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1 Introduction

Let C be a nonempty closed convex subset of a real Hilbert space H . Let

T : C → C be a mapping. We use Fix(T ) to denote the set of fixed points of

T ; that is,

Fix(T ) = {x ∈ C : Tx = x}.

Recall that T : C → C is said to be a strict quasi-pseudo-contractive [1] if

Fix(T ) 6= ∅ and there exists a constant 0 ≤ κ < 1 such that

‖Tx− p‖2 ≤ ‖x− p‖2 + κ‖x− Tx‖2 (1.1)

for all x ∈ C and p ∈ Fix(T ). For such a case, T is said to be a κ-strict quasi-

pseudo-contraction. A 0-strict quasi-pseudo-contraction T is quasi-nonexpansive;

that is, T is quasi-nonexpansive if

‖Tx− p‖ ≤ ‖x− p‖

for all x ∈ C and p ∈ Fix(T ).

Recall also that a mapping T : C → C is said to be asymptotically strict

quasi-pseudo-contractive [18] if Fix(T ) 6= ∅ and there exist a constant κ ∈ [0, 1)

and a sequence {γn} of nonnegative real numbers with limn→∞ γn = 0 such that

‖T nx− p‖2 ≤ (1 + γn)‖x− p‖2 + κ‖x− T nx‖2 (1.2)

for all x ∈ C , p ∈ Fix(T ) and n ≥ 1; see also [7] or [16]. When (1.2) holds, T

is afterward said to be an asymptotically κ-strict quasi-pseudo-contraction (with

respect to the sequence {γn} in case a distinction is needed). Note that if κ = 0,

then T is asymptotically quasi-nonexpansive [4], that is,

‖T nx− p‖ ≤ kn‖x− p‖
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for all x ∈ C , p ∈ F (T ) and n ≥ 1, where kn :=
√

1 + γn → 1. It is also

known [17] that the class of κ-strict quasi-pseudo-contractions and the class of

asymptotically κ-strict quasi-pseudo-contractions are independent.

Iterative methods are often used to solve the fixed point equation Tx = x .

The most well-known method is perhaps the Picard successive iteration method

when T is a contraction. Picard’s method generates a sequence {xn} successively

as xn = Txn−1 for n ≥ 2 with x1 := x arbitrary, and this sequence converges

in norm to the unique fixed point of T . However, if T is not a contraction (for

instance, if T is nonexpansive), then Picard’s successive iteration fails, in general,

to converge. Instead, Mann’s iteration method [11] prevails, which, an averaged

process in nature, generates a sequence {xn} recursively by

xn+1 = αnxn + (1− αn)Txn, n ≥ 0, (1.3)

where the initial guess x0 ∈ C is arbitrarily chosen and the sequence {αn}∞n=0

lies in the interval [0, 1].

It is known that the Mann iteration method (1.3) is in general not strongly

convergent [3] for either nonexpansive mappings or strict pseudo-contractions. In

2003, a method (called hybrid method) to modify the Mann iteration method

(1.3) so that strong convergence is guaranteed has been proposed by Nakajo and

Takahashi [15] for a single nonexpansive mapping T with Fix(T ) 6= ∅ in a Hilbert

space H : 

x0 ∈ C chosen arbitrarily,

yn = αnxn + (1− αn)Txn,

Cn = {z ∈ C : ‖yn − z‖ ≤ ‖xn − z‖},

Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},

xn+1 = PCn∩Qnx0, n ≥ 0,

(1.4)
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where PK denotes the metric projection from H onto a nonempty closed con-

vex subset K of H . They proved that if the sequence {αn}∞n=0 is bounded

above from one, then the sequence {xn} generated by (1.4) converges strongly

to PFix(T )x0 . This result has been extended to the class of asymptotically non-

expansive mappings by Kim and Xu [6], and subsequently to the one of κ-strict

pseudo-contractions by Marino and Xu [13] as follows.

Theorem MX (see Theorem 4.1 of [13]) Let C be a closed convex subset of

a Hilbert space H . Let T : C → C be a κ-strict pseudo-contraction for some

0 ≤ κ < 1 and assume that the fixed point set Fix(T ) of T is nonempty. Let

{xn} be the sequence generated by the following hybrid algorithm:

x0 ∈ C chosen arbitrarily,

yn = αnxn + (1− αn)Txn,

Cn = {z ∈ C : ‖yn − z‖2 ≤ ‖xn − z‖2 + (1− αn)(κ− αn)‖xn − Txn‖2},

Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},

xn+1 = PCn∩Qnx0, n ≥ 0.

