;D(A0)) ∩W 1,2(0, T ;H) is continuous.

Corollary 4.1. Assume that the embedding D(A0) ⊂ V is completely contin-

uous. Let Assumption (F) be satisfied and xu be the solution of equation (4.1)

associated with u ∈ L2(0, T ;U). Then the mapping u 7→ xu is completely con-

tinuous from L2(0, T ;U) to L2(0, T ;V ).

Proof. If u ∈ L2(0, T ;U), then in view of (4.4) in Proposition 4.1

||x||L2(0,T ;V )∩W 1,2(0,T ;V ∗) ≤ C3(1 + ||B|| ||u||L2(0,T ;U)). (4.5)

Since xu ∈ L2(0, T ;V ), from Lemma 4.1, we have f(·, xu) ∈ L2(0, T ;H). Con-

sequently

xu ∈ L2(0, T ;D(A0)) ∩W 1,2(0, T ;H).

Hence, with aid of (3.3) of Proposition 3.1, (4.2) and (4.5),

||xu||L2(0,T ;D(A0))∩W 1,2(0,T ;H) ≤ C1(||f(·, xu) +Bu||L2(0,T ;H))

≤ C1(L0||k||L2(0,T )

√
T + ||k||L2(0,T )

√
TL1||x||L2(0,T ;V ) + ||Bu||L2(0,T ;H))

≤ C1(L0||k||L2(0,T )

√
T + ||k||L2(0,T )

√
TL1C3(1 + ||B|| ||u||L2(0,T ;U))

+ ||Bu||L2(0,T ;H)).

Thus, if u is bounded in L2(0, T ;U), then so is xu in L2(0, T ;D(A0))∩W 1,2(0, T ;H).

Since D(A0) is compactly embedded in V by assumption, the embedding

L2(0, T ;D(A0)) ∩W 1,2(0, T ;H) ⊂ L2(0, T ;V )

is completely continuous in view of Theorem 2 of [1]. Therefore the mapping

u 7→ xu is completely continuous from L2(0, T ;U) to L2(0, T ;V ).
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5 Approximate controllability

Let x(T ; f, u) be a state value of the system (4.1) at time T corresponding to

the nonlinear term f and the control u. We define the reachable sets for the

system (2.12) as follows:

RT (f) = {x(T ; f, u) : u ∈ L2(0, T ;U)},

RT (0) = {x(T ; 0, u) : u ∈ L2(0, T ;U)}.

Definition 5.1. The system (4.1) is said to be approximately controllable in

the time interval [0, T ] if for every desired final state x1 ∈ H and ε > 0 there

exists a control function u ∈ L2(0, T ;U) such that the solution x(T ; f, u) of

(4.1) satisfies |x(T ; f, u) − x1| < ε, that is, if RT (f) = H where RT (f) is the

closure of RT (f) in H, then the system (4.1) is called approximately controllable

at time T .

Now, we consider the approximate controllability for the following semilinear

control system with initial data (φ0, φ1) = (0, 0):
d
dt
x(t) = A0x(t) + A1x(t− h) +

∫ 0

−h a(s)A2x(t+ s)ds+ f(t, x) + (Bu)(t),

x(0) = 0, x(s) = 0 − h ≤ s < 0.

(5.1)

Let U be a Hilbert space and the controller operator B be a bounded linear

operator from L2(0, T ;U) to L2(0, T ;H). Let W (·) be the fundamental solution

of the linear equation associated with (5.1) which is the operator-valued function
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satisfying
W (t) = S(t) +

∫ t
0
S(t− s){A1W (s− h) +

∫ 0

−h a(τ)A2W (s+ τ)dτ}ds, t > 0

W (0) = I, W (t) = 0 − h ≤ t < 0,

where S(·) is the semigroup generated by A0. Then

x(t; f, u) =

∫ t

0

W (t− s){f(s, x(·; g, u)) +Bu(s)}ds,

and in view of Proposition 4.1

||x(·; f, u)||L2(0,T ;V )∩W 1,2(0,T ;V ∗) ≤ C3(1 + ||B|| ||u||L2(0,T ;U)).

