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1 Introduction

In this paper, we deal with the approximate controllability for the following
retarded functional differential control equation with the nonlinear integro-

diffrential type in the form

o(t) = Agx(t) + Ava(t — h) + [°, a(s)Agz(t + s)ds + f(t,z) + (Bu)(t),

z(0)=¢", xz(s)=¢'(s) —h<s<O.
(1.1)

t
fit.a) = [ (e~ s)glsa(s))ds
0
for a k belonging to LZ(O, T). Let V and H be complex Hilbert spaces forming

a Gelfand triple
Ve H=H <V*

by identifying the antidual of H with H. Here, the principal operator A is as-
sociated with a sesquilinear form defined on V' x V and satisfying Garding’s
inequality, and B is a bounded linear operator from another Hilbert space
L2(0,T;U)(T > 0) to L*(0,T;U). k belongs to L*(0,T) and ¢ is a nonlin-
ear mapping as detailed in Section 4.

The our purpose is to deal with the approximate controllability of semilinear
retarded system (1.1) which appears in a great many practical mathematical
models in the natural sciences, economics and engineering depends not only on
the present but on the past state. The controllability problem is a question
which is possible to steer a dynamic system from an initial state to an arbitrary

final state using the set of admissible controls. Approximate controllability for
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the systems in infinite dimensional spaces is well developed, we refer to [8, 26]
and references therein for the case of abstract linear control equations. In order
to obtain similar results on semilinear systems dominated by linear parts (in

case f = 0), many researchers have used the following sufficient conditions as

(1) the corresponding linear system (1.1) when f = 0 is approximately con-

trollable [22, 33, 34],

(2) S(t) is a compact operator or the embedding D(A) C V is compact
6, 14, 13, 24, 32],

(3) use a fixed point theorem combined with technique of operator transfor-

mations by configuring the resolvent as seen in [4].

Recently, the approximate controllability of fractional order semilinear delay
systems has been studied by authors [20, 27| as a continuous study. Similar
considerations of semilinear stochastic systems have been dealt with in many
references [2, 10, 18, 21, 19, 29].

In particular, with conditions the range condition of controller with a com-
pact semigroup, [32] established the approximate controllability for the equation

(1.1) assuming
. Gz
im sup =

ull 2z =00 L2013

(1.2)

is sufficiently small. Sukavanam and Tomar [28] studied the approximate con-
trollability for the general retarded initial value problem by assuming that the
Lipschitz constant of the nonlinear term is less than 1. Moreover, [15] dealt
with the approximate controllability for the system (1.1) even if v # 1 of (1.2)
by using so called Fredholm theory: (A — F')(u) = f is solvable in L*(0,T; H).
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In this paper, authors want to look at approaches from other perspectives.
Our used tool is the surjective theorems similar to the Fredholm alternative
for nonlinear operators under restrictive assumption, which is on the solution
of nonlinear operator equations \T'(x) — F(x) = y in dependence on the real
number A\, where 7" be odd (K, L, a)- homeomorphism, that is, there exist real

numbers K > 0, L > 0, and « > 0 such that
Lllzl|% < IT()[ly < Klf=]l%,

and F': X — Y an odd strong continuous and b-quasi-homogeneous operator.
Here, F' is said to be b-quasi-homogeneous if there exist nonlinear operators R
and Fj defined on X such that Fj is b-homogeneous, strong continuous satisfying

F(u) = R(u)Fy(u) for every u € H satisfying

lim ||Rully =1.

|[ull x —o0
Based on this surjective results, we can obtain the approximate controllability
for (1.1) without restrictions such as (1)-(3) mentioned above.