(1.5)

Assume that the control sequence {αn}∞n=0 is chosen so that αn < 1 for all n ≥ 0.

Then {xn} converges strongly to PFix(T )x0 .

Quite recently, Kim and Xu [7] gave an analogue of Theorem MX for the class

of asymptotically κ-strict pseudo-contractions.

Theorem KX (see Theorem 4.1 of [7]) Let C be a closed convex subset of

a Hilbert space H and let T : C → C be an asymptotically κ-strict pseudo-

contraction for some 0 ≤ κ < 1. Assume that the fixed point set Fix(T ) of T

is nonempty and bounded. Let {xn} be the sequence generated by the following

3



hybrid algorithm:

x0 ∈ C chosen arbitrarily,

yn = αnxn + (1− αn)T nxn,

Cn = {z ∈ C : ‖yn − z‖2 ≤ ‖xn − z‖2 + (1− αn)(κ− αn)

‖xn − T nxn‖2 + θn},

Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},

xn+1 = PCn∩Qnx0, n ≥ 0

(1.6)

where

θn = 42
n(1− αn)γn → 0 as n →∞, 4n = sup{‖xn − z‖2 : z ∈ Fix(T )} < ∞.

Assume that the control sequence {αn}∞n=0 is chosen so that lim supn→∞ αn < 1.

Then {xn} converges strongly to PFix(T )x0 .

From now on, motivated by definition of (1.2), we say that a family S = {Sn : C

→ C, n ≥ 0} of self-mappings of C is asymptotically κ-strict quasi-pseudo-

contractive on C if F := ∩∞n=1Fix(Sn) 6= ∅ and there exist a constant κ ∈ [0, 1)

and a sequence {γn}∞n=0 of nonnegative real numbers with limn→∞ γn = 0 such

that

‖Snx− p‖2 ≤ (1 + γn)‖x− p‖2 + κ‖x− Snx‖2 (1.7)

for all x ∈ C , p ∈ F and all integers n ≥ 0. When (1.7) holds, S is of-

ten said to be an asymptotically κ-strict quasi-pseudo-contractive family. Es-

pecially, when κ = 0 in (1.7), the family S is said to be asymptotically quasi-

nonexpansive. Notice also that the asymptotically strict quasi-pseudo-contractive

family S = {Sn : C → C, n ≥ 0} obviously includes the class of strict

quasi-pseudo-contractions and the class of asymptotically strict quasi-pseudo-

contractions, simply by taking Sn := T (or T n ), n ≥ 0, for a strict quasi-pseudo-
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contraction (or asymptotically strict quasi-pseudo-contraction) T : C → C , re-

spectively.

In this thesis, we first propose the following hybrid iteration method

x0 ∈ C chosen arbitrarily,

yn = βnxn + (1− βn)Snxn,

zn = αnyn + (1− αn)Snyn,

Cn = {p ∈ C : ‖zn − p‖2 ≤ ‖xn − p‖2 + (1− βn)θn + (1− αn)

[θn(1 + (1− βn)γn) + (κ− αn)‖yn − Snyn‖2]},

Qn = {p ∈ C : 〈xn − p, x0 − xn〉 ≥ 0},

xn+1 = PCn∩Qnx0, n ≥ 0,

(1.8)

where

θn = γn · sup{‖xn − p‖2 : p ∈ F := ∩∞n=0Fix(Sn)},

and the sequences {αn}∞n=0 and {βn}∞n=0 lie in the interval [0, 1]. We next study

strong convergence of the hybrid algorithm (1.8) for such an asymptotically strict

pseudo-contractive family S = {Sn : C → C, n ≥ 0} .

2 Preliminaries

Let H be a real Hilbert space with the duality product 〈·, ·〉 . When {xn} is a

sequence in H , we denote the strong convergence of {xn} to x ∈ H by xn → x

and the weak convergence by xn ⇀ x . We also denote the weak ω -limit set of

{xn} by

ωw(xn) = {x : ∃xnj
⇀ x}.

We now need some facts and tools in a real Hilbert space H which are listed
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as lemmas below (see [14] for necessary proofs of Lemmas 2.2 and 2.4).

