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1 Introduction

Let C' be a nonempty closed convex subset of a real Hilbert space H. Let
T :C — C be a mapping. We use Fliz(T) to denote the set of fixed points of
T'; that is,
Fiz(T)={x € C:Tv = x}.
Recall that T : C — C is said to be a strict quasi-pseudo-contractive [1] if
Fiz(T) # () and there exists a constant 0 < k < 1 such that

ITz~=2]* < |2 = oI £ slle=Tz|? (1.1)

for all x € C' and p € Fixz(T). For such a case, T is said to be a k-strict quasi-
pseudo-contraction. A 0-strict.quasi-pseudo-contraction 7’ is quasi-nonexpansive;

that is, T' is quasi-nonexpansive if
[Tz = p|| < [l = pl

for all x € C and. p € Fiz(T).
Recall also that a mapping T : C' — C is said to be asymptotically strict
quasi-pseudo-contractive [18] if Fix(T) # ) and there exist a constant x € [0,1)

and a sequence {7,} of nonnegative real numbers with lim, ., v, = 0 such that
1Tz — pl|* < (1 + y)llz = pl? + sz — T"=|? (1.2)

for all x € C', p € Fiz(T) and n > 1; see also [7] or [16]. When (1.2) holds, T
is afterward said to be an asymptotically x-strict quasi-pseudo-contraction (with
respect to the sequence {v,} in case a distinction is needed). Note that if k = 0,
then T is asymptotically quasi-nonexpansive [4], that is,

|T"z — pl|| < knllz —pl|
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forall x € C, p € F(T) and n > 1, where k, :=/1+~, — 1. It is also
known [17] that the class of k-strict quasi-pseudo-contractions and the class of
asymptotically k-strict quasi-pseudo-contractions are independent.

Iterative methods are often used to solve the fixed point equation Tx = x.
The most well-known method is perhaps the Picard successive iteration method
when T is a contraction. Picard’s method generates a sequence {z,} successively
as r, = Tx,_ 1 for n > 2 with x; := x arbitrary, and this sequence converges
in norm to the unique fixed point of 7. However, if T is not a contraction (for
instance, if 7" is nonexpansive); then Picard’s successive iteration fails, in general,
to converge. Instead, Mann’s iteration method [11] prevails, which, an averaged

process in nature, generates a sequence {x,} recursively by
Tnt1 20T, + (1 — dEER. 1 > 0 (1.3)

where the initial guess zy € C' is arbitrarily chosen and the sequence {a,}5°,
lies in the interval [0, 1].

It is known that the Mann iteration method (1.3).is in general not strongly
convergent [3] for either-nonexpansive mappings or strict pseudo-contractions. In
2003, a method (called hybrid method) to medify the Mann iteration method
(1.3) so that strong convergence is guaranteed has been proposed by Nakajo and
Takahashi [15] for a single nonexpansive mapping 7' with Fiz(T) # () in a Hilbert
space H:

xog € C chosen arbitrarily,

Yn = Ty + (1 — )Ty,

Con={2€C:|lyn — 2| < llwa — 2}, (1.4)
Qn=1{2z€C:{(x, —z,x0 —x,) > 0},

Tp+1 = PCnﬁanﬂO; n > 07



where Py denotes the metric projection from H onto a nonempty closed con-
vex subset K of H. They proved that if the sequence {a,}2%, is bounded
above from one, then the sequence {x,} generated by (1.4) converges strongly
to Ppiym)To. This result has been extended to the class of asymptotically non-
expansive mappings by Kim and Xu [6], and subsequently to the one of k-strict

pseudo-contractions by Marino and Xu [13] as follows.

Theorem MX (see Theorem 4.1 of [13]) Let C' be a closed convexr subset of
a Hilbert space H. Let T : C — C be a k-strict pseudo-contraction for some
0 < k <1 and assume that the fized point set Fix(T) of T is nonempty. Let
{z,} be the sequence generated by the following hybrid algorithm:

.
xg € C chosen arbitrarily,

Yn = QnTp s (1 T~ an)Txn7
{ Co={2€C:|lyn — 2l < |0 — 2P+ (A = )k — on)|@n — T2},
Qn={z€C.{(x, — 2,Tp — T,) > 0},

ZTnt1 = Po,rQ,To, n > 0.
(1.5)

Assume that the control sequence{ev, }5° o is chosen sothat oy, < 1 for all n > 0.

Then {x,} converges strongly to Ppiy1)xo .