In order to obtain approximate controllability for the system (5.1), we need

to impose the following assumptions :

Assumption (A) The embedding D(A0) ⊂ V is completely continuous.

By using the Krasnosel’skii theorem(see [2]), we can define an operator F :

L2(0, T ;U)→ L2(0, T ;H) as

F (v) = −f(·, xv). (5.2)

Assumption (F1) F is b-quasi-homogeneous.

Theorem 5.1. Under Assumptions (A), (F) and (F1), if 1 > b, then we have

RT (0) ⊂ RT (f).

Therefore, if the linear system (4.1) with f ≡ 0 is approximately controllable,

then so is the nonlinear system (4.1).
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Proof. Thanks to Corollary 4.1, F defined by (5.2) is a completely continuous

mapping from L2(0, T ;U) to L2(0, T ;H). We shall show that F is strongly

continuous. Given a sequence {un}, un ∈ L2(0, T ;H), un ⇀ u, we claim that

F (un)→ F (u). By (4.3) and (4.4), we have

||F (un)− F (u)||L2(0,T ;H) ≤ L1||k||L2(0,T )

√
T ||un − u||L2(0,T ;V ).

and by Corollary 4.1, the mapping u 7→ xu is completely continuous from

L2(0, T ;U) to L2(0, T ;V ). Thus, F (un) ⇀ F (u). By virtue of the the compact-

ness of F , {F (un)} is sequencially compact, and so we can choose a subsequence

of {F (un)}, denoted again by {F (un)}, such that F (un) → w ∈ Y . Since ev-

ery subsequence of {F (un)} has the same limit point, we have F (un) → F (u).

Since 1 > b and the identity operator I on L2(0, T ;H) is an odd (1, 1, 1)-

homeomorphism, from Theorem 2.2, it follows that λI − F maps L2(0, T ;H)

onto itself for any λ 6= 0. Let

η =

∫ T

0

W (T − s)(Bv)(s)ds ∈ RT (0).

We are going to show that there exists w such that

η = x(T ; f, w) ∈ RT (f)
V
,

where RT (f)
V

is the closure of RT (f) in V , Here, we note that RT (f)
V
⊂

RT (f). We denote the range of the operator B by HB, its closure HB in

L2(0, T ;H). Let H
⊥
B be the orthogonal complement of HB in L2(0, T ;H). Let

X = L2(0, T ;H)/H
⊥
B be the quotient space and the norm of a coset ỹ = yB +

H
⊥
B ∈ X is defined of ||ỹ|| = ||yB + H

⊥
B|| = inf{|yB + g| : yB ∈ HB, g ∈ H

⊥
B}.
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We define by Q the isometric isomorphism from X onto HB, that is, Qỹ =

Q(yB + g : yB ∈ HB, g ∈ H⊥B) = yB. Let

F ỹ = F (Qỹ) +H
⊥
B

for ỹ ∈ X. Then F is also a completely continuous mapping from X to itself.

Set z = Bv. Then z ∈ HB and z̃ = z +H
⊥
B ∈ X. Hence, by Theorem 2.2 with

λ = 1, there exists w̃ ∈ X such that

z̃ = w̃ −Fw̃. (5.3)

Put wB = Qw̃ . Then we have that w − wB ∈ H
⊥
B. Hence,

z̃ = w − F (Qw̃) +H
⊥
B = wB − F (wB) +H

⊥
B. (5.4)

Thus, from (5.3) and (5.4) it follows that

η =

∫ T

0

W (T − s)(−F (wB)(s) + wB(s))ds

=

∫ T

0

W (T − s)(f(s, x̂wB
) + wB(s))ds.

Since wB ∈ HB, there exists a sequence {vn}, vn ∈ L2(0, T ;U) such that Bvn 7→

wB in L2(0, T ;H). Then by the second part of Proposition 4.1, we have that

x(·; f, vn) 7→ ywB
in L2(0, T ;D(A0)) ∩W 1,2(0, T ;H), and hence x(T ; f, vn) 7→

ywB
(T ) = η in V . Thus, we conclude that η ∈ RT (f).