The structure of this paper is as follows. In Section 2, we deal with some
surjectivity results similar to Fredholm alternative, which can be used to prove
the main results. Section 3 is devoted to constructing principal operators
A;(1 = 0,1,2) associated with a sesquilinear form defined on V' x V' and satisfy-
ing Garding’s inequality, and gives the basic properties of the analytic semigroup
generated by the principal operator Ay. Section 4 gives a variation of constant
formula of L2-regularity and properties of the strict solutions of (1.1)(see [7] in
the linear case). The assumption required here is that the embedding D(A) C V/

is completely continuous. Then by virtue of [1], we can show that the solution
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mapping of a control space to the terminal state space is completely contin-
uous by means of regularities results, so is the nonlinear operator. Moreover,
the sufficient conditions on the controller and nonlinear terms for approximate
controllability for (1.1) can be obtained. Finally, we give an example of a par-
tial functional differential control equation as an application of the preceding

theory.

2  Surjectivity results

Let us introduce the theory of the degree for completely continuous pertur-
bations of the identity operator, which is the infinite dimensional version of
Borsuk’s theorem. Let 0 € D be a bounded open set in a Banach space X, D
its closure and 0D its boundary. The number d[/ —T'; D, 0] is the degree of the

mapping [ — T" with respect to the set D and the point 0 (see [11] or [17]).

Theorem 2.1. (Borsuk’s theorem) Let D be a bounded open symmetric set in a
Banach space X, 0 € D. Suppose that T : D — X be odd completely continuous
operator satisfying T(x) # x for x € OD. Then d[I — T; D,0] is odd integer.

That is, there exists at least one point xy € D such that (I —T)(zo) = 0.

Definition 2.1. Let T' be a mapping defined by on a Banach space X with
value in a real Banach space Y. The mapping T is said to be a (K, L,«)-

homeomorphism of X onto'Y if

(i) T is a homeomorphism of X onto Y;

4



(i1) there exist real numbers K >0, L > 0, and o > 0 such that

Lilz[|% < |1T(2)lly < Kl|2||%, VzeX.

Lemma 2.1. Let T be an odd (K, L,«)-homeomorphism of X onto Y and

F: X =Y a continuous operator satisfying

F
iy @)l

lellx—oo 7%

Then if |\ ¢ [, X] U {0}, then

=N e R".

lim |[AT(z) — F(z)||ly = oo

||oc]| x =00
Proof. Suppose that there exist a constant M > 0 and a sequence {z,} C X
such that
INT (@) — A@lly < M

as x,, — oo. From this it follows that

AT (x,)  F(xy,)

= — —2.0
Hence, we have
AT
tim sup T @Y _
nsoo|lall%

Since T' is an odd (K, L, a)-homeomorphism of X onto Y, |\|[K > N > |A|L.

It is a contradiction with || ¢ [&, 7F]. O

Proposition 2.1. Let T be an odd (K, L, «)-homeomorphism of X ontoY and

F: X =Y an odd completely continuous operator. Suppose that for A # 0,

lim |[|AT(x) — F(2)||ly = oo. (2.1)

||zl x =00

Then XT'— F maps X onto Y.



Proof. We follow the proof Theorem 1.1 in Chapter II of [11]. Suppose that
there exists y € Y such that AT'(z) = y. Then from (2.1) it follows that

FT7!1:Y — Y is an odd completely continuous operator and

lim |y = FT~($)lly = oc.

lylly —o0

Let yo € Y. There exists r > 0 such that
-1/Y
ly = FT=() My > llgolly > 0

for each y € Y satisfying ||ly|ly = r. Let Y, ={y € Y : ||y||ly < r} be a open
ball. Then by view of Theorem 2.1, we have d[y — FT7'(%);Y;,0] is an odd

number. For each y € Y satisfying ||y||y = r and ¢ € [0, 1], there is
~1/Y By Y
ly = FT7(3) = twolly 2 lly = FT(D)lly = [lyolly >0
and hence, by the homotopic property of degree, we have

dly = FT'(3): Yrugo] = dly — FT™(3);Y,,0] # 0.

Hence, by the existence theory of the Leray-Schauder degree, there exists a

y1 € Y, such that

Y1 — FT*l(%) = Yo-

We can choose z¢ € X satisfying AT (xg) = y1, and so, AT'(xg) — F(z0) = yo.