Quite recently, Kim and Xu [7] gave an analogue of Theorem MX for the class

of asymptotically k-strict pseudo-contractions.

Theorem KX (see Theorem 4.1 of [7]) Let C be a closed conver subset of
a Hilbert space H and let T : C' — C be an asymptotically k-strict pseudo-
contraction for some 0 < k < 1. Assume that the fized point set Fix(T) of T

1s nonempty and bounded. Let {x,} be the sequence generated by the followin
pLy q g Y g



hybrid algorithm:

(
xg € C' chosen arbitrarily,

Yn = Ty + (1 — )Ty,

Co={2€C:lyn — 2> < [lan — 2[* + (1 — on)(k — o)
[z — T"@n|* + On},

Qn={2€C:{(xy,—2z,20—x,) >0},

(1.6)

Tn+1 = Po,ng,To, n >0

where
w = A2(1 = o)y =0 650 — 00, Ay =sup{|[en —2|f? : € Fin(T)} < oo.

Assume that the control sequence {an, }o2 o is.chosen so that limsup,,_, . o, < 1.

Then {x,} converges strongly to Ppizr)o.

From now on, motivated by definition of (1.2), we say that a family S = {S,, : C

— C,n > 0} of self-mappings of C is asymptotically r-strict quasi-pseudo-

contractive on Cif F := 0%, Fix(S,) # 0 and there exist a constant x € [0,1)

and a sequence {7, }52, of nonnegative real numbers with lim,, .., 7, = 0 such
that

1Sz = plI* < (1 +70)llz = plI* + &llz — Saz]® (1.7)

for all x € C', p € F and all integers n > 0. When (1.7) holds, S is of-
ten said to be an asymptotically k-strict quasi-pseudo-contractive family. Es-
pecially, when £ = 0 in (1.7), the family S is said to be asymptotically quasi-
nonexpansive. Notice also that the asymptotically strict quasi-pseudo-contractive
family § = {S, : C — C,n > 0} obviously includes the class of strict
quasi-pseudo-contractions and the class of asymptotically strict quasi-pseudo-

contractions, simply by taking S,, := T (or T™), n > 0, for a strict quasi-pseudo-
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contraction (or asymptotically strict quasi-pseudo-contraction) 7" : C' — C, re-
spectively.

In this thesis, we first propose the following hybrid iteration method

xg € C chosen arbitrarily,
Yn = Bnn + (1 = Bn)Snn,
Zn = apYn + (1 — ) Snin,
Co={p€C:|lza—pl* < llzn —plI* + (1 = Ba)0n + (1 — )
[0 (1 £ (1= Bn)7n) + (K = o) llyn — Suynll’]},
Qn={p € C: (zn —p,xo = 2p) 2 0},

Lpt1 = PCnﬂQn:UOa n 2 07

(1.8)
where
0 = 1o - supfllzn — plI* : p & Fi= 32 Fix(S,)},
and the sequences {a,;,}22, ‘and {5,}°, lie in the interval [0, 1].' We next study

strong convergence of the hybridialgorithm (1.8) for such an asymptotically strict
pseudo-contractive family S = {S, : C - C, n > 0}«

2 Preliminaries

Let H be a real Hilbert space with the duality product (-,-). When {z,} is a
sequence in H , we denote the strong convergence of {z,} to x € H by z, — «

and the weak convergence by x, — x. We also denote the weak w-limit set of

{z,} by

Wy (Tn) = {2 : 320, — 7}

We now need some facts and tools in a real Hilbert space H which are listed



as lemmas below (see [14] for necessary proofs of Lemmas 2.2 and 2.4).

Lemma 2.1. Let H be a real Hilbert space. There hold the following identities

(which will be used in the various places in the proofs of the results of this thesis).
@) [l =yll* = llz)* = llyl* = 2z = y,y), xy€H.

(ii) For all \; € [0,1] with Zﬁ\:()l XNi =1, and x,y € H, the following equality
holds:

N-1 N-1 N—1
Y Xl =) Millwill® =) Nl — a1 (2.1)
i=0 i=0

i<j

In particular, for N-= 2 we have
[tz + (1= )y|* = tlla]* + A =yl -t —)[Ja=yli?, te0,1]. (2.2)

Lemma 2.2. ([14]) Let H ‘be a real Hilbert space. Given a nonempty closed
conver subset C'C H and points x,y,z € H. Given also a real number a € R.
The set

fueC: lyaol < o=l 4 (= v) 4a)

is convez (and closed).