Lemma 2.1. Let H be a real Hilbert space. There hold the following identities

(which will be used in the various places in the proofs of the results of this thesis).

(i) ‖x− y‖2 = ‖x‖2 − ‖y‖2 − 2〈x− y, y〉, x, y ∈ H.

(ii) For all λi ∈ [0, 1] with
∑N−1

i=0 λi = 1, and x, y ∈ H , the following equality

holds:

‖
N−1∑
i=0

λixi‖2 =
N−1∑
i=0

λi‖xi‖2 −
N−1∑
i<j

λiλj‖xi − xj‖2. (2.1)

In particular, for N = 2 we have

‖tx+(1− t)y‖2 = t‖x‖2 +(1− t)‖y‖2− t(1− t)‖x− y‖2, t ∈ [0, 1]. (2.2)

Lemma 2.2. ([14]) Let H be a real Hilbert space. Given a nonempty closed

convex subset C ⊂ H and points x, y, z ∈ H . Given also a real number a ∈ R.

The set {
v ∈ C : ‖y − v‖2 ≤ ‖x− v‖2 + 〈z, v〉+ a

}
is convex (and closed).

Recall that given a nonempty closed convex subset K of a real Hilbert space

H , the nearest point projection PK from H onto K assigns to each x ∈ H its

nearest point denoted PKx in K from x to K ; that is, PKx is the unique point

in K with the property

‖x− PKx‖ ≤ ‖x− y‖, y ∈ K.

Lemma 2.3. Let K be a nonempty closed convex subset of real Hilbert space H .

Given x ∈ H and z ∈ K . Then z = PKx if and only if there holds the relation:

〈x− z, y − z〉 ≤ 0, y ∈ K.
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Lemma 2.4. ([14]) Let K be a nonempty closed convex subset of H . Let {xn}

be a sequence in H and x0 ∈ H . Let q = PKx0 . If {xn} is such that ωw(xn) ⊂ K

and satisfies the condition

‖xn − x0‖ ≤ ‖q − x0‖, n ≥ 1. (2.3)

Then xn → q .

We also need the following lemmas.

Lemma 2.5. ([23]) Assume {an} is a sequence of nonnegative real numbers

satisfying the property

an+1 ≤ (1 + γn)an, n ≥ n0

for some positive integer n0 , where {γn} is a sequence of nonnegative real num-

bers such that
∑∞

n=1 γn < ∞. Then limn→∞ an exists.

3 Strong convergence theorems

Note that the common fixed point set F := ∩∞n=0Fix(Sn) is closed, but we don’t

know whether it is convex or not. However, we firstly prove that F is convex

provided the family S = {Sn : C → C, n ≥ 0} satisfies the following continuity

condition:

∀ v ∈ C, ‖Snv − v‖ → 0 ⇒ v ∈ F. (3.1)

Lemma 3.1. Let C be a nonempty closed convex subset of a Hilbert space H .

Let a family S = {Sn : C → C, n ≥ 0} be asymptotically κ-strict quasi-pseudo-

contractive on C . Assume that the family S satisfies the following continuity

condition (3.1). Then the common fixed point set F is convex.
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Proof. Let p, q ∈ F and v := λp + (1 − λ)q ∈ C with λ ∈ (0, 1). To show the

convexity of F , we must show that ‖Snv − v‖ → 0. Now use (ii) of Lemma 2.1

and (1.7) to get

‖Snv − v‖2 = ‖λ(Snv − p) + (1− λ)(Snv − q)‖2

= λ‖Snv − p‖2 + (1− λ)‖Snv − q‖2 − λ(1− λ)‖p− q‖2

≤ λ[(1 + γn)‖v − p‖2 + κ‖v − Snv‖2] +

(1− λ)[(1 + γn)‖v − q‖2 + κ‖v − Snv‖2]− λ(1− λ)‖p− q‖2.

Thus we have

(1− κ)‖Snv − v‖2 ≤ λ(1− λ)(1 + γn)‖p− q‖2 − λ(1− λ)‖p− q‖2

= λ(1− λ)γn‖p− q‖2 → 0

because γn → 0 as n →∞ . So, we obtain that ‖Snv − v‖ → 0.

Lemma 3.2. Let C be a nonempty closed convex subset of a Hilbert space H .