Thus, it implies that AT'— F' is a mapping of X onto Y. O]

Combining Lemma 2.1. and Proposition 2.1, we have the following results.



Corollary 2.1. Let T be an odd (K, L, «)-homeomorphism of X onto Y and

F: X =Y an odd completely continuous operator satisfying

F
i sy LEGly

lellx—oe 7%

Then if |\ ¢ [, %] U {0} then AT — F maps X onto Y. Therefore, if N =0,

=N e R".

then for all X # 0 the operator X' — F maps X onto Y.

Let X be a Banach space with the norm || - || x. Denote by X* the adjoint
space of all bounded linear functionals on X. The pairing between z* € X* and
x € X is denoted by (z*,z). Unless otherwise stated, we use symbols 7 — ”
and 7 — 7 to denote the strong and weak convergence, respectively, i.e., the
sequence {x,}, z,, € X converges strongly (weakly) to the point zq € X, denote

by x, — zo (z, — x0), if
lim ||z, —zo||x =0 (lim (z*, z,) = (2", 29) for each zx € X™).
n—oo n— o0

Let F' be mapping (nonlinear, in general) with the domain M C X and the
range in the Banach space Y. F' is said to strongly (weakly) continuous on M
if x,, = xo (x, = o) in X implies F(x,) = F(zo) in Y for z,, xy € M, and
F' is said to be completely continuous on M if F' is continuous on M and for

each bounded subset D C M, F(D) is compact subset in Y.

Definition 2.2. Let F' be a mapping defined by on a Banach space X with value

i a real Banach space Y and b > 0 a real number.
(a) F is said to be b-homogeneous if
t°F(u) = F(tu)
holds for each t > 0 and all u € X.
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(b) F is said to be b-quasi-homogeneous if there exist nonlinear operators R
and Fy defined on X with value in'Y such that Fy is b-homogeneous and
F(u) = R(u)Fo(u) for every u € X satisfying

lim ||Rully € R*.

[[ul|x —o0

Example 2.1. Set X =Y =R and

F(u) = [ul u,

1+ |y

|ul
1+|u|

Then F is said to be 3-quasi-homogeneous considering as R(u) =

Remark 2.1. In [11], the relationship between F and Fy is defined in other

words as F is said to be b-strongly quasi-homogeneous with respect to Fy, if
tn >0 — 0,1y — ug = t2F(Un/tn) — Folug) €Y.

If F' is the strong continuous and b-quasi-homogeneous, then F is a b-strongly

quasi-homogeneous with respect to Fy. So our basic results follow theorems of
[11].

Theorem 2.2. Let X be a reflexive space, and let T' be odd (K, L, a)- home-
omorphism of X onto Y, F : X — Y an odd strong continuous and b-quasi-

homogeneous operator. If a > b, then XT' — F maps X onto'Y for any A\ # 0.

Proof. Since X is a reflexive space, we know that every strong continuous op-
erator F': X — Y is also completely continuous. Hence according to Corollary

2.1 it is sufficient to prove that

L IF@)y

«
w=oo|lzflx

=0.

8



Since F' is b-quasi-homogeneous, there exist R and Fj be a mappings defined by
on a Banach space X with value in Y and a real Banach space Y, respectively,

such that F' = RFj satisfying

lim ||R(u)|ly = co

flull x —o0
for some a constant c¢g > 0 holds and Fj is b-homogeneous. Suppose that there

exist € > 0 and a sequence {z,} , x, € X , ||z,||x — oo such that

Tn F i
T Bl ()
P E L

and

for any positive integer n. Then

F(xn) - F(llzn]lxvn) = R(||znllxvn) Fo(vn) — coFp(vo).

lzallle  lzalix
Since a > b,
Jzallc 1, o
[zl
Thus
0 << IF@lly _ lzall” 1F(a)lly
Tl el ’
which is a contradiction. O]

Theorem 2.3. Let X be a Hilbert space, and let T be odd (K, L,«)- homeo-
morphism of X onto Y, F : X — Y an odd strongly continuous and b-quasi-
homogeneous operator. If Fo(v) =0 imply v =0, and o < b, then \T — F maps
X ontoY for any X # 0.