Recall that given a nonempty-closed convex subset K of a real Hilbert space
H | the nearest point projection Py from H onto K assigns to each x € H its
nearest point denoted Pxx in K from z to K; that is, Pgx is the unique point

in K with the property
|o = Prx|| < |lz—yll, yekK.

Lemma 2.3. Let K be a nonempty closed convex subset of real Hilbert space H .

Given x € H and z € K. Then z = Pgx if and only if there holds the relation:

(x—2zy—2)<0, yeK



Lemma 2.4. ([14]) Let K be a nonempty closed convex subset of H. Let {x,}
be a sequence in H and xg € H. Let ¢ = Pxxo. If {x,} is such that w,(z,) C K

and satisfies the condition
[2n =zl < llg = oll, n =1 (2.3)
Then x,, — q.
We also need the following lemmas.

Lemma 2.5. ([23]) Assume {an} is a sequence of nonnegative real numbers

satisfying the property
Ap+41 S (1 - ’7n>a'n; n Z no

for some positive integer ng, where {v,} is a sequence of nonnegative real num-

bers such that >~ " v, < 00. Then lim, o a, exists.

3 Strong convergence theorems

Note that the common fixed point set F':= N9 Fix(S,) is closed, but we don’t
know whether it is convex or not. However, we firstly prove that F' is convex
provided the family & = {S,, : C — C, n > 0} satisfies the following continuity
condition:

VoeC, ||ISov—v||—=0 = veF. (3.1)

Lemma 3.1. Let C' be a nonempty closed convex subset of a Hilbert space H .
Let a family S = {S, : C — C, n > 0} be asymptotically k-strict quasi-pseudo-
contractive on C. Assume that the family S satisfies the following continuity

condition (3.1). Then the common fized point set F' is conver.

7



Proof. Let p,q € F and v := Ap+ (1 — X\)g € C with A € (0,1). To show the
convexity of F', we must show that |S,v —v|| — 0. Now use (ii) of Lemma 2.1

and (1.7) to get

182w = vl = [IA(Swv = p) + (1 = A)(Swv = )|*
= AlSuv = pl* + (1 = N[Sev = al* = AL = N)lp — q|?
< A+ ya)llv = plI* + £llv = Savll?] +

(1= N[+ 7)o =gl + sllv = Suol?] = X1 = Nlp — qll>.
Thus we have

(1= m)lISwo=ol* < AL =N +7)llp — al® =A< Vp - ql?
= AL =Nmlp=dl’ =0
because vy, — 0 as n — co. So, we obtain that [|S,v — v|| — 0. O

Lemma 3.2. Let C' be a nonempty closed convex subset of a Hilbert space H .
Let a family S =S, : C.— C, n > 0} be asymptotically k-strict quasi-pseudo-
contractive on C'. Assume-that-E is a nonempty bounded subset of C', and also

that two control sequences {a}eey and-{B,}5° o -are chosen in [0,1] so that
(i) limsup,, . a, <1;
(ii) B, € [k, 1] and lim, o B, = 1.

Let {x,} be the sequence generated by the hybrid algorithm (1.8), starting from

an arbitrarily given xo € C'. Then there hold the following properties.
(a) ||z, — xo|| < |lg — ol for all n > 1, where q := Pmp)2o.
(b) ||z — Zpnt1]| — O and, furthermore, ||yn — Spyn|| — 0 as n — oco.
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Proof. First observe that C,, is closed convex by Lemma 2.2 and also that @, is
closed convex for all n > 0. Next we show that F C C,, for n > 0. Indeed, let

p € F. By virtue of (1.7), we see
|Snn —pH2 < (T +y)lln — p||2 + fillzn — Snxn||2~
Then this jointed with the identity (2.2) and the hypothesis (ii) yields

1y = pII* = [18a(2n = p) + (1 = Ba) (Suzn — p)|I*

< L4+ (L= Balllen = o= (1 —Ba)(Bai—H)llen — Snzall?
< [T+ %E=B8)lllzn = pH2 (3.2)
<l =pl? A (1 #80)05 (3.3)

Using the identity (2.2) again and the hypothesis (iii) we similarly compute
lzn =2l = N (yn =) + (1 = @) (Sayn — p)|1?