Let a family S = {Sn : C → C, n ≥ 0} be asymptotically κ-strict quasi-pseudo-

contractive on C . Assume that F is a nonempty bounded subset of C , and also

that two control sequences {αn}∞n=0 and {βn}∞n=0 are chosen in [0, 1] so that

(i) lim supn→∞ αn < 1;

(ii) βn ∈ [κ, 1] and limn→∞ βn = 1.

Let {xn} be the sequence generated by the hybrid algorithm (1.8), starting from

an arbitrarily given x0 ∈ C . Then there hold the following properties.

(a) ‖xn − x0‖ ≤ ‖q − x0‖ for all n ≥ 1, where q := Pco(F )x0 .

(b) ‖xn − xn+1‖ → 0 and, furthermore, ‖yn − Snyn‖ → 0 as n →∞.
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Proof. First observe that Cn is closed convex by Lemma 2.2 and also that Qn is

closed convex for all n ≥ 0. Next we show that F ⊂ Cn for n ≥ 0. Indeed, let

p ∈ F . By virtue of (1.7), we see

‖Snxn − p‖2 ≤ (1 + γn)‖xn − p‖2 + κ‖xn − Snxn‖2.

Then this jointed with the identity (2.2) and the hypothesis (ii) yields

‖yn − p‖2 = ‖βn(xn − p) + (1− βn)(Snxn − p)‖2

= βn‖xn − p‖2 + (1− βn)‖Snxn − p‖2 − βn(1− βn)‖xn − Snxn‖2

≤ [1 + γn(1− βn)]‖xn − p‖2 − (1− βn)(βn − κ)‖xn − Snxn‖2

≤ [1 + γn(1− βn)]‖xn − p‖2 (3.2)

≤ ‖xn − p‖2 + (1− βn)θn. (3.3)

Using the identity (2.2) again and the hypothesis (iii) we similarly compute

‖zn − p‖2 = ‖αn(yn − p) + (1− αn)(Snyn − p)‖2

= αn‖yn − p‖2 + (1− αn)‖Snyn − p‖2 − αn(1− αn)‖yn − Snyn‖2

≤ [1 + γn(1− αn)]‖yn − p‖2 − (1− αn)(αn − κ)‖yn − Snyn‖2

≤ ‖yn − p‖2 + (1− αn)[θn(1 + (1− βn)γn) + (κ− αn)‖yn − Snyn‖2]

≤ ‖xn − p‖2 + (1− βn)θn + (1− αn)

[θn(1 + (1− βn)γn) + (κ− αn)‖yn − Snyn‖2] (3.4)

and thus p ∈ Cn for all n ≥ 0. This shows F ⊂ Cn for each n ≥ 0.

Next we show that

F ⊂ Qn, n ≥ 0. (3.5)

We prove this by induction. For n = 0, we have F ⊂ C = Q0 . Assume that

9



F ⊂ Qk . Since xk+1 is the projection of x0 onto Ck∩Qk , by Lemma 2.3 we have

〈xk+1 − z, x0 − xk+1〉 ≥ 0, z ∈ Ck ∩Qk.

As F ⊂ Ck ∩ Qk by the induction assumption, the last inequality holds, in

particular, for all z ∈ F . This together with the definition of Qk+1 implies that

F ⊂ Qk+1 . Hence (3.5) holds for all n ≥ 0, and xn is well defined for all n .

Furthermore, since Cn ∩ Qn is closed and convex, it follows from F ⊂ Cn ∩ Qn

that

co(F ) ⊂ Cn ∩Qn, n ≥ 0.

Notice that the definition of Qn actually implies xn = PQnx0 . This together with

the fact co(F ) ⊂ Qn further implies

‖xn − x0‖ ≤ ‖p− x0‖, p ∈ co(F ).

In particular, {xn} is bounded and

‖xn − x0‖ ≤ ‖q − x0‖, where q := Pco(F )x0 . (3.6)

Hence (a) is fulfilled.