Proof. According to Proposition 2.1, we shall prove
lim | A\T'(z) — F(x)|ly = oo.
T—r 00

Since F' is b-quasi-homogeneous, there exist R and Fj be mappings defined by
on a Banach space X with value in Y and a real Banach space Y, respectively,

such that F' = RFj satisfying

lim ”R(U)Hy = C
[lull x —o0

for some a constant ¢y > 0 holds and Fj is b-homogeneous. Suppose that there
exist a constant M > 0 and a sequence {z,}, z, € X, ||z,|y — oo such that

In B
— =1 U,
Rl -

and
IAT(@a) = Flea)lly < M
for any positive integer n. Here, we note that v, — vy since X is a Hilbert

space and [|vg||x = 1. Then

AT([znllx on) — Fllznllx vn)

— 0
b b )
] 2]
and so
N (||zn |l s vn
Unalyv) s
2]
But since 7T is (K, L, a)- homeomorphism, we have
ol 5 DTGl ol
[EA| 2] e
Thus, noting that o < b, it holds
N (z,
Tl
2|

10



and Fy(vg) = 0. From our assumption vy = 0 and this is a contradiction with

lvoll x = 1. O

3 Preliminaries

The notations ||, ||-|| and ||-||« denote the norms of H, V and V*, respectively

as usual. Therefore, for the brevity, we may regard that
ull« < fu <|lull, VuelV.

Let a(u,v) be a bounded sesquilinear form defined in V' x V satisfying Garding’s
inequality

Re a(u,u) > collu||®* — ci|ul®, e >0, ¢ >0.
Let A be the operator associated with this sesquilinear form:
(Au,v) = —a(u,v), u, veV.

Then A is a bounded linear operator from V' to VV*. The realization of A in H

which is the restriction of A to
DA)={ueV:Aue H}

is also denoted by A. Moreover, for each 7' > 0, by using interpolation theory,

we have

L*(0,T;V)nW(0,T;V*) c C([0,T]; H).

From the following inequalities
collul* < Rea(u,u) + ci|ul® < [Au] [ul + ei|ul® < (|Au| + cful)|ul,

11



it follows that there exists a constant Cy > 0 such that

1/2 1/2

[lull < Collull pealul

Therefore, in terms of the intermediate theory, we can see that
(D(A>:H)1/2,2 =V, and (V, V*)1/2,2 = H,

where (V,V*); /9,2 denotes the real interpolation space between V' and V*(Section
1.3.3 of [3], [31]). For the sake of simplicity, we assume that ¢; = 0 and hence
the closed half plane {\ : ReA > 0} is contained in the resolvent set of A. It
is known that A generates an analytic semigroup S(¢) in both H and V*. As

seen in Lemma 3.6.2 of [30], there exists a constant M > 0 such that
[S(t)z| < Mlz| and [|S(E)zl]. < M||z][., (3.1)
moreover, for all £ > 0 and every z € H or V*:
|S(t)e| < ME2 |l 1S < Mt
We consider the following initial value problem

La(t) = Aox(t) + Ara(t — h) + [°, a(s) Az (t + s)ds + h(t), (3.2)

z(0)=¢°, x(s)=¢'(s) —h<s<O.
The operators A; and A, are bounded linear operators from V' to V* such that
their restrictions to D(Ay) are bounded linear operators from D(Ag) equipped
with the graph norm of Ay to H. The function a(-) is assumed to be real valued

and Holder continuous in the interval [—h, 0].

By virtue of Theorem 3.3 of [7](or Theorem 3.1 of [14]), we have the following

results on the corresponding linear equation (3.2).