= allyn — Pl* + (= ) ||Snyn — DlI* — (@ =)y — Suyn||®

< [T+ 72(1 = an)Mlign =2IP — (1 + an)lain =%) ||y — Spyal®
< g =l + (1 = @) [0a(1 4 (1 = B2)7n) + (8 — @)Y — Snyall?]
< Hxn_p"2+(1_ﬁn)9n+<1_an)

[0 (1 + (1 = B)vn) + (5 = o) llyn — Suynll’] (3.4)

and thus p € C, for all n > 0. This shows F' C C,, for each n > 0.
Next we show that

FCQn n>0. (3.5)

We prove this by induction. For n = 0, we have F C C' = )y. Assume that



F C Q. Since x4 is the projection of xy onto Cx NQy, by Lemma 2.3 we have
(Thp1 — 2,20 — 1) 20, 2 € Cp N Q.

As F C C, N Qp by the induction assumption, the last inequality holds, in
particular, for all z € F'. This together with the definition of (), implies that
F C Qp+1- Hence (3.5) holds for all n > 0, and x, is well defined for all n.
Furthermore, since C, N @, is closed and convex, it follows from F C C, N Q,
that

=R R A =4

Notice that the definition of (), actually implies z;,, = Py, xg. This together with
the fact co(F) C'Q, further implies

lzn = ol < llp = xoll; p € To(F).
In particular, {z,} is bounded and

e — zoll < llg = @oll, | where g := Bz’ (3.6)

Hence (a) is fulfilled.
The fact z,41 € @, asserts that (x,1 —x,,x, — ) > 0. This together with
Lemma 2.1 (i) implies
1ns1 = zall® = (@ns1 — 20) = (20 — z0)*
= @i = 2oll® = [lzn — zoll* = 2(zni1 — 2, 20 — 70)
< Mz = oll® = llan — a0l (3.7)
This implies that the sequence {||z, —x¢l||} is increasing. Since it is also bounded,

we see that lim, . ||z, — zo|| exists. Note that since {z,} is bounded, so is
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{Spz,}. Then it turns out from (3.7) that
2041 = 2nll = 0. (3.8)

To prove the second part of (b), i.e., ||y,—Snyn|l — 0, since y,, = Brxn+(1—05,)Snn,
it follows from (3.8) and 3, — 1 that

190 = npall < Mlyn = 2ll + 20 = 2o (3.9)

= (1= 08)Snzn — zn|| + |20 — Znaa|| — 0. (3.10)
Now use the fact x,.1 € C, to get

120 = Znpa[|2< l&n — Tai1l” 4+ (1= B)0n + (1= )

[0 (Lge-(LatBrdar )t (5 — i Y[ Snyn||2]- (3.11)

On the other hand, by virtue of z, = a,y, + (1 — ;) Sy, and (2.2) in Lemma

2.1, we have

Hzn = xn+1||2 - Han<yn oy xn+1) + (1 r an)(snyn —i xn+1)|’2
= llyn — Zaa | + (1 — )il Sntn = T ||

_an(l B an)“yn i Snyn||2

After substituting this equality into (3.11), by simplifying and dividing both sides
by (1 — a,) (note that «,, <1 for all n), we arrive at

1
s = 2l + (1= 50 — g — s}

On[1 + (1 = Ba) vl +’<”'Hyn_5n3/n”2- (3.12)

||xn+1 - Snyn||2 S

Also, since
Hxn-ﬂ - Snyn||2 = H(In—&-l - yn) + (yn - nyn>||2
= ||5L’n+1 - yn”2 + Hyn - nynH2 - 2<yn — Tn41,Yn — Snyn>

11



by the parallelogram law, substituting this equality into (3.12) and simplifying,

we have

(1= &)[J2, — Snan2

e R AV PR
FO0u[1+ (1= Bo)vn) + 2(Un — Ts1, Yn — Sn¥n)
S ol P (0= B~ o~ 2l
H0u[L+ (1= B)val + 20190 — Zas1ll19n — Satiull- (3.13)

From (3.8) and (3.9) together with 6,, — 0, it follows that the right hand side of

(3.13) converges tozero as n — oo. Hence (b) is proven. O

Now we present the strong convergence of the hybrid algorithm (1.8) for an

asymptotically strict pseudo-contractive family S = {S,, : C' — C, n > 0}.

Theorem 3.3. Under the same hypotheses with Lemma 3.2, assume, in addi-
tion, that wy(x,) C F and S “satisfies the continuity condition (3.1). Then

$n—>PF.’E0.