The fact xn+1 ∈ Qn asserts that 〈xn+1−xn, xn−x0〉 ≥ 0. This together with

Lemma 2.1 (i) implies

‖xn+1 − xn‖2 = ‖(xn+1 − x0)− (xn − x0)‖2

= ‖xn+1 − x0‖2 − ‖xn − x0‖2 − 2〈xn+1 − xn, xn − x0〉

≤ ‖xn+1 − x0‖2 − ‖xn − x0‖2. (3.7)

This implies that the sequence {‖xn−x0‖} is increasing. Since it is also bounded,

we see that limn→∞ ‖xn − x0‖ exists. Note that since {xn} is bounded, so is
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{Snxn} . Then it turns out from (3.7) that

‖xn+1 − xn‖ → 0. (3.8)

To prove the second part of (b), i.e., ‖yn−Snyn‖ → 0, since yn = βnxn+(1−βn)Snxn ,

it follows from (3.8) and βn → 1 that

‖yn − xn+1‖ ≤ ‖yn − xn‖+ ‖xn − xn+1‖ (3.9)

= (1− βn)‖Snxn − xn‖+ ‖xn − xn+1‖ → 0. (3.10)

Now use the fact xn+1 ∈ Cn to get

‖zn − xn+1‖2 ≤ ‖xn − xn+1‖2 + (1− βn)θn + (1− αn)

[θn(1 + (1− βn)γn) + (κ− αn)‖yn − Snyn‖2]. (3.11)

On the other hand, by virtue of zn = αnyn + (1 − αn)Snyn and (2.2) in Lemma

2.1, we have

‖zn − xn+1‖2 = ‖αn(yn − xn+1) + (1− αn)(Snyn − xn+1)‖2

= αn‖yn − xn+1‖2 + (1− αn)‖Snyn − xn+1‖2

−αn(1− αn)‖yn − Snyn‖2.

After substituting this equality into (3.11), by simplifying and dividing both sides

by (1− αn) (note that αn < 1 for all n), we arrive at

‖xn+1 − Snyn‖2 ≤ 1

1− αn

{‖xn+1 − xn‖2 + (1− βn)θn − αn‖yn − xn+1‖2}

θn[1 + (1− βn)γn] + κ‖yn − Snyn‖2. (3.12)

Also, since

‖xn+1 − Snyn‖2 = ‖(xn+1 − yn) + (yn − Snyn)‖2

= ‖xn+1 − yn‖2 + ‖yn − Snyn‖2 − 2〈yn − xn+1, yn − Snyn〉

11



by the parallelogram law, substituting this equality into (3.12) and simplifying,

we have

(1− κ)‖xn − Snxn‖2

≤ 1

1− αn

{‖xn+1 − xn‖2 + (1− βn)θn − ‖yn − xn+1‖2}

+θn[1 + (1− βn)γn] + 2〈yn − xn+1, yn − Snyn〉

≤ 1

1− αn

{‖xn+1 − xn‖2 + (1− βn)θn − ‖yn − xn+1‖2}

+θn[1 + (1− βn)γn] + 2‖yn − xn+1‖‖yn − Snyn‖. (3.13)

From (3.8) and (3.9) together with θn → 0, it follows that the right hand side of

(3.13) converges to zero as n →∞ . Hence (b) is proven.

Now we present the strong convergence of the hybrid algorithm (1.8) for an

asymptotically strict pseudo-contractive family S = {Sn : C → C, n ≥ 0} .

Theorem 3.3. Under the same hypotheses with Lemma 3.2, assume, in addi-

tion, that ωw(xn) ⊂ F and S satisfies the continuity condition (3.1). Then

xn → PF x0 .

Proof. Obviously, F is closed and convex. Combined the assumption ωw(xn) ⊂ F

with (a) of Lemma 3.2, an application of Lemma 2.4 (with K := F ) ensures that

xn → q , where q = PF x .

As a special case, taking βn ≡ 1 in Lemma 3.2 (in this case, notice that the

control condition lim supn→∞ αn < 1 can be weaken with 0 < αn < 1), we obtain
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the strong convergence of the following modified hybrid type iteration

x0 ∈ C chosen arbitrarily,

zn = αnxn + (1− αn)Snxn,

Cn = {p ∈ C : ‖zn − p‖2 ≤ ‖xn − p‖2 + (1− αn)

[θn + (κ− αn)‖xn − Snxn‖2]},

Qn = {p ∈ C : 〈xn − p, x0 − xn〉 ≥ 0},

xn+1 = PCn∩Qnx0, n ≥ 0,

(3.14)

where

θn = γn · sup{‖xn − p‖2 : p ∈ F := ∩∞n=0Fix(Sn)},

and the sequence {αn}∞n=0 lies in the interval [0, 1].