12



Proposition 3.1. Suppose that the assumptions for the principal operator Ay

stated above are satisfied. Then the following properties hold:

1) Let V = (D(Ay), H)122. For (¢°,¢') € V x L*(—=h,0; D(Ap)) and h €

L*(0,T; H), T > 0, there exists a unique solution x of (3.2) belonging to
L*(0,T; D(A)) N W0, T; H) C C([0,T}; V)
and satisfying
1212205040 20,m5m) < Crllle”l+ 10 |2 —n0pea0)y + Rl L2, (3.3)

where C is a constant depending on T

2) For (¢°, ¢*) € H x L*(—h,0;V) and h € L*(0,T;V*), T > 0, there exists

a unique solution x of (3.2) belonging to
L*(0,T; V)N W'2(0,T;V*) c C([0,T]; H)
and satisfying
1zl 20,0092y < CLl0° + 0|2 cnowy + [1Pll20 ), (3:4)
where C is a constant depending on T
Lemma 3.1. Suppose that k € L*(0,T; H) and z(t) = fg S(t — s)k(s)ds for
0 <t <T. Then there exists a constant Cy such that

2| 20,7,y < CoT'[|E| 20,150 (3.5)

and

12| 20y < CoV'T K| r20,7m1)- (3.6)

13



Proof. By a consequence of (3.3), it is immediate that

7| 220,1:0(40)) < Cillkl|L20,1:m)- (3.7)

Since

||17||2L2(0,TH = fo |fo t_ 3 )d3|2dt < Mfo fo |k |d8)2dt

<M [t [ k(s)[Pdsdt < MT: [T |k(s)|%ds,
where M is the constant of (3.1), it follows that
||| L2 0,1,1) < T\/M_/QHkHL?(O,T;H)- (3.8)
From (3.7), and (3.8) it holds that
|| 2201wy < Con/CrT(M/2)M| K| 120 7.1
So, if we take a constant Cy > 0 such that
— max{y/MJ2, Gy /(M /D).

Thus (3.5) and (3.6) are satisfied. O

4 Semilinear equation systems
We consider the following retarded semilinear equation systems

%x( ) = Aoz(t) + Ayx(t — h —l—f s)Asx(t + s)ds + f(t,x) + (Bu)(t),

z(0)=¢", x(s) =o' (s) —h<s<O.
(4.1)

14



Let U be a Hilbert space and the controller operator B be a bounded linear
operator from L2(0,T;U) to L?(0,T; H). Let g : R* x V — H be a nonlinear

mapping satisfying the following:

Assumption (F)
(i) For any x € V, the mapping g(-, x) is strongly measurable;

(ii) There exist positive constants Lo, Ly such that

(a) x> g(t,x)is odd mapping (g9(-, —z) = —g(-, x));

(b) forallteR" z,2€V,

l9(t, 2) = g(t,2)| < La||z — 2],

For z € L*(0,T;V), we set
t
ity = (e =s)gfs.a(s))ds
0
where k belongs to L*(0,7).

Lemma 4.1. Let Assumption (F) be satisfied. Assume that x € L*(0,T;V) for
any T > 0. Then f(-,z) € L*(0,T; H) and

1)l 2 < Lollkl 20 VT + Lallkl 2 VT2l 2ory). (4:2)
Moreover if x, & € L*(0,T;V), then

NFCoz) = FCo@)2omm < Lillk| 20 VT2 — &l 2010 (4.3)

15



Proof. From Assumption (F) and using the Holder inequality, it is easily seen

that
G2z < NGO zommy + [1F () — £ 0)||z2o,7m)
T t 1/2
< (/ |/ kz(t—s)g(s,O)ds|2dt>
0 0
T t 1/2
# (1] b= 9 ats o) = g(s. 00 astar
0 0
T 1/2 T 1/2
< Ly (/ 12ds) (/ (k(t — s))st)
0 0
T 1/2 Vi 1/2
+ L1||xI'L2(0,T;V) (/ 12d8) (/ (l{/’(t = S))2d3>
0 0
T 1/2
< Lo|lkl| 20y VT A+ |kl 20,y (/ | L1 |z(s) — 0)]| d8|2dt>
0
< Lollkllz2 0y VT + Lallkl| 2 0y VT |2 220,71 -
The proof of (4.3) is similar. O

By virtue of Theorem 2.1 of [12], we have the following result on (4.1).