Theorem 5.2. Let Assumptions (A), (F) and (F1) hold. If 1 > b(or 1 < b and

F (v) = 0 imply v = 0), then we have

RT (0) ⊂ RT (f).
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Proof. If 1 > b, it holds from Theorem 5.1. The case if 1 < b is obvious from

Theorem 2.3.

We need to impose following assumption:

Assumption (B). There exist positive constants β, γ such that

β‖u‖ ≤ |Bu| ≤ γ‖u‖, ∀u ∈ L2(0, T ;U).

Theorem 5.3. Under Assumptions (A), (F), (F1), and (B), if 1 > b then the

semilinear control system (4.1) is approximately controllable.

Proof. Since B is odd (γ, β, 1)- homeomorphism of L2(0, T ;U) onto L2(0, T ;H),

F : L2(0, T ;U)→ L2(0, T ;H) an odd strong continuous b-homogeneous opera-

tor. From Theorem 2.2, it follows that if 1 > b then λB − F maps L2(0, T ;U)

onto L2(0, T ;H) for any λ 6= 0. Let ξ ∈ D(A0). Then there exists a function

p ∈ C1(0, T ;H) such that

ξ =

∫ T

0

W (T − s)p(s)ds,

for instance, put p(s) = (ξ + sA0ξ)/T . Hence, there exists a function u ∈

L2(0, T ;U) such that

p = (λB − F )u,

that is,

ξ =

∫ T

0

W (T − s){f(s, x(s)) + (Bu)(s))ds.

Therefore, if 1 > b, then D(A0) ⊂ RT (f), which complete the proof.

Theorem 5.4. Let Assumptions (A), (B), (F) and (F1) hold. If F (v) = 0

imply v = 0 and 1 6= b, then the semilinear control system (4.1) is approximately

controllable.
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Proof. This theorem is obvious from Theorems 5.1 and 5.2.

Example 5.1. We consider the semilinear heat equation dealt with by [22] and

[33]. Let

H = L2(0, π), V = H1
0 (0, π), V ∗ = H−1(0, π),

a(u, v) =

∫ π

0

du(x)

dx

dv(x)

dx
dx

and

A = d2/dx2 with D(A) = {y ∈ H2(0, π) : y(0) = y(π) = 0}.

We consider the following retarded functional differential equation

d

dt
x(t) = Ax(t) + f(x(t)) +Bw(t), (*)

where

f(x) =
σx

1 + |x|
x3, σ > 0.

For x, y ∈ H, set max{|x(ξ)|, |x(ξ)|} for almost all ξ ∈ (0, π). Then we have

|f(x(ξ))− f(y(ξ))| ≤ 3σm3(1 +m)−1|x(ξ)− y(ξ)|

for almost all ξ ∈ (0, π). It is easily seen that Assumption (F) is satisfied

and f is 3-quasi-homogeneous. The eigenvalue and the eigenfunction of A are

λn = −n2 and φn(x) = sinnx, respectively. Let

U = {
∞∑
n=2

unφn :
∞∑
n=2

u2n <∞},

Bu = 2u2φ1 +
∞∑
n=2

unφn, for u =
∞∑
n=2

un ∈ U.
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Now we can define bounded linear operator B̂ from L2(0, T ;U) to L2(0, T ;H)

by (B̂u) = Bu(t), u ∈ L2(0, T ;U). It is easily known that the operator B̂ is

one to one and the range of B̂ is closed. It follows that the operator satisfies

Assumption (B). We can see many examples which satisfy Assumption (B) as

seen in [33, 34]. The solution of the following equation

d

dt
x(t) = Ax(t) +Bw(t)

with initial datum 0 is

x(t) =

∫ t

0

e(t−s)A0Bw(s)ds.

Let ξ ∈ D(A0) and

u(s) = B−1(ξ + sAξ)/T.

Then it follows that x(T ) = ξ, which says that the reachable set RT (0) for linear

system is a dense subspace. Moreover, from Theorem 5.4 with λ = 1, it follows

that the system of (*) is approximately controllable.
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