Theorem 3.4. Let C be a nonempty closed convex subset of a Hilbert space H .

Let a family S = {Sn : C → C, n ≥ 0} be asymptotically κ-strict quasi-pseudo-

contractive on C . Assume that F is a nonempty bounded subset of C , and also

that the control sequence {αn}∞n=0 is chosen in [0, 1] so that 0 < αn < 1. Let

{xn} be the sequence generated by the hybrid type algorithm (3.14), starting from

an arbitrarily given x0 ∈ C . Assume, in addition, that ωw(xn) ⊂ F and S

satisfies the continuity condition (3.1). Then xn → PF x0 .

We here give an example of an asymptotically strict quasi-pseudo-contractive

family of self-mappings which is not asymptotically nonexpansive.

Example 3.5. Let C = H = `2 and t > 1, p ≥ 1. Then we can define

Snx = −
(
t +

1

np

)
x, x ∈ C

for each n ≥ 1 and let S0 = I , the identity mapping on C . Then there hold the

following properties:

13



(a) F := ∩∞n=0Fix(Sn) = {0};

(b) the family S = {Sn : C → C, n ≥ 0} is not asymptotically nonexpansive;

(c) S is asymptotically κ-strict pseudo-contractive on C for any κ ∈ [ t−1
t+1

, 1);

(d) S satisfies the continuity condition (3.1).

Proof. (b) Let x, y ∈ C and t−1
t+1

≤ κ < 1. Since

‖Snx− Sny‖2 =
(
t +

1

np

)2

‖x− y‖2

for x, y ∈ C , S = {Sn : C → C, n ≥ 0} is not asymptotically nonexpansive.

(c) Since

‖Snx‖2 =
(
t +

1

np

)2

‖x‖2,

‖(I − Sn)x‖2 =
(
1 + t +

1

np

)2

‖x‖2,

and (
t +

1

np

)2

− κ
(
1 + t +

1

np

)2

≤
(
t +

1

np

)2

− t− 1

t + 1

(
1 + t +

1

np

)2

= 1 +
2

np
+

2

t + 1

( 1

np

)2

< 1 +
3

np
,

we have

‖Snx− 0‖2 =
[(

t +
1

n

)2

− κ
(
1 + t +

1

n

)2]
‖x‖2

+κ
(
1 + t +

1

n

)2

‖x‖2

≤
(
1 +

3

np

)
‖x‖2 + κ

(
1 + t +

1

n

)2

‖x‖2

= (1 + γn)‖x− 0‖2 + κ‖(I − Sn)x‖2

14



for p = 0 ∈ F , where γn := 3
np . Therefore, S = {Sn : C → C, n ≥ 0}

is asymptotically κ-strict quasi-pseudo-contractive on C for any κ satisfying

t−1
t+1

≤ κ < 1.

(d) Let v − Snv → 0 for v ∈ C . Then

‖v − Snv‖ =
∣∣∣1 +

(
t +

1

np

)∣∣∣‖v‖ → (1 + t)‖v‖ = 0.

Hence v = 0 ∈ F .

Remark 3.6. Note that if the family S = {Sn : C → C, n ≥ 0} is given as in

Example 3.5 with p > 1, and if {xn} is generated by the hybrid algorithm (1.8)

and lim supn→∞ αn < 1, then ωw(xn) = {0} . Indeed, assume that xnk
⇀ z ∈ C .

Since yn − xn = (1 − βn)(Snxn − xn) → 0, we also have ynk
⇀ z ∈ C . From

‖yn − Snyn‖ =
(
1 + t + 1

np

)
‖yn‖ → 0, it follows that yn → 0. By uniqueness

of weak limit, we have z = 0 and so ωw(xn) ⊂ {0} . For the converse inclusion,

since {xn} is bounded; hence ωw(xn) 6= ∅ , say z ∈ ωw(xn). Then there is a

subsequence {nk} of {n} such that xnk
⇀ z . The same argumentation as above

gives

xnk
⇀ z = 0 ∈ ωw(xn),

which concludes that ωw(xn) = {0} . Consequently, the sequence {xn} generated

by (1.8) converges strongly to PF x0 = 0 under the condition lim supn→∞ αn < 1

by applying Theorem 3.3.
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