Proposition 4.1. Suppose that the Assumption (F') is satisfied.

1) For any (¢°,¢') € H x L*(—=h,0;V) and u € L*(0,T;U), T > 0, the
solution x of (4.1) exists and is unique in L*(0,T;V) N WY0,T;V*), and
there exists a constant C3 depending on T such that

]| L20mv) w20, < Ca(L 4+ [0°] + |16 2—noovy + |ull2ran)- (4.4)

2) For any (¢°,¢') € V- x L*(—h,0; D(Ap)) and uw € L*(0,T;U), T > 0, the
solution x of (4.1) is unique in L*(0,T; D(Ao)) NW12(0,T; H).

16



3) The mapping V x L*(—=h,0; D(Ay)) x L*(0,T;U) > (¢°,¢',u) — =x€
L*(0,T; D(Ag)) NWH2(0,T; H) is continuous.

Corollary 4.1. Assume that the embedding D(Ag) C V is completely contin-
uous. Let Assumption (F) be satisfied and x, be the solution of equation (4.1)
associated with uw € L*(0,T;U). Then the mapping u — x, s completely con-

tinuous from L*(0,T;U) to L*(0,T;V).
Proof. If u € L*(0,T;U), then in view of (4.4) in Proposition 4.1

]| 20,y w20y < Cs(1+ || B]]H|ul| p20,007)- (4.5)

Since x, € L*(0,T;V), from Lemma 4.1, we have f(-,z,) € L*(0,T; H). Con-
sequently
z, € L*(0,T; D(Ag)) NWH2(0,T; H).

Hence, with aid of (3.3) of Proposition 3.1, (4.2) and (4.5),

7wl 22 0,7: D0y 20y < Cr(If (4 2u) + Bullz2,r;m))

< 01(L0HkHL2(0,T)\/T+ HkHLQ(O,T)\/TL1Hx|’LQ(O,T;V) + [|Bul|2(0,7;m))

< Cy(Lo| |kl 2y VT + ||kl 200, VT L Cs (1 + || B[] 20.70))

+ HBUHL2(0,T;H))-
Thus, if u is bounded in L?(0, T’; U), then so is x,, in L*(0, T; D(A))NW2(0,T; H).
Since D(Ap) is compactly embedded in V' by assumption, the embedding
L*(0,T; D(A)) NWH(0,T; H) € L*(0,T; V)

is completely continuous in view of Theorem 2 of [1]. Therefore the mapping
u +— x, is completely continuous from L?(0,T;U) to L*(0,T;V). m

17



5 Approximate controllability

Let z(T; f,u) be a state value of the system (4.1) at time T corresponding to
the nonlinear term f and the control u. We define the reachable sets for the

system (2.12) as follows:

Ry (f) =A{«(T; f,u) - uw e L*(0,T;U)},

Rp(0) = {x(T;0,u) : u € L*(0,T;U)}.

Definition 5.1. The system (4.1) is said to be approzimately controllable in
the time interval [0,T) if for every desired final state x1 € H and € > 0 there
exists a control function u € L?(0,T;U) such that the solution z(T; f,u) of
(4.1) satisfies |z(T; f,u) — 21| < €, that is, if Ry(f) = H where Ry(f) is the
closure of Ry(f) in H, then the system (4.1) is called approzimately controllable

at time T'.