Proof. Obviously, F is closed and convex. Combined the assumption w,,(z,) C F
with (a) of Lemma 3.2, an application of Lemma 2.4 (with K := F) ensures that

T, — ¢, where ¢ = Prx. O

As a special case, taking 3, = 1 in Lemma 3.2 (in this case, notice that the

control condition limsup,, . a, < 1 can be weaken with 0 < «,, < 1), we obtain

12



the strong convergence of the following modified hybrid type iteration

xg € C chosen arbitrarily,
Zn = 0Ty + (1 — ay,) Spy,
Co={p€C:llza —pll* <z —pl* + (1 — an)
[0 + (5 = o) |70 — Snwnll*]},
Qn=A{p € C: (xn—p,x0—za) 2 0},

Tnt1 = PCann$0> n > 0,

(3.14)

where
On =y 8up{ ||z, = pl*: p € Fi= M 5Fiz(Sa)},

and the sequence {ay,}>2, lies in the interval [0, 1].

Theorem 3.4. Let C' be a nonempty closed convex subset of a Hilbert space H .
Let a family S = {S,, : C = C, n > 0} be asymptotically k-strict quasi-pseudo-
contractive on C'. Assume that F' is a nonempty bounded subset of C', and also
that the control'sequence {a, Yoo, is chosen in [0,1] so that 0 < «,, < 1. Let
{z,} be the sequence generated by the hybrid type algorithm (8.14), starting from

an arbitrarily given xo-€ C.-Assume; in addition, that w,(x,) C F and S

satisfies the continuity condition (8-4).Then x, — Prxy.

We here give an example of an asymptotically strict quasi-pseudo-contractive

family of self-mappings which is not asymptotically nonexpansive.
Example 3.5. Let C = H =/(? and t > 1, p> 1. Then we can define
1
Snx:—(t—i-—):z:, relC
npk

for each n > 1 and let Sy = I, the identity mapping on C. Then there hold the

following properties:

13



(a) F =N Fix(S,) = {0},
(b) the family S = {S,, : C — C, n > 0} is not asymptotically nonexpansive;
(¢) S is asymptotically k-strict pseudo-contractive on C' for any k € [;—i, 1);

(d) S satisfies the continuity condition (3.1).

Proof. (b) Let x,y € C and % < Kk < 1. Since

1\2
2 _ = 2
1Sz = Syl = (¢ + =) llz =9l

for x,y € C, § = {5, +C — C, n > 0} is not asymptotically nonexpansive.

(c) Since
2 19 2
|57 AN N
I- Sel? = (tat+ =) |zl
|- S)all” = e ) |11,
and
12 12 1\2 i 1 12
(t+—=) —w(keg =) <(t+ ) <31+t + )
np np np t+1 np
| 1+2+ 2 (1)2
— n?  t4+1\np
3
< 142,
np

we have
1\2 12
ISnz =01 = [(t+=) =r(1+t+=)]lal?
n n
N2
+/1<1+t+5> Izl
3 9 INZ
< (142 ) el + (14t + =) el
np n
= (L+)llz = 0" + £[(I = Sp)z|

14



for p = 0 € F, where , := 3. Therefore, § = {S, : C — C,n > 0}
is asymptotically k-strict quasi-pseudo-contractive on C for any k satisfying
t—1
) S Kk <1.
(d) Let v — S,v — 0 for v € C. Then
1
o= ol = |1+ (t+ =) |Iloll = (1 + &)ol] = 0.

Hence v =0 ¢ F'. O

Remark 3.6. Note that if the family S = {5, : C — C, n > 0} is given as in
Example 3.5 with p > 1,and if {z,} is generated by the hybrid algorithm (1.8)
and limsup,,_, . a,, < 1, then wy,(z,) = {0}. Indeed, assume that z, — z € C.
Since Y, — n, = (I'= Gn)(Snzaf™= @n) — Omwe also have'y,, — z € C. From
yn — Sntnll = (L4 t+ ) |luall — 0, it follows that y, — 0. By uniqueness
of weak limit, we have z = 0 and so wy(@,) C {0}. For the converse inclusion,
since {x,} is bounded; hence wy(x,) # 0, say z € w,(r,). Then there is a
subsequence {ny} of {n} such that z,, — z. The same argumentation as above
gives

o z = € Julerm,

which concludes that w,(x,) = {0}. Consequently, the sequence {x,} generated
by (1.8) converges strongly to Prpzg = 0 under the condition limsup,,_, . a, <1

by applying Theorem 3.3.
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