Now, we consider the approximate controllability for the following semilinear

control system with initial data (¢°, ¢') = (0,0):

%x( ) = Aoz(t) + Arx(t — h +f s)Asx(t + s)ds + f(t,x) + (Bu)(t),

z(0)=0, x(s)=0 —h<s<0.
(5.1)
Let U be a Hilbert space and the controller operator B be a bounded linear
operator from L?(0,T;U) to L*(0,T; H). Let W(-) be the fundamental solution

of the linear equation associated with (5.1) which is the operator-valued function
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satisfying
Wit —i—fo (t—s){AW —i—f W(s+7)dr}ds, t>0
wW)=1, W({) =0 —-h<t<O,
where S(+) is the semigroup generated by Ag. Then
t
st fou) = [ W= 5){f(s.a59,0)) + Buls)}ds,
0
and in view of Proposition 4.1
|z (5 f, w)llz2o w2 mve) < Cs(1+ B[ [ul] 2 0.10))-

In order to obtain approximate controllability for the system (5.1), we need
to impose the following assumptions :

Assumption (A) The embedding D(Ag) C V is completely continuous.

By using the Krasnosel’skii theorem(see [2]), we can define an operator F :

L*(0,T;U) — L*(0,T; H) as
F(U) = _f('vxv)' (52)

Assumption (F1) F is b-quasi-homogeneous.

Theorem 5.1. Under Assumptions (A), (F) and (F1), if 1 > b, then we have

RT(O) C RT(f)

Therefore, if the linear system (4.1) with f = 0 is approzimately controllable,

then so is the nonlinear system (4.1).
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Proof. Thanks to Corollary 4.1, F' defined by (5.2) is a completely continuous
mapping from L*(0,7;U) to L*(0,T; H). We shall show that F is strongly
continuous. Given a sequence {u,}, u, € L*(0,T; H), u, — u, we claim that

F(u,) — F(u). By (4.3) and (4.4), we have
[1F (un) = F(u)ll 200 < Lallkl] 200 VTl = ul| 20,750

and by Corollary 4.1, the mapping v + =z, is completely continuous from
L*(0,T;U) to L*(0,T; V). Thus, F(u,) — F(u). By virtue of the the compact-
ness of F', {F(uy)} is sequencially compact, and so we can choose a subsequence
of {F(uy)}, denoted again by {F(u,)}, such that F(u,) — w € Y. Since ev-
ery subsequence of {F(u,)} has the same limit point, we have F(u,) — F(u).
Since 1 > b and the identity operator [ on L*(0,T; H) is an odd (1,1,1)-
homeomorphism, from Theorem 2.2, it follows that \I — F maps L*(0,T; H)

onto itself for any A # 0. Let
wr
S / WAT — 5)(Bv)(8)ds € Br(0).
0

We are going to show that there exists w such that

n=(T; f,w) € Re(f)

where RT(f)V is the closure of Rp(f) in V, Here, we note that RT(f)V C

Rr(f). We denote the range of the operator B by Hp, its closure Hp in

L2(0,T; H). Let H; be the orthogonal complement of H in L2(0, T; H). Let
X = L*0,T; H)/ﬁ; be the quotient space and the norm of a coset § = yp +

—1 : _ =L, . = —1
Hy € X is defined of ||g|| = |lyg + Hp|| = inf{|lys +¢| : yp € Hp, g € Hy}.
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We define by @ the isometric isomorphism from X onto Hp, that is, Qy =

- =L
Qus+g:ys€ Hp, g€ Hp)=1ygp. Let
= F(Qy)+ H

for y € X. Then F is also a completely continuous mapping from X to itself.
Set z = Bv. Then z € Hp and % = z +ﬁ; € X. Hence, by Theorem 2.2 with

A =1, there exists w € X such that
A EF (5.3)
Put wg = Qw . Then we have that w — wg € F; Hence,
- y '
Z=w— E(Qw)+ Hz =wp — F(wp) + Hg. (5.4)
Thus, from (5.3) and (5.4) it follows that
77—/ W(T — s)(—F(wg)(s) + wp(s))ds
™ / W(T — s)(f(s,Zwy) +wp(s))ds.
0

Since wp € H p, there exists a sequence {v,}, v, € L*(0,T;U) such that Buv, +
wp in L*(0,T; H). Then by the second part of Proposition 4.1, we have that
z(+ f,un) = Yuy in L2(0,T; D(Ag)) N W2(0,T; H), and hence z(T; f,v,) +

Yuwy (T) =n in V. Thus, we conclude that n € Ry(f).
O

Theorem 5.2. Let Assumptions (A), (F) and (F1) hold. If1 > b(or 1 < b and

F(v) =0 imply v =0), then we have

RT(O) C RT(f)
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Proof. If 1 > b, it holds from Theorem 5.1. The case if 1 < b is obvious from
Theorem 2.3. N
We need to impose following assumption:

Assumption (B). There exist positive constants /3, 7 such that
Bllull < [Bul <llul, Vu € L0, T;0).

Theorem 5.3. Under Assumptions (A), (F), (F1), and (B), if 1 > b then the
semilinear control system (4.1) is approzimately controllable.

Proof. Since B is odd (v, 3, 1)- homeomorphism of L?(0,T;U) onto L*(0,T; H),
F:L*0,T;U) — L*(0,T; H) an odd strong continuous b-homogeneous opera-
tor. From Theorem 2.2, it follows that if 1 > b then A\B — F maps L*(0,T;U)
onto L*(0,T; H) for any A # 0. Let £ € D(Ap). Then there exists a function
p € C1(0,T; H) such that

&= / W(T — s)p(s)ds,

for instance, put p(s) = (£ + sA¢&)/T. Hence, there exists a function u €
L*(0,T;U) such that

that is,
T
E= [ W= 9){f(s.a(9) + (Bu)(s)ds.
0
Therefore, if 1 > b, then D(Ay) C Rr(f), which complete the proof. ]

Theorem 5.4. Let Assumptions (A), (B), (F) and (F1) hold. If F(v) = 0
implyv =0 and 1 # b, then the semilinear control system (4.1) is approximately

controllable.
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Proof. This theorem is obvious from Theorems 5.1 and 5.2. O

Example 5.1. We consider the semilinear heat equation dealt with by [22] and

[33]. Let
H=L*0,7), V=H;0,m), V*=H0,7),
™ du(z) dv(z)
= d
a(u,v) /0 T g 4%
and

A=d?/dz® with D(A) = {y € H*(0,n):y(0)=y(r) = 0}.

We consider the following retarded functional differential equation

%x(t) = Ax(t) + f(2(®)) + Bu(t), ()
where
f(z) = T |x|x3, o> 0.

For x, y € H, set max{|x(§)|,|x(§)|} for almost all & € (0, 7). Then we have

[f(2(€)) = f(y(&))] < 3om®(L+m)~Ha(€) — y(&)]

for almost all & € (0,7m). It is easily seen that Assumption (F) is satisfied
and f 1s 3-quasi-homogeneous. The eigenvalue and the eigenfunction of A are

A\, = —n? and ¢,(x) = sinnz, respectively. Let

U= {iunaﬁn : iui < 00},
n=2 n=2

Bu = 2us¢1 + Zunqﬁn, for u= Zun eU.
n=2 n=2
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Now we can define bounded linear operator B from L0, T;U) to L*(0,T; H)
by (Bu) = Bu(t), u € L*(0,T;U). It is easily known that the operator B is
one to one and the range of B is closed. It follows that the operator satisfies
Assumption (B). We can see many examples which satisfy Assumption (B) as

seen in [33, 34]. The solution of the following equation

d
%x(t) = Ax(t) + Bw(t)

with initial datum 0 s

Let € € D(Ag) and

u(s) = B~ (€ + sAE)/T.

Then it follows that (T') = &, which says that the reachable set Ry(0) for linear
system is a dense subspace. Moreover, from Theorem §.4 with A = 1, it follows

that the system of (*) is approzimately controllable.
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